1
|
Zeng X, Li C, Liu Y, Liu W, Hu Y, Chen L, Huang X, Li Y, Hu K, Ouyang D, Rao T. HLA-B*35:01-mediated activation of emodin-specific T cells contributes to Polygonum multiflorum thunb. -induced liver injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118523. [PMID: 38969149 DOI: 10.1016/j.jep.2024.118523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE HLA-B*35:01 has been identified as a risk allele for Polygonum multiflorum Thunb.-induced liver injury (PMLI). However, the immune mechanism underlying HLA-B*35:01-mediated PMLI remains unknown. AIM OF THE STUDY To characterize the immune mechanism of HLA-B*35:01-mediated PMLI. MATERIALS AND METHODS Components of P. multiflorum (PM) bound to the HLA-B*35:01 molecule was screened by immunoaffinity chromatography. Both wild-type mice and HLA-B*35:01 transgenic (TG) mice were treated with emodin. The levels of transaminases, histological changes and T-cell response were assessed. Splenocytes from emodin-treated mice were isolated and cultured in vitro. Phenotypes and functions of T cells were characterized upon drug restimulation using flow cytometry or ELISA. Emodin-pulsed antigen-presenting cells (APCs) or glutaraldehyde-fixed APCs were co-cultured with splenocytes from emodin-treated transgenic mice to detect their effect on T-cell activation. RESULTS Emodin, the main component of PM, could non-covalently bind to the HLA-B*35:01-peptide complexes. TG mice were more sensitive to emodin-induced immune hepatic injury, as manifested by elevated aminotransferase levels, infiltration of inflammatory cells, increased percentage of CD8+T cells and release of effector molecules in the liver. However, these effects were not observed in wild-type mice. An increase in percentage of T cells and the levels of interferon-γ, granzyme B, and perforin was detected in emodin-restimulated splenocytes from TG mice. Anti-HLA-I antibodies inhibited the secretion of these effector molecules induced by emodin. Mechanistically, emodin-pulsed APCs failed to stimulate T cells, while fixed APCs in the presence of emodin could elicit the secretion of T cell effector molecules. CONCLUSION The HLA-B*35:01-mediated CD8+ T cell reaction to emodin through the P-I mechanism may contribute to P. multiflorum-induced liver injury.
Collapse
Affiliation(s)
- Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Chaopeng Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Yating Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Wenhui Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yuwei Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Xinyi Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Ying Li
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Kai Hu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China.
| | - Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China.
| |
Collapse
|
2
|
Hasegawa A, Abe R. Stevens-Johnson syndrome and toxic epidermal necrolysis: Updates in pathophysiology and management. Chin Med J (Engl) 2024; 137:2294-2307. [PMID: 39238098 PMCID: PMC11441865 DOI: 10.1097/cm9.0000000000003250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 09/07/2024] Open
Abstract
ABSTRACT Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are life-threatening conditions characterized by extensive detachment of the epidermis and mucous membranes. These severe disorders carry a high mortality rate, and their pathogenesis remains largely unclear. Furthermore, optimal therapeutic strategies for SJS/TEN remain a subject of ongoing debate. Early diagnosis of SJS/TEN is challenging, and reliable biomarkers for diagnosis or severity prediction have not been firmly established. Certain drugs, such as carbamazepine and allopurinol, have shown a strong association with specific human leukocyte antigen (HLA) types. Recently, the potential benefits of HLA screening prior to administering these drugs to reduce the incidence of SJS/TEN have been explored. Epidermal cell death in SJS/TEN lesions is caused by extensive apoptosis, primarily through the Fas-Fas ligand (FasL) and perforin/granzyme pathways. Our findings suggest that necroptosis, a form of programmed necrosis, also contributes to epidermal cell death. Annexin A1, released from monocytes, interacts with the formyl peptide receptor 1 to induce necroptosis. Several biomarkers, such as CC chemokine ligand (CCL)-27, interleukin-15, galectin-7, receptor-interacting protein kinases 3 (RIP3), and lipocalin-2, have been identified for diagnostic and prognostic purposes in SJS/TEN. Supportive care is recommended for treating SJS/TEN, but the efficacy of various therapeutic options-including systemic corticosteroids, intravenous immunoglobulin, cyclosporine, and tumor necrosis factor-α antagonists-remains controversial. Recent studies have investigated the potential benefits of tumor necrosis factor-α antagonists. In this review, we discuss recent advances in the understanding and management of SJS/TEN.
Collapse
Affiliation(s)
- Akito Hasegawa
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Riichiro Abe
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| |
Collapse
|
3
|
Elzagallaai AA, Rieder MJ. Pathophysiology of drug hypersensitivity. Br J Clin Pharmacol 2024; 90:1856-1868. [PMID: 36519187 DOI: 10.1111/bcp.15645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
Drug hypersensitivity reactions (DHRs) are type B adverse drug reactions (ADRs) traditionally defined as unpredictable, dose independent and not related to the drug pharmacology. DHRs, also called drug allergy if the immune system involvement is confirmed, represent around one-sixth of all ADRs and can cause major clinical problems due to their vague clinical presentation and irregular time course. Understanding the underlying pathophysiology of DHRs is very important for their diagnosis and management. Multiple layers of evidence exist pointing to the involvement of the immune system in DHRs. Recent data have led to a paradigm shift in our understanding of the exact pathophysiology of these reactions. Numerous hypotheses proposing explanation on how a low molecular weight drug molecule can elicit an immune reaction have been proposed. In addition to the classical "hapten" hypothesis, the reactive metabolite hypothesis, the pharmacological interaction with the immune system (p-i) concept, the danger/injury hypothesis and the altered peptide repertoire hypothesis have been proposed. We here introduce the inflammasome activation hypothesis and the cross-reactivity hypothesis as additional models explaining the pathophysiology of DHRs. Available data supporting these hypotheses are briefly summarized and discussed. We also introduced the cross-reactivity model, which may provide a platform to appreciate the potential role played by other factors leading to the activation of the immune system. We believe that although the drug in question could be the trigger of the reaction, the components of the immune system mediating the reaction do not act in isolation but rather are affected by the proinflammatory milieu occurring at the time of the reaction. This review attempts to summarize the available evidence to further illustrate the pathophysiology of DHRs.
Collapse
Affiliation(s)
- Abdelbaset A Elzagallaai
- Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Michael J Rieder
- Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Pediatrics and Physiology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
4
|
Doña I, Torres MJ, Celik G, Phillips E, Tanno LK, Castells M. Changing patterns in the epidemiology of drug allergy. Allergy 2024; 79:613-628. [PMID: 38084822 DOI: 10.1111/all.15970] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 03/01/2024]
Abstract
Drug allergy (DA) remains a complex and unaddressed problem worldwide that often deprives patients of optimal medication choices and places them at risk for life-threatening reactions. Underdiagnosis and overdiagnosis are common and due to the lack of standardized definitions and biomarkers. The true burden of DA is unknown, and recent efforts in data gathering through electronic medical records are starting to provide emerging patterns around the world. Ten percent of the general population engaged in health care claim to have a DA, and the most common label is penicillin allergy. Up to 20% of emergency room visits for anaphylaxis are due to DA and 15%-20% of hospitalized patients report DA. It is estimated that DA will increase based on the availability and use of new and targeted antibiotics, vaccines, chemotherapies, biologicals, and small molecules, which are aimed at improving patient's options and quality of life. Global and regional variations in the prevalence of diseases such as human immunodeficiency virus and mycobacterial diseases, and the drugs used to treat these infections have an impact on DA. The aim of this review is to provide an update on the global impact of DA by presenting emerging data on drug epidemiology in adult and pediatric populations.
Collapse
Affiliation(s)
- Immaculada Doña
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Allergy Unit, Hospital Regional Universitario de Málaga, Malaga, Spain
| | - Maria Jose Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Allergy Unit, Hospital Regional Universitario de Málaga, Malaga, Spain
- Departamento de Medicina, Universidad de Málaga, Malaga, Spain
| | - Gulfem Celik
- Division of Immunology and Allergy, Department of Chest Diseases, Ankara University School of Medicine, Ankara, Turkey
| | - Elizabeth Phillips
- Department of Medicine, Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Luciana Kase Tanno
- Division of Allergy, Department of Pulmonology, Allergy and Thoracic Oncology, University Hospital of Montpellier, Montpellier, France
- Desbrest Institute of Epidemiology and Public Health, UMR UA11 University of Montpellier-INSERM, Montpellier, France
- WHO Collaborating Centre on Scientific Classification Support, Montpellier, France
| | - Mariana Castells
- Division of Allergy and Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Elzagallaai AA, Rieder MJ. Novel insights into molecular and cellular aspects of delayed drug hypersensitivity reactions. Expert Rev Clin Pharmacol 2023; 16:1187-1199. [PMID: 38018416 DOI: 10.1080/17512433.2023.2289543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Delayed drug hypersensitivity reactions (DDHRs) represent a major health problem. They are unpredictable and can cause life-long disability or even death. The pathophysiology of DDHRs is complicated, multifactorial, and not well understood mainly due to the lack of validated animal models or in vitro systems. The role of the immune system is well demonstrated but its exact pathophysiology still a matter of debate. AREA COVERED This review summarizes the current understanding of DDHRs pathophysiology and abridges the available new evidence supporting each hypothesis. A comprehensive literature search for relevant publications was performed using PubMed, Google Scholar, and Medline databases with no date restrictions and focusing on the most recent 10 years. EXPERT OPINION Although multiple milestones have been achieved in our understanding of DDHRs pathophysiology as a result of the development of useful experimental models, many questions are yet to be fully answered. A deeper understanding of the mechanistic basis of DDHRs would not only facilitate the development of robust and reliable diagnostic assays for diagnosis, but would also inform therapy by providing specific target(s) for immunomodulation and potentially permit pre-therapeutic risk assessment to pursue the common goal of safe and effective drug therapy.
