1
|
Deng J, Zhuang H, Shao S, Zeng X, Xue P, Bai T, Wang X, Shangguan S, Chen Y, Yan S, Huang W. Mitochondrial-Targeted Copper Delivery for Cuproptosis-Based Synergistic Cancer Therapy. Adv Healthc Mater 2024; 13:e2304522. [PMID: 38530073 DOI: 10.1002/adhm.202304522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Cuproptosis is dependent on mitochondrial respiration modulation by targeting lipoylated tricarboxylic acid cycle (TCA) cycle proteins, showing great potential in cancer treatment. However, the specific release of copper ions at mitochondrial is highly needed and still a major challenge to trigger cellular cuproptosis. Herein, a metal-organic framework-based nanoplatform (ZCProP) is designed for mitochondrial-targeted and ATP/pH-responsive Cu2+ and prodigiosin release. The released Cu2+ promotes aggregation of lipoylated protein and loss of Fe-S cluster protein, resulting in cell cuproptosis. In the meanwhile, Cu2+ can concert with prodigiosin to induce mitochondrial dysfunction and DNA damage and enhance cell cuproptosis. Furthermore, this nanoplatform has an ability to deplete glutathione, which not only further promotes cuproptosis but also triggers cell ferroptosis by the suppression of glutathione peroxidase 4, an anti-ferroptosis protein. Collectively, the designed ZCProP nanoplatform can responsively release cargos at mitochondrial and realize a conspicuous therapeutic efficacy through a cuproptosis-mediated concerted effect. Along with its excellent biocompatibility, this nanoplatform may provide a novel therapeutic modality paradigm to boost cancer therapeutic strategies based on cuproptosis.
Collapse
Affiliation(s)
- Jinpeng Deng
- The Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Huilan Zhuang
- The Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Sijie Shao
- The Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Xuemei Zeng
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Panpan Xue
- The Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Tingjie Bai
- The Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Xiaoman Wang
- The Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Shijie Shangguan
- The Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Yuanchun Chen
- The Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Shuangqian Yan
- The Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| |
Collapse
|
2
|
Gupta P, Sharma A, Mittal V. Polymeric Vehicles for Nucleic Acid Delivery: Enhancing the Therapeutic Efficacy and Cellular Uptake. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:276-293. [PMID: 39356099 DOI: 10.2174/0126673878324536240805060143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Therapeutic gene delivery may be facilitated by the use of polymeric carriers. When combined with nucleic acids to form nanoparticles or polyplexes, a variety of polymers may shield the cargo from in vivo breakdown and clearance while also making it easier for it to enter intracellular compartments. AIM AND OBJECTIVES Polymer synthesis design choices result in a wide variety of compounds and vehicle compositions. Depending on the application, these characteristics may be changed to provide enhanced endosomal escape, longer-lasting distribution, or stronger connection with nucleic acid cargo and cells. Here, we outline current methods for delivering genes in preclinical and clinical settings using polymers. METHODOLOGY Significant therapeutic outcomes have previously been attained using genetic material- delivering polymer vehicles in both in-vitro and animal models. When combined with nucleic acids to form nanoparticles or polyplexes, a variety of polymers may shield the cargo from in vivo breakdown and clearance while also making it easier for it to enter intracellular compartments. Many innovative diagnoses for nucleic acids have been investigated and put through clinical assessment in the past 20 years. RESULTS Polymer-based carriers have additional delivery issues due to their changes in method and place of biological action, as well as variances in biophysical characteristics. We cover recent custom polymeric carrier architectures that were tuned for nucleic acid payloads such genomemodifying nucleic acids, siRNA, microRNA, and plasmid DNA. CONCLUSION In conclusion, the development of polymeric carriers for gene delivery holds promise for therapeutic applications. Through careful design and optimization, these carriers can overcome various challenges associated with nucleic acid delivery, offering new avenues for treating a wide range of diseases.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Pharmaceutics, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| | - Anjali Sharma
- Department of Pharmaceutics, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| | - Vishnu Mittal
- Department of Pharmaceutics, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| |
Collapse
|
3
|
Yan H, Xu P, Ma H, Li Y, Zhang R, Cong H, Yu B, Shen Y. Enzyme-triggered transcytosis of drug carrier system for deep penetration into hepatoma tumors. Biomaterials 2023; 301:122213. [PMID: 37385137 DOI: 10.1016/j.biomaterials.2023.122213] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
In recent years, nano-drug delivery systems have made considerable progress in the direction of tumor treatment, but the low permeability of drugs has restricted the development of nano drugs. To solve this problem, we constructed a nano-drug delivery system with the dual effects of γ-glutamyltransferase (GGT) reaction and high nuclear targeting in tumor microenvironment to promote the deep penetration of drugs. Over-expression of GGT in tumor cells can specifically recognize γ-glutamyl substrate and release amino group from the hydrolysis reaction, which makes the whole system change from negative or neutral to positive charge system. The conjugated complex with positive charge rapidly endocytosis through electrostatic interaction, enhancing its permeability in tumor parenchyma. At the same time, the cell penetrating TAT contains a large amount of lysine, which can be identified by the nuclear pore complexes (NPCs) on the surface of the nuclear membrane, showing excellent nuclear localization function. The active DOX is released in the nucleus, which inhibits the mitosis of cancer cells and enhances the active transport ability of drugs in tumor cells. Therefore, this drug delivery system actively transports adriamycin into the tumor to achieve deep penetration of drugs through enzyme response and nuclear targeting, showing high anti-tumor activity and can be effectively applied to the treatment of liver cancer.
Collapse
Affiliation(s)
- Han Yan
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Pengchao Xu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - He Ma
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Runfeng Zhang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, And Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
4
|
Zhang Q, Kuang G, Li W, Wang J, Ren H, Zhao Y. Stimuli-Responsive Gene Delivery Nanocarriers for Cancer Therapy. NANO-MICRO LETTERS 2023; 15:44. [PMID: 36752939 PMCID: PMC9908819 DOI: 10.1007/s40820-023-01018-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects. Currently, the development of functional vectors with safety and effectiveness is the intense focus for improving the delivery of nucleic acid drugs for gene therapy. For this purpose, stimuli-responsive nanocarriers displayed strong potential in improving the overall efficiencies of gene therapy and reducing adverse effects via effective protection, prolonged blood circulation, specific tumor accumulation, and controlled release profile of nucleic acid drugs. Besides, synergistic therapy could be achieved when combined with other therapeutic regimens. This review summarizes recent advances in various stimuli-responsive nanocarriers for gene delivery. Particularly, the nanocarriers responding to endogenous stimuli including pH, reactive oxygen species, glutathione, and enzyme, etc., and exogenous stimuli including light, thermo, ultrasound, magnetic field, etc., are introduced. Finally, the future challenges and prospects of stimuli-responsive gene delivery nanocarriers toward potential clinical translation are well discussed. The major objective of this review is to present the biomedical potential of stimuli-responsive gene delivery nanocarriers for cancer therapy and provide guidance for developing novel nanoplatforms that are clinically applicable.
Collapse
Affiliation(s)
- Qingfei Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Gaizhen Kuang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Wenzhao Li
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Yuanjin Zhao
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China.
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
5
|
Tang X, Du X, Yu Y, Qin M, Qian L, Zhang M, Yang Y, Yu Q, Gan Z. Deep-Penetrating Triple-Responsive Prodrug Nanosensitizer Actuates Efficient Chemoradiotherapy in Pancreatic Ductal Adenocarcinoma Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202834. [PMID: 35808966 DOI: 10.1002/smll.202202834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Chemoradiotherapy (CRT) is the most accepted treatment for locally advanced pancreatic ductal adenocarcinoma (PDAC) and can significantly improve the R0 resection rate. However, there are few long-term survivors after CRT. Although some polymer nanoparticles have shown potential in alleviating the dose-limiting toxicity and assisting the chemotherapy of PDAC, there are few efficient nanosensitizers (NS) available for CRT of this malignancy, especially in the context of its hypoxic nature. Herein, based on the biological features of PDAC, a γ-glutamyl transpeptidase (GGT)/glutathione (GSH)/hypoxia triple-responsive prodrug NS to overcome the biological barrier and microenvironmental limitations confronted by CRT in PDAC is developed. Due to triple-responsiveness, deep tumor penetration, GSH/hypoxia-responsive drug release/activation, and hypoxia-induced chemoradio-sensitization can be simultaneously achieved with this NS. As a result, tumor shrinkage after CRT with this NS can be observed in both subcutaneous and orthotopic PDAC models, foreshadowing its potential in clinical neoadjuvant CRT.
