1
|
Fan G, Guan X, Guan B, Zhu H, Pei Y, Jiang C, Xiao Y, Li Z, Cao F. Untargeted metabolomics reveals that declined PE and PC in obesity may be associated with prostate hyperplasia. PLoS One 2024; 19:e0301011. [PMID: 38640132 PMCID: PMC11029648 DOI: 10.1371/journal.pone.0301011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/09/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Recent studies have shown that obesity may contribute to the pathogenesis of benign prostatic hyperplasia (BPH). However, the mechanism of this pathogenesis is not fully understood. METHODS A prospective case-control study was conducted with 30 obese and 30 nonobese patients with BPH. Prostate tissues were collected and analyzed using ultra performance liquid chromatography ion mobility coupled with quadrupole time-of-flight mass spectrometry (UPLC-IMS-Q-TOF). RESULTS A total of 17 differential metabolites (3 upregulated and 14 downregulated) were identified between the obese and nonobese patients with BPH. Topological pathway analysis indicated that glycerophospholipid (GP) metabolism was the most important metabolic pathway involved in BPH pathogenesis. Seven metabolites were enriched in the GP metabolic pathway. lysoPC (P16:0/0:0), PE (20:0/20:0), PE (24:1(15Z)/18:0), PC (24:1(15Z)/14:0), PC (15:0/24:0), PE (24:0/18:0), and PC (16:0/18:3(9Z,12Z,15Z)) were all significantly downregulated in the obesity group, and the area under the curve (AUC) of LysoPC (P-16:0/0/0:0) was 0.9922. The inclusion of the seven differential metabolites in a joint prediction model had an AUC of 0.9956. Thus, both LysoPC (P-16:0/0/0:0) alone and the joint prediction model demonstrated good predictive ability for obesity-induced BPH mechanisms. CONCLUSIONS In conclusion, obese patients with BPH had a unique metabolic profile, and alterations in PE and PC in these patients be associated with the development and progression of BPH.
Collapse
Affiliation(s)
- Guorui Fan
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Xiaohai Guan
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Bo Guan
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Hongfei Zhu
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Yongchao Pei
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Chonghao Jiang
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Yonggui Xiao
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Zhiguo Li
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Fenghong Cao
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
2
|
Gan S, Qu F, Zhang X, Pan X, Xu D, Cui X, Hou J. LRP5 competes for SPOP binding to enhance tumorigenesis mediated by Daxx and PD-L1 in prostate cancer. Exp Cell Res 2024; 434:113857. [PMID: 38008278 DOI: 10.1016/j.yexcr.2023.113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
Genetic factors coordinate with environmental factors to drive the pathogenesis of prostate adenocarcinoma (PRAD). SPOP is one of the most mutated genes and LRP5 mediates lipid metabolism that is abnormally altered in PRAD. Here, we investigated the potential cross-talk between SPOP and LRP5 in PRAD. We find a negative correlation between SPOP and LRP5 proteins in PRAD. SPOP knockdown increased LRP5 protein while SPOP overexpression resulted in LRP5 reduction that was fully rescued by proteasome inhibitors. LRP5 intracellular tail has SPOP binding site and the direct interaction between LRP5 and SPOP was confirmed by Co-IP and GST-pulldown. Moreover, LRP5 competed with Daxx for SPOP-mediated degradation, establishing a dynamic balance among SPOP, LRP5 and Daxx. Overexpression of LRP5 tail could shift this balance to enhance Daxx-mediated transcriptional inhibition, and inhibit T cell activity in a co-culture system. Further, we generated human and mouse prostate cancer cell lines expressing SPOP variants (F133V, A227V, R368H). SPOP-F133V and SPOP-A227V have specific effects in up-regulating the protein levels of PD-1 and PD-L1. Consistently, SPOP-F133V and SPOP-A227V show robust inhibitory effects on T cells compared to WT SPOP in co-culture. This is further supported by the mouse syngeneic model showing that SPOP-F133V and SPOP-A227V enhance tumorigenesis of prostate cancer in in-vivo condition. Taken together, our study provides evidence that SPOP-LRP5 crosstalk plays an essential role, and the genetic variants of SPOP differentially modulate the expression and activity of immune checkpoints in prostate cancer.
Collapse
Affiliation(s)
- Sishun Gan
- Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University), Medical Center of Soochow University, PR China; Department of Urology, The Third Affiliated Hospital, Naval Medical University (Second Military Medical University), Shanghai, PR China
| | - Fajun Qu
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, PR China
| | - Xiangmin Zhang
- Department of Urology, Shanghai Baoshan Luodian Hospital, Baoshan District, Shanghai, 201908, PR China
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, PR China
| | - Da Xu
- Department of Urology, The Third Affiliated Hospital, Naval Medical University (Second Military Medical University), Shanghai, PR China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, PR China.
| | - Jianquan Hou
- Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University), Medical Center of Soochow University, PR China.
| |
Collapse
|
3
|
Fontana F, Anselmi M, Limonta P. Adipocytes reprogram prostate cancer stem cell machinery. J Cell Commun Signal 2023; 17:915-924. [PMID: 36940071 PMCID: PMC10409918 DOI: 10.1007/s12079-023-00738-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/07/2023] [Indexed: 03/21/2023] Open
Abstract
It is now well-established that an obese condition correlates with a higher risk of prostate cancer (PCa). A crosstalk between adipose tissue and PCa has been observed but is still poorly characterized. Herein, we demonstrated that 3T3-L1 adipocyte conditioned media (CM) could endow PC3 and DU145 PCa cells with stemness properties, by stimulating their sphere formation ability and promoting CD133 and CD44 expression. Moreover, after exposure to adipocyte CM both PCa cell lines underwent partial epithelial-to-mesenchymal transition (EMT), with E-/N-cadherin switch and Snail upregulation. Specifically, these changes in PC3 and DU145 cell phenotype were accompanied by increased tumor clonogenic activity and survival, as well as by enhanced invasion, anoikis resistance and matrix metalloproteinase (MMP) production. Finally, adipocyte CM-treated PCa cells exhibited reduced responsiveness to both docetaxel and cabazitaxel, demonstrating greater chemoresistance. Overall, these data indicate that adipose tissue can effectively contribute to PCa aggressiveness by reprogramming the cancer stem cell (CSC) machinery. Adipocytes endow prostate cancer cells with stem-like properties and mesenchymal traits, increasing their tumorigenicity, invasion and chemoresistance.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Martina Anselmi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Peppa M, Manta A, Mavroeidi I, Nastos C, Pikoulis E, Syrigos K, Bamias A. Dietary Approach of Patients with Hormone-Related Cancer Based on the Glycemic Index and Glycemic Load Estimates. Nutrients 2023; 15:3810. [PMID: 37686842 PMCID: PMC10490329 DOI: 10.3390/nu15173810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Hormone-related cancers, namely breast, endometrial, cervical, prostate, testicular, and thyroid, constitute a specific group of cancers dependent on hormone levels that play an essential role in cancer growth. In addition to the traditional risk factors, diet seems to be an important environmental factor that partially explains the steadily increased prevalence of this group of cancer. The composition of food, the dietary patterns, the endocrine-disrupting chemicals, and the way of food processing and preparation related to dietary advanced glycation end-product formation are all related to cancer. However, it remains unclear which specific dietary components mediate this relationship. Carbohydrates seem to be a risk factor for cancer in general and hormone-related cancers, in particular, with a difference between simple and complex carbohydrates. Glycemic index and glycemic load estimates reflect the effect of dietary carbohydrates on postprandial glucose concentrations. Several studies have investigated the relationship between the dietary glycemic index and glycemic load estimates with the natural course of cancer and, more specifically, hormone-related cancers. High glycemic index and glycemic load diets are associated with cancer development and worse prognosis, partially explained by the adverse effects on insulin metabolism, causing hyperinsulinemia and insulin resistance, and also by inflammation and oxidative stress induction. Herein, we review the existing data on the effect of diets focusing on the glycemic index and glycemic load estimates on hormone-related cancers.
Collapse
Affiliation(s)
- Melpomeni Peppa
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, Research Institute and Diabetes Center, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12641 Athens, Greece; (A.M.); (I.M.)
| | - Aspasia Manta
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, Research Institute and Diabetes Center, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12641 Athens, Greece; (A.M.); (I.M.)
| | - Ioanna Mavroeidi
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, Research Institute and Diabetes Center, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12641 Athens, Greece; (A.M.); (I.M.)
| | - Constantinos Nastos
- 3rd Department of Surgery, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12641 Athens, Greece; (C.N.); (E.P.)
| | - Emmanouil Pikoulis
- 3rd Department of Surgery, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12641 Athens, Greece; (C.N.); (E.P.)
| | - Konstantinos Syrigos
- 3rd Department of Internal Medicine, Sotiria Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Aristotelis Bamias
- 2nd Propaedeutic Department of Internal Medicine, Research Institute and Diabetes Center, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12641 Athens, Greece;
| |
Collapse
|
5
|
Eshaghian N, Heidarzadeh-Esfahani N, Akbari H, Askari G, Sadeghi O. Fish consumption and risk of prostate cancer or its mortality: an updated systematic review and dose-response meta-analysis of prospective cohort studies. Front Nutr 2023; 10:1221029. [PMID: 37593679 PMCID: PMC10427873 DOI: 10.3389/fnut.2023.1221029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023] Open
Abstract
Since the release of the last meta-analysis on the association between fish intake and prostate cancer risk, several cohort studies have been published. Moreover, none of the previous meta-analyzes examined the dose-response association between fish intake and prostate cancer. Therefore, the current dose-response meta-analysis was conducted to summarize available findings on the associations of fish intake with the risk of prostate cancer in men. Online databases of PubMed, Scopus, and Web of Science were systematically searched up to September 2022. We included prospective cohort studies that examined the associations of fish intake with the risk of prostate cancer (total, localized, and advanced prostate cancer), its mortality, and cancer progression. Summary relative risks (RR) and 95% confidence intervals (CI) were calculated for the highest versus lowest categories of fish intake using random-effects models. Also, linear and non-linear dose-response analyzes were conducted. In total, 25 prospective cohort studies, recruiting 1,216,474 men, were included in the systematic review, and 22 studies were included in the meta-analysis. During the follow-up periods, ranging from 6 to 33 years, a total of 44,722 cases of prostate cancer were recorded. The comparison between the highest and lowest intakes of total fish revealed the summary RRs of 0.97 (95% CI: 0.86-1.10) for total, 1.01 (95% CI: 0.91-1.13) for advanced, and 0.90 (95% CI: 0.72-1.12) for localized prostate cancer, indicating no significant association. Moreover, the summary RR was 0.55 (95% CI: 0.33-0.92) for prostate cancer mortality and 0.84 (95% CI: 0.65-1.10) for prostate cancer progression, indicating an inverse association between fish intake and prostate cancer mortality. Also, in the dose-response analyzes, each 20 gram/day increase in total fish intake was associated with a 12% lower risk of prostate cancer mortality. Our findings support the protective association between total fish intake and the risk of prostate cancer mortality.
