1
|
Xu Y, Wang L, Liao H, Li X, Zhang Y, Chen X, Xu B, Liu Y, Tu W, Liu Y. Loss of Nrf2 aggravates ionizing radiation-induced intestinal injury by activating the cGAS/STING pathway via Pirin. Cancer Lett 2024; 604:217218. [PMID: 39233044 DOI: 10.1016/j.canlet.2024.217218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Ionizing radiation (IR)-induced intestinal injury remains a major limiting factor in abdominal radiation therapy, and its pathogenesis remains unclear. In this study, mouse models of IR-induced intestinal injury were established, and the effect of IR on nuclear factor erythroid 2-related factor 2 (Nrf2) was determined. More severe IR-induced intestinal damage was observed in Nrf2 knockout (KO) mice than in wild-type mice. Then, the negative regulation of cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) signaling by Nrf2 was examined both in vivo and in vitro after IR. This was accompanied by alterations in the intestinal neutrophil and macrophage populations in mice. Subsequently, the effect of the cGAS/STING pathway on the intestinal toxicity of IR was also investigated. Moreover, the downregulation of cGAS/STING by Nrf2 via its target gene, Pirin, was confirmed using transfection assays. A rescue experiment with Pirin was also conducted using adeno-associated virus in Nrf2 KO mice. Finally, the protective effect of calcitriol against IR-induced intestinal injury, along with increased Nrf2 and Pirin levels and decreased cGAS, pSTING, and interferon-beta levels, were observed. Taken together, our results suggest that Nrf2 alleviates IR-induced intestinal injury through Pirin-mediated inhibition of the innate immunity-related cGAS/STING pathway.
Collapse
Affiliation(s)
- Yiqing Xu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Lei Wang
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, 222000, China
| | - Hong Liao
- Department of Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Xueyan Li
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yingzi Zhang
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Xuming Chen
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Bing Xu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yi Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Wenzhi Tu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Yong Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| |
Collapse
|
2
|
Hamed NS, Khateeb S, Elfouly SA, Tolba AMA, Hassan AI. Mitigation of radiation-induced jejunum injuries in rats through modulation of the p53-miR34a axis using etoricoxib-loaded nanostructured lipid carriers. Sci Rep 2024; 14:23728. [PMID: 39390040 PMCID: PMC11467169 DOI: 10.1038/s41598-024-73469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
The most widely used cancer therapy is radiation therapy, but radiation damage to healthy tissues, particularly the gastrointestinal (GI) system, frequently reduces its effectiveness. This study investigates whether etoricoxib-loaded nanostructured lipid carriers (Et-NLC) could help shield the rat jejunum from radiation damage. Gamma irradiation (6 Gy) was used to damage the jejunum of Wistar albino rats, and then Et or Et-NLC (10 mg/kg b.w.) was administered orally for 14 days. It was found that the amounts of glutathione S-transferase (GST), superoxide dismutase (SOD), and nitric oxide (NO) decreased after irradiation but increased after Et-NLC therapy. Molecular analysis showed radiation-induced expression of microRNA-34a (miR34a), which may be involved in cellular stress response. Et-NLC treatments modulated the expression of miR34a, suggesting possible regulatory roles. Western blot analysis revealed changes in P53, interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), and cyclooxygenase-2 (COX-2) levels. Et-NLC treatments decreased TNF-α, IL-6, IL-10, and COX-2 levels, indicating anti-inflammatory actions. DNA fragmentation analysis revealed a decrease in apoptotic activity after Et-NLC treatments. A histopathological examination confirmed that Et-NLC treatments had attenuated radiation damage, which had improved vascularization and reduced inflammation. The findings show that Et-NLC is more effective than Et-alone at reducing damage to the jejunum caused by radiation by controlling inflammation, oxidative stress, and apoptotic activity.
Collapse
Affiliation(s)
- Noha Sayed Hamed
- Radioisotopes Department, Nuclear Research Centre, Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt.
| | - Sahar Khateeb
- Biochemistry Division, Department of Chemistry, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Shady A Elfouly
- Radioisotopes Department, Nuclear Research Centre, Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Amina M A Tolba
- Anatomy Department, Faculty of Medicine, Al-Azhar University, Girl's Branch, Cairo, Egypt
| | - Amal I Hassan
- Radioisotopes Department, Nuclear Research Centre, Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| |
Collapse
|
3
|
Demyashkin G, Karakaeva E, Saakian S, Shchekin V, Elbuzdukaev E, Bamatgiraev U, Ashgalieva D, Evsultanova M, Kovalev D, Kabanova D, Shatunov O, Atiakshin D. Morphological aspects of small intestinal mucosal injury and repair after electron irradiation. Anat Cell Biol 2024; 57:384-391. [PMID: 38880781 PMCID: PMC11424566 DOI: 10.5115/acb.24.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Morphological evaluation of the small intestine mucosa and apoptosis activity (caspase-3) is necessary to assess the severity of damage to the small intestine. At the same time, proliferative index based on Ki-67 can be used to assess the regenerative potential of the small intestine. Fragments of small intestine of Wistar rats (n=60) of three groups: I) control (n=20); II) experimental group (n=20; local single electron irradiation at a dose of 2 Gy), III) experimental group (n=20; local single electron irradiation at a dose of 8 Gy) were studied by light microscopy using hematoxylin and eosin staining and immunohistochemical reactions with antibodies to Ki-67 and caspase-3. In all samples of the experimental groups, a decrease in all morphometric indices was observed on day 1 with a tendency to recover on day 3. Small intestinal electron irradiation led to disturbances in the histoarchitecture of varying severity, and an increase in cell apoptosis was observed (increased expression of caspase-3 and decrease in Ki-67). In addition, modulation of the PI3K/AKT and MAPK/ERK signaling pathways was detected. The most pronounced destructive changes were observed in the group of 8 Gy single electron irradiation. Local irradiation of the small intestine with electrons at a dose of 2 and 8 Gy results in a decrease in the number of enterocytes, mainly stem cells of the intestinal crypts.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Laborant of the Labrotory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Elza Karakaeva
- National Medical Research Centre of Radiology, Ministry of Health of Russia, Moscow, Russia
| | - Siuzanna Saakian
- National Medical Research Centre of Radiology, Ministry of Health of Russia, Moscow, Russia
| | - Vladimir Shchekin
- Laborant of the Labrotory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Emir Elbuzdukaev
- Laborant of the Labrotory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Umar Bamatgiraev
- Laborant of the Labrotory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Daniia Ashgalieva
- Federal State Budget Educational Institution of Higher Education A.I. Yevdokimov Moscow State University of Medicine and Dentistry (MSUMD), Moscow, Russia
| | - Makka Evsultanova
- Laborant of the Labrotory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Daniil Kovalev
- Laborant of the Labrotory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Darya Kabanova
- Federal State Budget Educational Institution of Higher Education A.I. Yevdokimov Moscow State University of Medicine and Dentistry (MSUMD), Moscow, Russia
| | - Oleg Shatunov
- Laborant of the Labrotory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Dmitrii Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, RUDN University, Moscow, Russia
| |
Collapse
|
4
|
Wang L, Tang C, Zhang Q, Pan Q. Ferroptosis as a molecular target of epigallocatechin gallate in diseases. Arch Physiol Biochem 2024:1-13. [PMID: 39264116 DOI: 10.1080/13813455.2024.2401892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
CONTEXT Ferroptosis is a novel form of cell death characterised by iron overload and lipid peroxidation. It is closely associated with many diseases, including cardiovascular diseases, tumours, and neurological diseases. The use of natural chemicals to modulate ferroptosis is of great concern because of the critical role ferroptosis plays in disease. The main active ingredient in green tea is epigallocatechin gallate (EGCG), which is the most abundant catechin in green tea. EGCG shows a wide range of biological and therapeutic effects in various diseases, including anti-inflammatory, antioxidant, anticancer, and cardioprotective. OBJECTIVE The purpose of this article is to summarise the existing information on the relationship between EGCG and ferroptosis. METHODS Articles related to EGCG and ferroptosis were searched in PubMed and Web of Science databases, and the literature was analysed. RESULTS AND CONCLUSION EGCG could improve ferroptosis-related diseases and affect the development of ferroptosis by regulating the nuclear factor erythroid 2-related factor 2, autophagy, microRNA, signal transducer and activator of transcription 1, and protein kinase D1 signalling pathways.
Collapse
Affiliation(s)
- Lili Wang
- Wuhan Wuchang Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Chunlian Tang
- Wuhan Wuchang Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Medical College of Wuhan University of Science and Technology, Wuhan, China
| | - Qizhi Zhang
- Medical College of Wuhan University of Science and Technology, Wuhan, China
| | - Qun Pan
- Wuhan Wuchang Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Kelly P, VanBuskirk K, Coomes D, Mouksassi S, Smith G, Jamil Z, Hossain MS, Syed S, Marie C, Tarr PI, Sullivan PB, Petri WA, Denno DM, Ahmed T, Mahfuz M, Ali SA, Moore SR, Ndao IM, Tearney GJ, Ömer H Yilmaz, Raghavan SS, Moskaluk CA, Liu TC. Histopathology underlying environmental enteric dysfunction in a cohort study of undernourished children in Bangladesh, Pakistan, and Zambia compared with United States children. Am J Clin Nutr 2024; 120 Suppl 1:S15-S30. [PMID: 39300660 DOI: 10.1016/j.ajcnut.2024.02.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Environmental enteric dysfunction (EED) is an asymptomatic intestinal disorder associated with growth impairment, delayed neurocognitive development, and impaired oral vaccine responses. OBJECTIVES We set out to develop and validate a histopathologic scoring system on duodenal biopsies from a cohort study of children with growth failure in Bangladesh, Pakistan, and Zambia ("EED") with reference to biopsies from United States children with no clinically reported histologic pathology (referred to hereafter as "normal") or celiac disease. METHODS Five gastrointestinal pathologists evaluated 745 hematoxylin and eosin slide images from 291 children with EED (mean age: 1.6 y) and 66 United States children (mean age: 6.8 y). Histomorphologic features (i.e., villus/crypt architecture, goblet cells, epithelial and lamina propria acute/chronic inflammation, Brunner's glands, Paneth cells, epithelial detachment, enterocyte injury, and foveolar metaplasia) were used to score each histopathologic slide. Generalized estimating equations were used to determine differences between EED, normal, and celiac disease, and receiver operating characteristic curves were used to assess predictive value. RESULTS Biopsies from the duodenal bulb showed higher intramucosal Brunner's gland scores and lower intraepithelial lymphocyte scores than from the second or third parts of the duodenum (D2/3), so only D2/3 were included in the final analysis. Although 7 parameters differed significantly between EED and normal biopsies in regression models, only 5 (blunted villus architecture, increased intraepithelial lymphocytosis, goblet cell depletion, Paneth cell depletion, and reduced intramucosal Brunner's glands) were required to create a total score percentage (TSP-5) that correctly identified EED against normal biopsies (AUC: 0.992; 95% CI: 0.983, 0.998). Geographic comparisons showed more severe goblet cell depletion in Bangladesh and more marked intraepithelial lymphocytosis in Pakistan. CONCLUSIONS This scoring system involving 5 histologic parameters demonstrates very high discrimination between EED and normal biopsies, indicating that this scoring system can be applied with confidence to studies of intestinal biopsies in EED.