Collapse
Affiliation(s)
- Xiaohu Tang
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaomeng Du
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, P. R. China
| | - Yanting Yu
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Meng Qin
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lili Qian
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Meng Zhang
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yan Yang
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qingsong Yu
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhihua Gan
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
6
|
Wang J, Li B, Qiu L, Qiao X, Yang H. Dendrimer-based drug delivery systems: history, challenges, and latest developments. J Biol Eng 2022; 16:18. [PMID: 35879774 PMCID: PMC9317453 DOI: 10.1186/s13036-022-00298-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Since the first dendrimer was reported in 1978 by Fritz Vögtle, dendrimer research has grown exponentially, from synthesis to application in the past four decades. The distinct structure characteristics of dendrimers include nanoscopic size, multi-functionalized surface, high branching, cavernous interior, and so on, making dendrimers themselves ideal drug delivery vehicles. This mini review article provides a brief overview of dendrimer’s history and properties and the latest developments of dendrimers as drug delivery systems. This review focuses on the latest progress in the applications of dendrimers as drug and gene carriers, including 1) active drug release strategies to dissociate drug/gene from dendrimer in response to stimuli; 2) size-adaptive and charge reversal dendrimer delivery systems that can better take advantage of the size and surface properties of dendrimer; 3) bulk and micro/nano dendrimer gel delivery systems. The recent advances in dendrimer formulations may lead to the generation of new drug and gene products and enable the development of novel combination therapies.
Collapse
Affiliation(s)
- Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Boxuan Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Li Qiu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xin Qiao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| |
Collapse
|
7
|
Chu S, Shi X, Tian Y, Gao F. pH-Responsive Polymer Nanomaterials for Tumor Therapy. Front Oncol 2022; 12:855019. [PMID: 35392227 PMCID: PMC8980858 DOI: 10.3389/fonc.2022.855019] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
The complexity of the tumor microenvironment presents significant challenges to cancer therapy, while providing opportunities for targeted drug delivery. Using characteristic signals of the tumor microenvironment, various stimuli-responsive drug delivery systems can be constructed for targeted drug delivery to tumor sites. Among these, the pH is frequently utilized, owing to the pH of the tumor microenvironment being lower than that of blood and healthy tissues. pH-responsive polymer carriers can improve the efficiency of drug delivery in vivo, allow targeted drug delivery, and reduce adverse drug reactions, enabling multifunctional and personalized treatment. pH-responsive polymers have gained increasing interest due to their advantageous properties and potential for applicability in tumor therapy. In this review, recent advances in, and common applications of, pH-responsive polymer nanomaterials for drug delivery in cancer therapy are summarized, with a focus on the different types of pH-responsive polymers. Moreover, the challenges and future applications in this field are prospected.
Collapse
Affiliation(s)
- Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Fengxiang Gao
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
8
|
Chen D, Zhang P, Li M, Li C, Lu X, Sun Y, Sun K. Hyaluronic acid-modified redox-sensitive hybrid nanocomplex loading with siRNA for non-small-cell lung carcinoma therapy. Drug Deliv 2022; 29:574-587. [PMID: 35156491 PMCID: PMC8856077 DOI: 10.1080/10717544.2022.2032874] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A novel hyaluronic acid (HA)-modified hybrid nanocomplex HA-SeSe-COOH/siR-93C@PAMAM, which could efficiently deliver siRNA into tumor cells via a redox-mediated intracellular disassembly, was constructed for enhanced antitumor efficacy. Thereinto, siR-93C (siRNA) and positive PAMAM were firstly mixed into the electrostatic nano-intermediate, and then diselenide bond (-SeSe-)-modified HA was coved to shield excessive positive charges. This hybrid nanocomplex displayed uniform dynamic sizes, high stability, controlled zeta potential and narrow PDI distribution. Moreover, the -SeSe- linkage displayed GSH/ROS dual responsive properties, improving intracellular trafficking of siRNA. In vitro assays in A549 cell line presented that HA-SeSe-COOH/siR-93C@PAMAM has low cytotoxicity, rapid lysosomal escape and significant transfection efficiency; besides, an efficient proliferation inhibition ability and enhanced apoptosis. Furthermore, in animal studies, this negative-surfaced hybrid nanocomplex showed a prolonged circulation in blood and improved inhibition of tumor growth. All these results verified our hypothesis in this study that diselenide bonds-modified HA could promote not only stability and safety of nanoparticles in vivo but also intracellular behavior of siRNA via redox-dual sensitive properties; furthermore, this hybrid nanocomplex provided a visible potential approach for siRNA delivery in the antitumor field.
Collapse
Affiliation(s)
- Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Minghui Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Congcong Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Xiaoyan Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Yiying Sun
- Shandong International Biotechnology Park Development Co. Ltd, Yantai, P.R. China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| |
Collapse
|
9
|
Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev 2021; 179:113914. [PMID: 34363861 PMCID: PMC9418125 DOI: 10.1016/j.addr.2021.113914] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022]
Abstract
Strategies of improving vaccine targeting ability toward lymph nodes have been attracting considerable interest in recent years, though there are remaining delivery barriers based on the inherent properties of lymphatic systems and limited administration routes of vaccination. Recently, emerging vaccine delivery systems using various materials as carriers are widely developed to achieve efficient lymph node targeting and improve vaccine-triggered adaptive immune response. In this review, to further optimize the vaccine targeting ability for future research, the design principles of lymph node targeting vaccine delivery based on the anatomy of lymph nodes and vaccine administration routes are first summarized. Then different designs of lymph node targeting vaccine delivery systems, including vaccine delivery systems in clinical applications, are carefully surveyed. Also, the challenges and opportunities of current delivery systems for vaccines are concluded in the end.
Collapse
Affiliation(s)
- Yingyue Ding
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Ana Jaklenec
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
10
|
Kang S, Noh C, Kang H, Shin JY, Kim SY, Kim S, Son MG, Park E, Song HK, Shin S, Lee S, Kim NK, Jung Y, Lee Y. Dynamics and Entropy of Cyclohexane Rings Control pH-Responsive Reactivity. JACS AU 2021; 1:2070-2079. [PMID: 34841418 PMCID: PMC8611792 DOI: 10.1021/jacsau.1c00354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 05/31/2023]
Abstract
Activation entropy (ΔS ‡) is not normally considered the main factor in determining the reactivity of unimolecular reactions. Here, we report that the intramolecular degradation of six-membered ring compounds is mainly determined by the ΔS ‡, which is strongly influenced by the ring-flipping motion and substituent geometry. Starting from the unique difference between the pH-dependent degradation kinetics of geometric isomers of 1,2-cyclohexanecarboxylic acid amide (1,2-CHCAA), where only the cis isomer can readily degrade under weakly acidic conditions (pH < 5.5), we found that the difference originated from the large difference in ΔS ‡ of 16.02 cal·mol-1·K-1. While cis-1,2-CHCAA maintains a preference for the classical chair cyclohexane conformation, trans-1,2-CHCAA shows dynamic interconversion between the chair and twisted boat conformations, which was supported by both MD simulations and VT-NMR analysis. Steric repulsion between the bulky 1,2-substituents of the trans isomer is one of the main reasons for the reduced energy barrier between ring conformations that facilitates dynamic ring inversion motions. Consequently, the more dynamic trans isomer exhibits much a larger loss in entropy during the activation process due to the prepositioning of the reactant than the cis isomer, and the pH-dependent degradation of the trans isomer is effectively suppressed. When the ring inversion motion is inhibited by an additional methyl substituent on the cyclohexane ring, the pH degradability can be dramatically enhanced for even the trans isomer. This study shows a unique example in which spatial arrangement and dynamic properties can strongly influence molecular reactivity in unimolecular reactions, and it will be helpful for the future design of a reactive structure depending on dynamic conformational changes.
Collapse
Affiliation(s)
- Sunyoung Kang
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chanwoo Noh
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyosik Kang
- Department
of Chemistry, Gachon University, Seongnam, Gyunggido 13120, Republic of Korea
| | - Ji-Yeon Shin
- Advanced
Analysis Center, Korea Institute of Science
and Technology, Seoul 02792, Republic of Korea
- Department
of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - So-Young Kim
- Advanced
Analysis Center, Korea Institute of Science
and Technology, Seoul 02792, Republic of Korea
| | - Seulah Kim
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Moon-Gi Son
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunseok Park
- Bruker
Biospin Korea, Seongnam, Gyunggido 13493, Republic of Korea
| | - Hyun Kyu Song
- Department
of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seokmin Shin
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sanghun Lee
- Department
of Chemistry, Gachon University, Seongnam, Gyunggido 13120, Republic of Korea
| | - Nak-Kyoon Kim
- Advanced
Analysis Center, Korea Institute of Science
and Technology, Seoul 02792, Republic of Korea
| | - YounJoon Jung
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Yan Lee
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Design of poly-l-glutamic acid embedded mesoporous bioactive glass nanospheres for pH-stimulated chemotherapeutic drug delivery and antibacterial susceptibility. Colloids Surf B Biointerfaces 2021; 202:111700. [DOI: 10.1016/j.colsurfb.2021.111700] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/24/2020] [Accepted: 03/13/2021] [Indexed: 12/18/2022]
|
12
|
Jarak I, Varela CL, Tavares da Silva E, Roleira FFM, Veiga F, Figueiras A. Pluronic-based nanovehicles: Recent advances in anticancer therapeutic applications. Eur J Med Chem 2020; 206:112526. [PMID: 32971442 DOI: 10.1016/j.ejmech.2020.112526] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Pluronics are a class of amphiphilic tri-block copolymers with wide pharmaceutical applicability. In the past decades, the ability to form biocompatible nanosized micelles was exploited to formulate stable drug nanovehicles with potential use in antitumor therapy. Due to the great potential for tuning physical and structural properties of Pluronic unimers, a panoply of drug or polynucleotide-loaded micelles was prepared and tested for their antitumoral activity. The attractive inherent antitumor properties of Pluronic polymers in combination with cell targeting and stimuli-responsive ligands greatly improved antitumoral therapeutic effects of tested drugs. In spite of that, the extraordinary complexity of biological challenges in the delivery of micellar drug payload makes their therapeutic potential still not exploited to the fullest. In this review paper we attempt to present the latest developments in the field of Pluronic based nanovehicles and their application in anticancer therapy with an overview of the chemistry involved in the preparation of these nanovehicles.