Collapse
Affiliation(s)
- Niloofar Eshaghian
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Neda Heidarzadeh-Esfahani
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hakimeh Akbari
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Sadeghi
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Li X, Yuan C, Yang B, Pang H, Li W, Li M, Tang Y, Ma D, Xie J, Wang J, Zhang J. Caprylic Acid (FFA C8:0) promotes the progression of prostate cancer by up-regulating G protein-coupled receptor 84/ Krüppel-like factor 7. BMC Cancer 2023; 23:426. [PMID: 37170248 PMCID: PMC10173472 DOI: 10.1186/s12885-023-10841-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 04/08/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND In previous study, we found that the content of medium-chain fatty acid Caprylic Acid (FFA C8:0) may be an important risk factor of obesity induced prostate cancer (PCa). However, the relationship between FFA C8:0 and PCa has not been reported. In this study, we explored whether the FFA C8:0 can promotes the progression of PCa by up-regulating Krüppel-like factor 7 (KLF7). METHODS We collected tissues from PCa patients and Benign Prostate Hyperplasia (BPH), constructed a primary-tumor bearing mouse model with obesity through high-fat diet, and observed the tumor formation ability of PCa cells. In vitro, CCK8 assay, plate cloning, Transwell and scratch experiment were used to detect the changes in biological behavior of PCa cells stimulated by FFA C8:0. RESULTS First, we found that the expression level of KLF7 is higher in PCa tissues of patients, and the expression of KLF7 is positively correlated with tumour-promoting gene IL-6, while it is negative correlated with another tumour-suppressor gene p21. Then, this study found that PCa cells were more likely to form tumors in diet induced obese mice. Compared with the normal diet group (ND), the expression levels of KLF7 in tumor tissues in high-fat diet group (HFD) were higher. Futhermore, we verified that high concentrations of FFA C8:0 can promote the biological behavior of PCa cells by activating KLF7/IL-6/p21 signaling pathway, which is mediated by the GPR84. CONCLUSIONS Our research may provide a potential target for clinical prevention and treatment of PCa which induced by obesity.
Collapse
Affiliation(s)
- Xue Li
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Institute of Clinical Medicine, Zhanjiang Central People's Hospital, Zhanjiang, 524045, China
| | - Chenggang Yuan
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Bingqi Yang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Huai Pang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Wei Li
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Menghuan Li
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yihan Tang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Dingling Ma
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Jianxin Xie
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Jingzhou Wang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Jun Zhang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
7
|
Wanjari UR, Mukherjee AG, Gopalakrishnan AV, Murali R, Dey A, Vellingiri B, Ganesan R. Role of Metabolism and Metabolic Pathways in Prostate Cancer. Metabolites 2023; 13:183. [PMID: 36837801 PMCID: PMC9962346 DOI: 10.3390/metabo13020183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/21/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Prostate cancer (PCa) is the common cause of death in men. The pathophysiological factors contributing to PCa are not well known. PCa cells gain a protective mechanism via abnormal lipid signaling and metabolism. PCa cells modify their metabolism in response to an excessive intake of nutrients to facilitate advancement. Metabolic syndrome (MetS) is inextricably linked to the carcinogenic progression of PCa, which heightens the severity of the disease. It is hypothesized that changes in the metabolism of the mitochondria contribute to the onset of PCa. The studies of particular alterations in the progress of PCa are best accomplished by examining the metabolome of prostate tissue. Due to the inconsistent findings written initially, additional epidemiological research is required to identify whether or not MetS is an aspect of PCa. There is a correlation between several risk factors and the progression of PCa, one of which is MetS. The metabolic symbiosis between PCa cells and the tumor milieu and how this type of crosstalk may aid in the development of PCa is portrayed in this work. This review focuses on in-depth analysis and evaluation of the metabolic changes that occur within PCa, and also aims to assess the effect of metabolic abnormalities on the aggressiveness status and metabolism of PCa.
Collapse
Affiliation(s)
- Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
8
|
Lasorsa F, di Meo NA, Rutigliano M, Ferro M, Terracciano D, Tataru OS, Battaglia M, Ditonno P, Lucarelli G. Emerging Hallmarks of Metabolic Reprogramming in Prostate Cancer. Int J Mol Sci 2023; 24:ijms24020910. [PMID: 36674430 PMCID: PMC9863674 DOI: 10.3390/ijms24020910] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer (PCa) is the most common male malignancy and the fifth leading cause of cancer death in men worldwide. Prostate cancer cells are characterized by a hybrid glycolytic/oxidative phosphorylation phenotype determined by androgen receptor signaling. An increased lipogenesis and cholesterogenesis have been described in PCa cells. Many studies have shown that enzymes involved in these pathways are overexpressed in PCa. Glutamine becomes an essential amino acid for PCa cells, and its metabolism is thought to become an attractive therapeutic target. A crosstalk between cancer and stromal cells occurs in the tumor microenvironment because of the release of different cytokines and growth factors and due to changes in the extracellular matrix. A deeper insight into the metabolic changes may be obtained by a multi-omic approach integrating genomics, transcriptomics, metabolomics, lipidomics, and radiomics data.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Nicola Antonio di Meo
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Octavian Sabin Tataru
- The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540142 Târgu Mureș, Romania
| | - Michele Battaglia
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: or
| |
Collapse
|
9
|
Lipid Metabolism and Homeostasis in Patients with Neuroendocrine Neoplasms: From Risk Factor to Potential Therapeutic Target. Metabolites 2022; 12:metabo12111057. [PMID: 36355141 PMCID: PMC9692415 DOI: 10.3390/metabo12111057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Lipid metabolism is known to be involved in tumorigenesis and disease progression in many common cancer types, including colon, lung, breast and prostate, through modifications of lipid synthesis, storage and catabolism. Furthermore, lipid alterations may arise as a consequence of cancer treatment and may have a role in treatment resistance. Neuroendocrine neoplasms (NENs) are a heterogeneous group of malignancies with increasing incidence, whose mechanisms of cancer initiation and progression are far from being fully understood. Alterations of lipid metabolism may be common across various cancer types, but data about NENs are scattered and heterogeneous. Herein, we provide an overview of the relevant literature on lipid metabolism and alterations in NENs. The available evidence both in basic and clinical research about lipid metabolism in NENs, including therapeutic effects on lipid homeostasis, are summarized. Additionally, the potential of targeting the lipid profile in NEN therapy is also discussed, and areas for further research are proposed.
Collapse
|
10
|
de Andrade CT, Rocha GZ, Zamuner M, dos Reis RB, Reis LO. Obesity influence on bladder inflammation and cancer: a cystitis model. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2022; 15:373-379. [PMID: 36237635 PMCID: PMC9547991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Recently, the role of subclinical inflammation in obesity has gained prominence. An association between obesity and chronic inflammation has been observed in several studies that show a relationship between increased morbidity and high Body Mass Index (BMI). This study aims to compare inflammatory pathways in obese (by high-fat diet) and non-obese mice after exposure to an intravesical carcinogen in a cystitis model. METHODS We divided 16 female, 7 week old mice into two groups: 1) CONTROL: standard diet, and 2) OBESE: high fat diet for 8 weeks. Both groups underwent a protocol for N-Nitroso-N-methylurea (MNU) pro-inflammatory bladder instillation. Bladder was analyzed by histopathology and western blotting for proteins of the inflammatory pathway (JNK, NFκB, c-JUN, IKK), and immunohistochemistry (proliferation and apoptosis). RESULTS While mice eating standard diet showed minimal histologic alteration in 4 of 5 (80%) bladder tissues, those eating a high fat diet showed moderate (60%) and intense (40%) chronic active inflammation with dysplasia foci, increased proliferation, apoptosis and inflammatory pathway activation with increased NFκB, and also IKKβ, JNK, and c-JUN phosphorylation in the urothelium. CONCLUSION A high-fat diet causes increased urothelial proliferation, apoptosis, and NFκB expression with cystitis exacerbation and dysplasia. Together, these results suggest that obesity induced by a high-fat diet increases the inflammatory pathway in the bladder with possible pre-malignant alterations.
Collapse
Affiliation(s)
| | - Guilherme Zweig Rocha
- UroScience, Urology Division, Department of Surgery, State University of Campinas (UNICAMP)Campinas, SP, Brazil
| | - Marina Zamuner
- UroScience, Urology Division, Department of Surgery, State University of Campinas (UNICAMP)Campinas, SP, Brazil
| | | | - Leonardo Oliveira Reis
- Urology Division, Center for Life Sciences, Pontifical Catholic University of Campinas (PUC-Campinas)Campinas, SP, Brazil
- UroScience, Urology Division, Department of Surgery, State University of Campinas (UNICAMP)Campinas, SP, Brazil
| |
Collapse
|
11
|
Fontana F, Anselmi M, Carollo E, Sartori P, Procacci P, Carter D, Limonta P. Adipocyte-Derived Extracellular Vesicles Promote Prostate Cancer Cell Aggressiveness by Enabling Multiple Phenotypic and Metabolic Changes. Cells 2022; 11:cells11152388. [PMID: 35954232 PMCID: PMC9368412 DOI: 10.3390/cells11152388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/12/2022] Open
Abstract
Background: In recent decades, obesity has widely emerged as an important risk factor for prostate cancer (PCa). Adipose tissue and PCa cells have been shown to orchestrate a complex interaction network to support tumor growth and evolution; nonetheless, the study of this communication has only been focused on soluble factors, although increasing evidence highlights the key role of extracellular vesicles (EVs) in the modulation of tumor progression. Methods and Results: In the present study, we found that EVs derived from 3T3-L1 adipocytes could affect PC3 and DU145 PCa cell traits, inducing increased proliferation, migration and invasion. Furthermore, conditioning of both PCa cell lines with adipocyte-released EVs resulted in lower sensitivity to docetaxel, with reduced phosphatidylserine externalization and decreased caspase 3 and PARP cleavage. In particular, these alterations were paralleled by an Akt/HIF-1α axis-related Warburg effect, characterized by enhanced glucose consumption, lactate release and ATP production. Conclusions: Collectively, these findings demonstrate that EV-mediated crosstalk exists between adipocytes and PCa, driving tumor aggressiveness.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy; (M.A.); (P.L.)
- Correspondence:
| | - Martina Anselmi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy; (M.A.); (P.L.)
| | - Emanuela Carollo
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (E.C.); (D.C.)
| | - Patrizia Sartori
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milano, Italy; (P.S.); (P.P.)
| | - Patrizia Procacci
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milano, Italy; (P.S.); (P.P.)
| | - David Carter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (E.C.); (D.C.)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy; (M.A.); (P.L.)
| |
Collapse
|
12
|
Targeting lipid metabolism in the treatment of ovarian cancer. Oncotarget 2022; 13:768-783. [PMID: 35634242 PMCID: PMC9132258 DOI: 10.18632/oncotarget.28241] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 05/07/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer cells undergo alterations in lipid metabolism to support their high energy needs, tumorigenesis and evade an anti-tumor immune response. Alterations in fatty acid production are controlled by multiple enzymes, chiefly Acetyl CoA Carboxylase, ATP-Citrate Lyase, Fatty Acid Synthase, and Stearoyl CoA Desaturase 1. Ovarian cancer (OC) is a common gynecological malignancy with a high rate of aggressive carcinoma progression and drug resistance. The accumulation of unsaturated fatty acids in ovarian cancer supports cell growth, increased cancer cell migration, and worse patient outcomes. Ovarian cancer cells also expand their lipid stores via increased uptake of lipids using fatty acid translocases, fatty acid-binding proteins, and low-density lipoprotein receptors. Furthermore, increased lipogenesis and lipid uptake promote chemotherapy resistance and dampen the adaptive immune response needed to eliminate tumors. In this review, we discuss the role of lipid synthesis and metabolism in driving tumorigenesis and drug resistance in ovarian cancer conferring poor prognosis and outcomes in patients. We also cover some aspects of how lipids fuel ovarian cancer stem cells, and how these metabolic alterations in intracellular lipid content could potentially serve as biomarkers of ovarian cancer.