Collapse
Affiliation(s)
- Abdelbaset A Elzagallaai
- Department of Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Michael J Rieder
- Department of Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Paediatrics and Physiology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
6
|
Di Filippo P, Venanzi A, Ciarelli F, Panetti B, Di Pillo S, Chiarelli F, Attanasi M. Drug-Induced Enterocolitis Syndrome in Children. Int J Mol Sci 2023; 24:ijms24097880. [PMID: 37175584 PMCID: PMC10178722 DOI: 10.3390/ijms24097880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Drug-Induced Enterocolitis Syndrome (DIES) is a drug-induced hypersensitivity reaction non-IgE mediated involving the gastrointestinal system that occurs 2 to 4 h after drug administration. Antibiotics, specifically amoxicillin or amoxicillin/clavulanate, represent the most frequent drugs involved. Symptoms include nausea, vomiting, abdominal pain, diarrhea, pallor, lethargy, and dehydration, which can be severe and result in hypovolemic shock. The main laboratory finding is neutrophilic leukocytosis. To the best of our knowledge, 12 cases of DIES (9 children-onset and 3 adult-onset cases) were described in the literature. DIES is a rare clinically well-described allergic disease; however, the pathogenetic mechanism is still unclear. It requires to be recognized early and correctly treated by physicians.
Collapse
Affiliation(s)
- Paola Di Filippo
- Department of Pediatrics, University of Chieti, 66100 Chieti, Italy
| | | | | | - Beatrice Panetti
- Department of Pediatrics, University of Chieti, 66100 Chieti, Italy
| | - Sabrina Di Pillo
- Department of Pediatrics, University of Chieti, 66100 Chieti, Italy
| | | | - Marina Attanasi
- Department of Pediatrics, University of Chieti, 66100 Chieti, Italy
| |
Collapse
|
7
|
Au EYL, Mak HWF, Yeung MHY, Chiang V, Lam K, Wong JCY, Yeung HHF, Chan EYT, Lau CS, Li PH. Ten-year outcomes of Perioperative Anaphylaxis Workup Study in Hong Kong (PAWS-HK): Performance of diagnostic modalities. Ann Allergy Asthma Immunol 2023:S1081-1206(23)00125-4. [PMID: 36842494 DOI: 10.1016/j.anai.2023.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Studies on perioperative anaphylaxis (PA) in Asia are lacking. Furthermore, allergy workup for PA has largely been limited to the "silver standard" of skin tests (ST). Using in vitro tests as an adjunct to ST may improve and overcome these diagnostic challenges. OBJECTIVE To evaluate the clinical characteristics and diagnostic tests of patients with suspected PA through the Perioperative Anaphylaxis Workup Study in Hong Kong cohort. METHODS Patients with a diagnosis of PA over a 10-year period were recruited into the Perioperative Anaphylaxis Workup Study in Hong Kong. We reviewed the medical records, tryptase elevation, and diagnostic tests including ST, specific immunoglobulin E, and basophil activation tests (BAT). RESULTS In 151 patients with PA, diagnosis was reached in three-fourths of the cases (113/151, 74.8%). The most common culprits identified were neuromuscular blocking agents (25.8%), β lactams (17.2%) and chlorhexidine (13.9%). Severe anaphylaxis was associated with female sex, older age, elevated acute tryptase levels, and more cardiovascular manifestations during induction. Skin tests remained the most sensitive diagnostic modality overall (66.2%). BAT showed better performance for chlorhexidine and gelofusine anaphylaxis, with sensitivity of 80.0% and 79.6%, respectively. Specific Immunoglobulin E indicated even higher sensitivity (95.2%) than did ST (85.0%) and BAT (80.0%) for chlorhexidine anaphylaxis but performed poorly for other drugs. CONCLUSION Neuromuscular blocking agents remain the most common culprit in PA. There was a higher prevalence of gelofusine anaphylaxis in our cohort than was seen in the literature. Skin tests remain the most sensitive testing modality. In vitro tests for chlorhexidine and gelofusine showed promising results, but more studies to further elucidate its use are warranted.
Collapse
Affiliation(s)
- Elaine Y L Au
- Division of Clinical Immunology, Department of Pathology Queen Mary Hospital, Hong Kong
| | - Hugo W F Mak
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Maegan H Y Yeung
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Valerie Chiang
- Division of Clinical Immunology, Department of Pathology Queen Mary Hospital, Hong Kong
| | - Ki Lam
- Division of Clinical Immunology, Department of Pathology Queen Mary Hospital, Hong Kong
| | - Jane C Y Wong
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Heather H F Yeung
- Division of Clinical Immunology, Department of Pathology Queen Mary Hospital, Hong Kong
| | - Eric Y T Chan
- Division of Clinical Immunology, Department of Pathology Queen Mary Hospital, Hong Kong
| | - Chak-Sing Lau
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Philip H Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong.
| |
Collapse
|
8
|
Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS): Focus on the Pathophysiological and Diagnostic Role of Viruses. Microorganisms 2023; 11:microorganisms11020346. [PMID: 36838310 PMCID: PMC9966117 DOI: 10.3390/microorganisms11020346] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Drug reaction with eosinophilia and systemic symptoms (DRESS) is a heterogeneous, multiorgan and potentially life-threatening drug-hypersensitivity reaction (DHR) that occurs several days or weeks after drug initiation or discontinuation. DHRs constitute an emerging issue for public health, due to population aging, growing multi-organ morbidity, and subsequent enhanced drug prescriptions. DRESS has more consistently been associated with anticonvulsants, allopurinol and antibiotics, such as sulphonamides and vancomycin, although new drugs are increasingly reported as culprit agents. Reactivation of latent infectious agents such as viruses (especially Herpesviridae) plays a key role in prompting and sustaining aberrant T-cell and eosinophil responses to drugs and pathogens, ultimately causing organ damage. However, the boundaries of the impact of viral agents in the pathophysiology of DRESS are still ill-defined. Along with growing awareness of the multifaceted aspects of immune perturbation caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the ongoing SARS-CoV-2-related disease (COVID-19) pandemic, novel interest has been sparked towards DRESS and the potential interactions among antiviral and anti-drug inflammatory responses. In this review, we summarised the most recent evidence on pathophysiological mechanisms, diagnostic approaches, and clinical management of DRESS with the aim of increasing awareness on this syndrome and possibly suggesting clues for future research in this field.
Collapse
|
9
|
Ubukata N, Nakatani E, Hashizume H, Sasaki H, Miyachi Y. Risk factors and drugs that trigger the onset of Stevens-Johnson syndrome and toxic epidermal necrolysis: A population-based cohort study using the Shizuoka Kokuho database. JAAD Int 2022; 11:24-32. [PMID: 36818677 PMCID: PMC9932121 DOI: 10.1016/j.jdin.2022.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
Background Evidence of factors associated with Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) from population-based studies is scarce. Objective We aimed to identify the incidence, risk factors, and drugs that trigger the development of SJS/TEN in the general population. Methods A regional, population-based, longitudinal cohort with 2,398,393 Japanese individuals was analyzed using the Shizuoka Kokuho Database from 2012 to 2020. Results Among 1,909,570 individuals, 223 (0.01%, 2.3 cases/100,000 person-years) patients were diagnosed with SJS/TEN during the observational period of a maximum of 7.5 years. In a multivariable analysis, the risks of SJS/TEN were an older age, and the presence of type 2 diabetes, peripheral vascular disease, and systemic autoimmune diseases. The administration of drugs, such as immune checkpoint inhibitors, insulin, and type 2 diabetes agents, triggered the onset of SJS/TEN. Limitations The results may apply only to the Japanese population. Conclusion In this cohort population from a database representing the general population, the risks of developing SJS/TEN were old age and a history of type 2 diabetes, peripheral vascular disease, and systemic autoimmune disease. Furthermore, in addition to previously reported drugs, the administration of immune checkpoint inhibitors, insulin, and type 2 diabetes agents, may trigger the development of SJS/TEN.