Collapse
Affiliation(s)
- Ivana Jarak
- Univ. Coimbra, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Carla L Varela
- Univ. Coimbra, CIEPQPF, FFUC, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Elisiário Tavares da Silva
- Univ. Coimbra, CIEPQPF, FFUC, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Fernanda F M Roleira
- Univ. Coimbra, CIEPQPF, FFUC, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Francisco Veiga
- Univ. Coimbra, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal; Univ. Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Ana Figueiras
- Univ. Coimbra, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal; Univ. Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal.
| |
Collapse
|
13
|
Zielgerichtete Wirkstoffe für die Krebstherapie: Aktuelle Entwicklungen und Perspektiven. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Chen W, Sun Z, Lu L. Targeted Engineering of Medicinal Chemistry for Cancer Therapy: Recent Advances and Perspectives. Angew Chem Int Ed Engl 2020; 60:5626-5643. [PMID: 32096328 DOI: 10.1002/anie.201914511] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 12/13/2022]
Abstract
Severe side effects and poor therapeutic efficacy are the main drawbacks of current anticancer drugs. These problems can be mitigated by targeting, but the targeting efficacy of current drugs is poor and urgently needs improvement. Taking this into consideration, this Review first summarizes the current targeting strategies for cancer therapy in terms of cancer tissue and organelles. Then, we analyse the systematic targeting of anticancer drugs and conclude that a typical journey for a targeted drug administered by intravenous injection is a CTIO cascade of at least four steps. Furthermore, to ensure high overall targeting efficacy, the properties of a targeting drug needed in each step are further analysed, and some guidelines for structure optimization to obtain effective targeting drugs are offered. Finally, some viewpoints highlighting the crucial problems and potential challenges of future research on targeted cancer therapy are presented. This review could actively promote the development of precision medicine against cancer.
Collapse
Affiliation(s)
- Weihua Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Zhen Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| |
Collapse
|
15
|
Piotrowski-Daspit AS, Kauffman AC, Bracaglia LG, Saltzman WM. Polymeric vehicles for nucleic acid delivery. Adv Drug Deliv Rev 2020; 156:119-132. [PMID: 32585159 PMCID: PMC7736472 DOI: 10.1016/j.addr.2020.06.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
Polymeric vehicles are versatile tools for therapeutic gene delivery. Many polymers-when assembled with nucleic acids into vehicles-can protect the cargo from degradation and clearance in vivo, and facilitate its transport into intracellular compartments. Design options in polymer synthesis yield a comprehensive range of molecules and resulting vehicle formulations. These properties can be manipulated to achieve stronger association with nucleic acid cargo and cells, improved endosomal escape, or sustained delivery depending on the application. Here, we describe current approaches for polymer use and related strategies for gene delivery in preclinical and clinical applications. Polymer vehicles delivering genetic material have already achieved significant therapeutic endpoints in vitro and in animal models. From our perspective, with preclincal assays that better mimic the in vivo environment, improved strategies for target specificity, and scalable techniques for polymer synthesis, the impact of this therapeutic approach will continue to expand.
Collapse
Affiliation(s)
| | - Amy C Kauffman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States of America; Corning Life Sciences, Kennebunk, ME 04043, United States of America
| | - Laura G Bracaglia
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States of America
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States of America; Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06511, United States of America; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, United States of America; Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, United States of America.
| |
Collapse
|
16
|
Wang G, Zhou Z, Zhao Z, Li Q, Wu Y, Yan S, Shen Y, Huang P. Enzyme-Triggered Transcytosis of Dendrimer-Drug Conjugate for Deep Penetration into Pancreatic Tumors. ACS NANO 2020; 14:4890-4904. [PMID: 32286784 DOI: 10.1021/acsnano.0c00974] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The dense fibrotic stroma in pancreatic ductal adenocarcinoma (PDA) resists drug diffusion into the tumor and leads to an unsatisfactory prognosis. To address this problem, we demonstrate a dendrimer-camptothecin (CPT) conjugate that actively penetrates deep into PDA tumors through γ-glutamyl transpeptidase (GGT)-triggered cell endocytosis and transcytosis. The dendrimer-drug conjugate was synthesized by covalent attachment of CPT to polyamidoamine (PAMAM) dendrimers through a reactive oxygen species (ROS)-sensitive linker followed with surface modification with glutathione. Once the conjugate was delivered to the PDA tumor periphery, the overexpressed GGT on the vascular endothelial cell or tumor cell triggers the γ-glutamyl transfer reactions of glutathione to produce primary amines. The positively charged conjugate was rapidly internalized via caveolae-mediated endocytosis and followed by vesicle-mediated transcytosis, augmenting its deep penetration within the tumor parenchyma and releasing active CPT throughout the tumor after cleavage by intracellular ROS. The dendrimer-drug conjugate exhibited high antitumor activity in multiple mice tumor models, including patient-derived PDA xenograft and orthotopic PDA cell xenograft, compared to the standard first-line chemotherapeutic drug (gemcitabine) for advanced pancreatic cancer. This study demonstrates the high efficiency of an active tumor-penetrating dendrimer-drug conjugate via transcytotic transport with ROS-responsive drug release for PDA therapy.
Collapse
Affiliation(s)
- Guowei Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhihao Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qunying Li
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yulian Wu
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Sheng Yan
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
17
|
Xu Y, Xiao L, Chang Y, Cao Y, Chen C, Wang D. pH and Redox Dual-Responsive MSN-S-S-CS as a Drug Delivery System in Cancer Therapy. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1279. [PMID: 32178282 PMCID: PMC7143049 DOI: 10.3390/ma13061279] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 01/23/2023]
Abstract
In order to achieve a controlled release drug delivery system (DDS) for cancer therapy, a pH and redox dual-responsive mesoporous silica nanoparticles (MSN)-sulfur (S)-S- chitosan (CS) DDS was prepared via an amide reaction of dithiodipropionic acid with amino groups on the surface of MSN and amino groups on the surface of CS. Using salicylic acid (SA) as a model drug, SA@MSN-S-S-CS was prepared by an impregnation method. Subsequently, the stability, swelling properties and drug release properties of the DDS were studied by x-ray diffraction, scanning electron microscopy, Fourier transform infrared microspectroscopy, size and zeta potential as well as Brunauer-Emmett-Teller surface area. Pore size and volume of the composites decreased after drug loading but maintained a stable structure. The calculated drug loading rate and encapsulation efficiency were 8.17% and 55.64%, respectively. The in vitro drug release rate was 21.54% in response to glutathione, and the release rate showed a marked increase as the pH decreased. Overall, double response functions of MSN-S-S-CS had unique advantages in controlled drug delivery, and may be a new clinical application of DDS in cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Yuan Cao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (Y.X.); (L.X.); (Y.C.)
| | - Changguo Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (Y.X.); (L.X.); (Y.C.)
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (Y.X.); (L.X.); (Y.C.)
| |
Collapse
|
18
|
Zhang M, Chen X, Li C, Shen X. Charge-reversal nanocarriers: An emerging paradigm for smart cancer nanomedicine. J Control Release 2020; 319:46-62. [DOI: 10.1016/j.jconrel.2019.12.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/14/2022]
|
19
|
Nuclear-targeted p53 and DOX co-delivery of chitosan derivatives for cancer therapy in vitro and in vivo. Colloids Surf B Biointerfaces 2019; 183:110440. [PMID: 31450059 DOI: 10.1016/j.colsurfb.2019.110440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/17/2019] [Accepted: 08/15/2019] [Indexed: 11/24/2022]
Abstract
The nucleus is one of the most important cellular organelles. Chitosan-grafted poly-(N-3-carbobenzyloxy-lysine) (CCL) decorated with human immunodeficiency virus-1 transactivator of transcription (TAT) can co-deliver p53 and doxorubicin into the nucleus simultaneously, such that their antitumor functions are exerted. However, TAT-CCL has been shown to have an anti-tumor effect only in vitro; the effect in vivo was unsatisfactory. Here, a unique nucleus-targeted delivery system based on amidized TAT (aTAT)-CCL with aTAT functional on the surface was designed to achieve a highly efficient nucleus-targeting gene and drug delivery system for effective cancer cell elimination in vitro and in vivo. In this delivery system, TAT is amidized to inhibit its nonspecific interactions. Confocal laser scanning microscopy observations revealed that if aTAT-CCL was incubated in pH 5.0 acetate buffer solution for 24 h before use (named aTAT-CCL-HB), more aTAT-CCL-HB entered the nucleus compared with aTAT-CCL or CCL. aTAT-CCL-HB can also achieve high gene transfection and drug delivery efficiencies and low viability in HepG2 cells. However, only aTAT-CCL achieved extensive circulation in the blood compartment and high antitumor activity in vivo. Amidization of TAT in vectors may become a promising strategy for nucleus-targeted delivery systems, especially in in vivo applications.
