1
|
Van Guyse JFR, Abbasi S, Toh K, Nagorna Z, Li J, Dirisala A, Quader S, Uchida S, Kataoka K. Facile Generation of Heterotelechelic Poly(2-Oxazoline)s Towards Accelerated Exploration of Poly(2-Oxazoline)-Based Nanomedicine. Angew Chem Int Ed Engl 2024; 63:e202404972. [PMID: 38651732 DOI: 10.1002/anie.202404972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Controlling the end-groups of biocompatible polymers is crucial for enabling polymer-based therapeutics and nanomedicine. Typically, end-group diversification is a challenging and time-consuming endeavor, especially for polymers prepared via ionic polymerization mechanisms with limited functional group tolerance. In this study, we present a facile end-group diversification approach for poly(2-oxazoline)s (POx), enabling quick and reliable production of heterotelechelic polymers to facilitate POxylation. The approach relies on the careful tuning of reaction parameters to establish differential reactivity of a pentafluorobenzyl initiator fragment and the living oxazolinium chain-end, allowing the selective introduction of N-, S-, O-nucleophiles via the termination of the polymerization, and a consecutive nucleophilic para-fluoro substitution. The value of this approach for the accelerated development of nanomedicine is demonstrated through the synthesis of well-defined lipid-polymer conjugates and POx-polypeptide block-copolymers, which are well-suited for drug and gene delivery. Furthermore, we investigated the application of a lipid-POx conjugate for the formulation and delivery of mRNA-loaded lipid nanoparticles for immunization against the SARS-COV-2 virus, underscoring the value of POx as a biocompatible polymer platform.
Collapse
Affiliation(s)
- Joachim F R Van Guyse
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Saed Abbasi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Kazuko Toh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Zlata Nagorna
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Junjie Li
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | - Anjaneyulu Dirisala
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Department of Medical, Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 606-0823, Kyoto, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 113-8510, Tokyo, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| |
Collapse
|
2
|
Sullivan MO, Chen W. Engineering Hepatitis B Virus (HBV) Protein Particles for Therapeutic Delivery. Methods Mol Biol 2024; 2720:115-126. [PMID: 37775661 DOI: 10.1007/978-1-0716-3469-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Nature provides an abundance of proteins whose structures and reactivity have been perfected through evolution to perform specific tasks necessary for biological function. The structural and functional properties of many natural proteins are quite valuable for the construction and customization of drug delivery vehicles. Self-assembling protein nanoparticle platforms are particularly useful scaffolds, as their multi-subunit designs allow the attachment of a high density of modifying molecules such as cell-binding ligands that provide avidity for targeting and facilitate encapsulation of large quantities of therapeutic payload. We explored SpyCatcher/SpyTag conjugation as a system to modify hepatitis B virus (HBV)-like particles (HBV VLPs). Using this simple decoration strategy, we demonstrated efficient and cell-selective killing of inflammatory breast cancer cells via delivery of yeast cytosine deaminase suicide enzymes combined with 5-fluoro-cytosine prodrugs.
Collapse
Affiliation(s)
- Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
3
|
Vikas, Sahu HK, Mehata AK, Viswanadh MK, Priya V, Muthu MS. Dual-receptor-targeted nanomedicines: emerging trends and advances in lung cancer therapeutics. Nanomedicine (Lond) 2022; 17:1375-1395. [PMID: 36317852 DOI: 10.2217/nnm-2021-0470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Among all cancer types, lung cancer is recognized as the most lethal and highly metastatic. The application of targeted nanomedicine loaded with anticancer drugs is highly desirable for successful lung cancer treatment. However, due to the heterogenicity and complexity of lung cancer, the therapeutic effectiveness of a single receptor targeting nanomedicine is unfortunately limited. Therefore, the concept of dual-receptor-targeted nanomedicine is an emerging trend for the advancement in lung cancer therapeutics. In this review, the authors discuss various single- and dual-receptor-targeted nanomedicines that have been developed for lung cancer treatment. Furthermore, the authors also discussed all the types of receptors that can be utilized in combination for the development of dual-receptor-targeted nanomedicines.
Collapse
Affiliation(s)
- Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Hemendra Kumar Sahu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
4
|
Pawar A, Kamble R. Design and development of novel docetaxel –loaded DQAsomes for inducing apoptosis and anti-cancer effect on the breast cancer cells, an in vitro study. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Bilibana MP, Citartan M, Fuku X, Jijana AN, Mathumba P, Iwuoha E. Aptamers functionalized hybrid nanomaterials for algal toxins detection and decontamination in aquatic system: Current progress, opportunities, and challenges. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113249. [PMID: 35104779 DOI: 10.1016/j.ecoenv.2022.113249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Purification and detection of algal toxins is the most effective technique to ensure that people have clean and safe drinking water. To achieve these objectives, various state-of-the-art technologies were designed and fabricated to decontaminate and detect algal toxins in aquatic environments. Amongst these technologies, aptamer-functionalized hybrid nanomaterials conjugates have received significant consideration as a result of their several benefits over other methods, such as good controllable selectivity, low immunogenicity, and biocompatibility. Because of their excellent properties, aptamer-functionalized hybrid nanomaterials conjugates are one of several remarkable agents. Several isolated aptamer sequences for algal toxins are addressed in this review, as well as aptasensor and decontamination aptamer functionalized metal nanoparticle-derived hybrid nanocomposites applications. In addition, we present diverse aptamer-functionalized hybrid nanomaterial conjugates designs and their applications for sensing and decontamination.
Collapse
Affiliation(s)
- Mawethu Pascoe Bilibana
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Marimuthu Citartan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Xolile Fuku
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
| | - Abongile Nwabisa Jijana
- National Innovation Centre, Advanced Material Division, Mintek, 200 Malibongwe Drive, Private Bag x 3015, Johannesburg, Gauteng, South Africa
| | - Penny Mathumba
- National Innovation Centre, Advanced Material Division, Mintek, 200 Malibongwe Drive, Private Bag x 3015, Johannesburg, Gauteng, South Africa
| | - Emmanuel Iwuoha
- SensorLab (University of Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville, 7535 Cape Town, South Africa
| |
Collapse
|
6
|
Teunissen AJP, Burnett ME, Prévot G, Klein ED, Bivona D, Mulder WJM. Embracing nanomaterials' interactions with the innate immune system. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1719. [PMID: 33847441 PMCID: PMC8511354 DOI: 10.1002/wnan.1719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 03/21/2021] [Indexed: 12/17/2022]
Abstract
Immunotherapy has firmly established itself as a compelling avenue for treating disease. Although many clinically approved immunotherapeutics engage the adaptive immune system, therapeutically targeting the innate immune system remains much less explored. Nanomedicine offers a compelling opportunity for innate immune system engagement, as many nanomaterials inherently interact with myeloid cells (e.g., monocytes, macrophages, neutrophils, and dendritic cells) or can be functionalized to target their cell-surface receptors. Here, we provide a perspective on exploiting nanomaterials for innate immune system regulation. We focus on specific nanomaterial design parameters, including size, form, rigidity, charge, and surface decoration. Furthermore, we examine the potential of high-throughput screening and machine learning, while also providing recommendations for advancing the field. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Abraham J. P. Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marianne E. Burnett
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Geoffrey Prévot
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma D. Klein
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel Bivona
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Willem J. M. Mulder
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
7
|
Mo J, Mai Le NP, Priefer R. Evaluating the mechanisms of action and subcellular localization of ruthenium(II)-based photosensitizers. Eur J Med Chem 2021; 225:113770. [PMID: 34403979 DOI: 10.1016/j.ejmech.2021.113770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 01/16/2023]
Abstract
The identification of ruthenium(II) polypyridyl complexes as photosensitizers in photodynamic therapy (PDT) for the treatment of cancer is progressing rapidly. Due to their favorable photophysical and photochemical properties, Ru(II)-based photosensitizers have absorption in the visible spectrum, can be irradiated via one- and two-photon excitation within the PDT window, and yield potent oxygen-dependent and/or oxygen-independent photobiological activities. Herein, we present a current overview of the mechanisms of action and subcellular localization of Ru(II)-based photosensitizers in the treatment of cancer. These photosensitizers are highlighted from a medicinal chemistry and chemical biology perspective. However, although this field is burgeoning, challenges and limitations remain in the photosensitization strategies and clinical translation.
