1
|
Wu J, Gupta G, Buerki-Thurnherr T, Nowack B, Wick P. Bridging the gap: Innovative human-based in vitro approaches for nanomaterials hazard assessment and their role in safe and sustainable by design, risk assessment, and life cycle assessment. NANOIMPACT 2024; 36:100533. [PMID: 39454678 DOI: 10.1016/j.impact.2024.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The application of nanomaterials in industry and consumer products is growing exponentially, which has pressed the development and use of predictive human in vitro models in pre-clinical analysis to closely extrapolate potential toxic effects in vivo. The conventional cytotoxicity investigation of nanomaterials using cell lines from cancer origin and culturing them two-dimensionally in a monolayer without mimicking the proper pathophysiological microenvironment may affect a precise prediction of in vitro effects at in vivo level. In recent years, complex in vitro models (also belonging to the new approach methodologies, NAMs) have been established in unicellular to multicellular cultures either by using cell lines, primary cells or induced pluripotent stem cells (iPSCs), and reconstituted into relevant biological dimensions mimicking in vivo conditions. These advanced in vitro models retain physiologically reliant exposure scenarios particularly appropriate for oral, dermal, respiratory, and intravenous administration of nanomaterials, which have the potential to improve the in vivo predictability and lead to reliable outcomes. In this perspective, we discuss recent developments and breakthroughs in using advanced human in vitro models for hazard assessment of nanomaterials. We identified fit-for-purpose requirements and remaining challenges for the successful implementation of in vitro data into nanomaterials Safe and Sustainable by Design (SSbD), Risk Assessment (RA), and Life Cycle Assessment (LCA). By addressing the gap between in vitro data generation and the utility of in vitro data for nanomaterial safety assessments, a prerequisite for SSbD approaches, we outlined potential key areas for future development.
Collapse
Affiliation(s)
- Jimeng Wu
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Govind Gupta
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
2
|
Marzi A, Eder KM, Barroso Á, Kemper B, Schnekenburger J. Quantitative Phase Imaging as Sensitive Screening Method for Nanoparticle-Induced Cytotoxicity Assessment. Cells 2024; 13:697. [PMID: 38667312 PMCID: PMC11049110 DOI: 10.3390/cells13080697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The assessment of nanoparticle cytotoxicity is challenging due to the lack of customized and standardized guidelines for nanoparticle testing. Nanoparticles, with their unique properties, can interfere with biochemical test methods, so multiple tests are required to fully assess their cellular effects. For a more reliable and comprehensive assessment, it is therefore imperative to include methods in nanoparticle testing routines that are not affected by particles and allow for the efficient integration of additional molecular techniques into the workflow. Digital holographic microscopy (DHM), an interferometric variant of quantitative phase imaging (QPI), has been demonstrated as a promising method for the label-free assessment of the cytotoxic potential of nanoparticles. Due to minimal interactions with the sample, DHM allows for further downstream analyses. In this study, we investigated the capabilities of DHM in a multimodal approach to assess cytotoxicity by directly comparing DHM-detected effects on the same cell population with two downstream biochemical assays. Therefore, the dry mass increase in RAW 264.7 macrophages and NIH-3T3 fibroblast populations measured by quantitative DHM phase contrast after incubation with poly(alkyl cyanoacrylate) nanoparticles for 24 h was compared to the cytotoxic control digitonin, and cell culture medium control. Viability was then determined using a metabolic activity assay (WST-8). Moreover, to determine cell death, supernatants were analyzed for the release of the enzyme lactate dehydrogenase (LDH assay). In a comparative analysis, in which the average half-maximal effective concentration (EC50) of the nanocarriers on the cells was determined, DHM was more sensitive to the effect of the nanoparticles on the used cell lines compared to the biochemical assays.
Collapse
Affiliation(s)
- Anne Marzi
- Biomedical Technology Center, University of Muenster, Mendelstraße 17, D-48149 Muenster, Germany; (K.M.E.); (Á.B.); (B.K.)
| | | | | | | | | |
Collapse
|
3
|
Villuendas H, Vilches C, Quidant R. Standardization of In Vitro Studies for Plasmonic Photothermal therapy. ACS NANOSCIENCE AU 2023; 3:347-352. [PMID: 37868227 PMCID: PMC10588432 DOI: 10.1021/acsnanoscienceau.3c00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/24/2023]
Abstract
Lack of standardization is a systematic problem that impacts nanomedicine by challenging data comparison from different studies. Translation from preclinical to clinical stages indeed requires reproducible data that can be easily accessed and compared. In this work, we propose a series of experimental standards for in vitro plasmonic photothermal therapy (PPTT). This best practice guide covers the five main aspects of PPTT studies in vitro: nanomaterials, biological samples, pre-, during, and postirradiation characterization. We are confident that such standardization of experimental protocols and reported data will benefit the development of PPTT as a transversal therapy.
Collapse
Affiliation(s)
- Helena Villuendas
- Nanophotonic
Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Clara Vilches
- ICFO
− Institut de Ciències Fotòniques, the Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Romain Quidant
- Nanophotonic
Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
4
|
Hayrapetyan R, Lacour T, Luce A, Finot F, Chagnon MC, Séverin I. The cell transformation assay to assess potential carcinogenic properties of nanoparticles. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 791:108455. [PMID: 36933785 DOI: 10.1016/j.mrrev.2023.108455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/15/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
Nanoparticles (NPs) are present in many daily life products with particular physical-chemical properties (size, density, porosity, geometry …) giving very interesting technological properties. Their use is continuously growing and NPs represent a new challenge in terms of risk assessment, consumers being multi-exposed. Toxic effects have already been identified such as oxidative stress, genotoxicity, inflammatory effects, and immune reactions, some of which are leading to carcinogenesis. Cancer is a complex phenomenon implying multiple modes of action and key events, and prevention strategies in cancer include a proper assessment of the properties of NPs. Therefore, introduction of new agents like NPs into the market creates fresh regulatory challenges for an adequate safety evaluation and requires new tools. The Cell Transformation Assay (CTA) is an in vitro test able of highlighting key events of characteristic phases in the cancer process, initiation and promotion. This review presents the development of this test and its use with NPs. The article underlines also the critical issues to address for assessing NPs carcinogenic properties and approaches for improving its relevance.
Collapse
Affiliation(s)
- Ruzanna Hayrapetyan
- Nutrition Physiology and Toxicology Laboratory (NUTOX), INSERM U1231, Univ. Bourgogne Franche-Comté (UBFC) University of Burgundy, L'Institut Agro Dijon, 1 Esplanade Erasme, F-21000 Dijon, France
| | - Théo Lacour
- GenEvolutioN - SEQENS' Lab Porcheville - Bâtiment 1, 2-8 rue de Rouen-ZI de Limay-Porcheville, F-78440 Porcheville, France
| | - Annette Luce
- Nutrition Physiology and Toxicology Laboratory (NUTOX), INSERM U1231, Univ. Bourgogne Franche-Comté (UBFC) University of Burgundy, L'Institut Agro Dijon, 1 Esplanade Erasme, F-21000 Dijon, France
| | - Francis Finot
- GenEvolutioN - SEQENS' Lab Porcheville - Bâtiment 1, 2-8 rue de Rouen-ZI de Limay-Porcheville, F-78440 Porcheville, France
| | - Marie-Christine Chagnon
- Nutrition Physiology and Toxicology Laboratory (NUTOX), INSERM U1231, Univ. Bourgogne Franche-Comté (UBFC) University of Burgundy, L'Institut Agro Dijon, 1 Esplanade Erasme, F-21000 Dijon, France
| | - Isabelle Séverin
- Nutrition Physiology and Toxicology Laboratory (NUTOX), INSERM U1231, Univ. Bourgogne Franche-Comté (UBFC) University of Burgundy, L'Institut Agro Dijon, 1 Esplanade Erasme, F-21000 Dijon, France.
| |
Collapse
|
5
|
Villuendas H, Vilches C, Quidant R. Influence of Cell Type on the Efficacy of Plasmonic Photothermal Therapy. ACS NANOSCIENCE AU 2022; 2:494-502. [PMID: 37101851 PMCID: PMC10125312 DOI: 10.1021/acsnanoscienceau.2c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 04/28/2023]
Abstract
In plasmonic photothermal therapy (PPTT), illuminated gold nanoparticles are locally heated to produce selective damage in cells. While PPTT is expected to strongly depend on the cell line, available data are sparse and critical parameters remain unclear. To elucidate this pivotal aspect, we present a systematic study of diseased and nondiseased cells from different tissues to evaluate cytotoxicity, uptake of gold nanorods (AuNRs), and viability after PPTT. We identified differences in uptake and toxicity between cell types, linking AuNR concentrations to toxicity. Furthermore, the cell death mechanism is shown to depend on the intensity of the irradiated light and hence the temperature increase. Importantly, the data also underline the need to monitor cell death at different time points. Our work contributes to the definition of systematic protocols with appropriate controls to fully comprehend the effects of PPTT and build meaningful and reproducible data sets, key to translate PPTT to clinical settings.
Collapse
Affiliation(s)
- Helena Villuendas
- Nanophotonic
Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
- ICFO
− Institut de Ciències Fotòniques, the Barcelona
Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Clara Vilches
- ICFO
− Institut de Ciències Fotòniques, the Barcelona
Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Romain Quidant
- Nanophotonic
Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
- ICFO
− Institut de Ciències Fotòniques, the Barcelona
Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA
− Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
6
|
Antonio LC, Ribovski L, Pincela Lins PM, Zucolotto V. The amount of dextran in PLGA nanocarriers modulates protein corona and promotes cell membrane damage. J Mater Chem B 2022; 10:8282-8294. [PMID: 36155711 DOI: 10.1039/d2tb01296k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymeric nanocarriers (NCs) are efficient vehicles to prevent drug unspecific biodistribution and increase the drug amounts delivered to tumor tissues. However, some toxicological aspects of NCs still lack a comprehensive assessment, such as their effects on cellular processes that lead to toxicity. We evaluate the interaction of poly(lactic-co-glycolic acid) (PLGA) NCs prepared using dextran (Dex) and Pluronic®-F127 as stabilizing agents with myocardial cells (H9C2), breast adenocarcinoma cells (MCF-7) and macrophages (RAW 264.7) to address the effect of Dex in PLGA NC formulations. By an emulsion diffusion method, doxorubicin-loaded NCs were prepared with no Dex (PLGA-DOX), 1% (w/v) Dex (Dex1/PLGA-DOX) and 5% (w/v) Dex (Dex5/PLGA-DOX). Uptake analyses revealed a significant reduction in Dex5/PLGA-DOX NC uptake by H9C2 and MCF-7, as in the case of Dex1/PLGA-DOX NCs in the absence of in vitro protein corona, revealing an effect of dextran concentration on the formation of protein corona. RAW 264.7 cells presented a greater uptake of Dex5/PLGA-DOX NCs than the other NCs likely because of receptor mediated endocytosis, since C-type lectins like SIGN-R1, mannose receptors and scavenger receptor type 1 that are expressed in RAW 264.7 can mediate Dex uptake. Despite the lower uptake, Dex5/PLGA-DOX NCs promote the generation of reactive oxygen species and oxidative membrane damage in MCF-7 and H9C2 even though cellular metabolic activity assessed by MTT was comparable among all the NCs. Our results highlight the importance of an in-depth investigation of the NC-cell interaction considering additional mechanisms of damage apart from metabolic variations, as nanoparticle-induced damage is not limited to imbalance in metabolic processes, but also associated with other mechanisms, e.g., membrane and DNA damage.