Collapse
|
20
|
Ju J, Regmi S, Fu A, Lim S, Liu Q. Graphene quantum dot based charge-reversal nanomaterial for nucleus-targeted drug delivery and efficiency controllable photodynamic therapy. JOURNAL OF BIOPHOTONICS 2019; 12:e201800367. [PMID: 30701677 DOI: 10.1002/jbio.201800367] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 05/14/2023]
Abstract
Graphene quantum dots (GQDs), the new zero-dimensional carbon nanomaterial, have been demonstrated as a promising material for biomedical applications due to its good biocompatibility and low toxicity. However, the integration of multiple therapeutic approaches into a nanosized platform based on the GQD has not been explored yet to our best knowledge. In this report, we regulate the generation of reactive oxygen species (ROS) when using the GQD as a photosensitizer by varying the doping amount of nitrogen atoms to achieve efficiency controllable photodynamic therapy. On the other hand, charge-reversal (3-Aminopropyl) triethoxysilane (APTES) was used to conjugate on the surface of GQD for nucleus targeting drug delivery for the first time. The treatment outcome of produced ROS and nucleus-targeting drug delivery was investigated by fluorescence imaging. The results demonstrated that the N-GQD-DOX-APTES in dual roles as a drug carrier and photosensitizer could achieve nucleus-targeting delivery and strong ROS production simultaneously. This approach provides a promising strategy for the development of multifunctional therapy in one nano platform for biomedical applications.
Collapse
Affiliation(s)
- Jian Ju
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
- Department of Chemistry, Oakland University, Rochester, Michigan
| | - Sagar Regmi
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Afu Fu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Quan Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
21
|
Cui PF, Qi LY, Wang Y, Yu RY, He YJ, Xing L, Jiang HL. Dex-Aco coating simultaneously increase the biocompatibility and transfection efficiency of cationic polymeric gene vectors. J Control Release 2019; 303:253-262. [DOI: 10.1016/j.jconrel.2019.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/19/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022]
|
22
|
Lai S, Wei Y, Wu Q, Zhou K, Liu T, Zhang Y, Jiang N, Xiao W, Chen J, Liu Q, Yu Y. Liposomes for effective drug delivery to the ocular posterior chamber. J Nanobiotechnology 2019; 17:64. [PMID: 31084611 PMCID: PMC6515668 DOI: 10.1186/s12951-019-0498-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/04/2019] [Indexed: 01/03/2023] Open
Abstract
Background Age-related macular degeneration (AMD) is a leading cause of severe visual deficits and blindness. Meanwhile, there is convincing evidence implicating oxidative stress, inflammation, and neovascularization in the onset and progression of AMD. Several studies have identified berberine hydrochloride and chrysophanol as potential treatments for ocular diseases based on their antioxidative, antiangiogenic, and anti-inflammatory effects. Unfortunately, their poor stability and bioavailability have limited their application. In order to overcome these disadvantages, we prepared a compound liposome system that can entrap these drugs simultaneously using the third polyamidoamine dendrimer (PAMAM G3.0) as a carrier. Results PAMAM G3.0-coated compound liposomes exhibited appreciable cellular permeability in human corneal epithelial cells and enhanced bio-adhesion on rabbit corneal epithelium. Moreover, coated liposomes greatly improved BBH bioavailability. Further, coated liposomes exhibited obviously protective effects in human retinal pigment epithelial cells and rat retinas after photooxidative retinal injury. Finally, administration of P-CBLs showed no sign of side effects on ocular surface structure in rabbits model. Conclusions The PAMAM G3.0-liposome system thus displayed a potential use for treating various ocular diseases. Electronic supplementary material The online version of this article (10.1186/s12951-019-0498-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sisi Lai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yanyan Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Quanwu Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Kang Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Tuo Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yingfeng Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Ning Jiang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Wen Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Junjie Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Qiuhong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
23
|
Zhang Q, Gao B, Muhammad K, Zhang X, Ren XK, Guo J, Xia S, Zhang W, Feng Y. Multifunctional gene delivery systems with targeting ligand CAGW and charge reversal function for enhanced angiogenesis. J Mater Chem B 2019; 7:1906-1919. [DOI: 10.1039/c8tb03085e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A charge reversible polyanion with a targeting peptide was assembled onto binary gene complexes to enhance their endosomal escape and transfection efficiency.
Collapse
Affiliation(s)
- Qiaoping Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Bin Gao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Khan Muhammad
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Xubin Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Xiang-kui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine
- Affiliated Hospital
- Logistics University of People's Armed Police Force
- Tianjin 300162
- China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300309
- China
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| |
Collapse
|
24
|
Zhang S, Li ZT, Liu M, Wang JR, Xu MQ, Li ZY, Duan XC, Hao YL, Zheng XC, Li H, Feng ZH, Zhang X. Anti-tumour activity of low molecular weight heparin doxorubicin nanoparticles for histone H1 high-expressive prostate cancer PC-3M cells. J Control Release 2018; 295:102-117. [PMID: 30582952 DOI: 10.1016/j.jconrel.2018.12.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 11/30/2022]
Abstract
Nucleus-targeting drug delivery systems (NTDDs) deliver chemotherapeutic agents to nuclei in order to improve the efficacy of anti-tumour therapy. Histone H1 (H1) plays a key role in establishing and maintaining higher order chromatin structures and could bind to cell membranes. In the present study, we selected H1 as a target to prepare a novel H1-mediated NTDD. Low molecular weight heparin (LMHP) and doxorubicin (DOX) were combined to form LMHP-DOX. Then, a novel NTDD consisting of LMHP-DOX nanoparticles (LMHP-DOX NPs) was prepared by self-assembly. The characteristics of LMHP-DOX and LMHP-DOX NPs were investigated. Histone H1 high-expressive prostate cancer PC-3M cell line was selected as the cell model. Cellular uptake, and the in vitro and in vivo anti-tumour activity of LMHP-DOX NPs were evaluated on H1 high-expressive human prostate cancer PC-3M cells. Our results indicated that intact LMHP-DOX NPs mediated by H1 could be absorbed by H1 high-expressive PC-3M cells, escape from the lysosomes to the cytoplasm, and localize in the perinuclear region via H1-mediated, whereby DOX could directly enter the cell nucleus and quickly increase the concentration of DOX in the nuclei of H1 high-expressive PC-3M cells to enhance the apoptotic activity of cancer cells. The anti-coagulant activity of LMHP-DOX NPs was almost completely diminished in rat blood compared with that of LMHP, indicating the safety of LMHP-DOX NPs. Compared to traditional NTDD strategies, LMHP-DOX NPs avoid the complicated modification of nucleus-targeting ligands and provide a compelling solution for the substantially enhanced nuclear uptake of chemotherapeutic agents for the development of more intelligent NTDDs.
Collapse
Affiliation(s)
- Shuang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhan-Tao Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Man Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing-Ru Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Mei-Qi Xu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuo-Yue Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Chuan Duan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan-Li Hao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiu-Chai Zheng
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hui Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhen-Han Feng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuan Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
25
|
Camarada MB, Comer J, Poblete H, Azhagiya Singam ER, Marquez-Miranda V, Morales-Verdejo C, Gonzalez-Nilo FD. Experimental and Computational Characterization of the Interaction between Gold Nanoparticles and Polyamidoamine Dendrimers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10063-10072. [PMID: 30074805 DOI: 10.1021/acs.langmuir.8b01809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dendrimers provide a means to control the synthesis of gold nanoparticles and stabilize their suspensions. However, design of improved dendrimers for this application is hindered by a lack of understanding how the dendrimers and synthesis conditions determine nanoparticle morphology and suspension stability. In the present work, we evaluate the effect of polyamidoamine (PAMAM) dendrimers terminated with different functional groups (-OH or -NH3+) and different synthesis conditions on the morphology of the resulting gold nanoparticles and their stability in solution. We leverage molecular dynamics (MD) simulations to identify the atomic interactions that underlie adsorption of PAMAM dendrimers to gold surface and how the thermodynamics of this adsorption depends on the terminal functional groups of the dendrimers. We find that gold nanoparticles formed with hydroxyl-terminated PAMAM (PAMAM-OH) rapidly aggregate, whereas those formed with PAMAM-NH3+ are stable in solution for months of storage. Synthesis under ultrasound sonication is shown to be more rapid than that under agitation, with sonication producing smaller nanoparticles. Free-energy calculations in MD simulations show that all dendrimers have a high affinity for the gold surface, although PAMAM-OH and its oxidized aldehyde form (PAMAM-CHO) have a greater affinity for the nanoparticle surface than PAMAM-NH3+. Although adsorption of PAMAM-OH and PAMAM-CHO has both favorable entropy and enthalpy, adsorption of PAMAM-NH3+ is driven by a strong enthalpic component subject to an unfavorable entropic component.