Collapse
|
13
|
Barnes O, Wilson RL, Gonzalo-Encabo P, Kang DW, Christopher CN, Bentley T, Dieli-Conwright CM. The Effect of Exercise and Nutritional Interventions on Body Composition in Patients with Advanced or Metastatic Cancer: A Systematic Review. Nutrients 2022; 14:nu14102110. [PMID: 35631251 PMCID: PMC9145470 DOI: 10.3390/nu14102110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
Advanced and metastatic cancers significantly alter body composition, leading to decreased lean mass and variable effects on fat mass. These effects on body composition are associated with significant physical dysfunction and poor prognosis in patients with cancer. Whilst exercise and nutritional interventions are likely to be of benefit in counteracting these effects, relatively little is known about using such interventions in patients with advanced or metastatic cancer. Therefore, in this systematic review we examine the effect of exercise and combined exercise and nutritional interventions on lean mass and fat mass among patients diagnosed with advanced or metastatic cancer. Following PRISMA guidelines, we identified 20 articles from PubMed, EMBASE, CINAHL, Cochrane CENTRAL, PEDro, SPORTDiscus, and REHABDATA. Overall, advanced or metastatic cancer populations comprising of mixed cancer types were most commonly examined (n = 8) with exercise or combined exercise and nutritional interventions being well-tolerated with few adverse effects. Both intervention approaches may preserve lean mass, while only combined interventions may lead to alterations in fat mass. However, further exercise and nutritional studies are needed to definitively understand their effects on body composition. As exercise and nutrition-related research continues in this understudied population, the knowledge gained will help guide supportive clinical treatments.
Collapse
Affiliation(s)
- Oscar Barnes
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (O.B.); (T.B.)
| | - Rebekah L. Wilson
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, 375 Longwood Avenue, Boston, MA 02215, USA; (R.L.W.); (P.G.-E.); (D.-W.K.); (C.N.C.)
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Paola Gonzalo-Encabo
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, 375 Longwood Avenue, Boston, MA 02215, USA; (R.L.W.); (P.G.-E.); (D.-W.K.); (C.N.C.)
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Dong-Woo Kang
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, 375 Longwood Avenue, Boston, MA 02215, USA; (R.L.W.); (P.G.-E.); (D.-W.K.); (C.N.C.)
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Cami N. Christopher
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, 375 Longwood Avenue, Boston, MA 02215, USA; (R.L.W.); (P.G.-E.); (D.-W.K.); (C.N.C.)
- Department of Epidemiology, Boston University, Boston, MA 02118, USA
| | - Thomas Bentley
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (O.B.); (T.B.)
| | - Christina M. Dieli-Conwright
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, 375 Longwood Avenue, Boston, MA 02215, USA; (R.L.W.); (P.G.-E.); (D.-W.K.); (C.N.C.)
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Correspondence:
| |
Collapse
|
14
|
Li L, Li Z, He X, Wang Y, Lu M, Gong T, Chang Q, Lin J, Luo Y, Min L, Zhou Y, Tu C. A Nutritional Metabolism Related Prognostic Scoring System for Patients With Newly Diagnosed Osteosarcoma. Front Nutr 2022; 9:883308. [PMID: 35571914 PMCID: PMC9096723 DOI: 10.3389/fnut.2022.883308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/31/2022] [Indexed: 01/01/2023] Open
Abstract
Osteosarcoma is a primary malignant bone tumor with high metastatic potential. To date, achieving long-term survival of osteosarcoma patients remains a difficult task. Metabolic reprogramming has emerged as a new hallmark of cancer. However, studies on the prognostic value of hematological markers related to nutritional and metabolism in cancer patients are limited and contradictory. In this retrospective study, we extensively collected 16 hematological markers related to nutritional and metabolism in 223 osteosarcoma patients. A nutritional metabolism related prognostic scoring system (NMRS) in patients with osteosarcoma was constructed by least absolute contraction and selection operator (LASSO) cox regression analysis. Compared with individual hematological indicators, NMRS has stronger predictive power (training set: 0.811 vs. 0.362–2.638; validation set: 0.767 vs. 0.333–0.595). It is an independent prognostic factor for the survival of patients with osteosarcoma [HR: 1.957 (1.375–2.786) training set; HR: 3.146 (1.574–6.266) validation set]. NMRS-based nomograms have good and stable predictive power. NMRS facilitates further risk stratification of patients with the same clinical characteristics.
Collapse
Affiliation(s)
- Longqing Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Bone and Joint 3D-Printing and Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuangzhuang Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Bone and Joint 3D-Printing and Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuanhong He
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Bone and Joint 3D-Printing and Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Bone and Joint 3D-Printing and Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Minxun Lu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Bone and Joint 3D-Printing and Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Taojun Gong
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Bone and Joint 3D-Printing and Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Chang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqi Lin
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Luo
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Bone and Joint 3D-Printing and Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Li Min
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Bone and Joint 3D-Printing and Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Zhou
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Bone and Joint 3D-Printing and Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yong Zhou,
| | - Chongqi Tu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Bone and Joint 3D-Printing and Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
- Chongqi Tu,
| |
Collapse
|
15
|
Loizzo D, Pandolfo SD, Rogers D, Cerrato C, di Meo NA, Autorino R, Mirone V, Ferro M, Porta C, Stella A, Bizzoca C, Vincenti L, Spilotros M, Rutigliano M, Battaglia M, Ditonno P, Lucarelli G. Novel Insights into Autophagy and Prostate Cancer: A Comprehensive Review. Int J Mol Sci 2022; 23:ijms23073826. [PMID: 35409187 PMCID: PMC8999129 DOI: 10.3390/ijms23073826] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023] Open
Abstract
Autophagy is a complex process involved in several cell activities, including tissue growth, differentiation, metabolic modulation, and cancer development. In prostate cancer, autophagy has a pivotal role in the regulation of apoptosis and disease progression. Several molecular pathways are involved, including PI3K/AKT/mTOR. However, depending on the cellular context, autophagy may play either a detrimental or a protective role in prostate cancer. For this purpose, current evidence has investigated how autophagy interacts within these complex interactions. In this article, we discuss novel findings about autophagic machinery in order to better understand the therapeutic response and the chemotherapy resistance of prostate cancer. Autophagic-modulation drugs have been employed in clinical trials to regulate autophagy, aiming to improve the response to chemotherapy or to anti-cancer treatments. Furthermore, the genetic signature of autophagy has been found to have a potential means to stratify prostate cancer aggressiveness. Unfortunately, stronger evidence is needed to better understand this field, and the application of these findings in clinical practice still remains poorly feasible.
Collapse
Affiliation(s)
- Davide Loizzo
- Department of Emergency and Organ Transplantation–Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (N.A.d.M.); (M.S.); (M.R.); (M.B.); (P.D.)
- Division of Urology, Virginia Commonwealth University Health, Richmond, VA 23298, USA; (S.D.P.); (D.R.); (R.A.)
| | - Savio Domenico Pandolfo
- Division of Urology, Virginia Commonwealth University Health, Richmond, VA 23298, USA; (S.D.P.); (D.R.); (R.A.)
- Division of Urology, Università degli Studi di Napoli “Federico II”, 80100 Napoli, Italy;
| | - Devin Rogers
- Division of Urology, Virginia Commonwealth University Health, Richmond, VA 23298, USA; (S.D.P.); (D.R.); (R.A.)
| | - Clara Cerrato
- Department of Urology, University of California San Diego, La Jolla, CA 92037, USA;
| | - Nicola Antonio di Meo
- Department of Emergency and Organ Transplantation–Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (N.A.d.M.); (M.S.); (M.R.); (M.B.); (P.D.)
| | - Riccardo Autorino
- Division of Urology, Virginia Commonwealth University Health, Richmond, VA 23298, USA; (S.D.P.); (D.R.); (R.A.)
| | - Vincenzo Mirone
- Division of Urology, Università degli Studi di Napoli “Federico II”, 80100 Napoli, Italy;
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy;
| | - Camillo Porta
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70124 Bari, Italy; (C.P.); (A.S.)
| | - Alessandro Stella
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70124 Bari, Italy; (C.P.); (A.S.)
| | - Cinzia Bizzoca
- Department of General Surgery “Ospedaliera”, Polyclinic Hospital of Bari, 70124 Bari, Italy; (C.B.); (L.V.)
| | - Leonardo Vincenti
- Department of General Surgery “Ospedaliera”, Polyclinic Hospital of Bari, 70124 Bari, Italy; (C.B.); (L.V.)
| | - Marco Spilotros
- Department of Emergency and Organ Transplantation–Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (N.A.d.M.); (M.S.); (M.R.); (M.B.); (P.D.)
| | - Monica Rutigliano
- Department of Emergency and Organ Transplantation–Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (N.A.d.M.); (M.S.); (M.R.); (M.B.); (P.D.)
| | - Michele Battaglia
- Department of Emergency and Organ Transplantation–Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (N.A.d.M.); (M.S.); (M.R.); (M.B.); (P.D.)
| | - Pasquale Ditonno
- Department of Emergency and Organ Transplantation–Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (N.A.d.M.); (M.S.); (M.R.); (M.B.); (P.D.)
| | - Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation–Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (N.A.d.M.); (M.S.); (M.R.); (M.B.); (P.D.)
- Correspondence: or
| |
Collapse
|
16
|
Pardo JC, Ruiz de Porras V, Gil J, Font A, Puig-Domingo M, Jordà M. Lipid Metabolism and Epigenetics Crosstalk in Prostate Cancer. Nutrients 2022; 14:851. [PMID: 35215499 PMCID: PMC8874497 DOI: 10.3390/nu14040851] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignant neoplasm in men in the Western world. Localized low-risk PCa has an excellent prognosis thanks to effective local treatments; however, despite the incorporation of new therapeutic strategies, metastatic PCa remains incurable mainly due to disease heterogeneity and the development of resistance to therapy. The mechanisms underlying PCa progression and therapy resistance are multiple and include metabolic reprogramming, especially in relation to lipid metabolism, as well as epigenetic remodelling, both of which enable cancer cells to adapt to dynamic changes in the tumour. Interestingly, metabolism and epigenetics are interconnected. Metabolism can regulate epigenetics through the direct influence of metabolites on epigenetic processes, while epigenetics can control metabolism by directly or indirectly regulating the expression of metabolic genes. Moreover, epidemiological studies suggest an association between a high-fat diet, which can alter the availability of metabolites, and PCa progression. Here, we review the alterations of lipid metabolism and epigenetics in PCa, before focusing on the mechanisms that connect them. We also discuss the influence of diet in this scenario. This information may help to identify prognostic and predictive biomarkers as well as targetable vulnerabilities.
