1
|
Chen Y, Jiang Y, Jiang X, Zhai C, Wang Y, Xu C. Identification and experimental validation of hub genes underlying depressive-like behaviors induced by chronic social defeat stress. Front Pharmacol 2024; 15:1472468. [PMID: 39469623 PMCID: PMC11513628 DOI: 10.3389/fphar.2024.1472468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction: Major depressive disorder (MDD), characterized by severe neuropsychiatric symptoms and significant cognitive deficits, continues to present both etiological and therapeutic challenges. However, the specific underlying mechanisms and therapeutic targets remain unclear. Methods: We analyzed human postmortem dorsolateral prefrontal cortex (dlPFC) samples from MDD patients using datasets GSE53987 and GSE54568, identifying three key genes: AGA, FBXO38, and RGS5. To model depressive-like behavior, we employed chronic social defeat stress (CSDS) and subsequently measured the expression of AGA, FBXO38, and RGS5 in the dlPFC using qPCR and Western blot analysis following CSDS exposure. Results: CSDS significantly induced depressive-like behavior, and both the protein and transcriptional expression levels of AGA, FBXO38, and RGS5 in the dlPFC of mice were markedly reduced after stress, consistent with findings from datasets GSE53987 and GSE54568. Conclusion: Our research suggests that AGA, FBXO38, and RGS5 are potential biomarkers for MDD and could serve as valuable targets for MDD risk prediction.
Collapse
Affiliation(s)
- Yexiang Chen
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunhao Jiang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xingcong Jiang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Caiyu Zhai
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifei Wang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Chi Xu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Nie K, Liu L, Peng L, Zhang M, Zhang C, Xiao B, Xia Z, Huang W. Effects of Meranzin Hydrate On the LncRNA-miRNA-mRNA Regulatory Network in the Hippocampus of a Rat Model of Depression. J Mol Neurosci 2022; 72:910-922. [PMID: 35099722 DOI: 10.1007/s12031-022-01971-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
Meranzin hydrate (MH) is a frequently used antidepressant drug in China; however it underlying mechanism remains unknown. In this study, we aimed to explore whether MH could ameliorate depression-like behavior in rats by regulating the competitive endogenous RNA (ceRNA) network. We developed a depression-like rat model using an unpredictable chronic mild stress (UCMS) protocol, and the differentially expressed lncRNAs, miRNAs, and mRNAs were identified between the model group and MH group. Then, a ceRNA network responding to MH treatment was constructed by their corresponding relationships in the databases. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to explore molecular mechanisms associated with MH treatment. The study indicated that rats in the model group showed loss of weight and deteriorated behavior in behavior tests compared with rats in the normal group. A total of 826 lncRNAs, 121 miRNAs, and 954 mRNAs were differentially expressed in the hippocampus of UCMS rats after MH treatment. In addition, 13 miRNAs were selected, and 12 of them were validated in the hippocampus by qRT-PCR. Then, we predicted upstream lncRNAs and downstream mRNAs of the validated miRNAs and interacted with the results of microarrays. Eventually, a lncRNA-miRNA-mRNA regulatory network, responding to MH treatment, was constructed based on the 314 lncRNAs, 11 miRNAs, and 221 mRNAs. KEGG pathways suggested that these genes may be highly related to Wnt signaling, axon guidance, and MAPK signaling pathways. All these results suggest that MH may be a potential representative compound for the treatment of depression, and its mechanism of action is related to the ceRNA modification.
Collapse
Affiliation(s)
- Kechao Nie
- Department of Integrated Traditional Chinese & Western Internal Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410001, Hunan, China
| | - Lin Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan, China
| | - Luqi Peng
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mei Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Chunhu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Xiao
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zian Xia
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
3
|
Emerging role of microRNAs as novel targets of antidepressants. Asian J Psychiatr 2021; 66:102906. [PMID: 34740127 DOI: 10.1016/j.ajp.2021.102906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/20/2021] [Indexed: 12/31/2022]
|
4
|
Stanić D, Oved K, Israel-Elgali I, Jukić M, Batinić B, Puškaš N, Shomron N, Gurwitz D, Pešić V. Synergy of oxytocin and citalopram in modulating Itgb3/Chl1 interplay: Relevance to sensitivity to SSRI therapy. Psychoneuroendocrinology 2021; 129:105234. [PMID: 33930757 DOI: 10.1016/j.psyneuen.2021.105234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022]
Abstract
Intranasal treatment with oxytocin showed beneficial effects in post-traumatic stress disorder and autism spectrum disorders; however, it was not investigated as much in depression. Keeping in mind the favorable effects of oxytocin on animal models of anxiety and depression, we postulated that synergy between prescribed first choice drugs, selective serotonin reuptake inhibitors (SSRIs) and oxytocin could improve the treatment outcome compared with SSRI monotherapy. Our previous in vitro genome-wide transcriptomic study on human lymphoblastoid cell lines exposed to paroxetine resulted in increase of integrin β3 (ITGB3) gene expression, and further, ITGB3/CHL1 expression ratio was hypothesized to influence the sensitivity to SSRIs. The aim of this report was to explore molecular mechanisms behind the antidepressant-like oxytocin effect, alone and in synergy with citalopram, on behavioral and molecular level in corticosterone treated rats, a paradigm used to model anxiety and depression in animals. Oxytocin treatment (1) ameliorated corticosterone-induced reduction of neurogenesis and number of parvalbumin-positive interneurons in the hippocampal CA1 region, (2) enhanced anxiolytic- and antidepressant-like effects of citalopram in the open field test, and (3) the SSRI/oxytocin synergy persisted in reversing the reduction of the Itgb3 gene expression and increased Itgb3/Chl1 ratio in the prefrontal cortices. These results support the existence of synergy between citalopram and oxytocin in reversing the molecular and behavioral changes induced by corticosterone treatment and point to possible molecular mechanisms behind antidepressant-like effect of oxytocin.
Collapse
Affiliation(s)
- Dušanka Stanić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11121 Belgrade, Serbia
| | - Keren Oved
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ifat Israel-Elgali
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Marin Jukić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11121 Belgrade, Serbia; Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Bojan Batinić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11121 Belgrade, Serbia
| | - Nela Puškaš
- Department of Histology and Embryology, Faculty of Medicine, University of Belgrade, Serbia
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Vesna Pešić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11121 Belgrade, Serbia.
| |
Collapse
|
5
|
Gandawijaya J, Bamford RA, Burbach JPH, Oguro-Ando A. Cell Adhesion Molecules Involved in Neurodevelopmental Pathways Implicated in 3p-Deletion Syndrome and Autism Spectrum Disorder. Front Cell Neurosci 2021; 14:611379. [PMID: 33519384 PMCID: PMC7838543 DOI: 10.3389/fncel.2020.611379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impaired social interaction, language delay and repetitive or restrictive behaviors. With increasing prevalence, ASD is currently estimated to affect 0.5–2.0% of the global population. However, its etiology remains unclear due to high genetic and phenotypic heterogeneity. Copy number variations (CNVs) are implicated in several forms of syndromic ASD and have been demonstrated to contribute toward ASD development by altering gene dosage and expression. Increasing evidence points toward the p-arm of chromosome 3 (chromosome 3p) as an ASD risk locus. Deletions occurring at chromosome 3p result in 3p-deletion syndrome (Del3p), a rare genetic disorder characterized by developmental delay, intellectual disability, facial dysmorphisms and often, ASD or ASD-associated behaviors. Therefore, we hypothesize that overlapping molecular mechanisms underlie the pathogenesis of Del3p and ASD. To investigate which genes encoded in chromosome 3p could contribute toward Del3p and ASD, we performed a comprehensive literature review and collated reports investigating the phenotypes of individuals with chromosome 3p CNVs. We observe that high frequencies of CNVs occur in the 3p26.3 region, the terminal cytoband of chromosome 3p. This suggests that CNVs disrupting genes encoded within the 3p26.3 region are likely to contribute toward the neurodevelopmental phenotypes observed in individuals affected by Del3p. The 3p26.3 region contains three consecutive genes encoding closely related neuronal immunoglobulin cell adhesion molecules (IgCAMs): Close Homolog of L1 (CHL1), Contactin-6 (CNTN6), and Contactin-4 (CNTN4). CNVs disrupting these neuronal IgCAMs may contribute toward ASD phenotypes as they have been associated with key roles in neurodevelopment. CHL1, CNTN6, and CNTN4 have been observed to promote neurogenesis and neuronal survival, and regulate neuritogenesis and synaptic function. Furthermore, there is evidence that these neuronal IgCAMs possess overlapping interactomes and participate in common signaling pathways regulating axon guidance. Notably, mouse models deficient for these neuronal IgCAMs do not display strong deficits in axonal migration or behavioral phenotypes, which is in contrast to the pronounced defects in neuritogenesis and axon guidance observed in vitro. This suggests that when CHL1, CNTN6, or CNTN4 function is disrupted by CNVs, other neuronal IgCAMs may suppress behavioral phenotypes by compensating for the loss of function.
Collapse
Affiliation(s)
- Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Rosemary A Bamford
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
6
|
Downregulation of Adhesion Molecule CHL1 in B Cells but Not T Cells of Patients with Major Depression and in the Brain of Mice with Chronic Stress. Neurotox Res 2020; 38:914-928. [PMID: 32557322 DOI: 10.1007/s12640-020-00234-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022]
Abstract
Depression is a common serious mental disorder with unclear pathogenesis. Currently, specific diagnostic biomarkers are yet to be characterized. The close homolog of L1 (CHL1) is a L1 family cell adhesion molecule involved in the regulation of neuronal survival and growth. Although genome-wide expression profiling of human lymphoblastoid cell lines (LCLs) reported neural cell adhesion molecule (NCAM) L1 as a tentative biomarker for selective serotonin reuptake inhibitor (SSRI) antidepressant response, the involvement of CHL1 in depression is unclear. In this study, using a well-established chronic unpredictable mild stress (CUMS) depression mouse model, we examined the mRNA and protein expression of CHL1 in normal control, CUMS, vehicle (VEH), fluoxetine (FLU), and clozapine (CLO) groups. We found that in the CUMS group, both mRNA and protein expression of CHL1 were downregulated in both the hippocampus and the cortex. Treatment of CUMS mice with FLU and CLO reversed CHL1 mRNA and protein expression. In the human study, we showed that CHL1 expression was significantly downregulated in monocytes of unipolar and bipolar depressive patients compared with healthy donors (HD) at both mRNA and protein levels. Consistently, ELISA showed that CHL1 levels in the serum of patients with depression were reduced and negatively correlated with their HRSD-21 scores. Further flow cytometry studies showed that the reduced number of CHL1 positive CD19+ and CD20+ B cells of patients with depression was subsequently reversed with antidepressant treatment. Our findings suggested that downregulation of CHL1 from both immune cells and the brain may be linked to the immunopathogenesis of depression. In conclusion, CHL1 may be an important predictive marker for both diagnosis and treatment outcome of depression.