Collapse
Affiliation(s)
- M B Camarada
- Centro de Nanotecnología Aplicada, Facultad de Ciencias , Universidad Mayor , Camino la Pirámide 5750 , Huechuraba , Santiago 8580745 , Chile
| | - J Comer
- Nanotechnology Innovation Center of Kansas State, Institute of Computational Comparative Medicine, Department of Anatomy and Physiology , Kansas State University , 1800 Denison Avenue , Manhattan , Kansas 66506 , United States
| | - H Poblete
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería; Nucleo Científico Multidiciplinario-DI; Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD) , Universidad de Talca , 2 Norte 685 , Casilla 721 , Talca , Chile
| | - E R Azhagiya Singam
- Nanotechnology Innovation Center of Kansas State, Institute of Computational Comparative Medicine, Department of Anatomy and Physiology , Kansas State University , 1800 Denison Avenue , Manhattan , Kansas 66506 , United States
| | - V Marquez-Miranda
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida , Universidad Andrés Bello , Av. República 330 , Santiago 8370186 , Chile
| | - C Morales-Verdejo
- Centro de Nanotecnología Aplicada, Facultad de Ciencias , Universidad Mayor , Camino la Pirámide 5750 , Huechuraba , Santiago 8580745 , Chile
| | - F D Gonzalez-Nilo
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida , Universidad Andrés Bello , Av. República 330 , Santiago 8370186 , Chile
| |
Collapse
|
26
|
Zhang S, Wang D, Li Y, Li L, Chen H, Xiong Q, Liu Y, Wang Y. pH- and redox-responsive nanoparticles composed of charge-reversible pullulan-based shells and disulfide-containing poly(ß-amino ester) cores for co-delivery of a gene and chemotherapeutic agent. NANOTECHNOLOGY 2018; 29:325101. [PMID: 29761789 DOI: 10.1088/1361-6528/aac4b5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel pH- and redox-responsive nanoparticle system was designed based on a charge-reversible pullulan derivative (CAPL) and disulfide-containing poly(β-amino ester) (ssPBAE) for the co-delivery of a gene and chemotherapeutic agent targeting hepatoma. The end-alkene groups of ssPBAE were reacted with diethylenetriamine to form amino-modified ssPBAE (NH-ssPBAE). Methotrexate (MTX), a chemotherapy agent, was then conjugated to NH-ssPBAE via an amide bond to obtain the polymeric prodrug ssPBAE-MTX. ssPBAE-MTX exhibited a good capability for condensing genes, including plasmid DNA (pDNA) and tetramethyl rhodamine-labeled DNA (TAMRA-DNA), and almost completely condensed pDNA at the weight ratio of 5/1 to form spherical nanocomplexes with a uniform size. In a D,L-dithiothreitol solution, the ssPBAE-MTX/pDNA nanocomplexes showed rapid release of pDNA and MTX, indicating their redox-responsive capability. CAPL, a pullulan derivative containing β-carboxylic amide bond, was efficiently coated on the surfaces of ssPBAE-MTX/pDNA nanocomplexes to form polysaccharide shells, thus realizing co-loading of the gene and chemotherapeutic agent. CAPL/ssPBAE-MTX/pDNA nanoparticles displayed an obvious pH-responsive charge reversal ability due to the rupture of the β-carboxylic amide bond under the weakly acidic condition. In human hepatoma HepG2 cells, CAPL/ssPBAE-MTX/TAMRA-DNA nanoparticles were efficiently internalized via endocytosis and successfully escaped from the endo/lysosomes into the cytoplasm, and CAPL/ssPBAE-MTX/pDNA nanoparticles remarkably inhibited the cell growth. In summary, this nanoparticle system based on CAPL and ssPBAE showed great potential for combined gene/chemotherapy on hepatomas.
Collapse
Affiliation(s)
- Sipei Zhang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); Research Center of Basic Medical Science; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lu D, An Y, Feng S, Li X, Fan A, Wang Z, Zhao Y. Imidazole-Bearing Polymeric Micelles for Enhanced Cellular Uptake, Rapid Endosomal Escape, and On-demand Cargo Release. AAPS PharmSciTech 2018; 19:2610-2619. [PMID: 29916192 DOI: 10.1208/s12249-018-1092-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/29/2018] [Indexed: 01/30/2023] Open
Abstract
The complex design of multifunctional nanomedicine is beneficial to overcome the multiple biological barriers of drug delivery, but it also presents additional hurdles to clinical translation (e.g., scaling-up and quality control). To address this dilemma, we employed a simple imidazole-bearing polymer micelle for enhanced cellular uptake, facilitated endosomal escape, and on-demand release of a model drug, SN-38. The micelles were crosslinked by the reversible imidazole/Zn2+ coordination with a drug loading of ca. 4% (w/w) and a diameter less than 200 nm. Under mimicked tumor microenvironment (pH 6.8), the surface charge of micelles reversed from negative to positive, leading to enhanced micelles uptake by model 4T1 cells. Such effect was verified by fluorescent labelling of micelles. Compared to imidazole-free nanocarriers, the charge-reversal micelles delivered significantly more SN-38 to 4T1 cells. Due to the proton sponge effect, imidazole-bearing micelles could rapidly escape from endosomes compared to the control micelles, as evidenced by the kinetic analysis of micelle/endosome co-localization. The coordination crosslinking also enabled the acid-triggered drug release. This work provides a "three birds with one stone" approach to achieve the multifunctionality of nanocarriers without complicated particle design, and opens new avenues of advancing nanomedicine translation via simple tailored nanocarriers.
Collapse
|
28
|
Zhao J, Zhao F, Wang X, Fan X, Wu G. Secondary nuclear targeting of mesoporous silica nano-particles for cancer-specific drug delivery based on charge inversion. Oncotarget 2018; 7:70100-70112. [PMID: 27661121 PMCID: PMC5342538 DOI: 10.18632/oncotarget.12149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/14/2016] [Indexed: 11/25/2022] Open
Abstract
A novel multifunctional nano-drug delivery system based on reversal of peptide charge was successfully developed for anticancer drug delivery and imaging. Mesoporous silica nano-particles (MSN) ~50 nm in diameter were chosen as the drug reservoirs, and their surfaces were modified with HIV-1 transactivator peptide-fluorescein isothiocyanate (TAT-FITC) and YSA-BHQ1. The short TAT peptide labeled with FITC was used to facilitate intranuclear delivery, while the YSA peptide tagged with the BHQ1 quencher group was used to specifically bind to the tumor EphA2 membrane receptor. Citraconic anhydride (Cit) was used to invert the charge of the TAT peptide in neutral or weak alkaline conditions so that the positively charged YSA peptide could combine with the TAT peptide through electrostatic attraction. The FITC fluorescence was quenched by the spatial approach of BHQ1 after the two peptides bound to each other. However, the Cit-amino bond was unstable in the acidic atmosphere, so the positive charge of the TAT peptide was restored and the positively charged YSA moiety was repelled. The FITC fluorescence was recovered after the YSA-BHQ1 moiety was removed, and the TAT peptide led the nano-particles into the nucleolus. This nano-drug delivery system was stable at physiological pH, rapidly released the drug in acidic buffer, and was easily taken up by MCF-7 cells. Compared with free doxorubicin hydrochloride at an equal concentration, this modified MSN loaded with doxorubicin molecules had an equivalent inhibitory effect on MCF-7 cells. This nano-drug delivery system is thus a promising method for simultaneous cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jianwen Zhao
- Center of Clinical Laboratory Medicine of Zhongda Hospital, Southeast University, Nanjing, 210009, China.,Medical School, Southeast University, Nanjing, 210009, China
| | - Fengfeng Zhao
- Medical School, Southeast University, Nanjing, 210009, China
| | - Xiyong Wang
- Medical School, Southeast University, Nanjing, 210009, China
| | - Xiaobo Fan
- Medical School, Southeast University, Nanjing, 210009, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine of Zhongda Hospital, Southeast University, Nanjing, 210009, China.,Medical School, Southeast University, Nanjing, 210009, China
| |
Collapse
|
29
|
Abstract
The phenomenal advances in pharmaceutical sciences over the last few decades have led to the development of new therapeutics like peptides, proteins, RNAs, DNAs and highly potent small molecules. Fruitful applications of these therapeutics have been challenged by several anatomical and physiological barriers that limit adequate drug disposition at the site-of-action and by off-target drug distribution to undesired tissues, which together result in the reduced effectiveness and increased side effects of therapeutic agents. As such, the development of drug delivery and targeting systems has been recognised as a cornerstone for future drug development. Research in pharmaceutical sciences is now devoted to tackling delivery challenges through engineering delivery systems that move beyond conventional dosage forms and regimens into state-of-the-art targeted drug delivery tailored toward specific therapeutic needs. Modern drug delivery systems comprise passive and active targeting approaches. While passive targeting relies on the natural course of distribution of drugs or drug carriers in the body, as governed by their physicochemical properties, active targeting often exploits targeting moieties that home preferentially into target tissues. Here, we provide an overview of theories of and approaches to passive and active drug delivery. As the design of drug delivery is dependent on the unique structure of target tissues and organs, we present our discussion in an organ-specific manner with the aim to inspire the development of new strategies for curing disease with high accuracy and efficiency.