Collapse
Affiliation(s)
- Juan C. Pardo
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (A.F.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Vicenç Ruiz de Porras
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
| | - Joan Gil
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
- Department of Endocrinology and Medicine, CIBERER U747, ISCIII, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Albert Font
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (A.F.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Manel Puig-Domingo
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
- Department of Endocrinology and Nutrition, University Germans Trias i Pujol Hospital, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
- Department of Medicine, Autonomous University of Barcelona (UAB), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
| | - Mireia Jordà
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
| |
Collapse
|
17
|
Shan J, Geng X, Liu Z, Lu Y, Zhou R, Zhang Z, Xu H, Zhou X, Ma W, Zhu H, Shi H. Clinical research analysis based on prostate cancer screening diagnosis. Andrologia 2022; 54:e14371. [PMID: 35014705 DOI: 10.1111/and.14371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022] Open
Abstract
This study aimed to analyse the clinical characteristics and risk factors of patients with positive prostate biopsy at 4-20 ng/mL of prostate-specific antigen (PSA), construct a new parameter based on this characteristics and assess its diagnostic value for prostate cancer (PCa). Logistic regression analysis was used to clarify the risk factors of PCa, and a new parameter based on the results was constructed. Compare the diagnostic value of various diagnostic parameters for PCa. Logistic multivariate regression analysis revealed that age (OR, 5.269; 95%CI, 2.762-10.050), comorbid diabetes (OR, 2.437; 95%CI, 1.162-5.111), PSA (OR, 2.462; 95%CI, 1.198-5.059) and prostate volume (PV) (OR, 0.227; 95%CI, 0.100-0.516) are risk factors for PCa. The age, PSA and PV of patients were combined to construct a new parameter, that is A-PSAD = (age × total PSA [TPSA])/PV]. The area under the receiver-operating characteristic curve(AUC) of A-PSAD (0.728) for PCa diagnosis was higher than the AUCs of TPSA (0.581), free prostate-specific antigen (0.514), (F/T)PSA (0.535) and PSAD (0.696), with significant differences. Age, history of diabetes, TPSA and PV are risk factors for PCa(PSA:4-20ng/mL); in addition, A-PSAD has a moderate diagnostic value for PCa and may become a new indicator for PCa screening.
Collapse
Affiliation(s)
- Jiahao Shan
- Department of urology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Xinyu Geng
- Department of urology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Ziyang Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Youlu Lu
- Department of urology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Raorao Zhou
- Department of urology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Zhengyuan Zhang
- Department of urology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Haoran Xu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiaojie Zhou
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Wenzhuo Ma
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hengyu Zhu
- Department of urology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hongbin Shi
- Department of urology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
18
|
Kaempferol, Myricetin and Fisetin in Prostate and Bladder Cancer: A Systematic Review of the Literature. Nutrients 2021; 13:nu13113750. [PMID: 34836005 PMCID: PMC8621729 DOI: 10.3390/nu13113750] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
Prostate and bladder cancer represent the two most frequently diagnosed genito-urinary malignancies. Diet has been implicated in both prostate and bladder cancer. Given their prolonged latency and high prevalence rates, both prostate and bladder cancer represent attractive candidates for dietary preventive measures, including the use of nutritional supplements. Flavonols, a class of flavonoids, are commonly found in fruit and vegetables and are known for their protective effect against diabetes and cardiovascular diseases. Furthermore, a higher dietary intake of flavonols was associated with a lower risk of both bladder and prostate cancer in epidemiological studies. In this systematic review, we gathered all available evidence supporting the anti-cancer potential of selected flavonols (kaempferol, fisetin and myricetin) against bladder and prostate cancer. A total of 21, 15 and 7 pre-clinical articles on bladder or prostate cancer reporting on kaempferol, fisetin and myricetin, respectively, were found, while more limited evidence was available from animal models and epidemiological studies or clinical trials. In conclusion, the available evidence supports the potential use of these flavonols in prostate and bladder cancer, with a low expected toxicity, thus providing the rationale for clinical trials that explore dosing, settings for clinical use as well as their use in combination with other pharmacological and non-pharmacological interventions.
Collapse
|
19
|
Prostate Cancer Radiogenomics-From Imaging to Molecular Characterization. Int J Mol Sci 2021; 22:ijms22189971. [PMID: 34576134 PMCID: PMC8465891 DOI: 10.3390/ijms22189971] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Radiomics and genomics represent two of the most promising fields of cancer research, designed to improve the risk stratification and disease management of patients with prostate cancer (PCa). Radiomics involves a conversion of imaging derivate quantitative features using manual or automated algorithms, enhancing existing data through mathematical analysis. This could increase the clinical value in PCa management. To extract features from imaging methods such as magnetic resonance imaging (MRI), the empiric nature of the analysis using machine learning and artificial intelligence could help make the best clinical decisions. Genomics information can be explained or decoded by radiomics. The development of methodologies can create more-efficient predictive models and can better characterize the molecular features of PCa. Additionally, the identification of new imaging biomarkers can overcome the known heterogeneity of PCa, by non-invasive radiological assessment of the whole specific organ. In the future, the validation of recent findings, in large, randomized cohorts of PCa patients, can establish the role of radiogenomics. Briefly, we aimed to review the current literature of highly quantitative and qualitative results from well-designed studies for the diagnoses, treatment, and follow-up of prostate cancer, based on radiomics, genomics and radiogenomics research.
Collapse
|
20
|
Mcclement S. Adipose Tissue and Cancer Cachexia: What Nurses Need to Know. Asia Pac J Oncol Nurs 2021; 8:445-449. [PMID: 34527774 PMCID: PMC8420924 DOI: 10.4103/apjon.apjon-2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/12/2022] Open
Abstract
The purpose of this article is to discuss the different types of adipose tissue involved in cachexia and describe their role in contributing to increased energy expenditure and negative energy balance. Armed with this knowledge, nurses will be better positioned to understand the clinical picture of cachexia, appreciate the rationale for proposed therapeutic interventions, and confidently dialogue with patients, families, and members of interdisciplinary health care teams about this prevalent condition.
Collapse
Affiliation(s)
- Susan Mcclement
- College of Nursing, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
21
|
Kim JS, Galvão DA, Newton RU, Gray E, Taaffe DR. Exercise-induced myokines and their effect on prostate cancer. Nat Rev Urol 2021; 18:519-542. [PMID: 34158658 DOI: 10.1038/s41585-021-00476-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Exercise is recognized by clinicians in the field of clinical oncology for its potential role in reducing the risk of certain cancers and in reducing the risk of disease recurrence and progression; yet, the underlying mechanisms behind this reduction in risk are not fully understood. Studies applying post-exercise blood serum directly to various types of cancer cell lines provide insight that exercise might have a role in inhibiting cancer growth via altered soluble and cell-free blood contents. Myokines, which are cytokines produced by muscle and secreted into the bloodstream, might offer multiple benefits to cellular metabolism (such as a reduction in insulin resistance, improved glucose uptake and reduced adiposity), and blood myokine levels can be altered with exercise. Alterations in the levels of myokines such as IL-6, IL-15, IL-10, irisin, secreted protein acidic risk in cysteine (SPARC), myostatin, oncostatin M and decorin might exert a direct inhibitory effect on cancer growth via inhibiting proliferation, promoting apoptosis, inducing cell-cycle arrest and inhibiting the epithermal transition to mesenchymal cells. The association of insulin resistance, hyperinsulinaemia and hyperlipidaemia with obesity can create a tumour-favourable environment; exercise-induced myokines can manipulate this environment by regulating adipose tissue and adipocytes. Exercise-induced myokines also have a critical role in increasing cytotoxicity and the infiltration of immune cells into the tumour.
Collapse
Affiliation(s)
- Jin-Soo Kim
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia. .,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Elin Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
22
|
Zhang Z, Li X, Yan X, Qiu H, Li G, Guo X, Lu Y, Yang J, Jiao M, Chen X, Zhu S, Dang C, Wang W, Chu D. Delta-like ligand 4 level in colorectal cancer is associated with tumor aggressiveness, body mass index and clinical outcome. Cancer Biomark 2021; 33:415-422. [PMID: 34487019 DOI: 10.3233/cbm-200986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND The Notch signaling regulates numerous cell growth, differentiation, and death. However, the expression pattern of its ligand Delta-like 4 (DLL4) in tumors is still uncertain. OBJECTIVE In the present study, we examined DLL4 expression in colorectal cancer as well as assessed its role as a prognostic indicator in the present study. METHODS DLL4 expression was examined by immunohistochemistry in 265 surgically resected specimens of colorectal cancer and adjacent normal tissues. The relationship between DLL4 expression and clinicopathological characteristics was analyzed. The association of DLL4 expression with the patients' overall survival rate was assessed by Kaplan-Meier and Cox proportional-hazards regression. RESULTS Increased DLL4 level was detected in colorectal cancer compared with that of normal tissues. Elevated DLL4 level in colorectal cancer was associated with increased body mass index of patients. Moreover, increased DLL4 level was also found to be correlated with tumor invasion, metastases and unfavorable clinical outcom of patients. CONCLUSIONS DLL4 level is increased in colorectal cancer, especially in patients with increased body mass index, indicating potential involvement of obesity-related tumorigenesis and development. It might also serve as a novel molecular marker to predicate outcome of patients.
Collapse
Affiliation(s)
- Zixi Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiao Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xueli Yan
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - He Qiu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gai Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaowen Guo
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jingyi Yang
- Information Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Min Jiao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xue Chen
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shaojun Zhu
- Department of Pathology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | - Weizhong Wang
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
23
|
Ferro M, Lucarelli G, Buonerba C, Terracciano D, Boccia G, Cerullo G, Cosimato V. Narrative review of Mediterranean diet in Cilento: longevity and potential prevention for prostate cancer. Ther Adv Urol 2021; 13:17562872211026404. [PMID: 35173812 PMCID: PMC8842148 DOI: 10.1177/17562872211026404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/24/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Matteo Ferro
- Division of Urology, European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation – Urology, Andrology and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Carlo Buonerba
- Regional Reference Center for Rare Tumors, Department of Oncology and Hematology, AOU Federico II of Naples, Naples, Campania, Italy
- National Reference Center for Environmental Health, Zoo-prophylactic Institute of Southern Italy, Portici, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University Federico II, Naples, Campania, Italy
| | - Giovanni Boccia
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Giuseppe Cerullo
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, Naples, Italy
| | - Vincenzo Cosimato
- Division of Laboratory Medicine – Civil Hospital “Maria SS. Addolorata”– Eboli, Salerno, Italy
| |
Collapse
|
24
|
Ferro M, Terracciano D, Musi G, de Cobelli O, Vartolomei MD, Damiano R, Cantiello F, Buonerba C, Morelli M, Mistretta FA, Luzzago S, Perdonà S, Del Prete P, Del Giudice F, Busetto GM, Porreca A, Autorino R, Manfredi M, Porpiglia F, Muto M, Loizzo D, Ditonno P, Battaglia M, Lucarelli G. Increased Body Mass Index Is a Risk Factor for Poor Clinical Outcomes after Radical Prostatectomy in Men with International Society of Urological Pathology Grade Group 1 Prostate Cancer Diagnosed with Systematic Biopsies. Urol Int 2021; 106:75-82. [PMID: 34167120 DOI: 10.1159/000516680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/30/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The association between obesity and clinically significant prostate cancer (PCa) is still a matter of debate. In this study, we evaluated the effect of body mass index (BMI) on the prediction of pathological unfavorable disease (UD), positive surgical margins (PSMs), and biochemical recurrence (BCR) in patients with clinically localized (≤cT2c) International Society of Urological Pathology (ISUP) grade group 1 PCa at biopsy. METHODS 427 patients with ISUP grade group 1 PCa who have undergone radical prostatectomy and BMI evaluation were included. The outcome of interest was the presence of UD (defined as ISUP grade group ≥3 and pT ≥3a), PSM, and BCR. RESULTS Statistically significant differences resulted in comparing BMI with prostate-specific antigen (PSA) and serum testosterone levels (both p < 0.0001). Patients with UD and PSM had higher BMI values (p < 0.0001 and p = 0.006, respectively). BCR-free survival was significantly decreased in patients with higher BMI values (p < 0.0001). BMI was an independent risk factor for BCR and PSM. Receiver-operating characteristic analysis testing PSA accuracy in different BMI groups, showed that PSA had a reduced predictive value (area under the curve [AUC] = 0.535; 95% confidence interval [CI] = 0.422-0.646), in obese men compared to overweight (AUC = 0.664; 95% CI = 0.598-0.725) and normal weight patients (AUC = 0.721; 95% CI = 0.660-0.777). CONCLUSION Our findings show that increased BMI is a significant predictor of UD and PSM at RP in patients with preoperative low-to intermediate-risk diseases, suggesting that BMI evaluation may be useful in a clinical setting to identify patients with favorable preoperative disease characteristics harboring high-risk PCa.