Collapse
|
7
|
Pharmacogenomics in Psychiatric Disorders. Pharmacogenomics 2019. [DOI: 10.1016/b978-0-12-812626-4.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Caraci F, Calabrese F, Molteni R, Bartova L, Dold M, Leggio GM, Fabbri C, Mendlewicz J, Racagni G, Kasper S, Riva MA, Drago F. International Union of Basic and Clinical Pharmacology CIV: The Neurobiology of Treatment-resistant Depression: From Antidepressant Classifications to Novel Pharmacological Targets. Pharmacol Rev 2018; 70:475-504. [PMID: 29884653 DOI: 10.1124/pr.117.014977] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder is one of the most prevalent and life-threatening forms of mental illnesses and a major cause of morbidity worldwide. Currently available antidepressants are effective for most patients, although around 30% are considered treatment resistant (TRD), a condition that is associated with a significant impairment of cognitive function and poor quality of life. In this respect, the identification of the molecular mechanisms contributing to TRD represents an essential step for the design of novel and more efficacious drugs able to modify the clinical course of this disorder and increase remission rates in clinical practice. New insights into the neurobiology of TRD have shed light on the role of a number of different mechanisms, including the glutamatergic system, immune/inflammatory systems, neurotrophin function, and epigenetics. Advances in drug discovery processes in TRD have also influenced the classification of antidepressant drugs and novel classifications are available, such as the neuroscience-based nomenclature that can incorporate such advances in drug development for TRD. This review aims to provide an up-to-date description of key mechanisms in TRD and describe current therapeutic strategies for TRD before examining novel approaches that may ultimately address important neurobiological mechanisms not targeted by currently available antidepressants. All in all, we suggest that drug targeting different neurobiological systems should be able to restore normal function but must also promote resilience to reduce the long-term vulnerability to recurrent depressive episodes.
Collapse
Affiliation(s)
- F Caraci
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - F Calabrese
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - R Molteni
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - L Bartova
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - M Dold
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - G M Leggio
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - C Fabbri
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - J Mendlewicz
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - G Racagni
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - S Kasper
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - M A Riva
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - F Drago
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| |
Collapse
|
9
|
Calabrò M, Mandelli L, Crisafulli C, Lee SJ, Jun TY, Wang SM, Patkar AA, Masand PS, Benedetti F, Han C, Pae CU, Serretti A. Neuroplasticity, Neurotransmission and Brain-Related Genes in Major Depression and Bipolar Disorder: Focus on Treatment Outcomes in an Asiatic Sample. Adv Ther 2018; 35:1656-1670. [PMID: 30178121 PMCID: PMC6182627 DOI: 10.1007/s12325-018-0781-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Mood disorders are common and disabling disorders. Despite the availability of over 100 psychotropic compounds, only one-third of patients benefit from first-line treatments. Over the past 20 years, many studies have focused on the biological factors modulating disease risk and response to treatments, but with still inconclusive data. In order to improve our current knowledge, in this study, we investigated the role of a set of genes involved in different pathways (neurotransmission, neuroplasticity, circadian rhythms, transcription factors, signal transduction and cellular metabolism) in the treatment outcome of major depressive disorder (MDD) and bipolar disorder (BD) after naturalistic pharmacological treatment. METHODS Totals of 242 MDD, 132 BD patients and 326 healthy controls of Asian ethnicity (Koreans) were genotyped for polymorphisms within 19 genes. Response and remission after 6-8 weeks of treatment with antidepressants and mood stabilizers were evaluated. In secondary analyses, genetic associations with disease risk and some disease-associated features (age of onset, suicide attempt and psychotic BD) were also tested. RESULTS None of the variants within the investigated genes was significantly associated with treatment outcomes. Some marginal association (uncorrected p < 0.01) was observed for HTR2A, BDNF, CHL1, RORA and HOMER1 SNPs. In secondary analyses, HTR2A (rs643627, p = 0.002) and CHL1 (rs4003413, p = 0.002) were found associated with risk for BD, HOMER1 (rs6872497, p = 0.002) with lifetime history of suicide attempt in patients, and RORA with early onset and presence of psychotic features in BD. Marginal results were also observed for ST8SIA2 and COMT. DISCUSSION Despite limitations linked to multiple testing on small samples, methodological shortcomings and small significance of the findings, this study may support the involvement of some candidate genes in the outcomes of treatments for mood disorders, as well as in BD risk and other disease features.
Collapse
Affiliation(s)
- Marco Calabrò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Laura Mandelli
- Department of Biomedical and Neuromotor Sciences, Psychiatric Section, University of Bologna, Bologna, Italy
| | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Soo-Jung Lee
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Tae-Youn Jun
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Ashwin A Patkar
- Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC, USA
| | | | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Changsu Han
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Chi-Un Pae
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea.
- Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC, USA.
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, Psychiatric Section, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Consoloni JL, Ibrahim EC, Lefebvre MN, Zendjidjian X, Olié E, Mazzola-Pomietto P, Desmidt T, Samalin L, Llorca PM, Abbar M, Lopez-Castroman J, Haffen E, Baumstarck K, Naudin J, Azorin JM, El-Hage W, Courtet P, Belzeaux R. Serotonin transporter gene expression predicts the worsening of suicidal ideation and suicide attempts along a long-term follow-up of a Major Depressive Episode. Eur Neuropsychopharmacol 2018; 28:401-414. [PMID: 29287766 DOI: 10.1016/j.euroneuro.2017.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 12/27/2022]
Abstract
The quest for biomarkers in suicidal behaviors has been elusive so far, despite their potential utility in clinical practice. One of the most robust biological findings in suicidal behaviors is the alteration of the serotonin transporter function in suicidal individuals. Our main objective was to investigate the predictive value of the serotonin transporter gene expression (SLC6A4) for suicidal ideation and as secondary, for suicide attempts in individuals with a major depressive episode (MDE). A 30-week prospective study was conducted on 148 patients with a MDE and 100 healthy controls including 4 evaluation times (0, 2, 8 and 30 weeks). Blood samples and clinical data were collected and SLC6A4 mRNA levels were measured from peripheral blood mononuclear cells using RT-qPCR. We first demonstrated the stability and reproducibility of SLC6A4 mRNA expression measures over time in healthy controls (F=0.658; p=0.579; η2=0.008; ICC=0.91, 95% CI [0.87-0.94]). Baseline SLC6A4 expression level (OR=0.563 [0.340-0.932], p=0.026) as well as early changes in SLC6A4 expression between baseline and the 2nd week (β=0.200, p=0.042) predicted the worsening of suicidal ideation (WSI) in the following 8 weeks. Moreover, changes in SLC6A4 expression between the 2nd and 8th weeks predicted the occurrence of a suicide attempt within 30 weeks (OR=10.976 [1.438-83.768], p=0.021). Altogether, the baseline level and the changes in SLC6A4 mRNA expression during a MDE might predict the WSI and the occurrence of suicidal attempts and could be a useful biomarker in clinical practice.
Collapse
Affiliation(s)
- Julia-Lou Consoloni
- APHM, Department of psychiatry, Marseille, France; Aix Marseille Univ, CNRS, CRN2M, UMR 7286, Marseille, France; Fondation FondaMental, Fondation de Recherche et de Soins en Santé Mentale, Créteil, France
| | - El Chérif Ibrahim
- Aix Marseille Univ, CNRS, CRN2M, UMR 7286, Marseille, France; Fondation FondaMental, Fondation de Recherche et de Soins en Santé Mentale, Créteil, France; Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | | | - Xavier Zendjidjian
- APHM, Department of psychiatry, Marseille, France; Aix Marseille Univ, SPMC, EA 3279, Public Health, Chronic Diseases and Quality of Life - Research Unit, Marseille, France
| | - Emilie Olié
- Fondation FondaMental, Fondation de Recherche et de Soins en Santé Mentale, Créteil, France; Department of Emergency Psychiatry and Acute Care, CHU Montpellier, France; Inserm, U1061, University of Montpellier, Montpellier, France
| | | | - Thomas Desmidt
- CHRU de Tours, Clinique Psychiatrique Universitaire, Tours, France; Inserm U1253 Imaging & Brain, Université de Tours, Tours, France
| | - Ludovic Samalin
- Fondation FondaMental, Fondation de Recherche et de Soins en Santé Mentale, Créteil, France; CHU Clermont-Ferrand, Department of Psychiatry, EA 7280, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Pierre-Michel Llorca
- Fondation FondaMental, Fondation de Recherche et de Soins en Santé Mentale, Créteil, France; CHU Clermont-Ferrand, Department of Psychiatry, EA 7280, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Mocrane Abbar
- Department of Adult Psychiatry, CHRU Nimes, Nimes, France
| | - Jorge Lopez-Castroman
- Inserm, U1061, University of Montpellier, Montpellier, France; Department of Adult Psychiatry, CHRU Nimes, Nimes, France
| | - Emmanuel Haffen
- Fondation FondaMental, Fondation de Recherche et de Soins en Santé Mentale, Créteil, France; Department of Clinical Psychiatry, University Hospital, Besançon, France; EA 481, Laboratory of Neurosciences, University of Franche-Comté, Besançon, France; CIC-1431 Inserm, University Hospital, Besançon, France
| | - Karine Baumstarck
- Aix Marseille Univ, SPMC, EA 3279, Public Health, Chronic Diseases and Quality of Life - Research Unit, Marseille, France
| | - Jean Naudin
- APHM, Department of psychiatry, Marseille, France
| | - Jean-Michel Azorin
- APHM, Department of psychiatry, Marseille, France; Fondation FondaMental, Fondation de Recherche et de Soins en Santé Mentale, Créteil, France; Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Wissam El-Hage
- CHRU de Tours, Clinique Psychiatrique Universitaire, Tours, France; Inserm U1253 Imaging & Brain, Université de Tours, Tours, France; Inserm CIC 1415, Centre d'Investigation Clinique, CHRU de Tours, Tours, France
| | - Philippe Courtet
- Fondation FondaMental, Fondation de Recherche et de Soins en Santé Mentale, Créteil, France; Department of Emergency Psychiatry and Acute Care, CHU Montpellier, France; Inserm, U1061, University of Montpellier, Montpellier, France
| | - Raoul Belzeaux
- APHM, Department of psychiatry, Marseille, France; Aix Marseille Univ, CNRS, CRN2M, UMR 7286, Marseille, France; Fondation FondaMental, Fondation de Recherche et de Soins en Santé Mentale, Créteil, France; McGill Group for Suicide Studies, Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|
11
|
Neuroplasticity and second messenger pathways in antidepressant efficacy: pharmacogenetic results from a prospective trial investigating treatment resistance. Eur Arch Psychiatry Clin Neurosci 2017; 267:723-735. [PMID: 28260126 DOI: 10.1007/s00406-017-0766-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 01/14/2017] [Indexed: 02/06/2023]
Abstract
Genes belonging to neuroplasticity, monoamine, circadian rhythm, and transcription factor pathways were investigated as modulators of antidepressant efficacy. The present study aimed (1) to replicate previous findings in an independent sample with treatment-resistant depression (TRD), and (2) to perform a pathway analysis to investigate the possible molecular mechanisms involved. 220 patients with major depressive disorder who were non-responders to a previous antidepressant were treated with venlafaxine for 4-6 weeks and in case of non-response with escitalopram for 4-6 weeks. Symptoms were assessed using the Montgomery Asberg Depression Rating Scale. The phenotypes were response and remission to venlafaxine, non-response (TRDA) and non-remission (TRDB) to neither venlafaxine nor escitalopram. 50 tag SNPs in 14 genes belonging to the pathways of interest were tested for association with phenotypes. Molecular pathways (KEGG database) that included one or more of the genes associated with the phenotypes were investigated also in the STAR*D sample. The associations between ZNF804A rs7603001 and response, CREB1 rs2254137 and remission were replicated, as well as CHL1 rs2133402 and lower risk of TRD. Other CHL1 SNPs were potential predictors of TRD (rs1516340, rs2272522, rs1516338, rs2133402). The MAPK1 rs6928 SNP was consistently associated with all the phenotypes. The protein processing in endoplasmic reticulum pathway (hsa04141) was the best pathway that may explain the mechanisms of MAPK1 involvement in antidepressant response. Signals in genes previously associated with antidepressant efficacy were confirmed for CREB1, ZNF804A and CHL1. These genes play pivotal roles in synaptic plasticity, neural activity and connectivity.