Collapse
Affiliation(s)
- Paul Kelly
- Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, United Kingdom.
| | - Kelley VanBuskirk
- Department of Global Health, University of Washington School of Public Health, Seattle, WA, United States
| | - David Coomes
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, United States
| | | | | | - Zehra Jamil
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Md Shabab Hossain
- Nutrition Research Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Sana Syed
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Chelsea Marie
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Phillip I Tarr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Peter B Sullivan
- Department of Paediatrics, Children's Hospital, University of Oxford, Oxford, United Kingdom
| | - William A Petri
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Donna M Denno
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Tahmeed Ahmed
- Nutrition Research Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mustafa Mahfuz
- Nutrition Research Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - S Asad Ali
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Sean R Moore
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - I Malick Ndao
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Ömer H Yilmaz
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| | - Shyam S Raghavan
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Christopher A Moskaluk
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
6
|
Lu L, Li F, Gao Y, Kang S, Li J, Guo J. Microbiome in radiotherapy: an emerging approach to enhance treatment efficacy and reduce tissue injury. Mol Med 2024; 30:105. [PMID: 39030525 PMCID: PMC11264922 DOI: 10.1186/s10020-024-00873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Radiotherapy is a widely used cancer treatment that utilizes powerful radiation to destroy cancer cells and shrink tumors. While radiation can be beneficial, it can also harm the healthy tissues surrounding the tumor. Recent research indicates that the microbiota, the collection of microorganisms in our body, may play a role in influencing the effectiveness and side effects of radiation therapy. Studies have shown that specific species of bacteria living in the stomach can influence the immune system's response to radiation, potentially increasing the effectiveness of treatment. Additionally, the microbiota may contribute to adverse effects like radiation-induced diarrhea. A potential strategy to enhance radiotherapy outcomes and capitalize on the microbiome involves using probiotics. Probiotics are living microorganisms that offer health benefits when consumed in sufficient quantities. Several studies have indicated that probiotics have the potential to alter the composition of the gut microbiota, resulting in an enhanced immune response to radiation therapy and consequently improving the efficacy of the treatment. It is important to note that radiation can disrupt the natural balance of gut bacteria, resulting in increased intestinal permeability and inflammatory conditions. These disruptions can lead to adverse effects such as diarrhea and damage to the intestinal lining. The emerging field of radiotherapy microbiome research offers a promising avenue for optimizing cancer treatment outcomes. This paper aims to provide an overview of the human microbiome and its role in augmenting radiation effectiveness while minimizing damage.
Collapse
Affiliation(s)
- Lina Lu
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China.
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China.
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China.
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China.
| | - Fengxiao Li
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Shuhe Kang
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| | - Jia Li
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| | - Jinwang Guo
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Berry CE, Kendig CB, An N, Fazilat AZ, Churukian AA, Griffin M, Pan PM, Longaker MT, Dixon SJ, Wan DC. Role of ferroptosis in radiation-induced soft tissue injury. Cell Death Discov 2024; 10:313. [PMID: 38969638 PMCID: PMC11226648 DOI: 10.1038/s41420-024-02003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 07/07/2024] Open
Abstract
Ionizing radiation has been pivotal in cancer therapy since its discovery. Despite its therapeutic benefits, IR causes significant acute and chronic complications due to DNA damage and the generation of reactive oxygen species, which harm nucleic acids, lipids, and proteins. While cancer cells are more vulnerable to ionizing radiation due to their inefficiency in repairing damage, healthy cells in the irradiated area also suffer. Various types of cell death occur, including apoptosis, necrosis, pyroptosis, autophagy-dependent cell death, immunogenic cell death, and ferroptosis. Ferroptosis, driven by iron-dependent lipid peroxide accumulation, has been recognized as crucial in radiation therapy's therapeutic effects and complications, with extensive research across various tissues. This review aims to summarize the pathways involved in radiation-related ferroptosis, findings in different organs, and drugs targeting ferroptosis to mitigate its harmful effects.
Collapse
Affiliation(s)
- Charlotte E Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Carter B Kendig
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas An
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander Z Fazilat
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew A Churukian
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Phoebe M Pan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
Chen F, Gong X, Zhang K, Yu Y, You T, Hua Y, Dai C, Hu J. Nomogram Predicting Grade ≥2 Acute Radiation Enteritis in Patients With Cervical Cancer Receiving Concurrent Chemoradiotherapy. Am J Clin Oncol 2024; 47:317-324. [PMID: 38488761 PMCID: PMC11191554 DOI: 10.1097/coc.0000000000001096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
OBJECTIVE To analyze the risk factors for grade ≥2 ARE in patients with cervical cancer receiving concurrent chemoradiotherapy. METHODS A total of 273 patients with cervical cancer receiving concurrent chemoradiotherapy at our hospital were retrospectively enrolled. The patients were divided into training and validation groups. Clinical parameters were analyzed using univariate analysis and multivariate logistic regression analysis. A nomogram model was established based on the independent risk factors selected using multivariate logistic regression. The areas under the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to evaluate the nomogram. The patients were divided into low-score and high-score groups based on the scores calculated using the nomogram model and compared. RESULTS Malnutrition, monocyte-lymphocyte ratio ≥0.82 after radiotherapy, platelet-lymphocyte ratio <307.50 after radiotherapy, and bowelbag volume receiving at least 5 and 40 Gy were independent risk factors for grade ≥2 ARE and were incorporated into the nomogram ( P <0.05). The ROC curve, calibration curve, and DCA suggested that the nomogram had good discrimination, concordance, and net benefit in the clinical. A medium nomogram score of 146.50 points was used as the cutoff point, and the incidence of grade ≥2 ARE in the high-score group was higher than that in the low-score group ( P <0.05). CONCLUSION The nomogram model for grade ≥2 ARE has good predictive ability and clinical utility, and is convenient for clinicians to identify high-risk groups and develop early prevention and treatment strategies.
Collapse
|
9
|
Zheng C, Niu M, Kong Y, Liu X, Li J, Gong X, Ren X, Hong C, Yin M, Wang L. Oral administration of probiotic spore ghosts for efficient attenuation of radiation-induced intestinal injury. J Nanobiotechnology 2024; 22:303. [PMID: 38822376 PMCID: PMC11140926 DOI: 10.1186/s12951-024-02572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Radiation-induced intestinal injury is the most common side effect during radiotherapy of abdominal or pelvic solid tumors, significantly impacting patients' quality of life and even resulting in poor prognosis. Until now, oral application of conventional formulations for intestinal radioprotection remains challenging with no preferred method available to mitigate radiation toxicity in small intestine. Our previous study revealed that nanomaterials derived from spore coat of probiotics exhibit superior anti-inflammatory effect and even prevent the progression of cancer. The aim of this work is to determine the radioprotective effect of spore coat (denoted as spore ghosts, SGs) from three clinically approved probiotics (B.coagulans, B.subtilis and B.licheniformis). All the three SGs exhibit outstanding reactive oxygen species (ROS) scavenging ability and excellent anti-inflammatory effect. Moreover, these SGs can reverse the balance of intestinal flora by inhibiting harmful bacteria and increasing the abundance of Lactobacillus. Consequently, administration of SGs significantly reduce radiation-induced intestinal injury by alleviating diarrhea, preventing X-ray induced apoptosis of small intestinal epithelial cells and promoting restoration of barrier integrity in a prophylactic study. Notably, SGs markedly improve weight gain and survival of mice received total abdominal X-ray radiation. This work may provide promising radioprotectants for efficiently attenuating radiation-induced gastrointestinal syndrome and promote the development of new intestinal predilection.
Collapse
Affiliation(s)
- Cuixia Zheng
- Translational medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Mengya Niu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yueyue Kong
- Xinjiang Aksu First People's Hospital, Akesu, 843000, China
| | - Xinxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, China
| | - Junxiu Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xunwei Gong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinyuan Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen Hong
- Translational medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Menghao Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Pingyuan Lab, Henan Normal University, Xinxiang, 453007, China.
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, China.
| |
Collapse
|
10
|
Tang R, Yin J, Liu Y, Xue J. FLASH radiotherapy: A new milestone in the field of cancer radiotherapy. Cancer Lett 2024; 587:216651. [PMID: 38342233 DOI: 10.1016/j.canlet.2024.216651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/03/2023] [Accepted: 01/13/2024] [Indexed: 02/13/2024]
Abstract
Radiotherapy plays a pivotal role in the control and eradication of tumors, but it can also induce radiation injury to surrounding normal tissues while targeting tumor cells. In recent years, FLASH-Radiotherapy (FLASH-RT) has emerged as a cutting-edge research focus in the field of radiation therapy. By delivering high radiation doses to the treatment target in an ultra-short time, FLASH-RT produces the FLASH effect, which reduces the toxicity to normal tissues while achieving comparable tumor control efficacy to conventional radiotherapy. This review provides a brief overview of the development history of FLASH-RT and its impact on tumor control. Additionally, it focuses on introducing the protective effects and molecular mechanisms of this technology on various normal tissues, as well as exploring its synergistic effects when combined with other tumor therapies. Importantly, this review discusses the challenges faced in translating FLASH-RT into clinical practice and outlines its promising future applications.
Collapse
Affiliation(s)
- Rui Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China; Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianqiong Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Disaster Medical Center, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
11
|
Ling Z, Wang Z, Chen L, Mao J, Ma D, Han X, Tian L, Zhu Q, Lu G, Yan X, Ding Y, Xiao W, Chen Y, Peng A, Yin X. Naringenin Alleviates Radiation-Induced Intestinal Injury by Inhibiting TRPV6 in Mice. Mol Nutr Food Res 2024; 68:e2300745. [PMID: 38581304 DOI: 10.1002/mnfr.202300745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/27/2024] [Indexed: 04/08/2024]
Abstract
SCOPE Naringenin (NAR) possesses unique anti-inflammatory, antiapoptosis effects and various bioactivities; however, its role against radiation-induced intestinal injury (RIII) remains unclear. This study aims to investigate whether NAR has protective effects against radiation-induced intestinal injury and the underlying mechanisms. METHODS AND RESULTS C57BL/6J mice are exposed to a single dose of 13 Gy X-ray total abdominal irradiation (TAI), then gavaged with NAR for 7 days. NAR treatment prolongs the survival rate, protects crypts and villi from damage, alleviates the level of radiation-induced inflammation, and mitigates intestinal barrier damage in the irradiated mice. Additionally, NAR reduces immune cell infiltration and intestinal epithelial cell apoptosis. NAR also shows radioprotective effects in human colon cancer cells (HCT116) and human intestinal epithelial cells (NCM460). It reduces cell damage by reducing intracellular calcium ion levels and reactive oxygen species (ROS) levels. NAR-mediated radioprotection is associated with the downregulation of transient receptor potential vanilloid 6 (TRPV6), and inhibition of apoptosis pathway. Notably, treatment with NAR fails to further increase the protective effects of the TRPV6 inhibitor 2-APB, indicating that TRPV6 inhibition is essential for NAR activity. CONCLUSION NAR inhibits the apoptosis pathway by downregulating TRPV6 and reducing calcium ion level, thereby alleviating RIII. Therefore, NAR is a promising therapeutic drug for RIII.