Collapse
Affiliation(s)
- Matteo Ferro
- Division of Urology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Gennaro Musi
- Division of Urology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Ottavio de Cobelli
- Division of Urology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Mihai Dorin Vartolomei
- Department of Urology, Comprehensive Cancer Center, Vienna General Hospital, Medical University of Vienna, Vienna, Austria.,Department of Cell and Molecular Biology, University of Medicine, Pharmacy, Sciences and Technology, Targu-Mures, Romania
| | - Rocco Damiano
- Department of Urology, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Francesco Cantiello
- Department of Urology, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Carlo Buonerba
- Department of Oncology and Hematology, Regional Reference Center for Rare Tumors, AOU Federico II of Naples, Naples, Italy
| | - Michele Morelli
- Division of Urology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | | | - Stefano Luzzago
- Division of Urology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Sisto Perdonà
- Division of Urology, Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Paola Del Prete
- Scientific Directorate, Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | | | | | - Angelo Porreca
- Department of Urology, Policlinico Abano Terme, Abano Terme, Italy
| | | | - Matteo Manfredi
- Division of Urology, Department of Oncology, School of Medicine, San Luigi Hospital, University of Turin, Turin, Italy
| | - Francesco Porpiglia
- Division of Urology, Department of Oncology, School of Medicine, San Luigi Hospital, University of Turin, Turin, Italy
| | - Matteo Muto
- Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, Naples, Italy
| | - Davide Loizzo
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Pasquale Ditonno
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Michele Battaglia
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, Bari, Italy
| |
Collapse
|
25
|
Novel Insights into the Molecular Mechanisms of Ischemia/Reperfusion Injury in Kidney Transplantation. TRANSPLANTOLOGY 2021. [DOI: 10.3390/transplantology2020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischemia reperfusion injury (IRI) is one of the most important mechanisms involved in delayed or reduced graft function after kidney transplantation. It is a complex pathophysiological process, followed by a pro-inflammatory response that enhances the immunogenicity of the graft and the risk of acute rejection. Many biologic processes are involved in its development, such as transcriptional reprogramming, the activation of apoptosis and cell death, endothelial dysfunction and the activation of the innate and adaptive immune response. Recent evidence has highlighted the importance of complement activation in IRI cascade, which expresses a pleiotropic action on tubular cells, on vascular cells (pericytes and endothelial cells) and on immune system cells. The effects of IRI in the long term lead to interstitial fibrosis and tubular atrophy, which contribute to chronic graft dysfunction and subsequently graft failure. Furthermore, several metabolic alterations occur upon IRI. Metabolomic analyses of IRI detected a “metabolic profile” of this process, in order to identify novel biomarkers that may potentially be useful for both early diagnosis and monitoring the therapeutic response. The aim of this review is to update the most relevant molecular mechanisms underlying IRI, and also to discuss potential therapeutic targets in future clinical practice.
Collapse
|
26
|
Using Exercise and Nutrition to Alter Fat and Lean Mass in Men with Prostate Cancer Receiving Androgen Deprivation Therapy: A Narrative Review. Nutrients 2021; 13:nu13051664. [PMID: 34068965 PMCID: PMC8156712 DOI: 10.3390/nu13051664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 01/12/2023] Open
Abstract
Fat mass (FM) gain and lean mass (LM) loss are common side effects for patients with prostate cancer receiving androgen deprivation therapy (ADT). Excess FM has been associated with an increased risk of developing obesity-related comorbidities, exacerbating prostate cancer progression, and all-cause and cancer-specific mortality. LM is the predominant contributor to resting metabolic rate, with any loss impacting long-term weight management as well as physical function. Therefore, reducing FM and preserving LM may improve patient-reported outcomes, risk of disease progression, and ameliorate comorbidity development. In ADT-treated patients, exercise and nutrition programs can lead to improvements in quality of life and physical function; however, effects on body composition have been variable. The aim of this review was to provide a descriptive overview and critical appraisal of exercise and nutrition-based interventions in prostate cancer patients on ADT and their effect on FM and LM. Our findings are that FM gain and LM loss are side effects of ADT that could be reduced, prevented, or even reversed with the implementation of a combined exercise and nutrition program. However, the most effective combination of specific exercise and nutrition prescriptions are yet to be determined, and thus should be a focus for future studies.
Collapse
|
27
|
Clinical factors affecting prostate-specific antigen levels in prostate cancer patients undergoing radical prostatectomy: a retrospective study. Future Sci OA 2021; 7:FSO643. [PMID: 33552540 PMCID: PMC7849947 DOI: 10.2144/fsoa-2020-0154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Since prostate-specific antigen (PSA) levels can be influenced by some routinely available clinical factors, a retrospective study was conducted to explore the influence of obesity, smoking habit, heavy drinking and chronic obstructive pulmonary disease on PSA levels in men with histologically confirmed prostate cancer. Patients & methods: We reviewed the medical records of 833 prostate cancer patients undergoing radical prostatectomy. Results: Serum PSA levels at the time of surgery were not associated with either BMI or history of chronic obstructive pulmonary disease or heavy drinking. Conversely, PSA levels were associated with smoking status. Conclusion: Among the clinical factors explored in this homogeneous population, only tobacco use was associated with PSA levels, which should be considered when using PSA-based screening in male smokers. Smokers with prostate cancer tend to show higher PSA levels at the time of radical prostatectomy. As higher PSA levels are associated with a worse prognosis, smoking habit may have a prognostic value in prostate cancer. Further studies are required to explore the underlying biology of this finding.
Collapse
|
28
|
Lucarelli G, Ferro M, Loizzo D, Bianchi C, Terracciano D, Cantiello F, Bell LN, Battaglia S, Porta C, Gernone A, Perego RA, Maiorano E, de Cobelli O, Castellano G, Vincenti L, Ditonno P, Battaglia M. Integration of Lipidomics and Transcriptomics Reveals Reprogramming of the Lipid Metabolism and Composition in Clear Cell Renal Cell Carcinoma. Metabolites 2020; 10:metabo10120509. [PMID: 33322148 PMCID: PMC7763669 DOI: 10.3390/metabo10120509] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is fundamentally a metabolic disease. Given the importance of lipids in many cellular processes, in this study we delineated a lipidomic profile of human ccRCC and integrated it with transcriptomic data to connect the variations in cancer lipid metabolism with gene expression changes. Untargeted lipidomic analysis was performed on 20 ccRCC and 20 paired normal tissues, using LC-MS and GC-MS. Different lipid classes were altered in cancer compared to normal tissue. Among the long chain fatty acids (LCFAs), significant accumulations of polyunsaturated fatty acids (PUFAs) were found. Integrated lipidomic and transcriptomic analysis showed that fatty acid desaturation and elongation pathways were enriched in neoplastic tissue. Consistent with these findings, we observed increased expression of stearoyl-CoA desaturase(SCD1) and FA elongase 2 and 5 in ccRCC. Primary renal cancer cells treated with a small molecule SCD1 inhibitor (A939572) proliferated at a slower rate than untreated cancer cells. In addition, after cisplatin treatment, the death rate of tumor cells treated with A939572 was significantly greater than that of untreated cancer cells. In conclusion, our findings delineate a ccRCC lipidomic signature and showed that SCD1 inhibition significantly reduced cancer cell proliferation and increased cisplatin sensitivity, suggesting that this pathway can be involved in ccRCC chemotherapy resistance.
Collapse
Affiliation(s)
- Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (P.D.); (M.B.)
- Correspondence:
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology (IEO)-IRCCS, 20141 Milan, Italy; (M.F.); (O.d.C.)
| | - Davide Loizzo
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (P.D.); (M.B.)
| | - Cristina Bianchi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy; (C.B.); (R.A.P.)
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Francesco Cantiello
- Department of Urology, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Lauren N. Bell
- Metabolon, Inc., Research Triangle Park, Morrisville, NC 27519, USA;
| | - Stefano Battaglia
- Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy;
| | - Camillo Porta
- Department of Biomedical Sciences and Clinical Oncology (DIMO), Medical Oncology Unit, University of Bari, 70124 Bari, Italy; (C.P.); (A.G.)
| | - Angela Gernone
- Department of Biomedical Sciences and Clinical Oncology (DIMO), Medical Oncology Unit, University of Bari, 70124 Bari, Italy; (C.P.); (A.G.)
| | - Roberto A. Perego
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy; (C.B.); (R.A.P.)
| | - Eugenio Maiorano
- Department of Emergency and Organ Transplantation-Pathology Unit, University of Bari, 70124 Bari, Italy;
| | - Ottavio de Cobelli
- Division of Urology, European Institute of Oncology (IEO)-IRCCS, 20141 Milan, Italy; (M.F.); (O.d.C.)
| | - Giuseppe Castellano
- Department of Medical and Surgical Sciences, Nephrology Dialysis and Transplantation Unit, University of Foggia, 71122 Foggia, Italy;
| | - Leonardo Vincenti
- Division of General Surgery, Polyclinic Hospital, 70124 Bari, Italy;
| | - Pasquale Ditonno
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (P.D.); (M.B.)
- Department of Urology, National Cancer Institute “Giovanni Paolo II”, 70124 Bari, Italy
| | - Michele Battaglia
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (P.D.); (M.B.)
| |
Collapse
|
29
|
Busetto GM, Porreca A, Del Giudice F, Maggi M, D'Agostino D, Romagnoli D, Musi G, Lucarelli G, Palmer K, Colonna di Paliano A, Muto M, Hurle R, Terracciano D, de Cobelli O, Sciarra A, De Berardinis E, Ferro M. SARS-CoV-2 Infection and High-Risk Non-Muscle-Invasive Bladder Cancer: Are There Any Common Features? Urol Int 2020; 104:510-522. [PMID: 32516772 PMCID: PMC7316644 DOI: 10.1159/000509065] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 05/31/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND The new severe acute respiratory syndrome virus (SARS-CoV-2) outbreak is a huge health, social and economic issue and has been declared a pandemic by the World Health Organization. Bladder cancer, on the contrary, is a well-known disease burdened by a high rate of affected patients and risk of recurrence, progression and death. SUMMARY The coronavirus disease (COVID-19 or 2019-nCoV) often involves mild clinical symptoms but in some cases, it can lead to pneumonia with acute respiratory distress syndrome and multiorgan dysfunction. Factors associated with developing a more severe disease are increased age, obesity, smoking and chronic underlying comorbidities (including diabetes mellitus). High-risk non-muscle-invasive bladder cancer (NMIBC) progression and worse prognosis are also characterized by a higher incidence in patients with risk factors similar to COVID-19. Immune system response and inflammation have been found as a common hallmark of both diseases. Most severe cases of COVID-19 and high-risk NMIBC patients at higher recurrence and progression risk are characterized by innate and adaptive immune activation followed by inflammation and cytokine/chemokine storm (interleukin [IL]-2, IL-6, IL-8). Alterations in neutrophils, lymphocytes and platelets accompany the systemic inflammatory response to cancer and infections. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio for example have been recognized as factors related to poor prognosis for many solid tumors, including bladder cancer, and their role has been found important even for the prognosis of SARS-CoV-2 infection. Key Messages: All these mechanisms should be further analyzed in order to find new therapeutic agents and new strategies to block infection and cancer progression. Further than commonly used therapies, controlling cytokine production and inflammatory response is a promising field.