Collapse
Affiliation(s)
- Jiancheng Mo
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Ngoc Phuong Mai Le
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA.
| |
Collapse
|
8
|
Rana A, Bhatnagar S. Advancements in folate receptor targeting for anti-cancer therapy: A small molecule-drug conjugate approach. Bioorg Chem 2021; 112:104946. [PMID: 33989916 DOI: 10.1016/j.bioorg.2021.104946] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Targeted delivery combined with controlled release of drugs has a crucial role in future of personalized medicine. The majority of cancer drugs are intended to interfere with one or more cellular events. Anticancer agents can also be toxic to healthy cells, as healthy cells may also need to proliferate and avoid apoptosis. The focus of this review covers the principles, advantages, drawbacks and summarize criteria that must be met for design of small molecule-drug conjugates (SMDCs) to achieve the desired therapeutic potency with minimal toxicity. SMDCs are composed of a targeting ligand, a releasable bridge, a spacer, and a therapeutic payload. We summarize the criteria for the effective design that influences the selection of tumor specific receptor and optimum elements in the design of SMDCs. We also discuss the criteria for selecting the optimal therapeutic drug payload, spacer and linker. The linker chemistries and cleavage strategies are also discussed. Finally, we review the folate receptor targeting SMDCs that are in preclinical development and in clinical trials.
Collapse
Affiliation(s)
- Abhilash Rana
- Amity Institute of Biotechnology, Amity University, Sector125, Noida, Uttar Pradesh, India.
| | - Seema Bhatnagar
- Amity Institute of Biotechnology, Amity University, Sector125, Noida, Uttar Pradesh, India.
| |
Collapse
|
9
|
Patel TK, Adhikari N, Amin SA, Biswas S, Jha T, Ghosh B. Small molecule drug conjugates (SMDCs): an emerging strategy for anticancer drug design and discovery. NEW J CHEM 2021. [DOI: 10.1039/d0nj04134c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanisms of how SMDCs work. Small molecule drugs are conjugated with the targeted ligand using pH sensitive linkers which allow the drug molecule to get released at lower lysosomal pH. It helps to accumulate the chemotherapeutic agents to be localized in the tumor environment upon cleaving of the pH-labile bonds.
Collapse
Affiliation(s)
- Tarun Kumar Patel
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| | - Nilanjan Adhikari
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Sk. Abdul Amin
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| | - Tarun Jha
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| |
Collapse
|
10
|
Manthe RL, Loeck M, Bhowmick T, Solomon M, Muro S. Intertwined mechanisms define transport of anti-ICAM nanocarriers across the endothelium and brain delivery of a therapeutic enzyme. J Control Release 2020; 324:181-193. [PMID: 32389778 PMCID: PMC7720842 DOI: 10.1016/j.jconrel.2020.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
The interaction of drug delivery systems with tissues is key for their application. An example is drug carriers targeted to endothelial barriers, which can be transported to intra-endothelial compartments (lysosomes) or transcellularly released at the tissue side (transcytosis). Although carrier targeting valency influences this process, the mechanism is unknown. We studied this using polymer nanocarriers (NCs) targeted to intercellular adhesion molecule-1 (ICAM-1), an endothelial-surface glycoprotein whose expression is increased in pathologies characterized by inflammation. A bell-shaped relationship was found between NC targeting valency and the rate of transcytosis, where high and low NC valencies rendered less efficient transcytosis rates than an intermediate valency formulation. In contrast, an inverted bell-shape relationship was found for NC valency and lysosomal trafficking rates. Data suggested a model where NC valency plays an opposing role in the two sub-processes involved in transcytosis: NC binding-uptake depended directly on valency and exocytosis-detachment was inversely related to this parameter. This is because the greater the avidity of the NC-receptor interaction the more efficient uptake becomes, but NC-receptor detachment post-transport is more compromised. Cleavage of the receptor at the basolateral side of endothelial cells facilitated NC transcytosis, likely by helping NC detachment post-transport. Since transcytosis encompasses both sets of events, the full process finds an optimum at the intersection of these inverted relationships, explaining the bell-shaped behavior. NCs also trafficked to lysosomes from the apical side and, additionally, from the basolateral side in the case of high valency NCs which are slower at detaching from the receptor. This explains the opposite behavior of NC valency for transcytosis vs. lysosomal transport. Anti-ICAM NCs were verified to traffic into the brain after intravenous injection in mice, and both cellular and in vivo data showed that intermediate valency NCs resulted in higher delivery of a therapeutic enzyme, acid sphingomyelinase, required for types A and B Niemann-Pick disease.
Collapse
Affiliation(s)
- Rachel L Manthe
- Institute for Bioscience and Biotechnology Research (IBBR) and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA
| | - Maximilian Loeck
- Institute for Bioengineering of Catalonia (IBEC) of the Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Tridib Bhowmick
- Institute for Bioscience and Biotechnology Research (IBBR) and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA
| | - Melani Solomon
- Institute for Bioscience and Biotechnology Research (IBBR) and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research (IBBR) and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA; Institute for Bioengineering of Catalonia (IBEC) of the Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Institution of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08910, Spain.
| |
Collapse
|
11
|
Garcia-Chica J, D Paraiso WK, Tanabe S, Serra D, Herrero L, Casals N, Garcia J, Ariza X, Quader S, Rodriguez-Rodriguez R. An overview of nanomedicines for neuron targeting. Nanomedicine (Lond) 2020; 15:1617-1636. [PMID: 32618490 DOI: 10.2217/nnm-2020-0088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Medical treatments of neuron-related disorders are limited due to the difficulty of targeting brain cells. Major drawbacks are the presence of the blood-brain barrier and the lack of specificity of the drugs for the diseased cells. Nanomedicine-based approaches provide promising opportunities for overcoming these limitations. Although many previous reviews are focused on brain targeting with nanomedicines in general, none of those are concerned explicitly on the neurons, while targeting neuronal cells in central nervous diseases is now one of the biggest challenges in nanomedicine and neuroscience. We review the most relevant advances in nanomedicine design and strategies for neuronal drug delivery that might successfully bridge the gap between laboratory and bedside treatment in neurology.