Collapse
Affiliation(s)
- Zhi Ling
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Zheng Wang
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Pathology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Lin Chen
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Jingxian Mao
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Dongmei Ma
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Xiao Han
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Linlin Tian
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Qingtian Zhu
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Guotao Lu
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Xuebing Yan
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Yanbing Ding
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Weiming Xiao
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Yong Chen
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Aijun Peng
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Xudong Yin
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| |
Collapse
|
12
|
Demyashkin G, Karakaeva E, Saakian S, Tarusova N, Guseinova A, Vays A, Gotovtsev K, Atiakshin D, Shegai P, Kaprin A. Comparative Characterisation of Proliferation and Apoptosis of Colonic Epithelium after Electron Irradiation with 2 GY and 25 GY. Int J Mol Sci 2024; 25:1196. [PMID: 38256269 PMCID: PMC10817034 DOI: 10.3390/ijms25021196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Development of new techniques for multimodal treatment and diagnostics of various neoplasms and the improvement of current techniques can significantly increase the life expectancy of patients with carcinomas of the colon and abdominal-cavity organs, since prevention of various side effects of radiation therapy is one of the main problems of oncological care. Electron irradiation is one of the most promising types of radiation therapy. There are no data on proliferation and apoptosis of the colon epithelium after irradiation with electrons, especially in different modes (single and summary). Morphological evaluation of apoptosis and proliferation of colonic epithelium after local irradiation with electrons were conducted at doses of 2 Gy (Gray) and 25 Gy. Colon fragments from sexually mature Wistar rats (n = 50, body weight 200 ± 10 g) were divided into three groups: I-control (n = 10); II-experimental group (n = 20; local single electron irradiation at a dose of 2 Gy); III-experimental group (n = 30) with local fractional irradiation with electrons at a total dose of 25 Gy. They were studied using light microscopy using hematoxylin and eosin staining and immunohistochemical reactions with antibodies to Ki-67 and caspase-3 (Cas3). Morphological disorders were accompanied by increased expression of pro-apoptotic molecules (caspase-3), and the period of regeneration by proliferative marker (Ki-67). Colon electron irradiation led to disturbances in the histoarchitecture of varying severity, and an increase in cell apoptosis was observed (increased expression of caspase-3 and decrease in Ki-67). In addition, modulation of the PI3K/AKT and MAPK/ERK signalling pathways was detected. The most pronounced destructive changes were observed in the group of 25 Gy fractionated electron irradiation.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Elza Karakaeva
- Department of Pathomorphology, National Medical Research Centre of Radiology, Ministry of Health of Russia, 125284 Moscow, Russia
| | - Susanna Saakian
- Department of Pathomorphology, National Medical Research Centre of Radiology, Ministry of Health of Russia, 125284 Moscow, Russia
| | - Natalia Tarusova
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Amina Guseinova
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Anita Vays
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Konstantin Gotovtsev
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Dmitrii Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, RUDN University, 117198 Moscow, Russia
| | - Petr Shegai
- Department of Pathomorphology, National Medical Research Centre of Radiology, Ministry of Health of Russia, 125284 Moscow, Russia
| | - Andrey Kaprin
- Department of Pathomorphology, National Medical Research Centre of Radiology, Ministry of Health of Russia, 125284 Moscow, Russia
| |
Collapse
|
13
|
Safarbalou A, Ebrahimi F, Amiri FT, Hosseinimehr SJ. Radioprotective Effect of Piperine, as a Major Component of Black Pepper, Against Radiation-induced Colon Injury: Biochemical and Histological Studies. Curr Radiopharm 2024; 17:38-45. [PMID: 37489775 DOI: 10.2174/1874471016666230725112319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/16/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Patients undergoing radiotherapy are prone to radiation-induced gastrointestinal injury. Piperine is an alkaloid component in black pepper with a unique chemopreventive activity against oxidative stress-related damage in healthy tissues. The purpose of this study was to investigate the effects of piperine on intestinal damage. METHODS In this study, mice were divided into eight groups: including the control, piperine (10, 25, and 50 mg/kg), radiation (6 Gy), and piperine+radiation (10, 25 and 50 mg/kg + 6 Gy) groups. The radioprotective effects of piperine were evaluated by biochemical (MDA, GSH, and PC) and histopathological assessments in colon tissues. RESULTS The 10 mg/kg dose of piperine significantly reduced the levels of oxidative stress biomarkers compared to the group that received only radiation. In addition, pre-treatment with 10 mg/kg piperine diminished the histopathological changes like vascular congestion in the submucosa, while the dose of 50 mg/kg led to the infiltration of inflammatory cells. CONCLUSION Based on this study, it is concluded that piperine, at low dose, with its antioxidant properties, could reduce the colon damage caused by radiation.
Collapse
Affiliation(s)
- Asal Safarbalou
- Department of Pharmacy, Ramsar Campous, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Fatemeh Ebrahimi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
14
|
Lu Q, Liang Y, Tian S, Jin J, Zhao Y, Fan H. Radiation-Induced Intestinal Injury: Injury Mechanism and Potential Treatment Strategies. TOXICS 2023; 11:1011. [PMID: 38133412 PMCID: PMC10747544 DOI: 10.3390/toxics11121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Radiation-induced intestinal injury (RIII) is one of the most common intestinal complications caused by radiotherapy for pelvic and abdominal tumors and it seriously affects the quality of life of patients. However, the treatment of acute RIII is essentially symptomatic and nutritional support treatment and an ideal means of prevention and treatment is lacking. Researchers have conducted studies at the cellular and animal levels and found that some chemical or biological agents have good therapeutic effects on RIII and may be used as potential candidates for clinical treatment. This article reviews the injury mechanism and potential treatment strategies based on cellular and animal experiments to provide new ideas for the diagnosis and treatment of RIII in clinical settings.
Collapse
Affiliation(s)
- Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Sijia Tian
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Jie Jin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
15
|
Tang LF, Ma X, Xie LW, Zhou H, Yu J, Wang ZX, Li M. Perillaldehyde Mitigates Ionizing Radiation-Induced Intestinal Injury by Inhibiting Ferroptosis via the Nrf2 Signaling Pathway. Mol Nutr Food Res 2023; 67:e2300232. [PMID: 37658487 DOI: 10.1002/mnfr.202300232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/12/2023] [Indexed: 09/03/2023]
Abstract
SCOPE Gastrointestinal toxicity is one of the major side effects of abdominopelvic tumor radiotherapy. Studies have shown that perillaldehyde (PAH) has antioxidant, antiinflammatory, antimicrobial activity, and antitumor effects. This study aims to determine whether PAH has radioprotective effects on radiation-induced intestinal injury and explore the underlying mechanisms. METHODS AND RESULTS C57BL/6J mice are gavaged with PAH for 7 days, then exposed to a single dose of 13 Gy X-ray total abdominal irradiation (TAI). PAH treatment prolongs the survival time, promotes the survival of crypt cells, attenuates radiation-induced DNA damage, and mitigates intestinal barrier damage in the irradiated mice. PAH also shows radioprotective effects in intestinal crypt organoids and human intestinal epithelial cells (HIEC-6). PAH-mediated radioprotection is associated with the upregulation of nuclear factor erythroid-2 related factor 2 (Nrf2), activation of the antioxidant pathway, and inhibition of ferroptosis. Notably, treatment with the Nrf2 inhibitor ML385 abolishes the protective effects of PAH, indicating that Nrf2 activation is essential for PAH activity. CONCLUSION PAH inhibits ionizing radiation (IR)-induced ferroptosis and attenuates intestinal injury after irradiation by activating Nrf2 signaling. Therefore, PAH is a promising therapeutic strategy for IR-induced intestinal injury.
Collapse
Affiliation(s)
- Lin-Feng Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
- The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Xiaoming Ma
- Department of General Surgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu, 223800, China
| | - Li-Wei Xie
- The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Hao Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jiahua Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhen-Xin Wang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
16
|
Park HY, Yu JH. X-ray radiation-induced intestinal barrier dysfunction in human epithelial Caco-2 cell monolayers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115404. [PMID: 37625335 DOI: 10.1016/j.ecoenv.2023.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Radiation therapy and unwanted radiological or nuclear exposure, such as nuclear plant accidents, terrorist attacks, and military conflicts, pose serious health issues to humans. Dysfunction of the intestinal epithelial barrier and the leakage of luminal antigens and bacteria across the barrier have been linked to various human diseases. Intestinal permeability is regulated by intercellular structures, termed tight junctions (TJs), which are disrupted after radiation exposure. In this study, we investigated radiation-induced alterations in TJ-related proteins in an intestinal epithelial cell model. Caco-2 cells were irradiated with 2, 5, and 10 Gy and harvested 1 and 24 h after X-ray exposure. The trypan blue assay revealed that cell viability was reduced in a dose-dependent manner 24 h after X-ray exposure compared to that of non-irradiated cells. However, the WST-8 assay revealed that cell proliferation was significantly reduced only 24 h after radiation exposure to 10 Gy compared to that of non-irradiated cells. In addition, a decreased growth rate and increased doubling time were observed in cells irradiated with X-rays. Intestinal permeability was significantly increased, and transepithelial electrical resistance values were remarkably reduced in Caco-2 cell monolayers irradiated with X-rays compared to non-irradiated cells. X-ray irradiation significantly decreased the mRNA and protein levels of ZO-1, occludin, claudin-3, and claudin-4, with ZO-1 and claudin-3 protein levels decreasing in a dose-dependent manner. Overall, the present study reveals that exposure to X-ray induces dysfunction of the human epithelial intestinal barrier and integrity via the downregulation of TJ-related genes, which may be a key factor contributing to intestinal barrier damage and increased intestinal permeability.
Collapse
Affiliation(s)
- Ha-Young Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea.
| | - Jin-Hee Yu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| |
Collapse
|
17
|
Yang L, Fang C, Song C, Zhang Y, Zhang R, Zhou S. Mesenchymal Stem Cell-Derived Exosomes are Effective for Radiation Enteritis and Essential for the Proliferation and Differentiation of Lgr5 + Intestinal Epithelial Stem Cells by Regulating Mir-195/Akt/β-Catenin Pathway. Tissue Eng Regen Med 2023; 20:739-751. [PMID: 37326937 PMCID: PMC10352229 DOI: 10.1007/s13770-023-00541-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Radiation enteritis (RE) is a common complication of abdominal or pelvic radiotherapy, which when severe, could be life-threatening. Currently, there are no effective treatments. Studies have shown that mesenchymal stem cells (MSCs)-derived exosomes (MSC-exos) exhibit promising therapeutic effects in inflammatory diseases. However, the specific role of MSC-exos in RE and the regulatory mechanisms remain elusive. METHODS In vivo assay was carried out by injecting MSC-exos into the total abdominal irradiation (TAI)-induced RE mouse model. For in vitro assay, Lgr5-positive intestinal epithelial stem cells (Lgr5+ IESC) were extracted from mice, followed by irradiation along with MSC-exos treatment. HE staining was performed to measure histopathological changes. mRNA expression of inflammatory factors TNF-α and IL-6 and stem cell markers LGR5, and OCT4 were quantified by RT-qPCR. EdU and TUNEL staining was performed to estimate cell proliferation and apoptosis. MiR-195 expression in TAI mice and radiation-induced Lgr5+ IESC was tested. RESULTS We found that the injection of MSC-exos inhibited inflammatory reaction, increased stem cell marker expression, and maintained intestinal epithelial integrity in TAI mice. Furthermore, MSC-exos treatment increased the proliferation and simultaneously suppressed apoptosis in radiation-stimulated Lgr5+ IESC. MiR-195 expression increased by radiation exposure was decreased by MSC-exos therapy. MiR-195 overexpression facilitated the progress of RE by counteracting the effect of MSC-exos. Mechanistically, the Akt and Wnt/β-catenin pathways inhibited by MSC-exos were activated by miR-195 upregulation. CONCLUSION MSC-Exos are effective in treating RE and are essential for the proliferation and differentiation of Lgr5+ IESCs. Moreover, MSC-exos mediates its function by regulating miR-195 Akt β-catenin pathways.
Collapse
Affiliation(s)
- Leilei Yang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China
| | - Chengfeng Fang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China
| | - Caifang Song
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China
| | - Yaya Zhang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China
| | - Ruili Zhang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China.
| | - Shenkang Zhou
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China.
| |
Collapse
|
18
|
Ozdemir A, Tumkaya L, Mercantepe T, Celik Samanci T, Uyan M, Kalcan S, Demiral G, Pergel A, Yilmaz Kutlu E, Kilic Yilmaz H. The protective effects of ginseng on x-irradiation-induced intestinal damage in rats. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023:10.1007/s00411-023-01039-y. [PMID: 37410120 DOI: 10.1007/s00411-023-01039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Although radiotherapy is widely employed in the treatment of various malignancies in oncology patients, its use is limited by the toxic effects it causes in surrounding tissues, including the gastrointestinal system. Korean Red Ginseng (KRG) is a traditional drug reported to possess antioxidant and restorative properties in various studies. The purpose of the present study was to investigate the protective effects of KRG against radiation-associated small intestinal damage. Twenty-four male Sprague Dawley rats were randomly assigned into three groups. No procedure was performed on Group 1 (control) during the experiment, while Group 2 (x-irradiation) was exposed to radiation only. Group 3 (x-irradiation + ginseng) received ginseng via the intraperitoneal route for a week prior to x-irradiation. The rats were killed 24 h after radiation. Small intestinal tissues were evaluated using histochemical and biochemical methods. An increase in malondialdehyde (MDA) levels and a decrease in glutathione (GSH) were observed in the x-irradiation group compared to the control group. KRG caused a decrease in MDA and caspase-3 activity and an increase in GSH. Our findings show that it can prevent damage and apoptotic cell death caused by x-irradiation in intestinal tissue and can therefore play a protective role against intestinal injury in patients receiving radiotherapy.