Collapse
Affiliation(s)
- Luana Corsi Antonio
- University of São Paulo, Physics Institute of São Carlos, Nanomedicine and Nanotoxicology Group, CP 369, 13566-590, São Carlos, SP, Brazil
| | - Laís Ribovski
- University of São Paulo, Physics Institute of São Carlos, Nanomedicine and Nanotoxicology Group, CP 369, 13566-590, São Carlos, SP, Brazil.,University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands.
| | - Paula Maria Pincela Lins
- University of São Paulo, Physics Institute of São Carlos, Nanomedicine and Nanotoxicology Group, CP 369, 13566-590, São Carlos, SP, Brazil
| | - Valtencir Zucolotto
- University of São Paulo, Physics Institute of São Carlos, Nanomedicine and Nanotoxicology Group, CP 369, 13566-590, São Carlos, SP, Brazil
| |
Collapse
|
7
|
Lehner R, Zanoni I, Banuscher A, Costa AL, Rothen-Rutishauser B. Fate of engineered nanomaterials at the human epithelial lung tissue barrier in vitro after single and repeated exposures. FRONTIERS IN TOXICOLOGY 2022; 4:918633. [PMID: 36185318 PMCID: PMC9524228 DOI: 10.3389/ftox.2022.918633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The understanding of the engineered nanomaterials (NMs) potential interaction with tissue barriers is important to predict their accumulation in cells. Herein, the fate, e.g., cellular uptake/adsorption at the cell membrane and translocation, of NMs with different physico-chemical properties across an A549 lung epithelial tissue barrier, cultured on permeable transwell inserts, were evaluated. We assessed the fate of five different NMs, known to be partially soluble, bio-persistent passive and bio-persistent active. Single exposure measurements using 100 µg/ml were performed for barium sulfate (BaSO4), cerium dioxide (CeO2), titanium dioxide (TiO2), and zinc oxide (ZnO) NMs and non-nanosized crystalline silica (DQ12). Elemental distribution of the materials in different compartments was measured after 24 and 80 h, e.g., apical, apical wash, intracellular and basal, using inductively coupled plasma optical emission spectrometry. BaSO4, CeO2, and TiO2 were mainly detected in the apical and apical wash fraction, whereas for ZnO a significant fraction was detected in the basal compartment. For DQ12 the major fraction was found intracellularly. The content in the cellular fraction decreased from 24 to 80 h incubation for all materials. Repeated exposure measurements were performed exposing the cells on four subsequent days to 25 µg/ml. After 80 h BaSO4, CeO2, and TiO2 NMs were again mainly detected in the apical fraction, ZnO NMs in the apical and basal fraction, while for DQ12 a significant concentration was measured in the cell fraction. Interestingly the cellular fraction was in a similar range for both exposure scenarios with one exception, i.e., ZnO NMs, suggesting a potential different behavior for this material under single exposure and repeated exposure conditions. However, we observed for all the NMs, a decrease of the amount detected in the cellular fraction within time, indicating NMs loss by cell division, exocytosis and/or possible dissolution in lysosomes. Overall, the distribution of NMs in the compartments investigated depends on their composition, as for inert and stable NMs the major fraction was detected in the apical and apical wash fraction, whereas for partially soluble NMs apical and basal fractions were almost similar and DQ12 could mainly be found in the cellular fraction.
Collapse
Affiliation(s)
- Roman Lehner
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Ilaria Zanoni
- CNR-ISTEC-National Research Council of Italy, Institute of Science and Technology for Ceramics, Faenza, Ravenna, Italy
| | - Anne Banuscher
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Anna Luisa Costa
- CNR-ISTEC-National Research Council of Italy, Institute of Science and Technology for Ceramics, Faenza, Ravenna, Italy
| | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- *Correspondence: Barbara Rothen-Rutishauser,
| |
Collapse
|
8
|
Forest V. Experimental and Computational Nanotoxicology-Complementary Approaches for Nanomaterial Hazard Assessment. NANOMATERIALS 2022; 12:nano12081346. [PMID: 35458054 PMCID: PMC9031966 DOI: 10.3390/nano12081346] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/25/2022]
Abstract
The growing development and applications of nanomaterials lead to an increasing release of these materials in the environment. The adverse effects they may elicit on ecosystems or human health are not always fully characterized. Such potential toxicity must be carefully assessed with the underlying mechanisms elucidated. To that purpose, different approaches can be used. First, experimental toxicology consisting of conducting in vitro or in vivo experiments (including clinical studies) can be used to evaluate the nanomaterial hazard. It can rely on variable models (more or less complex), allowing the investigation of different biological endpoints. The respective advantages and limitations of in vitro and in vivo models are discussed as well as some issues associated with experimental nanotoxicology. Perspectives of future developments in the field are also proposed. Second, computational nanotoxicology, i.e., in silico approaches, can be used to predict nanomaterial toxicity. In this context, we describe the general principles, advantages, and limitations especially of quantitative structure–activity relationship (QSAR) models and grouping/read-across approaches. The aim of this review is to provide an overview of these different approaches based on examples and highlight their complementarity.
Collapse
Affiliation(s)
- Valérie Forest
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, Etablissement Français du Sang, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| |
Collapse
|
9
|
Vardakas P, Skaperda Z, Tekos F, Trompeta AF, Tsatsakis A, Charitidis CA, Kouretas D. An integrated approach for assessing the in vitro and in vivo redox-related effects of nanomaterials. ENVIRONMENTAL RESEARCH 2021; 197:111083. [PMID: 33775680 DOI: 10.1016/j.envres.2021.111083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Over the last few decades, nanotechnology has risen to the forefront of both the research and industrial interest, resulting in the manufacture and utilization of various nanomaterials, as well as in their integration into a wide range of fields. However, the consequent elevated exposure to such materials raises serious concerns regarding their effects on human health and safety. Existing scientific data indicate that the induction of oxidative stress, through the excessive generation of Reactive Oxygen Species (ROS), might be the principal mechanism of exerting their toxicity. Meanwhile, a number of nanomaterials exhibit antioxidant properties, either intrinsic or resulting from their functionalization with conventional antioxidants. Considering that their redox properties are implicated in the manifestation of their biological effects, we propose an integrated approach for the assessment of the redox-related activities of nanomaterials at three biological levels (in vitro-cell free systems, cell cultures, in vivo). Towards this direction, a battery of translational biomarkers is recommended, and a series of reliable protocols are presented in detail. The aim of the present approach is to acquire a better understanding with respect to the biological actions of nanomaterials in the interrelated fields of Redox Biology and Toxicology.
Collapse
Affiliation(s)
- Periklis Vardakas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece
| | - Zoi Skaperda
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece
| | - Aikaterini-Flora Trompeta
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 157 80, Athens, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Constantinos A Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 157 80, Athens, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece.
| |
Collapse
|
10
|
Erlichman JS, Leiter JC. Complexity of the Nano-Bio Interface and the Tortuous Path of Metal Oxides in Biological Systems. Antioxidants (Basel) 2021; 10:antiox10040547. [PMID: 33915992 PMCID: PMC8066112 DOI: 10.3390/antiox10040547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 01/12/2023] Open
Abstract
Metal oxide nanoparticles (NPs) have received a great deal of attention as potential theranostic agents. Despite extensive work on a wide variety of metal oxide NPs, few chemically active metal oxide NPs have received Food and Drug Administration (FDA) clearance. The clinical translation of metal oxide NP activity, which often looks so promising in preclinical studies, has not progressed as rapidly as one might expect. The lack of FDA approval for metal oxide NPs appears to be a consequence of the complex transformation of NP chemistry as any given NP passes through multiple extra- and intracellular environments and interacts with a variety of proteins and transport processes that may degrade or transform the chemical properties of the metal oxide NP. Moreover, the translational models frequently used to study these materials do not represent the final therapeutic environment well, and studies in reduced preparations have, all too frequently, predicted fundamentally different physico-chemical properties from the biological activity observed in intact organisms. Understanding the evolving pharmacology of metal oxide NPs as they interact with biological systems is critical to establish translational test systems that effectively predict future theranostic activity.
Collapse
Affiliation(s)
- Joseph S. Erlichman
- Department of Biology, St. Lawrence University, Canton, NY 13617, USA
- Correspondence: ; Tel.: +1-(315)-229-5639
| | - James C. Leiter
- White River Junction VA Medical Center, White River Junction, VT 05009, USA;
| |
Collapse
|
11
|
Zagórska-Dziok M, Bujak T, Ziemlewska A, Nizioł-Łukaszewska Z. Positive Effect of Cannabis sativa L. Herb Extracts on Skin Cells and Assessment of Cannabinoid-Based Hydrogels Properties. Molecules 2021; 26:802. [PMID: 33557174 PMCID: PMC7913911 DOI: 10.3390/molecules26040802] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 12/11/2022] Open
Abstract
The skin is an organ that is constantly exposed to many external factors that can affect its structure and function. Due to the presence of different cannabinoid receptors on many types of skin cells, cannabinoids can interact directly with them. Therefore, as part of this work, the impact of two types of Cannabis sativa L. herb extracts on keratinocytes and fibroblasts was assessed. The content of biologically active compounds such as phenols, flavonoids, chlorophylls and cannabinoids was evaluated. The antioxidant capacity of prepared extracts using the DPPH radical, H2DCFDA probe and measurement of superoxide dismutase activity was also assessed. The cytotoxicity of hemp extracts was determined using the Alamar Blue, Neutral Red and LDH assays. The ability of the extracts to inhibit the activity of matrix metalloproteinases, collagenase and elastase, was assessed. Preparations of model hydrogels were also prepared and their effect on transepidermal water loss and skin hydration was measured. The obtained results indicate that hemp extracts can be a valuable source of biologically active substances that reduce oxidative stress, inhibit skin aging processes and positively affect the viability of skin cells. The analysis also showed that hydrogels based on cannabis extracts have a positive effect on skin hydration.
