1
|
Faiena I, Adhikary S, Schweitzer C, Astrow SH, Grogan T, Funt SA, Bot A, Dorff T, Rosenberg JE, Elashoff DA, Pantuck AJ, Drakaki A. Gene and Protein Expression of MAGE and Associated Immune Landscape Elements in Non-Small-Cell Lung Carcinoma and Urothelial Carcinomas. J Immunother 2024; 47:351-360. [PMID: 39169899 PMCID: PMC11446647 DOI: 10.1097/cji.0000000000000538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/21/2024] [Indexed: 08/23/2024]
Abstract
Melanoma-associated antigen-A (MAGE-A) is expressed in multiple cancers with restricted expression in normal tissue. We sought to assess the MAGE-A3/A6 expression profile as well as immune landscape in urothelial (UC) and non-small cell lung carcinoma (NSCLC). We also assessed co-expression of immune-associated markers, including programmed cell death ligand 1 (PD-L1) in tumor and/or immune cells, and assessed the effect of checkpoint inhibitor treatment on these markers in the context of urothelial carcinoma. We used formalin-fixed paraffin-embedded (FFPE) tissue sections from a variety of tumor types were screened by IHC for MAGE-A and PD-L1 expression. Gene expression analyses by RNA sequencing were performed on RNA extracted from serial tissue sections. UC tumor samples from patients treated with checkpoint inhibitors were assessed by IHC and NanoString gene expression analysis for MAGE-A and immune marker expression before and after treatment. Overall, 84 samples (57%) had any detectable MAGE-A expression. Detectable MAGE-A expression was present at similar frequencies in both tumor tissue types, with 41 (50%) NSCLC and 43 (64%) UC. MAGE-A expression was not significantly changed before and after checkpoint inhibitor therapy by both IHC and NanoString mRNA sequencing. Other immune markers were similarly unchanged post immune checkpoint inhibitor therapy. Stable expression of MAGE-A3/A6 pre and post checkpoint inhibitor treatment indicates that archival specimens harvested after checkpoint therapy are applicable to screening potential candidates for MAGE therapies.
Collapse
Affiliation(s)
- Izak Faiena
- Columbia University Irving Medical Center, New York, NY, USA
| | | | | | | | - Tristan Grogan
- Department of Medicine Statistics Core,David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Samuel A. Funt
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Tanya Dorff
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - David A. Elashoff
- Department of Medicine Statistics Core,David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Allan J. Pantuck
- Institute of Urologic Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Alexandra Drakaki
- Institute of Urologic Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
2
|
Pu J, Liu T, Sharma A, Jiang L, Wei F, Ren X, Schmidt-Wolf IGH, Hou J. Advances in adoptive cellular immunotherapy and therapeutic breakthroughs in multiple myeloma. Exp Hematol Oncol 2024; 13:105. [PMID: 39468695 PMCID: PMC11514856 DOI: 10.1186/s40164-024-00576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
The basic idea of modulating the immune system to better recognize and fight tumor cells has led to the successful introduction of adoptive cellular immunotherapy (ACT). ACT-based treatment regimens, in which the patient's own immune cells are isolated and subsequently expanded (ex vivo) and reinfused, have also contributed significantly to the development of a personalized treatment strategy. Complementing this, the unprecedented advances in ACTs as chimeric antigen receptor (CAR)-T cell therapies and their derivatives such as CAR-NK, CAR-macrophages, CAR-γδT and CAR-NKT have further maximized the therapeutic outcomes. Herein, we provide a comprehensive overview of the development of ACTs in multiple myeloma (MM) and outline how they have evolved from an experimental form to a mainstay of standard clinical settings. Besides, we provide insights into cytokine-induced killer cell (CIK) therapy, an alternative form of ACT that (as CIK or CAR-CIK) has enormous potential in the clinical spectrum of MM. We also summarize the results of the major preclinical and clinical studies of adoptive cell therapy in MM and address the current challenges (such as cytokine release syndrome (CRS) and neurotoxicity) that limit its complete success in the cancer landscape.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ting Liu
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, NRW, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Liping Jiang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Feng Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China.
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany.
| | - Jian Hou
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
3
|
Traynor S, Jakobsen MK, Green TM, Komic H, Palarasah Y, Pedersen CB, Ditzel HJ, Thoren FB, Guldberg P, Gjerstorff MF. Single-cell sequencing unveils extensive intratumoral heterogeneity of cancer/testis antigen expression in melanoma and lung cancer. J Immunother Cancer 2024; 12:e008759. [PMID: 38886115 PMCID: PMC11184195 DOI: 10.1136/jitc-2023-008759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Cancer/testis antigens (CTAs) are widely expressed in melanoma and lung cancer, emerging as promising targets for vaccination strategies and T-cell-based therapies in these malignancies. Despite recognizing the essential impact of intratumoral heterogeneity on clinical responses to immunotherapy, our understanding of intratumoral heterogeneity in CTA expression has remained limited. We employed single-cell mRNA sequencing to delineate the CTA expression profiles of cancer cells in clinically derived melanoma and lung cancer samples. Our findings reveal a high degree of intratumoral transcriptional heterogeneity in CTA expression. In melanoma, every cell expressed at least one CTA. However, most individual CTAs, including the widely used therapeutic targets NY-ESO-1 and MAGE, were confined to subpopulations of cells and were uncoordinated in their expression, resulting in mosaics of cancer cells with diverse CTA profiles. Coordinated expression was observed, however, mainly among highly structurally and evolutionarily related CTA genes. Importantly, a minor subset of CTAs, including PRAME and several members of the GAGE and MAGE-A families, were homogenously expressed in melanomas, highlighting their potential as therapeutic targets. Extensive heterogeneity in CTA expression was also observed in lung cancer. However, the frequency of CTA-positive cancer cells was notably lower and homogenously expressed CTAs were only identified in one of five tumors in this cancer type. Our findings underscore the need for careful CTA target selection in immunotherapy development and clinical testing and offer a rational framework for identifying the most promising candidates.
Collapse
Affiliation(s)
- Sofie Traynor
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mie K Jakobsen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Tina M Green
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Hana Komic
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Goteborg, Sweden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Goteborg, Sweden
| | - Yaseelan Palarasah
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christina B Pedersen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Fredrik B Thoren
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Goteborg, Sweden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Goteborg, Sweden
| | - Per Guldberg
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Danish Cancer Institute, Kobenhavn, Denmark
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
4
|
Huang S, Ren L, Beck JA, Patkar S, Lillo Osuna MA, Cherukuri A, Mazcko C, Krum SA, LeBlanc AK. Comparative responses to demethylating therapy in animal models of osteosarcoma. RESEARCH SQUARE 2024:rs.3.rs-4451060. [PMID: 38946977 PMCID: PMC11213205 DOI: 10.21203/rs.3.rs-4451060/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background The demethylating agent decitabine (DAC) effectively inhibits tumor growth and metastasis by targeting ESR1 methylation to restore estrogen receptor alpha (ERα) signaling and promoting cellular differentiation in models of human osteosarcoma (OSA). Whether this pathway can be targeted in canine OSA patients is unknown. Methods Canine OSA tumor samples were tested for ERα expression and ESR1 promoter methylation. Human (MG63.3) and canine (MC-KOS) OSA cell lines and murine xenografts were treated with DAC in vitro and in vivo, respectively. Samples were assessed using mRNA sequencing and tissue immunohistochemistry. Results ESR1 is methylated in a subset of canine OSA patient samples and the MC-KOS cell line. DAC treatment led to enhanced differentiation as demonstrated by increased ALPL expression, and suppressed tumor growth in vitro and in vivo. Metastatic progression was inhibited, particularly in the MG63.3 model, which expresses higher levels of DNA methyltransferases DNMT1 and 3B. DAC treatment induced significant alterations in immune response and cell cycle pathways. Conclusion DAC treatment activates ERα signaling, promotes bone differentiation, and inhibits tumor growth and metastasis in human and canine OSA. Additional DAC-altered pathways and species- or individual-specific differences in DNMT expression may also play a role in DAC treatment of OSA.
Collapse
|
5
|
Gupta S, Sgourakis NG. A structure-guided approach to predict MHC-I restriction of T cell receptors for public antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597418. [PMID: 38895339 PMCID: PMC11185663 DOI: 10.1101/2024.06.04.597418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Peptides presented by class I major histocompatibility complex (MHC-I) proteins provide biomarkers for therapeutic targeting using T cell receptors (TCRs), TCR-mimicking antibodies (TMAs), or other engineered protein binders. Despite the extreme sequence diversity of the Human Leucocyte Antigen (HLA, the human MHC), a given TCR or TMA is restricted to recognize epitopic peptides in the context of a limited set of different HLA allotypes. Here, guided by our analysis of 96 TCR:pHLA complex structures in the Protein Data Bank (PDB), we identify TCR contact residues and classify 148 common HLA allotypes into T-cell cross-reactivity groups (T-CREGs) on the basis of their interaction surface features. Insights from our work have actionable value for resolving MHC-I restriction of TCRs, guiding therapeutic expansion of existing therapies, and informing the selection of peptide targets for forthcoming immunotherapy modalities.