Collapse
Affiliation(s)
- Ali Ozdemir
- Department of General Surgery, Faculty of Medicine, Recep Tayyip Erdogan University, Merkez, Box: 53020, Rize, Turkey.
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53010, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53010, Rize, Turkey
| | - Tugba Celik Samanci
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53010, Rize, Turkey
| | - Mikail Uyan
- Department of General Surgery, Faculty of Medicine, Recep Tayyip Erdogan University, Merkez, Box: 53020, Rize, Turkey
| | - Suleyman Kalcan
- Department of General Surgery, Faculty of Medicine, Recep Tayyip Erdogan University, Merkez, Box: 53020, Rize, Turkey
| | - Gokhan Demiral
- Department of General Surgery, Faculty of Medicine, Recep Tayyip Erdogan University, Merkez, Box: 53020, Rize, Turkey
| | - Ahmet Pergel
- Department of General Surgery, Faculty of Medicine, Recep Tayyip Erdogan University, Merkez, Box: 53020, Rize, Turkey
| | - Eda Yilmaz Kutlu
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53010, Rize, Turkey
| | - Hülya Kilic Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53010, Rize, Turkey
| |
Collapse
|
19
|
Kawamoto T, Sasai K. Edaravone Exerts Protective Effects on Mice Intestinal Injury without Interfering with the Anti-Tumor Effects of Radiation. Curr Issues Mol Biol 2023; 45:5362-5372. [PMID: 37504256 PMCID: PMC10378466 DOI: 10.3390/cimb45070340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
The appropriate dosage of edaravone-a radioprotective agent-and its effect on tumors are unknown. This study evaluated the effects of edaravone on intestinal injuries and tumors in mice induced by whole body X-ray irradiation. Small intestinal mucositis was induced in C3H/HeNSlc mice using a single X-ray dose (15 Gy). Edaravone (15, 30, and 100 mg/kg) was administered 30 min before irradiation to evaluate its protective effect. After 3.5 days, the jejunum was removed and the histological changes were evaluated. Next, C3H/HeNSlc mice with squamous cell carcinoma VII tumors were provided the same single X-ray dose and 100 mg/kg edaravone; further, the tumors were immediately induced after irradiation. The tumor cell viability was detected using an in vivo-in vitro colony formation assay. We found that the intestinal colony-forming ability after irradiation was significantly higher in the 100 mg/kg edaravone group than that in the control group. Moreover, the apoptotic cells in the villi immunohistochemically stained with cleaved caspase-3 were significantly lower in the 100 mg/kg edaravone group than in the control group. We found no radioprotective effects of intraperitoneally inoculated edaravone in both hind legs on squamous cell carcinoma VII tumors. These findings suggest that 100 mg/kg edaravone exerts protective effects on small intestinal injuries without interfering with the antitumor effects of radiation.
Collapse
Affiliation(s)
- Terufumi Kawamoto
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Keisuke Sasai
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
20
|
Zhou P, Zhang S, Wang M, Zhou J. The Induction Mechanism of Ferroptosis, Necroptosis, and Pyroptosis in Inflammatory Bowel Disease, Colorectal Cancer, and Intestinal Injury. Biomolecules 2023; 13:biom13050820. [PMID: 37238692 DOI: 10.3390/biom13050820] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Cell death includes programmed and nonprogrammed cell death. The former mainly includes ferroptosis, necroptosis, pyroptosis, autophagy, and apoptosis, while the latter refers to necrosis. Accumulating evidence shows that ferroptosis, necroptosis, and pyroptosis play essential regulatory roles in the development of intestinal diseases. In recent years, the incidence of inflammatory bowel disease (IBD), colorectal cancer (CRC), and intestinal injury induced by intestinal ischemia-reperfusion (I/R), sepsis, and radiation have gradually increased, posing a significant threat to human health. The advancement in targeted therapies for intestinal diseases based on ferroptosis, necroptosis, and pyroptosis provides new strategies for treating intestinal diseases. Herein, we review ferroptosis, necroptosis, and pyroptosis with respect to intestinal disease regulation and highlight the underlying molecular mechanisms for potential therapeutic applications.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou 646000, China
| | - Shun Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou 646000, China
| | - Maohua Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou 646000, China
| |
Collapse
|
21
|
Guo L, Da F, Gao Q, Miao X, Guo J, Zhang W, Li J, Wang J, Liu J. Irradiation-Induced Intestinal Injury is Associated With Disorders of Bile Acids Metabolism. Int J Radiat Oncol Biol Phys 2023; 115:490-500. [PMID: 35948117 DOI: 10.1016/j.ijrobp.2022.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Intestinal injury commonly occurs in radiation therapy, but its pathogenesis is not well understood. The relationship between irradiation-induced intestinal injury and bile acids (BAs) metabolism remains elusive. This study intends to clarify the role of BAs metabolism in irradiation-induced intestinal injury and the potential for supplementation with BAs to alleviate this injury. MATERIALS AND METHODS BAs metabolomic analysis of fecal pellets from normal and 12 Gy γ-ray total abdominal irradiation (TAI) treated mice was performed. The effects of a crude bile extract (BAmix) or lithocholic acid (LCA) on mice exposed to 12 Gy γ-ray TAI were determined by analyzing weight loss, colon length, villus length, crypt number, and the expression of leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and yes-associated protein 1 (YAP1). The effects of BAmix or LCA on intestinal organoids after 4 Gy irradiation were analyzed. ELISA assay was applied to test IL-1β, IL-6 and TNF-α levels in mouse intestine. The expression changes of G protein-coupled receptor 1 (TGR5) and YAP1 in the colonic mucosa of patients with radiation-induced intestinal injury were determined by IHC. RESULTS The relative abundance of secondary BAs was decreased while the relative abundance of primary BAs was increased in irradiated mice, and LCA was the most obvious change. BAmix and LCA alleviated irradiation-induced intestinal injury in a mouse model, as reflected by reduced body weight loss, longer colon, higher villus, more crypts, and increased Lgr5 expression. In intestinal organoids, BAmix and LCA enhanced newborn crypts formation after irradiation. LCA treatment improved the expression of TGR5 and YAP1 in mouse intestinal crypts. LCA has potential to reduce the inflammation levels in irradiated mice. Additionally, the expression levels of TGR5 and YAP1 in the colonic mucosa of patients with radiation enteritis were also significantly decreased. CONCLUSIONS Radiation-induced intestinal injury is associated with disorders of BAs metabolism, and treatment with LCA had a protective effect against radiation-induced intestinal injury in mice by modulating TGR5 and YAP1.
Collapse
Affiliation(s)
- Li Guo
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Fei Da
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China; Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China
| | - Qiaohui Gao
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Xia Miao
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Juan Guo
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Jing Li
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Jin Wang
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.
| | - Junye Liu
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
22
|
García-Flores N, Jiménez-Suárez J, Garnés-García C, Fernández-Aroca DM, Sabater S, Andrés I, Fernández-Aramburo A, Ruiz-Hidalgo MJ, Belandia B, Sanchez-Prieto R, Cimas FJ. P38 MAPK and Radiotherapy: Foes or Friends? Cancers (Basel) 2023; 15:861. [PMID: 36765819 PMCID: PMC9913882 DOI: 10.3390/cancers15030861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Over the last 30 years, the study of the cellular response to ionizing radiation (IR) has increased exponentially. Among the various signaling pathways affected by IR, p38 MAPK has been shown to be activated both in vitro and in vivo, with involvement in key processes triggered by IR-mediated genotoxic insult, such as the cell cycle, apoptosis or senescence. However, we do not yet have a definitive clue about the role of p38 MAPK in terms of radioresistance/sensitivity and its potential use to improve current radiotherapy. In this review, we summarize the current knowledge on this family of MAPKs in response to IR as well as in different aspects related to radiotherapy, such as their role in the control of REDOX, fibrosis, and in the radiosensitizing effect of several compounds.
Collapse
Affiliation(s)
- Natalia García-Flores
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Jaime Jiménez-Suárez
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Cristina Garnés-García
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Diego M. Fernández-Aroca
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Sebastia Sabater
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Ignacio Andrés
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Antonio Fernández-Aramburo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Servicio de Oncología Médica, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - María José Ruiz-Hidalgo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Borja Belandia
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain
| | - Ricardo Sanchez-Prieto
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Francisco J. Cimas
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
23
|
Clinical Evidence and Potential Mechanisms in Treating Radiation Enteritis with Modified Baitouweng Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:9731315. [PMID: 36756038 PMCID: PMC9902141 DOI: 10.1155/2023/9731315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 02/03/2023]
Abstract
Objectives To perform a meta-analysis and network analysis identification to evaluate the efficacy, safety, and potential mechanisms of modified Baitouweng decoction (mBTWD) in the treatment of radiation enteritis. Methods We searched PubMed, Embase, Cochrane Library, Web of Science, CNKI, Wanfang Databases, SionMed, and Chinese Scientific Journals Database to collect the randomized controlled trials (RCTs) of mBTWD treating radiation enteritis. Rev.Man 5.3 and Stata 14.0 software are employed for meta-analysis. The GRADE online tool is used to evaluate the quality of evidence. Network analysis and molecular docking approach are applied to predict the potential targets and ingredients of representative drugs in mBTWD for the treatment of radiation enteritis. Results Seventeen studies are eventually included, covering a total of 1611 patients: (1) The clinical efficacy is significantly higher in mBTWD groups than in control groups (RR = 1.24, 95% CI (1.17, 1.32), P < 0.00001). (2) mBTWD has certain advantages in improving TCM syndromes (MD = -3.41, P < 0.00001). (3) mBTWD has a certain positive effect on the improvement of intestinal signs and symptoms (RR = 1.23, P=0.0001; OR = 3.51, P < 0.00001). (4) Indexes including CRP, KPS, and OB, are better in mBTWD groups than in control groups (P < 0.00001, P=0.002, P=0.03), but the credibility is downgraded for a small sample size. Adverse events and recurrence rates require further confirmation with larger sample sizes. (5) Univariate meta-regression for clinical efficacy shows none of the coefficients are significantly associated with the estimated risk ratio. The clinical efficacy overestimates about 4.9% from publication bias. The quality of the included studies is low according to GRADE evidence. (6) Quercetin, isorhamnetin, and beta-sitosterol are the main ingredients from representative drugs in mBTWD and its key targets are MYC, TP53, and MAPK14/MAPK1. Conclusions mBTWD may be effective in the treatment of radiation enteritis, but its long-term benefits, safety, and molecular mechanisms remain unclear due to the poor quality of the evidence. Larger sample sizes, high-quality studies, and basic research are essential in the future.