Collapse
Affiliation(s)
- Jesus Garcia-Chica
- Department of Basic Sciences, Faculty of Medicine & Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Spain
- Department of Biochemistry & Physiology, School of Pharmacy & Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Department of Inorganic & Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
| | - West Kristian D Paraiso
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa, 210-0821, Japan
| | - Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety & Research, National Institute of Health Sciences, Kawasaki, Kanagawa, 210-9501, Japan
| | - Dolors Serra
- Department of Biochemistry & Physiology, School of Pharmacy & Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry & Physiology, School of Pharmacy & Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Núria Casals
- Department of Basic Sciences, Faculty of Medicine & Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Jordi Garcia
- Department of Inorganic & Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Xavier Ariza
- Department of Inorganic & Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Sabina Quader
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa, 210-0821, Japan
| | - Rosalia Rodriguez-Rodriguez
- Department of Basic Sciences, Faculty of Medicine & Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Spain
| |
Collapse
|
12
|
Gabizon AA, de Rosales RT, La-Beck NM. Translational considerations in nanomedicine: The oncology perspective. Adv Drug Deliv Rev 2020; 158:140-157. [PMID: 32526450 DOI: 10.1016/j.addr.2020.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022]
Abstract
Nanoparticles can provide effective control of the release rate and tissue distribution of their drug payload, leading to major pharmacokinetic and pharmacodynamic changes vis-à-vis the conventional administration of free drugs. In the last two decades, we have witnessed major progress in the synthesis and characterization of engineered nanoparticles for imaging and treatment of cancers, resulting in the approval for clinical use of several products and in new and promising approaches. Despite these advances, clinical applications of nanoparticle-based therapeutic and imaging agents remain limited due to biological, immunological, and translational barriers. There is a need to make high impact advances toward translation. In this review, we address biological, toxicological, immunological, and translational aspects of nanomedicine and discuss approaches to move the field forward productively. Overcoming these barriers may dramatically improve the development potential and role of nanomedicines in the oncology field and help meet the high expectations.
Collapse
|
13
|
Enhancement mitochondrial apoptosis in breast cancer cells by paclitaxel-triphenylphosphonium conjugate in DNA aptamer modified nanoparticles. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Li M, Wang Y, Jiang S, Gao Y, Zhang W, Hu S, Cheng X, Zhang C, Sun P, Ke W, Wang G, Song Z, Zhang Y, Zheng QC. Biodistribution and biocompatibility of glycyrrhetinic acid and galactose-modified chitosan nanoparticles as a novel targeting vehicle for hepatocellular carcinoma. Nanomedicine (Lond) 2019; 15:145-161. [PMID: 31782335 DOI: 10.2217/nnm-2018-0455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: The dual-ligand glycyrrhetinic acid and galactose-modified chitosan nanoparticles were designed to further improve the targeting capability to hepatocellular carcinoma (HCC). Materials & methods: The dual-ligand glycyrrhetinic acid and galactose-modified chitosan nanoparticles were fabricated by using ionic gelation method and their characteristics have been measured. Furthermore, the biodistribution and biocompatibility of this targeting vehicle were investigated in vitro and in vivo, respectively. Results: The targeting vehicle was specifically internalized into hepatoma cells in vitro and accumulated into tumor tissue in vivo with high efficacy. Moreover, the vehicle did not induce inflammation reaction and affect morphologies and organ functions. Conclusion: The targeting accumulation in HCC tissue and great biocompatibility of the dual-ligand modified chitosan nanoparticles highlight the potential of delivering anticancer agents into HCC cells.
Collapse
Affiliation(s)
- Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Yan Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.,Department of Gastrointestinal Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223002, PR China
| | - Shuai Jiang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Yang Gao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Weijie Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shaobo Hu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiang Cheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Ping Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Wenbo Ke
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Guoliang Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Qi Chang Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| |
Collapse
|
15
|
Estabrook DA, Ennis AF, Day RA, Sletten EM. Controlling nanoemulsion surface chemistry with poly(2-oxazoline) amphiphiles. Chem Sci 2019; 10:3994-4003. [PMID: 31015940 PMCID: PMC6457192 DOI: 10.1039/c8sc05735d] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
Emulsions are dynamic materials that have been extensively employed within pharmaceutical, food and cosmetic industries. However, their use beyond conventional applications has been hindered by difficulties in surface functionalization, and an inability to selectively control physicochemical properties. Here, we employ custom poly(2-oxazoline) block copolymers to overcome these limitations. We demonstrate that poly(2-oxazoline) copolymers can effectively stabilize nanoscale droplets of hydrocarbon and perfluorocarbon in water. The controlled living polymerization of poly(2-oxazoline)s allows for the incorporation of chemical handles into the surfactants such that covalent modification of the emulsion surface can be performed. Through post-emulsion modification of these new surfactants, we are able to access nanoemulsions with modified surface chemistries, yet consistent sizes. By decoupling size and surface charge, we explore structure-activity relationships involving the cellular uptake of nanoemulsions in both macrophage and non-macrophage cell lines. We conclude that the cellular uptake and cytotoxicity of poly(2-oxazoline)-stabilized droplets can be systematically tuned via chemical modification of emulsion surfaces.
Collapse
Affiliation(s)
- Daniel A Estabrook
- Department of Chemistry and Biochemistry , University of California , 607 Charles E. Young, Dr. E. , Los Angeles , CA 90095 , USA .
| | - Amanda F Ennis
- Department of Chemistry and Biochemistry , University of California , 607 Charles E. Young, Dr. E. , Los Angeles , CA 90095 , USA .
| | - Rachael A Day
- Department of Chemistry and Biochemistry , University of California , 607 Charles E. Young, Dr. E. , Los Angeles , CA 90095 , USA .