Collapse
Affiliation(s)
- Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland; (T.B.); (A.Z.); (Z.N.-Ł.)
| | | | | | | |
Collapse
|
12
|
Zofia NŁ, Aleksandra Z, Tomasz B, Martyna ZD, Magdalena Z, Zofia HB, Tomasz W. Effect of Fermentation Time on Antioxidant and Anti-Ageing Properties of Green Coffee Kombucha Ferments. Molecules 2020; 25:E5394. [PMID: 33218080 PMCID: PMC7698870 DOI: 10.3390/molecules25225394] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 01/08/2023] Open
Abstract
Kombucha, also known as the Manchurian mushroom, is a symbiotic culture of bacteria and yeast, the so-called SCOBY. This paper presents a comprehensive evaluation of the ferments obtained from green coffee beans after different fermentation times with kombucha. Results for the ferments were compared to the green coffee extract that was not fermented. In this study, the antioxidant potential of obtained ferments was analyzed by assessing the scavenging of external and intracellular free radicals and the assessment of superoxide dismutase activity. Cytotoxicity of ferments on keratinocyte and fibroblast cell lines was assessed as well as anti-aging properties by determining their ability to inhibit the activity of collagenase and elastase enzymes. In addition, the composition of the obtained ferments and the extract was determined, as well as their influence on skin hydration and transepidermal water loss (TEWL) after application of samples on the skin. It has been shown that the fermentation time has a positive effect on the content of bioactive compounds and antioxidant properties. The highest values were recorded for the tested samples after 28 days of fermentation. After 14 days of the fermentation process, it was observed that the analyzed ferments were characterized by low cytotoxicity to keratinocytes and fibroblasts. On the other hand, the short fermentation time of 7 days had a negative effect on the properties of the analyzed ferments. The obtained results indicate that both green coffee extracts and ferments can be an innovative ingredient of cosmetic products.
Collapse
Affiliation(s)
- Nizioł-Łukaszewska Zofia
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland; (N.-Ł.Z.); (Z.A.); (Z.-D.M.)
| | - Ziemlewska Aleksandra
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland; (N.-Ł.Z.); (Z.A.); (Z.-D.M.)
| | - Bujak Tomasz
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland; (N.-Ł.Z.); (Z.A.); (Z.-D.M.)
| | - Zagórska-Dziok Martyna
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland; (N.-Ł.Z.); (Z.A.); (Z.-D.M.)
| | - Zarębska Magdalena
- ŁUKASIEWICZ Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetykow 9, 47-225 Kedzierzyn-Kozle, Poland; (Z.M.); (H.-B.Z.)
| | - Hordyjewicz-Baran Zofia
- ŁUKASIEWICZ Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetykow 9, 47-225 Kedzierzyn-Kozle, Poland; (Z.M.); (H.-B.Z.)
| | - Wasilewski Tomasz
- Department of Industrial Chemistry, University of Technology and Humanities in Radom, Chrobrego 27, 26-600 Radom, Poland;
- Research and Development Department, ONLYBIO.life Sp. z o.o., Wojska Polskiego 65, 85-825 Bydgoszcz, Poland
| |
Collapse
|
13
|
Giubilato E, Cazzagon V, Amorim MJB, Blosi M, Bouillard J, Bouwmeester H, Costa AL, Fadeel B, Fernandes TF, Fito C, Hauser M, Marcomini A, Nowack B, Pizzol L, Powell L, Prina-Mello A, Sarimveis H, Scott-Fordsmand JJ, Semenzin E, Stahlmecke B, Stone V, Vignes A, Wilkins T, Zabeo A, Tran L, Hristozov D. Risk Management Framework for Nano-Biomaterials Used in Medical Devices and Advanced Therapy Medicinal Products. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4532. [PMID: 33066064 PMCID: PMC7601697 DOI: 10.3390/ma13204532] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/25/2022]
Abstract
The convergence of nanotechnology and biotechnology has led to substantial advancements in nano-biomaterials (NBMs) used in medical devices (MD) and advanced therapy medicinal products (ATMP). However, there are concerns that applications of NBMs for medical diagnostics, therapeutics and regenerative medicine could also pose health and/or environmental risks since the current understanding of their safety is incomplete. A scientific strategy is therefore needed to assess all risks emerging along the life cycles of these products. To address this need, an overarching risk management framework (RMF) for NBMs used in MD and ATMP is presented in this paper, as a result of a collaborative effort of a team of experts within the EU Project BIORIMA and with relevant inputs from external stakeholders. The framework, in line with current regulatory requirements, is designed according to state-of-the-art approaches to risk assessment and management of both nanomaterials and biomaterials. The collection/generation of data for NBMs safety assessment is based on innovative integrated approaches to testing and assessment (IATA). The framework can support stakeholders (e.g., manufacturers, regulators, consultants) in systematically assessing not only patient safety but also occupational (including healthcare workers) and environmental risks along the life cycle of MD and ATMP. The outputs of the framework enable the user to identify suitable safe(r)-by-design alternatives and/or risk management measures and to compare the risks of NBMs to their (clinical) benefits, based on efficacy, quality and cost criteria, in order to inform robust risk management decision-making.
Collapse
Affiliation(s)
- Elisa Giubilato
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy; (E.G.); (V.C.); (A.M.); (E.S.)
| | - Virginia Cazzagon
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy; (E.G.); (V.C.); (A.M.); (E.S.)
| | - Mónica J. B. Amorim
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Magda Blosi
- Institute of Science and Technology for Ceramics, National Research Council of Italy (CNR-ISTEC), Via Granarolo 64, 48018 Faenza, Italy; (M.B.); (A.L.C.)
| | - Jacques Bouillard
- Institut National de l’Environnement industriel et des Risques, Parc Technologique ALATA, 60550 Verneuil-en-Halatte, France; (J.B.); (A.V.)
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, 6708 WE Wageningen, The Netherlands;
| | - Anna Luisa Costa
- Institute of Science and Technology for Ceramics, National Research Council of Italy (CNR-ISTEC), Via Granarolo 64, 48018 Faenza, Italy; (M.B.); (A.L.C.)
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Teresa F. Fernandes
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK;
| | - Carlos Fito
- Instituto Tecnologico del Embalaje, Transporte y Logistica, 46980 Paterna-Valencia, Spain;
| | - Marina Hauser
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; (M.H.); (B.N.)
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy; (E.G.); (V.C.); (A.M.); (E.S.)
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; (M.H.); (B.N.)
| | - Lisa Pizzol
- GreenDecision Srl, Via delle Industrie, 21/8, 30175 Venice, Italy; (L.P.); (A.Z.)
| | - Leagh Powell
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (L.P.); (V.S.)
| | - Adriele Prina-Mello
- Trinity Translational Medicine Institute, Trinity College, The University of Dublin, Dublin 8, Ireland;
| | - Haralambos Sarimveis
- School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | | | - Elena Semenzin
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy; (E.G.); (V.C.); (A.M.); (E.S.)
| | | | - Vicki Stone
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (L.P.); (V.S.)
| | - Alexis Vignes
- Institut National de l’Environnement industriel et des Risques, Parc Technologique ALATA, 60550 Verneuil-en-Halatte, France; (J.B.); (A.V.)
| | - Terry Wilkins
- Nanomanufacturing Institute, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK;
| | - Alex Zabeo
- GreenDecision Srl, Via delle Industrie, 21/8, 30175 Venice, Italy; (L.P.); (A.Z.)
| | - Lang Tran
- Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK;
| | - Danail Hristozov
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy; (E.G.); (V.C.); (A.M.); (E.S.)
| |
Collapse
|
14
|
Romeo D, Salieri B, Hischier R, Nowack B, Wick P. An integrated pathway based on in vitro data for the human hazard assessment of nanomaterials. ENVIRONMENT INTERNATIONAL 2020; 137:105505. [PMID: 32014789 DOI: 10.1016/j.envint.2020.105505] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/13/2019] [Accepted: 01/17/2020] [Indexed: 05/23/2023]
Abstract
In line with the 3R concept, nanotoxicology is shifting from a phenomenological to a mechanistic approach based on in vitro and in silico methods, with a consequent reduction in animal testing. Risk Assessment (RA) and Life Cycle Assessment (LCA) methodologies, which traditionally rely on in vivo toxicity studies, will not be able to keep up with the pace of development of new nanomaterials unless they adapt to use this new type of data. While tools and models are already available and show a great potential for future use in RA and LCA, currently none is able alone to quantitatively assess human hazards (i.e. calculate chronic NOAEL or ED50 values). By highlighting which models and approaches can be used in a quantitative way with the available knowledge and data, we propose an integrated pathway for the use of in vitro data in RA and LCA. Starting with the characterization of nanoparticles' properties, the pathway then investigates how to select relevant in vitro human data, and how to bridge in vitro dose-response relationships to in vivo effects. If verified, this approach would allow RA and LCA to stir up the development of nanotoxicology by giving indications about the data and quality requirements needed in risk methodologies.
Collapse
Affiliation(s)
- Daina Romeo
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| | - Beatrice Salieri
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| | - Roland Hischier
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
15
|
Imlimthan S, Correia A, Figueiredo P, Lintinen K, Balasubramanian V, Airaksinen AJ, Kostiainen MA, Santos HA, Sarparanta M. Systematic in vitro biocompatibility studies of multimodal cellulose nanocrystal and lignin nanoparticles. J Biomed Mater Res A 2019; 108:770-783. [PMID: 31794149 DOI: 10.1002/jbm.a.36856] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 01/09/2023]
Abstract
Natural biopolymer nanoparticles (NPs), including nanocrystalline cellulose (CNC) and lignin, have shown potential as scaffolds for targeted drug delivery systems due to their wide availability, cost-efficient preparation, and anticipated biocompatibility. As both CNC and lignin can potentially cause complications in cell viability assays because of their ability to scatter the emitted light and absorb the assay reagents, we investigated the response of bioluminescent (CellTiter-Glo®), colorimetric (MTT® and AlamarBlue®), and fluorometric (LIVE/DEAD®) assays for the determination of the biocompatibility of the multimodal CNC and lignin constructs in murine RAW 264.7 macrophages and 4T1 breast adenocarcinoma cell lines. Here, we have developed multimodal CNC and lignin NPs harboring the radiometal chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid and the fluorescent dye cyanine 5 for the investigation of nanomaterial biodistribution in vivo with nuclear and optical imaging, which were then used as the model CNC and lignin nanosystems in the cell viability assay comparison. CellTiter-Glo® based on the detection of ATP-dependent luminescence in viable cells revealed to be the best assay for both nanoconstructs for its robust linear response to increasing NP concentration and lack of interference from either of the NP types. Both multimodal CNC and lignin NPs displayed low cytotoxicity and favorable interactions with the cell lines, suggesting that they are good candidates for nanosystem development for targeted drug delivery in breast cancer and for theranostic applications. Our results provide useful guidance for cell viability assay compatibility for CNC and lignin NPs and facilitate the future translation of the materials for in vivo applications.