Collapse
Affiliation(s)
- Mohammad Alsaggar
- a Department of Pharmaceutical Technology, College of Pharmacy , Jordon University of Science and Technology , Irbid , Jordan
| | - Dexi Liu
- b Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy , University of Georgia , Athens , GA , USA
| |
Collapse
|
30
|
Zhang Z, Zhou Y, Zhou Z, Piao Y, Kalva N, Liu X, Tang J, Shen Y. Synthesis of enzyme-responsive phosphoramidate dendrimers for cancer drug delivery. Polym Chem 2018. [DOI: 10.1039/c7py01492a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Enzyme-responsive phosphoramidate dendrimers were successfully synthesized and their surfaces were modified with zwitterionic groups for cancer drug delivery.
Collapse
Affiliation(s)
- Zhen Zhang
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yongcun Zhou
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhuxian Zhou
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Ying Piao
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Nagendra Kalva
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiangrui Liu
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jianbin Tang
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Youqing Shen
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
31
|
Camarada MB. PAMAM Dendrimers as Support for the Synthesis of Gold Nanoparticles: Understanding the Effect of the Terminal Groups. J Phys Chem A 2017; 121:8124-8135. [DOI: 10.1021/acs.jpca.7b08272] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. B. Camarada
- Centro de Genómica
y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
32
|
MacEwan SR, Chilkoti A. From Composition to Cure: A Systems Engineering Approach to Anticancer Drug Carriers. Angew Chem Int Ed Engl 2017; 56:6712-6733. [PMID: 28028871 PMCID: PMC6372097 DOI: 10.1002/anie.201610819] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Indexed: 12/21/2022]
Abstract
The molecular complexity and heterogeneity of cancer has led to a persistent, and as yet unsolved, challenge to develop cures for this disease. The pharmaceutical industry focuses the bulk of its efforts on the development of new drugs, but an alternative approach is to improve the delivery of existing drugs with drug carriers that can manipulate when, where, and how a drug exerts its therapeutic effect. For the treatment of solid tumors, systemically delivered drug carriers face significant challenges that are imposed by the pathophysiological barriers that lie between their site of administration and their site of therapeutic action in the tumor. Furthermore, drug carriers face additional challenges in their translation from preclinical validation to clinical approval and adoption. Addressing this diverse network of challenges requires a systems engineering approach for the rational design of optimized carriers that have a realistic prospect for translation from the laboratory to the patient.
Collapse
Affiliation(s)
- Sarah R MacEwan
- Department of Biomedical Engineering, Duke University, P.O. Box 90281, Durham, NC, 27708, USA
- Research Triangle MRSEC, Durham, NC, 27708, USA
- Present address: Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, P.O. Box 90281, Durham, NC, 27708, USA
- Research Triangle MRSEC, Durham, NC, 27708, USA
| |
Collapse
|
33
|
Zhou Z, Liu X, Zhu D, Wang Y, Zhang Z, Zhou X, Qiu N, Chen X, Shen Y. Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Adv Drug Deliv Rev 2017; 115:115-154. [PMID: 28778715 DOI: 10.1016/j.addr.2017.07.021] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Gene therapy represents a promising cancer treatment featuring high efficacy and limited side effects, but it is stymied by a lack of safe and efficient gene-delivery vectors. Cationic polymers and lipid-based nonviral gene vectors have many advantages and have been extensively explored for cancer gene delivery, but their low gene-expression efficiencies relative to viral vectors limit their clinical translations. Great efforts have thus been devoted to developing new carrier materials and fabricating functional vectors aimed at improving gene expression, but the overall efficiencies are still more or less at the same level. This review analyzes the cancer gene-delivery cascade and the barriers, the needed nanoproperties and the current strategies for overcoming these barriers, and outlines PEGylation, surface-charge, size, and stability dilemmas in vector nanoproperties to efficiently accomplish the cancer gene-delivery cascade. Stability, surface, and size transitions (3S Transitions) are proposed to resolve those dilemmas and strategies to realize these transitions are comprehensively summarized. The review concludes with a discussion of the future research directions to design high-performance nonviral gene vectors.
Collapse
Affiliation(s)
- Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xiangrui Liu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Dingcheng Zhu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Yue Wang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Zhen Zhang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xuefei Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Nasha Qiu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xuesi Chen
- Changchun Institute of Applied Chemistry, Key Lab of Polymer Ecomaterials, Changchun, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China.
| |
Collapse
|
34
|
MacEwan SR, Chilkoti A. Von der Zusammensetzung zur Heilung: ein systemtechnischer Ansatz zur Entwicklung von Trägern für Tumortherapeutika. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Sarah R. MacEwan
- Department of Biomedical Engineering; Duke University; P.O. Box 90281 Durham NC 27708 USA
- Research Triangle MRSEC; Durham NC 27708 USA
- Institute for Molecular Engineering; University of Chicago; Chicago IL 60637 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering; Duke University; P.O. Box 90281 Durham NC 27708 USA
- Research Triangle MRSEC; Durham NC 27708 USA
| |
Collapse
|
35
|
Battistella C, Klok HA. Controlling and Monitoring Intracellular Delivery of Anticancer Polymer Nanomedicines. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700022] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/03/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Claudia Battistella
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| |
Collapse
|
36
|
Sun Q, Zhou Z, Qiu N, Shen Y. Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606628. [PMID: 28234430 DOI: 10.1002/adma.201606628] [Citation(s) in RCA: 681] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/24/2017] [Indexed: 05/21/2023]
Abstract
Current cancer nanomedicines can only mitigate adverse effects but fail to enhance therapeutic efficacies of anticancer drugs. Rational design of next-generation cancer nanomedicines should aim to enhance their therapeutic efficacies. Taking this into account, this review first analyzes the typical cancer-drug-delivery process of an intravenously administered nanomedicine and concludes that the delivery involves a five-step CAPIR cascade and that high efficiency at every step is critical to guarantee high overall therapeutic efficiency. Further analysis shows that the nanoproperties needed in each step for a nanomedicine to maximize its efficiency are different and even opposing in different steps, particularly what the authors call the PEG, surface-charge, size and stability dilemmas. To resolve those dilemmas in order to integrate all needed nanoproperties into one nanomedicine, stability, surface and size nanoproperty transitions (3S transitions for short) are proposed and the reported strategies to realize these transitions are comprehensively summarized. Examples of nanomedicines capable of the 3S transitions are discussed, as are future research directions to design high-performance cancer nanomedicines and their clinical translations.
Collapse
Affiliation(s)
- Qihang Sun
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China
| | - Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China
| | - Nasha Qiu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China
| |
Collapse
|
37
|
Wang H, Huang Q, Chang H, Xiao J, Cheng Y. Stimuli-responsive dendrimers in drug delivery. Biomater Sci 2017; 4:375-90. [PMID: 26806314 DOI: 10.1039/c5bm00532a] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dendrimers have shown great promise as carriers in drug delivery due to their unique structures and superior properties. However, the precise control of payload release from a dendrimer matrix still presents a great challenge. Stimuli-responsive dendrimers that release payloads in response to a specific trigger could offer distinct clinical advantages over those dendrimers that release payloads passively. These smart polymers are designed to specifically release their payloads at targeted regions or at constant release profiles for specific therapies. They represent an attractive alternative to targeted dendrimers and enable dendrimer-based therapeutics to be more effective, more convenient, and much safer. The wide range of stimuli, either endogenous (acid, enzyme, and redox potentials) or exogenous (light, ultrasound, and temperature change), allows great flexibility in the design of stimuli-responsive dendrimers. In this review article, we will highlight recent advances and opportunities in the development of stimuli-responsive dendrimers for the treatment of various diseases, with emphasis on cancer. Specifically, the applications of stimuli-responsive dendrimers in drug delivery as well as their mechanisms are intensively reviewed.