Collapse
|
6
|
Lin L, Zou X, Nong W, Ge Y, Li F, Luo B, Zhang Q, Xie X. The potential value of cancer-testis antigens in ovarian cancer: Prognostic markers and targets for immunotherapy. Immun Inflamm Dis 2024; 12:e1284. [PMID: 38896069 PMCID: PMC11186301 DOI: 10.1002/iid3.1284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Tumor immunotherapy has become an important adjuvant therapy after surgery, radiotherapy, and chemotherapy. In recent years, the role of tumor-associated antigen (TAA) in tumor immunotherapy has become increasingly prominent. Cancer-testis antigen (CTA) is a kind of TAA that is highly restricted in a variety of tumors and can induce an immune response. AIMS This review article aimed to evaluate the role of CTA on the progression of ovarian cancer, its diagnostic efficacy, and the potential for immunotherapy. METHODS We analyzed publications and outlined a comprehensive of overview the regulatory mechanism, immunogenicity, clinical expression significance, tumorigenesis, and application prospects of CTA in ovarian cancer, with a particular focus on recent progress in CTA-based immunotherapy. RESULTS The expression of CTA affects the occurrence, development, and prognosis of ovarian cancer and is closely related to tumor immunity. CONCLUSION CTA can be used as a biomarker for the diagnosis and prognosis evaluation of ovarian cancer and is an ideal target for antitumor immunotherapy. These findings provide novel insights on CTA in the improvement of diagnosis and treatment for ovarian cancer. The successes, current challenges and future prospects were also discussed to portray its significant potential.
Collapse
Affiliation(s)
- Lina Lin
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Xiaoqiong Zou
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Weixia Nong
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Yingying Ge
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Feng Li
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Bin Luo
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
- Education Department of Guangxi Zhuang Autonomous RegionKey Laboratory of Basic Research on Regional Diseases (Guangxi Medical University)NanningGuangxiPeople's Republic of China
| | - Qingmei Zhang
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
- Education Department of Guangxi Zhuang Autonomous RegionKey Laboratory of Basic Research on Regional Diseases (Guangxi Medical University)NanningGuangxiPeople's Republic of China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
- Education Department of Guangxi Zhuang Autonomous RegionKey Laboratory of Basic Research on Regional Diseases (Guangxi Medical University)NanningGuangxiPeople's Republic of China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment of Regional High Frequency Tumor (Guangxi Medical University)NanningGuangxiPeople's Republic of China
| |
Collapse
|
7
|
Sotirov S, Dimitrov I. Tumor-Derived Antigenic Peptides as Potential Cancer Vaccines. Int J Mol Sci 2024; 25:4934. [PMID: 38732150 PMCID: PMC11084719 DOI: 10.3390/ijms25094934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Peptide antigens derived from tumors have been observed to elicit protective immune responses, categorized as either tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs). Subunit cancer vaccines incorporating these antigens have shown promise in inducing protective immune responses, leading to cancer prevention or eradication. Over recent years, peptide-based cancer vaccines have gained popularity as a treatment modality and are often combined with other forms of cancer therapy. Several clinical trials have explored the safety and efficacy of peptide-based cancer vaccines, with promising outcomes. Advancements in techniques such as whole-exome sequencing, next-generation sequencing, and in silico methods have facilitated the identification of antigens, making it increasingly feasible. Furthermore, the development of novel delivery methods and a deeper understanding of tumor immune evasion mechanisms have heightened the interest in these vaccines among researchers. This article provides an overview of novel insights regarding advancements in the field of peptide-based vaccines as a promising therapeutic avenue for cancer treatment. It summarizes existing computational methods for tumor neoantigen prediction, ongoing clinical trials involving peptide-based cancer vaccines, and recent studies on human vaccination experiments.
Collapse
Affiliation(s)
| | - Ivan Dimitrov
- Drug Design and Bioinformatics Lab, Faculty of Pharmacy, Medical University of Sofia, 2, Dunav Str., 1000 Sofia, Bulgaria;
| |
Collapse
|
8
|
Saleh RO, Ibrahim FM, Pallathadka H, Kaur I, Ahmad I, Ali SHJ, Redhee AH, Ghildiyal P, Jawad MA, Alsaadi SB. Nucleic acid vaccines-based therapy for triple-negative breast cancer: A new paradigm in tumor immunotherapy arena. Cell Biochem Funct 2024; 42:e3992. [PMID: 38551221 DOI: 10.1002/cbf.3992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Nucleic acid vaccines (NAVs) have the potential to be economical, safe, and efficacious. Furthermore, just the chosen antigen in the pathogen is the target of the immune responses brought on by NAVs. Triple-negative breast cancer (TNBC) treatment shows great promise for nucleic acid-based vaccines, such as DNA (as plasmids) and RNA (as messenger RNA [mRNA]). Moreover, cancer vaccines offer a compelling approach that can elicit targeted and long-lasting immune responses against tumor antigens. Bacterial plasmids that encode antigens and immunostimulatory molecules serve as the foundation for DNA vaccines. In the 1990s, plasmid DNA encoding the influenza A nucleoprotein triggered a protective and targeted cytotoxic T lymphocyte (CTL) response, marking the first instance of DNA vaccine-mediated immunity. Similarly, in vitro transcribed mRNA was first successfully used in animals in 1990. At that point, mice were given an injection of the gene encoding the mRNA sequence, and the researchers saw the production of a protein. We begin this review by summarizing our existing knowledge of NAVs. Next, we addressed NAV delivery, emphasizing the need to increase efficacy in TNBC.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Fatma M Ibrahim
- Community Health Nursing, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
- Geriatric Nursing, Mansoura University, Mansoura, Egypt
| | | | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, Iraq
| |
Collapse
|
9
|
Sathish G, Monavarshini LK, Sundaram K, Subramanian S, Kannayiram G. Immunotherapy for lung cancer. Pathol Res Pract 2024; 254:155104. [PMID: 38244436 DOI: 10.1016/j.prp.2024.155104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
Immune checkpoint blockers have transformed non-small-cell lung cancer treatment, but they can lead to autoimmune and inflammatory side effects, leading to the concurrent use of immunosuppressive treatments. In this analysis, we delve into the potential of antibodies checkpoint blockade, focusing on CTLA-4 inhibition using ipilimumab, as a groundbreaking cancer immunotherapy. We also concentrate on the role of biomarkers, particularly PD-L1 activity and mutation significance, in predicting the response to programmed cell death protein 1 blockage and the prevalence of side effects associated with immune-related side effects. In describing the patterns of cancer response to immunotherapy, we underline the limitations of response assessment criteria like RECIST and World Health Organization. We also stress the necessity of ongoing studies and clinical trials, standardized guidelines, and additional research to improve response assessment in the era of immunotherapy.
Collapse
Affiliation(s)
- Girshani Sathish
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Maduravoyal, Chennai 600095, India
| | - L K Monavarshini
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Maduravoyal, Chennai 600095, India
| | - Keerthi Sundaram
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Maduravoyal, Chennai 600095, India
| | - Sendilvelan Subramanian
- Deparment of Mechanical Engineering, Dr.MGR Educational and Research Institute, Maduravoyal, Chennai 600095, India
| | - Gomathi Kannayiram
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Maduravoyal, Chennai 600095, India.
| |
Collapse
|
10
|
Huang L, Xiong W, Cheng L, Li H. Bioinformatics-based analysis of programmed cell death pathway and key prognostic genes in gastric cancer: Implications for the development of therapeutics. J Gene Med 2024; 26:e3590. [PMID: 37670467 DOI: 10.1002/jgm.3590] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) represents a major global health burden as a result of its high incidence and poor prognosis. The present study examined the role of the programmed cell death (PCD) pathway and identified key genes influencing the prognosis of patients with GC. METHODS Bioinformatics analysis, machine learning techniques and survival analysis were systematically integrated to identify core prognostic genes from the The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) dataset. A prognostic model was then developed to stratify patients into high-risk and low-risk groups, and further validated in the GSE84437 dataset. The model also demonstrated clinical relevance with tumor staging and histopathology. Immune infiltration analysis and the potential benefits of immunotherapy for each risk group were assessed. Finally, subgroup analysis was performed based on the expression of three key prognostic genes. RESULTS Three core prognostic genes (CAV1, MMP9 and MAGEA3) were identified. The prognostic model could effectively differentiate patients into high-risk and low-risk groups, leading to significantly distinct survival outcomes. Increased immune cell infiltration was observed in the high-risk group, and better potential for immunotherapy outcomes was observed in the low-risk group. Pathways related to cancer progression, such as epithelial-mesenchymal transition and tumor necrosis factor-α signaling via nuclear factor-kappa B, were enriched in the high-risk group. By contrast, the low-risk group showed a number of pathways associated with maintenance of cell functionality and immune responses. The two groups differed in gene mutation patterns and drug sensitivities. Subgroup analysis based on the expression of the three key genes revealed two distinct clusters with distinct survival outcomes, tumor immune microenvironment characteristics and pathway enrichment. CONCLUSIONS The present study offers novel insights into the significance of PCD pathways and identifies key genes associated with the prognosis of patients with GC. This robust prognostic model, along with the delineation of distinct risk groups and molecular subtypes, provides valuable tools for risk stratification, treatment selection and personalized therapeutic interventions for GC.