Collapse
Affiliation(s)
- Surachet Imlimthan
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki, Finland
| | - Alexandra Correia
- Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland
| | - Patrícia Figueiredo
- Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland
| | - Kalle Lintinen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Vimalkumar Balasubramanian
- Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland
| | - Anu J Airaksinen
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki, Finland
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Hélder A Santos
- Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, Helsinki, Finland
| | - Mirkka Sarparanta
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Jesus S, Schmutz M, Som C, Borchard G, Wick P, Borges O. Hazard Assessment of Polymeric Nanobiomaterials for Drug Delivery: What Can We Learn From Literature So Far. Front Bioeng Biotechnol 2019; 7:261. [PMID: 31709243 PMCID: PMC6819371 DOI: 10.3389/fbioe.2019.00261] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
The physicochemical properties of nanobiomaterials, such as their small size and high surface area ratio, make them attractive, novel drug-carriers, with increased cellular interaction and increased permeation through several biological barriers. However, these same properties hinder any extrapolation of knowledge from the toxicity of their raw material. Though, as suggested by the Safe-by-Design (SbD) concept, the hazard assessment should be the starting point for the formulation development. This may enable us to select the most promising candidates of polymeric nanobiomaterials for safe drug-delivery in an early phase of innovation. Nowadays the majority of reports on polymeric nanomaterials are focused in optimizing the nanocarrier features, such as size, physical stability and drug loading efficacy, and in performing preliminary cytocompatibility testing and proving effectiveness of the drug loaded formulation, using the most diverse cell lines. Toxicological studies exploring the biological effects of the polymeric nanomaterials, particularly regarding immune system interaction are often disregarded. The objective of this review is to illustrate what is known about the biological effects of polymeric nanomaterials and to see if trends in toxicity and general links between physicochemical properties of nanobiomaterials and their effects may be derived. For that, data on chitosan, polylactic acid (PLA), polyhydroxyalkanoate (PHA), poly(lactic-co-glycolic acid) (PLGA) and policaprolactone (PCL) nanomaterials will be evaluated regarding acute and repeated dose toxicity, inflammation, oxidative stress, genotoxicity, toxicity on reproduction and hemocompatibility. We further intend to identify the analytical and biological tests described in the literature used to assess polymeric nanomaterials toxicity, to evaluate and interpret the available results and to expose the obstacles and challenges related to the nanomaterial testing. At the present time, considering all the information collected, the hazard assessment and thus also the SbD of polymeric nanomaterials is still dependent on a case-by-case evaluation. The identified obstacles prevent the identification of toxicity trends and the generation of an assertive toxicity database. In the future, in vitro and in vivo harmonized toxicity studies using unloaded polymeric nanomaterials, extensively characterized regarding their intrinsic and extrinsic properties should allow to generate such database. Such a database would enable us to apply the SbD approach more efficiently.
Collapse
Affiliation(s)
- Sandra Jesus
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Mélanie Schmutz
- Laboratory for Technology and Society, Empa Swiss Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Claudia Som
- Laboratory for Technology and Society, Empa Swiss Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Peter Wick
- Laboratory for Particles-Biology Interactions, Empa Swiss Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Olga Borges
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
17
|
Gatto F, Bardi G. Metallic Nanoparticles: General Research Approaches to Immunological Characterization. NANOMATERIALS 2018; 8:nano8100753. [PMID: 30248990 PMCID: PMC6215296 DOI: 10.3390/nano8100753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022]
Abstract
Our immunity is guaranteed by a complex system that includes specialized cells and active molecules working in a spatially and temporally coordinated manner. Interaction of nanomaterials with the immune system and their potential immunotoxicity are key aspects for an exhaustive biological characterization. Several assays can be used to unravel the immunological features of nanoparticles, each one giving information on specific pathways leading to immune activation or immune suppression. Size, shape, and surface chemistry determine the surrounding corona, mainly formed by soluble proteins, hence, the biological identity of nanoparticles released in cell culture conditions or in a living organism. Here, we review the main laboratory characterization steps and immunological approaches that can be used to understand and predict the responses of the immune system to frequently utilized metallic or metal-containing nanoparticles, in view of their potential uses in diagnostics and selected therapeutic treatments.
Collapse
Affiliation(s)
- Francesca Gatto
- Istituto Italiano di Tecnologia, Nanobiointeractions & Nanodiagnostics, Via Morego 30, 16163 Genova, Italy.
| | - Giuseppe Bardi
- Istituto Italiano di Tecnologia, Nanobiointeractions & Nanodiagnostics, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
18
|
Sinis SI, Hatzoglou C, Gourgoulianis KI, Zarogiannis SG. Carbon Nanotubes and Other Engineered Nanoparticles Induced Pathophysiology on Mesothelial Cells and Mesothelial Membranes. Front Physiol 2018; 9:295. [PMID: 29651248 PMCID: PMC5884948 DOI: 10.3389/fphys.2018.00295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles have great potential for numerous applications due to their unique physicochemical properties. However, concerns have been raised that they may induce deleterious effects on biological systems. There is accumulating evidence that, like asbestos, inhaled nanomaterials of >5 μm and high aspect ratio (3:1), particularly rod-like carbon nanotubes, may inflict pleural disease including mesothelioma. Additionally, a recent set of case reports suggests that inhalation of polyacrylate/nanosilica could in part be associated with inflammation and fibrosis of the pleura of factory workers. However, the adverse outcomes of nanoparticle exposure to mesothelial tissues are still largely unexplored. In that context, the present review aims to provide an overview of the relevant pathophysiological implications involving toxicological studies describing effects of engineered nanoparticles on mesothelial cells and membranes. In vitro studies primarily emphasize on simulating cellular uptake and toxicity of nanotubes on benign or malignant cell lines. On the other hand, in vivo studies focus on illustrating endpoints of serosal pathology in rodent animal models. From a molecular aspect, some nanoparticle categories are shown to be cytotoxic and genotoxic after acute treatment, whereas chronic incubation may lead to malignant-like transformation. At an organism level, a number of fibrous shaped nanotubes are related with features of chronic inflammation and MWCNT-7 is the only type to consistently inflict mesothelioma.
Collapse
Affiliation(s)
- Sotirios I Sinis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.,Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.,Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
19
|
In vitro osteogenesis by intracellular uptake of strontium containing bioactive glass nanoparticles. Acta Biomater 2018; 66:67-80. [PMID: 29129790 DOI: 10.1016/j.actbio.2017.11.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/05/2017] [Accepted: 11/07/2017] [Indexed: 02/02/2023]
Abstract
Monodispersed strontium containing bioactive glass nanoparticles (Sr-BGNPs) with two compositions were synthesised, through a modified sol-gel Stöber process, wherein silica nanoparticles (SiO2-NPs) were formed prior to incorporation of calcium and strontium, with diameters of 90 ± 10 nm. The osteogenic response of a murine preosteoblast cell line, MC3T3-E1, was investigated in vitro for a nanoparticle concentration of 250 µg/mL with compositions of 87 mol% SiO2, 7 mol% CaO, 6 mol% SrO and 83 mol% SiO2, 3 mol% CaO, 14 mol% SrO. Dissolution studies in minimum essential media (α-MEM) at pH 7.4 and artificial lysosomal fluid (ALF) at pH 4.5 showed that the particles dissolved and that Sr2+ ions were released from Sr-BGNPs in both environments. Both particle compositions and their ionic dissolution products enhanced the alkaline phosphatase (ALP) activity of the cells and calcium deposition. Immunohistochemistry (IHC) staining of Col1a1, osteocalcin (OSC) and osteopontin (OSP) showed that these proteins were expressed in the MC3T3-E1 cells following three weeks of culture. In the basal condition, the late osteogenic differentiation markers, OSC and OSP, were more overtly expressed by cells cultured with Sr-BGNPs with 14 mol% SrO and their ionic release products than in the control condition. Col1a1 expression was only slightly enhanced in the basal condition, but was enhanced further by the osteogenic supplements. These data demonstrate that Sr-BGNPs accelerate mineralisation without osteogenic supplements. Sr-BGNPs were internalised into MC3T3-E1 cells by endocytosis and stimulated osteogenic differentiation of the pre-osteoblast cell line. Sr-BGNPs are likely to be beneficial for bone regeneration and the observed osteogenic effects of these particles can be attributed to their ionic release products. STATEMENT OF SIGNIFICANCE We report, for the first time, that monodispersed bioactive glass nanoparticles (∼90 nm) are internalised into preosteoblast cells by endocytosis but by unspecific mechanisms. The bioactive nanoparticles and their dissolution products (without the particles present) stimulated the expression of osteogenic markers from preosteoblast cells without the addition of other osteogenic supplements. Incorporating Sr into the bioactive glass nanoparticle composition, in addition to Ca, increased the total cation content (and therefore dissolution rate) of the nanoparticles, even though nominal total cation addition was constant, without changing size or morphology. Increasing Sr content in the nanoparticles and in their dissolution products enhanced osteogenesis in vitro. The particles therefore have great potential as an injectable therapeutic for bone regeneration, particularly in patients with osteoporosis, for which Sr is known to be therapeutic agent.
Collapse
|
20
|
Caroline Diana SM, Rekha M. Efficacy of vinyl imidazole grafted cationized pullulan and dextran as gene delivery vectors: A comparative study. Int J Biol Macromol 2017; 105:947-955. [DOI: 10.1016/j.ijbiomac.2017.07.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 07/01/2017] [Accepted: 07/18/2017] [Indexed: 01/06/2023]
|
21
|
Park MVDZ, Bleeker EAJ, Brand W, Cassee FR, van Elk M, Gosens I, de Jong WH, Meesters JAJ, Peijnenburg WJGM, Quik JTK, Vandebriel RJ, Sips AJAM. Considerations for Safe Innovation: The Case of Graphene. ACS NANO 2017; 11:9574-9593. [PMID: 28933820 DOI: 10.1021/acsnano.7b04120] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The terms "Safe innovation" and "Safe(r)-by-design" are currently popular in the field of nanotechnology. These terms are used to describe approaches that advocate the consideration of safety aspects already at an early stage of the innovation process of (nano)materials and nanoenabled products. Here, we investigate the possibilities of considering safety aspects during various stages of the innovation process of graphene, outlining what information is already available for assessing potential hazard, exposure, and risks. In addition, we recommend further steps to be taken by various stakeholders to promote the safe production and safe use of graphene.
Collapse
Affiliation(s)
- Margriet V D Z Park
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Eric A J Bleeker
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Walter Brand
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Flemming R Cassee
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Merel van Elk
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Ilse Gosens
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Wim H de Jong
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | | | | | - Joris T K Quik
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Rob J Vandebriel
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Adriënne J A M Sips
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
22
|
Vila L, Rubio L, Annangi B, García-Rodríguez A, Marcos R, Hernández A. Frozen dispersions of nanomaterials are a useful operational procedure in nanotoxicology. Nanotoxicology 2016; 11:31-40. [DOI: 10.1080/17435390.2016.1262918] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Laura Vila
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Rubio
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Balasubramanyam Annangi
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alba García-Rodríguez
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| |
Collapse
|
23
|
Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol In Vitro 2016; 38:179-192. [PMID: 27816503 DOI: 10.1016/j.tiv.2016.10.012] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/29/2016] [Accepted: 10/31/2016] [Indexed: 01/08/2023]
Abstract
Silver nanoparticles (AgNPs) have generated a great deal of interest in the research, consumer product, and medical product communities due to their antimicrobial and anti-biofouling properties. However, in addition to their antimicrobial action, concerns have been expressed about the potential adverse human health effects of AgNPs. In vitro cytotoxicity studies often are used to characterize the biological response to AgNPs and the results of these studies may be used to identify hazards associated with exposure to AgNPs. Various factors, such as nanomaterial size (diameter), surface area, surface charge, redox potential, surface functionalization, and composition play a role in the development of toxicity in in vitro test systems. In addition, the interference of AgNPs with in vitro cytotoxicity assays may result in false negative or false positive results in some in vitro biological tests. The goal of this review is to: 1) summarize the impact of physical-chemical parameters, including size, shape, surface chemistry and aggregate formation on the in vitro cytotoxic effects of AgNPs; and 2) explore the nature of AgNPs interference in in vitro cytotoxicity assays.