Collapse
Affiliation(s)
- Nanako Ubukata
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka-shi, Shizuoka, Japan
| | - Eiji Nakatani
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka-shi, Shizuoka, Japan
| | - Hideo Hashizume
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka-shi, Shizuoka, Japan,Department of Dermatology, Iwata City Hospital, Iwata, Japan,Correspondence to: Hideo Hashizume, MD, PhD, Department of Dermatology, Iwata City Hospital, 512-3, Ohkubo, Iwata, Shizuoka, 438–8550, Japan.
| | - Hatoko Sasaki
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka-shi, Shizuoka, Japan
| | - Yoshiki Miyachi
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka-shi, Shizuoka, Japan
| |
Collapse
|
10
|
Conjugation of human serum albumin and flucloxacillin provokes specific immune response in HLA-B*57:01 transgenic mice. Immunol Lett 2022; 249:5-11. [PMID: 35963284 DOI: 10.1016/j.imlet.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022]
Abstract
Flucloxacillin (FLX) induces adverse liver reactions, which has been reported to be related to human leukocyte antigen (HLA)-B*57:01. In a previous study, abacavir-induced hypersensitivity was induced in HLA-B*57:01-transgenic mice (B*57:01-Tg), originally constructed by our group (Susukida et al., 2021). In this study, B*57:01-Tg mice were used to reproduce FLX-induced liver injury. However, treatment of B*57:01-Tg mice with FLX alone did not increase serum ALT levels. Immune-deficient B*57:01-Tg/PD-1-/-mice were produced by mating B*57:01-Tg with PD-1-/- mice. The immune response of B*57:01-Tg/PD-1-/- mice was further modulated by co-administration of CpG-oligodeoxynucleotides and anti-CD4 mAb. Nevertheless, immune regulation in B*57:01-Tg mice did not contribute to the onset of FLX-induced liver injury or immune activation. Moreover, we generated an FLX-human serum albumin (HSA) conjugate and showed that FLX covalently bound to HSA in a time-dependent manner. The FLX-HSA conjugate was administered to the B*57:01-Tg mice. The immune response was investigated using flow cytometry, revealing the phenotype of CD44highCD62Llow in CD8+ T cells (TEM cells). Administration of the FLX-HSA conjugate resulted in an HLA-B*57:01 restricted immune response as shown by the stimulation of TEM cells in the draining lymph nodes. In conclusion, administration of FLX alone to B*57:01-Tg mice did not induce liver injury or immune activation. Immune system sensitivity does not play a decisive role in this process. The conjugation of FLX and HSA results in specific TEM cell stimulation, which suggests that HLA-B*57:01 drives a stronger interaction with CD8+ T cells. These results suggest that patients carrying HLA-B*57:01 could be more susceptible to a conjugate of FLX and albumin and drive CD8+ T cell activation, which may be a vital risk factor for FLX-induced liver injury. In addition, the application of the FLX-HSA adduct may be an effective method for the construction of FLX-induced idiosyncratic liver injury in mice.
Collapse
|
11
|
Pichler WJ, Watkins S, Yerly D. Risk Assessment in Drug Hypersensitivity: Detecting Small Molecules Which Outsmart the Immune System. FRONTIERS IN ALLERGY 2022; 3:827893. [PMID: 35386664 PMCID: PMC8974731 DOI: 10.3389/falgy.2022.827893] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
Drug hypersensitivity (DH) reactions are clinically unusual because the underlying immune stimulations are not antigen-driven, but due to non-covalent drug-protein binding. The drugs may bind to immune receptors like HLA or TCR which elicits a strong T cell reaction (p-i concept), the binding may enhance the affinity of antibodies (enhanced affinity model), or drug binding may occur on soluble proteins which imitate a true antigen (fake antigen model). These novel models of DH could have a major impact on how to perform risk assessments in drug development. Herein, we discuss the difficulties of detecting such non-covalent, labile and reversible, but immunologically relevant drug-protein interactions early on in drug development. The enormous diversity of the immune system, varying interactions, and heterogeneous functional consequences make it to a challenging task. We propose that a realistic approach to detect clinically relevant non-covalent drug interactions for a new drug could be based on a combination of in vitro cell culture assays (using a panel of HLA typed donor cells) and functional analyses, supplemented by structural analysis (computational data) of the reactive cells/molecules. When drug-reactive cells/molecules with functional impact are detected in these risk assessments, a close clinical monitoring of the drug may reveal the true incidence of DH, as suppressing but also enhancing factors occurring in vivo can influence the clinical manifestation of a DH.
Collapse
|
12
|
Illing PT, Mifsud NA, Ardern-Jones MR, Trubiano J. Editorial: The Immunology of Adverse Drug Reactions. Front Immunol 2022; 13:863414. [PMID: 35251055 PMCID: PMC8894444 DOI: 10.3389/fimmu.2022.863414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Patricia T. Illing
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- *Correspondence: Patricia T. Illing,
| | - Nicole A. Mifsud
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Michael R. Ardern-Jones
- Clinical Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Department of Dermatology, University Hospitals Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Jason Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| |
Collapse
|
13
|
Pichler WJ. The important role of non-covalent drug-protein interactions in drug hypersensitivity reactions. Allergy 2022; 77:404-415. [PMID: 34037262 PMCID: PMC9291849 DOI: 10.1111/all.14962] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Drug hypersensitivity reactions (DHR) are heterogeneous and unusual immune reactions with rather unique clinical presentations. Accumulating evidence indicates that certain non-covalent drug-protein interactions are able to elicit exclusively effector functions of antibody reactions or complete T-cell reactions which contribute substantially to DHR. Here, we discuss three key interactions; (a) mimicry: whereby soluble, non-covalent drug-protein complexes ("fake antigens") mimic covalent drug-protein adducts; (b) increased antibody affinity: for example, in quinine-type immune thrombocytopenia where the drug gets trapped between antibody and membrane-bound glycoprotein; and (c) p-i-stimulation: where naïve and memory T cells are activated by direct binding of drugs to the human leukocyte antigen and/or T-cell receptors. This transient drug-immune receptor interaction initiates a polyclonal T-cell response with mild-to-severe DHR symptoms. Notable complications arising from p-i DHR can include viral reactivations, autoimmunity, and multiple drug hypersensitivity. In conclusion, DHR is characterized by abnormal immune stimulation driven by non-covalent drug-protein interactions. This contrasts DHR from "normal" immunity, which relies on antigen-formation by covalent hapten-protein adducts and predominantly results in asymptomatic immunity.
Collapse
|
14
|
Aparicio-Soto M, Curato C, Riedel F, Thierse HJ, Luch A, Siewert K. In Vitro Monitoring of Human T Cell Responses to Skin Sensitizing Chemicals-A Systematic Review. Cells 2021; 11:cells11010083. [PMID: 35011644 PMCID: PMC8750770 DOI: 10.3390/cells11010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Chemical allergies are T cell-mediated diseases that often manifest in the skin as allergic contact dermatitis (ACD). To prevent ACD on a public health scale and avoid elicitation reactions at the individual patient level, predictive and diagnostic tests, respectively, are indispensable. Currently, there is no validated in vitro T cell assay available. The main bottlenecks concern the inefficient generation of T cell epitopes and the detection of rare antigen-specific T cells. Methods: Here, we systematically review original experimental research papers describing T cell activation to chemical skin sensitizers. We focus our search on studies published in the PubMed and Scopus databases on non-metallic allergens in the last 20 years. Results: We identified 37 papers, among them 32 (86%) describing antigen-specific human T cell activation to 31 different chemical allergens. The remaining studies measured the general effects of chemical allergens on T cell function (five studies, 14%). Most antigen-specific studies used peripheral blood mononuclear cells (PBMC) as antigen-presenting cells (APC, 75%) and interrogated the blood T cell pool (91%). Depending on the individual chemical properties, T cell epitopes were generated either by direct administration into the culture medium (72%), separate modification of autologous APC (29%) or by use of hapten-modified model proteins (13%). Read-outs were mainly based on proliferation (91%), often combined with cytokine secretion (53%). The analysis of T cell clones offers additional opportunities to elucidate the mechanisms of epitope formation and cross-reactivity (13%). The best researched allergen was p-phenylenediamine (PPD, 12 studies, 38%). For this and some other allergens, stronger immune responses were observed in some allergic patients (15/31 chemicals, 48%), illustrating the in vivo relevance of the identified T cells while detection limits remain challenging in many cases. Interpretation: Our results illustrate current hardships and possible solutions to monitoring T cell responses to individual chemical skin sensitizers. The provided data can guide the further development of T cell assays to unfold their full predictive and diagnostic potential, including cross-reactivity assessments.
Collapse
Affiliation(s)
- Marina Aparicio-Soto
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Caterina Curato
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Franziska Riedel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Hermann-Josef Thierse
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Katherina Siewert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Correspondence: ; Tel.: +49-(0)30-18412-57001
| |
Collapse
|
15
|
Minaldi E, Phillips EJ, Norton A. Immediate and Delayed Hypersensitivity Reactions to Beta-Lactam Antibiotics. Clin Rev Allergy Immunol 2021; 62:449-462. [PMID: 34767158 DOI: 10.1007/s12016-021-08903-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 12/16/2022]
Abstract
Beta-lactam antibiotics are the most commonly reported drug allergy in adults and children. More than 95% of those with reported allergy labels to beta lactams are not confirmed when subjected to allergy testing. Beta lactam antibiotics are associated with a wide spectrum of immediate and delayed drug hypersensitivity reactions. The latency period to symptoms and clinical presentation aids in the causality assessment. Risk stratification based on diagnosis and timing then allows for appropriate management and evaluation. Skin prick testing, intradermal testing and oral challenge are well established for evaluation of immediate reactions. Delayed intradermal testing, patch testing and oral challenge can also be considered for evaluation of mild to moderate delayed reactions. Cross-reactivity between beta-lactams appears to be driven most commonly by a shared R1 side-chain. Standardized algorithms, protocols and pathways are needed for widespread implementation of a pragmatic and effective approach to patients reporting beta lactam allergy.