Collapse
|
12
|
Oved K, Farberov L, Gilam A, Israel I, Haguel D, Gurwitz D, Shomron N. MicroRNA-Mediated Regulation of ITGB3 and CHL1 Is Implicated in SSRI Action. Front Mol Neurosci 2017; 10:355. [PMID: 29163031 PMCID: PMC5682014 DOI: 10.3389/fnmol.2017.00355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/18/2017] [Indexed: 01/05/2023] Open
Abstract
Background: Selective serotonin reuptake inhibitor (SSRI) antidepressant drugs are the first-line of treatment for major depressive disorder (MDD) but are effective in <70% of patients. Our earlier genome-wide studies indicated that two genes encoding for cell adhesion proteins, close homolog of L1 (CHL1) and integrin beta-3 (ITGB3), and microRNAs, miR-151a-3p and miR-221/222, are implicated in the variable sensitivity and response of human lymphoblastoid cell lines (LCL) from unrelated individuals to SSRI drugs. Methods: The microRNAs miR-221, miR-222, and miR-151-a-3p, along with their target gene binding sites, were explored in silico using miRBase, TargetScan, microRNAviewer, and the UCSC Genome Browser. Luciferase reporter assays were conducted for demonstrating the direct functional regulation of ITGB3 and CHL1 expression by miR-221/222 and miR-151a-3p, respectively. A human LCL exhibiting low sensitivity to paroxetine was utilized for studying the phenotypic effect of CHL1 regulation by miR-151a-3p on SSRI response. Results: By showing direct regulation of CHL1 and ITGB3 by miR-151a-3p and miR-221/222, respectively, we link these microRNAs and genes with cellular SSRI sensitivity phenotypes. We report that miR-151a-3p increases cell sensitivity to paroxetine via down-regulating CHL1 expression. Conclusions: miR-151a-3p, miR-221/222 and their (here confirmed) respective target-genes, CHL1 and ITGB3, are implicated in SSRI responsiveness, and possibly in the clinical response to antidepressant drugs.
Collapse
Affiliation(s)
- Keren Oved
- Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Luba Farberov
- Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avial Gilam
- Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ifat Israel
- Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Danielle Haguel
- Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - David Gurwitz
- Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Homophilic binding of the neural cell adhesion molecule CHL1 regulates development of ventral midbrain dopaminergic pathways. Sci Rep 2017; 7:9368. [PMID: 28839197 PMCID: PMC5570898 DOI: 10.1038/s41598-017-09599-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/26/2017] [Indexed: 11/09/2022] Open
Abstract
Abnormal development of ventral midbrain (VM) dopaminergic (DA) pathways, essential for motor and cognitive function, may underpin a number of neurological disorders and thereby highlight the importance of understanding the birth and connectivity of the associated neurons. While a number of regulators of VM DA neurogenesis are known, processes involved in later developmental events, including terminal differentiation and axon morphogenesis, are less well understood. Recent transcriptional analysis studies of the developing VM identified genes expressed during these stages, including the cell adhesion molecule with homology to L1 (Chl1). Here, we map the temporal and spatial expression of CHL1 and assess functional roles of substrate-bound and soluble-forms of the protein during VM DA development. Results showed early CHL1 in the VM, corresponding with roles in DA progenitor migration and differentiation. Subsequently, we demonstrated roles for CHL1 in both axonal extension and repulsion, selectively of DA neurons, suggestive of a role in guidance towards forebrain targets and away from hindbrain nuclei. In part, CHL1 mediates these roles through homophilic CHL1-CHL1 interactions. Collectively, these findings enhance our knowledge of VM DA pathways development, and may provide new insights into understanding DA developmental conditions such as autism spectrum disorders.
Collapse
|
14
|
Gurwitz D. Human iPSC-derived neurons and lymphoblastoid cells for personalized medicine research in neuropsychiatric disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 27757061 PMCID: PMC5067144 DOI: 10.31887/dcns.2016.18.3/dgurwitz] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The development and clinical implementation of personalized medicine crucially depends on the availability of high-quality human biosamples; animal models, although capable of modeling complex human diseases, cannot reflect the large variation in the human genome, epigenome, transcriptome, proteome, and metabolome. Although the biosamples available from public biobanks that store human tissues and cells may represent the large human diversity for most diseases, these samples are not always sufficient for developing biomarkers for patient-tailored therapies for neuropsychiatric disorders. Postmortem human tissues are available from many biobanks; nevertheless, collections of neuronal human cells from large patient cohorts representing the human diversity remain scarce. Two tools are gaining popularity for personalized medicine research on neuropsychiatric disorders: human induced pluripotent stem cell-derived neurons and human lymphoblastoid cell lines. This review examines and contrasts the advantages and limitations of each tool for personalized medicine research.
Collapse
Affiliation(s)
- David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Genetic Contributions of Inflammation to Depression. Neuropsychopharmacology 2017; 42:81-98. [PMID: 27555379 PMCID: PMC5143493 DOI: 10.1038/npp.2016.169] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 01/05/2023]
Abstract
This paper describes the effects of immune genes genetic variants and mRNA expression on depression's risk, severity, and response to antidepressant treatment, through a systematic review on all papers published between 2000 and 2016. Our results, based largely on case-control studies, suggest that common genetic variants and gene-expression pathways are involved in both immune activation and depression. The most replicated and relevant genetic variants include polymorphisms in the genes for interleukin (IL)-1β, IL-6, IL-10, monocyte chemoattractant protein-1, tumor necrosis factor-alpha, C-reactive protein, and phospholipase A2. Moreover, increased blood cytokines mRNA expression (especially of IL-1β) identifies patients that are less likely to respond to conventional antidepressants. However, even for the most replicated findings there are inconsistent results, not only between studies, but also between the immune effects of the genetic variants and the resulting effects on depression. We find evidence that these discrepant findings may be explained, at least in part, by the heterogeneity of the depression immunophenotype, by environmental influences and gene × environment interactions, and by the complex interfacing of genetic variants with gene expression. Indeed, some of the most robust findings have been obtained in patients developing depression in the context of treatment with interferon-alpha, a widely used model to mimic depression in the context of inflammation. Further 'omics' approaches, through GWAS and transcriptomics, will finally shed light on the interaction between immune genes, their expression, and the influence of the environment, in the pathogenesis of depression.
Collapse
|
16
|
Yang Z, Xie Q, Hu CL, Jiang Q, Shen HF, Schachner M, Zhao WJ. CHL1 Is Expressed and Functions as a Malignancy Promoter in Glioma Cells. Front Mol Neurosci 2017; 10:324. [PMID: 29089868 PMCID: PMC5650976 DOI: 10.3389/fnmol.2017.00324] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/25/2017] [Indexed: 02/06/2023] Open
Abstract
The cell adhesion molecule with homology to L1CAM (close homolog of L1) (CHL1) is a member of the cell adhesion molecule L1 (L1CAM) gene family. Although CHL1 expression and function have been reported in several tumors, the roles of CHL1 in the development of glioma remain unclear. In the present study, we investigated the effects of CHL1 on proliferation indexes and activation of Akt1 and Erk signaling by siRNA in U-87 MG human glioblastoma and human U251 and SHG-44 glioma cells. We found that siRNA targeting CHL1 significantly down-regulated the expression of CHL1 mRNA and protein accompanied by reduced cell proliferation and transmigration invasion in all three cell lines. Down-regulating CHL1 expression also reduced cell survival, as measured by the Bax/Bcl-2 ratio, and increased activation of caspase-3. In subcutaneous U-87 MG cell xenograft tumors in nude mice, intratumoral administration of siRNA targeting CHL1 treatment significantly down-regulated CHL1 expression in vivo, accompanied by increased levels of activated caspase-3. Our combined results confirmed for the first time that in contrast to findings about CHL1 in most other cancer types, CHL1 functions in promoting cell proliferation, metastasis and migration in human glioma cells both in vitro and in vivo. These results indicate that CHL1 is a therapeutic target in the clinical management of glioma/glioblastoma.
Collapse
Affiliation(s)
- Zhai Yang
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Qing Xie
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Cheng-Liang Hu
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Qiong Jiang
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Hui-Fan Shen
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Melitta Schachner Wei-Jiang Zhao
| | - Wei-Jiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- *Correspondence: Melitta Schachner Wei-Jiang Zhao
| |
Collapse
|
17
|
Breitfeld J, Scholl C, Steffens M, Brandenburg K, Probst-Schendzielorz K, Efimkina O, Gurwitz D, Ising M, Holsboer F, Lucae S, Stingl JC. Proliferation rates and gene expression profiles in human lymphoblastoid cell lines from patients with depression characterized in response to antidepressant drug therapy. Transl Psychiatry 2016; 6:e950. [PMID: 27845776 PMCID: PMC5314111 DOI: 10.1038/tp.2016.185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/25/2022] Open
Abstract
The current therapy success of depressive disorders remains in need of improvement due to low response rates and a delay in symptomatic improvement. Reliable functional biomarkers would be necessary to predict the individual treatment outcome. On the basis of the neurotrophic hypothesis of antidepressant's action, effects of antidepressant drugs on proliferation may serve as tentative individual markers for treatment efficacy. We studied individual differences in antidepressant drug effects on cell proliferation and gene expression in lymphoblastoid cell lines (LCLs) derived from patients treated for depression with documented clinical treatment outcome. Cell proliferation was characterized by EdU (5-ethynyl-2'-deoxyuridine) incorporation assays following a 3-week incubation with therapeutic concentrations of fluoxetine. Genome-wide expression profiling was conducted by microarrays, and candidate genes such as betacellulin-a gene involved in neuronal stem cell regeneration-were validated by quantitative real-time PCR. Ex vivo assessment of proliferation revealed large differences in fluoxetine-induced proliferation inhibition between donor LCLs, but no association with clinical response was observed. Genome-wide expression analyses followed by pathway and gene ontology analyses identified genes with different expression before vs after 21-day incubation with fluoxetine. Significant correlations between proliferation and gene expression of WNT2B, FZD7, TCF7L2, SULT4A1 and ABCB1 (all involved in neurogenesis or brain protection) were also found. Basal gene expression of SULT4A1 (P=0.029), and gene expression fold changes of WNT2B by ex vivo fluoxetine (P=0.025) correlated with clinical response and clinical remission, respectively. Thus, we identified potential gene expression biomarkers eventually being useful as baseline predictors or as longitudinal targets in antidepressant therapy.