Collapse
|
24
|
Li Y, Doak SH, Yan J, Chen DH, Zhou M, Mittelstaedt RA, Chen Y, Li C, Chen T. Factors affecting the in vitro micronucleus assay for evaluation of nanomaterials. Mutagenesis 2016; 32:151-159. [PMID: 27567283 DOI: 10.1093/mutage/gew040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A number of in vitro methodologies have been used to assess the genotoxicity of different nanomaterials, including titanium dioxide nanoparticles (TiO2 NPs) and silver nanoparticles (AgNPs). The in vitro micronucleus assay is one of the most commonly used test methods for genotoxicity evaluation of nanomaterials. However, due to the novel features of nanomaterials, such as high adsorption capacity and fluorescence properties, there are unexpected interactions with experimental components and detection systems. In this study, we evaluate the interference by two nanoparticles, AgNPs and TiO2 NPs, with the in vitro micronucleus assay system and possible confounding factors affecting cytotoxicity and genotoxicity assessment of the nanomaterials including cell lines with different p53 status, nanoparticle coatings and fluorescence, cytochalasin B, fetal bovine serum in cell treatment medium and different measurement methodologies for detecting micronuclei. Our results showed that micronucleus induction by AgNPs was similar when evaluated using flow cytometry or microscope, whereas the induction by TiO2 NPs was different using the two methods due to TiO2's fluorescence interference with the cytometry equipment. Cells with the mutated p53 gene were more sensitive to micronucleus induction by AgNPs than the p53 wild-type cells. The presence of serum during treatment increased the toxicity of AgNPs. The coatings of nanoparticles played an important role in the genotoxicity of AgNPs. These collective data highlight the importance of considering the unique properties of nanoparticles in assessing their genotoxicity using the in vitro micronucleus assay.
Collapse
Affiliation(s)
- Yan Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR 72079, USA.,Covance Laboratories Inc. 671 S. Meridian Rd., Greenfield, IN 46140, USA
| | - Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR 72079, USA
| | - David H Chen
- Columbia College, Columbia University in the City of New York, 2960 Broadway, New York, NY 10027, USA and
| | - Min Zhou
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054, USA
| | - Roberta A Mittelstaedt
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR 72079, USA
| | - Ying Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR 72079, USA
| | - Chun Li
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR 72079, USA,
| |
Collapse
|
25
|
Giannakou C, Park MV, de Jong WH, van Loveren H, Vandebriel RJ, Geertsma RE. A comparison of immunotoxic effects of nanomedicinal products with regulatory immunotoxicity testing requirements. Int J Nanomedicine 2016; 11:2935-52. [PMID: 27382281 PMCID: PMC4922791 DOI: 10.2147/ijn.s102385] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nanomaterials (NMs) are attractive for biomedical and pharmaceutical applications because of their unique physicochemical and biological properties. A major application area of NMs is drug delivery. Many nanomedicinal products (NMPs) currently on the market or in clinical trials are most often based on liposomal products or polymer conjugates. NMPs can be designed to target specific tissues, eg, tumors. In virtually all cases, NMPs will eventually reach the immune system. It has been shown that most NMs end up in organs of the mononuclear phagocytic system, notably liver and spleen. Adverse immune effects, including allergy, hypersensitivity, and immunosuppression, have been reported after NMP administration. Interactions of NMPs with the immune system may therefore constitute important side effects. Currently, no regulatory documents are specifically dedicated to evaluate the immunotoxicity of NMs or NMPs. Their immunotoxicity assessment is performed based on existing guidelines for conventional substances or medicinal products. Due to the unique properties of NMPs when compared with conventional medicinal products, it is uncertain whether the currently prescribed set of tests provides sufficient information for an adequate evaluation of potential immunotoxicity of NMPs. The aim of this study was therefore, to compare the current regulatory immunotoxicity testing requirements with the accumulating knowledge on immunotoxic effects of NMPs in order to identify potential gaps in the safety assessment. This comparison showed that immunotoxic effects, such as complement activation-related pseudoallergy, myelosuppression, inflammasome activation, and hypersensitivity, are not readily detected by using current testing guidelines. Immunotoxicity of NMPs would be more accurately evaluated by an expanded testing strategy that is equipped to stratify applicable testing for the various types of NMPs.
Collapse
Affiliation(s)
- Christina Giannakou
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven; Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands
| | - Margriet Vdz Park
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven
| | - Wim H de Jong
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven
| | - Henk van Loveren
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven; Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands
| | - Rob J Vandebriel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven
| | - Robert E Geertsma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven
| |
Collapse
|
26
|
Panda KK, Achary VMM, Phaomie G, Sahu HK, Parinandi NL, Panda BB. Polyvinyl polypyrrolidone attenuates genotoxicity of silver nanoparticles synthesized via green route, tested in Lathyrus sativus L. root bioassay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 806:11-23. [PMID: 27476331 DOI: 10.1016/j.mrgentox.2016.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 01/10/2023]
Abstract
The silver nanoparticles (AgNPs) were synthesized extracellularly from silver nitrate (AgNO3) using kernel extract from ripe mango Mengifera indica L. under four different reaction conditions of the synthesis media such as the (i) absence of the reducing agent, trisodium citrate (AgNPI), (ii) presence of the reducing agent (AgNPII), (iii) presence of the cleansing agent, polyvinyl polypyrrolidone, PVPP (AgNPIII), and (iv) presence of the capping agent, polyvinyl pyrrolidone, PVP (AgNPIV). The synthesis of the AgNPs was monitored by UV-vis spectrophotometry. The AgNPs were characterised by the energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, and small-angle X-ray scattering. Functional groups on the AgNPs were established by the Fourier transform infrared spectroscopy. The AgNPs (AgNPI, AgNPII, AgNPIII and AgNPIV) were spherical in shape with the diameters and size distribution-widths of 14.0±5.4, 19.2±6.6, 18.8±6.6 and 44.6±13.2nm, respectively. Genotoxicity of the AgNPs at concentrations ranging from 1 to 100mgL(-1) was determined by the Lathyrus sativus L. root bioassay and several endpoint assays including the generation of reactive oxygen species and cell death, lipid peroxidation, mitotic index, chromosome aberrations (CA), micronucleus formation (MN), and DNA damage as determined by the Comet assay. The dose-dependent induction of genotoxicity of the silver ion (Ag(+)) and AgNPs was in the order Ag(+)>AgNPII>AgNPI>AgNPIV>AgNPIII that corresponded with their relative potencies of induction of DNA damage and oxidative stress. Furthermore, the findings underscored the CA and MN endpoint-based genotoxicity assay which demonstrated the genotoxicity of AgNPs at concentrations (≤10mgL(-1)) lower than that (≥10mgL(-1)) tested in the Comet assay. This study demonstrated the protective action of PVPP against the genotoxicity of AgNPIII which was independent of the size of the AgNPs in the L. sativus L. root bioassay system.
Collapse
Affiliation(s)
- Kamal K Panda
- Molecular Biology and Genomics Laboratory, Department of Botany, Berhampur University, Berhampur 760 007, India
| | - V Mohan M Achary
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Ganngam Phaomie
- Material Chemistry Laboratory, Department of Chemistry, Berhampur University, Berhampur 760007, Odisha, India
| | - Hrushi K Sahu
- Condensed Matter Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakum 603102, Tamil Nadu, India
| | - Narasimham L Parinandi
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Brahma B Panda
- Molecular Biology and Genomics Laboratory, Department of Botany, Berhampur University, Berhampur 760 007, India,.
| |
Collapse
|
27
|
Azhdarzadeh M, Saei AA, Sharifi S, Hajipour MJ, Alkilany AM, Sharifzadeh M, Ramazani F, Laurent S, Mashaghi A, Mahmoudi M. Nanotoxicology: advances and pitfalls in research methodology. Nanomedicine (Lond) 2015; 10:2931-52. [PMID: 26370561 DOI: 10.2217/nnm.15.130] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
As research progresses, nanoparticles (NPs) are becoming increasingly promising tools for medical diagnostics and therapeutics. Despite this rise, their potential risks to human health, together with environmental issues, has led to increasing concerns regarding their use. As such, a comprehensive understanding of the interactions that occur at the nano-bio interface is required in order to design safe, reliable and efficient NPs for biomedical applications. To this end, extensive studies have been dedicated to probing the factors that define various properties of the nano-bio interface. However, the literature remains unclear and contains conflicting reports on cytotoxicity and biological fates, even for seemingly identical NPs. This uncertainty reveals that we frequently fail to identify and control relevant parameters that unambiguously and reproducibly determine the toxicity of nanoparticles, both in vitro and in vivo. An effective understanding of the toxicological impact of NPs requires the consideration of relevant factors, including the temperature of the target tissue, plasma gradient, cell shape, interfacial effects and personalized protein corona. In this review, we discuss the factors that play a critical role in nano-bio interface processes and nanotoxicity. A proper combinatorial assessment of these factors substantially changes our insight into the cytotoxicity, distribution and biological fate of NPs.
Collapse
Affiliation(s)
- Morteza Azhdarzadeh
- Nanotechnology Research Center & Department of Pharmacology & Toxicology Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ata Saei
- Nanotechnology Research Center & Department of Pharmacology & Toxicology Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Shahriar Sharifi
- Department of Biomaterials Science & Technology, University of Twente, The Netherlands
| | - Mohammad J Hajipour
- Department of Medical Biotechnology, National Institute of Genetic Engineering & Biotechnology (NIGEB), Tehran, Iran
| | - Alaaldin M Alkilany
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mohammad Sharifzadeh
- Nanotechnology Research Center & Department of Pharmacology & Toxicology Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramazani
- Faculty of Medicine & Dentistry, University of Alberta, 116 St & 85 Ave, T6G 2R3, Edmonton, Canada
| | - Sophie Laurent
- Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, B-7000 Mons, Belgium
| | - Alireza Mashaghi
- Harvard Medical School, Harvard University, 25 Shattuck St, Boston, MA 02115, USA
| | - Morteza Mahmoudi
- Nanotechnology Research Center & Department of Pharmacology & Toxicology Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA.,Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
28
|
ZHOU HAN, MA XIAOFENG, LIU YONGZE, DONG LEI, LUO YI, ZHU GUANGJIE, QIAN XIAOYUN, CHEN JIE, LU LIN, WANG JUNGUO, GAO XIA. Linear polyethylenimine-plasmid DNA nanoparticles are ototoxic to the cultured sensory epithelium of neonatal mice. Mol Med Rep 2015; 11:4381-8. [DOI: 10.3892/mmr.2015.3306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 01/15/2015] [Indexed: 11/06/2022] Open
|
29
|
Tang S, Huang L, Shi Z, He W. Water-based synthesis of cationic hydrogel particles: effect of the reaction parameters and in vitro cytotoxicity study. J Mater Chem B 2015; 3:2842-2852. [DOI: 10.1039/c4tb01664e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Simple variation of reaction parameters can provide a library of cationic epoxy–amine hydrogel particles with a diverse collection of physical and chemical characteristics, temperature responsiveness, and cytocompatibility.