Collapse
Affiliation(s)
- Ellen Minaldi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Allison Norton
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
16
|
Tesfaye A, Rodríguez‐Nogales A, Benedé S, Fernández TD, Paris JL, Rodriguez MJ, Jiménez‐Sánchez IM, Bogas G, Mayorga C, Torres MJ, Montañez MI. Nanoarchitectures for efficient IgE cross-linking on effector cells to study amoxicillin allergy. Allergy 2021; 76:3183-3193. [PMID: 33784407 PMCID: PMC8518075 DOI: 10.1111/all.14834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/28/2021] [Accepted: 03/14/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Amoxicillin (AX) is nowadays the β-lactam that more frequently induces immediate allergic reactions. Nevertheless, diagnosis of AX allergy is occasionally challenging due to risky in vivo tests and non-optimal sensitivity of in vitro tests. AX requires protein haptenation to form multivalent conjugates with increased size to be immunogenic. Knowing adduct structural features for promoting effector cell activation would help to improve in vitro tests. We aimed to identify the optimal structural requirement in specific cellular degranulation to AX using well-precised nanoarchitectures of different lengths. METHOD We constructed eight Bidendron Antigens (BiAns) based on polyethylene glycol (PEG) linkers of different lengths (600-12,000 Da), end-coupled with polyamidoamine dendrons that were terminally multi-functionalized with amoxicilloyl (AXO). In vitro IgE recognition was studied by competitive radioallergosorbent test (RAST) and antibody-nanoarchitecture complexes by transmission electron microscopy (TEM). Their allergenic activity was evaluated using bone marrow-derived mast cells (MCs) passively sensitized with mouse monoclonal IgE against AX and humanized RBL-2H3 cells sensitized with polyclonal antibodies from sera of AX-allergic patients. RESULTS All BiAns were recognized by AX-sIgE. Dose-dependent activation responses were observed in both cellular assays, only with longer structures, containing spacers in the range of PEG 6000-12,000 Da. Consistently, greater proportion of immunocomplexes and number of antibodies per complex for longer BiAns were visualized by TEM. CONCLUSIONS BiAns are valuable platforms to study the mechanism of effector cell activation. These nanomolecular tools have demonstrated the importance of the adduct size to promote effector cell activation in AX allergy, which will impact for improving in vitro diagnostics.
Collapse
Affiliation(s)
- Amene Tesfaye
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Alba Rodríguez‐Nogales
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Sara Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIALCSIC‐UAM)MadridSpain
| | - Tahía D. Fernández
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Biología Celular Genética y FisiologíaFacultad de CienciasUniversidad de MálagaMálagaSpain
| | - Juan L. Paris
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Maria J. Rodriguez
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Isabel M. Jiménez‐Sánchez
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Gador Bogas
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain
| | - Cristobalina Mayorga
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain
| | - María J. Torres
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain
- Departamento de MedicinaFacultad de MedicinaUniversidad de MálagaMálagaSpain
| | - María I. Montañez
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| |
Collapse
|
17
|
Van Son C, Loan NTH, Trang TH, Thinh LX, Khanh NB, Nhung LTH, Van Hung N, Que TN, Van Lieu N, Tung PD, Van Anh NT, Thang ND. Predominant HLA Alleles and Haplotypes in Mild Adverse Drug Reactions Caused by Allopurinol in Vietnamese Patients with Gout. Diagnostics (Basel) 2021; 11:diagnostics11091611. [PMID: 34573954 PMCID: PMC8468422 DOI: 10.3390/diagnostics11091611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Allopurinol (ALP) is commonly used as a drug for gout treatment. However, ALP is known to cause cutaneous adverse reactions (CARs) in patients. The HLA-B*58:01 allele is considered a biomarker of severe CAR (SCAR) in patients with gout, with symptoms of Stevens Johnson syndrome, and with toxic epidermal necrolysis. However, in patients with gout and mild cutaneous adverse drug reactions (MCARs), the role of HLA-allele polymorphisms has not been thoroughly investigated. In this study, 50 samples from ALP-tolerant patients and ALP-induced MCARs patients were genotyped in order to examine the polymorphisms of their HLA-A and HLA-B alleles. Our results showed that the frequencies of HLA-A*02:01/HLA-A*24:02 and HLA-A*02:01/HLA-A*29:01, the dual haplotypes in HLA-A, in patients with ALP-induced MCARs were relatively high, at 33.3% (7/21), which was HLA-B*58:01-independent, while the frequency of these dual haplotypes in the HLA-A locus in ALP-tolerant patients was only 3.45% (1/29). The HLA-B*58:01 allele was detected in 38% (8/21) of patients with ALP-induced MCARs, and in 3.45% (1/29) of ALP-tolerant patients. Notably, although HLA-B*58:01 may be a cause for the occurrence of MCARs in patients with gout, this correlation was not as strong as that previously reported in patients with SCAR. In conclusion, in addition to the HLA-B*58:01 allele, the presence of the dual haplotypes of HLA-A*02:01/HLA-A*24:02 and/or HLA-A*02:01/HLA-A*29:01 in the HLA-A locus may also play an important role in the appearance of ALP-induced MCARs in the Vietnamese population. The obtained primary data may contribute to the development of suitable treatments for patients with gout not only in Vietnam but also in other Asian countries.
Collapse
Affiliation(s)
- Chu Van Son
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Vietnam National University-Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi 120017, Vietnam; (C.V.S.); (N.T.H.L.); (L.T.H.N.)
| | - Nguyen Thi Hong Loan
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Vietnam National University-Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi 120017, Vietnam; (C.V.S.); (N.T.H.L.); (L.T.H.N.)
| | - Tran Huyen Trang
- Department of Internal Medicine, Hanoi Medical University, 1 Ton That Tung, Dong Da, Hanoi 116001, Vietnam; (T.H.T.); (N.V.H.)
- Department of Rheumatology, Bach Mai Hospital, 78 Giai Phong, Phuong Mai, Dong Da, Hanoi 116305, Vietnam; (L.X.T.); (N.B.K.)
| | - Le Xuan Thinh
- Department of Rheumatology, Bach Mai Hospital, 78 Giai Phong, Phuong Mai, Dong Da, Hanoi 116305, Vietnam; (L.X.T.); (N.B.K.)
| | - Nguyen Ba Khanh
- Department of Rheumatology, Bach Mai Hospital, 78 Giai Phong, Phuong Mai, Dong Da, Hanoi 116305, Vietnam; (L.X.T.); (N.B.K.)
| | - Le Thi Hong Nhung
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Vietnam National University-Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi 120017, Vietnam; (C.V.S.); (N.T.H.L.); (L.T.H.N.)
| | - Nguyen Van Hung
- Department of Internal Medicine, Hanoi Medical University, 1 Ton That Tung, Dong Da, Hanoi 116001, Vietnam; (T.H.T.); (N.V.H.)
- Department of Rheumatology, Bach Mai Hospital, 78 Giai Phong, Phuong Mai, Dong Da, Hanoi 116305, Vietnam; (L.X.T.); (N.B.K.)
| | - Tran Ngoc Que
- Stem Cell Bank, National Institute of Hematology and Blood Transfusion, Pham Van Bach, Cau Giay, Hanoi 122000, Vietnam;
| | - Nguyen Van Lieu
- Department of Neuroscience, Tam Anh General Hospital, 108 Hoang Nhu Tiep, Bo De, Long Bien, Hanoi 125300, Vietnam;
| | - Pham Dinh Tung
- Department of Probability and Statistics, Faculty of Mathematics-Mechanics-Informatics, VNU University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi 120017, Vietnam;
| | - Nguyen Thi Van Anh
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Vietnam National University-Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi 120017, Vietnam; (C.V.S.); (N.T.H.L.); (L.T.H.N.)
- Correspondence: (N.T.V.A.); (N.D.T.)
| | - Nguyen Dinh Thang
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Vietnam National University-Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi 120017, Vietnam; (C.V.S.); (N.T.H.L.); (L.T.H.N.)
- Correspondence: (N.T.V.A.); (N.D.T.)
| |
Collapse
|
18
|
Hammond S, Thomson P, Meng X, Naisbitt D. In-Vitro Approaches to Predict and Study T-Cell Mediated Hypersensitivity to Drugs. Front Immunol 2021; 12:630530. [PMID: 33927714 PMCID: PMC8076677 DOI: 10.3389/fimmu.2021.630530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/17/2021] [Indexed: 01/11/2023] Open
Abstract
Mitigating the risk of drug hypersensitivity reactions is an important facet of a given pharmaceutical, with poor performance in this area of safety often leading to warnings, restrictions and withdrawals. In the last 50 years, efforts to diagnose, manage, and circumvent these obscure, iatrogenic diseases have resulted in the development of assays at all stages of a drugs lifespan. Indeed, this begins with intelligent lead compound selection/design to minimize the existence of deleterious chemical reactivity through exclusion of ominous structural moieties. Preclinical studies then investigate how compounds interact with biological systems, with emphasis placed on modeling immunological/toxicological liabilities. During clinical use, competent and accurate diagnoses are sought to effectively manage patients with such ailments, and pharmacovigilance datasets can be used for stratification of patient populations in order to optimise safety profiles. Herein, an overview of some of the in-vitro approaches to predict intrinsic immunogenicity of drugs and diagnose culprit drugs in allergic patients after exposure is detailed, with current perspectives and opportunities provided.