Collapse
Affiliation(s)
- J Breitfeld
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - C Scholl
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - M Steffens
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - K Brandenburg
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - K Probst-Schendzielorz
- Institute of Clinical Pharmacology and Pharmacology of Natural Products, University of Ulm, Ulm, Germany
| | - O Efimkina
- Institute of Clinical Pharmacology and Pharmacology of Natural Products, University of Ulm, Ulm, Germany
| | - D Gurwitz
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| | - F Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany,HMNC Holding GmbH, Munich, Germany
| | - S Lucae
- Max Planck Institute of Psychiatry, Munich, Germany
| | - J C Stingl
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany,Center for Translational Medicine, Bonn University Medical School, Bonn, Germany,Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany. E-mail:
| |
Collapse
|
18
|
Hadar A, Milanesi E, Squassina A, Niola P, Chillotti C, Pasmanik-Chor M, Yaron O, Martásek P, Rehavi M, Weissglas-Volkov D, Shomron N, Gozes I, Gurwitz D. RGS2 expression predicts amyloid-β sensitivity, MCI and Alzheimer's disease: genome-wide transcriptomic profiling and bioinformatics data mining. Transl Psychiatry 2016; 6:e909. [PMID: 27701409 PMCID: PMC5315547 DOI: 10.1038/tp.2016.179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/26/2016] [Accepted: 06/15/2016] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent cause of dementia. Misfolded protein pathological hallmarks of AD are brain deposits of amyloid-β (Aβ) plaques and phosphorylated tau neurofibrillary tangles. However, doubts about the role of Aβ in AD pathology have been raised as Aβ is a common component of extracellular brain deposits found, also by in vivo imaging, in non-demented aged individuals. It has been suggested that some individuals are more prone to Aβ neurotoxicity and hence more likely to develop AD when aging brains start accumulating Aβ plaques. Here, we applied genome-wide transcriptomic profiling of lymphoblastoid cells lines (LCLs) from healthy individuals and AD patients for identifying genes that predict sensitivity to Aβ. Real-time PCR validation identified 3.78-fold lower expression of RGS2 (regulator of G-protein signaling 2; P=0.0085) in LCLs from healthy individuals exhibiting high vs low Aβ sensitivity. Furthermore, RGS2 showed 3.3-fold lower expression (P=0.0008) in AD LCLs compared with controls. Notably, RGS2 expression in AD LCLs correlated with the patients' cognitive function. Lower RGS2 expression levels were also discovered in published expression data sets from postmortem AD brain tissues as well as in mild cognitive impairment and AD blood samples compared with controls. In conclusion, Aβ sensitivity phenotyping followed by transcriptomic profiling and published patient data mining identified reduced peripheral and brain expression levels of RGS2, a key regulator of G-protein-coupled receptor signaling and neuronal plasticity. RGS2 is suggested as a novel AD biomarker (alongside other genes) toward early AD detection and future disease modifying therapeutics.
Collapse
Affiliation(s)
- A Hadar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Milanesi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - P Niola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - C Chillotti
- Unit of Clinical Pharmacology, University Hospital of Cagliari, Cagliari, Italy
| | - M Pasmanik-Chor
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - O Yaron
- The Genomic Analysis Laboratory, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - P Martásek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - M Rehavi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - D Weissglas-Volkov
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - N Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Adams Super Center for Brain Studies, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - I Gozes
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Adams Super Center for Brain Studies, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: or
| | - D Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Adams Super Center for Brain Studies, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: or
| |
Collapse
|
19
|
Li C, Liu C, Zhou B, Hu C, Xu X. Novel microduplication of CHL1 gene in a patient with autism spectrum disorder: a case report and a brief literature review. Mol Cytogenet 2016; 9:51. [PMID: 27354858 PMCID: PMC4924281 DOI: 10.1186/s13039-016-0261-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/23/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The cell adhesion molecule L1-like (CHL1 or CALL) gene is located on chromosome 3p26.3, and it is highly expressed in the central and peripheral nervous systems. The protein encoded by this gene is a member of the L1 family of neural cell adhesion molecules, and it plays a role in nervous system development and synaptic plasticity. Moreover, studies of mice have revealed that CHL1 is a prime candidate gene for a dosage-sensitive autosomal form of mental retardation. To date, four patients with a microdeletion and two with a microduplication of 3p26.3 encompassing only the CHL1 gene have been reported in literature. CASE PRESENTATION In the present study, we have described a 16-month-old boy with autism spectrum disorder (ASD), developmental delay and minor dysmorphic facial features. This is the first report of a duplication of 3p26.3 including only the CHL1 gene in an ASD patient, and this duplication is the smallest reported to date in this gene. We also reviewed CHL1 gene mutation cases and examined whether this gene has an important role in cognitive function. CONCLUSIONS We conclude that both CHL1 deletions and duplications are likely responsible for the patient's impaired cognitive function, and CHL1 may be an intriguing ASD candidate gene.
Collapse
Affiliation(s)
- Chunyang Li
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai, China
| | - Chunxue Liu
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai, China
| | - Bingrui Zhou
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai, China
| | - Chunchun Hu
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai, China
| | - Xiu Xu
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
20
|
Rzezniczek S, Obuchowicz M, Datka W, Siwek M, Dudek D, Kmiotek K, Oved K, Shomron N, Gurwitz D, Pilc A. Decreased sensitivity to paroxetine-induced inhibition of peripheral blood mononuclear cell growth in depressed and antidepressant treatment-resistant patients. Transl Psychiatry 2016; 6:e827. [PMID: 27244236 PMCID: PMC5545648 DOI: 10.1038/tp.2016.90] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 02/07/2016] [Accepted: 02/11/2016] [Indexed: 02/07/2023] Open
Abstract
Major depression disorder (MDD) is the most widespread mental disorder. Selective serotonin reuptake inhibitors (SSRIs) are used as first-line MDD treatment but are effective in <70% of patients. Thus, biomarkers for the early identification of treatment-resistant (TR) MDD patients are needed for prioritizing them for alternative therapeutics. SSRI-induced inhibition of the growth of peripheral blood mononuclear cells (PBMCs) is mediated via their target, the serotonin transporter (SERT). Here, we examined whether antidepressant drug-induced inhibition of the growth of PBMCs differed between MDD patients and healthy controls. PBMCs from well-characterized 33 treatment-sensitive (TS) and 33 TR MDD patients, and 24 healthy volunteers were studied. Dose-dependent inhibition of PBMCs growth was observed for both the non-SSRI antidepressant mirtazapine and the SSRI antidepressant paroxetine. Significantly lower sensitivities to 20 μm paroxetine were observed in MDD compared with control PBMCs prior to treatment onset (13% and 46%, respectively; P<0.05). Following antidepressant drug treatment for 4 or 7 weeks, the ex vivo paroxetine sensitivity increased to control levels in PBMCs from TS but not from TR MDD patients. This suggests that the low ex vivo paroxetine sensitivity phenotype reflects a state marker of depression. A significantly lower expression of integrin beta-3 (ITGB3), a co-factor of the SERT, was observed in the PBMCs of MDD patients prior to treatment onset compared with healthy controls, and may explain their lower paroxetine sensitivity. Further studies with larger cohorts are required for clarifying the potential of reduced PBMCs paroxetine sensitivity and lower ITGB3 expression as MDD biomarkers.
Collapse
Affiliation(s)
- S Rzezniczek
- Department of Neurobiology, Institute of Pharmacology Polish Academy of Science, Krakow, Poland,Department of Neurobiology, Institute of Pharmacology Polish Academy of Science, Smetna 12 Street, Krakow 31-343, Poland. E-mail:
| | - M Obuchowicz
- Department of Neurobiology, Institute of Pharmacology Polish Academy of Science, Krakow, Poland
| | - W Datka
- Department of Affective Disorders, Chair of Psychiatry, Jagiellonian University Medical College, Krakow, Poland
| | - M Siwek
- Department of Affective Disorders, Chair of Psychiatry, Jagiellonian University Medical College, Krakow, Poland
| | - D Dudek
- Department of Affective Disorders, Chair of Psychiatry, Jagiellonian University Medical College, Krakow, Poland
| | - K Kmiotek
- Department of Affective Disorders, Chair of Psychiatry, Jagiellonian University Medical College, Krakow, Poland
| | - K Oved
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Department of Cell and Developmental Biology, Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv, Israel
| | - N Shomron
- Department of Cell and Developmental Biology, Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv, Israel,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - D Gurwitz
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - A Pilc
- Department of Neurobiology, Institute of Pharmacology Polish Academy of Science, Krakow, Poland,Institute of Public Health, Faculty of Health Sciences, Jagiellonian University, Krakow, Poland
| |
Collapse
|
21
|
Sackeim HA. Acute Continuation and Maintenance Treatment of Major Depressive Episodes With Transcranial Magnetic Stimulation. Brain Stimul 2016; 9:313-319. [PMID: 27052475 DOI: 10.1016/j.brs.2016.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/28/2022] Open
Affiliation(s)
- Harold A Sackeim
- Departments of Psychiatry and Radiology, College of Physicians and Surgeons, Columbia University, 2124 Moselem Springs Road, Fleetwood, PA 19522, USA.
| |
Collapse
|
22
|
Lin E, Tsai SJ. Genome-wide microarray analysis of gene expression profiling in major depression and antidepressant therapy. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:334-40. [PMID: 25708651 DOI: 10.1016/j.pnpbp.2015.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/21/2022]
Abstract
Major depressive disorder (MDD) is a serious health concern worldwide. Currently there are no predictive tests for the effectiveness of any particular antidepressant in an individual patient. Thus, doctors must prescribe antidepressants based on educated guesses. With the recent advent of scientific research, genome-wide gene expression microarray studies are widely utilized to analyze hundreds of thousands of biomarkers by high-throughput technologies. In addition to the candidate-gene approach, the genome-wide approach has recently been employed to investigate the determinants of MDD as well as antidepressant response to therapy. In this review, we mainly focused on gene expression studies with genome-wide approaches using RNA derived from peripheral blood cells. Furthermore, we reviewed their limitations and future directions with respect to the genome-wide gene expression profiling in MDD pathogenesis as well as in antidepressant therapy.
Collapse
Affiliation(s)
- Eugene Lin
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Vita Genomics, Inc., Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
23
|
Kalueff AV, Stewart AM, Nguyen M, Song C, Gottesman II. Targeting drug sensitivity predictors: New potential strategies to improve pharmacotherapy of human brain disorders. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63:76-82. [PMID: 25976211 DOI: 10.1016/j.pnpbp.2015.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023]
Abstract
One of the main challenges in medicine is the lack of efficient drug therapies for common human disorders. For example, although depressed patients receive powerful antidepressants, many often remain resistant to psychopharmacotherapy. The growing recognition of complex interplay between the drug targets and the predictors of drug sensitivity requires an improved understanding of these two key aspects of drug action and their potentially shared molecular networks. Here, we apply the concept of endophenotypes and their interplay to drug action and sensitivity. Based on these analyses, we postulate that novel drugs may be developed by targeting specific molecular pathways that integrate drug targets with drug sensitivity predictors.
Collapse
Affiliation(s)
- Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, College for Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
| | | | - Michael Nguyen
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College for Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Irving I Gottesman
- Department of Psychology, University of Minnesota, Elliot Hall, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
Grünvogel O, Esser-Nobis K, Reustle A, Schult P, Müller B, Metz P, Trippler M, Windisch MP, Frese M, Binder M, Fackler O, Bartenschlager R, Ruggieri A, Lohmann V. DDX60L Is an Interferon-Stimulated Gene Product Restricting Hepatitis C Virus Replication in Cell Culture. J Virol 2015; 89:10548-68. [PMID: 26269178 PMCID: PMC4580188 DOI: 10.1128/jvi.01297-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED All major types of interferon (IFN) efficiently inhibit hepatitis C virus (HCV) replication in vitro and in vivo. Remarkably, HCV replication is not sensitive to IFN-γ in the hepatoma cell line Huh6, despite an intact signaling pathway. We performed transcriptome analyses between Huh6 and Huh-7 cells to identify effector genes of the IFN-γ response and thereby identified the DExD/H box helicase DEAD box polypeptide 60-like (DDX60L) as a restriction factor of HCV replication. DDX60L and its homolog DEAD box polypeptide 60 (DDX60) were both induced upon viral infection and IFN treatment in primary human hepatocytes. However, exclusively DDX60L knockdown increased HCV replication in Huh-7 cells and rescued HCV replication from type II IFN as well as type I and III IFN treatment, suggesting that DDX60L is an important effector protein of the innate immune response against HCV. In contrast, we found no impact of DDX60L on replication of hepatitis A virus. DDX60L protein was detectable only upon strong ectopic overexpression, displayed a broad cytoplasmic distribution, but caused cytopathic effects under these conditions. DDX60L knockdown did not alter interferon-stimulated gene (ISG) induction after IFN treatment but inhibited HCV replication upon ectopic expression, suggesting that it is a direct effector of the innate immune response. It most likely inhibits viral RNA replication, since we found neither impact of DDX60L on translation or stability of HCV subgenomic replicons nor additional impact on assembly of infectious virus. Similar to DDX60, DDX60L had a moderate impact on RIG-I dependent activation of innate immunity, suggesting additional functions in the sensing of viral RNA. IMPORTANCE Interferons induce a plethora of interferon-stimulated genes (ISGs), which are our first line of defense against viral infections. In addition, IFNs have been used in antiviral therapy, in particular against the human pathogen hepatitis C virus (HCV); still, their mechanism of action is not well understood, since diverse, overlapping sets of antagonistic effector ISGs target viruses with different biologies. Our work identifies DDX60L as a novel factor that inhibits replication of HCV. DDX60L expression is regulated similarly to that of its homolog DDX60, but our data suggest that it has distinct functions, since we found no contribution of DDX60 in combatting HCV replication. The identification of novel components of the innate immune response contributes to a comprehensive understanding of the complex mechanisms governing antiviral defense.