Collapse
|
24
|
Lin Y, Xia P, Cao F, Zhang C, Yang Y, Jiang H, Lin H, Liu H, Liu R, Liu X, Cai J. Protective effects of activated vitamin D receptor on radiation-induced intestinal injury. J Cell Mol Med 2022; 27:246-258. [PMID: 36579449 PMCID: PMC9843524 DOI: 10.1111/jcmm.17645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 12/30/2022] Open
Abstract
Radiation-induced intestinal injury (RIII) is a common complication after radiation therapy in patients with pelvic, abdominal, or retroperitoneal tumours. Recently, in the model of DSS (Dextran Sulfate Sodium Salt) -induced intestinal inflammatory injury, it has been found in the study that transgenic mice expressing hVDR in IEC (Intestinal Epithelial Cell) manifest highly anti-injury properties in colitis, suggesting that activated VDR in the epithelial cells of intestine may inhibit colitis by protecting the mucosal epithelial barrier. In this study, we investigated the effect of the expression and regulation of VDR on the protection of RIII, and the radiosensitivity in vitro experiments, and explored the initial mechanism of VDR in regulating radiosensitivity of IEC. As a result, we found that the expression of VDR in intestinal tissues and cells in mice can be induced by ionizing radiation. VDR agonists are able to prolong the average survival time of mice after radiation and reduce the radiation-induced intestinal injury. For lack of vitamin D, the radiosensitivity of intestinal epithelial cells in mice increased, which can be reduced by VDR activation. Ensuing VDR activation, the radiation-induced intestinal stem cells damage is decreased, and the regeneration and differentiation of intestinal stem cells is promoted as well. Finally, on the basis of sequencing analysis, we validated and found that VDR may target the HIF/PDK1 pathway to mitigate RIII. We concluded that agonism or upregulation of VDR expression attenuates radiation-induced intestinal damage in mice and promotes the repair of epithelial damage in intestinal stem cells.
Collapse
Affiliation(s)
- Yuhan Lin
- School of Public Health and ManagementWenzhou Medical UniversityZhejiangChina
| | - Penglin Xia
- Department of Radiation Medicine, Faculty of Naval MedicineNaval Military Medical UniversityShanghaiChina
| | - Fangyu Cao
- Incubation Base for Undergraduates' Innovative Practice in Department of Radiation Medicine, Faculty of Naval MedicineNaval Military Medical UniversityShanghaiChina
| | - Cheng Zhang
- School of Public Health and ManagementWenzhou Medical UniversityZhejiangChina
| | - Yajie Yang
- Incubation Base for Undergraduates' Innovative Practice in Department of Radiation Medicine, Faculty of Naval MedicineNaval Military Medical UniversityShanghaiChina
| | - Haitao Jiang
- Department of Oral and maxillofacial Trauma and Orthognathic SurgeryStomatological Hospital of Zunyi Medical UniversityZunyiChina
| | - Haishan Lin
- Cancer Centre, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Hu Liu
- Department of Radiation Medicine, Faculty of Naval MedicineNaval Military Medical UniversityShanghaiChina
| | - Ruling Liu
- Department of Radiation Medicine, Faculty of Naval MedicineNaval Military Medical UniversityShanghaiChina
| | - Xiaodong Liu
- School of Public Health and ManagementWenzhou Medical UniversityZhejiangChina
| | - Jianming Cai
- School of Public Health and ManagementWenzhou Medical UniversityZhejiangChina,Department of Radiation Medicine, Faculty of Naval MedicineNaval Military Medical UniversityShanghaiChina
| |
Collapse
|
25
|
Protective Role of Natural Compounds under Radiation-Induced Injury. Nutrients 2022; 14:nu14245374. [PMID: 36558533 PMCID: PMC9786992 DOI: 10.3390/nu14245374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, evidence has shown the potential therapeutic effects of different natural compounds for the prevention and treatment of radiotherapy-induced mucositis (RIOM). RIOM represents one of the most frequent side effects associated with anti-neoplastic treatments affecting patients' quality of life and treatment response due to radiation therapy discontinuation. The innate radio-protective ability of natural products obtained from plants is in part due to the numerous antioxidants possessed as a part of their normal secondary metabolic processes. However, oxygen presence is a key point for radiation efficacy on cancer cells. The aim of this review is to describe the most recent evidence on radiation-induced injury and the emerging protective role of natural compounds in preventing and treating this specific damage without compromising treatment efficacy.
Collapse
|
26
|
Xin JY, Wang J, Ding QQ, Chen W, Xu XK, Wei XT, Lv YH, Wei YP, Feng Y, Zu XP. Potential role of gut microbiota and its metabolites in radiation-induced intestinal damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114341. [PMID: 36442401 DOI: 10.1016/j.ecoenv.2022.114341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Radiation-induced intestinal damage (RIID) is a serious disease with limited effective treatment. Nuclear explosion, nuclear release, nuclear application and especially radiation therapy are all highly likely to cause radioactive intestinal damage. The intestinal microecology is an organic whole with a symbiotic relationship formed by the interaction between a relatively stable microbial community living in the intestinal tract and the host. Imbalance and disorders of intestinal microecology are related to the occurrence and development of multiple systemic diseases, especially intestinal diseases. Increasing evidence indicates that the gut microbiota and its metabolites play an important role in the pathogenesis and prevention of RIID. Radiation leads to gut microbiota imbalance, including a decrease in the number of beneficial bacteria and an increase in the number of harmful bacteria that cause RIID. In this review, we describe the pathological mechanisms of RIID, the changes in intestinal microbiota, the metabolites induced by radiation, and their mechanism in RIID. Finally, the mechanisms of various methods for regulating the microbiota in the treatment of RIID are summarized.
Collapse
Affiliation(s)
- Jia-Yun Xin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jie Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qian-Qian Ding
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230012, China
| | - Wei Chen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xi-Ke Xu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xin-Tong Wei
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yan-Hui Lv
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yan-Ping Wei
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yu Feng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Xian-Peng Zu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
27
|
Dong Y, Zhang Y, Wang X, Li W, Zhang J, Lu L, Dong H, Fan S, Meng A, Li D. The protective effects of Xuebijing injection on intestinal injuries of mice exposed to irradiation. Animal Model Exp Med 2022; 5:565-574. [PMID: 36376997 PMCID: PMC9773304 DOI: 10.1002/ame2.12285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Gastrointestinal (GI) injury is one of the most common side effects of radiotherapy. However, there is no ideal therapy method except for symptomatic treatment in the clinic. Xuebijing (XBJ) is a traditional Chinese medicine, used to treat sepsis by injection. In this study, the protective effects of XBJ on radiation-induced intestinal injury (RIII) and its mechanism were explored. METHODS The effect of XBJ on survival of irradiated C57BL/6 mice was monitored. Histological changes including the number of crypts and the length of villi were evaluated by H&E. The expression of Lgr5+ intestinal stem cells (ISCs), Ki67+ cells, villin and lysozymes were examined by immunohistochemistry. The expression of cytokines in the intestinal crypt was detected by RT-PCR. DNA damage and apoptosis rates in the small intestine were also evaluated by immunofluorescence. RESULTS In the present study, XBJ improved the survival rate of the mice after 8.0 and 9.0 Gy total body irradiation (TBI). XBJ attenuated structural damage of the small intestine, maintained regenerative ability and promoted proliferation and differentiation of crypt cells, decreased apoptosis rate and reduced DNA damage in the intestine. Elevation of IL-6 and TNF-α was limited, but IL-1, TNF-𝛽 and IL-10 levels were increased in XBJ-treated group after irradiation. The expression of Bax and p53 were decreased after XBJ treatment. CONCLUSIONS Taken together, XBJ provides a protective effect on RIII by inhibiting inflammation and blocking p53-related apoptosis pathway.
Collapse
Affiliation(s)
- Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - YuanYang Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Xinyue Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Wenxuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Hui Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Aimin Meng
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Engineering Research Center for Laboratory Animal Models of Human Critical Diseases, National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC)BeijingChina
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| |
Collapse
|
28
|
Kim JM, Kim H, Oh SH, Jang WI, Lee SB, Park M, Kim S, Park S, Shim S, Jang H. Combined Administration of Pravastatin and Metformin Attenuates Acute Radiation-Induced Intestinal Injury in Mouse and Minipig Models. Int J Mol Sci 2022; 23:ijms232314827. [PMID: 36499155 PMCID: PMC9739896 DOI: 10.3390/ijms232314827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Radiation-induced gastrointestinal (GI) damage is one of the critical factors that serve as basis for the lethality of nuclear accidents or terrorism. Further, there are no Food and Drug Administration-approved agents available to mitigate radiation-induced intestinal injury. Although pravastatin (PS) has been shown to exhibit anti-inflammatory and epithelial reconstructive effects following radiation exposure using mouse and minipig models, the treatment failed to improve the survival rate of high-dose irradiated intestinal injury. Moreover, we previously found that metformin (MF), a common drug used for treating type 2 diabetes mellitus, has a mitigating effect on radiation-induced enteropathy by promoting stem cell properties. In this study, we investigated whether the combined administration of PS and MF could achieve therapeutic effects on acute radiation-induced intestinal injury in mouse and minipig models. We found that the combined treatment markedly increased the survival rate and attenuated histological damage in a radiation-induced intestinal injury mouse model, in addition to epithelial barrier recovery, anti-inflammatory effects, and improved epithelial proliferation with stem cell properties. Furthermore, in minipig models, combined treatment with PS and MF ameliorates gross pathological damage in abdominal organs and attenuated radiation-induced intestinal histological damage. Therefore, the combination of PS and MF effectively alleviated radiation-induced intestinal injury in the mouse and minipig models. We believe that the combined use of PS and MF is a promising therapeutic approach for treating radiation-induced intestinal injury.
Collapse
Affiliation(s)
- Jung Moon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyewon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Su Hyun Oh
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Won Il Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Mineon Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Soyeon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
- Correspondence: (S.S.); (H.J.); Tel.: +82-2-3399-5873 (S.S.); +82-2-970-1302 (H.J.)
| | - Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
- Correspondence: (S.S.); (H.J.); Tel.: +82-2-3399-5873 (S.S.); +82-2-970-1302 (H.J.)
| |
Collapse
|
29
|
Maines LW, Schrecengost RS, Zhuang Y, Keller SN, Smith RA, Green CL, Smith CD. Opaganib Protects against Radiation Toxicity: Implications for Homeland Security and Antitumor Radiotherapy. Int J Mol Sci 2022; 23:13191. [PMID: 36361977 PMCID: PMC9655569 DOI: 10.3390/ijms232113191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 12/25/2023] Open
Abstract
Exposure to ionizing radiation (IR) is a lingering threat from accidental or terroristic nuclear events, but is also widely used in cancer therapy. In both cases, host inflammatory responses to IR damage normal tissue causing morbidity and possibly mortality to the victim/patient. Opaganib, a first-in-class inhibitor of sphingolipid metabolism, has broad anti-inflammatory and anticancer activity. Opaganib elevates ceramide and reduces sphingosine 1-phosphate (S1P) in cells, conditions that increase the antitumor efficacy of radiation while concomitantly suppressing inflammatory damage to normal tissue. Therefore, opaganib may suppress toxicity from unintended IR exposure and improve patient response to chemoradiation. To test these hypotheses, we first examined the effects of opaganib on the toxicity and antitumor activity of radiation in mice exposed to total body irradiation (TBI) or IR with partial bone marrow shielding. Oral treatment with opaganib 2 h before TBI shifted the LD75 from 9.5 Gy to 11.5 Gy, and provided substantial protection against gastrointestinal damage associated with suppression of radiation-induced elevations of S1P and TNFα in the small intestines. In the partially shielded model, opaganib provided dose-dependent survival advantages when administered 4 h before or 24 h after radiation exposure, and was particularly effective when given both prior to and following radiation. Relevant to cancer radiotherapy, opaganib decreased the sensitivity of IEC6 (non-transformed mouse intestinal epithelial) cells to radiation, while sensitizing PAN02 cells to in vitro radiation. Next, the in vivo effects of opaganib in combination with radiation were examined in a syngeneic tumor model consisting of C57BL/6 mice bearing xenografts of PAN02 pancreatic cancer cells and a cross-species xenograft model consisting of nude mice bearing xenografts of human FaDu cells. Mice were treated with opaganib and/or IR (plus cisplatin in the case of FaDu tumors). In both tumor models, the optimal suppression of tumor growth was attained by the combination of opaganib with IR (± cisplatin). Overall, opaganib substantially protects normal tissue from radiation damage that may occur through unintended exposure or cancer radiotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Charles D. Smith
- Apogee Biotechnology Corporation, 1214 Research Blvd, Suite 2015, Hummelstown, PA 17036, USA
| |
Collapse
|
30
|
A multi-omics approach based on 1H-NMR metabonomics combined with target protein analysis to reveal the mechanism of RIAISs on cervical carcinoma patients. Aging (Albany NY) 2022; 15:1878-1889. [PMID: 36170024 PMCID: PMC10085587 DOI: 10.18632/aging.204305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022]
Abstract
Cervical carcinoma (CC) is the fourth most common cancer in females and radiotherapy is always as the definitive therapy for cervical cancer patients who are not suitable for surgery. Radiation-induced acute intestinal symptoms (RIAISs) occur in 50-80% of cervical cancer patients. Some research shows that RIAISs may relate to inflammatory reaction by radiotherapy but the action mechanism is also not clearly and the details of the molecular mechanism are still urgently needed. In this paper, basing on 1H-NMR metabonomic and bioinformatics analysis, an integrated multi-omics analysis including metabonomics and bioinformatics was performed. We propose a hypothesis about pathogenic mechanism on RIAISs and proofed it through western-blot. Our results indicated significant dysregulation of metabolic pathways in RIAIS patients. Most importantly, we found that RIAISs were associated p53 and PI3K-AKT pathway.