Collapse
Affiliation(s)
- Sean Hammond
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
- ApconiX, Alderley Park, Alderley Edge, United Kingdom
| | - Paul Thomson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Dean Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
19
|
Tsamakis K, Mueller C, Hortis I, Kallergi M, Tolos I, Alevyzakis E, Siafakas N, Ouranidis A, Tsiptsios D, Kympouropoulos S, Spandidos DA, Smyrnis N, Rizos E. Association of antipsychotic use with raised eosinophil count. Exp Ther Med 2021; 21:513. [PMID: 33791022 PMCID: PMC8005733 DOI: 10.3892/etm.2021.9944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/26/2021] [Indexed: 01/20/2023] Open
Abstract
The current study aimed to assess the possibility of an association between first and second generation antipsychotic medication and raised eosinophil count. A total of 22 in-patients at the psychiatric unit of the University General Hospital ‘Attikon’, a tertiary hospital, were included in the present study. Patients had received antipsychotic monotherapy and did not have any co-morbidities or require additional treatments. Patients were monitored weekly and their eosinophil count was assessed. One-way ANOVA and summary measures analysis were applied to study the effect of time and medication type on the absolute eosinophil concentration (or relative percentage) for each patient. The differences in mean eosinophil concentrations or relative percentage by patient and time were also assessed. An increase in the absolute concentration and the relative percentage of eosinophils over time was observed in patients receiving Olanzapine, Haloperidol and Aripiprazole. However, there was no difference between individual medications. In conclusion, antipsychotics may be associated with increased eosinophil count over time; however, larger studies involving more patients and a longer follow-up are required to reach a definitive conclusion.
Collapse
Affiliation(s)
- Konstantinos Tsamakis
- Second Department of Psychiatry, University General Hospital 'Attikon', National and Kapodistrian University of Athens, Athens 12462, Greece.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Christoph Mueller
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| | - Ioannis Hortis
- Second Department of Psychiatry, University General Hospital 'Attikon', National and Kapodistrian University of Athens, Athens 12462, Greece
| | - Maria Kallergi
- Department of Biomedical Engineering, University of West Attica, Campus I, Athens 12243, Greece
| | - Ioannis Tolos
- Second Department of Psychiatry, University General Hospital 'Attikon', National and Kapodistrian University of Athens, Athens 12462, Greece
| | - Evangelos Alevyzakis
- Second Department of Psychiatry, University General Hospital 'Attikon', National and Kapodistrian University of Athens, Athens 12462, Greece
| | - Nikolaos Siafakas
- Second Laboratory of Microbiology, University General Hospital 'ATTIKON', National and Kapodistrian University of Athens, Medical School, Athens 12462, Greece
| | - Andreas Ouranidis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| | - Dimitrios Tsiptsios
- Department of Neurophysiology, South Tyneside and Sunderland NHS Foundation Trust, Sunderland SR47TP, UK
| | - Stylianos Kympouropoulos
- Second Department of Psychiatry, University General Hospital 'Attikon', National and Kapodistrian University of Athens, Athens 12462, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Nikolaos Smyrnis
- Second Department of Psychiatry, University General Hospital 'Attikon', National and Kapodistrian University of Athens, Athens 12462, Greece
| | - Emmanouil Rizos
- Second Department of Psychiatry, University General Hospital 'Attikon', National and Kapodistrian University of Athens, Athens 12462, Greece
| |
Collapse
|
20
|
Villanueva-Paz M, Morán L, López-Alcántara N, Freixo C, Andrade RJ, Lucena MI, Cubero FJ. Oxidative Stress in Drug-Induced Liver Injury (DILI): From Mechanisms to Biomarkers for Use in Clinical Practice. Antioxidants (Basel) 2021; 10:390. [PMID: 33807700 PMCID: PMC8000729 DOI: 10.3390/antiox10030390] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a type of hepatic injury caused by an uncommon drug adverse reaction that can develop to conditions spanning from asymptomatic liver laboratory abnormalities to acute liver failure (ALF) and death. The cellular and molecular mechanisms involved in DILI are poorly understood. Hepatocyte damage can be caused by the metabolic activation of chemically active intermediate metabolites that covalently bind to macromolecules (e.g., proteins, DNA), forming protein adducts-neoantigens-that lead to the generation of oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress, which can eventually lead to cell death. In parallel, damage-associated molecular patterns (DAMPs) stimulate the immune response, whereby inflammasomes play a pivotal role, and neoantigen presentation on specific human leukocyte antigen (HLA) molecules trigger the adaptive immune response. A wide array of antioxidant mechanisms exists to counterbalance the effect of oxidants, including glutathione (GSH), superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), which are pivotal in detoxification. These get compromised during DILI, triggering an imbalance between oxidants and antioxidants defense systems, generating oxidative stress. As a result of exacerbated oxidative stress, several danger signals, including mitochondrial damage, cell death, and inflammatory markers, and microRNAs (miRNAs) related to extracellular vesicles (EVs) have already been reported as mechanistic biomarkers. Here, the status quo and the future directions in DILI are thoroughly discussed, with a special focus on the role of oxidative stress and the development of new biomarkers.
Collapse
Affiliation(s)
- Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- Health Research Institute Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Nuria López-Alcántara
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
| | - Cristiana Freixo
- CINTESIS, Center for Health Technology and Services Research, do Porto University School of Medicine, 4200-319 Porto, Portugal;
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| |
Collapse
|
21
|
Doña I, Jurado-Escobar R, Pérez-Sánchez N, Laguna JJ, Bartra J, Testera-Montes A, de Santa María RS, Torres MJ, Cornejo-García JA. Genetic Variants Associated With Drug-Induced Hypersensitivity Reactions: towards Precision Medicine? CURRENT TREATMENT OPTIONS IN ALLERGY 2021. [DOI: 10.1007/s40521-020-00278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Aparicio‐Soto M, Riedel F, Leddermann M, Bacher P, Scheffold A, Kuhl H, Timmermann B, Chudakov DM, Molin S, Worm M, Heine G, Thierse H, Luch A, Siewert K. TCRs with segment TRAV9-2 or a CDR3 histidine are overrepresented among nickel-specific CD4+ T cells. Allergy 2020; 75:2574-2586. [PMID: 32298488 DOI: 10.1111/all.14322] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Nickel is the most frequent cause of T cell-mediated allergic contact dermatitis worldwide. In vitro, CD4+ T cells from all donors respond to nickel but the involved αβ T cell receptor (TCR) repertoire has not been comprehensively analyzed. METHODS We introduce CD154 (CD40L) upregulation as a fast, unbiased, and quantitative method to detect nickel-specific CD4+ T cells ex vivo in blood of clinically characterized allergic and non allergic donors. Naïve (CCR7+ CD45RA+) and memory (not naïve) CD154+ CD4+ T cells were analyzed by flow cytometry after 5 hours of stimulation with 200 µmol/L NiSO4 ., TCR α- and β-chains of sorted nickel-specific and control cells were studied by high-throughput sequencing. RESULTS Stimulation of PBMCs with NiSO4 induced CD154 expression on ~0.1% (mean) of naïve and memory CD4+ T cells. In allergic donors with recent positive patch test, memory frequencies further increased ~13-fold and were associated with markers of in vivo activation. CD154 expression was TCR-mediated since single clones could be specifically restimulated. Among nickel-specific CD4+ T cells of allergic and non allergic donors, TCRs expressing the α-chain segment TRAV9-2 or a histidine in their α- or β-chain complementarity determining region 3 (CDR3) were highly overrepresented. CONCLUSIONS Induced CD154 expression represents a reliable method to study nickel-specific CD4+ T cells. TCRs with particular features respond in all donors, while strongly increased blood frequencies indicate nickel allergy for some donors. Our approach may be extended to other contact allergens for the further development of diagnostic and predictive in vitro tests.