Collapse
Affiliation(s)
- Lv Huang
- Department of Rehabilitation Medicine, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Wei Xiong
- Department of Rehabilitation Medicine, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Ling Cheng
- Department of Rehabilitation Medicine, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Haoguang Li
- School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Wang Y, Song W, Xu Q, Liu Y, Liu H, Guo R, Chiou CJ, Gao K, Jin B, Chen C, Li Z, Yan J, Yu J. Adjuvant DNA vaccine pNMM promotes enhanced specific immunity and anti-tumor effects. Hum Vaccin Immunother 2023; 19:2202127. [PMID: 37128699 PMCID: PMC10142307 DOI: 10.1080/21645515.2023.2202127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
DNA vaccines containing only antigenic components have limited efficacy and may fail to induce effective immune responses. Consequently, adjuvant molecules are often added to enhance immunogenicity. In this study, we generated a tumor vaccine using a plasmid encoding NMM (NY-ESO-1/MAGE-A3/MUC1) target antigens and immune-associated molecules. The products of the vaccine were analyzed in 293 T cells by western blotting, flow cytometry, and meso-scale discovery electrochemiluminescence. To assess the immunogenicity obtained, C57BL/6 mice were immunized using the DNA vaccine. The results revealed that following immunization, this DNA vaccine induced cellular immune responses in C57BL/6 mice, as evaluated by the release of IFN-γ, and we also detected increases in the percentages of nonspecific lymphocytes, as well as those of antigen-specific T cells. Furthermore, immunization with the pNMM vaccine was found to significantly inhibit tumor growth and prolonged the survival of mice with B16-NMM+-tumors. Our data revealed that pNMM DNA vaccines not only confer enhanced immunity against tumors but also provide a potentially novel approach for vaccine design. Moreover, our findings provide a basis for further studies on vaccine pharmacodynamics and pharmacology, and lay a solid foundation for clinical application.
Collapse
Affiliation(s)
| | | | | | - Yachao Liu
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Hezhong Liu
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Runzi Guo
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Chuang-Jiun Chiou
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Kun Gao
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Baofeng Jin
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Changfeng Chen
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Zhongming Li
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Jinqi Yan
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Jiyun Yu
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| |
Collapse
|
12
|
Kciuk M, Yahya EB, Mohamed Ibrahim Mohamed M, Rashid S, Iqbal MO, Kontek R, Abdulsamad MA, Allaq AA. Recent Advances in Molecular Mechanisms of Cancer Immunotherapy. Cancers (Basel) 2023; 15:2721. [PMID: 37345057 DOI: 10.3390/cancers15102721] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer is among the current leading causes of death worldwide, despite the novel advances that have been made toward its treatment, it is still considered a major public health concern. Considering both the serious impact of cancer on public health and the significant side effects and complications of conventional therapeutic options, the current strategies towards targeted cancer therapy must be enhanced to avoid undesired toxicity. Cancer immunotherapy has become preferable among researchers in recent years compared to conventional therapeutic options, such as chemotherapy, surgery, and radiotherapy. The understanding of how to control immune checkpoints, develop therapeutic cancer vaccines, genetically modify immune cells as well as enhance the activation of antitumor immune response led to the development of novel cancer treatments. In this review, we address recent advances in cancer immunotherapy molecular mechanisms. Different immunotherapeutic approaches are critically discussed, focusing on the challenges, potential risks, and prospects involving their use.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Muhanad A Abdulsamad
- Department of Molecular Biology, Faculty of Science, Sabratha University, Sabratha 00218, Libya
| | - Abdulmutalib A Allaq
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| |
Collapse
|
13
|
Kennedy SP, Treacy O, Allott EH, Eustace AJ, Lynam-Lennon N, Buckley N, Robson T. Precision Medicine and Novel Therapeutic Strategies in Detection and Treatment of Cancer: Highlights from the 58th IACR Annual Conference. Cancers (Basel) 2022; 14:6213. [PMID: 36551698 PMCID: PMC9777219 DOI: 10.3390/cancers14246213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Innovation in both detection and treatment of cancer is necessary for the constant improvement in therapeutic strategies, especially in patients with novel or resistant variants of cancer. Cancer mortality rates have declined by almost 30% since 1991, however, depending on the cancer type, acquired resistance can occur to varying degrees. To combat this, researchers are looking towards advancing our understanding of cancer biology, in order to inform early detection, and guide novel therapeutic approaches. Through combination of these approaches, it is believed that a more complete and thorough intervention on cancer can be achieved. Here, we will discuss the advances and approaches in both detection and treatment of cancer, presented at the 58th Irish Association for Cancer Research (IACR) annual conference.
Collapse
Affiliation(s)
- Sean P. Kennedy
- School of Biological, Health and Sports Sciences, Technological University Dublin, D07 ADY7 Dublin, Ireland
| | - Oliver Treacy
- Discipline of Pharmacology and Therapeutics, College of Medicine, Nursing and Health Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Emma H. Allott
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 HD53 Dublin, Ireland
| | - Alex J. Eustace
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58 Dublin, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity St James’s Cancer Institute, Trinity Translational Medicine Institute, St James’s Hospital, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Niamh Buckley
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons Ireland, D02 YN77 Dublin, Ireland
| |
Collapse
|
14
|
Tian Y, Hu D, Li Y, Yang L. Development of therapeutic vaccines for the treatment of diseases. MOLECULAR BIOMEDICINE 2022; 3:40. [PMID: 36477638 PMCID: PMC9729511 DOI: 10.1186/s43556-022-00098-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022] Open
Abstract
Vaccines are one of the most effective medical interventions to combat newly emerging and re-emerging diseases. Prophylactic vaccines against rabies, measles, etc., have excellent effectiveness in preventing viral infection and associated diseases. However, the host immune response is unable to inhibit virus replication or eradicate established diseases in most infected people. Therapeutic vaccines, expressing specific endogenous or exogenous antigens, mainly induce or boost cell-mediated immunity via provoking cytotoxic T cells or elicit humoral immunity via activating B cells to produce specific antibodies. The ultimate aim of a therapeutic vaccine is to reshape the host immunity for eradicating a disease and establishing lasting memory. Therefore, therapeutic vaccines have been developed for the treatment of some infectious diseases and chronic noncommunicable diseases. Various technological strategies have been implemented for the development of therapeutic vaccines, including molecular-based vaccines (peptide/protein, DNA and mRNA vaccines), vector-based vaccines (bacterial vector vaccines, viral vector vaccines and yeast-based vaccines) and cell-based vaccines (dendritic cell vaccines and genetically modified cell vaccines) as well as combinatorial approaches. This review mainly summarizes therapeutic vaccine-induced immunity and describes the development and status of multiple types of therapeutic vaccines against infectious diseases, such as those caused by HPV, HBV, HIV, HCV, and SARS-CoV-2, and chronic noncommunicable diseases, including cancer, hypertension, Alzheimer's disease, amyotrophic lateral sclerosis, diabetes, and dyslipidemia, that have been evaluated in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Yaomei Tian
- grid.412605.40000 0004 1798 1351College of Bioengineering, Sichuan University of Science & Engineering, No. 519, Huixing Road, Zigong, Sichuan 643000 The People’s Republic of China ,grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041 The People’s Republic of China
| | - Die Hu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041 The People’s Republic of China
| | - Yuhua Li
- grid.410749.f0000 0004 0577 6238Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Tiantan Xili, Dongcheng District, Beijing, 100050 The People’s Republic of China
| | - Li Yang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041 The People’s Republic of China
| |
Collapse
|
15
|
Padinharayil H, Alappat RR, Joy LM, Anilkumar KV, Wilson CM, George A, Valsala Gopalakrishnan A, Madhyastha H, Ramesh T, Sathiyamoorthi E, Lee J, Ganesan R. Advances in the Lung Cancer Immunotherapy Approaches. Vaccines (Basel) 2022; 10:1963. [PMID: 36423060 PMCID: PMC9693102 DOI: 10.3390/vaccines10111963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
Despite the progress in the comprehension of LC progression, risk, immunologic control, and treatment choices, it is still the primary cause of cancer-related death. LC cells possess a very low and heterogeneous antigenicity, which allows them to passively evade the anticancer defense of the immune system by educating cytotoxic lymphocytes (CTLs), tumor-infiltrating lymphocytes (TILs), regulatory T cells (Treg), immune checkpoint inhibitors (ICIs), and myeloid-derived suppressor cells (MDSCs). Though ICIs are an important candidate in first-line therapy, consolidation therapy, adjuvant therapy, and other combination therapies involving traditional therapies, the need for new predictive immunotherapy biomarkers remains. Furthermore, ICI-induced resistance after an initial response makes it vital to seek and exploit new targets to benefit greatly from immunotherapy. As ICIs, tumor mutation burden (TMB), and microsatellite instability (MSI) are not ideal LC predictive markers, a multi-parameter analysis of the immune system considering tumor, stroma, and beyond can be the future-oriented predictive marker. The optimal patient selection with a proper adjuvant agent in immunotherapy approaches needs to be still revised. Here, we summarize advances in LC immunotherapy approaches with their clinical and preclinical trials considering cancer models and vaccines and the potential of employing immunology to predict immunotherapy effectiveness in cancer patients and address the viewpoints on future directions. We conclude that the field of lung cancer therapeutics can benefit from the use of combination strategies but with comprehension of their limitations and improvements.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Liji Maria Joy
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Kavya V. Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Cornelia M. Wilson
- Life Sciences Industry Liaison Lab, School of Psychology and Life Sciences, Canterbury Christ Church University, Sandwich CT13 9ND, UK
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
| |
Collapse
|
16
|
Saha C, Bojdo J, Dunne NJ, Duary RK, Buckley N, McCarthy HO. Nucleic acid vaccination strategies for ovarian cancer. Front Bioeng Biotechnol 2022; 10:953887. [PMID: 36420446 PMCID: PMC9677957 DOI: 10.3389/fbioe.2022.953887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/26/2022] [Indexed: 09/19/2023] Open
Abstract
High grade serous carcinoma (HGSC) is one of the most lethal ovarian cancers that is characterised by asymptomatic tumour growth, insufficient knowledge of malignant cell origin and sub-optimal detection. HGSC has been recently shown to originate in the fallopian tube and not in the ovaries. Conventional treatments such as chemotherapy and surgery depend upon the stage of the disease and have resulted in higher rates of relapse. Hence, there is a need for alternative treatments. Differential antigen expression levels have been utilised for early detection of the cancer and could be employed in vaccination strategies using nucleic acids. In this review the different vaccination strategies in Ovarian cancer are discussed and reviewed. Nucleic acid vaccination strategies have been proven to produce a higher CD8+ CTL response alongside CD4+ T-cell response when compared to other vaccination strategies and thus provide a good arena for antitumour immune therapy. DNA and mRNA need to be delivered into the intracellular matrix. To overcome ineffective naked delivery of the nucleic acid cargo, a suitable delivery system is required. This review also considers the suitability of cell penetrating peptides as a tool for nucleic acid vaccine delivery in ovarian cancer.