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry , University of California , 607 Charles E. Young, Dr. E. , Los Angeles , CA 90095 , USA .
| |
Collapse
|
16
|
Zhuang C, Guan X, Ma H, Cong H, Zhang W, Miao Z. Small molecule-drug conjugates: A novel strategy for cancer-targeted treatment. Eur J Med Chem 2019; 163:883-895. [DOI: 10.1016/j.ejmech.2018.12.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
|
17
|
Liu Y, Hui Y, Ran R, Yang G, Wibowo D, Wang H, Middelberg APJ, Zhao C. Synergetic Combinations of Dual-Targeting Ligands for Enhanced In Vitro and In Vivo Tumor Targeting. Adv Healthc Mater 2018; 7:e1800106. [PMID: 29797508 DOI: 10.1002/adhm.201800106] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/15/2018] [Indexed: 11/11/2022]
Abstract
The concept of dual-ligand targeting has been around for quite some time, but remains controversial due to the intricate interplay between so many different factors such as the choice of dual ligands, their densities, ratios and length matching, etc. Herein, the synthesis of a combinatorial library of single and dual-ligand nanoparticles with systematically varied properties (ligand densities, ligand ratios, and lengths) for tumor targeting is reported. Folic acid (FA) and hyaluronic acid (HA) are used as two model targeting ligands. It is found that the length matching and ligand ratio play critical roles in achieving the synergetic effect of the dual-ligand targeting. When FA is presented on the nanoparticle surface through a 5K polyethylene glycol (PEG) chain, the dual ligand formulations using the HA with either 5K or 10K length do not show any targeting effect, but the right length of HA (7K) with a careful selection of the right ligand ratio do enhance the targeting efficiency and specificity significantly. Further in vitro 3D tumor spheroid models and in vivo xenograft mice models confirm the synergetic targeting efficiency of the optimal dual-ligand formulation (5F2H7K ). This work provides a valuable insight into the design of dual-ligand targeting nanosystems.
Collapse
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Yue Hui
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Rui Ran
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Guang‐Ze Yang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - David Wibowo
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Hao‐Fei Wang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Anton P. J. Middelberg
- Faculty of Engineering Computer and Mathematical Sciences The University of Adelaide Adelaide SA 5005 Australia
| | - Chun‐Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| |
Collapse
|
18
|
Yewale C, Baradia D, Patil S, Bhatt P, Amrutiya J, Gandhi R, Kore G, Misra A. Docetaxel loaded immunonanoparticles delivery in EGFR overexpressed breast carcinoma cells. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.03.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Zhang H, Wu T, Yu W, Ruan S, He Q, Gao H. Ligand Size and Conformation Affect the Behavior of Nanoparticles Coated with in Vitro and in Vivo Protein Corona. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9094-9103. [PMID: 29473734 DOI: 10.1021/acsami.7b16096] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Protein corona is immediately established on the surface of nanoparticles upon their introduction into biological milieu. Several studies have shown that the targeting efficiency of ligand-modified nanoparticles is attenuated or abolished owing to the protein adsorption. Here, transferrin receptor-targeting ligands, including LT7 (CHAIYPRH), DT7 (hrpyiahc, all d-form amino acids), and transferrin, were used to identify the influence of the ligand size and conformation on protein corona formation. The results showed that the targeting capacity of ligand-modified nanoparticles was lost after incubation with plasma in vitro, whereas it was partially retained after in vivo corona formation. Results from sodium dodecyl sulfate polyacrylamide gel electrophoresis and liquid chromatography-mass spectrometry revealed the difference in the composition of in vitro and in vivo corona, wherein the ligand size and conformation played a critical role. Differences were observed in cellular internalization and exocytosis profiles on the basis of the ligand and corona source.
Collapse
|
20
|
Belfiore L, Saunders DN, Ranson M, Thurecht KJ, Storm G, Vine KL. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. J Control Release 2018; 277:1-13. [PMID: 29501721 DOI: 10.1016/j.jconrel.2018.02.040] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 01/03/2023]
Abstract
The development of therapeutic resistance to targeted anticancer therapies remains a significant clinical problem, with intratumoral heterogeneity playing a key role. In this context, improving the therapeutic outcome through simultaneous targeting of multiple tumor cell subtypes within a heterogeneous tumor is a promising approach. Liposomes have emerged as useful drug carriers that can reduce systemic toxicity and increase drug delivery to the tumor site. While clinically used liposomal drug formulations show marked therapeutic advantages over free drug formulations, ligand-functionalized liposomes that can target multiple tumor cell subtypes may further improve the therapeutic efficacy by facilitating drug delivery to a broader population of tumor cells making up the heterogeneous tumor tissue. Ligand-directed liposomes enable the so-called active targeting of cell receptors via surface-attached ligands that direct drug uptake into tumor cells or tumor-associated stromal cells, and so can increase the selectivity of drug delivery. Despite promising preclinical results demonstrating improved targeting and anti-tumor effects of ligand-directed liposomes, there has been limited translation of this approach to the clinic. Key challenges for translation include the lack of established methods to scale up production and comprehensively characterize ligand-functionalized liposome formulations, as well as the inadequate recapitulation of in vivo tumors in the preclinical models currently used to evaluate their performance. Herein, we discuss the utility of recent ligand-directed liposome approaches, with a focus on dual-ligand liposomes, for the treatment of solid tumors and examine the drawbacks limiting their progression to clinical adoption.
Collapse
Affiliation(s)
- Lisa Belfiore
- Illawarra Health and Medical Research Institute, Centre for Medical and Molecular Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Darren N Saunders
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Centre for Medical and Molecular Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology (AIBN), Centre for Advanced Imaging (CAI), Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Australia
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, CG, The Netherlands
| | - Kara L Vine
- Illawarra Health and Medical Research Institute, Centre for Medical and Molecular Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
21
|
Ding HM, Ma YQ. Computational approaches to cell-nanomaterial interactions: keeping balance between therapeutic efficiency and cytotoxicity. NANOSCALE HORIZONS 2018; 3:6-27. [PMID: 32254106 DOI: 10.1039/c7nh00138j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Owing to their unique properties, nanomaterials have been widely used in biomedicine since they have obvious inherent advantages over traditional ones. However, nanomaterials may also cause dysfunction in proteins, genes and cells, resulting in cytotoxic and genotoxic responses. Recently, more and more attention has been paid to these potential toxicities of nanomaterials, especially to the risks of nanomaterials to human health and safety. Therefore, when using nanomaterials for biomedical applications, it is of great importance to keep the balance between therapeutic efficiency and cytotoxicity (i.e., increase the therapeutic efficiency as well as decrease the potential toxicity). This requires a deeper understanding of the interactions between various types of nanomaterials and biological systems at the nano/bio interface. In this review, from the point of view of theoretical researchers, we will present the current status regarding the physical mechanism of cytotoxicity caused by nanomaterials, mainly based on recent simulation results. In addition, the strategies for minimizing the nanotoxicity naturally and artificially will also be discussed in detail. Furthermore, we should notice that toxicity is not always bad for clinical use since causing the death of specific cells is the main way of treating disease. Enhancing the targeting ability of nanomaterials to diseased cells and minimizing their side effects on normal cells will always be hugely challenging issues in nanomedicine. By combining the latest computational studies with some experimental verifications, we will provide special insights into recent advances regarding these problems, especially for the design of novel environment-responsive nanomaterials.