Collapse
Affiliation(s)
- Oliver Grünvogel
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Katharina Esser-Nobis
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Anna Reustle
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Philipp Schult
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Birthe Müller
- Department of Infectious Diseases, Integrative Virology, University of Heidelberg, Heidelberg, Germany
| | - Philippe Metz
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Martin Trippler
- Medical Research Centre, Department of Gastroenterology and Hepatology, University Duisburg-Essen, Essen, Germany
| | - Marc P Windisch
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Michael Frese
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Marco Binder
- Research Group Dynamics of Early Viral Infection and the Innate Antiviral Response, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Fackler
- Department of Infectious Diseases, Integrative Virology, University of Heidelberg, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
25
|
Ashley-Koch AE, Garrett ME, Gibson J, Liu Y, Dennis MF, Kimbrel NA, Beckham JC, Hauser MA. Genome-wide association study of posttraumatic stress disorder in a cohort of Iraq-Afghanistan era veterans. J Affect Disord 2015; 184:225-34. [PMID: 26114229 PMCID: PMC4697755 DOI: 10.1016/j.jad.2015.03.049] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is a psychiatric disorder that can develop after experiencing traumatic events. A genome-wide association study (GWAS) design was used to identify genetic risk factors for PTSD within a multi-racial sample primarily composed of U.S. veterans. METHODS Participants were recruited at multiple medical centers, and structured interviews were used to establish diagnoses. Genotypes were generated using three Illumina platforms and imputed with global reference data to create a common set of SNPs. SNPs that increased risk for PTSD were identified with logistic regression, while controlling for gender, trauma severity, and population substructure. Analyses were run separately in non-Hispanic black (NHB; n = 949) and non-Hispanic white (NHW; n = 759) participants. Meta-analysis was used to combine results from the two subsets. RESULTS SNPs within several interesting candidate genes were nominally significant. Within the NHB subset, the most significant genes were UNC13C and DSCAM. Within the NHW subset, the most significant genes were TBC1D2, SDC2 and PCDH7. In addition, PRKG1 and DDX60L were identified through meta-analysis. The top genes for the three analyses have been previously implicated in neurologic processes consistent with a role in PTSD. Pathway analysis of the top genes identified alternative splicing as the top GO term in all three analyses (FDR q < 3.5 × 10(-5)). LIMITATIONS No individual SNPs met genome-wide significance in the analyses. CONCLUSIONS This multi-racial PTSD GWAS identified biologically plausible candidate genes and suggests that post-transcriptional regulation may be important to the pathology of PTSD; however, replication of these findings is needed.
Collapse
Affiliation(s)
| | | | - Jason Gibson
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Yutao Liu
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Michelle F. Dennis
- Durham Veterans Affairs Medical Center, Durham, NC,The VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham, NC,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC
| | - Nathan A. Kimbrel
- Durham Veterans Affairs Medical Center, Durham, NC,The VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham, NC,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC
| | | | - Jean C. Beckham
- Durham Veterans Affairs Medical Center, Durham, NC,The VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham, NC,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC
| | | |
Collapse
|
26
|
Probst-Schendzielorz K, Scholl C, Efimkina O, Ersfeld E, Viviani R, Serretti A, Fabbri C, Gurwitz D, Lucae S, Ising M, Paul AM, Lehmann ML, Steffens M, Crisafulli C, Calabrò M, Holsboer F, Stingl J. CHL1, ITGB3 and SLC6A4 gene expression and antidepressant drug response: results from the Munich Antidepressant Response Signature (MARS) study. Pharmacogenomics 2015; 16:689-701. [DOI: 10.2217/pgs.15.31] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aim: The identification of antidepressant drugs (ADs) response biomarkers in depression is of high clinical importance. We explored CHL1 and ITGB3 expression as tentative response biomarkers. Materials & methods: In vitro sensitivity to ADs, as well as gene expression and genetic variants of the candidate genes CHL1, ITGB3 and SLC6A4 were measured in lymphoblastoid cell lines (LCLs) of 58 depressed patients. Results: An association between the clinical remission of depression and the basal expression of CHL1 and ITGB3 was discovered. Individuals whose LCLs expressed higher levels of CHL1 or ITGB3 showed a significantly better remission upon AD treatment. In addition individuals with the CHL1 rs1516338 TT genotype showed a significantly better remission after 5 weeks AD treatment than those carrying a CC genotype. No association between the in vitro sensitivity of LCLs toward AD and the clinical remission could be detected. Conclusion: CHL1 expression in patient-derived LCLs correlated with the clinical outcome. Thus, it could be a valid biomarker to predict the success of an antidepressant therapy. Original submitted 8 December 2014; Revision submitted 2 March 2015
Collapse
Affiliation(s)
| | - Catharina Scholl
- Research Division, Federal Institute for Drugs & Medical Devices, Bonn, Germany
- Medical Faculty, Faculty Centre for Translational Medicine, University Bonn, Bonn, Germany
| | - Olga Efimkina
- Institute for Pharmacology of Natural Products & Clinical Pharmacology, University Ulm, Ulm, Germany
| | - Eva Ersfeld
- Institute for Pharmacology of Natural Products & Clinical Pharmacology, University Ulm, Ulm, Germany
| | - Roberto Viviani
- Department of Psychiatry & Psychotherapy, University of Ulm, Ulm, Germany
| | - Alessandro Serretti
- Department of Biomedical & Neuromotor Sciences, University of Bologna, Italy
| | - Chiara Fabbri
- Department of Biomedical & Neuromotor Sciences, University of Bologna, Italy
| | - David Gurwitz
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | | | - Marcus Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Anna Maria Paul
- Research Division, Federal Institute for Drugs & Medical Devices, Bonn, Germany
- Medical Faculty, Faculty Centre for Translational Medicine, University Bonn, Bonn, Germany
| | - Marie-Louise Lehmann
- Research Division, Federal Institute for Drugs & Medical Devices, Bonn, Germany
- Medical Faculty, Faculty Centre for Translational Medicine, University Bonn, Bonn, Germany
| | - Michael Steffens
- Research Division, Federal Institute for Drugs & Medical Devices, Bonn, Germany
- Medical Faculty, Faculty Centre for Translational Medicine, University Bonn, Bonn, Germany
| | - Concetta Crisafulli
- Department of Biomedical Science & Morphological & Functional Images, University of Messina, Messina, Italy
| | - Marco Calabrò
- Department of Biomedical Science & Morphological & Functional Images, University of Messina, Messina, Italy
| | | | - Julia Stingl
- Research Division, Federal Institute for Drugs & Medical Devices, Bonn, Germany
- Medical Faculty, Faculty Centre for Translational Medicine, University Bonn, Bonn, Germany
| |
Collapse
|
27
|
Chouchana L, Fernández-Ramos AA, Dumont F, Marchetti C, Ceballos-Picot I, Beaune P, Gurwitz D, Loriot MA. Molecular insight into thiopurine resistance: transcriptomic signature in lymphoblastoid cell lines. Genome Med 2015; 7:37. [PMID: 26015807 PMCID: PMC4443628 DOI: 10.1186/s13073-015-0150-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/03/2015] [Indexed: 12/15/2022] Open
Abstract
Background There has been considerable progress in the management of acute lymphoblastic leukemia (ALL) but further improvement is needed to increase long-term survival. The thiopurine agent 6-mercaptopurine (6-MP) used for ALL maintenance therapy has a key influence on clinical outcomes and relapse prevention. Genetic inheritance in thiopurine metabolism plays a major role in interindividual clinical response variability to thiopurines; however, most cases of thiopurine resistance remain unexplained. Methods We used lymphoblastoid cell lines (LCLs) from healthy donors, selected for their extreme thiopurine susceptibility. Thiopurine metabolism was characterized by the determination of TPMT and HPRT activity. We performed genome-wide expression profiling in resistant and sensitive cell lines with the goal of elucidating the mechanisms of thiopurine resistance. Results We determined a higher TPMT activity (+44%; P = 0.024) in resistant compared to sensitive cell lines, although there was no difference in HPRT activity. We identified a 32-gene transcriptomic signature that predicts thiopurine resistance. This signature includes the GTPBP4 gene coding for a GTP-binding protein that interacts with p53. A comprehensive pathway analysis of the genes differentially expressed between resistant and sensitive cell lines indicated a role for cell cycle and DNA mismatch repair system in thiopurine resistance. It also revealed overexpression of the ATM/p53/p21 pathway, which is activated in response to DNA damage and induces cell cycle arrest in thiopurine resistant LCLs. Furthermore, overexpression of the p53 target gene TNFRSF10D or the negative cell cycle regulator CCNG2 induces cell cycle arrest and may also contribute to thiopurine resistance. ARHGDIA under-expression in resistant cell lines may constitute a novel molecular mechanism contributing to thiopurine resistance based on Rac1 inhibition induced apoptosis and in relation with thiopurine pharmacodynamics. Conclusion Our study provides new insights into the molecular mechanisms underlying thiopurine resistance and suggests a potential research focus for developing tailored medicine. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0150-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laurent Chouchana
- INSERM UMR-S 1147, 45 rue des Saints-Pères, Paris, 75006 France ; Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, Paris, 75006 France
| | - Ana Aurora Fernández-Ramos
- INSERM UMR-S 1147, 45 rue des Saints-Pères, Paris, 75006 France ; Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, Paris, 75006 France
| | - Florent Dumont
- Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, Paris, 75006 France ; INSERM U1016, Institut Cochin, 22 Rue Mechain, Paris, 75014 France
| | - Catherine Marchetti
- INSERM UMR-S 1147, 45 rue des Saints-Pères, Paris, 75006 France ; Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, Paris, 75006 France
| | - Irène Ceballos-Picot
- Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, Paris, 75006 France ; Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Biochimie Métabolique, 149 Rue de Sèvres, Paris, 75015 France
| | - Philippe Beaune
- INSERM UMR-S 1147, 45 rue des Saints-Pères, Paris, 75006 France ; Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, Paris, 75006 France ; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Biochimie Pharmacogénétique et Oncologie Moléculaire, 20 rue Leblanc, Paris, 75015 France
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Marie-Anne Loriot
- INSERM UMR-S 1147, 45 rue des Saints-Pères, Paris, 75006 France ; Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, Paris, 75006 France ; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Biochimie Pharmacogénétique et Oncologie Moléculaire, 20 rue Leblanc, Paris, 75015 France
| |
Collapse
|
28
|
Fabbri C, Crisafulli C, Gurwitz D, Stingl J, Calati R, Albani D, Forloni G, Calabrò M, Martines R, Kasper S, Zohar J, Juven-Wetzler A, Souery D, Montgomery S, Mendlewicz J, Girolamo GD, Serretti A. Neuronal cell adhesion genes and antidepressant response in three independent samples. THE PHARMACOGENOMICS JOURNAL 2015; 15:538-48. [PMID: 25850031 DOI: 10.1038/tpj.2015.15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 12/19/2022]
Abstract
Drug-effect phenotypes in human lymphoblastoid cell lines recently allowed to identify CHL1 (cell adhesion molecule with homology to L1CAM), GAP43 (growth-associated protein 43) and ITGB3 (integrin beta 3) as new candidates for involvement in the antidepressant effect. CHL1 and ITGB3 code for adhesion molecules, while GAP43 codes for a neuron-specific cytosolic protein expressed in neuronal growth cones; all the three gene products are involved in synaptic plasticity. Sixteen polymorphisms in these genes were genotyped in two samples (n=369 and 90) with diagnosis of major depressive episode who were treated with antidepressants in a naturalistic setting. Phenotypes were response, remission and treatment-resistant depression. Logistic regression including appropriate covariates was performed. Genes associated with outcomes were investigated in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) genome-wide study (n=1861) as both individual genes and through a pathway analysis (Reactome and String databases). Gene-based analysis suggested CHL1 rs4003413, GAP43 rs283393 and rs9860828, ITGB3 rs3809865 as the top candidates due to their replication across the largest original sample and the STAR*D cohort. GAP43 molecular pathway was associated with both response and remission in the STAR*D, with ELAVL4 representing the gene with the highest percentage of single nucleotide polymorphisms (SNPs) associated with outcomes. Other promising genes emerging from the pathway analysis were ITGB1 and NRP1. The present study was the first to analyze cell adhesion genes and their molecular pathways in antidepressant response. Genes and biomarkers involved in neuronal adhesion should be considered by further studies aimed to identify predictors of antidepressant response.