Collapse
|
31
|
Zhou H, Zhou YL, Mao JA, Tang LF, Xu J, Wang ZX, He Y, Li M. NCOA4-mediated ferritinophagy is involved in ionizing radiation-induced ferroptosis of intestinal epithelial cells. Redox Biol 2022; 55:102413. [PMID: 35932693 PMCID: PMC9356278 DOI: 10.1016/j.redox.2022.102413] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis is a newly recognized form of regulated cell death that is characterized by severe lipid peroxidation initiated by iron overload and the generation of reactive oxygen species (ROS). However, the role of iron in ionizing radiation (IR)-induced intestinal injury has not been fully illustrated yet. In this study, we found that IR induced ferroptosis in intestinal epithelial cells, as indicated by the increase in intracellular iron levels and lipid peroxidation, upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) mRNA, reduced glutathione peroxidase 4 (GPX4) mRNA and glutathione (GSH) levels, and significant mitochondrial damage. In addition, the iron chelator deferoxamine (DFO) attenuated IR-induced ferroptosis and intestinal injury in vitro and in vivo. Intriguingly, pharmacological inhibition of autophagy with 3-methyladenine (3-MA) mitigated IR-induced ferritin downregulation, iron overload and ferroptosis. IR increased the levels of nuclear receptor coactivator 4 (NCOA4) mRNA and protein. NCOA4 knockdown significantly inhibited the reduction of ferritin, decreased the level of intracellular free iron, and mitigated ferroptosis induced by IR in HIEC cells, indicating that NCOA4-mediated autophagic degradation of ferritin (ferritinophagy) was required for IR-induced ferroptosis. Furthermore, cytoplasmic iron further activated mitoferrin2 (Mfrn2) on the mitochondrial membrane, which in turn increased iron transport into the mitochondria, resulting in increased ROS production and ferroptosis. In addition, mice fed with an iron-deficient diet for 3 weeks showed a significant reversal in the intestinal injury induced by abdominal IR exposure. Taken together, ferroptosis is a novel mechanism of IR-induced intestinal epithelial cytotoxicity, and is dependent on NCOA4-mediated ferritinophagy.
Collapse
Affiliation(s)
- Hao Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ya-Li Zhou
- MOE Engineering Center of Hematological Disease, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Jiu-Ang Mao
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Lin-Feng Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jie Xu
- MOE Engineering Center of Hematological Disease, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Zhen-Xin Wang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Yang He
- MOE Engineering Center of Hematological Disease, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China.
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
32
|
Liu D, Dong S, Liu C, Du J, Wang S, Yu H, Li W, Chen Z, Peng R, Jiang Q, Zou M, Li F, Zhang R. CRX-527 induced differentiation of HSCs protecting the intestinal epithelium from radiation damage. Front Immunol 2022; 13:927213. [PMID: 36110845 PMCID: PMC9468934 DOI: 10.3389/fimmu.2022.927213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, Toll-like receptors (TLRs) have been extensively studied in radiation damage, but the inherent defects of high toxicity and low efficacy of most TLR ligands limit their further clinical transformation. CRX-527, as a TLR4 ligand, has rarely been reported to protect against radiation. We demonstrated that CRX-527 was safer than LPS at the same dose in vivo and had almost no toxic effect in vitro. Administration of CRX-527 improved the survival rate of total body irradiation (TBI) to 100% in wild-type mice but not in TLR4-/- mice. After TBI, hematopoietic system damage was significantly alleviated, and the recovery period was accelerated in CRX-527-treated mice. Moreover, CRX-527 induced differentiation of HSCs and the stimulation of CRX-527 significantly increased the proportion and number of LSK cells and promoted their differentiation into macrophages, activating immune defense. Furthermore, we proposed an immune defense role for hematopoietic differentiation in the protection against intestinal radiation damage, and confirmed that macrophages invaded the intestines through peripheral blood to protect them from radiation damage. Meanwhile, CRX-527 maintained intestinal function and homeostasis, promoted the regeneration of intestinal stem cells, and protected intestinal injury from lethal dose irradiation. Furthermore, After the use of mice, we found that CRX-527 had no significant protective effect on the hematopoietic and intestinal systems of irradiated TLR4-/- mice. in conclusion, CRX-527 induced differentiation of HSCs protecting the intestinal epithelium from radiation damage.
Collapse
Affiliation(s)
- Dongshu Liu
- Postgraduate Training Base of the People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Jinzhou Medical University, Beijing, China
| | - Suhe Dong
- People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Beijing, China
| | - Cong Liu
- Naval Medical University, Shanghai, China
| | - Jicong Du
- Naval Medical University, Shanghai, China
| | - Sinian Wang
- People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Beijing, China
| | - Huijie Yu
- People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Beijing, China
| | - Wei Li
- People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Beijing, China
| | - Zhongmin Chen
- People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Beijing, China
| | - Renjun Peng
- People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Beijing, China
| | - Qisheng Jiang
- People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Beijing, China
| | - Mengying Zou
- People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Beijing, China
| | - Fengsheng Li
- People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Beijing, China
| | - Rong Zhang
- Postgraduate Training Base of the People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Jinzhou Medical University, Beijing, China
- People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
33
|
Rafiq S, Hao H, Ijaz M, Raza A. Pharmacological Effects of Houttuynia cordata Thunb (H. cordata): A Comprehensive Review. Pharmaceuticals (Basel) 2022; 15:ph15091079. [PMID: 36145299 PMCID: PMC9501394 DOI: 10.3390/ph15091079] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Houttuynia cordata Thunb (H. cordata) is a rhizomatous, herbaceous, and perennial plant widely distributed in Asia. It has multiple chemical constituents, such as alkaloids, essential oils, phenolic acids, and flavonoids used against various health problems. The essential oils and flavonoids are the main components of H. cordata that play an essential role in disease treatment and traditional health care. Moreover, the leaves and stems of H. cordata have a long medicinal history in China. In addition, H. cordata is used against several health issues, such as cold, cough, fever, pneumonia, mumps, and tumors, due to its anti-inflammatory, anti-bacterial, anti-viral, anti-oxidant, and anti-tumor effects. It protects organs due to its anti-inflammatory activity. H. cordata regulates immunity by enhancing immune barriers of the oral cavity, vagina, and gastrointestinal tract, and shows broad-spectrum activity against liver, lung, breast, and colon tumors. However, there are some gaps to be filled to understand its pathways and mechanisms. Mechanisms such as its interaction with cells, cell membranes, and various drugs are important. Studies in relation to the blood–brain barrier, lipophilicity, cAMP signaling, and skin permeability, including pharmaceutical effects, will be very useful. This review includes the biological and pharmacological activities of H. cordata based on up-to-date research.
Collapse
Affiliation(s)
- Shahzad Rafiq
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Correspondence: ; Tel.: +86-158-7181-2208
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Ahmed Raza
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
34
|
Pejchal J, Tichy A, Kmochova A, Fikejzlova L, Kubelkova K, Milanova M, Lierova A, Filipova A, Muckova L, Cizkova J. Mitigation of Ionizing Radiation-Induced Gastrointestinal Damage by Insulin-Like Growth Factor-1 in Mice. Front Pharmacol 2022; 13:663855. [PMID: 35847048 PMCID: PMC9277384 DOI: 10.3389/fphar.2022.663855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Insulin-like growth factor-1 (IGF-1) stimulates epithelial regeneration but may also induce life-threatening hypoglycemia. In our study, we first assessed its safety. Subsequently, we examined the effect of IGF-1 administered in different dose regimens on gastrointestinal damage induced by high doses of gamma radiation. Material and methods: First, fasting C57BL/6 mice were injected subcutaneously with IGF-1 at a single dose of 0, 0.2, 1, and 2 mg/kg to determine the maximum tolerated dose (MTD). The glycemic effect of MTD (1 mg/kg) was additionally tested in non-fasting animals. Subsequently, a survival experiment was performed. Animals were irradiated (60Co; 14, 14.5, or 15 Gy; shielded head), and IGF-1 was administered subcutaneously at 1 mg/kg 1, 24, and 48 h after irradiation. Simultaneously, mice were irradiated (60Co; 12, 14, or 15 Gy; shielded head), and IGF-1 was administered subcutaneously under the same regimen. Jejunum and lung damage were assessed 84 h after irradiation. Finally, we evaluated the effect of six different IGF-1 dosage regimens administered subcutaneously on gastrointestinal damage and peripheral blood changes in mice 6 days after irradiation (60Co; 12 and 14 Gy; shielded head). The regimens differed in the number of doses (one to five doses) and the onset of administration (starting at 1 [five regimens] or 24 h [one regimen] after irradiation). Results: MTD was established at 1 mg/kg. MTD mitigated lethality induced by 14 Gy and reduced jejunum and lung damage caused by 12 and 14 Gy. However, different dosing regimens showed different efficacy, with three and four doses (administered 1, 24, and 48 h and 1, 24, 48, and 72 h after irradiation, respectively) being the most effective. The three-dose regimens supported intestinal regeneration even if the administration started at 24 h after irradiation, but its potency decreased. Conclusion: IGF-1 seems promising in the mitigation of high-dose irradiation damage. However, the selected dosage regimen affects its efficacy.
Collapse
Affiliation(s)
- Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Ales Tichy
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Adela Kmochova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Lenka Fikejzlova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Marcela Milanova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Anna Lierova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Alzbeta Filipova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Lubica Muckova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Jana Cizkova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| |
Collapse
|
35
|
CXCR2 Is Essential for Radiation-Induced Intestinal Injury by Initiating Neutrophil Infiltration. J Immunol Res 2022; 2022:7966089. [PMID: 35879949 PMCID: PMC9308512 DOI: 10.1155/2022/7966089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Neutrophils, known as an important part of the immune system, are the most abundant leukocyte population in peripheral blood, but excessive recruitment will lead to tissue/organ injury. RNA sequencing showed that ionizing radiation significantly increased the expression of characteristic genes of neutrophils in intestinal tissues compared with liver and lung tissues. By clearing neutrophils with an anti-Ly6G antibody, we found that neutrophil infiltration is critical for irradiation-induced intestinal injury. CXCR2 is a G-protein-coupled receptor that mediates the migration of neutrophils by combining with its ligands. Compared with observations in liver and lung tissues, we found that CXCR2 and its ligands, including CXCL1, CXCL2, CXCL3, and CXCL5, were all significantly upregulated in irradiated intestinal tissues. Further studies showed that SB225002, an inhibitor of CXCR2, could effectively inhibit the chemotaxis of neutrophils and tissue damage mediated by the CXCL-CXCR2 signalling pathway.