Collapse
Affiliation(s)
- Shuangcheng Tang
- Department of Materials Science and Engineering
- University of Tennessee
- Knoxville
- USA
| | - Lu Huang
- Department of Materials Science and Engineering
- University of Tennessee
- Knoxville
- USA
| | - Zengqian Shi
- Center for Renewable Carbon
- Department of Forestry
- Wildlife & Fisheries
- University of Tennessee
- Knoxville
| | - Wei He
- Department of Materials Science and Engineering
- University of Tennessee
- Knoxville
- USA
- Department of Mechanical
| |
Collapse
|
30
|
Goldman EB, Zak A, Tenne R, Kartvelishvily E, Levin-Zaidman S, Neumann Y, Stiubea-Cohen R, Palmon A, Hovav AH, Aframian DJ. Biocompatibility of tungsten disulfide inorganic nanotubes and fullerene-like nanoparticles with salivary gland cells. Tissue Eng Part A 2014; 21:1013-23. [PMID: 25366879 DOI: 10.1089/ten.tea.2014.0163] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Impaired salivary gland (SG) function leading to oral diseases is relatively common with no adequate solution. Previously, tissue engineering of SG had been proposed to overcome this morbidity, however, not yet clinically available. Multiwall inorganic (tungsten disulfide [WS2]) nanotubes (INT-WS2) and fullerene-like nanoparticles (IF-WS2) have many potential medical applications. A yet unexplored venue application is their interaction with SG, and therefore, our aim was to test the biocompatibility of INT/IF-WS2 with the A5 and rat submandibular cells (RSC) SG cells. The cells were cultured and subjected after 1 day to different concentrations of INT-WS2 and were compared to control groups. Growth curves, trypan blue viability test, and carboxyfluorescein succinimidyl ester (CFSE) proliferation assay were obtained. Furthermore, cells morphology and interaction with the nanoparticles were observed by light microscopy, scanning electron microscopy and transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy. The results showed no significant differences in growth curves, proliferation kinetics, and viability between the groups compared. Moreover, no alterations were observed in the cell morphology. Interestingly, TEM images indicated that the nanoparticles are uptaken by the cells and accumulate in cytoplasmic vesicles. These results suggest promising future medical applications for these nanoparticles.
Collapse
Affiliation(s)
- Elisheva B Goldman
- 1 Faculty of Dental Medicine, The Hebrew University of Jerusalem , Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Simkó M, Nosske D, Kreyling WG. Metrics, dose, and dose concept: the need for a proper dose concept in the risk assessment of nanoparticles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:4026-48. [PMID: 24736686 PMCID: PMC4025021 DOI: 10.3390/ijerph110404026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 01/17/2023]
Abstract
In order to calculate the dose for nanoparticles (NP), (i) relevant information about the dose metrics and (ii) a proper dose concept are crucial. Since the appropriate metrics for NP toxicity are yet to be elaborated, a general dose calculation model for nanomaterials is not available. Here we propose how to develop a dose assessment model for NP in analogy to the radiation protection dose calculation, introducing the so-called “deposited and the equivalent dose”. As a dose metric we propose the total deposited NP surface area (SA), which has been shown frequently to determine toxicological responses e.g. of lung tissue. The deposited NP dose is proportional to the total surface area of deposited NP per tissue mass, and takes into account primary and agglomerated NP. By using several weighting factors the equivalent dose additionally takes into account various physico-chemical properties of the NP which are influencing the biological responses. These weighting factors consider the specific surface area, the surface textures, the zeta-potential as a measure for surface charge, the particle morphology such as the shape and the length-to-diameter ratio (aspect ratio), the band gap energy levels of metal and metal oxide NP, and the particle dissolution rate. Furthermore, we discuss how these weighting factors influence the equivalent dose of the deposited NP.
Collapse
Affiliation(s)
- Myrtill Simkó
- Institute of Technology Assessment, Austrian Academy of Sciences, Strohgasse 45, Vienna 1030, Austria.
| | - Dietmar Nosske
- Department Radiation Protection and Health, Federal Office for Radiation Protection, Ingolstädter Landstr. 1, Oberschleißheim 85764, Germany.
| | - Wolfgang G Kreyling
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) Ingolstädter Landstr. 1, Neuherberg/Munich 85764, Germany.
| |
Collapse
|
32
|
Zimmer CC, Liu YX, Morgan JT, Yang G, Wang KH, Kennedy IM, Barakat AI, Liu GY. New approach to investigate the cytotoxicity of nanomaterials using single cell mechanics. J Phys Chem B 2014; 118:1246-55. [PMID: 24417356 PMCID: PMC3980960 DOI: 10.1021/jp410764f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Current in vitro methods to assess nanomaterial cytotoxicity involve various assays to monitor specific cellular dysfunction, such as metabolic imbalance or inflammation. Although high throughput, fast, and animal-free, these in vitro methods suffer from unreliability and lack of relevance to in vivo situations. New approaches, especially with the potential to reliably relate to in vivo studies directly, are in critical need. This work introduces a new approach, single cell mechanics, derived from atomic force microscopy-based single cell compression. The single cell based approach is intrinsically advantageous in terms of being able to directly correlate to in vivo investigations. Its reliability and potential to measure cytotoxicity is evaluated using known systems: zinc oxide (ZnO) and silicon dioxide (SiO2) nanoparticles (NP) on human aortic endothelial cells (HAECs). This investigation clearly indicates the reliability of single cell compression. For example, ZnO NPs cause significant changes in force vs relative deformation profiles, whereas SiO2 NPs do not. New insights into NPs-cell interactions pertaining to cytotoxicity are also revealed from this single cell mechanics approach, in addition to a qualitative cytotoxicity conclusion. The advantages and disadvantages of this approach are also compared with conventional cytotoxicity assays.
Collapse
Affiliation(s)
- Christopher C Zimmer
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Søs Poulsen S, Jacobsen NR, Labib S, Wu D, Husain M, Williams A, Bøgelund JP, Andersen O, Købler C, Mølhave K, Kyjovska ZO, Saber AT, Wallin H, Yauk CL, Vogel U, Halappanavar S. Transcriptomic analysis reveals novel mechanistic insight into murine biological responses to multi-walled carbon nanotubes in lungs and cultured lung epithelial cells. PLoS One 2013; 8:e80452. [PMID: 24260392 PMCID: PMC3834097 DOI: 10.1371/journal.pone.0080452] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/03/2013] [Indexed: 12/22/2022] Open
Abstract
There is great interest in substituting animal work with in vitro experimentation in human health risk assessment; however, there are only few comparisons of in vitro and in vivo biological responses to engineered nanomaterials. We used high-content genomics tools to compare in vivo pulmonary responses of multiwalled carbon nanotubes (MWCNT) to those in vitro in cultured lung epithelial cells (FE1) at the global transcriptomic level. Primary size, surface area and other properties of MWCNT- XNRI -7 (Mitsui7) were characterized using DLS, SEM and TEM. Mice were exposed via a single intratracheal instillation to 18, 54, or 162 μg of Mitsui7/mouse. FE1 cells were incubated with 12.5, 25 and 100 μg/ml of Mitsui7. Tissue and cell samples were collected at 24 hours post-exposure. DNA microarrays were employed to establish mechanistic differences and similarities between the two models. Microarray results were confirmed using gene-specific RT-qPCR. Bronchoalveolar lavage (BAL) fluid was assessed for indications of inflammation in vivo. A strong dose-dependent activation of acute phase and inflammation response was observed in mouse lungs reflective mainly of an inflammatory response as observed in BAL. In vitro, a wide variety of core cellular functions were affected including transcription, cell cycle, and cellular growth and proliferation. Oxidative stress, fibrosis and inflammation processes were altered in both models. Although there were similarities observed between the two models at the pathway-level, the specific genes altered under these pathways were different, suggesting that the underlying mechanisms of responses are different in cells in culture and the lung tissue. Our results suggest that careful consideration should be given in selecting relevant endpoints when substituting animal with in vitro testing.
Collapse
Affiliation(s)
- Sarah Søs Poulsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Science, Systems and Models, Roskilde University, Roskilde, Denmark
| | | | - Sarah Labib
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Dongmei Wu
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Mainul Husain
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Andrew Williams
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | - Ole Andersen
- Department of Science, Systems and Models, Roskilde University, Roskilde, Denmark
| | - Carsten Købler
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Kristian Mølhave
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Zdenka O. Kyjovska
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Anne T. Saber
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Håkan Wallin
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Carole L. Yauk
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sabina Halappanavar
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
34
|
Nymark P, Catalán J, Suhonen S, Järventaus H, Birkedal R, Clausen PA, Jensen KA, Vippola M, Savolainen K, Norppa H. Genotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in BEAS 2B cells. Toxicology 2013; 313:38-48. [DOI: 10.1016/j.tox.2012.09.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 09/28/2012] [Indexed: 01/10/2023]
|
35
|
Wu CY, Young L, Young D, Martel J, Young JD. Bions: a family of biomimetic mineralo-organic complexes derived from biological fluids. PLoS One 2013; 8:e75501. [PMID: 24086546 PMCID: PMC3783384 DOI: 10.1371/journal.pone.0075501] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/14/2013] [Indexed: 12/17/2022] Open
Abstract
Mineralo-organic nanoparticles form spontaneously in human body fluids when the concentrations of calcium and phosphate ions exceed saturation. We have shown previously that these mineralo-organic nanoparticles possess biomimetic properties and can reproduce the whole phenomenology of the so-called nanobacteria-mineralized entities initially described as the smallest microorganisms on earth. Here, we examine the possibility that various charged elements and ions may form mineral nanoparticles with similar properties in biological fluids. Remarkably, all the elements tested, including sodium, magnesium, aluminum, calcium, manganese, iron, cobalt, nickel, copper, zinc, strontium, and barium form mineralo-organic particles with bacteria-like morphologies and other complex shapes following precipitation with phosphate in body fluids. Upon formation, these mineralo-organic particles, which we term bions, invariably accumulate carbonate apatite during incubation in biological fluids; yet, the particles also incorporate additional elements and thus reflect the ionic milieu in which they form. Bions initially harbor an amorphous mineral phase that gradually converts to crystals in culture. Our results show that serum produces a dual inhibition-seeding effect on bion formation. Using a comprehensive proteomic analysis, we identify a wide range of proteins that bind to these mineral particles during incubation in medium containing serum. The two main binding proteins identified, albumin and fetuin-A, act as both inhibitors and seeders of bions in culture. Notably, bions possess several biomimetic properties, including the possibility to increase in size and number and to be sub-cultured in fresh culture medium. Based on these results, we propose that bions represent biological, mineralo-organic particles that may form in the body under both physiological and pathological homeostasis conditions. These mineralo-organic particles may be part of a physiological cycle that regulates the function, transport and disposal of elements and minerals in the human body.