Collapse
Affiliation(s)
- C Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - C Crisafulli
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - D Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Italy
| | - J Stingl
- Federal Institute for Drugs and Medical Devices, University Bonn Medical School, Bonn, Germany
| | - R Calati
- Faculty Centre for Translational Medicine, University Bonn, Medical Faculty, Bonn, Germany
| | - D Albani
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - G Forloni
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - M Calabrò
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, Messina, Italy.,Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - R Martines
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - S Kasper
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| | - J Zohar
- Department of Psychiatry, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Juven-Wetzler
- Department of Psychiatry, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - D Souery
- Laboratoire de Psychologie Medicale, Universitè Libre de Bruxelles and Psy Pluriel, Centre Européen de Psychologie Medicale, Brussels, Belgium
| | | | - J Mendlewicz
- Université Libre de Bruxelles, Brussels, Belgium
| | - G D Girolamo
- Faculty Centre for Translational Medicine, University Bonn, Medical Faculty, Bonn, Germany
| | - A Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
29
|
Insulin-like Growth Factor 1 Differentially Affects Lithium Sensitivity of Lymphoblastoid Cell Lines from Lithium Responder and Non-responder Bipolar Disorder Patients. J Mol Neurosci 2015; 56:681-7. [DOI: 10.1007/s12031-015-0523-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/11/2015] [Indexed: 01/08/2023]
|
30
|
Dwivedi Y. Emerging role of microRNAs in major depressive disorder: diagnosis and therapeutic implications. DIALOGUES IN CLINICAL NEUROSCIENCE 2014. [PMID: 24733970 PMCID: PMC3984890 DOI: 10.31887/dcns.2014.16.1/ydwivedi] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Major depressive disorder (MDD) is a major public health concern. Despite tremendous advances, the pathogenic mechanisms associated with MDD are still unclear. Moreover, a significant number of MDD subjects do not respond to the currently available medication. MicroRNAs (miRNAs) are a class of small noncoding RNAs that control gene expression by modulating translation, messenger RNA (mRNA) degradation, or stability of mRNA targets. The role of miRNAs in disease pathophysiology is emerging rapidly. Recent studies demonstrating the involvement of miRNAs in several aspects of neural plasticity, neurogenesis, and stress response, and more direct studies in human postmortem brain provide strong evidence that miRNAs can not only play a critical role in MDD pathogenesis, but can also open up new avenues for the development of therapeutic targets. Circulating miRNAs are now being considered as possible biomarkers in disease pathogenesis and in monitoring therapeutic responses because of the presence and/or release of miRNAs in blood cells as well as in other peripheral tissues. In this review, these aspects are discussed in a comprehensive and critical manner.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
31
|
Katic J, Loers G, Kleene R, Karl N, Schmidt C, Buck F, Zmijewski JW, Jakovcevski I, Preissner KT, Schachner M. Interaction of the cell adhesion molecule CHL1 with vitronectin, integrins, and the plasminogen activator inhibitor-2 promotes CHL1-induced neurite outgrowth and neuronal migration. J Neurosci 2014; 34:14606-23. [PMID: 25355214 PMCID: PMC6608427 DOI: 10.1523/jneurosci.3280-13.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 02/05/2023] Open
Abstract
The cell adhesion molecule close homolog of L1 (CHL1) plays important functional roles in the developing and adult nervous system. In search of the binding partners that mediate the diverse and sometimes opposing functions of CHL1, the extracellular matrix-associated proteins vitronectin and plasminogen activator inhibitor-2 (PAI-2) were identified as novel CHL1 interaction partners and tested for involvement in CHL1-dependent functions during mouse cerebellar development. CHL1-induced cerebellar neurite outgrowth and cell migration at postnatal days 6-8 were inhibited by a CHL1-derived peptide comprising the integrin binding RGD motif, and by antibodies against vitronectin or several integrins, indicating a vitronectin-dependent integrin-mediated pathway. A PAI-2-derived peptide, or antibodies against PAI-2, urokinase type plasminogen activator (uPA), uPA receptor, and several integrins reduced cell migration. CHL1 colocalized with vitronectin, PAI-2, and several integrins in cerebellar granule cells, suggesting an association among these proteins. Interestingly, at the slightly earlier age of 4-5 d, cerebellar neurons did not depend on CHL1 for neuritogenesis and cell migration. However, differentiation of progenitor cells into neurons at this stage was dependent on homophilic CHL1-CHL1 interactions. These observations indicate that homophilic CHL1 trans-interactions regulate differentiation of neuronal progenitor cells at early postnatal stages, while heterophilic trans-interactions of CHL1 with vitronectin, integrins, and the plasminogen activator system regulate neuritogenesis and neuronal cell migration at a later postnatal stage of cerebellar morphogenesis. Thus, within very narrow time windows in postnatal cerebellar development, distinct types of molecular interactions mediated by CHL1 underlie the diverse functions of this protein.
Collapse
Affiliation(s)
| | | | | | | | | | - Friedrich Buck
- Institut für Klinische Chemie, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jaroslaw W Zmijewski
- Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, BMRII-304, Birmingham, Alabama 35294
| | | | - Klaus T Preissner
- Department of Biochemistry, Medical School, Justus-Liebig-University, 35392 Giessen, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, Center for Neuroscience, Shantou University Medical College, Shantou 515041, People's Republic of China, and
| |
Collapse
|
32
|
Duan D, Yang X, Ya T, Chen L. Hippocampal gene expression in a rat model of depression after electroacupuncture at the Baihui and Yintang acupoints. Neural Regen Res 2014; 9:76-83. [PMID: 25206746 PMCID: PMC4146319 DOI: 10.4103/1673-5374.125333] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2013] [Indexed: 12/15/2022] Open
Abstract
Preliminary basic research and clinical findings have demonstrated that electroacupuncture therapy exhibits positive effects in ameliorating depression. However, most studies of the underlying mechanism are at the single gene level; there are few reports regarding the mechanism at the whole-genome level. Using a rat genomic gene-chip, we profiled hippocampal gene expression changes in rats after electroacupuncture therapy. Electroacupuncture therapy alleviated depression-related manifestations in the model rats. Using gene-chip analysis, we demonstrated that electroacupuncture at Baihui (DU20) and Yintang (EX-HN3) regulates the expression of 21 genes. Real-time PCR showed that the genes Vgf, Igf2, Tmp32, Loc500373, Hif1a, Folr1, Nmb, and Rtn were upregulated or downregulated in depression and that their expression tended to normalize after electroacupuncture therapy. These results indicate that electroacupuncture at Baihui and Yintang modulates depression by regulating the expression of particular genes.
Collapse
Affiliation(s)
- Dongmei Duan
- Department of Traditional Chinese Medicine of South Building, Chinese PLA General Hospital, Beijing, China
| | - Xiuyan Yang
- Institute of Health Maintenance, Beijing University of Chinese Medicine, Beijing, China
| | - Tu Ya
- School of Acupuncture and Moxibustion, Beijing University of Chinese Medicine, Beijing, China
| | - Liping Chen
- Department of Traditional Chinese Medicine of South Building, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
33
|
Khsheibun R, Paperna T, Volkowich A, Lejbkowicz I, Avidan N, Miller A. Gene expression profiling of the response to interferon beta in Epstein-Barr-transformed and primary B cells of patients with multiple sclerosis. PLoS One 2014; 9:e102331. [PMID: 25025430 PMCID: PMC4099420 DOI: 10.1371/journal.pone.0102331] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/16/2014] [Indexed: 01/03/2023] Open
Abstract
The effects of interferon-beta (IFN-β), one of the key immunotherapies used in multiple sclerosis (MS), on peripheral blood leukocytes and T cells have been extensively studied. B cells are a less abundant leukocyte type, and accordingly less is known about the B cell-specific response to IFN-β. To identify gene expression changes and pathways induced by IFN-β in B cells, we studied the in vitro response of human Epstein Barr-transformed B cells (lymphoblast cell lines-LCLs), and validated our results in primary B cells. LCLs were derived from an MS patient repository. Whole genome expression analysis identified 115 genes that were more than two-fold differentially up-regulated following IFN-β exposure, with over 50 previously unrecognized as IFN-β response genes. Pathways analysis demonstrated that IFN-β affected LCLs in a similar manner to other cell types by activating known IFN-β canonical pathways. Additionally, IFN-β increased the expression of innate immune response genes, while down-regulating many B cell receptor pathway genes and genes involved in adaptive immune responses. Novel response genes identified herein, NEXN, DDX60L, IGFBP4, and HAPLN3, B cell receptor pathway genes, CD79B and SYK, and lymphocyte activation genes, LAG3 and IL27RA, were validated as IFN-β response genes in primary B cells. In this study new IFN-β response genes were identified in B cells, with possible implications to B cell-specific functions. The study's results emphasize the applicability of LCLs for studies of human B cell drug response. The usage of LCLs from patient-based repositories may facilitate future studies of drug response in MS and other immune-mediated disorders with a B cell component.