Collapse
|
36
|
Paraprobiotics and Postbiotics of Lactobacillus delbrueckii CIDCA 133 Mitigate 5-FU-Induced Intestinal Inflammation. Microorganisms 2022; 10:microorganisms10071418. [PMID: 35889136 PMCID: PMC9324481 DOI: 10.3390/microorganisms10071418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 12/02/2022] Open
Abstract
Intestinal mucositis is a commonly reported side effect in oncology practice. Probiotics are considered an excellent alternative therapeutic approach to this debilitating condition; however, there are safety questions regarding the viable consumption of probiotics in clinical practice due to the risks of systemic infections, especially in immune-compromised patients. The use of heat-killed or cell-free supernatants derived from probiotic strains has been evaluated to minimize these adverse effects. Thus, this work evaluated the anti-inflammatory properties of paraprobiotics (heat-killed) and postbiotics (cell-free supernatant) of the probiotic Lactobacillus delbrueckii CIDCA 133 strain in a mouse model of 5-Fluorouracil drug-induced mucositis. Administration of paraprobiotics and postbiotics reduced the neutrophil cells infiltrating into the small intestinal mucosa and ameliorated the intestinal epithelium architecture damaged by 5-FU. These ameliorative effects were associated with a downregulation of inflammatory markers (Tlr2, Nfkb1, Il12, Il17a, Il1b, Tnf), and upregulation of immunoregulatory Il10 cytokine and the epithelial barrier markers Ocln, Cldn1, 2, 5, Hp and Muc2. Thus, heat-killed L. delbrueckii CIDCA 133 and supernatants derived from this strain were shown to be effective in reducing 5-FU-induced inflammatory damage, demonstrating them to be an alternative approach to the problems arising from the use of live beneficial microorganisms in clinical practice.
Collapse
|
37
|
Liang X, Zhang M, Zhang Z, Tan S, Li Y, Zhong Y, Shao Y, Kong Y, Yang Y, Li S, Xu J, Li Z, Zhu X. Nomogram model and risk score predicting overall survival and guiding clinical decision in patients with Hodgkin's lymphoma: an observational study using SEER population-based data. BMJ Open 2022; 12:e055524. [PMID: 35672070 PMCID: PMC9174788 DOI: 10.1136/bmjopen-2021-055524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION This study developed a prognostic nomogram of Hodgkin lymphoma (HL) for purpose of discussing independent risk factors for HL patients with Surveillance, Epidemiology and End Results (SEER) database. METHODS We collected data of HL patients from 2010 to 2015 from the SEER database and divided it into two cohorts: the training and the verification cohort. Then the univariate and the multivariate Cox regression analyses were conducted in the training, the verification as well as the total cohort, after which the intersection of variables with statistical significance was taken as independent risk factors to establish the nomogram. The predictive ability of the nomogram was validated by the Concordance Index. Additionally, the calibration curve and receiver operating characteristic curve were implemented to evaluate the accuracy and discrimination. Finally, we obtained 1-year, 3-year and 5-year survival rates of HL patients. RESULTS 10 912 patients were eligible for the study. We discovered that Derived American Joint Committee on Cancer (AJCC) Stage Group, lymphoma subtype, radiotherapy and chemotherapy were four independent risk factors affecting the prognosis of HL patients. The 1-year, 3-year and 5-year survival rates for high-risk patients were 85.4%, 79.9% and 76.0%, respectively. It was confirmed that patients with stage I or II had a better prognosis. Radiotherapy and chemotherapy had a positive impact on HL outcomes. However, patients with lymphocyte-depleted HL were of poor prognosis. CONCLUSIONS The nomogram we constructed could better predict the prognosis of patients with HL. Patients with HL had good long-term outcomes but novel therapies are still in need for fewer complications.
Collapse
Affiliation(s)
- Xiangping Liang
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, People's Republic of China
- Department of Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Mingtao Zhang
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Zherui Zhang
- School of Laboratory and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China
| | - Shuzhen Tan
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yingqi Li
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Yueyuan Zhong
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Yingqi Shao
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Yi Kong
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Yue Yang
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Shang Li
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, People's Republic of China
| | - Xiao Zhu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, People's Republic of China
| |
Collapse
|
38
|
Zhou Y, Liu J, Li X, Wang L, Hu L, Li A, Zhou J. JAC4 Protects from X-Ray Radiation-Induced Intestinal Injury by JWA-Mediated Anti-Oxidation/Inflammation Signaling. Antioxidants (Basel) 2022; 11:antiox11061067. [PMID: 35739964 PMCID: PMC9220415 DOI: 10.3390/antiox11061067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Radiation-induced intestinal injury is one of the major side effects in patients receiving radiation therapy. There is no specific treatment for radiation-induced enteritis in the clinic. We synthesized a compound, named JAC4, which is an agonist and can increase JWA protein expression. JWA has been shown to reduce oxidative stress, DNA damage, anti-apoptosis, and anti-inflammatory; in addition, the small intestine epithelium showed dysplasia in JWA knockout mice. We hypothesized that JAC4 might exert a protective effect against radiation-induced intestinal damage. Herein, X-ray radiation models were built both in mice and in intestinal crypt epithelial cells (IEC-6). C57BL/6J mice were treated with JAC4 by gavage before abdominal irradiation (ABI); the data showed that JAC4 significantly reduced radiation-induced intestinal mucosal damage and increased the survival rate. In addition, radiation-induced oxidative stress damage and systemic inflammatory response were also mitigated by JAC4 treatment. Moreover, JAC4 treatment alleviated DNA damage, decreased cell apoptosis, and maintained intestinal epithelial cell proliferation in mice. In vitro data showed that JAC4 treatment significantly inhibited ROS formation and cell apoptosis. Importantly, all the above protective effects of JAC4 on X-ray radiation-triggered intestinal injury were no longer determined in the intestinal epithelium of JWA knockout mice. Therefore, our results provide the first evidence that JAC4 protects the intestine from radiation-induced enteritis through JWA-mediated anti-oxidation/inflammation signaling.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; (Y.Z.); (J.L.); (X.L.); (L.W.); (A.L.)
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jingwen Liu
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; (Y.Z.); (J.L.); (X.L.); (L.W.); (A.L.)
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Xiong Li
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; (Y.Z.); (J.L.); (X.L.); (L.W.); (A.L.)
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Luman Wang
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; (Y.Z.); (J.L.); (X.L.); (L.W.); (A.L.)
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Lirong Hu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing 210042, China;
| | - Aiping Li
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; (Y.Z.); (J.L.); (X.L.); (L.W.); (A.L.)
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; (Y.Z.); (J.L.); (X.L.); (L.W.); (A.L.)
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Correspondence:
| |
Collapse
|
39
|
Xi C, Zhao H, Liu HX, Xiang JQ, Lu X, Cai TJ, Li S, Gao L, Tian XL, Liu KH, Tian M, Liu QJ. Screening of radiation gastrointestinal injury biomarkers in rat plasma by high-coverage targeted lipidomics. Biomarkers 2022; 27:448-460. [PMID: 35315697 DOI: 10.1080/1354750x.2022.2056920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
INTRODUCTION In the event of radiological accidents and cancer radiotherapies in clinic, the gastrointestinal (GI) system is vulnerable to ionizing radiation and shows GI injury. Accessible biomarkers may provide means to predict, evaluate, and treat GI tissue damage. The current study investigated radiation GI injury biomarkers in rat plasma. MATERIAL AND METHODS High-coverage targeted lipidomics was employed to profile lipidome perturbations at 72 h after 0, 1, 2, 3, 5 and 8 Gy (60Co γ-rays at 1 Gy/min) total-body irradiation in male rat jejunum. The results were correlated with previous plasma screening outcomes. RESULTS In total, 93 differential metabolites and 28 linear dose-responsive metabolites were screened in the jejunum. Moreover, 52 lipid species with significant differences both in jejunum and plasma were obtained. Three lipid species with linear dose-response relationship both in jejunum and plasma were put forth, which exhibited good to excellent sensitivity and specificity in triaging different exposure levels. DISCUSSION The linear dose-effect relationship of lipid metabolites in the jejunum and the triage performance of radiation GI injury biomarkers in plasma were studied for the first time. CONCLUSION The present study can provide insights into expanded biomarkers of IR-mediated GI injury and minimally invasive assays for evaluation.
Collapse
Affiliation(s)
- Cong Xi
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hai-Xiang Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jia-Qi Xiang
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tian-Jing Cai
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ling Gao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xue-Lei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ke-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
40
|
Mulenga C, Sviben S, Chandwe K, Amadi B, Kayamba V, Fitzpatrick JAJ, Mudenda V, Kelly P. Epithelial Abnormalities in the Small Intestine of Zambian Children With Stunting. Front Med (Lausanne) 2022; 9:849677. [PMID: 35372420 PMCID: PMC8966729 DOI: 10.3389/fmed.2022.849677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/22/2022] [Indexed: 01/17/2023] Open
Abstract
Background Environmental enteropathy (EE) contributes to impaired linear growth (stunting), in millions of children worldwide. We have previously reported that confocal laser endomicroscopy (CLE) shows fluorescein leaking from blood to gut lumen in vivo in adults and children with EE. We set out to identify epithelial lesions which might explain this phenomenon in Zambian children with stunting non-responsive to nutritional support. Methods We performed confocal laser endomicroscopy (CLE) in 75 children and collected intestinal biopsies for histology in 91 children. CLE videos were evaluated, employing the Watson score to determine severity of leakiness. Morphometry was carried out on well-orientated mucosa and 3 biopsies were examined by electron microscopy. Results Confocal laser endomicroscopy demonstrated substantial leakage from circulation to gut lumen in 73 (97%) children. Histology consistently showed characteristic changes of EE: villus blunting, lamina propria and epithelial inflammation, and depletion of secretory cells (Paneth cells and goblet cells). Epithelial abnormalities included marked variability in epithelial height, disorganised and shortened microvilli, dilated intercellular spaces, pseudostratification, formation of synechiae between epithelium on adjacent villi, crypt destruction, and abundant destructive lesions which may correspond to the microerosions identified on CLE. Conclusion Epithelial abnormalities were almost universal in Zambian children with non-responsive stunting, including epithelial microerosions, cell-cell adhesion anomalies, and defects in secretory cells which may all contribute to impairment of mucosal barrier function and microbial translocation.
Collapse
Affiliation(s)
- Chola Mulenga
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
| | - Sanja Sviben
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, United States
| | - Kanta Chandwe
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
| | - Beatrice Amadi
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
| | - Violet Kayamba
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
| | - James A. J. Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, United States
- Departments of Cell Biology & Physiology and Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Victor Mudenda
- Department of Pathology and Microbiology, University of Zambia School of Medicine, Lusaka, Zambia
| | - Paul Kelly
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
- Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
41
|
Korany DA, Said RS, Ayoub IM, Labib RM, El-Ahmady SH, Singab ANB. Protective effects of Brownea grandiceps (Jacq.) against ϒ-radiation-induced enteritis in rats in relation to its secondary metabolome fingerprint. Biomed Pharmacother 2022; 146:112603. [PMID: 35062069 DOI: 10.1016/j.biopha.2021.112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 11/30/2022] Open
Abstract
Radiation enteritis is the most common complication of radiotherapy in patients with pelvic malignancies. Thus, the radioprotective activity of the total hydro-alcoholic extract (BGE) and the ethyl acetate soluble fraction (EAF) of Brownea grandiceps leaves was evaluated against ϒ-radiation-induced enteritis in rats. (BGE) and (EAF) were characterized using HPLC-PDA-ESI-MS/MS analysis. The total phenolic and flavonoid contents were also quantified. In vivo administration of (BGE) (400 mg/kg) and (EAF) (200 & 400 mg/kg) prevented intestinal injury and maintained the mucosal integrity of irradiated rats through increasing villi length and promoting crypt regeneration. Also, (EAF) showed more potent antioxidant activity than (BGE) through reduction of MDA level and enhancement of GSH content and catalase enzyme activity. (BGE) and (EAF) down-regulated intestinal NF-κB expression leading to diminished expression of downstream inflammatory cytokine TNF-α. Moreover, (EAF) markedly reduced the expression of profibrotic marker TGF-β1. Seventy-nine compounds were tentatively identified, including flavonoids, proanthocyanidins, polar lipids and phenolic acids. (EAF) showed significantly higher total phenolic and flavonoid contents, as compared to (BGE). Results revealed remarkable radioprotective activity of (BGE) and (EAF), with significantly higher activity for (EAF). The chemical constituents of (BGE) and (EAF) strongly supported their radioprotective activity. To the best of our knowledge, the present study describes for the first time the radioprotective activity of B. grandiceps leaves in relation to its secondary metabolome fingerprint; emphasizing the great promise of B. grandiceps leaves, especially (EAF), to be used as natural radio-protective agent.