Collapse
Affiliation(s)
- Cheng-Yeu Wu
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China
| | - Lena Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - David Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jan Martel
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China
| | - John D. Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York, United States of America
- Biochemical Engineering Research Center, Ming Chi University of Technology, Taishan, Taipei, Taiwan, Republic of China
| |
Collapse
|
36
|
|
37
|
Safety evaluation of engineered nanomaterials for health risk assessment: an experimental tiered testing approach using pristine and functionalized carbon nanotubes. ISRN TOXICOLOGY 2013; 2013:825427. [PMID: 23724301 PMCID: PMC3658371 DOI: 10.1155/2013/825427] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/20/2013] [Indexed: 02/01/2023]
Abstract
Increasing application of engineered nanomaterials within occupational, environmental, and consumer settings has raised the levels of public concern regarding possible adverse effects on human health. We applied a tiered testing strategy including (i) a first in vitro stage to investigate general toxicity endpoints, followed by (ii) a focused in vivo experiment. Cytotoxicity of laboratory-made functionalized multiwalled carbon nanotubes (CNTs) (i.e., MW-COOH and MW-NH2), compared to pristine MWCNTs, carbon black, and silica, has been assessed in human A549 pneumocytes by MTT assay and calcein/propidium iodide (PI) staining. Purity and physicochemical properties of the test nanomaterials were also determined. Subsequently, pulmonary toxic effects were assessed in rats, 16 days after MWCNTs i.t. administration (1 mg/kg b.w.), investigating lung histopathology and monitoring several markers of lung toxicity, inflammation, and fibrosis. In vitro data: calcein/PI test indicated no cell viability loss after all CNTs treatment; MTT assay showed false positive cytotoxic response, occurring not dose dependently at exceedingly low CNT concentrations (1 μg/mL). In vivo results demonstrated a general pulmonary toxicity coupled with inflammatory response, without overt signs of fibrosis and granuloma formation, irrespective of nanotube functionalization. This multitiered approach contributed to clarifying the CNT toxicity mechanisms improving the overall understanding of the possible adverse outcomes resulting from CNT exposure.
Collapse
|
38
|
Abstract
Quantitative structure activity relationship (QSAR) is the most frequently used modeling approach to explore the dependency of biological, toxicological, or other types of activities/properties of chemicals on their molecular features. In the past two decades, QSAR modeling has been used extensively in drug discovery process. However, the predictive models resulted from QSAR studies have limited use for chemical risk assessment, especially for animal and human toxicity evaluations, due to the low predictivity of new compounds. To develop enhanced toxicity models with independently validated external prediction power, novel modeling protocols were pursued by computational toxicologists based on rapidly increasing toxicity testing data in recent years. This chapter reviews the recent effort in our laboratory to incorporate the biological testing results as descriptors in the toxicity modeling process. This effort extended the concept of QSAR to quantitative structure in vitro-in vivo relationship (QSIIR). The QSIIR study examples provided in this chapter indicate that the QSIIR models that based on the hybrid (biological and chemical) descriptors are indeed superior to the conventional QSAR models that only based on chemical descriptors for several animal toxicity endpoints. We believe that the applications introduced in this review will be of interest and value to researchers working in the field of computational drug discovery and environmental chemical risk assessment.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Chemistry, The Rutgers Center for Computational and Integrative Biology, Rutgers University, 315 Penn St., Camden, NJ, 08102, USA.
| |
Collapse
|
39
|
Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential. Toxicology 2012; 313:15-23. [PMID: 23165187 DOI: 10.1016/j.tox.2012.11.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 11/24/2022]
Abstract
The potential (eco)toxicological hazard posed by engineered nanoparticles is a major scientific and societal concern since several industrial sectors (e.g. electronics, biomedicine, and cosmetics) are exploiting the innovative properties of nanostructures resulting in their large-scale production. Many consumer products contain nanomaterials and, given their complex life-cycle, it is essential to anticipate their (eco)toxicological properties in a fast and inexpensive way in order to mitigate adverse effects on human health and the environment. In this context, the application of the structure-toxicity paradigm to nanomaterials represents a promising approach. Indeed, according to this paradigm, it is possible to predict toxicological effects induced by chemicals on the basis of their structural similarity with chemicals for which toxicological endpoints have been previously measured. These structure-toxicity relationships can be quantitative or qualitative in nature and they can predict toxicological effects directly from the physicochemical properties of the entities (e.g. nanoparticles) of interest. Therefore, this approach can aid in prioritizing resources in toxicological investigations while reducing the ethical and monetary costs that are related to animal testing. The purpose of this review is to provide a summary of recent key advances in the field of QSAR modelling of nanomaterial toxicity, to identify the major gaps in research required to accelerate the use of quantitative structure-activity relationship (QSAR) methods, and to provide a roadmap for future research needed to achieve QSAR models useful for regulatory purposes.
Collapse
|
40
|
Mahmoudi M, Saeedi-Eslami SN, Shokrgozar MA, Azadmanesh K, Hassanlou M, Kalhor HR, Burtea C, Rothen-Rutishauser B, Laurent S, Sheibani S, Vali H. Cell "vision": complementary factor of protein corona in nanotoxicology. NANOSCALE 2012; 4:5461-8. [PMID: 22842341 DOI: 10.1039/c2nr31185b] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Engineered nanoparticles are increasingly being considered for use as biosensors, imaging agents and drug delivery vehicles. Their versatility in design and applications make them an attractive proposition for new biological and biomedical approaches. Despite the remarkable speed of development in nanoscience, relatively little is known about the interaction of nanoscale objects with living systems. In a biological fluid, proteins associate with nanoparticles, and the amount and the presentation of the proteins on their surface could lead to a different in vivo response than an uncoated particle. Here, in addition to protein adsorption, we are going to introduce concept of cell "vision", which would be recognized as another crucial factor that should be considered for the safe design of any type of nanoparticles that will be used in specific biomedical applications. The impact of exactly the same nanoparticles on various cells is significantly different and could not be assumed for other cells; the possible mechanisms that justify this cellular response relate to the numerous detoxification strategies that any particular cell can utilize in response to nanoparticles. The uptake and defence mechanism could be considerably different according to the cell type. Thus, what the cell "sees", when it is faced with nanoparticles, is most likely dependent on the cell type.
Collapse
Affiliation(s)
- Morteza Mahmoudi
- Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Valant J, Iavicoli I, Drobne D. The importance of a validated standard methodology to define in vitro toxicity of nano-TiO2. PROTOPLASMA 2012; 249:493-502. [PMID: 21932125 DOI: 10.1007/s00709-011-0320-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 09/09/2011] [Indexed: 05/31/2023]
Abstract
Several in vitro studies on the potential toxicity of nano-TiO(2) have been published and recent reviews have summarised them. Most of these reports concluded that physicochemical properties of nanoparticles are fundamental to their toxicological effects. No published review has compared in vitro tests with similar test strategies in terms of exposure duration and measured endpoints and for this reason we have attempted to assess the degree of homogeneity among in vitro tests and to assess if they afford reliable data to support risk assessment. The responses in different in vitro tests appeared to be unrelated to primary particle size. The biologically effective concentrations in different tests can be seen to differ by as many as two orders of magnitude and such differences could be explained either by different sensitivities of cell lines to nanoparticles or by effect of the test media. Our review indicates that even when the in vitro tests measure the same biomarkers with the same exposure duration and known primary particle sizes, it is insufficient merely to use such data for risk assessment. In the future, validated standard methods should include a limited number of cell lines and an obligatory selection of biomarkers. For routine purposes, it is important that assays can be easily conducted, false negatives and false positives are excluded and unbiased interpretation of results is provided. Papers published to date provide an understanding of the mode on nano-TiO(2) action but are not suitable for assessment and management of risk.
Collapse
Affiliation(s)
- Janez Valant
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia.
| | | | | |
Collapse
|
42
|
Valant J, Drobne D. Biological reactivity of TiO2 nanoparticles assessed by ex vivo testing. PROTOPLASMA 2012; 249:835-842. [PMID: 21688199 DOI: 10.1007/s00709-011-0298-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/01/2011] [Indexed: 05/30/2023]
Abstract
Isolated digestive gland epithelium from a model invertebrate organism was used in an ex vivo system to assess the potential of nanoparticulate TiO(2) to disrupt cell membranes. Primary particle size, surface area, concentration of particles in a suspension, and duration of exposure to TiO(2) particles were all found to have effects, which are observed at concentrations of nano-TiO(2) as low as 1 μg mL(-1). The test system employed here can be used as a fast screening tool to assess biological potential of nanoparticles with similar chemical composition but different size, concentration, or duration of exposure. We discuss the potential of ex vivo tests to avoid some of the limitations of conventional in vitro tests.
Collapse
Affiliation(s)
- Janez Valant
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia.
| | | |
Collapse
|
43
|
Shi JP, Ma CY, Xu B, Zhang HW, Yu CP. Effect of light on toxicity of nanosilver to Tetrahymena pyriformis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:1630-8. [PMID: 22553075 DOI: 10.1002/etc.1864] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/16/2012] [Accepted: 03/04/2012] [Indexed: 05/16/2023]
Abstract
More and more silver nanoparticles (AgNPs) have been released into the aquatic environment due to their widespread use, which may result in harmful effects on aquatic organisms. Environmental risk assessments of AgNPs on aquatic organisms in the natural environment (including light, sound, etc.) are indispensable. The aim of the present study was to elucidate the influence of light on the toxicity of AgNPs to Tetrahymena pyriformis. Silver nanoparticles, which were synthesized by reduction of silver nitrate with sodium borohydride, ranged in size from 5 to 20 nm with most particles approximately 10 nm. The authors performed AgNPs toxicity assays under a simulated natural environment with sunlight. The results indicated that the toxicity of AgNPs is higher than silver ion in the environment without light, but under the light condition, the toxicity of AgNPs decreased greatly. After 24 h of incubation with AgNPs, the inhibition ratio was 69.2 ± 7% in the dark and 35.5 ± 2% in the light, and the degree of inhibition was reduced by 33.7%. However, the effect of light on Ag(+) could be negligible. Further investigation indicated that the light irradiation could induce the growth of AgNPs and sequentially form bulk agglomeration. This decreased the surface area and the number of bare Ag atoms, resulting in a slower release rate and less Ag(+) ions released from AgNPs. At the same time, bulk agglomeration induced the deposition of part of the AgNPs to the aquatic bottom, which decreased the amount of AgNPs existing in water. All these phenomena led to the weakened toxicity of AgNPs in a light irradiation environment.