Collapse
Affiliation(s)
- Chayanika Saha
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
| | - James Bojdo
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Raj Kumar Duary
- Department of Food Engineering and Technology, Tezpur University, Tezpur, India
| | - Niamh Buckley
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
- School of Chemical Sciences, Dublin City University, Dublin, Ireland
| |
Collapse
|
17
|
Wu J, Chen Y, Lin Y, Lan F, Cui Z. Cancer-testis antigen lactate dehydrogenase C4 as a novel biomarker of male infertility and cancer. Front Oncol 2022; 12:936767. [PMID: 36408133 PMCID: PMC9667869 DOI: 10.3389/fonc.2022.936767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/25/2022] [Indexed: 01/24/2023] Open
Abstract
A unique lactate dehydrogenase (LDH) isoenzyme designated as lactate dehydrogenase C4 (LDH-C4) is found in mammalian mature testis and spermatozoa. Thus far, LDH-C4 has been well studied with regard to its gene and amino acid sequences, structure, biological properties, and peptide synthesis. Accumulating evidence has shown that LDH-C4 is closely related to spermatic energy metabolism and plays a critical role in sperm motility, capacitation, and fertilization. Defects in the catalytic activity of LDH-C4 are key to pathophysiological abnormalities underlying infertility. LDH-C4 was originally thought to be present only in mature testis and spermatozoa; however, recent studies have implicated LDH-C4 as a cancer-testis antigen (CTA), owing to its aberrant transcription in a broad spectrum of human neoplasms. This review highlights the recent findings on LDH-C4 with particular emphasis on its role in male infertility and tumors.
Collapse
Affiliation(s)
- Jing Wu
- Laboratory of Biochemistry and Molecular Biology Research, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yan Chen
- Laboratory of Biochemistry and Molecular Biology Research, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yingying Lin
- Laboratory of Biochemistry and Molecular Biology Research, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,*Correspondence: Yingying Lin, ; Fenghua Lan, ; Zhaolei Cui,
| | - Fenghua Lan
- Fuzong Clinical College, Fujian Medical University, Fuzhou, China,*Correspondence: Yingying Lin, ; Fenghua Lan, ; Zhaolei Cui,
| | - Zhaolei Cui
- Laboratory of Biochemistry and Molecular Biology Research, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,*Correspondence: Yingying Lin, ; Fenghua Lan, ; Zhaolei Cui,
| |
Collapse
|
18
|
Malhotra J, Mehnert JM. Use of tumor cell lysate to develop peptide vaccine targeting cancer-testis antigens. Transl Lung Cancer Res 2022; 10:4049-4052. [PMID: 35004237 PMCID: PMC8674589 DOI: 10.21037/tlcr-21-762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Jyoti Malhotra
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Janice M Mehnert
- NYU Grossman School of Medicine and Perlmutter Cancer Center, New York, NY, USA
| |
Collapse
|
19
|
Rezaei T, Davoudian E, Khalili S, Amini M, Hejazi M, de la Guardia M, Mokhtarzadeh A. Strategies in DNA vaccine for melanoma cancer. Pigment Cell Melanoma Res 2021; 34:869-891. [PMID: 33089665 DOI: 10.1111/pcmr.12933] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/05/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022]
Abstract
According to reports of the international agency for cancer on research, although malignant melanoma shows less prevalence than nonmelanoma skin cancers, it is the major cause of skin cancer mortality. Given that, the production of effective vaccines to control melanoma is eminently required. In this regard, DNA-based vaccines have been extensively investigated for melanoma therapy. DNA vaccines are capable of inducing both cellular and humoral branches of immune responses. These vaccines possess some valuable advantages such as lack of severe side effects and high stability compared to conventional vaccination methods. The ongoing studies are focused on novel strategies in the development of DNA vaccines encoding artificial polyepitope immunogens based on the multiple melanoma antigens, the inclusion of molecular adjuvants to increase the level of immune responses, and the improvement of delivery approaches. In this review, we have outlined the recent advances in the field of melanoma DNA vaccines and described their implications in clinical trials as a strong strategy in the prevention and control of melanoma.
Collapse
Affiliation(s)
- Tayebeh Rezaei
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arak, Iran
| | - Elham Davoudian
- Department of Microbiology, School of Paramedical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hejazi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Craig AJ, Garcia-Lezana T, Ruiz de Galarreta M, Villacorta-Martin C, Kozlova EG, Martins-Filho SN, von Felden J, Ahsen ME, Bresnahan E, Hernandez-Meza G, Labgaa I, D’Avola D, Schwartz M, Llovet JM, Sia D, Thung S, Losic B, Lujambio A, Villanueva A. Transcriptomic characterization of cancer-testis antigens identifies MAGEA3 as a driver of tumor progression in hepatocellular carcinoma. PLoS Genet 2021; 17:e1009589. [PMID: 34166362 PMCID: PMC8224860 DOI: 10.1371/journal.pgen.1009589] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/07/2021] [Indexed: 01/15/2023] Open
Abstract
Cancer testis antigens (CTAs) are an extensive gene family with a unique expression pattern restricted to germ cells, but aberrantly reactivated in cancer tissues. Studies indicate that the expression (or re-expression) of CTAs within the MAGE-A family is common in hepatocellular carcinoma (HCC). However, no systematic characterization has yet been reported. The aim of this study is to perform a comprehensive profile of CTA de-regulation in HCC and experimentally evaluate the role of MAGEA3 as a driver of HCC progression. The transcriptomic analysis of 44 multi-regionally sampled HCCs from 12 patients identified high intra-tumor heterogeneity of CTAs. In addition, a subset of CTAs was significantly overexpressed in histologically poorly differentiated regions. Further analysis of CTAs in larger patient cohorts revealed high CTA expression related to worse overall survival and several other markers of poor prognosis. Functional analysis of MAGEA3 was performed in human HCC cell lines by gene silencing and in a genetic mouse model by overexpression of MAGEA3 in the liver. Knockdown of MAGEA3 decreased cell proliferation, colony formation and increased apoptosis. MAGEA3 overexpression was associated with more aggressive tumors in vivo. In conclusion MAGEA3 enhances tumor progression and should be considered as a novel therapeutic target in HCC.
Collapse
Affiliation(s)
- Amanda J. Craig
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Teresa Garcia-Lezana
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Marina Ruiz de Galarreta
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Oncological Sciences, The Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Precision Immunology Institute at Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Carlos Villacorta-Martin
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Edgar G. Kozlova
- Department of Genetics and Genomic Sciences, Cancer Immunology Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Sebastiao N. Martins-Filho
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Laboratory Medicine and Pathobiology, University Health Network, University of Toronto, Toronto, Canada
| | - Johann von Felden
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mehmet Eren Ahsen
- Department of Genetics and Genomic Sciences, Cancer Immunology Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Erin Bresnahan
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Oncological Sciences, The Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Precision Immunology Institute at Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Gabriela Hernandez-Meza
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Ismail Labgaa
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Visceral Surgery, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Delia D’Avola
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Liver Unit and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Clínica Universidad de Navarra, Pamplona, Spain
| | - Myron Schwartz
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Josep M. Llovet
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Translational Research Laboratory, BCLC Group, IDIBAPS, Hospital Clinic, Universitat de Barcelona, Catalonia and Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Daniela Sia
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Swan Thung
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Bojan Losic
- Department of Genetics and Genomic Sciences, Cancer Immunology Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Amaia Lujambio
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Oncological Sciences, The Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Precision Immunology Institute at Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Augusto Villanueva
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| |
Collapse
|
21
|
Guillén A, Stiborova K, Ressel L, Blackwood L, Finotello R, Amores-Fuster I, Jama N, Killick D. Immunohistochemical expression and prognostic significance of MAGE-A in canine oral malignant melanoma. Res Vet Sci 2021; 137:226-234. [PMID: 34023546 DOI: 10.1016/j.rvsc.2021.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/12/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022]
Abstract
Canine oral malignant melanoma (COMM) is considered a chemo-resistant cancer with a poor long-term prognosis. The melanoma-associated antigen A (MAGE-A) genes, which belong to the cancer-testis antigen family, are expressed in several different canine cancers but not in normal somatic tissue. This study evaluates the expression of MAGE-A proteins and their prognostic role in COMM. The study was conducted in 2 parts. During the first part, biopsies from oral malignant melanomas from 43 dogs were examined and immunohistochemically assessed for expression of MAGE-A proteins. For the second part, the association between MAGE-A expression and outcome was assessed using follow-up data which was available for 20 dogs whose primary tumour had been controlled with surgery +/- radiation therapy. MAGE-A proteins were expressed in 88.4% (38/43) of oral malignant melanomas and had a predominantly cytoplasmic expression pattern. Immunopositivity was observed in more than 50% of the cells in 21 dogs (48.8%). Immunostaining intensity was classified as weak, moderate and intense in 16 (37%), 16 (37%) and 6 (14%) cases, respectively. No staining for MAGE-A was seen in 5 dogs (11%). Dogs whose COMM had weak MAGE-A staining intensity had a median survival time (MST) of 320 days while this was 129 days for dogs with moderate and intense immunostaining (p = 0.161). Dogs whose COMM had >50% of positive staining neoplastic cells had an MST of 141 days and dogs with a staining <50% had an MST of 320 days (p = 0.164). MAGE-A expression did not influence survival in our cohort.