Collapse
Affiliation(s)
- Doaa A Korany
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, 11566, Cairo, Egypt.
| | - Riham S Said
- Department of Drug Radiation Research, National Center for Radiation Research & Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Iriny M Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, 11566, Cairo, Egypt
| | - Rola M Labib
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, 11566, Cairo, Egypt
| | - Sherweit H El-Ahmady
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, 11566, Cairo, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, 11566, Cairo, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
42
|
Wu DM, Li J, Shen R, Li J, Yu Y, Li L, Deng SH, Liu T, Zhang T, Xu Y, Wang DG. Autophagy Induced by Micheliolide Alleviates Acute Irradiation-Induced Intestinal Injury via Inhibition of the NLRP3 Inflammasome. Front Pharmacol 2022; 12:773150. [PMID: 35115927 PMCID: PMC8804324 DOI: 10.3389/fphar.2021.773150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/20/2021] [Indexed: 01/02/2023] Open
Abstract
Radiation-induced enteropathy (RIE) is one of the most common and fatal complications of abdominal radiotherapy, with no effective interventions available. Pyroptosis, a form of proinflammatory regulated cell death, was recently found to play a vital role in radiation-induced inflammation and may represent a novel therapeutic target for RIE. To investigate this, we found that micheliolide (MCL) exerted anti-radiation effects in vitro. Therefore, we investigated both the therapeutic effects of MCL in RIE and the possible mechanisms by which it may be therapeutic. We developed a mouse model of RIE by exposing C57BL/6J mice to abdominal irradiation. MCL treatment significantly ameliorated radiation-induced intestinal tissue damage, inflammatory cell infiltration, and proinflammatory cytokine release. In agreement with these observations, the beneficial effects of MCL treatment in RIE were abolished in Becn1+/− mice. Furthermore, super-resolution microscopy revealed a close association between NLR pyrin domain three and lysosome-associated membrane protein/light chain 3-positive vesicles following MCL treatment, suggesting that MCL facilitates phagocytosis of the NLR pyrin domain three inflammasome. In summary, MCL-mediated induction of autophagy can ameliorate RIE by NLR pyrin domain three inflammasome degradation and identify MCL as a novel therapy for RIE.
Collapse
Affiliation(s)
- Dong-ming Wu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Jing Li
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jin Li
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Ye Yu
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Li Li
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Shi-hua Deng
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Teng Liu
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Ting Zhang
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Ying Xu
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- *Correspondence: Ying Xu, ; De-gui Wang,
| | - De-gui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- *Correspondence: Ying Xu, ; De-gui Wang,
| |
Collapse
|
43
|
Effects of IQW and IRW on Inflammation and Gut Microbiota in ETEC-Induced Diarrhea. Mediators Inflamm 2021; 2021:2752265. [PMID: 34602857 PMCID: PMC8486560 DOI: 10.1155/2021/2752265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
Methods The mice were randomly distributed into four groups: (a) control (CTRL) group, (b) ETEC group, (c) IQW-ETEC group, and (d) IRW-ETEC group. Villus length and crypt depth were measured after hematoxylin and eosin staining. The inflammatory reaction was analyzed via inflammatory cytokines (i.e., TNF-α, IL-1β, IL-6, and IL-10) using the enzyme-linked immunosorbent assay (ELISA). The microbiota in the colon was sequenced using 16S ribosomal RNA. Results The villus length decreased, the crypt depth decreased, and the expression of inflammatory cytokines (i.e., TNF-α, IL-1β, IL-6, and IL-10) increased due to ETEC. In the IRW-ETEC and IQW-ETEC groups, the Shannon index decreased (P < 0.05). IQW and IRW increased the abundance of Firmicutes, Proteobacteria, Clostridiales, Lachnospiraceae, and Alloprevotella; contrastingly, it decreased the abundance of Epsilonproteobacteria, Erysipelotrichales, Prevotellaceae, and Flavobacteriaceae compared to the ETEC group (P <0.05). Conclusion This study ascertained that the addition of IQW and IRW could alleviate jejunal inflammation and increase microbiota community diversity.
Collapse
|
44
|
Wu Z, Deng X, Hu Q, Xiao X, Jiang J, Ma X, Wu M. Houttuynia cordata Thunb: An Ethnopharmacological Review. Front Pharmacol 2021; 12:714694. [PMID: 34539401 PMCID: PMC8440972 DOI: 10.3389/fphar.2021.714694] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
Houttuynia cordata Thunb (H. cordata; Saururaceae) is widely distributed in Asian regions. It plays an important role in traditional health care and disease treatment, as its aboveground stems and leaves have a long medicinal history in China and are used in the treatment of pneumonia and lung abscess. In clinical treatment, it can usually be combined with other drugs to treat dysentery, cold, fever, and mumps; additionally, H. cordata is an edible plant. This review summarizes detailed information on the phytochemistry and pharmacological effects of H. cordata. By searching the keywords “H. cordata and lung”, “H. cordata and heart”, “H. cordata and liver”, and “H. cordata and inflammation” in PubMed, Web of Science and ScienceDirect, we screened out articles with high correlation in the past ten years, sorted out the research contents, disease models and research methods of the articles, and provided a new perspective on the therapeutic effects of H. cordata. A variety of its chemical constituents are characteristic of medicinal plants, the chemical constituents were isolated from H. cordata, including volatile oils, alkaloids, flavonoids, and phenolic acids. Flavonoids and volatile oils are the main active components. In pharmacological studies, H. cordata showed organ protective activity, such as reducing the release of inflammatory factors to alleviate lung injury. Moreover, H. cordata regulates immunity, enhances the immune barriers of the vagina, oral cavity, and intestinal tract, and combined with the antibacterial and antiviral activity of its extract, effectively reduces pathogen infection. Furthermore, experiments in vivo and in vitro showed significant anti-inflammatory activity, and its chemical derivatives exert potential therapeutic activity against rheumatoid arthritis. Antitumour action is also an important pharmacological activity of H. cordata, and studies have shown that H. cordata has a notable effect on lung tumour, liver tumour, colon tumour, and breast tumour. This review categorizes the biological activities of H. cordata according to modern research papers, and provides insights into disease prevention and treatment of H. cordata.
Collapse
Affiliation(s)
- Zhao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Jiang
- School of Physical Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingquan Wu
- Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, China
| |
Collapse
|
45
|
Wu T, Gao J, Liu W, Cui J, Yang M, Guo W, Wang FY. NLRP3 protects mice from radiation-induced colon and skin damage via attenuating cGAS-STING signaling. Toxicol Appl Pharmacol 2021; 418:115495. [PMID: 33741346 DOI: 10.1016/j.taap.2021.115495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
In the present study, the effects of NLRP3 on radiation-induced tissue damage, including colon and skin damage in mice, and the possible mechanisms were explored in vivo and in vitro. The mice were subjected to whole abdomen radiation by timed exposure to X-ray at a cumulative dose of 14 Gy. The survival rate showed that NLRP3 deficiency increased the mortality rate in mice. Furthermore, colon damage, evaluated by H&E staining and barrier function analysis, were significantly aggravated by NLRP3 deficiency. Enhanced phosphorylation of p-TBK1 and p-IRF3 in colonic tissue as well as elevated IFN-β levels in the serum indicated hyperactivation of cGAS-STING signaling. Moreover, radiation-induced expression of p-TBK1, p-IRF3, and IFN-β in BMDMs increased in vitro after NLRP3 knockout. Thus, our study outcomes suggest that NLRP3 may protect mice from radiation-induced tissue damage via attenuating cGAS-STING signaling.
Collapse
Affiliation(s)
- Tiancong Wu
- Department of Gastroenterology and Hepatology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, China; Jinling Hospital, Department of Radiation Oncology, Nanjing University, School Medicine, Nanjing 210002, China
| | - Jianhua Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Jian Cui
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Miaofang Yang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing 210002, Jiangsu Province, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, China.
| | - Fang-Yu Wang
- Department of Gastroenterology and Hepatology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, China; Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing 210002, Jiangsu Province, China.
| |
Collapse
|
46
|
Yan T, Guo S, Zhang T, Zhang Z, Liu A, Zhang S, Xu Y, Qi Y, Zhao W, Wang Q, Shi L, Liu L. Ligustilide Prevents Radiation Enteritis by Targeting Gch1/BH 4/eNOS to Improve Intestinal Ischemia. Front Pharmacol 2021; 12:629125. [PMID: 33967762 PMCID: PMC8100595 DOI: 10.3389/fphar.2021.629125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
There is a high incidence of radiation enteritis (RE) after abdominal radiotherapy. The occurrence of RE seriously affects the treatment and quality of life of patients; however, its pathogenesis is complex and there are no effective drugs for its prevention or treatment. Intestinal ischemia plays an important role in the occurrence of enteritis. Previous studies have shown that targeting GTP-cyclohydrolase 1 (Gch1) to improve intestinal ischemia could be a new strategy to prevent and treat RE. A high content of the naturally occurring phthalide derivative ligustilide (LIG) has been found in the plant drug Rhizoma Ligustici Chuanxiong for the treatment of cardiovascular diseases. The purpose of this study was to evaluate the protective effects of LIG on RE. Ionizing radiation (IR) rat and endothelial cell models were used to observe and record rat body weights and stool morphologies, measure intestinal blood perfusion by laser Doppler blood flow imaging, determine the diastolic functions of mesenteric arteries, detect the levels of Gch1/BH4/eNOS pathway-related proteins and regulatory molecules in the mesenteric arteries and endothelial cells, and predict affinity by molecular docking technology. The results showed that LIG significantly improved the body weights, loose stools, intestinal villi lengths, intestinal perfusion and vasodilatory functions of IR rats. LIG also significantly improved Gch1 protein and BH4 levels in the mesenteric arteries and endothelial cells after IR, increased the NO content, reduced superoxide accumulation, and improved p-eNOS (Ser1177) levels in endothelial cells. LIG has good affinity for Gch1, which significantly improves its activity. These results indicate that LIG is the preferred compound for the prevention and treatment of RE by improving intestinal ischemia through the Gch1/BH4/eNOS pathway. This study provides a theoretical basis and new research ideas for the development of new drugs for RE.
Collapse
Affiliation(s)
- Tao Yan
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Shun Guo
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Tian Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Zhimin Zhang
- Department of Cardiology, General Hospital of Xinjiang Military Command, Urumqi, China
| | - An Liu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Song Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yuan Xu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yuhong Qi
- Department of Radiotherapy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Weihe Zhao
- Department of Radiotherapy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Qinhui Wang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Lei Shi
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Linna Liu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| |
Collapse
|
47
|
Progress in the treatment of cancer patients - don't forget the gut feeling! Best Pract Res Clin Gastroenterol 2020; 48-49:101704. [PMID: 33317792 DOI: 10.1016/j.bpg.2020.101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/31/2023]
|