Collapse
Affiliation(s)
- Marina Aparicio‐Soto
- Department of Chemical and Product Safety German Federal Institute for Risk Assessment Berlin Germany
| | - Franziska Riedel
- Department of Chemical and Product Safety German Federal Institute for Risk Assessment Berlin Germany
| | - Melanie Leddermann
- Department of Chemical and Product Safety German Federal Institute for Risk Assessment Berlin Germany
| | - Petra Bacher
- Institute of Immunology Christian‐Albrechts Universität zu Kiel and Universitätsklinik Schleswig‐Holstein Kiel Germany
- Institute of Clinical Molecular Biology Christian‐Albrechts Universität zu Kiel Kiel Germany
| | - Alexander Scheffold
- Institute of Immunology Christian‐Albrechts Universität zu Kiel and Universitätsklinik Schleswig‐Holstein Kiel Germany
| | - Heiner Kuhl
- Sequencing Core Facility Max‐Planck‐Institute of Molecular Genetics Berlin Germany
| | - Bernd Timmermann
- Sequencing Core Facility Max‐Planck‐Institute of Molecular Genetics Berlin Germany
| | - Dmitriy M. Chudakov
- Genomics of Adaptive Immunity Department Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science Moscow Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine Pirogov Russian National Research Medical University Moscow Russia
- Center of Molecular Medicine CEITEC Masaryk University Brno Czech Republic
| | - Sonja Molin
- Division of Dermatology Queen's University Kingston ON Canada
- Department of Dermatology and Allergy Ludwig Maximilian University Munich Germany
| | - Margitta Worm
- Division of Allergy and Immunology Department of Dermatology, Venerology, and Allergy Charité – Universitätsmedizin Berlin Berlin Germany
| | - Guido Heine
- Division of Allergy and Immunology Department of Dermatology, Venerology, and Allergy Charité – Universitätsmedizin Berlin Berlin Germany
- Department of Dermatology and Allergy University Hospital Schleswig‐Holstein Kiel Germany
| | - Hermann‐Josef Thierse
- Department of Chemical and Product Safety German Federal Institute for Risk Assessment Berlin Germany
| | - Andreas Luch
- Department of Chemical and Product Safety German Federal Institute for Risk Assessment Berlin Germany
| | - Katherina Siewert
- Department of Chemical and Product Safety German Federal Institute for Risk Assessment Berlin Germany
| |
Collapse
|
23
|
de Lima Moreira M, Souter MNT, Chen Z, Loh L, McCluskey J, Pellicci DG, Eckle SBG. Hypersensitivities following allergen antigen recognition by unconventional T cells. Allergy 2020; 75:2477-2490. [PMID: 32181878 PMCID: PMC11056244 DOI: 10.1111/all.14279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Conventional T cells recognise protein-derived antigens in the context of major histocompatibility complex (MHC) class Ia and class II molecules and provide anti-microbial and anti-tumour immunity. Conventional T cells have also been implicated in type IV (also termed delayed-type or T cell-mediated) hypersensitivity reactions in response to protein-derived allergen antigens. In addition to conventional T cells, subsets of unconventional T cells exist, which recognise non-protein antigens in the context of monomorphic MHC class I-like molecules. These include T cells that are restricted to the cluster of differentiation 1 (CD1) family members, known as CD1-restricted T cells, and mucosal-associated invariant T cells (MAIT cells) that are restricted to the MHC-related protein 1 (MR1). Compared with conventional T cells, much less is known about the immune functions of unconventional T cells and their role in hypersensitivities. Here, we review allergen antigen presentation by MHC-I-like molecules, their recognition by unconventional T cells, and the potential role of unconventional T cells in hypersensitivities. We also speculate on possible scenarios of allergen antigen presentation by MHC-I-like molecules to unconventional T cells, the hallmarks of such responses, and the expected frequencies of hypersensitivities within the human population.
Collapse
Affiliation(s)
- Marcela de Lima Moreira
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | - Michael N. T. Souter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Vic., Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | | | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
24
|
Hasegawa A, Abe R. Recent advances in managing and understanding Stevens-Johnson syndrome and toxic epidermal necrolysis. F1000Res 2020; 9. [PMID: 32595945 PMCID: PMC7308994 DOI: 10.12688/f1000research.24748.1] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are life-threatening diseases characterized by detachment of the epidermis and mucous membrane. SJS/TEN are considered to be on the same spectrum of diseases with different severities. They are classified by the percentage of skin detachment area. SJS/TEN can also cause several complications in the liver, kidneys, and respiratory tract. The pathogenesis of SJS/TEN is still unclear. Although it is difficult to diagnose early stage SJS/TEN, biomarkers for diagnosis or severity prediction have not been well established. Furthermore, optimal therapeutic options for SJS/TEN are still controversial. Several drugs, such as carbamazepine and allopurinol, are reported to have a strong relationship with a specific human leukocyte antigen (HLA) type. This relationship differs between different ethnicities. Recently, the usefulness of HLA screening before administering specific drugs to decrease the incidence of SJS/TEN has been investigated. Skin detachment in SJS/TEN skin lesions is caused by extensive epidermal cell death, which has been considered to be apoptosis via the Fas-FasL pathway or perforin/granzyme pathway. We reported that necroptosis, i.e. programmed necrosis, also contributes to epidermal cell death. Annexin A1, released from monocytes, and its interaction with the formyl peptide receptor 1 induce necroptosis. Several diagnostic or prognostic biomarkers for SJS/TEN have been reported, such as CCL-27, IL-15, galectin-7, and RIP3. Supportive care is recommended for the treatment of SJS/TEN. However, optimal therapeutic options such as systemic corticosteroids, intravenous immunoglobulin, cyclosporine, and TNF-α antagonists are still controversial. Recently, the beneficial effects of cyclosporine and TNF-α antagonists have been explored. In this review, we discuss recent advances in the pathophysiology and management of SJS/TEN.
Collapse
Affiliation(s)
- Akito Hasegawa
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Riichiro Abe
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
25
|
|
26
|
Ariza A, Fernández T, Bogas G, Torres M, Mayorga C. How Mechanism Knowledge Can Help to Management of Drug Hypersensitivity. CURRENT TREATMENT OPTIONS IN ALLERGY 2020. [DOI: 10.1007/s40521-020-00244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Abstract
Carbamazepine (CMZ) is a drug from the group of anticonvulsants, similar in chemical structure to tricyclic antidepressants. CMZ is widely used for mental disorders and neurological diseases. The lecture discusses the safety of CMZ in respect to personalized medicine, while considering the pharmacogenetic profile of the patient.The authors declare about the absence of conflict of interest with respect to this publication. All authors contributed equally to this article.
Collapse
Affiliation(s)
- N. A. Shnayder
- Bekhterev National Medical Research Center of Psychiatry and Neurology
| | - E. N. Bochanova
- Bekhterev National Medical Research Center of Psychiatry and Neurology;
Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
| | - D. V. Dmitrenko
- Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
| | - R. F. Nasyrova
- Bekhterev National Medical Research Center of Psychiatry and Neurology
| |
Collapse
|
28
|
Hikino K, Ozeki T, Koido M, Terao C, Kamatani Y, Mizukawa Y, Shiohara T, Tohyama M, Azukizawa H, Aihara M, Nihara H, Morita E, Murakami Y, Kubo M, Mushiroda T. HLA-B*51:01 and CYP2C9*3 Are Risk Factors for Phenytoin-Induced Eruption in the Japanese Population: Analysis of Data From the Biobank Japan Project. Clin Pharmacol Ther 2019; 107:1170-1178. [PMID: 31646624 DOI: 10.1002/cpt.1706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/13/2019] [Indexed: 12/19/2022]
Abstract
CYP2C9*3 and HLA-B alleles are reportedly associated with phenytoin-induced eruption in some East Asian populations; however, this finding is not readily applicable to the Japanese population. Thus, we aimed to investigate the risk alleles using samples and data from BioBank Japan. A total of 747 patients (24 cases and 723 tolerant controls) were selected for analysis. Case-control association studies were conducted, using CYP2C9*3, CYP2C9*27, CYP2C19*2, CYP2C19*3, and HLA-B allele genotype data. CYP2C9*3 carrier status was significantly associated with phenytoin-induced eruption (P = 0.0022, odds ratio 7.05, 95% confidence interval, 2.44-20.4). HLA-B*51:01 showed the most prominent association (P = 0.010, odds ratio 3.19, 95% confidence interval, 1.37-7.48). Including both of these features improved predictive performance, measured as area under the receiver operating characteristic curve, by 10%. CYP2C9*3 and HLA-B*51:01 allele carrier statuses are significantly associated with phenytoin-induced eruption; thus, checking this carrier status before prescription would decrease the incidence of phenytoin-induced eruption in clinical practice.
Collapse
Affiliation(s)
- Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Takeshi Ozeki
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan.,Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshiko Mizukawa
- Department of Dermatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Tetsuo Shiohara
- Department of Dermatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Mikiko Tohyama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hiroaki Azukizawa
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Michiko Aihara
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroyuki Nihara
- Department of Dermatology, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Eishin Morita
- Department of Dermatology, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| |
Collapse
|
29
|
Ma Q, Yang W, Wang L, Ma L, Jing Y, Wang J, Liu X. Research advances in the association of drug-induced liver injury with polymorphisms in human leukocyte antigen. Int Immunopharmacol 2019; 81:106037. [PMID: 31784402 DOI: 10.1016/j.intimp.2019.106037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022]
Abstract
Drug-induced liver injury is an important adverse drug reaction. Due to the lack of specificity in clinical symptoms and pathological features, there are still no reliable diagnostic biomarkers, so drug-induced liver injury is a diagnosis of exclusion. The article reviews the relevant advances in the association between novel human leukocyte antigen gene polymorphisms and drug-induced liver injury in order to identify potential biomarkers and provide a new method for the prediction and diagnosis of drug-induced liver injury. Henceforth, while studying the association between them, it will also need that the large sample and prospective studies to gain supporting evidence to implement translational application, so as to improve the safety and effectiveness of medication and achieve individualized treatment.