Collapse
Affiliation(s)
- Alexandra Guillén
- Department of Small Animal Clinical Science, Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Neston CH64 7TE, UK.
| | - Katerina Stiborova
- Department of Small Animal Clinical Science, Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Neston CH64 7TE, UK
| | - Lorenzo Ressel
- Department of Veterinary Anatomy Physiology and Pathology, Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Neston CH64 7TE, UK
| | - Laura Blackwood
- Department of Small Animal Clinical Science, Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Neston CH64 7TE, UK
| | - Riccardo Finotello
- Department of Small Animal Clinical Science, Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Neston CH64 7TE, UK
| | - Isabel Amores-Fuster
- Department of Small Animal Clinical Science, Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Neston CH64 7TE, UK
| | - Nimo Jama
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - David Killick
- Department of Small Animal Clinical Science, Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Neston CH64 7TE, UK
| |
Collapse
|
22
|
Khalvandi A, Abolhasani M, Madjd Z, Shekarabi M, Kourosh-Arami M, Mohsenzadegan M. Nuclear overexpression levels of MAGE-A3 predict poor prognosis in patients with prostate cancer. APMIS 2021; 129:291-303. [PMID: 33743542 DOI: 10.1111/apm.13132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/04/2021] [Indexed: 12/29/2022]
Abstract
Melanoma antigen gene A3 (MAGE-A3) is one of the most immunogenic cancer testis antigens and is common in various types of cancers. In this study, for the first time, we performed immunohistochemical analysis to evaluate the expression of MAGE-A3 in 153 prostate tissue samples including prostate cancer (PCa), benign prostatic hyperplasia (BPH), and high-grade prostatic intraepithelial neoplasia (HPIN). Increased both nuclear and cytoplasmic expression of MAGE-A3 was significantly found in PCa tissues compared with both HPIN and BPH tissues (nuclear expression at p = 0.011, and cytoplasmic expression at p = 0.034; for both comparisons p < 0.0001, respectively). A significant correlation was observed between higher nuclear and cytoplasmic expressions of MAGE-A3 with Gleason score (p < 0.0001 and 0.006, respectively). Increased expression of MAGE-A3 was associated with shorter biochemical recurrence-free survival (BCR-FS) and disease-free survival (DFS) of patients (p = 0.042 and = 0.0001, respectively). In multivariate analysis, nuclear expression of MAGE-A3 and Gleason score (≤7 vs >7) was independent predictors of the DFS (both; p = 0.019). Nuclear expression of MAGE-A3 was also significantly related to BCR-FS (p = 0.015). MAGE-A3 can be considered as a predictor for poor prognosis and an option for vaccine immunotherapy in patients with PCa.
Collapse
Affiliation(s)
- Azadeh Khalvandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shekarabi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Cancer Vaccines: Antigen Selection Strategy. Vaccines (Basel) 2021; 9:vaccines9020085. [PMID: 33503926 PMCID: PMC7911511 DOI: 10.3390/vaccines9020085] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Unlike traditional cancer therapies, cancer vaccines (CVs) harness a high specificity of the host’s immunity to kill tumor cells. CVs can train and bolster the patient’s immune system to recognize and eliminate malignant cells by enhancing immune cells’ identification of antigens expressed on cancer cells. Various features of antigens like immunogenicity and avidity influence the efficacy of CVs. Therefore, the choice and application of antigens play a critical role in establishing and developing CVs. Tumor-associated antigens (TAAs), a group of proteins expressed at elevated levels in tumor cells but lower levels in healthy normal cells, have been well-studied and developed in CVs. However, immunological tolerance, HLA restriction, and adverse events are major obstacles that threaten TAA-based CVs’ efficacy due to the “self-protein” characteristic of TAAs. As “abnormal proteins” that are completely absent from normal cells, tumor-specific antigens (TSAs) can trigger a robust immune response against tumor cells with high specificity and without going through central tolerance, contributing to cancer vaccine development feasibility. In this review, we focus on the unique features of TAAs and TSAs and their application in vaccines, summarizing their performance in preclinical and clinical trials.
Collapse
|
24
|
Das B, Senapati S. Immunological and functional aspects of MAGEA3 cancer/testis antigen. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 125:121-147. [PMID: 33931137 DOI: 10.1016/bs.apcsb.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Identification of ectopic gene activation in cancer cells serves as a basis for both gene signature-guided tumor targeting and unearthing of oncogenic mechanisms to expand the understanding of tumor biology/oncogenic process. Proteins expressed only in germ cells of testis and/or placenta (immunoprivileged organs) and in malignancies are called cancer testis antigens; they are antigenic because of the lack of antigen presentation by those specific cell types (germ cells), which limits the exposure of the proteins to the immune cells. Since the Cancer Testis Antigens (CTAs) are immunogenic and expressed in a wide variety of cancer types, CT antigens have become interesting target for immunotherapy against cancer. Among CT antigens MAGEA family is reported to have 12 members (MAGEA1 to MAGEA12). The current review highlights the studies on MAGEA3 which is a CT antigen and reported in almost all types of cancer. MAGEA3 is well tried for cancer immunotherapy. Recent advances on its functional and immunological aspect warranted much deliberation on effective therapeutic approach, thus making it a more interesting target for cancer therapy.
Collapse
Affiliation(s)
- Biswajit Das
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
25
|
Taherian-Esfahani Z, Dashti S. Cancer-testis antigens: An update on their roles in cancer immunotherapy. Hum Antibodies 2020; 27:171-183. [PMID: 30909205 DOI: 10.3233/hab-190366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Several recent studies have assessed suitability of tumor antigens for immunotherapy. Based on the restricted expression pattern in somatic tissues, cancer-testis antigens (CTAs) are possible candidates for cancer immunotherapy. These antigens are expressed in various tumors including gastrointestinal, breast, skin and hematologic malignancies. OBJECTIVES To find clinical trials utilizing CTAs in cancer patients. METHODS We searched PubMed, google scholar and specific websites that registers clinical trials. RESULTS A number of clinical trials have been designed to evaluate safety and efficacy of CTA-based treatments. The results of some of them have been promising. In the current literature search, we summarized the clinical trials of CTA-based therapies in cancer patients. CONCLUSIONS Based on the availability of different formulations of CTA-based vaccines, future researches should compare efficiency of these modalities.
Collapse
|
26
|
LINC01234/MicroRNA-31-5p/MAGEA3 Axis Mediates the Proliferation and Chemoresistance of Hepatocellular Carcinoma Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:168-178. [PMID: 31838274 PMCID: PMC6926330 DOI: 10.1016/j.omtn.2019.10.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignancy characterized by aggressiveness and poor prognosis; however, the molecular mechanism remains to be fully identified. Based on the analysis of The Cancer Genome Atlas (TCGA) database, melanoma-associated antigen A3 (MAGEA3) and long non-coding RNA (lncRNA) LINC01234 were upregulated in HCC and associated with poor prognosis of HCC. We investigated the mechanism of how MAGEA3 and LINC01234 influenced HCC cellular functions and cisplatin resistance. MAGEA3 depletion inhibited proliferation, invasion, and cisplatin resistance of HepG2 cells and Huh7 cells in vitro, reduced resistance-associated protein 2 (MRP2), MRP3, and multidrug resistance protein 1 (MDR-1) expression, and elevated ALB expression. RNA pull-down and RIP assays identified the binding of LINC01234 and MAGEA3 to microRNA-31-5p (miR-31-5p). LINC01234 could restore MAGEA3 expression by binding to miR-31-5p. Furthermore, we delivered plasmids into HepG2 cells and Huh7 cells to alter the expression of LINC01234 and miR-31-5p. When miR-31-5p was downregulated, the proliferation and invasion of HepG2 cells and Huh7 cells were enhanced and the cisplatin-induced apoptosis was inhibited, while LINC01234 knockdown could diminish the effects caused by miR-31-5p depletion. In summary, these data highlight the vital role of MAGEA3/LINC01234/miR-31-5p axis in the HCC progression and chemoresistance of HCC cells.
Collapse
|
27
|
Lischer C, Eberhardt M, Jaitly T, Schinzel C, Schaft N, Dörrie J, Schuler G, Vera J. Curatopes Melanoma: A Database of Predicted T-cell Epitopes from Overly Expressed Proteins in Metastatic Cutaneous Melanoma. Cancer Res 2019; 79:5452-5456. [PMID: 31416842 DOI: 10.1158/0008-5472.can-19-0296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/25/2019] [Accepted: 08/08/2019] [Indexed: 11/16/2022]
Abstract
Therapeutic anticancer vaccination has been adapted as an immunotherapy in several solid tumors. However, the selection of promising candidates from the total quantity of possible epitopes poses a challenge to clinicians and bioinformaticians alike, and very few epitopes have been tested in experimental or clinical settings to validate their efficacy. Here, we present a comprehensive database of predicted nonmutated peptide epitopes derived from genes that are overly expressed in a group of 32 melanoma biopsies compared with healthy tissues and that were filtered against expression in a curated list of survival-critical tissues. We hypothesize that these "self-tolerant" epitopes have two desirable properties: they do not depend on mutations, being immediately applicable to a large patient collective, and they potentially cause fewer autoimmune reactions. To support epitope selection, we provide an aggregated score of expected therapeutic efficiency as a shortlist mechanism. The database has applications in facilitating epitope selection and trial design and is freely accessible at https://www.curatopes.com. SIGNIFICANCE: A database is presented that predicts and scores antitumor T-cell epitopes, with a focus on tolerability and avoidance of severe autoimmunity, offering a supplementary epitope set for further investigation in immunotherapy.