Collapse
Affiliation(s)
- Rana Khsheibun
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tamar Paperna
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Anat Volkowich
- Division of Neuroimmunology and Multiple Sclerosis Center, Carmel Medical Center, Haifa, Israel
| | - Izabella Lejbkowicz
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nili Avidan
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ariel Miller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Division of Neuroimmunology and Multiple Sclerosis Center, Carmel Medical Center, Haifa, Israel
- * E-mail:
| |
Collapse
|
34
|
Breitenstein B, Scheuer S, Holsboer F. Are there meaningful biomarkers of treatment response for depression? Drug Discov Today 2014; 19:539-61. [PMID: 24561326 DOI: 10.1016/j.drudis.2014.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 01/29/2014] [Accepted: 02/11/2014] [Indexed: 12/18/2022]
Abstract
During the past decades, the prevalence of affective disorders has been on the rise globally, with only one out of three patients achieving remission in acute treatment with antidepressants. The identification of physiological markers that predict treatment course proves useful in increasing therapeutic success. On the basis of well-documented, recent findings in depression research, we highlight and discuss the most promising biomarkers for antidepressant therapy response. These include genetic variants and gene expression profiles, proteomic and metabolomic markers, neuroendocrine function tests, electrophysiology and imaging techniques. Ultimately, this review proposes an integrative use of biomarkers for antidepressant treatment outcome.
Collapse
Affiliation(s)
- Barbara Breitenstein
- HolsboerMaschmeyerNeuroChemie, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Florian Holsboer
- HolsboerMaschmeyerNeuroChemie, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
35
|
Serafini G, Pompili M, Hansen KF, Obrietan K, Dwivedi Y, Shomron N, Girardi P. The involvement of microRNAs in major depression, suicidal behavior, and related disorders: a focus on miR-185 and miR-491-3p. Cell Mol Neurobiol 2014; 34:17-30. [PMID: 24213247 DOI: 10.1007/s10571-013-9997-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/12/2013] [Indexed: 01/08/2023]
Abstract
Major depressive disorders are common and disabling conditions associated with significant psychosocial impairment and suicide risk. At least 3-4 % of all depressive individuals die by suicide. Evidence suggests that small non-coding RNAs, in particular microRNAs (miRNAs), play a critical role in major affective disorders as well as suicide. We performed a detailed review of the current literature on miRNAs and their targets in major depression and related disorders as well as suicidal behavior, with a specific focus on miR-185 and miR-491-3p, which have been suggested to participate in the pathogenesis of major depression and/or suicide. miRNAs play a fundamental role in the development of the brain. Several miRNAs are reported to influence neuronal and circuit formation by negatively regulating gene expression. Global miRNA reduced expression was found in the prefrontal cortex of depressed suicide completers when compared to that of nonpsychiatric controls who died of other causes. One particular miRNA, miR-185, was reported to regulate TrkB-T1, which has been associated with suicidal behavior upon truncation. Furthermore, cAMP response element-binding protein-brain-derived neurotrophic factor pathways may regulate, through miRNAs, the homeostasis of neural and synaptic pathways playing a crucial role in major depression. miRNAs have gained attention as key players involved in nervous system development, physiology, and disease. Further evidence is needed to clarify the exact role that miRNAs play in major depression and related disorders and suicidal behavior.
Collapse
Affiliation(s)
- Gianluca Serafini
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1037, 00189, Rome, Italy,
| | | | | | | | | | | | | |
Collapse
|
36
|
Jack J, Rotroff D, Motsinger-Reif A. Lymphoblastoid cell lines models of drug response: successes and lessons from this pharmacogenomic model. Curr Mol Med 2014; 14:833-40. [PMID: 25109794 PMCID: PMC4323076 DOI: 10.2174/1566524014666140811113946] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/26/2014] [Accepted: 04/23/2014] [Indexed: 12/20/2022]
Abstract
A new standard for medicine is emerging that aims to improve individual drug responses through studying associations with genetic variations. This field, pharmacogenomics, is undergoing a rapid expansion due to a variety of technological advancements that are enabling higher throughput with reductions in cost. Here we review the advantages, limitations, and opportunities for using lymphoblastoid cell lines (LCL) as a model system for human pharmacogenomic studies. There are a wide range of publicly available resources with genome-wide data available for LCLs from both related and unrelated populations, removing the cost of genotyping the data for drug response studies. Furthermore, in contrast to human clinical trials or in vivo model systems, with high-throughput in vitro screening technologies, pharmacogenomics studies can easily be scaled to accommodate large sample sizes. An important component to leveraging genome-wide data in LCL models is association mapping. Several methods are discussed herein, and include multivariate concentration response modeling, issues with multiple testing, and successful examples of the 'triangle model' to identify candidate variants. Once candidate gene variants have been determined, their biological roles can be elucidated using pathway analyses and functionally confirmed using siRNA knockdown experiments. The wealth of genomics data being produced using related and unrelated populations is creating many exciting opportunities leading to new insights into the genetic contribution and heritability of drug response.
Collapse
Affiliation(s)
| | | | - A Motsinger-Reif
- Bioinformatics Research Center, 1 Lampe Drive, CB 7566, Ricks Hall, Raleigh, NC 27695, USA.
| |
Collapse
|
37
|
Peled A. Brain “Globalopathies” cause mental disorders. Med Hypotheses 2013; 81:1046-55. [DOI: 10.1016/j.mehy.2013.09.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/29/2013] [Accepted: 09/26/2013] [Indexed: 12/28/2022]
|
38
|
Oved K, Morag A, Pasmanik-Chor M, Rehavi M, Shomron N, Gurwitz D. Genome-wide expression profiling of human lymphoblastoid cell lines implicates integrin beta-3 in the mode of action of antidepressants. Transl Psychiatry 2013; 3:e313. [PMID: 24129413 PMCID: PMC3818017 DOI: 10.1038/tp.2013.86] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/15/2013] [Accepted: 09/08/2013] [Indexed: 01/10/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for major depression. However, the link between inhibition of serotonin reuptake and remission from depression remains controversial: in spite of the rapid onset of serotonin reuptake inhibition, remission from depression takes several weeks, presumably reflecting synaptogenesis/neurogenesis and neuronal rewiring. We compared genome-wide expression profiles of human lymphoblastoid cell lines from unrelated individuals following treatment with 1 μM paroxetine for 21 days with untreated control cells and examined which genes and microRNAs (miRNAs) showed the most profound and consistent expression changes. ITGB3, coding for integrin beta-3, showed the most consistent altered expression (1.92-fold increase, P=7.5 × 10(-8)) following chronic paroxetine exposure. Using genome-wide miRNA arrays, we observed a corresponding decrease in the expression of two miRNAs, miR-221 and miR-222, both predicted to target ITGB3. ITGB3 is crucial for the activity of the serotonin transporter (SERT), the drug target of SSRIs. Moreover, it is presumably required for the neuronal guidance activity of CHL1, whose expression was formerly identified as a tentative SSRI response biomarker. Further genes whose expression was significantly modulated by chronic paroxetine are also implicated in neurogenesis. Surprisingly, the expression of SERT or serotonin receptors was not modified. Our findings implicate ITGB3 in the mode of action of SSRI antidepressants and provide a novel link between CHL1 and the SERT. Our observations suggest that SSRIs may relieve depression primarily by promoting neuronal synaptogenesis/neurogenesis rather than by modulating serotonin neurotransmission per se.
Collapse
Affiliation(s)
- K Oved
- Department of Human Molecular Genetics and
Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University,
Tel-Aviv, Israel
- Department of Cell and Developmental Biology,
Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv,
Israel
| | - A Morag
- Department of Human Molecular Genetics and
Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University,
Tel-Aviv, Israel
- Department of Physiology and Pharmacology,
Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv,
Israel
| | - M Pasmanik-Chor
- Bioinformatics Unit, George Wise Faculty of
Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - M Rehavi
- Department of Physiology and Pharmacology,
Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv,
Israel
| | - N Shomron
- Department of Cell and Developmental Biology,
Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv,
Israel
- Sagol School of Neuroscience, Tel-Aviv
University, Tel-Aviv, Israel
| | - D Gurwitz
- Department of Human Molecular Genetics and
Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University,
Tel-Aviv, Israel
| |
Collapse
|
39
|
Gurwitz D, McLeod HL. Genome-wide studies in pharmacogenomics: harnessing the power of extreme phenotypes. Pharmacogenomics 2013; 14:337-9. [PMID: 23438876 DOI: 10.2217/pgs.13.35] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- David Gurwitz
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | |
Collapse
|
40
|
Fabbri C, Di Girolamo G, Serretti A. Pharmacogenetics of antidepressant drugs: an update after almost 20 years of research. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:487-520. [PMID: 23852853 DOI: 10.1002/ajmg.b.32184] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 06/19/2013] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is an emergent cause of personal and socio-economic burden, both for the high prevalence of the disorder and the unsatisfying response rate of the available antidepressant treatments. No reliable predictor of treatment efficacy and tolerance in the single patient is available, thus drug choice is based on a trial and error principle with poor clinical efficiency. Among modulators of treatment outcome, genetic polymorphisms are thought to explain a significant share of the inter-individual variability. The present review collected the main pharmacogenetic findings primarily about antidepressant response and secondly about antidepressant induced side effects, and discussed the main strengths and limits of both candidate and genome-wide association studies and the most promising methodological opportunities and challenges of the field. Despite clinical applications of antidepressant pharmacogenetics are not available yet, previous findings suggest that genotyping may be applied in the clinical practice. In order to reach this objective, further rigorous pharmacogenetic studies (adequate sample size, study of better defined clinical subtypes of MDD, adequate covering of the genetic variability), their combination with the results obtained through complementary methodologies (e.g., pathway analysis, epigenetics, transcriptomics, and proteomics), and finally cost-effectiveness trials are required.
Collapse
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
41
|
Viswanath B, Taj M J RJ, Purushottam M, Kandavel T, Shetty PH, Reddy YCJ, Jain S. No association between DRD4 gene and SRI treatment response in obsessive compulsive disorder: need for a novel approach. Asian J Psychiatr 2013; 6:347-8. [PMID: 23810146 DOI: 10.1016/j.ajp.2013.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 11/20/2022]
|
42
|
Lam YF, Fukui N, Sugai T, Watanabe J, Watanabe Y, Suzuki Y, Someya T. Pharmacogenomics in Psychiatric Disorders. Pharmacogenomics 2013. [DOI: 10.1016/b978-0-12-391918-2.00006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
43
|
Vincent M, Oved K, Morag A, Pasmanik-Chor M, Oron-Karni V, Shomron N, Gurwitz D. Genome-wide transcriptomic variations of human lymphoblastoid cell lines: insights from pairwise gene-expression correlations. Pharmacogenomics 2012; 13:1893-904. [DOI: 10.2217/pgs.12.179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aims: Human lymphoblastoid cell lines (LCLs) are a rich resource of information on human interindividual genomic, transcriptomic, proteomic and phenomic variations, and are therefore gaining popularity for pharmacogenomic studies. In the present study we demonstrate that genome-wide transcriptomic data from a small LCL panel from unrelated individuals is sufficient for detecting pairs of genes that exhibit highly correlated expression levels and may thus convey insights about coregulated genes. Materials & methods: RNA samples were prepared from LCLs representing 12 unrelated healthy adult female Caucasian donors. Transcript levels were determined with the Affymetrix Human Gene arrays. Expression-level correlations were searched using Partek® Genomics Suite™ and the R environment. Sequences of detected correlated gene pairs were compared for shared conserved 3´-UTR miRNA binding. Results: Most of the approximately 33,000 transcripts covered by the Affymetrix arrays showed closely similar expression levels in LCLs from unrelated donors. However, the expression levels of some transcripts showed large inter-individual variations. When comparing the expression levels of each of the top 1000 genes showing the largest interindividual expression variations against the others, two sets containing 156 and 4438 correlated gene pairs with false-discovery rates of 0.01 and 0.05 were detected, respectively. Similar analysis of another gene-expression data set from LCLs (GSE11582) indicated that 61 and 39% of identified pairs matched the pairs detected from our transcriptomic data, respectively. Shared conserved 3´-UTR miRNA binding sites were noted for 14–17% of the top 100 gene pairs, suggesting that regulation by miRNA may contribute to their coordinated expression. Conclusion: Probing genome-wide transcriptomic data sets of LCLs from unrelated individuals may detect coregulated genes, adding insights on cellular regulation by miRNAs. Original submitted 11 July 2012; Revision submitted 4 September 2012
Collapse
Affiliation(s)
- Marc Vincent
- Université Paris Descartes, INSERM UMRS775, Paris, France
| | - Keren Oved
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Israel
- Department of Cell & Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Ayelet Morag
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel-Aviv University, Israel
| | - Varda Oron-Karni
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel-Aviv University, Israel
| | - Noam Shomron
- Department of Cell & Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - David Gurwitz
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
44
|
The genetics of selective serotonin reuptake inhibitors. Pharmacol Ther 2012; 136:375-400. [PMID: 22944042 DOI: 10.1016/j.pharmthera.2012.08.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/21/2012] [Indexed: 12/15/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are among the most widely prescribed drugs in psychiatry. Based on the fact that SSRIs increase extracellular monoamine levels in the brain, the monoamine hypothesis of depression was introduced, postulating that depression is associated with too low serotonin, dopamine and noradrenaline levels. However, several lines of evidence indicate that this hypothesis is too simplistic and that depression and the efficacy of SSRIs are dependent on neuroplastic changes mediated by changes in gene expression. Because a coherent view on global gene expression is lacking, we aim to provide an overview of the effects of SSRI treatment on the final targets of 5-HT receptor signal transduction pathways, namely the transcriptional regulation of genes. We address gene polymorphisms in humans that affect SSRI efficacy, as well as in vitro studies employing human-derived cells. We also discuss the molecular targets affected by SSRIs in animal models, both in vivo and in vitro. We conclude that serotonin transporter gene variation in humans affects the efficacy and side-effects of SSRIs, whereas SSRIs generally do not affect serotonin transporter gene expression in animals. Instead, SSRIs alter mRNA levels of genes encoding serotonin receptors, components of non-serotonergic neurotransmitter systems, neurotrophic factors, hypothalamic hormones and inflammatory factors. So far little is known about the epigenetic and age-dependent molecular effects of SSRIs, which might give more insights in the working mechanism(s) of SSRIs.