Collapse
Affiliation(s)
- Qingmei Ma
- Department of Pharmacogenomics Laboratory Center, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Wenjuan Yang
- Department of Pharmacogenomics Laboratory Center, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Lu Wang
- Department of Pharmacogenomics Laboratory Center, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Li Ma
- Department of Pharmacogenomics Laboratory Center, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Yanmei Jing
- Department of Pharmacogenomics Laboratory Center, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Jiamei Wang
- Department of Pharmacogenomics Laboratory Center, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Xinyue Liu
- Department of Pharmacogenomics Laboratory Center, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China; Department of Clinical Laboratory Center, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China.
| |
Collapse
|
30
|
Hammond S, Thomson PJ, Ogese MO, Naisbitt DJ. T-Cell Activation by Low Molecular Weight Drugs and Factors That Influence Susceptibility to Drug Hypersensitivity. Chem Res Toxicol 2019; 33:77-94. [PMID: 31687800 DOI: 10.1021/acs.chemrestox.9b00327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug hypersensitivity reactions adversely affect treatment outcome, increase the length of patients' hospitalization, and limit the prescription options available to physicians. In addition, late stage drug attrition and the withdrawal of licensed drugs cost the pharmaceutical industry billions of dollars. This significantly increases the overall cost of drug development and by extension the price of licensed drugs. Drug hypersensitivity reactions are characterized by a delayed onset, and reactions tend to be more serious upon re-exposure. The role of drug-specific T-cells in the pathogenesis of drug hypersensitivity reactions and definition of the nature of the binding interaction of drugs with HLA and T-cell receptors continues to be the focus of intensive research, primarily because susceptibility is associated with expression of one or a small number of HLA alleles. This review critically examines the mechanisms of T-cell activation by drugs. Specific examples of drugs that activate T-cells via the hapten, the pharmacological interaction with immune receptors and the altered self-peptide repertoire pathways, are discussed. Furthermore, the impacts of drug metabolism, drug-protein adduct formation, and immune regulation on the development of drug antigen-responsive T-cells are highlighted. The knowledge gained from understanding the pathways of T-cell activation and susceptibility factors for drug hypersensitivity will provide the building blocks for the development of predictive in vitro assays that will prevent or help to minimize the incidence of these reactions in clinic.
Collapse
Affiliation(s)
- Sean Hammond
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , U.K
| | - Paul J Thomson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , U.K
| | - Monday O Ogese
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , U.K
| | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , U.K
| |
Collapse
|
31
|
Mayorga C, Montañez MI, Jurado-Escobar R, Gil-Ocaña V, Cornejo-García JA. An Update on the Immunological, Metabolic and Genetic Mechanisms in Drug Hypersensitivity Reactions. Curr Pharm Des 2019; 25:3813-3828. [PMID: 31692430 DOI: 10.2174/1381612825666191105122414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/31/2019] [Indexed: 11/22/2022]
Abstract
Drug hypersensitivity reactions (DHRs) represent a major burden on the healthcare system since their diagnostic and management are complex. As they can be influenced by individual genetic background, it is conceivable that the identification of variants in genes potentially involved could be used in genetic testing for the prevention of adverse effects during drug administration. Most genetic studies on severe DHRs have documented HLA alleles as risk factors and some mechanistic models support these associations, which try to shed light on the interaction between drugs and the immune system during lymphocyte presentation. In this sense, drugs are small molecules that behave as haptens, and currently three hypotheses try to explain how they interact with the immune system to induce DHRs: the hapten hypothesis, the direct pharmacological interaction of drugs with immune receptors hypothesis (p-i concept), and the altered self-peptide repertoire hypothesis. The interaction will depend on the nature of the drug and its reactivity, the metabolites generated and the specific HLA alleles. However, there is still a need of a better understanding of the different aspects related to the immunological mechanism, the drug determinants that are finally presented as well as the genetic factors for increasing the risk of suffering DHRs. Most available information on the predictive capacity of genetic testing refers to abacavir hypersensitivity and anticonvulsants-induced severe cutaneous reactions. Better understanding of the underlying mechanisms of DHRs will help us to identify the drugs likely to induce DHRs and to manage patients at risk.
Collapse
Affiliation(s)
- Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigacion Biomedica de Malaga-IBIMA-ARADyAL. Malaga, Spain.,Allergy Unit, Hospital Regional Universitario de Málaga-ARADyAL. Málaga, Spain.,Andalusian Center for Nanomedicine and Biotechnology-BIONAND. Malaga, Spain
| | - Maria I Montañez
- Allergy Research Group, Instituto de Investigacion Biomedica de Malaga-IBIMA-ARADyAL. Malaga, Spain.,Andalusian Center for Nanomedicine and Biotechnology-BIONAND. Malaga, Spain
| | - Raquel Jurado-Escobar
- Allergy Research Group, Instituto de Investigacion Biomedica de Malaga-IBIMA-ARADyAL. Malaga, Spain.,Universidad de Málaga, Málaga, Spain
| | - Violeta Gil-Ocaña
- Andalusian Center for Nanomedicine and Biotechnology-BIONAND. Malaga, Spain.,Department of Organic Chemistry, Universidad de Málaga, ARADyAL, Málaga, Spain
| | - Jose A Cornejo-García
- Allergy Research Group, Instituto de Investigacion Biomedica de Malaga-IBIMA-ARADyAL. Malaga, Spain
| |
Collapse
|
32
|
The Mechanistic Differences in HLA-Associated Carbamazepine Hypersensitivity. Pharmaceutics 2019; 11:pharmaceutics11100536. [PMID: 31618895 PMCID: PMC6835980 DOI: 10.3390/pharmaceutics11100536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/01/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023] Open
Abstract
Drug hypersensitivity reactions that resemble acute immune reactions are linked to certain human leucocyte antigen (HLA) alleles. Severe and life-threatening Stevens Johnson Syndrome and Toxic Epidermal Necrolysis following treatment with the antiepileptic and psychotropic drug Carbamazepine are associated with HLA-B*15:02; whereas carriers of HLA-A*31:01 develop milder symptoms. It is not understood how these immunogenic differences emerge genotype-specific. For HLA-B*15:02 an altered peptide presentation has been described following exposure to the main metabolite of carbamazepine that is binding to certain amino acids in the F pocket of the HLA molecule. The difference in the molecular mechanism of these diseases has not been comprehensively analyzed, yet; and is addressed in this study. Soluble HLA-technology was utilized to examine peptide presentation of HLA-A*31:01 in presence and absence of carbamazepine and its main metabolite and to examine the mode of peptide loading. Proteome analysis of drug-treated and untreated cells was performed. Alterations in sA*31:01-presented peptides after treatment with carbamazepine revealed different half-life times of peptide-HLA- or peptide-drug-HLA complexes. Together with observed changes in the proteome elicited through carbamazepine or its metabolite these results illustrate the mechanistic differences in carbamazepine hypersensitivity for HLA-A*31:01 or B*15:02 patients and constitute the bridge between pharmacology and pharmacogenetics for personalized therapeutics.
Collapse
|
33
|
Chastain DB, Hutzley VJ, Parekh J, Alegro JVG. Antimicrobial Desensitization: A Review of Published Protocols. PHARMACY 2019; 7:E112. [PMID: 31405062 PMCID: PMC6789802 DOI: 10.3390/pharmacy7030112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial desensitization represents a last-line option for patients with no alternative therapies, where the benefits of this intensive process must outweigh the potential harm from drug exposure. The goal of antimicrobial desensitization procedures is to establish a temporary state of tolerance to drugs that may otherwise cause hypersensitivity reactions. While no universal antimicrobial desensitization protocols exist, this review critically analyzes previously published desensitization protocols. The purpose of this review is to provide a greater insight for clinicians and institutions to ensure desensitization procedures are efficacious while minimizing potential for patient harm. With an increasing rate of antimicrobial resistance and the critical need to preserve antimicrobial agents, desensitization may represent another option in our antimicrobial stewardship toolkit.
Collapse
Affiliation(s)
| | | | - Jay Parekh
- Roosevelt University College of Pharmacy, Schaumburg, IL 60173, USA
| | - Jason Val G Alegro
- Mount Sinai Hospital, Chicago, IL 60608, USA.