Collapse
Affiliation(s)
- Gian Maria Busetto
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy,
| | - Angelo Porreca
- Department of Urology, Abano Terme Policlinic, Abano Terme, Italy
| | - Francesco Del Giudice
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Martina Maggi
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | | | | | - Gennaro Musi
- Division of Urology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Katie Palmer
- Department of Internal Medicine and Geriatrics, Cattolica del Sacro Cuore University, Rome, Italy
| | | | - Matteo Muto
- Radiotherapy Unit, S.G. Moscati Hospital, Avellino, Italy
| | - Rodolfo Hurle
- Department of Urology, Humanitas Research Hospital, Milan, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Ottavio de Cobelli
- Division of Urology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandro Sciarra
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Ettore De Berardinis
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Matteo Ferro
- Division of Urology, IEO European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
30
|
Guo S, Ma B, Jiang X, Li X, Jia Y. Astragalus Polysaccharides Inhibits Tumorigenesis and Lipid Metabolism Through miR-138-5p/SIRT1/SREBP1 Pathway in Prostate Cancer. Front Pharmacol 2020; 11:598. [PMID: 32431616 PMCID: PMC7214922 DOI: 10.3389/fphar.2020.00598] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
Astragalus polysaccharides (APS) is a traditional Chinese medicine and have been proved to involve in multiple biological processes, including inflammation, metabolism, and carcinogenics. However, the specific mechanisms by which APS on prostate cancer (PCa) remains largely unknown. In the current study, we found APS greatly inhibited the proliferation and invasion of PCa cells in a dose-dependent and time-dependent manner in vitro and in vivo. In addition, cellular triglyceride and cholesterol levels were also decreased significantly under APS treatment. Microarray data revealed the SIRT1 expression was markably suppressed under APS exposure. Mechanistic studies demonstrated that over-expression of SIRT1 inhibits the expression and nuclear translocation of SREBP1 via activating AMPK phosphorylation to suppress lipid metabolism. Otherwise, knockdown of SIRT1 significantly promotes AMPK/SREBP1 signaling and its associated target genes. Besides, we also found miR-138-5p was greatly inhibited the SIRT1 expression to regulating cell metabolism by targeting its 3′UTR region. To summarize, our findings suggested that APS inhibits tumorigenesis and lipid metabolism through miR-138-5p/SIRT1/SREBP1 pathways in PCa.
Collapse
Affiliation(s)
- Shanqi Guo
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baojie Ma
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xingkang Jiang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
31
|
Zoni E, Minoli M, Bovet C, Wehrhan A, Piscuoglio S, Ng CKY, Gray PC, Spahn M, Thalmann GN, Kruithof-de Julio M. Preoperative plasma fatty acid metabolites inform risk of prostate cancer progression and may be used for personalized patient stratification. BMC Cancer 2019; 19:1216. [PMID: 31842810 PMCID: PMC6916032 DOI: 10.1186/s12885-019-6418-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Background Little is known about the relationship between the metabolite profile of plasma from pre-operative prostate cancer (PCa) patients and the risk of PCa progression. In this study we investigated the association between pre-operative plasma metabolites and risk of biochemical-, local- and metastatic-recurrence, with the aim of improving patient stratification. Methods We conducted a case-control study within a cohort of PCa patients recruited between 1996 and 2015. The age-matched primary cases (n = 33) were stratified in low risk, high risk without progression and high risk with progression as defined by the National Comprehensive Cancer Network. These samples were compared to metastatic (n = 9) and healthy controls (n = 10). The pre-operative plasma from primary cases and the plasma from metastatic patients and controls were assessed with untargeted metabolomics by LC-MS. The association between risk of progression and metabolite abundance was calculated using multivariate Cox proportional-hazard regression and the relationship between metabolites and outcome was calculated using median cut-off normalized values of metabolite abundance by Log-Rank test using the Kaplan Meier method. Results Medium-chain acylcarnitines (C6-C12) were positively associated with the risk of PSA progression (p = 0.036, median cut-off) while long-chain acylcarnitines (C14-C16) were inversely associated with local (p = 0.034) and bone progression (p = 0.0033). In primary cases, medium-chain acylcarnitines were positively associated with suberic acid, which also correlated with the risk of PSA progression (p = 0.032, Log-Rank test). In the metastatic samples, this effect was consistent for hexanoylcarnitine, L.octanoylcarnitine and decanoylcarnitine. Medium-chain acylcarnitines and suberic acid displayed the same inverse association with tryptophan, while indoleacetic acid, a breakdown product of tryptophan metabolism was strongly associated with PSA (p = 0.0081, Log-Rank test) and lymph node progression (p = 0.025, Log-Rank test). These data were consistent with the increased expression of indoleamine 2,3 dioxygenase (IDO1) in metastatic versus primary samples (p = 0.014). Finally, functional experiments revealed a synergistic effect of long chain fatty acids in combination with dihydrotestosterone administration on the transcription of androgen responsive genes. Conclusions This study strengthens the emerging link between fatty acid metabolism and PCa progression and suggests that measuring levels of medium- and long-chain acylcarnitines in pre-operative patient plasma may provide a basis for improving patient stratification.
Collapse
Affiliation(s)
- Eugenio Zoni
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Martina Minoli
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Cédric Bovet
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anne Wehrhan
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Salvatore Piscuoglio
- Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.,Visceral Surgery Research Laboratory, Clarunis, Department of Biomedicine, University of Basel, Basel, Switzerland.,Clarunis Universitäres Bauchzentrum Basel, Basel, Switzerland
| | - Charlotte K Y Ng
- Visceral Surgery Research Laboratory, Clarunis, Department of Biomedicine, University of Basel, Basel, Switzerland.,Department for BioMedical Research, Oncogenomics, University of Bern, Bern, Switzerland
| | - Peter C Gray
- ScienceMedia Inc, 8910 University Center Ln Suite 400, San Diego, CA, 92122, USA
| | - Martin Spahn
- Zentrum für Urologie Zürich und Prostatakarzinomzentrum Hirslanden ZürichKlinik Hirslanden, Zürich, Switzerland.,Department of Urology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - George N Thalmann
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland. .,Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
32
|
Zhang M, Wang Y, Wang C, You Z, Chen S, Kong Q, Xu B, Liu C, Chen M. Association of Hsa-miR-23a rs3745453 variation with prostate cancer risk among Chinese Han population: A case-control study. Medicine (Baltimore) 2019; 98:e18523. [PMID: 31876746 PMCID: PMC6946362 DOI: 10.1097/md.0000000000018523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Prostate cancer (PCa) is a frequently diagnosed malignant solid tumor in men. The etiology of PCa has been attributed to both environmental and genetic factors. In recent years, many studies have reported that miRNA gene single-nucleotide polymorphisms (SNPs) influence the susceptibility to several diseases such as cancer. To date, the mechanisms of PCa have remained unknown. The main aim of this study was to evaluate the association between PCa susceptibility and miRNA gene SNPs. A total of 156 PCa cases and 188 control subjects were included in this case-control study. The data were collected from hospitalized cases. We collected the demographic characteristic information, which included age, body mass index, tobacco smoking, alcohol consumption, and family history of cancer. Polymorphisms were analyzed by the ligase detection reaction. Unconditional logistic and stratified analyses were used to analyze the association between these SNPs and PCa susceptibility and to calculate the adjusted odds ratios (ORs) and the 95% confidence intervals (CIs). Cox regression model and the log-rank test were used to test the association between genetic variants and the overall survival. We found that miR-23a gene polymorphism rs3745453 carrying CC homozygotes had a 4.16-fold increased risk (95% CI = 1.30-13.25) than those carrying the TT/CT genotypes (P = .02), and the C allele displayed a higher prevalence of PCa than the T allele (OR = 1.68, 95% CI = 1.16-2.45, P = .01). Moreover, miR-23a showed that the homozygous carriers of the C-variant significantly increased the risk of survival rate as compared to the carriers of the TT/CT genotype (OR = 9.67, 95% CI = 2.83-33.09, P = .001). The rs3745453 polymorphism was potentially associated with PCa in the Chinese Han population and had an interactive relationship with the environmental factors.
Collapse
Affiliation(s)
- Minhao Zhang
- Surgical Research Center, Institute of Urology, Medical School of Southeast University
| | - Yali Wang
- Surgical Research Center, Institute of Urology, Medical School of Southeast University
| | - Can Wang
- Surgical Research Center, Institute of Urology, Medical School of Southeast University
| | - Zonghao You
- Surgical Research Center, Institute of Urology, Medical School of Southeast University
| | | | - Qingfang Kong
- Department of Nosocomial, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | | | | | | |
Collapse
|
33
|
He Z, Duan X, Zeng G. Identification of potential biomarkers and pivotal biological pathways for prostate cancer using bioinformatics analysis methods. PeerJ 2019; 7:e7872. [PMID: 31598425 PMCID: PMC6779116 DOI: 10.7717/peerj.7872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Background Prostate cancer (PCa) is a common urinary malignancy, whose molecular mechanism has not been fully elucidated. We aimed to screen for key genes and biological pathways related to PCa using bioinformatics method. Methods Differentially expressed genes (DEGs) were filtered out from the GSE103512 dataset and subjected to the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The protein–protein interactions (PPI) network was constructed, following by the identification of hub genes. The results of former studies were compared with ours. The relative expression levels of hub genes were examined in The Cancer Genome Atlas (TCGA) and Oncomine public databases. The University of California Santa Cruz Xena online tools were used to study whether the expression of hub genes was correlated with the survival of PCa patients from TCGA cohorts. Results Totally, 252 (186 upregulated and 66 downregulated) DEGs were identified. GO analysis enriched mainly in “oxidation-reduction process” and “positive regulation of transcription from RNA polymerase II promoter”; KEGG pathway analysis enriched mostly in “metabolic pathways” and “protein digestion and absorption.” Kallikrein-related peptidase 3, cadherin 1 (CDH1), Kallikrein-related peptidase 2 (KLK2), forkhead box A1 (FOXA1), and epithelial cell adhesion molecule (EPCAM) were identified as hub genes from the PPI network. CDH1, FOXA1, and EPCAM were validated by other relevant gene expression omnibus datasets. All hub genes were validated by both TCGA and Oncomine except KLK2. Two additional top DEGs (ABCC4 and SLPI) were found to be associated with the prognosis of PCa patients. Conclusions This study excavated the key genes and pathways in PCa, which might be biomarkers for diagnosis, prognosis, and potential therapeutic targets.