Collapse
Affiliation(s)
- Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | | |
Collapse
|
22
|
Xia QS, Ding HM, Ma YQ. Can dual-ligand targeting enhance cellular uptake of nanoparticles? NANOSCALE 2017; 9:8982-8989. [PMID: 28447687 DOI: 10.1039/c7nr01020f] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dual ligand targeting to different types of over-expressed receptors on cell surfaces is a promising strategy in nanomedicine. Here, by using dissipative particle dynamics simulations, the effect of the surface distribution and physicochemical properties of dual ligands on the cellular uptake of nanoparticles is systematically studied. It is found that the spontaneous rearrangement of dual ligands (from random to patterned distribution) on the nanoparticle surface can enhance the cellular uptake of nanoparticles. While the short length of ligands may restrict the ligand rearrangement, nanoparticles coated with short dual ligands cannot be fully wrapped by cell membranes unless the dual ligands are initially separated on the nanoparticle surface. Besides, when there exists a length mismatch or non-specific interaction between the dual ligands, dual-ligand targeting cannot enhance the uptake efficiency, either. Further, we also provide the design guidelines for surface decoration, and find that the Janus nanoparticle can make the most of dual-ligand targeting. These results can help understand how to better use dual ligands to achieve efficient cellular uptake, which may provide significant insights into the optimal design of future nanomaterials in drug delivery.
Collapse
Affiliation(s)
- Qiang-Sheng Xia
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China.
| | | | | |
Collapse
|
23
|
Xiong J, Gao H. Matrix metalloproteases-responsive nanomaterials for tumor targeting diagnosis and treatment. J Microencapsul 2017; 34:440-453. [PMID: 28617063 DOI: 10.1080/02652048.2017.1343873] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jingyuan Xiong
- Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Dai W, Wang X, Song G, Liu T, He B, Zhang H, Wang X, Zhang Q. Combination antitumor therapy with targeted dual-nanomedicines. Adv Drug Deliv Rev 2017; 115:23-45. [PMID: 28285944 DOI: 10.1016/j.addr.2017.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 01/01/2023]
Abstract
Combination therapy is one of the important treatment strategies for cancer at present. However, the outcome of current combination therapy based on the co-administration of conventional dosage forms is suboptimal, due to the short half-lives of chemodrugs, their deficient tumor selectivity and so forth. Nanotechnology-based targeted delivery systems show great promise in addressing the associated problems and providing superior therapeutic benefits. In this review, we focus on the combination of therapeutic strategies between different nanomedicines or drug-loaded nanocarriers, rather than the co-delivery of different drugs via a single nanocarrier. We introduce the general concept of various targeting strategies of nanomedicines, present the principles of combination antitumor therapy with dual-nanomedicines, analyze their advantages and limitations compared with co-delivery strategies, and overview the recent advances of combination therapy based on targeted nanomedicines. Finally, we reviewed the challenges and future perspectives regarding the selection of therapeutic agents, targeting efficiency and the gap between the preclinical and clinical outcome.
Collapse
Affiliation(s)
- Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoyou Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Ge Song
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Tongzhou Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| |
Collapse
|
25
|
Louage B, De Wever O, Hennink WE, De Geest BG. Developments and future clinical outlook of taxane nanomedicines. J Control Release 2017; 253:137-152. [DOI: 10.1016/j.jconrel.2017.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 02/09/2023]
|
26
|
Chakrabortty S, Agrawalla BK, Stumper A, Vegi NM, Fischer S, Reichardt C, Kögler M, Dietzek B, Feuring-Buske M, Buske C, Rau S, Weil T. Mitochondria Targeted Protein-Ruthenium Photosensitizer for Efficient Photodynamic Applications. J Am Chem Soc 2017; 139:2512-2519. [PMID: 28097863 PMCID: PMC5588099 DOI: 10.1021/jacs.6b13399] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Organelle-targeted
photosensitization represents a promising approach
in photodynamic therapy where the design of the active photosensitizer
(PS) is very crucial. In this work, we developed a macromolecular
PS with multiple copies of mitochondria-targeting groups and ruthenium
complexes that displays highest phototoxicity toward several cancerous
cell lines. In particular, enhanced anticancer activity was demonstrated
in acute myeloid leukemia cell lines, where significant impairment
of proliferation and clonogenicity occurs. Finally, attractive two-photon
absorbing properties further underlined the great significance of
this PS for mitochondria targeted PDT applications in deep tissue
cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Christian Reichardt
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT) Jena , Albert-Einstein-Straße 9, 07745 Jena, Germany
| | | | - Benjamin Dietzek
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT) Jena , Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Michaela Feuring-Buske
- Department of Internal Medicine III, University Hospital Ulm , Albert-Einstein Allee 23, 89081, Ulm, Germany
| | | | | | - Tanja Weil
- Max-Planck-Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
27
|
Bianchi E, Capone B, Coluzza I, Rovigatti L, van Oostrum PDJ. Limiting the valence: advancements and new perspectives on patchy colloids, soft functionalized nanoparticles and biomolecules. Phys Chem Chem Phys 2017; 19:19847-19868. [DOI: 10.1039/c7cp03149a] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Artistic representation of limited valance units consisting of a soft core (in blue) and a small number of flexible bonding patches (in orange).
Collapse
Affiliation(s)
- Emanuela Bianchi
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Institute for Theoretical Physics
| | - Barbara Capone
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Dipartimento di Scienze
| | - Ivan Coluzza
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
| | - Lorenzo Rovigatti
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Rudolf Peierls Centre for Theoretical Physics
| | - Peter D. J. van Oostrum
- Department of Nanobiotechnology
- Institute for Biologically Inspired Materials
- University of Natural Resources and Life Sciences
- A-1190 Vienna
- Austria
| |
Collapse
|
28
|
Gabizon AA, Patil Y, La-Beck NM. New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist Updat 2016; 29:90-106. [DOI: 10.1016/j.drup.2016.10.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/16/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022]
|
29
|
Serrano D, Manthe RL, Paul E, Chadha R, Muro S. How Carrier Size and Valency Modulate Receptor-Mediated Signaling: Understanding the Link between Binding and Endocytosis of ICAM-1-Targeted Carriers. Biomacromolecules 2016; 17:3127-3137. [PMID: 27585187 PMCID: PMC5831250 DOI: 10.1021/acs.biomac.6b00493] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Targeting of drug carriers to endocytic cell receptors facilitates intracellular drug delivery. Carrier size and number of targeting moieties (valency) influence cell binding and uptake. However, how these parameters influence receptor-mediated cell signaling (the link between binding and uptake) remains uncharacterized. We studied this using polymer carriers of different sizes and valencies, targeted to endothelial intercellular adhesion molecule-1 (ICAM-1), a marker overexpressed in many pathologies. Unexpectedly, induction of cell signals (ceramide and protein kinase C (PKC) enrichment and activation) and uptake, were independent of carrier avidity, total number of carriers bound per cell, cumulative cell surface area occupied by carriers, number of targeting antibodies at the carrier-cell contact, and cumulative receptor engagement by all bound carriers. Instead, "valency density" (number of antibodies per carrier surface area) ruled signaling, and carrier size independently influenced uptake. These results are key to understanding the interplay between carrier design parameters and receptor-mediated signaling conducive to endocytosis, paramount for intracellular drug delivery.