Collapse
Affiliation(s)
- Jun-Peng Shi
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | | | | | | | | |
Collapse
|
44
|
Han X, Corson N, Wade-Mercer P, Gelein R, Jiang J, Sahu M, Biswas P, Finkelstein JN, Elder A, Oberdörster G. Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology 2012; 297:1-9. [PMID: 22487507 DOI: 10.1016/j.tox.2012.03.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/23/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
There is an urgent need for in vitro screening assays to evaluate nanoparticle (NP) toxicity. However, the relevance of in vitro assays is still disputable. We administered doses of TiO(2) NPs of different sizes to alveolar epithelial cells in vitro and the same NPs by intratracheal instillation in rats in vivo to examine the correlation between in vitro and in vivo responses. The correlations were based on toxicity rankings of NPs after adopting NP surface area as dose metric, and response per unit surface area as response metric. Sizes of the anatase TiO(2) NPs ranged from 3 to 100 nm. A cell-free assay for measuring reactive oxygen species (ROS) was used, and lactate dehydrogenase (LDH) release, and protein oxidation induction were the in vitro cellular assays using a rat lung Type I epithelial cell line (R3/1) following 24 h incubation. The in vivo endpoint was number of PMNs in bronchoalveolar lavage fluid (BALF) after exposure of rats to the NPs via intratracheal instillation. Slope analyses of the dose response curves shows that the in vivo and in vitro responses were well correlated. We conclude that using the approach of steepest slope analysis offers a superior method to correlate in vitro with in vivo results of NP toxicity and for ranking their toxic potency.
Collapse
Affiliation(s)
- Xianglu Han
- Department of Environmental Medicine, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Effect of submicron and nano-iron oxide particles on pulmonary immunity in mice. Toxicol Lett 2012; 210:267-75. [PMID: 22343040 DOI: 10.1016/j.toxlet.2012.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 11/23/2022]
Abstract
Due to advances in nanotechnology, exposure to particle compounds in the workplace has become unavoidable. Assessment of their toxicity on health is an important occupational safety issue. This study was conducted in mice to investigate the toxicological effects of submicron and nano-iron oxide particles on pulmonary immune defences. In that purpose, we explored for the first time, inflammatory and immune responses in lung-associated lymph nodes. For each particle type, mice received either a single intratracheal instillation at different concentrations (250, 375, or 500μg/mouse) or four repeated instillations at 500μg/mouse each. Cytokine production, inflammatory and innate immune response, and humoral immune response were respectively assessed 1, 2, and 6 days after particle exposures. Both types of particles induced lung inflammation associated with increased cytokine productions in lymph node cell cultures and decreased pulmonary immune responses against sheep erythrocytes. Natural killer activity was not modified by particles. In comparison to single instillation, repeated instillations resulted in a reduction of inflammatory cell numbers in both bronchoalveolar lavages and pulmonary parenchyma. Moreover, the single instillation model demonstrated that, for a same dose, nano-iron oxide particles produced higher levels of inflammation and immunodepression than their submicron-sized counterparts.
Collapse
|
46
|
Cockburn A, Bradford R, Buck N, Constable A, Edwards G, Haber B, Hepburn P, Howlett J, Kampers F, Klein C, Radomski M, Stamm H, Wijnhoven S, Wildemann T. Approaches to the safety assessment of engineered nanomaterials (ENM) in food. Food Chem Toxicol 2011; 50:2224-42. [PMID: 22245376 DOI: 10.1016/j.fct.2011.12.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/24/2011] [Accepted: 12/19/2011] [Indexed: 01/12/2023]
Abstract
A systematic, tiered approach to assess the safety of engineered nanomaterials (ENMs) in foods is presented. The ENM is first compared to its non-nano form counterpart to determine if ENM-specific assessment is required. Of highest concern from a toxicological perspective are ENMs which have potential for systemic translocation, are insoluble or only partially soluble over time or are particulate and bio-persistent. Where ENM-specific assessment is triggered, Tier 1 screening considers the potential for translocation across biological barriers, cytotoxicity, generation of reactive oxygen species, inflammatory response, genotoxicity and general toxicity. In silico and in vitro studies, together with a sub-acute repeat-dose rodent study, could be considered for this phase. Tier 2 hazard characterisation is based on a sentinel 90-day rodent study with an extended range of endpoints, additional parameters being investigated case-by-case. Physicochemical characterisation should be performed in a range of food and biological matrices. A default assumption of 100% bioavailability of the ENM provides a 'worst case' exposure scenario, which could be refined as additional data become available. The safety testing strategy is considered applicable to variations in ENM size within the nanoscale and to new generations of ENM.
Collapse
Affiliation(s)
- Andrew Cockburn
- University of Newcastle, School of Biology, Ridley Building, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang S, Yu H, Wickliffe JK. Limitation of the MTT and XTT assays for measuring cell viability due to superoxide formation induced by nano-scale TiO2. Toxicol In Vitro 2011; 25:2147-51. [DOI: 10.1016/j.tiv.2011.07.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 12/22/2022]
|
48
|
Corradi S, Gonzalez L, Thomassen LCJ, Bilaničová D, Birkedal RK, Pojana G, Marcomini A, Jensen KA, Leyns L, Kirsch-Volders M. Influence of serum on in situ proliferation and genotoxicity in A549 human lung cells exposed to nanomaterials. Mutat Res 2011; 745:21-7. [PMID: 22027682 DOI: 10.1016/j.mrgentox.2011.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 11/15/2022]
Abstract
In this work in situ proliferation of A549 human lung epithelial carcinoma cells exposed to nanomaterials (NMs) was investigated in the presence or absence of 10% serum. NMs were selected based on chemical composition, size, charge and shape (Lys-SiO(2), TiO(2), ZnO, and multi walled carbon nanotubes, MWCNTs). Cells were treated with NMs and 4h later, cytochalasin-B was added. 36 h later, cell morphology was analyzed under a light microscope. Nuclearity was scored to determine the cytokinesis-block proliferation index (CBPI). CBPI, based on percentage of mono-, bi- and multi-nucleated cells, reflects cell toxicity and cell cycle delay. For some conditions depending on NM type (TiO(2) and MWCNT) and serum concentration (0%) scoring of CBPI was impossible due to overload of agglomerated NMs. Moreover, where heavy agglomeration occurs, micronuclei (MN) detection and scoring under microscope was prevented. A statistically significant decrease of CBPI was found for ZnO NM suspended in medium in the absence or presence of 10% serum at 25 μg/ml and 50 μg/ml, respectively and for Lys-SiO(2) NM at 3.5 μg/ml in 0% serum. Increase in MN frequency was observed in cells treated in 10% serum with 50 μg/ml ZnO. In 0% serum, the concentrations tested led to high toxicity. No genotoxic effects were induced by Lys-SiO(2) both in the absence or presence of serum up to 5 μg/ml. No toxicity was detected for TiO(2) and MWCNTs in both 10% and 0% serum, up to the dose of 250 μg/ml. Restoration of CBPI comparable to untreated control was shown for cells cultured without serum and treated with 5 μg/ml of Lys-SiO(2) NM pre-incubated in 100% serum. This observation confirms the protective effect of serum on Lys-SiO(2) NM cell toxicity. In conclusion in situ CBPI is proposed as a simple preliminary assay to assess both NMs induced cell toxicity and feasibility of MN scoring under microscope.
Collapse
Affiliation(s)
- Sara Corradi
- Laboratory of Cell Genetics, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Park MVDZ, Neigh AM, Vermeulen JP, de la Fonteyne LJJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011; 32:9810-7. [PMID: 21944826 DOI: 10.1016/j.biomaterials.2011.08.085] [Citation(s) in RCA: 641] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 08/31/2011] [Indexed: 12/23/2022]
Abstract
Silver nanoparticles are of interest to be used as antimicrobial agents in wound dressings and coatings in medical devices, but potential adverse effects have been reported in the literature. The most pronounced effect of silver nanoparticles and the role of particle size in determining these effects, also in comparison to silver ions, are largely unknown. Effects of silver nanoparticles of different sizes (20, 80, 113 nm) were compared in in vitro assays for cytotoxicity, inflammation, genotoxicity and developmental toxicity. Silver nanoparticles induced effects in all endpoints studied, but effects on cellular metabolic activity and membrane damage were most pronounced. In all toxicity endpoints studied, silver nanoparticles of 20 nm were more toxic than the larger nanoparticles. In L929 fibroblasts, but not in RAW 264.7 macrophages, 20 nm silver nanoparticles were more cytotoxic than silver ions. Collectively, these results indicate that effects of silver nanoparticles on different toxic endpoints may be the consequence of their ability to inflict cell damage. In addition, the potency of silver in the form of nanoparticles to induce cell damage compared to silver ions is cell type and size-dependent.
Collapse
Affiliation(s)
- Margriet V D Z Park
- Department of Toxicogenomics, Maastricht University, 6200 MD Maastricht, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kong B, Seog JH, Graham LM, Lee SB. Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine (Lond) 2011; 6:929-41. [PMID: 21793681 PMCID: PMC3196306 DOI: 10.2217/nnm.11.77] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Engineered nanoparticles are one of the leading nanomaterials currently under investigation due to their applicability in various fields, including drug and gene delivery, biosensors, cancer treatment and diagnostic tools. Moreover, the number of commercial products containing nanoparticles released on the market is rapidly increasing. Nanoparticles are already widely distributed in air, cosmetics, medicines and even in food. Therefore, the unintended adverse effect of nanoparticle exposure is a growing concern both academically and socially. In this context, the toxicity of nanoparticles has been extensively studied; however, several challenges are encountered due to the lack of standardized protocols. In order to improve the experimental conditions of nanoparticle toxicity studies, serious consideration is critical to obtain reliable and realistic data. The cell type must be selected considering the introduction route and target organ of the nanoparticle. In addition, the nanoparticle dose must reflect the realistic concentration of nanoparticles and must be loaded as a well-dispersed form to observe the accurate size- and shape-dependent effect. In deciding the cytotoxicity assay method, it is important to choose the appropriate method that could measure the toxicity of interest without the false-negative or -positive misinterpretation of the toxicity result.
Collapse
Affiliation(s)
- Bokyung Kong
- Graduate School of Nanoscience & Technology (WCU), Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-Gu, Daejeon 305-701, Republic of Korea
| | - Ji Hyun Seog
- Graduate School of Nanoscience & Technology (WCU), Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-Gu, Daejeon 305-701, Republic of Korea
| | - Lauren M Graham
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Sang Bok Lee
- Graduate School of Nanoscience & Technology (WCU), Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-Gu, Daejeon 305-701, Republic of Korea
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|