Collapse
Affiliation(s)
- Hui Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China. and Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China.
| | - Quan Huang
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China.
| | - Hong Chang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China.
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China.
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China.
| |
Collapse
|
38
|
Wang M, Li Y, HuangFu M, Xiao Y, Zhang T, Han M, Xu D, Li F, Ling D, Jin Y, Gao J. Pluronic-attached polyamidoamine dendrimer conjugates overcome drug resistance in breast cancer. Nanomedicine (Lond) 2016; 11:2917-2934. [PMID: 27780403 DOI: 10.2217/nnm-2016-0252] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To design pluronic F68 (PF68)-conjugated polyamidoamine (PAMAM) dendrimer conjugates for doxorubicin (DOX) delivery for overcoming multidrug resistance, and clarify the reversal mechanism. MATERIALS & METHODS A series of PAMAM-PF68 conjugates were designed. The antitumor activity of the DOX-loaded conjugates was evaluated against MCF-7/ADR cells, tumor spheroids and tumors. Several bioinformatics were detected to characterize the reversal mechanism. RESULTS Increased antitumor activity of the DOX-loaded conjugates was achieved in vitro and in vivo. The complexes induced more DOX accumulation via caveolae-mediated endocytosis. After escaping from the endosome/lysosome, the nuclear trafficking of DOX was achieved. Apoptosis was significantly increased by regulating mitochondrial function and gene expression. CONCLUSION With optimized PF68 modification, PAMAM-PF68 conjugates can significantly overcome multidrug resistance in vitro and in vivo.
Collapse
Affiliation(s)
- Meng Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Ying Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Mingyi HuangFu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yi Xiao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Tianyuan Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Donghang Xu
- Department of Pharmacy, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
39
|
Guha A, Biswas N, Bhattacharjee K, Sahoo N, Kuotsu K. pH responsive cylindrical MSN for oral delivery of insulin-design, fabrication and evaluation. Drug Deliv 2016; 23:3552-3561. [DOI: 10.1080/10717544.2016.1209796] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
| | | | - Kaustav Bhattacharjee
- Department of Metallurgical and Material Engineering, Jadavpur University, Kolkata, West Bengal, India
| | | | | |
Collapse
|
40
|
Guo X, Wang L, Wei X, Zhou S. Polymer-based drug delivery systems for cancer treatment. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28252] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xing Guo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| | - Lin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| | - Xiao Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| |
Collapse
|
41
|
Cheng B, He H, Huang T, Berr SS, He J, Fan D, Zhang J, Xu P. Gold Nanosphere Gated Mesoporous Silica Nanoparticle Responsive to Near-Infrared Light and Redox Potential as a Theranostic Platform for Cancer Therapy. J Biomed Nanotechnol 2016; 12:435-49. [PMID: 26949379 DOI: 10.1166/jbn.2016.2195] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A gold/mesoporous silica hybrid nanoparticle (GoMe), which possesses the best of both conventional gold nanoparticles and mesoporous silica nanoparticles, such as excellent photothermal converting ability as well as high drug loading capacity and triggerable drug release, has been developed. In contrast to gold nanorod and other heat generating gold nanoparticles, GoMe is photothermal stable and can be repetitively activated through NIR irradiation. Doxorubicin loaded GoMe (DOX@GoMe) is sensitive to both NIR irradiation and intracellularly elevated redox potential. DOX@GoMe coupled with NIR irradiation exhibits a synergistic effect of photothermal therapy and chemotherapy in killing cancer cells. Furthermore, 64Cu-labeled GoMe can successfully detect the existence of clinically relevant spontaneous lung tumors in a urethane-induced lung cancer mouse model through PET imaging. Altogether, GoMe can be utilized as an effective theranostic platform for cancer therapy.
Collapse
|
42
|
Xia J, Tian H, Chen J, Lin L, Guo Z, Han B, Yang H, Feng Z. pH-Triggered Sheddable Shielding System for Polycationic Gene Carriers. Polymers (Basel) 2016; 8:E141. [PMID: 30979234 PMCID: PMC6432142 DOI: 10.3390/polym8040141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 11/28/2022] Open
Abstract
For improving the therapeutic efficiency of tumors and decreasing undesirable side effects, ternary complexes were developed by coating pH-sensitive PEG-b-PLL-g-succinylsulfathiazole (hereafter abbreviated as PPSD) with DNA/PEI polyplexes via electrostatic interaction. PPSD can efficiently shield the surface charge of DNA/PEI. The gene transfection efficiency of ternary complexes was lower than that of DNA/PEI at pH 7.4; however, it recovered to the same level as that of DNA/PEI at pH 6.0, attributed to the pH-triggered release of DNA/PEI from ternary complexes. Cell uptake results also exhibited the same trend as transfection at different pH values. The suitable ability for pH-triggered shielding/deshielding estimated that PPSD demonstrates potential as a shielding system for use in in vivo gene delivery.
Collapse
Affiliation(s)
- Jialiang Xia
- School of Chemistry and Chemical Engineering, Lingnan Normal University, 29 Cunjin Road, Zhanjiang 524048, China.
- Development Center for New Materials Engineering & Technology in Universities of Guangdong, Zhanjiang 524048, China.
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, China.
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, China.
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, China.
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, China.
| | - Bing Han
- School of Chemistry and Chemical Engineering, Lingnan Normal University, 29 Cunjin Road, Zhanjiang 524048, China.
| | - Hongyan Yang
- School of Chemistry and Chemical Engineering, Lingnan Normal University, 29 Cunjin Road, Zhanjiang 524048, China.
| | - Zongcai Feng
- School of Chemistry and Chemical Engineering, Lingnan Normal University, 29 Cunjin Road, Zhanjiang 524048, China.
- Development Center for New Materials Engineering & Technology in Universities of Guangdong, Zhanjiang 524048, China.
| |
Collapse
|
43
|
Hu Y, Gong X, Zhang J, Chen F, Fu C, Li P, Zou L, Zhao G. Activated Charge-Reversal Polymeric Nano-System: The Promising Strategy in Drug Delivery for Cancer Therapy. Polymers (Basel) 2016; 8:E99. [PMID: 30979214 PMCID: PMC6432516 DOI: 10.3390/polym8040099] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 01/06/2023] Open
Abstract
Various polymeric nanoparticles (NPs) with optimal size, tumor-targeting functionalization, or microenvironment sensitive characteristics have been designed to solve several limitations of conventional chemotherapy. Nano-sized polymeric drug carrier systems have remarkably great advantages in drug delivery and cancer therapy, which are still plagued with severe deficiencies, especially insufficient cellular uptake. Recently, surface charge of medical NPs has been demonstrated to play an important role in cellular uptake. NPs with positive charge show higher affinity to anionic cell membranes such that with more efficient cellular internalization, but otherwise cause severe aggregation and fast clearance in circulation. Thus, surface charge-reversal NPs, specifically activated at the tumor site, have shown to elegantly resolve the enhanced cellular uptake in cancer cells vs. non-specific protein adsorption dilemma. Herein, this review mainly focuses on the effect of tumor-site activated surface charge reversal NPs on tumor treatment, including the activated mechanisms and various applications in suppressing cancer cells, killing cancer stem cell and overcoming multidrug resistance, with the emphasis on recent research in these fields. With the comprehensive and in-depth understanding of the activated surface charge reversal NPs, this approach might arouse great interest of scientific research on enhanced efficient polymeric nano-carriers in cancer therapy.
Collapse
Affiliation(s)
- Yichen Hu
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China.
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| | - Jinming Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Fengqian Chen
- Department of Microbiology & Immunology, MCV Campus School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Chaomei Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Liang Zou
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China.
| | - Gang Zhao
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
44
|
Yi H, Liu P, Sheng N, Gong P, Ma Y, Cai L. In situ crosslinked smart polypeptide nanoparticles for multistage responsive tumor-targeted drug delivery. NANOSCALE 2016; 8:5985-5995. [PMID: 26926103 DOI: 10.1039/c5nr07348k] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Smart tumor-targeted drug delivery is crucial for improving the effect of chemotherapy and reducing the adverse effects. Here, we synthesized a smart polypeptide copolymer based on n-butylamine-poly(L-lysine)-b-poly(L-cysteine) (PLL-PLC) with functionalization of folic acid (FA) and 1,2-dicarboxylic-cyclohexene anhydride (DCA) for multistage responsive tumor-targeted drug delivery. The copolymers (FA-PLL(DCA)-PLC) spontaneously crosslinked in situ to form redox and pH dual responsive FA-PLL(DCA)-PLC nanoparticles (FD-NPs), which had a reversible zeta potential around -30 mV at pH 7.4, but switched to +15 mV at pH 5.0. Moreover, FD-NPs effectively loaded DOX with a loading capacity at 15.7 wt%. At pH 7.4, only 24.5% DOX was released within 60 h. However, at pH 5.0, the presence of 10 mM DTT dramatically accelerated DOX release with over 90% of DOX released within 10 h. Although the FD-NPs only enhanced DOX uptake in FA receptor positive (FR(+)) cancer cells at pH 7.4, a weak acidic condition promoted FD-NP-facilitated DOX uptake in both FR(+) HeLa and FR(-) A549 cells, as well as significantly improving cellular binding and end/lysosomal escape. In vivo studies in a HeLa cancer model demonstrated that the charge-reversible FD-NPs delivered DOX into tumors more effectively than charge-irreversible nanoparticles. Hence, these multistage responsive FD-NPs would serve as highly efficient drug vectors for targeted cancer chemotherapy.