Collapse
Affiliation(s)
- Daniel Serrano
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-4450, USA
| | - Rachel L. Manthe
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA
| | - Eden Paul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA
| | - Rishi Chadha
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742-4450, USA
| | - Silvia Muro
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742-4450, USA
| |
Collapse
|
30
|
Marega R, Prasetyanto EA, Michiels C, De Cola L, Bonifazi D. Fast Targeting and Cancer Cell Uptake of Luminescent Antibody-Nanozeolite Bioconjugates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5431-5441. [PMID: 27510846 DOI: 10.1002/smll.201601447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/26/2016] [Indexed: 05/24/2023]
Abstract
Understanding the targeted cellular uptake of nanomaterials is an essential step to engineer and program functional and effective biomedical devices. In this respect, the targeting and ultrafast uptake of zeolite nanocrystals functionalized with Cetuximab antibodies (Ctxb) by cells overexpressing the epidermal growth factor receptor are described here. Biochemical assays show that the cellular uptake of the bioconjugate in the targeted cancer cells already begins 15 min after incubation, at a rate around tenfold faster than that observed in the negative control cells. These findings further show the role of Ctxb exposed at the surfaces of the zeolite nanocrystals in mediating the targeted and rapid cellular uptake. By using temperature and pharmacological inhibitors as modulators of the internalization pathways, the results univocally suggest a dissipative uptake mechanism of these nanomaterials, which seems to occur using different internalization pathways, according to the targeting properties of these nanocrystals. Owing to the ultrafast uptake process, harmless for the cell viability, these results further pave the way for the design of novel theranostic tools based on nanozeolites.
Collapse
Affiliation(s)
- Riccardo Marega
- Namur Research College (NARC) and Department of Chemistry, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Eko Adi Prasetyanto
- Institut de science et d'Ingénierie Supramoléculaire (ISIS), Université de Strasbourg, 8 Rue Gaspard Monge, BP 70028, Strasbourg, F-67000, France
- Karlsruher Institut für Technologie KIT-INT, Karlsruhe, D-76131, Germany
| | - Carine Michiels
- Cellular Biology Research Unit - NARILIS, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Luisa De Cola
- Institut de science et d'Ingénierie Supramoléculaire (ISIS), Université de Strasbourg, 8 Rue Gaspard Monge, BP 70028, Strasbourg, F-67000, France.
- Karlsruher Institut für Technologie KIT-INT, Karlsruhe, D-76131, Germany.
| | - Davide Bonifazi
- Namur Research College (NARC) and Department of Chemistry, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium.
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom.
| |
Collapse
|
31
|
Hu G, Cun X, Ruan S, Shi K, Wang Y, Kuang Q, Hu C, Xiao W, He Q, Gao H. Utilizing G2/M retention effect to enhance tumor accumulation of active targeting nanoparticles. Sci Rep 2016; 6:27669. [PMID: 27273770 PMCID: PMC4897711 DOI: 10.1038/srep27669] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/23/2016] [Indexed: 11/21/2022] Open
Abstract
In recent years, active targeting strategies by ligand modification have emerged to enhance tumor accumulation of NP, but their clinical application was strictly restricted due to the complex preparation procedures, poor stability and serious toxicity. An effective and clinical translational strategy is required to satisfy the current problems. Interestingly, the internalization of NP is intimately related with cell cycle and the expression of receptors is not only related with cancer types but also cell cycle progression. So the cellular uptake of ligand modified NP may be related with cell cycle. However, few investigations were reported about the relationship between cell cycle and the internalization of ligand modified NP. Herein, cellular uptake of folic acid (FA) modified NP after utilizing chemotherapeutic to retain the tumor cells in G2/M phase was studied and a novel strategy was designed to enhance the active targeting effect. In our study, docetaxel (DTX) notably synchronized cells in G2/M phase and pretreatment with DTX highly improved in vitro and in vivo tumor cell targeting effect of FA decorated NP (FANP). Since FA was a most common used tumor active targeting ligand, we believe that this strategy possesses broader prospects in clinical application for its simplicity and effectiveness.
Collapse
Affiliation(s)
- Guanlian Hu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Xingli Cun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Shaobo Ruan
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Kairong Shi
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Yang Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Qifang Kuang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Chuan Hu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Wei Xiao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| |
Collapse
|
32
|
Abstract
Receptor-targeted drug delivery has been extensively explored for active targeting. However, the scarce clinical applications of such delivery systems highlight the implicit hurdles in development of such systems. These hurdles begin with lack of knowledge of differential expression of receptors, their accessibility and identification of newer receptors. Similarly, ligand-specific challenges range from proper choice of ligand and conjugation chemistry, to release of drug/delivery system from ligand. Finally, nanocarrier systems, which offer improved loading, biocompatibility and reduced premature degradation, also face multiple challenges. This review focuses on understanding these challenges, and means to overcome such challenges to develop efficient, targeted drug-delivery systems.
Collapse
|
33
|
|
34
|
Lau BLT, Butler CS. Censored at the Nanoscale. Front Microbiol 2016; 7:253. [PMID: 26955373 PMCID: PMC4767895 DOI: 10.3389/fmicb.2016.00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Boris L T Lau
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst Amherst, MA, USA
| | - Caitlyn S Butler
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst Amherst, MA, USA
| |
Collapse
|
35
|
Zhang J, Chen N, Wang H, Gu W, Liu K, Ai P, Yan C, Ye L. Dual-targeting superparamagnetic iron oxide nanoprobes with high and low target density for brain glioma imaging. J Colloid Interface Sci 2016; 469:86-92. [PMID: 26874270 DOI: 10.1016/j.jcis.2016.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 01/08/2023]
Abstract
A major limit of superparamagnetic iron oxide nanoparticles (SPIONs) as a magnetic resonance (MR) imaging nanoprobe in clinical applications is that the SPIONs are unable to reach sufficient concentrations at the tumor site by passive targeting to produce an obvious contrast effect for tumor imaging. Single-targeting SPIONs systems have been applied to improve the contrast effect. However, they still suffer from a lack of efficiency and specificity of the SPIONs to tumors. Herein, we developed folic acid (FA) and cyclic Arg-Gly-Asp-D-Tyr-Lys (c(RGDyK)) dual-targeting nanoprobes based on Cy5.5 labeled Fe3O4 nanoparticles (NPs). The synergistic targeting ability of the dual-targeting Fe3O4 NPs and the effect of the dual-target density on targeting specificity were investigated in brain glioma-bearing mice. In vivo T2-weighted MR imaging of brain glioma-bearing mice and ex vivo near-infrared imaging of brains harboring gliomas suggested that the combination of dual-target increased the uptake of NPs by glioma, consequently, enhanced the contrast effect. Moreover, it was revealed that the density of dual-target plays an important role in targeting specificity.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Ning Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, PR China
| | - Hao Wang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Wei Gu
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Kang Liu
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Penghui Ai
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, PR China
| | - Changxiang Yan
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, PR China.
| | - Ling Ye
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
36
|
Peng Q, Mu H. The potential of protein-nanomaterial interaction for advanced drug delivery. J Control Release 2016; 225:121-32. [PMID: 26812004 DOI: 10.1016/j.jconrel.2016.01.041] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 02/05/2023]
Abstract
Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itself, would be the real substance the organs and cells firstly encounter. Consequently, the behavior of nanomaterials in vivo is uncontrollable and some undesired effects may occur, like rapid clearance from blood stream; risk of capillary blockage; loss of targeting capacity; and potential toxicity. Therefore, protein-nanomaterial interaction is a great challenge for nanomaterial systems and should be inhibited. However, this interaction can also be used to functionalize nanomaterials by forming a selected protein corona. Unlike other decoration using exogenous molecules, nanomaterials functionalized by selected protein corona using endogenous proteins would have greater promise for clinical use. In this review, we aim to provide a comprehensive understanding of protein-nanomaterial interaction. Importantly, a discussion about how to use such interaction is launched and some possible applications of such interaction for advanced drug delivery are presented.