Collapse
Affiliation(s)
- Christopher Lischer
- Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Eberhardt
- Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tanushree Jaitly
- Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cornelia Schinzel
- Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gerold Schuler
- Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julio Vera
- Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
28
|
Dashti S, Taherian-Esfahani Z. Cellular immune responses against cancer-germline genes in cancers. Hum Antibodies 2019; 28:57-64. [PMID: 31356200 DOI: 10.3233/hab-190392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cancer-germline genes are a class of genes that are normally expressed in testis, trophoblast and few somatic tissues but abnormally expressed in tumor tissues. Their expression signature indicates that they can induce cellular immune responses, thus being applied as targets in cancer immunotherapy. OBJECTIVES To obtain the data of cellular immune responses against cancer-germline genes in cancer. METHODS We searched PubMed/Medline with the key words cancer-germline antigen, cancer-testis antigen, CD4+ T cell, CD8+ T cell and cancer. RESULTS About 40 cancer-germline genes have been shown to induce T cell specific responses in cancer patients. Melanoma, lung and breast cancer are among the mostly assessed cancer types. Several epitopes have been identified which can be used in immunotherapy of cancer. CONCLUSION Cellular immune responses against cancer-germline genes are indicative of appropriateness of these genes as therapeutic targets.
Collapse
|
29
|
Wei X, Chen F, Xin K, Wang Q, Yu L, Liu B, Liu Q. Cancer-Testis Antigen Peptide Vaccine for Cancer Immunotherapy: Progress and Prospects. Transl Oncol 2019; 12:733-738. [PMID: 30877975 PMCID: PMC6423365 DOI: 10.1016/j.tranon.2019.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022] Open
Abstract
Cancer vaccines, including peptide-based vaccines, have been considered a key tool of effective and protective cancer immunotherapy because of their capacity to provide long-term clinical benefit for tumors. Among a large number of explorations of peptide antigen-based vaccines, cancer-testis antigens (CTAs), which are activated in cancers but silenced in normal tissues (except testis tissue), are considered as ideal targets. Currently, personalized treatment for cancer has become a trend due to its superior clinical efficacy. Thus, we envisage rational selection of CTA peptides to design "personalized" CTA peptide vaccines. This review summarizes the advances in CTA peptide vaccine research and discusses the feasibility of establishing "personalized" CTA peptide vaccines.
Collapse
Affiliation(s)
- Xiao Wei
- The Comprehensive Cancer Center of Drum Tower Hospital, Nanjing Medical University
| | - Fangjun Chen
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Kai Xin
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Qin Wang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Lixia Yu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Nanjing Medical University; The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Qin Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University.
| |
Collapse
|
30
|
Seifi-Alan M, Shamsi R, Ghafouri-Fard S. Application of cancer-testis antigens in immunotherapy of hepatocellular carcinoma. Immunotherapy 2019; 10:411-421. [PMID: 29473472 DOI: 10.2217/imt-2017-0154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a worldwide common malignancy with poor prognosis. Several studies have aimed at identification of appropriate biomarkers for early detection of this cancer. Cancer-testis antigens (CTAs) as a novel group of tumor-associated antigens have been demonstrated to be expressed in HCC samples as well as peripheral blood samples from these patients but not in the corresponding adjacent noncancerous samples. Such pattern of expression has provided them an opportunity to be used as immunotherapeutic targets. The detection of spontaneous immune responses against CTAs in HCC patients has prompted design of CTA-based immunotherapeutic protocols in these patients. The results of some clinical trials have been promising in a subset of patients.
Collapse
Affiliation(s)
- Mahnaz Seifi-Alan
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roshanak Shamsi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Xie K, Fu C, Wang S, Xu H, Liu S, Shao Y, Gong Z, Wu X, Xu B, Han J, Xu J, Xu P, Jia X, Wu J. Cancer-testis antigens in ovarian cancer: implication for biomarkers and therapeutic targets. J Ovarian Res 2019; 12:1. [PMID: 30609934 PMCID: PMC6318940 DOI: 10.1186/s13048-018-0475-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer remains the most fatal gynecologic malignancy worldwide due to delayed diagnosis as well as recurrence and drug resistance. Thus, the development of new tumor-related molecules with high sensitivity and specificity to replace or supplement existing tools is urgently needed. Cancer-testis antigens (CTAs) are exclusively expressed in normal testis tissues but abundantly found in several types of cancers, including ovarian cancer. Numerous novel CTAs have been identified by high-throughput sequencing techniques, and some aberrantly expressed CTAs are associated with ovarian cancer initiation, clinical outcomes and chemotherapy resistance. More importantly, CTAs are immunogenic and may be novel targets for antigen-specific immunotherapy in ovarian cancer. In this review, we attempt to characterize the expression of candidate CTAs in ovarian cancer and their clinical significance as biomarkers, activation mechanisms, function in malignant phenotypes and applications in immunotherapy.
Collapse
Affiliation(s)
- Kaipeng Xie
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China.
| | - Chenyang Fu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Suli Wang
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Hanzi Xu
- Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Siyu Liu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Yang Shao
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Zhen Gong
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Xiaoli Wu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, China
| | - Jing Han
- Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Juan Xu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Pengfei Xu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Xuemei Jia
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China.
| | - Jiangping Wu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China.
| |
Collapse
|
32
|
Astaneh M, Dashti S, Esfahani ZT. Humoral immune responses against cancer-testis antigens in human malignancies. Hum Antibodies 2019; 27:237-240. [PMID: 31006681 DOI: 10.3233/hab-190377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cancer-testis antigens (CTAs) are a class of cancer antigens with extensive expression in human cancers. Many researchers have detected antibody responses against these tumor antigens in serum of cancer patients. OBJECTIVES To evaluate the relevance of humoral immune responses against CTAs in clinical outcome of cancer patientsMETHODS: We searched PubMed/Medline with the key words cancer-testis antigen, antibody, humoral response and cancer. RESULTS Humoral immune responses against CTAs have been detected in several human malignancies including skin, breast, brain and ovarian cancers. Some studies have shown associations between the presence of these responses in patients and patients' survival. CONCLUSION Humoral immune responses against CTAs are putative biomarkers for cancer detection and follow-up.
Collapse
|
33
|
Yazarlou F, Afsharpad M, Oskooei VK, Nekoohesh L, Moharrami T, Samadaian N, Ghafouri-Fard S, Modarressi MH. Expression analysis of apoptosis-related genes in bladder cancer patients. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
Yazarlou F, Mowla SJ, Oskooei VK, Motevaseli E, Tooli LF, Afsharpad M, Nekoohesh L, Sanikhani NS, Ghafouri-Fard S, Modarressi MH. Urine exosome gene expression of cancer-testis antigens for prediction of bladder carcinoma. Cancer Manag Res 2018; 10:5373-5381. [PMID: 30464633 PMCID: PMC6225912 DOI: 10.2147/cmar.s180389] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Exosomes have been regarded as emerging tools for cancer diagnosis. Tumor-derived exosomes contain molecules that enhance cancer progression and affect immune responses. Material and methods In the present study, we evaluated expression of seven cancer-testis antigens (CTAs) that are regarded as putative biomarkers and immunotherapeutic targets along with NMP22 in urinary exosomes of bladder cancer patients, healthy subjects and patients affected with nonmalignant urinary disorders. Results Exosomal expression of MAGE-B4 was significantly higher in bladder cancer patients compared with normal samples (expression ratio=2.68, P=0.01). However, its expression was lower in bladder cancer patients compared with benign prostate hyperplasia (BPH) patients (expression ratio=0.17, P=0.01). Exosomal expression of NMP22 was significantly higher in bladder cancer patients compared with BPH patients (expression ratio=9.22, P=0.02). Expressions of other genes were not significantly different between bladder cancer patients and normal/nonmalignant samples. We found significant correlation between MAGE-A3 and MAGE-B4 expressions in exosomes obtained from controls. In addition, TSGA10 expression was correlated with expression of NMP22 in both cancer patients and controls. Conclusion The present study provides evidences for differential expression of CTAs in urinary exosomes of bladder cancer patients and urogenital disorders and warrants further studies for assessment of their significance in cancer diagnosis and immunotherapeutic approaches.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,
| | - Seyed Javad Mowla
- Faculty of Biological Sciences, Department of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Vahid Kholghi Oskooei
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Farhady Tooli
- Department of Microbiology, School of Biology, College of Science, Tehran University, Tehran, Iran
| | - Mandana Afsharpad
- Cancer Control Research Center, Cancer Control Foundation, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Nekoohesh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Sadat Sanikhani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
| | | |
Collapse
|
35
|
Baurain JF, Robert C, Mortier L, Neyns B, Grange F, Lebbe C, Ulloa-Montoya F, De Sousa Alves PM, Gillet M, Louahed J, Jarnjak S, Lehmann FF. Association of homogeneous inflamed gene signature with a better outcome in patients with metastatic melanoma treated with MAGE-A3 immunotherapeutic. ESMO Open 2018; 3:e000384. [PMID: 30094070 PMCID: PMC6069918 DOI: 10.1136/esmoopen-2018-000384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 01/20/2023] Open
Abstract
PURPOSE This study assessed clinical activity, safety and immunogenicity of MAGE-A3 immunotherapeutic in patients with MAGE-A3-positive metastatic melanoma. PATIENTS AND METHODS In this open-label, multicentre, uncontrolled, Phase II study (ClinicalTrials.gov NCT00896480), patients received ≤24 doses of MAGE-A3 immunotherapeutic (4-cycle schedule). At screening, two skin lesions were biopsied for MAGE-A3 expression analysis and presence/absence of a previously identified gene signature (GS) associated with favourable clinical outcome. Clinical activity was assessed in terms of clinical response, time-to-treatment failure (TTF) and progression-free survival (PFS). Adverse events (AEs) and serious AEs (SAEs) were recorded. MAGE-A3-specific immune responses were assessed. Clinical activity and immunogenicity were analysed overall and separately in patients with 2/2 (GS+/+), 1/2 (GS+/-) or 0/2 (GS-/-) biopsies presenting GS. RESULTS Of 49 screened patients, 32 had MAGE-A3-positive tumours; 24 (8 GS+/+, 8 GS+/-, 8 GS-/-) were treated. Two complete (GS+/+ patients) and two partial responses (one GS+/+, one GS+/-) were reported; of note, one of the two complete responses was unlikely to be related to the study treatment. Median TTF and PFS were 14.8 and 7.2 months for GS+/+, 2.3 and 2.8 months for GS+/- and 2.4 and 2.9 months for GS-/- patients. Three grade 3 AEs and two SAEs unrelated to treatment were reported. All patients were seropositive for MAGE-A3 antibodies on vaccination with no differences between the different GS profiles. MAGE-A3-specific CD4+ and CD8+ T cell immunogenicity was detected; 12/16 (75.0%) of patients presented CD4+ T cell responses. CONCLUSION Treatment with MAGE-A3 immunotherapeutic showed signs of clinical activity in GS+/+ patients. Treatment was well tolerated and immunogenic. No differences in immune responses according to GS status were observed. TRIAL REGISTRATION NUMBER NCT00896480 (Results).