Collapse
Affiliation(s)
- Zihao He
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Urology, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Xiaolu Duan
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Urology, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Urology, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou, China
| |
Collapse
|
34
|
Bleyer A, Spreafico F, Barr R. Prostate cancer in young men: An emerging young adult and older adolescent challenge. Cancer 2019; 126:46-57. [DOI: 10.1002/cncr.32498] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/12/2019] [Accepted: 05/27/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Archie Bleyer
- Oregon Health and Science Center Portland Oregon
- McGovern Medical School University of Texas Houston Texas
| | - Filippo Spreafico
- Department of Medical Oncology and Hematology, Pediatric Oncology Unit Foundation IRCCS National Cancer Institute Milan Italy
| | - Ronald Barr
- Departments of Pediatrics, Medicine, and Pathology McMaster University and McMaster Children's Hospital Hamilton Ontario Canada
| |
Collapse
|
35
|
Lucarelli G, Loizzo D, Franzin R, Battaglia S, Ferro M, Cantiello F, Castellano G, Bettocchi C, Ditonno P, Battaglia M. Metabolomic insights into pathophysiological mechanisms and biomarker discovery in clear cell renal cell carcinoma. Expert Rev Mol Diagn 2019; 19:397-407. [PMID: 30983433 DOI: 10.1080/14737159.2019.1607729] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Clear cell renal cell carcinoma (ccRCC) is a metabolic disease, of which the incidence rate is increasing worldwide. Renal carcinoma is characterized by mutations in target genes involved in metabolic pathways. Metabolic reprogramming covers different processes such as aerobic glycolysis, fatty acid metabolism, and the utilization of tryptophan, glutamine, and arginine. In the era of the multi-omics approach (with integrated transcriptomics, proteomics, and metabolomics), discovering biomarkers for early diagnosis is gaining renewed importance. Areas covered: In this review, we discuss the pathophysiological mechanisms underlying ccRCC metabolic reprogramming. In addition, we describe the emerging metabolomics-based biomarkers differentially expressed in ccRCC and the rationale for the recently developed drugs specifically targeting the ccRCC metabolome. Expert opinion: A number of metabolic pathways will be explored in future years, and many of these pathways are potential therapeutic targets and may serve as diagnostic and prognostic biomarkers of ccRCC.
Collapse
Affiliation(s)
- Giuseppe Lucarelli
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Davide Loizzo
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Rossana Franzin
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Stefano Battaglia
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Matteo Ferro
- b Division of Urology , European Institute of Oncology , Milan , Italy
| | - Francesco Cantiello
- c Department of Urology , Magna Graecia University of Catanzaro , Catanzaro , Italy
| | - Giuseppe Castellano
- d Department of Emergency and Organ Transplantation - Nephrology and Dialysis Unit , University of Bari , Bari , Italy
| | - Carlo Bettocchi
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Pasquale Ditonno
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Michele Battaglia
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| |
Collapse
|
36
|
Lucarelli G, Loizzo D, Ferro M, Rutigliano M, Vartolomei MD, Cantiello F, Buonerba C, Di Lorenzo G, Terracciano D, De Cobelli O, Bettocchi C, Ditonno P, Battaglia M. Metabolomic profiling for the identification of novel diagnostic markers and therapeutic targets in prostate cancer: an update. Expert Rev Mol Diagn 2019; 19:377-387. [PMID: 30957583 DOI: 10.1080/14737159.2019.1604223] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION An altered metabolic regulation is involved in the development and progression of different cancer types. As well as this, many genes associated with tumors are shown to have an important role in control of the metabolism. The incidence of prostate cancer (PCa) is increased in men with metabolic disorders. In particular, obesity is an established risk factor for PCa. An increased body mass index correlates with aggressive disease, and a higher risk of biochemical recurrence and prostate cancer-specific mortality. Increased lipogenesis is also one of the most significant events in PCa metabolism reprogramming. Areas covered: In this article, we provide an updated review of the current understanding of the PCa metabolome and evaluate the possibility of unveiling novel therapeutic targets. Expert opinion: Obesity is an established risk factor for PCa, and an increased BMI correlates with aggressive disease, and a higher risk of biochemical recurrence and prostate cancer-specific mortality. PCa metabolome is characterized by the accumulation of metabolic intermediates and an increased expression of genes in the tricarboxylic acid cycle, the induction of de novo lipogenesis and cholesterogenesis. PCa cells can induce different alterations in their microenvironment by modulating the crosstalk between cancer and stromal cells.
Collapse
Affiliation(s)
- Giuseppe Lucarelli
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Davide Loizzo
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Matteo Ferro
- b Division of Urology , European Institute of Oncology , Milan , Italy
| | - Monica Rutigliano
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Mihai Dorin Vartolomei
- c Department of Cell and Molecular Biology , University of Medicine and Pharmacy , Tirgu Mures , Romania
| | - Francesco Cantiello
- d Department of Urology , Magna Graecia University of Catanzaro , Catanzaro , Italy
| | - Carlo Buonerba
- e Medical Oncology Division, Department of Clinical Medicine and Surgery , University Federico II of Naples , Naples , Italy
| | - Giuseppe Di Lorenzo
- e Medical Oncology Division, Department of Clinical Medicine and Surgery , University Federico II of Naples , Naples , Italy
| | - Daniela Terracciano
- f Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | | | - Carlo Bettocchi
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Pasquale Ditonno
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Michele Battaglia
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| |
Collapse
|
37
|
Rusu ME, Gheldiu AM, Mocan A, Moldovan C, Popa DS, Tomuta I, Vlase L. Process Optimization for Improved Phenolic Compounds Recovery from Walnut ( Juglans regia L.) Septum: Phytochemical Profile and Biological Activities. Molecules 2018; 23:E2814. [PMID: 30380713 PMCID: PMC6278542 DOI: 10.3390/molecules23112814] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022] Open
Abstract
Plant by-products can be valuable sources of polyphenol bioactive compounds. Walnut (Juglans regia L.) is a very important tree nut rich in biologically active molecules, but its septum was scarcely researched. Experimental data indicated a hypoglycemic effect of septum extracts, with almost no details about its phytochemical composition. The main objectives of this study were: (1) to obtain walnut septum (WS) extracts with high content in bioactive compounds and antioxidant activity based on an original experimental design; (2) characterization of the phytochemical profile of the WS extracts using HPLC-MS/MS; (3) evaluation of the biological potential of the richest polyphenolic WS extract. The variables of the experimental design were: extraction method (maceration and Ultra-Turrax extraction), temperature, solvent (acetone and ethanol), and percentage of water in the solvent. The first quantifiable responses were: total phenolic content, total flavonoid content, condensed tannins, and ABTS antioxidant capacity. The phytochemical profile of lyophilized extracts obtained by Ultra-Turrax extraction (UTE), the most efficient method, was further determined by HPLC-MS/MS analysis of individual polyphenolic and phytosterols compounds. It is the first study to assay the detailed composition of WS in hydrophilic and lipophilic compounds. The biological potential of the richest polyphenolic WS extract was also evaluated by FRAP and DPPH antioxidant capacity and the inhibition of tyrosinase, an enzyme involved in the browning in fruits and vegetables, skin wrinkles and aging. Conclusion: The phytochemical profile of the analyzed extracts proves that WS can be a valuable source of biologically active compounds (polyphenols) for food and/or pharmaceutical industry and warrant the continuation of current research in further evaluating its bioactive potential.
Collapse
Affiliation(s)
- Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania.
| | - Ana-Maria Gheldiu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania.
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania.
| | - Cadmiel Moldovan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania.
| | - Daniela-Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania.
| | - Ioan Tomuta
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania.
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania.
| |
Collapse
|
38
|
Smith RL, Soeters MR, Wüst RCI, Houtkooper RH. Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocr Rev 2018; 39:489-517. [PMID: 29697773 PMCID: PMC6093334 DOI: 10.1210/er.2017-00211] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
The ability to efficiently adapt metabolism by substrate sensing, trafficking, storage, and utilization, dependent on availability and requirement, is known as metabolic flexibility. In this review, we discuss the breadth and depth of metabolic flexibility and its impact on health and disease. Metabolic flexibility is essential to maintain energy homeostasis in times of either caloric excess or caloric restriction, and in times of either low or high energy demand, such as during exercise. The liver, adipose tissue, and muscle govern systemic metabolic flexibility and manage nutrient sensing, uptake, transport, storage, and expenditure by communication via endocrine cues. At a molecular level, metabolic flexibility relies on the configuration of metabolic pathways, which are regulated by key metabolic enzymes and transcription factors, many of which interact closely with the mitochondria. Disrupted metabolic flexibility, or metabolic inflexibility, however, is associated with many pathological conditions including metabolic syndrome, type 2 diabetes mellitus, and cancer. Multiple factors such as dietary composition and feeding frequency, exercise training, and use of pharmacological compounds, influence metabolic flexibility and will be discussed here. Last, we outline important advances in metabolic flexibility research and discuss medical horizons and translational aspects.
Collapse
Affiliation(s)
- Reuben L Smith
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Maarten R Soeters
- Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands.,Department of Endocrinology and Metabolism, Internal Medicine, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Rob C I Wüst
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Movement Sciences, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Riekelt H Houtkooper
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Academic Medical Center, AZ Amsterdam, Netherlands
| |
Collapse
|
39
|
Oak C, Khalifa AO, Isali I, Bhaskaran N, Walker E, Shukla S. Diosmetin suppresses human prostate cancer cell proliferation through the induction of apoptosis and cell cycle arrest. Int J Oncol 2018; 53:835-843. [PMID: 29767250 PMCID: PMC6017185 DOI: 10.3892/ijo.2018.4407] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/30/2018] [Indexed: 12/15/2022] Open
Abstract
Diosmetin, a plant flavonoid, has been shown to exert promising effects on prostate cancer cells as an anti‑proliferative and anticancer agent. In this study, using western blot analysis for protein expression and flow cytometry for cell cycle analysis, we determined that the treatment of the LNCaP and PC‑3 prostate cancer cells with diosmetin resulted in a marked decrease in cyclin D1, Cdk2 and Cdk4 expression levels (these proteins remain active in the G0‑G1 phases of the cell cycle). These changes were accompanied by a decrease in c-Myc and Bcl-2 expression, and by an increase in Bax, p27Kip1 and FOXO3a protein expression, which suggests the potential modulatory effects of diosmetin on protein transcription. The treatment of prostate cancer cells with diosmetin set in motion an apoptotic machinery by inhibiting X-linked inhibitor of apoptosis (XIAP) and increasing cleaved PARP and cleaved caspase-3 expression levels. On the whole, the findings of this study provide an in-depth analysis of the molecular mechanisms responsible for the regulatory effects of diosmetin on key molecules that perturb the cell cycle to inhibit cell growth, and suggest that diosmetin may prove to be an effective anticancer agent for use in the treatment of prostate cancer in the future.