Collapse
Affiliation(s)
- Qiang Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark.
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| |
Collapse
|
37
|
Reuter KG, Perry JL, Kim D, Luft JC, Liu R, DeSimone JM. Targeted PRINT Hydrogels: The Role of Nanoparticle Size and Ligand Density on Cell Association, Biodistribution, and Tumor Accumulation. NANO LETTERS 2015; 15:6371-8. [PMID: 26389971 PMCID: PMC4772408 DOI: 10.1021/acs.nanolett.5b01362] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this Letter, we varied targeting ligand density of an EGFR binding affibody on the surface of two different hydrogel PRINT nanoparticles (80 nm × 320 and 55 nm × 60 nm) and monitored effects on target-cell association, off-target phagocytic uptake, biodistribution, and tumor accumulation. Interestingly, variations in ligand density only significantly altered in vitro internalization rates for the 80 nm × 320 nm particle. However, in vivo, both particle sizes experienced significant changes in biodistribution and pharmacokinetics as a function of ligand density. Overall, nanoparticle size and passive accumulation were the dominant factors eliciting tumor sequestration.
Collapse
Affiliation(s)
- Kevin G. Reuter
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jillian L. Perry
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Dongwook Kim
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - J. Christopher Luft
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Rihe Liu
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Joseph M. DeSimone
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Institute for Nanomedicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Sloan–Kettering Institute for Cancer Research, Memorial Sloan–Kettering Cancer Center, New York, New York 10021, United States
| |
Collapse
|
38
|
Rinkenauer AC, Press AT, Raasch M, Pietsch C, Schweizer S, Schwörer S, Rudolph KL, Mosig A, Bauer M, Traeger A, Schubert US. Comparison of the uptake of methacrylate-based nanoparticles in static and dynamic in vitro systems as well as in vivo. J Control Release 2015; 216:158-68. [PMID: 26277064 DOI: 10.1016/j.jconrel.2015.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/23/2015] [Accepted: 08/04/2015] [Indexed: 12/17/2022]
Abstract
Polymer-based nanoparticles are promising drug delivery systems allowing the development of new drug and treatment strategies with reduced side effects. However, it remains a challenge to screen for new and effective nanoparticle-based systems in vitro. Important factors influencing the behavior of nanoparticles in vivo cannot be simulated in screening assays in vitro, which still represent the main tools in academic research and pharmaceutical industry. These systems have serious drawbacks in the development of nanoparticle-based drug delivery systems, since they do not consider the highly complex processes influencing nanoparticle clearance, distribution, and uptake in vivo. In particular, the transfer of in vitro nanoparticle performance to in vivo models often fails, demonstrating the urgent need for novel in vitro tools that can imitate aspects of the in vivo situation more accurate. Dynamic cell culture, where cells are cultured and incubated in the presence of shear stress has the potential to bridge this gap by mimicking key-features of organs and vessels. Our approach implements and compares a chip-based dynamic cell culture model to the common static cell culture and mouse model to assess its capability to predict the in vivo success more accurately, by using a well-defined poly((methyl methacrylate)-co-(methacrylic acid)) and poly((methyl methacrylate)-co-(2-dimethylamino ethylmethacrylate)) based nanoparticle library. After characterization in static and dynamic in vitro cell culture we were able to show that physiological conditions such as cell-cell communication of co-cultured endothelial cells and macrophages as well as mechanotransductive signaling through shear stress significantly alter cellular nanoparticle uptake. In addition, it could be demonstrated by using dynamic cell cultures that the in vivo situation is simulated more accurately and thereby can be applied as a novel system to investigate the performance of nanoparticle systems in vivo more reliable.
Collapse
Affiliation(s)
- Alexandra C Rinkenauer
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Adrian T Press
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | - Martin Raasch
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany; Institute of Biochemistry II, Jena University Hospital, Friedrich Schiller University Jena, Nonnenplan 2, 07743 Jena, Germany
| | - Christian Pietsch
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Simon Schweizer
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Simon Schwörer
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; Leibniz Institute for Age Research, Fritz Lipmann Institute Jena, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Karl L Rudolph
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; Leibniz Institute for Age Research, Fritz Lipmann Institute Jena, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Alexander Mosig
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany; Institute of Biochemistry II, Jena University Hospital, Friedrich Schiller University Jena, Nonnenplan 2, 07743 Jena, Germany
| | - Michael Bauer
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
39
|
Wongrakpanich A, Geary SM, Joiner MLA, Anderson ME, Salem AK. Mitochondria-targeting particles. Nanomedicine (Lond) 2015; 9:2531-43. [PMID: 25490424 DOI: 10.2217/nnm.14.161] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mitochondria are a promising therapeutic target for the detection, prevention and treatment of various human diseases such as cancer, neurodegenerative diseases, ischemia-reperfusion injury, diabetes and obesity. To reach mitochondria, therapeutic molecules need to not only gain access to specific organs, but also to overcome multiple barriers such as the cell membrane and the outer and inner mitochondrial membranes. Cellular and mitochondrial barriers can be potentially overcome through the design of mitochondriotropic particulate carriers capable of transporting drug molecules selectively to mitochondria. These particulate carriers or vectors can be made from lipids (liposomes), biodegradable polymers, or metals, protecting the drug cargo from rapid elimination and degradation in vivo. Many formulations can be tailored to target mitochondria by the incorporation of mitochondriotropic agents onto the surface and can be manufactured to desired sizes and molecular charge. Here, we summarize recently reported strategies for delivering therapeutic molecules to mitochondria using various particle-based formulations.
Collapse
Affiliation(s)
- Amaraporn Wongrakpanich
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
40
|
Shao XR, Wei XQ, Song X, Hao LY, Cai XX, Zhang ZR, Peng Q, Lin YF. Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif 2015; 48:465-74. [PMID: 26017818 PMCID: PMC6496505 DOI: 10.1111/cpr.12192] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/01/2015] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Up to now, little research has been focussed on discovering how zeta potential independently affects polymeric nanoparticle (NP) cytotoxicity. METHODS Polymeric nanoparticles of gradient zeta potential ranging from -30 mv to +40 mv were fabricated using the same poly-3-hydroxybutyrate-co-3-hydroxyhexanoate (PHBHHx) biopolymer. Interaction forces between nanoparticles and cells were measured by atomic force microscopy (AFM). Cytotoxicity of the nanoparticles to cells was investigated by using MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay. RESULTS Four kinds of nanoparticle with similar sizes and gradient zeta potentials, were fabricated. Those with positive surface charges were found to be more toxic than those with negative surface charges. Positively charged nanoparticles or nanoparticles with higher 'like' charges, offered higher interaction force with cells. CONCLUSION This work proposes a novel approach for investigating interaction between NPs and cells, and discloses the importance of controlling zeta potential in developing NPs-based formulations in the future.