Collapse
Affiliation(s)
- Huqiang Yi
- Guangdong Key Laboratory of Nanomedicine, Key Lab for Health Informatics of Chinese Academy of Sciences, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Peng Liu
- Guangdong Key Laboratory of Nanomedicine, Key Lab for Health Informatics of Chinese Academy of Sciences, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Nan Sheng
- Guangdong Key Laboratory of Nanomedicine, Key Lab for Health Informatics of Chinese Academy of Sciences, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, Key Lab for Health Informatics of Chinese Academy of Sciences, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Yifan Ma
- Guangdong Key Laboratory of Nanomedicine, Key Lab for Health Informatics of Chinese Academy of Sciences, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Key Lab for Health Informatics of Chinese Academy of Sciences, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| |
Collapse
|
45
|
Li T, Smet M, Dehaen W, Xu H. Selenium-Platinum Coordination Dendrimers with Controlled Anti-Cancer Activity. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3609-3614. [PMID: 26390019 DOI: 10.1021/acsami.5b07877] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Dendrimers are considered as good vectors for drug delivery in cancer treatment. However, most anticancer drugs are conjugated to the peripheral surface of dendrimers, sacrificing the advantages of monodispersity and stability belonging to dendrimers. Furthermore, dendrimers in current studies of cancer treatment are mostly used as vectors for drugs, whereas the anticancer activity of dendrimers on their own is less studied. Here we have prepared monodisperse selenium-platinum coordination dendrimers with a selenium-platinum core buried inside. Structures of the dendrimers were determined by various characterizations. The coordination dendrimers showed controlled anticancer activity by themselves, without loading additional drugs. The in vivo study further demonstrated their anticancer activity and low toxicity to normal tissues.
Collapse
Affiliation(s)
- Tianyu Li
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing 100084, People's Republic of China
| | - Mario Smet
- Department of Chemistry, University of Leuven , Celestijnenlaan 200F, B-3001 Heverlee (Leuven), Belgium
| | - Wim Dehaen
- Department of Chemistry, University of Leuven , Celestijnenlaan 200F, B-3001 Heverlee (Leuven), Belgium
| | - Huaping Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing 100084, People's Republic of China
| |
Collapse
|
46
|
Zhang C, An T, Wang D, Wan G, Zhang M, Wang H, Zhang S, Li R, Yang X, Wang Y. Stepwise pH-responsive nanoparticles containing charge-reversible pullulan-based shells and poly(β-amino ester)/poly(lactic-co-glycolic acid) cores as carriers of anticancer drugs for combination therapy on hepatocellular carcinoma. J Control Release 2016; 226:193-204. [PMID: 26896737 DOI: 10.1016/j.jconrel.2016.02.030] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/09/2016] [Accepted: 02/15/2016] [Indexed: 01/01/2023]
Abstract
Stepwise pH-responsive nanoparticle system containing charge reversible pullulan-based (CAPL) shell and poly(β-amino ester) (PBAE)/poly(lactic-co-glycolic acid) (PLAG) core is designed to be used as carriers of paclitaxel (PTX) and combretastatin A4 (CA4) for combining antiangiogenesis and chemotherapy to treat hepatocellular carcinoma (HCC). CAPL-coated PBAE/PLGA (CAPL/PBAE/PLGA) nanoparticles displayed step-by-step responses to weakly acidic tumor microenvironment (pH ≈6.5) and endo/lysosome (pH ≈5.5) respectively through the cleavage of β-carboxylic amide bond in CAPL and the "proton-sponge" effect of PBAE, thus realized the efficient and orderly releases of CA4 and PTX. In human HCC HepG2 cells and human umbilical vein endothelial cells, CAPL/PBAE/PLGA nanoparticles significantly enhanced synergistic effects of PTX and CA4 on cell proliferation and cell migration. In HepG2 tumor-bearing mice, CAPL/PBAE/PLGA nanoparticles showed excellent tumor-targeting capability and remarkably increased inhibitory effects of PTX and CA4 on tumor growth and angiogenesis. In conclusion, this novel nanoparticle system is a promising candidate as carrier for drugs against HCC.
Collapse
Affiliation(s)
- Cong Zhang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, PR China
| | - Tong An
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, PR China
| | - Dan Wang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, PR China
| | - Guoyun Wan
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, PR China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Hemei Wang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, PR China
| | - Sipei Zhang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, PR China
| | - Rongshan Li
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, PR China
| | - Xiaoying Yang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, PR China
| | - Yinsong Wang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, PR China.
| |
Collapse
|
47
|
Song W, Tang Z, Lei T, Wen X, Wang G, Zhang D, Deng M, Tang X, Chen X. Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:377-86. [DOI: 10.1016/j.nano.2015.10.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/10/2015] [Accepted: 10/10/2015] [Indexed: 11/16/2022]
|
48
|
Sun Q, Ma X, Zhang B, Zhou Z, Jin E, Shen Y, Van Kirk EA, Murdoch WJ, Radosz M, Sun W. Fabrication of dendrimer-releasing lipidic nanoassembly for cancer drug delivery. Biomater Sci 2016; 4:958-69. [DOI: 10.1039/c6bm00189k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dendrimer/lipid nanoassemblies could intracellularly or extracellularly release small dendrimers to facilitate cancer drug tumor penetration.
Collapse
Affiliation(s)
- Qihang Sun
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Xinpeng Ma
- Department of Chemical and Petroleum Engineering
- Soft Materials Laboratory
- University of Wyoming
- Laramie
- USA
| | - Bo Zhang
- Department of Chemical and Petroleum Engineering
- Soft Materials Laboratory
- University of Wyoming
- Laramie
- USA
| | - Zhuxian Zhou
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Erlei Jin
- Department of Chemical and Petroleum Engineering
- Soft Materials Laboratory
- University of Wyoming
- Laramie
- USA
| | - Youqing Shen
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | | | | | - Maciej Radosz
- Department of Chemical and Petroleum Engineering
- Soft Materials Laboratory
- University of Wyoming
- Laramie
- USA
| | - Weilin Sun
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
49
|
Novel delivery approaches for cancer therapeutics. J Control Release 2015; 219:248-268. [PMID: 26456750 DOI: 10.1016/j.jconrel.2015.09.067] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/09/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023]
Abstract
Currently, a majority of cancer treatment strategies are based on the removal of tumor mass mainly by surgery. Chemical and physical treatments such as chemo- and radiotherapies have also made a major contribution in inhibiting rapid growth of malignant cells. Furthermore, these approaches are often combined to enhance therapeutic indices. It is widely known that surgery, chemo- and radiotherapy also inhibit normal cells growth. In addition, these treatment modalities are associated with severe side effects and high toxicity which in turn lead to low quality of life. This review encompasses novel strategies for more effective chemotherapeutic delivery aiming to generate better prognosis. Currently, cancer treatment is a highly dynamic field and significant advances are being made in the development of novel cancer treatment strategies. In contrast to conventional cancer therapeutics, novel approaches such as ligand or receptor based targeting, triggered release, intracellular drug targeting, gene delivery, cancer stem cell therapy, magnetic drug targeting and ultrasound-mediated drug delivery, have added new modalities for cancer treatment. These approaches have led to selective detection of malignant cells leading to their eradication with minimal side effects. Lowering multi-drug resistance and involving influx transportation in targeted drug delivery to cancer cells can also contribute significantly in the therapeutic interventions in cancer.
Collapse
|
50
|
He Q, Guo S, Qian Z, Chen X. Development of individualized anti-metastasis strategies by engineering nanomedicines. Chem Soc Rev 2015; 44:6258-6286. [PMID: 26056688 PMCID: PMC4540626 DOI: 10.1039/c4cs00511b] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metastasis is deadly and also tough to treat as it is much more complicated than the primary tumour. Anti-metastasis approaches available so far are far from being optimal. A variety of nanomedicine formulae provide a plethora of opportunities for developing new strategies and means for tackling metastasis. It should be noted that individualized anti-metastatic nanomedicines are different from common anti-cancer nanomedicines as they specifically target different populations of malignant cells. This review briefly introduces the features of the metastatic cascade, and proposes a series of nanomedicine-based anti-metastasis strategies aiming to block each metastatic step. Moreover, we also concisely introduce the advantages of several promising nanoparticle platforms and their potential for constructing state-of-the-art individualized anti-metastatic nanomedicines.
Collapse
Affiliation(s)
- Qianjun He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China.
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|