Collapse
Affiliation(s)
- Christine Oak
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Ahmad O Khalifa
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Ilaha Isali
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Natarajan Bhaskaran
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Ethan Walker
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sanjeev Shukla
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
40
|
Santos SAA, Camargo AC, Constantino FB, Colombelli KT, Mani F, Rinaldi JC, Franco S, Portela LMF, Duran BOS, Scarano WR, Hinton BT, Felisbino SL, Justulin LA. Maternal Low-Protein Diet Impairs Prostate Growth in Young Rat Offspring and Induces Prostate Carcinogenesis With Aging. J Gerontol A Biol Sci Med Sci 2018; 74:751-759. [DOI: 10.1093/gerona/gly118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Indexed: 01/02/2023] Open
Affiliation(s)
- Sergio A A Santos
- Department of Morphology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | - Ana C Camargo
- Department of Morphology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | | | - Ketlin T Colombelli
- Department of Morphology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | - Fernanda Mani
- Department of Chemistry and Biochemistry, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | - Jaqueline C Rinaldi
- Department of Morphology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | - Suelen Franco
- Department of Morphology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | - Luiz M F Portela
- Department of Morphology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | - Bruno O S Duran
- Department of Morphology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | - Wellerson R Scarano
- Department of Morphology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia Health System, Charlottesville
| | - Sergio L Felisbino
- Department of Morphology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | - Luis A Justulin
- Department of Morphology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| |
Collapse
|
41
|
Serretta V, Abrate A, Siracusano S, Gesolfo CS, Vella M, Di Maida F, Cangemi A, Cicero G, Barresi E, Sanfilippo C. Clinical and biochemical markers of visceral adipose tissue activity: Body mass index, visceral adiposity index, leptin, adiponectin, and matrix metalloproteinase-3. Correlation with Gleason patterns 4 and 5 at prostate biopsy. Urol Ann 2018; 10:280-286. [PMID: 30089986 PMCID: PMC6060586 DOI: 10.4103/ua.ua_188_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Context: The correlation between aggressive prostate cancer and obesity mainly based on body mass index (BMI) and pathology after surgery remains controversial. Aims: The aim of the study was to correlate BMI, visceral adiposity index (VAI), and the plasmatic levels of leptin, adiponectin, and matrix metalloproteinase-3 (MMP-3), and biomarkers of adipose tissue function, with the detection of Gleason patterns 4 and 5 at biopsy. Subjects and Methods: Consecutive patients with prostate cancer at 12-core transrectal biopsy were enrolled. BMI, waist circumference (WC), blood samples to evaluate the plasmatic levels of triglycerides (TG) and high-density lipoproteins (HDL), adiponectin, leptin, and MMP-3 were obtained immediately before biopsy. The VAI was calculated according to the formula: WC/(39.68 + [1.88 × BMI]) × TG/1.03 × 1.31/HDL. Results: One hundred and forty-nine patients were entered. The median PSA, BMI, and VAI were 10.0 ng/ml, 27.6 kg/m2, and 4.6, respectively. Gleason patterns 4 or 5 were detected in 68 (45.6%) patients; in 15 (41.7%), 31 (44.9%), and 22 (50.0%) among normal weight, overweight, and obese patients, respectively (P = 0.55). The statistical analysis did not show any significant correlation between BMI, VAI, the plasmatic levels of leptin, adiponectin, MMP-3, and the detection of Gleason patterns 4 and 5 at biopsy. A statistically significant association emerged with older age (P = 0.017) and higher PSA values (P = 0.02). Conclusion: We did not find any association between BMI, VAI, the plasmatic levels of adiponectin, leptin, and MMP-3 and the detection of Gleason patterns 4 and 5 at prostate biopsy.
Collapse
Affiliation(s)
- Vincenzo Serretta
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Alberto Abrate
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Simone Siracusano
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Cristina Scalici Gesolfo
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Marco Vella
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Fabrizio Di Maida
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Antonina Cangemi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Giuseppe Cicero
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | | | | |
Collapse
|
42
|
Buonerba C, Sonpavde G, Vitrone F, Bosso D, Puglia L, Izzo M, Iaccarino S, Scafuri L, Muratore M, Foschini F, Mucci B, Tortora V, Pagliuca M, Ribera D, Riccio V, Morra R, Mosca M, Cesarano N, Di Costanzo I, De Placido S, Di Lorenzo G. The Influence of Prednisone on the Efficacy of Cabazitaxel in Men with Metastatic Castration-Resistant Prostate Cancer. J Cancer 2017; 8:2663-2668. [PMID: 28928853 PMCID: PMC5604196 DOI: 10.7150/jca.20040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/24/2017] [Indexed: 02/01/2023] Open
Abstract
Background: Cabazitaxel is a second-generation taxane that is approved for use with concomitant low dose daily prednisone in metastatic castration resistant prostate cancer (mCRPC) after docetaxel failure. Since the role of daily corticosteroids in improving cabazitaxel efficacy or ameliorating its safety profile has not been adequately investigated so far, we compared outcomes of patients receiving cabazitaxel with or without daily corticosteroids in a retrospective single-Institution cohort of mCRPC patients. Patients and methods: Medical records of deceased patients with documented mCRPC treated with cabazitaxel following prior docetaxel between January, 2011 and January, 2017 were reviewed at the single participating center. Patients who were receiving daily doses of systemic corticosteroids other than low dose daily prednisone or prednisolone (<= 10 mg a day) were excluded. The primary end point of this analysis was overall survival (OS). Secondary end-points were exposure to cabazitaxel as well as incidence of grade 3-4 adverse events. Univariable and multivariable Cox proportional hazards regression was used to evaluate prednisone use and other variables as potentially prognostic for overall survival. Results: Overall, among 91 patients, 57 patients received cabazitaxel concurrently with low dose prednisone and 34 patients did not receive concurrent prednisone. The median overall survival of the population was 9.8 months (interquartile range, 9 to 14). Patients receiving prednisone had an overall survival of 9 months (interquartile range, 8 to 12) vs.14 months (interquartile range, 9.4 to 16.7) for patients not treated with prednisone. Approximately 45% of patients had a >30% PSA decline at 12 weeks. Prednisone use was not significantly prognostic for overall survival or PSA decline ≥30% rates on regression analyses. Importantly, a >30% PSA decline at 12, but not at 3, 6, 9 weeks, was prognostic for improved survival at multivariate analysis Conclusions: The data presented here support the hypothesis that omitting daily corticosteroids in cabazitaxel-treated patients has no negative impact on either survival or safety profile. In the large prospective trial CABACARE, cabazitaxel-treated patients will be randomized to receive or not receive daily prednisone. The CABACARE (EudraCT n. 2016-003646-81) study is currently ongoing at University Federico II of Naples and at other multiple participating centers in Italy.
Collapse
Affiliation(s)
- Carlo Buonerba
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Guru Sonpavde
- University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham
| | - Francesca Vitrone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Davide Bosso
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Livio Puglia
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Michela Izzo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Simona Iaccarino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Luca Scafuri
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Margherita Muratore
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Francesca Foschini
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Brigitta Mucci
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Vincenzo Tortora
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Martina Pagliuca
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Dario Ribera
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Vittorio Riccio
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Rocco Morra
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Mirta Mosca
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Nicola Cesarano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Ileana Di Costanzo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Sabino De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Di Lorenzo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
43
|
BMI and serum lipid parameters predict increasing risk and aggressive prostate cancer in Chinese people. Oncotarget 2017; 8:66051-66060. [PMID: 29029491 PMCID: PMC5630391 DOI: 10.18632/oncotarget.19790] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/29/2017] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES To determine if obesity and serum lipid parameters are associated with increased risk and more aggressive prostate cancer in Chinese population. MATERIALS AND METHODS We conducted a retrospective cohort analysis including 3102 patients. Kruskal-Wallis test for continuous variables and the chi-squared tests for categorical variables were used for univariate comparison of the differences in patient characteristics across BMI categories between different groups. Odds ratios (OR) and 95% confidence intervals (CI) were estimated for the association between prostate cancer and the various patient characteristics. Multivariable Cox proportional hazards regression was performed to assess the risk of prostate cancer recurrence. RESULTS 974 consecutive men were diagnosed as prostate cancer and 700 patients subsequently received radical prostatectomy immediately, and 1031 patients were pathologically diagnosed as biopsy negative. The level of low-density-lipoprotein cholesterol (LDL-c) and total cholesterol was significantly higher and the high-density-lipoprotein cholesterol (HDL-c) level is much lower in prostate cancer patients. Patients with low level of HDL-c, who subsequently received radical prostatectomy, had increased risk of high risk disease. In addition, patients with normal weight were less likely to develop a biochemical recurrence. Combined analysis revealed that obese patients had significantly higher rates of PSA recurrence over time than nonobese patients. CONCLUSIONS In our study, lipid parameters are supposed to be associated with prostate cancer risk and aggressiveness. Obese men are at increased risk of PSA recurrence after radical prostatectomy.
Collapse
|
44
|
Yen MC, Kan JY, Hsieh CJ, Kuo PL, Hou MF, Hsu YL. Association of long-chain acyl-coenzyme A synthetase 5 expression in human breast cancer by estrogen receptor status and its clinical significance. Oncol Rep 2017; 37:3253-3260. [PMID: 28498416 DOI: 10.3892/or.2017.5610] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/21/2017] [Indexed: 11/05/2022] Open
Abstract
The lipid metabolic enzymes are considered candidate therapeutic targets for breast cancer. Long-chain acyl-coenzyme A (CoA) synthase (ACSL) is one of lipid metabolic enzymes and converts free-fatty acid to fatty acid-CoA. Five ACSL isoforms including ACSL1, ACSL3, ACSL4, ACSL5 and ACSL6 are identified in human. High ACSL4 expression has been observed in aggressive breast cancer phenotype. However, the role of other isoforms is still little-known. We therefore, analyzed the expression of ACSL isoforms in each subtype of breast cancer within METABRIC dataset and cancer cell line encyclopedia dataset. The expression levels of ACSL1, ACSL4 and ACSL5 in estrogen receptor (ER)-negative group were higher than that in ER-positive group. Similar expression pattern was detected among breast cancer cell lines MCF-7 (ER-positive) and MDA-MB-231 (ER-negative). Treatment of ACSL inhibitor triacsin C which inhibited enzyme activity of ACSL 1, 3, 4 and 5 suppressed cell growth of MCF-7 and MDA-MB-231. Our results further showed that high ACSL5 expression was associated with good prognosis in patients with both ER-positive and ER-negative breast cancer through KM plotter analysis. These results suggest that ACSL1, ACSL4 and ACSL5 expression is regulated by ER signaling pathways and ACSL5 is a potential novel biomarker for predicting prognosis of breast cancer patients.
Collapse
Affiliation(s)
- Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Jung-Yu Kan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Chia-Jung Hsieh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ming-Feng Hou
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| |
Collapse
|
45
|
L-López F, Sarmento-Cabral A, Herrero-Aguayo V, Gahete MD, Castaño JP, Luque RM. Obesity and metabolic dysfunction severely influence prostate cell function: role of insulin and IGF1. J Cell Mol Med 2017; 21:1893-1904. [PMID: 28244645 PMCID: PMC5571563 DOI: 10.1111/jcmm.13109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/01/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity is a major health problem that courses with severe comorbidities and a drastic impairment of homeostasis and function of several organs, including the prostate gland (PG). The endocrine–metabolic regulatory axis comprising growth hormone (GH), insulin and IGF1, which is drastically altered under extreme metabolic conditions such as obesity, also plays relevant roles in the development, modulation and homeostasis of the PG. However, its implication in the pathophysiological interplay between obesity and prostate function is still to be elucidated. To explore this association, we used a high fat–diet obese mouse model, as well as in vitro primary cultures of normal‐mouse PG cells and human prostate cancer cell lines. This approach revealed that most of the components of the GH/insulin/IGF1 regulatory axis are present in PGs, where their expression pattern is altered under obesity conditions and after an acute insulin treatment (e.g. Igfbp3), which might have some pathophysiological implications. Moreover, our results demonstrate, for the first time, that the PG becomes severely insulin resistant under diet‐induced obesity in mice. Finally, use of in vitro approaches served to confirm and expand the conception that insulin and IGF1 play a direct, relevant role in the control of normal and pathological PG cell function. Altogether, these results uncover a fine, germane crosstalk between the endocrine–metabolic status and the development and homeostasis of the PG, wherein key components of the GH, insulin and IGF1 axes could play a relevant pathophysiological role.
Collapse
Affiliation(s)
- Fernando L-López
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - André Sarmento-Cabral
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Vicente Herrero-Aguayo
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Manuel D Gahete
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Justo P Castaño
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| |
Collapse
|