Collapse
Affiliation(s)
- Xiao-Ru Shao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xue-Qin Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xu Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li-Ying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiao-Xiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yun-Feng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
41
|
Sun L, Wu Q, Peng F, Liu L, Gong C. Strategies of polymeric nanoparticles for enhanced internalization in cancer therapy. Colloids Surf B Biointerfaces 2015; 135:56-72. [PMID: 26241917 DOI: 10.1016/j.colsurfb.2015.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/19/2015] [Accepted: 07/07/2015] [Indexed: 02/05/2023]
Abstract
In order to achieve long circulation time and high drug accumulation in the tumor sites via the EPR effects, anticancer drugs have to be protected by non-fouling polymers such as poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO), dextran, and poly(acrylic acid) (PAA). However, the dense layer of stealth polymer also prohibits efficient uptake of anticancer drugs by target cancer cells. For cancer therapy, it is often more desirable to accomplish rapid cellular uptake after anticancer drugs arriving at the pathological site, which could on one hand maximize the therapeutic efficacy and on the other hand reduce probability of drug resistance in cells. In this review, special attention will be focused on the recent potential strategies that can enable drug-loaded polymeric nanoparticles to rapidly recognize cancer cells, leading to enhanced internalization.
Collapse
Affiliation(s)
- Lu Sun
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Qinjie Wu
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Feng Peng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Lei Liu
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Changyang Gong
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
42
|
Mo R, Jiang T, Gu Z. Recent progress in multidrug delivery to cancer cells by liposomes. Nanomedicine (Lond) 2015; 9:1117-20. [PMID: 25118703 DOI: 10.2217/nnm.14.62] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Ran Mo
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
43
|
Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov 2015; 14:203-19. [DOI: 10.1038/nrd4519] [Citation(s) in RCA: 476] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Li Z, Gorfe AA. Receptor-mediated membrane adhesion of lipid-polymer hybrid (LPH) nanoparticles studied by dissipative particle dynamics simulations. NANOSCALE 2015; 7:814-824. [PMID: 25438167 PMCID: PMC5048752 DOI: 10.1039/c4nr04834b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Lipid-polymer hybrid (LPH) nanoparticles represent a novel class of targeted drug delivery platforms that combine the advantages of liposomes and biodegradable polymeric nanoparticles. However, the molecular details of the interaction between LPHs and their target cell membranes remain poorly understood. We have investigated the receptor-mediated membrane adhesion process of a ligand-tethered LPH nanoparticle using extensive dissipative particle dynamics (DPD) simulations. We found that the spontaneous adhesion process follows a first-order kinetics characterized by two distinct stages: a rapid nanoparticle-membrane engagement, followed by a slow growth in the number of ligand-receptor pairs coupled with structural re-organization of both the nanoparticle and the membrane. The number of ligand-receptor pairs increases with the dynamic segregation of ligands and receptors toward the adhesion zone causing an out-of-plane deformation of the membrane. Moreover, the fluidity of the lipid shell allows for strong nanoparticle-membrane interactions to occur even when the ligand density is low. The LPH-membrane avidity is enhanced by the increased stability of each receptor-ligand pair due to the geometric confinement and the cooperative effect arising from multiple binding events. Thus, our results reveal the unique advantages of LPH nanoparticles as active cell-targeting nanocarriers and provide some general principles governing nanoparticle-cell interactions that may aid future design of LPHs with improved affinity and specificity for a given target of interest.
Collapse
|
45
|
Wang Y, Zhang C, Li H, Zhu G, Bao SS, Wei S, Zheng LM, Ren M, Xu Z. Synthesis, characterization and in vitro anticancer activity of the biomolecule-based coordination complex nanotubes. J Mater Chem B 2014; 3:296-305. [PMID: 32261950 DOI: 10.1039/c4tb01135j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Biomolecule-based coordination complex nanoassemblies are a new type of functional materials that are attracting increasing attention. They could possess functionalities that are not readily attainable with other materials, and represent a promising research area that can be exploited in coordination chemistry and materials science. Using bioactive folic acid molecule as a linker, Ni-folate-hydrazine coordination complex nanotubes (CCNTs) have been effectively constructed using the solvothermal method. This is not only the first example of the CCNTs being formed using a nonpyridyl-based molecule as a linker, but also the first report on biomolecule-based CCNTs (BMB-CCNTs) with anticancer activity. It does not require any post treatment to achieve targeted delivery and biocompatible performance. The BMB-CCNTs are sufficiently stable at normal pH of 7.4 until it enters a tumor cell, subsequently it breaks open to release drug in the tumor cell. Furthermore, it overcomes the major limitations of antibody-drug and folate-drug conjugates and is a potential smart multi-functional nanomedicine system. The results of in vitro cytotoxicity assay reveal that the antitumor ability of BMB-CCNTs is similar to cisplatin (CDDP), while their cytotoxicity for normal cells is lower than the latter. Furthermore, BMB-CCNTs exhibit excellent performance as drug carriers and target agents for delivering drugs into tumor cells. Bio-TEM and confocal laser scanning microscope images trace the uptake process of CDDP-CCNTs by a tumor cell. CDDP-CCNTs exhibit dual anti-cancer effect.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Peng Q, Wei XQ, Shao XR, Zhang T, Zhang S, Fu N, Cai XX, Zhang ZR, Lin YF. Nanocomplex Based on Biocompatible Phospholipids and Albumin for Long-Circulation Applications. ACS APPLIED MATERIALS & INTERFACES 2014; 6:13730-7. [PMID: 25058846 DOI: 10.1021/am503179a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qiang Peng
- State Key Laboratory
of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xue-Qin Wei
- State Key Laboratory
of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao-Ru Shao
- State Key Laboratory
of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ting Zhang
- Key Laboratory
of Drug Targeting and Drug Delivery Systems, Ministry of Education,
West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shu Zhang
- State Key Laboratory
of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Na Fu
- State Key Laboratory
of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao-Xiao Cai
- State Key Laboratory
of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhi-Rong Zhang
- Key Laboratory
of Drug Targeting and Drug Delivery Systems, Ministry of Education,
West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yun-Feng Lin
- State Key Laboratory
of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
47
|
Posavec D, Muller R, Bogner U, Bernhardt G, Knor G. Polyvinyl butyral DMN-conjugates for the controlled release of singlet oxygen in medical and antimicrobial applications. BIOMATERIALS AND BIOMECHANICS IN BIOENGINEERING 2014. [DOI: 10.12989/bme.2014.1.2.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|