Collapse
|
45
|
Cottingham C, Wang Q. α2 adrenergic receptor dysregulation in depressive disorders: implications for the neurobiology of depression and antidepressant therapy. Neurosci Biobehav Rev 2012; 36:2214-25. [PMID: 22910678 DOI: 10.1016/j.neubiorev.2012.07.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/27/2012] [Accepted: 07/25/2012] [Indexed: 12/25/2022]
Abstract
Dysfunction in noradrenergic neurotransmission has long been theorized to occur in depressive disorders. The α2 adrenergic receptor (AR) family, as a group of key players in regulating the noradrenergic system, has been investigated for involvement in the neurobiology of depression and mechanisms of antidepressant therapies. However, a clear picture of the α2ARs in depressive disorders has not been established due to the existence of apparently conflicting findings in the literature. In this article, we report that a careful accounting of methodological differences within the literature can resolve the present lack of consensus on involvement of α2ARs in depression. In particular, the pharmacological properties of the radioligand (e.g. agonist versus antagonist) utilized for determining receptor density are crucial in determining study outcome. Upregulation of α2AR density detected by radiolabeled agonists but not by antagonists in patients with depressive disorders suggests a selective increase in the density of high-affinity conformational state α2ARs, which is indicative of enhanced G protein coupling to the receptor. Importantly, this high-affinity state α2AR upregulation can be normalized with antidepressant treatments. Thus, depressive disorders appear to be associated with increased α2AR sensitivity and responsiveness, which may represent a physiological basis for the putative noradrenergic dysfunction in depressive disorders. In addition, we review changes in some key α2AR accessory proteins in depressive disorders and discuss their potential contribution to α2AR dysfunction.
Collapse
Affiliation(s)
- Christopher Cottingham
- Department of Cell, Developmental & Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
46
|
Morag A, Oved K, Gurwitz D. Sex differences in human lymphoblastoid cells sensitivities to antipsychotic drugs. J Mol Neurosci 2012; 49:554-8. [PMID: 22760742 DOI: 10.1007/s12031-012-9852-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/26/2012] [Indexed: 12/30/2022]
Abstract
Adverse drug reactions (ADRs) are a major concern in pharmacotherapy and are more common among women. Immortalized human lymphoblastoid cell lines (LCLs) are emerging as a novel tool for studying interindividual variability in drug response, including ADRs. In the present study, we compared sensitivities of LCLs from unrelated healthy male and female donors to growth inhibition by a panel of common drugs. We observed large interindividual drug sensitivity variations with similar mean sensitivities recorded for LCLs from male and female donors for most tested drugs. A notable exception was observed for the typical antipsychotic haloperidol and the atypical antipsychotic risperidone, which exhibited, on average, more robust in vitro growth inhibition in male as compared with female LCLs. An opposite finding was observed for the antidepressant paroxetine, which was more potent for inhibiting the growth of female as compared with male LCLs. These observations are discussed in the context of the higher incidence of dystonia reported for male schizophrenia patients treated with haloperidol and the higher efficacy of paroxetine in female major depression patients.
Collapse
Affiliation(s)
- Ayelet Morag
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | | | | |
Collapse
|
47
|
Oved K, Morag A, Pasmanik-Chor M, Oron-Karni V, Shomron N, Rehavi M, Stingl JC, Gurwitz D. Genome-wide miRNA expression profiling of human lymphoblastoid cell lines identifies tentative SSRI antidepressant response biomarkers. Pharmacogenomics 2012; 13:1129-39. [DOI: 10.2217/pgs.12.93] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: Over 30% of patients with major depression do not respond well to first-line treatment with selective serotonin reuptake inhibitors (SSRIs). Using genome-wide expression profiling of human lymphoblastoid cell lines (LCLs) CHL1 was identified as a tentative SSRI sensitivity biomarker. This study reports on miRNAs implicated in SSRI sensitivity of LCLs. Methods: Eighty LCLs were screened from healthy adult female individuals for growth inhibition by paroxetine. Eight LCLs exhibiting high or low sensitivities to paroxetine were chosen for genome-wide expression profiling with miRNA microarrays. Results: The miRNA miR-151-3p had 6.7-fold higher basal expression in paroxetine-sensitive LCLs. This corresponds with lower expression of CHL1, a target of miR-151-3p. The additional miRNAs miR-212, miR-132, miR-30b*, let-7b and let-7c also differed by >1.5-fold (p < 0.05) between the two LCL groups. Conclusion: The potential value of these miRNAs as tentative SSRI response biomarkers awaits validation with lymphocyte samples of major depression patients. Original submitted 28 March 2012; Revision submitted 21 May 2012
Collapse
Affiliation(s)
- Keren Oved
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Cell & Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ayelet Morag
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Varda Oron-Karni
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Noam Shomron
- Department of Cell & Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Moshe Rehavi
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Julia C Stingl
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, University Ulm, Ulm, Germany
- Federal Institute for Drugs & Medical Devices, University Bonn, Bonn, Germany
| | - David Gurwitz
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
48
|
Wheeler HE, Dolan ME. Lymphoblastoid cell lines in pharmacogenomic discovery and clinical translation. Pharmacogenomics 2012; 13:55-70. [PMID: 22176622 DOI: 10.2217/pgs.11.121] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The ability to predict how an individual patient will respond to a particular treatment is the ambitious goal of personalized medicine. The genetic make up of an individual has been shown to play a role in drug response. For pharmacogenomic studies, human lymphoblastoid cell lines (LCLs) comprise a useful model system for identifying genetic variants associated with pharmacologic phenotypes. The availability of extensive genotype data for many panels of LCLs derived from individuals of diverse ancestry allows for the study of genetic variants contributing to interethnic and interindividual variation in susceptibility to drugs. Many genome-wide association studies for drug-induced phenotypes have been performed in LCLs, often incorporating gene-expression data. LCLs are also being used in follow-up studies to clinical findings to determine how an associated variant functions to affect phenotype. This review describes the most recent pharmacogenomic findings made in LCLs, including the translation of some findings to clinical cohorts.
Collapse
Affiliation(s)
- Heather E Wheeler
- Section of Hematology/Oncology, Department of Medicine, 900 East 57th St, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
49
|
Abstract
Pharmacogenetic analyses of treatments for alcohol dependence attempt to predict treatment response and side-effect risk for specific medications. We review the literature on pharmacogenetics relevant to alcohol dependence treatment, and describe state-of-the-art methods of pharmacogenetic research in this area. Two main pharmacogenetic study designs predominate: challenge studies and treatment-trial analyses. Medications studied include US FDA-approved naltrexone and acamprosate, both indicated for treating alcohol dependence, as well as several investigational (and off-label) treatments such as sertraline, olanzapine and ondansetron. The best-studied functional genetic variant relevant to alcoholism treatment is rs1799971, a single-nucleotide polymorphism in exon 1 of the OPRM1 gene that encodes the μ-opioid receptor. Evidence from clinical trials suggests that the presence of the variant G allele of rs1799971 may predict better treatment response to opioid receptor antagonists such as naltrexone. Evidence from clinical trials also suggests that several medications interact pharmacogenetically with variation in genes that encode proteins involved in dopaminergic and serotonergic neurotransmission. Variation in the DRD4 gene, which encodes the dopamine D(4) receptor, may predict better response to naltrexone and olanzapine. A polymorphism in the serotonin transporter gene SLC6A4 promoter region appears related to differential treatment response to sertraline depending on the subject's age of onset of alcoholism. Genetic variation in SLC6A4 may also be associated with better treatment response to ondansetron. Initial pharmacogenetic efforts in alcohol research have identified functional variants with potential clinical utility, but more research is needed to further elucidate the mechanism of these pharmacogenetic interactions and their moderators in order to translate them into clinical practice.
Collapse
Affiliation(s)
- Albert J. Arias
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,VA Connecticut Healthcare System, West Haven, CT, USA
| | - R. Andrew Sewell
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
50
|
Clark SL, Adkins DE, Aberg K, Hettema JM, McClay JL, Souza RP, van den Oord EJCG. Pharmacogenomic study of side-effects for antidepressant treatment options in STAR*D. Psychol Med 2012; 42:1151-1162. [PMID: 22041458 PMCID: PMC3627503 DOI: 10.1017/s003329171100239x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Understanding individual differences in susceptibility to antidepressant therapy side-effects is essential to optimize the treatment of depression. METHOD We performed genome-wide association studies (GWAS) to search for genetic variation affecting the susceptibility to side-effects. The analysis sample consisted of 1439 depression patients, successfully genotyped for 421K single nucleotide polymorphisms (SNPs), from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study. Outcomes included four indicators of side-effects: general side-effect burden, sexual side-effects, dizziness and vision/hearing-related side-effects. Our criterion for genome-wide significance was a prespecified threshold ensuring that, on average, only 10% of the significant findings are false discoveries. RESULTS Thirty-four SNPs satisfied this criterion. The top finding indicated that 10 SNPs in SACM1L mediated the effects of bupropion on sexual side-effects (p = 4.98 × 10(-7), q = 0.023). Suggestive findings were also found for SNPs in MAGI2, DTWD1, WDFY4 and CHL1. CONCLUSIONS Although our findings require replication and functional validation, this study demonstrates the potential of GWAS to discover genes and pathways that could mediate adverse effects of antidepressant medication.
Collapse
Affiliation(s)
- S L Clark
- Center for Biomarker Research and Personalized Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0581, USA.
| | | | | | | | | | | | | |
Collapse
|