Collapse
Affiliation(s)
- Jean-François Baurain
- Department of Medical Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Bruxelles, Belgium.
| | - Caroline Robert
- Gustave Roussy, Département de Médecine oncologique, Service de Dermatologie et Université Paris-Sud, Faculté de Médecine, Villejuif, France
| | | | - Bart Neyns
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Jette, Belgium
| | - Florent Grange
- Dermatology Department, Hôpital Robert Debré, Université de Reims Champagne-Ardenne, Reims, France
| | - Céleste Lebbe
- APHP Department of Dermatology and CIC , INSERM U976, University Paris 7 Diderot, Saint-Louis Hospital, Paris, France
| | | | | | | | | | | | | |
Collapse
|
36
|
MiR-206 Target Prediction in Breast Cancer Subtypes by Bioinformatics Tools. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2018. [DOI: 10.5812/ijcm.69554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Daud AI. Negative but not futile: MAGE-A3 immunotherapeutic for melanoma. Lancet Oncol 2018; 19:852-853. [PMID: 29908989 DOI: 10.1016/s1470-2045(18)30353-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Adil I Daud
- University of California, San Francisco, San Francisco 94113, CA, USA.
| |
Collapse
|
38
|
Faramarzi S, Ghafouri-Fard S. Melanoma: a prototype of cancer-testis antigen-expressing malignancies. Immunotherapy 2018; 9:1103-1113. [PMID: 29032737 DOI: 10.2217/imt-2017-0091] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the first malignancy in which expression and immunogenicity of cancer-testis antigens (CTAs) have been documented. Several CTAs have been shown to be expressed in melanoma samples especially those with metastatic potential. Many of them have been shown to exert oncogenic effects through modulation of essential pathways involved in melanoma. The crucial role of CTAs in the pathogenesis of melanoma, the high prevalence of expression of CTA panels in melanoma and the presence of spontaneous as well as inducible immune responses against CTAs in melanoma patients potentiate CTAs as immunotherapeutic targets. Numerous clinical trials are now ongoing to evaluate CTA-based immunotherapeutic effects in melanoma patient's survival. NY-ESO-1 and MAGE antigens have the most promising results up to now.
Collapse
Affiliation(s)
- Sepideh Faramarzi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Faramarzi S, Ghafouri-Fard S. Expression analysis of cancer-testis genes in prostate cancer reveals candidates for immunotherapy. Immunotherapy 2018; 9:1019-1034. [PMID: 28971747 DOI: 10.2217/imt-2017-0083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is a prevalent disorder among men with a heterogeneous etiological background. Several molecular events and signaling perturbations have been found in this disorder. Among genes whose expressions have been altered during the prostate cancer development are cancer-testis antigens (CTAs). This group of antigens has limited expression in the normal adult tissues but aberrant expression in cancers. This property provides them the possibility to be used as cancer biomarkers and immunotherapeutic targets. Several CTAs have been shown to be immunogenic in prostate cancer patients and some of the have entered clinical trials. Based on the preliminary data obtained from these trials, it is expected that CTA-based therapeutic options are beneficial for at least a subset of prostate cancer patients.
Collapse
Affiliation(s)
- Sepideh Faramarzi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Wang Y, Song X, Zheng Y, Liu Z, Li Y, Qian X, Pang X, Zhang Y, Yin Y. Cancer/testis Antigen MAGEA3 Interacts with STAT1 and Remodels the Tumor Microenvironment. Int J Med Sci 2018; 15:1702-1712. [PMID: 30588194 PMCID: PMC6299422 DOI: 10.7150/ijms.27643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
Cancer-testis antigen MAGEA3, being restrictedly expressed in testis and various kinds of tumors, has long been considered as an ideal target for immunotherapy. In this study, we report that MAGEA3 interacts with STAT1 and regulates the expression of tyrosine phosphorylated STAT1 (pY-STAT1) in tumor cells. We show that pY-STAT1 is significantly up-regulated when MAGEA3 is silenced by MAGEA3-specific siRNA. RNA sequencing analysis identified 274 STAT1-related genes to be significantly altered in expression level in MAGEA3 knockdown cells. Further analysis of these differentially expressed genes with GO enrichment and KEGG pathway revealed that they are mainly enriched in plasma membrane, extracellular region and MHC class I protein complex, and involved in the interferon signaling pathways, immune response, antigen presentation and cell chemotaxis. The differentially expressed genes associated with chemokines, antigen presentation and vasculogenic mimicry formation were validated by biological experiments. Matrigel matrix-based tube formation assay showed that silencing MAGEA3 in tumor cells impairs tumor vasculogenic mimicry formation. These data indicate that MAGEA3 expression in tumor cells is associated with immune cells infiltration into tumor microenvironment and anti-tumor immune responses, implying that it may play an important role in tumor immune escape. Our findings reveal the potential impact of MAGEA3 on the immunosuppressive tumor microenvironment and will provide promising strategies for improving the efficacy of MAGEA3-targeted immunotherapy.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiao Song
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yutian Zheng
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zeyu Liu
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yan Li
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiaoping Qian
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xuewen Pang
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yu Zhang
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yanhui Yin
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
41
|
Long non-coding RNA GHET1 Is Possibly Involved in the Pathogenesis of a Fraction of Breast Cancers. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.9920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Dianatpour A, Ghafouri-Fard S. Long Non Coding RNA Expression Intersecting Cancer and Spermatogenesis: A Systematic Review. Asian Pac J Cancer Prev 2017; 18:2601-2610. [PMID: 29072050 PMCID: PMC5747377 DOI: 10.22034/apjcp.2017.18.10.2601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Numerous similarities have been noted between gametogenic and tumorigenic programs in features
such as global hypomethylation, immune evasion, immortalization, meiosis induction, and migration. In addition, aberrant
expression of testis specific genes has been detected in various cancers which has led to categorization of these genes
as “cancer-testis genes”. Most of the examples identified in this category are protein encoding. However, recent studies
have revealed that non-coding RNAs, including long non coding RNAs (lncRNAs), may have essential regulatory
roles in telomere biology, chromatin dynamics, modulation of gene expression and genome structural organization.
All of these functions are implicated in both gametogenic and tumorigenic programs. Methods: In the present study,
we conducted a computerized search of the MEDLINE/PUBMED and Embase databases with the key words lncRNA,
gametogenesis, testis and cancer. Results: We found a number of lncRNAs with essential roles and notable expression
in both gametogenic and cancer tissues. Conclusions: Comparison between cancer tissues and gametogenic tissues
has shown that numerous lncRNAs are expressed in both, playing similar roles in processes modulated by signaling
pathways such as Wnt/β-catenin and PI3K/AKT/mTOR. Evaluation of expression patterns and functions of these
genes should pave the way to discovery of biomarkers for early detection, prognostic assessment and evaluation of
therapeutic responses in cancers.
Collapse
Affiliation(s)
- Ali Dianatpour
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran.
| | | |
Collapse
|
43
|
Li Y, Li J, Wang Y, Zhang Y, Chu J, Sun C, Fu Z, Huang Y, Zhang H, Yuan H, Yin Y. Roles of cancer/testis antigens (CTAs) in breast cancer. Cancer Lett 2017; 399:64-73. [PMID: 28274891 DOI: 10.1016/j.canlet.2017.02.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most common cancer diagnosed and is the second leading cause of cancer death among women in the US. For breast cancer, early diagnosis and efficient therapy remains a significant clinical challenge. Therefore, it is necessary to identify novel tumor associated molecules to target for biomarker development and immunotherapy. In this regard, cancer testis antigens (CTAs) have emerged as a potential clinical biomarker targeting immunotherapy for various malignancies due to the nature of its characteristics. CTAs are a group of tumor associated antigens (TAAs) that display normal expression in immune-privileged organs, but display aberrant expression in several types of cancers, particularly in advanced cancers. Investigation of CTAs for the clinical management of breast malignancies indicates that these TAAs have potential roles as novel biomarkers, with increased specificity and sensitivity compared to those currently used in the clinic. Moreover, TAAs could be therapeutic targets for cancer immunotherapy. This review is an attempt to address the promising CTAs in breast cancer and their possible clinical implications as biomarkers and immunotherapeutic targets with particular focus on challenges and future interventions.
Collapse
Affiliation(s)
- Yongfei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Yifan Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Yanhong Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Jiahui Chu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Chunxiao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China; Nanjing Maternity and Child Health Medical Institute, Affiliated Obstetrics and Gynecology Hospital, Nanjing Medical University, Nanjing 210004, China
| | - Yi Huang
- Department of Pharmacology and Chemical Biology, Magee Women's Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Hansheng Zhang
- School of Public Health, University of Maryland, College Park, MD 20742, USA
| | - Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China.
| |
Collapse
|
44
|
Abikhair M, Roudiani N, Mitsui H, Krueger JG, Pavlick A, Lee J, Therrien JP, Meehan SA, Felsen D, Carucci JA. MAGEA3 Expression in Cutaneous Squamous Cell Carcinoma Is Associated with Advanced Tumor Stage and Poor Prognosis. J Invest Dermatol 2017; 137:775-778. [DOI: 10.1016/j.jid.2016.10.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 10/13/2016] [Accepted: 10/27/2016] [Indexed: 01/10/2023]
|
45
|
Nimanong S, Ostroumov D, Wingerath J, Knocke S, Woller N, Gürlevik E, Falk CS, Manns MP, Kühnel F, Wirth TC. CD40 Signaling Drives Potent Cellular Immune Responses in Heterologous Cancer Vaccinations. Cancer Res 2017; 77:1918-1926. [PMID: 28202532 DOI: 10.1158/0008-5472.can-16-2089] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 12/20/2016] [Accepted: 01/14/2017] [Indexed: 11/16/2022]
Abstract
Antagonistic antibodies targeting coinhibitory receptors have revolutionized the treatment of cancer by inducing durable immune responses and clinical remissions in patients. In contrast, success of agonistic costimulatory antibodies has thus far been limited because of the insufficient induction of adaptive immune responses. Here, we describe a novel vaccination method consisting of a primary dendritic cell (DC) immunization followed by a composite vaccination, including an agonistic CD40 antibody, soluble antigen, and a TLR3 agonist, referred to as CoAT. In mice, DC/CoAT prime-boost vaccinations targeting either MHC class I or II neoantigens or tumor-associated antigens rendered up to 60% of the total T-cell population specific for a single tumor epitope. DC/CoAT induced durable and complete remissions of large subcutaneous tumors without detectable side effects. Thus, booster vaccinations with agonistic costimulatory antibodies represent an ideal means to amplify DC vaccinations and induce robust T-cell immune responses while providing maximum flexibility regarding the choice of antigen. Cancer Res; 77(8); 1918-26. ©2017 AACR.
Collapse
Affiliation(s)
- Supot Nimanong
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany
- Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Dmitrij Ostroumov
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany
| | - Jessica Wingerath
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany
| | - Sarah Knocke
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany
| | - Norman Woller
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany
| | - Engin Gürlevik
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School Hannover, Hannover, Germany
- DZIF, German Center for Infectious Diseases, Hannover/Braunschweig, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany
| | - Thomas C Wirth
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany.
| |
Collapse
|
46
|
GTL001 and bivalent CyaA-based therapeutic vaccine strategies against human papillomavirus and other tumor-associated antigens induce effector and memory T-cell responses that inhibit tumor growth. Vaccine 2017; 35:1509-1516. [PMID: 28196735 DOI: 10.1016/j.vaccine.2017.01.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/06/2017] [Accepted: 01/30/2017] [Indexed: 02/02/2023]
Abstract
GTL001 is a bivalent therapeutic vaccine containing human papillomavirus (HPV) 16 and HPV18 E7 proteins inserted in the Bordetella pertussis adenylate cyclase (CyaA) vector intended to prevent cervical cancer in HPV-infected women with normal cervical cytology or mild abnormalities. To be effective, therapeutic cervical cancer vaccines should induce both a T cell-mediated effector response against HPV-infected cells and a robust CD8+ T-cell memory response to prevent potential later infection. We examined the ability of GTL001 and related bivalent CyaA-based vaccines to induce, in parallel, effector and memory CD8+ T-cell responses to both vaccine antigens. Intradermal vaccination of C57BL/6 mice with GTL001 adjuvanted with a TLR3 agonist (polyinosinic-polycytidylic acid) or a TLR7 agonist (topical 5% imiquimod cream) induced strong HPV16 E7-specific T-cell responses capable of eradicating HPV16 E7-expressing tumors. Tumor-free mice also had antigen-specific memory T-cell responses that protected them against a subsequent challenge with HPV18 E7-expressing tumor cells. In addition, vaccination with bivalent vaccines containing CyaA-HPV16 E7 and CyaA fused to a tumor-associated antigen (melanoma-specific antigen A3, MAGEA3) or to a non-viral, non-tumor antigen (ovalbumin) eradicated HPV16 E7-expressing tumors and protected against a later challenge with MAGEA3- and ovalbumin-expressing tumor cells, respectively. These results show that CyaA-based bivalent vaccines such as GTL001 can induce both therapeutic and prophylactic anti-tumor T-cell responses. The CyaA platform can be adapted to different antigens and adjuvants, and therefore may be useful for developing other therapeutic vaccines.
Collapse
|
47
|
Taherian-Esfahani Z, Abedin-Do A, Nikpayam E, Tasharofi B, Ghahghaei Nezamabadi A, Ghafouri-Fard S. Cancer-Testis Antigens: A Novel Group of Tumor Biomarkers in Ovarian Cancers. IRANIAN JOURNAL OF CANCER PREVENTION 2016. [DOI: 10.17795/ijcp-4993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
邹 洪, 邬 红, 许 川. [Research Progress of Exosomes in Lung Cancer Diagnosis and Treatment]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:778-783. [PMID: 27866522 PMCID: PMC5999640 DOI: 10.3779/j.issn.1009-3419.2016.11.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/20/2016] [Accepted: 08/20/2016] [Indexed: 12/15/2022]
Abstract
As the leading cause of morbidity and cancer related-death worldwide, lung cancer has a serious threat to human health. Exosomes are nanoscale lipid membrane vesicles derived from multivesicles, which containing active biomolecules including proteins, lipids, nucleic acids and etc. Exosomes play important roles in lung cancer initiation and progression by promoting the formation of tumor microenvironment, enhancing tumor invasive and metastasis capability, leading to immunosuppression and resistance to chemoradiotherapy, and also have the application value in early diagnosis and treatment. This review summarizes the research progress of exosomes in tumor initiation and progression, and its roles in diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- 洪波 邹
- 646000 泸州,西南医科大学附属医院The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- 610083 成都,成都军区总医院肿瘤诊治中心Department of Oncology, Chengdu Military General Hospital, Chengdu 610083, China
| | - 红 邬
- 646000 泸州,西南医科大学附属医院The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- 530021 南宁,广西医科大学Guangxi Medical University, Nanning 530021, China
| | - 川 许
- 646000 泸州,西南医科大学附属医院The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- 610083 成都,成都军区总医院肿瘤诊治中心Department of Oncology, Chengdu Military General Hospital, Chengdu 610083, China
| |
Collapse
|
49
|
In Vitro Assessment of the Expression and T Cell Immunogenicity of the Tumor-Associated Antigens BORIS, MUC1, hTERT, MAGE-A3 and Sp17 in Uterine Cancer. Int J Mol Sci 2016; 17:ijms17091525. [PMID: 27618037 PMCID: PMC5037800 DOI: 10.3390/ijms17091525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/24/2016] [Accepted: 08/30/2016] [Indexed: 11/25/2022] Open
Abstract
Background: While immunotherapy moved to the forefront of treatment of various cancers, it remains underexplored for uterine cancer. This might be due to the small patient population with advanced endometrial carcinoma and uterine sarcoma. Data about immunotherapeutic targets are scarce in endometrial carcinoma and lacking in uterine sarcoma. Methods: Expression of five tumor-associated antigens (TAA) (BORIS, MUC1, hTERT, MAGE-A3 and Sp17) was validated in uterine tumor samples by immunohistochemistry (IHC) and/or quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). TAA immunogenicity was analyzed by determining spontaneous T cell responses towards overlapping peptide pools covering the whole TAA in patient blood. Results: At mRNA level, MAGE-A3 and Sp17 were overexpressed in a minority of patients and BORIS was moderately overexpressed (26% in endometrial carcinoma and 62% in uterine sarcoma). hTERT was overexpressed in the vast majority of tumors. On protein level, MUC1 was upregulated in primary, recurrent and metastatic EMCAR and in metastatic US tumors. hTERT protein was highly expressed in both normal and malignant tissue. Spontaneous TAA-specific T cell responses were detected in a minority of patients, except for hTERT to which T cell responses occurred more frequently. Conclusions: These data point to MUC1 and hTERT as most suitable targets based on expression levels and T cell immunogenicity for use in immunotherapeutic regimens.
Collapse
|
50
|
Pirlot C, Thiry M, Trussart C, Di Valentin E, Piette J, Habraken Y. Melanoma antigen-D2: A nucleolar protein undergoing delocalization during cell cycle and after cellular stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:581-95. [DOI: 10.1016/j.bbamcr.2015.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/25/2022]
|