- Roosevelt University College of Pharmacy, Schaumburg, IL 60173, USA.
| |
Collapse
|
34
|
Pichler WJ. Immune pathomechanism and classification of drug hypersensitivity. Allergy 2019; 74:1457-1471. [PMID: 30843233 DOI: 10.1111/all.13765] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 12/17/2022]
Abstract
Drug hypersensitivity reactions (DHR) are based on distinct mechanisms and are clinically heterogeneous. Taking into account that also off-target activities of drugs may lead to stimulations of immune or inflammatory cells, three forms of DHR were discriminated: the allergic-immune mechanism relies on the covalent binding of drugs/chemicals to proteins, which thereby form new antigens, to which a humoural and/or cellular immune response can develop. In IgE-mediated drug allergies, a possible tolerance mechanism to the drug during sensitization and the need of a covalent hapten-carrier link for initiation, but not for elicitation of IgE-mediated reactions is discussed. The p-i ("pharmacological interaction with immune receptor") concept represents an off-target activity of drugs with immune receptors (HLA or TCR), which can result in unorthodox, alloimmune-like stimulations of T cells. Some of these p-i stimulations occur only in carriers of certain HLA alleles and can result in clinically severe reactions. The third form of DHR ("pseudo-allergy") is represented by drug interactions with receptors or enzymes of inflammatory cells, which may lead to their direct activation or enhanced levels of inflammatory products. Specific IgE or T cells are not involved. This classification is based on the action of drugs and is clinically useful, as it can explain differences in sensitizations, unusual clinical symptoms, dependence on drug concentrations, predictability and immunological and pharmacological cross-reactivities in DHR.
Collapse
|
35
|
Schutte RJ, Zhang X, An N, Ostrov DA, Vukmanović S. Molecular docking predictions of fragrance binding to human leukocyte antigen molecules. Contact Dermatitis 2019; 81:174-183. [PMID: 30957232 DOI: 10.1111/cod.13283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Over 4000 small chemicals have been identified as allergens capable of inducing skin sensitization. Many sensitizers are hypothesized to act as haptens producing novel antigens, which can be presented to T cells by human leukocyte antigens (HLAs). Recent studies suggest that some chemical allergens use hapten-independent mechanisms. OBJECTIVE To determine whether molecular docking can identify HLA molecules that bind skin-sensitizing chemical allergens. METHODS Structural models of HLA molecules were used as the basis for molecular docking of 22 chemical allergens. Allergens predicted to bind HLA-B*57:01 were tested for their ability to stimulate T cells by the use of proliferation and interferon-gamma enzyme-linked immunospot assays. RESULTS Chemical allergens that did not satisfy the criteria for hapten activity in vitro were predicted to bind more strongly to common HLA isoforms than those with known hapten activity. HLA-B*57:01, which is an HLA allele required for drug hypersensitivity reactions, was predicted to bind several allergens, including benzyl benzoate, benzyl cinnamate, and benzyl salicylate. In in vitro T cell stimulation assays, benzyl salicylate and benzyl cinnamate were found to stimulate T cell responses from HLA-B*57:01 carriers. CONCLUSIONS These data suggest that small-molecule skin sensitizers have the potential to interact with HLA, and show that T cell-based in vitro assays may be used to evaluate the immunogenicity of skin-sensitizing chemicals.
Collapse
Affiliation(s)
- Ryan J Schutte
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Xiaojuan Zhang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Nan An
- Division of Cosmetics, Office of Cosmetics and Colors, CFSAN, FDA, College Park, Maryland
| | - David A Ostrov
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Stanislav Vukmanović
- Division of Cosmetics, Office of Cosmetics and Colors, CFSAN, FDA, College Park, Maryland
| |
Collapse
|
36
|
Kulhas Celik I, Dibek Misirlioglu E, Kocabas CN. Recent developments in drug hypersensitivity in children. Expert Rev Clin Immunol 2019; 15:723-733. [PMID: 31066307 DOI: 10.1080/1744666x.2019.1612241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Introduction: Drug allergy is an important public health problem that causes 0.4-10.3% of hospital admissions in children. The epidemiology, clinical spectrum, diagnosis, and management of drug hypersensitivity reactions (DHRs) differ in pediatric and adult patients. However, the same algorithms used in adults have often been applied in the pediatric population due to a lack of evidence in the literature. Areas covered: In this review, we aimed to discuss recent developments in the area of pediatric DHRs based on the growing body of literature advancing our understanding of the epidemiology, clinical aspects, and diagnostic approaches to DHRs in children. Expert opinion: Misdiagnosis, under-diagnosis, and self-diagnosis are common problems related to drug allergies in children. Viral infections are particularly frequent in children and make diagnosis difficult. Identifying true DHR is a key step in the management of drug allergy in children. Therefore, a complete allergy work-up with standardized drug allergy tests is necessary. In order to eliminate non-standardized tests, future studies including larger numbers of children should be conducted to determine more accurate standardized tests for diagnosing DHRs in the pediatric population.
Collapse
Affiliation(s)
- Ilknur Kulhas Celik
- a Division of Pediatric Allergy and Immunology , University of Health Sciences, Ankara Child Health and Diseases Hematology Oncology Training and Research Hospital , Ankara , Turkey
| | - Emine Dibek Misirlioglu
- a Division of Pediatric Allergy and Immunology , University of Health Sciences, Ankara Child Health and Diseases Hematology Oncology Training and Research Hospital , Ankara , Turkey
| | - Can Naci Kocabas
- b Division of Pediatric Allergy and Immunology, Department of Children's Health and Diseases, Faculty of Medicine , Mugla Sitki Kocman University , Mugla , Turkey
| |
Collapse
|
37
|
Mullan KA, Anderson A, Illing PT, Kwan P, Purcell AW, Mifsud NA. HLA-associated antiepileptic drug-induced cutaneous adverse reactions. HLA 2019; 93:417-435. [PMID: 30895730 DOI: 10.1111/tan.13530] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/20/2019] [Accepted: 03/18/2019] [Indexed: 12/31/2022]
Abstract
Adverse drug reactions (ADRs) are a common cause of hospital admissions (up to 19%), with the majority of cases due to off-target predictable drug effects (type A reactions). However, idiosyncratic drug-induced immune activated (type B) reactions contribute to a range of hypersensitivity reactions, with T-cell-mediated type IV hypersensitivity reactions mainly manifesting as cutaneous ADRs (cADRs). Aromatic antiepileptic drugs (AEDs), used in the treatment of epilepsy as well as bipolar disorder or neuropathic pain, have been implicated as culprit drugs in a spectrum of pathologies ranging from mild maculopapular exanthema (MPE) to severe and life-threatening conditions including drug reaction with eosinophilia and systemic symptoms (DRESS), Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). These AED-induced cADRs are unpredictable based on pharmacological and clinical factors alone, thereby prompting investigations into genomic contributors mediating risk of pathology. The most strongly associated risk genes identified are from the human leukocyte antigen (HLA) class I alleles, which play a critical role in adaptive immunity by flagging either infected or aberrant cells for recognition by surveying T-cells. In the setting of drug hypersensitivity, the immunogenicity of HLA molecules and their peptide cargo can be modulated by interactions with small drug molecules that drive inappropriate T-cell responses. This review discusses the current understanding of HLA class I molecules in modifying risk of AED-induced cADRs.
Collapse
Affiliation(s)
- Kerry A Mullan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Alison Anderson
- Department of Neuroscience, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Patricia T Illing
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Clayton, Victoria, Australia.,Department of Neuroscience, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Anthony W Purcell
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Nicole A Mifsud
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
38
|
Doña I, Salas M, Pérez-Sánchez NI, Moreno-Aguilar C, Torres MJ. Phenotypes and Natural Evolution of Drug Hypersensitivity. CURRENT TREATMENT OPTIONS IN ALLERGY 2019. [DOI: 10.1007/s40521-019-0200-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Pérez-Sánchez N, Jurado-Escobar R, Doña I, Soriano-Gomis V, Moreno-Aguilar C, Bartra J, Isidoro-García M, Torres MJ, Cornejo-García JA. Pharmacogenomics as a Tool for Management of Drug Hypersensitivity Reactions. CURRENT TREATMENT OPTIONS IN ALLERGY 2019. [DOI: 10.1007/s40521-019-0199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Drug-Induced Skin Adverse Reactions: The Role of Pharmacogenomics in Their Prevention. Mol Diagn Ther 2018; 22:297-314. [PMID: 29564734 DOI: 10.1007/s40291-018-0330-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adverse drug reactions (ADRs) affect many patients and remain a major public health problem, as they are a common cause of morbidity and mortality. It is estimated that ADRs are responsible for about 6% of hospital admissions and about 9% of hospitalization costs. Skin is the organ that is most frequently involved in ADRs. Drug-induced skin injuries vary from mild maculopapular eruptions (MPE) to severe cutaneous adverse reactions (SCARs) that are potentially life threatening. Genetic factors have been suggested to contribute to these SCARs, and most significant genetic associations have been identified in the major histocompatibility complex (MHC) genes. Common drugs associated with SCARs connected with strong genetic risk factors include antiepileptic drugs (AEDs), allopurinol, abacavir, nevirapine, sulfonamides, dapsone, non-steroidal anti-inflammatory drugs (NSAIDs), and analgesic drugs. However, genetic associations vary between different ethnic populations. Differences may in part be explained by the different prevalence of HLA (human leukocyte antigen) alleles among ethnic groups. In this review, we present and discuss the recent advances in genetic associations with ADRs in the skin. Many of these ADRs are now preventable with pharmacogenetic screening.
Collapse
|
41
|
Hypersensitivity Reactions to Antiepileptic Drugs in Children: Epidemiologic, Pathogenetic, Clinical, and Diagnostic Aspects. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:1879-1891.e1. [DOI: 10.1016/j.jaip.2018.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/17/2018] [Accepted: 07/04/2018] [Indexed: 01/15/2023]
|
42
|
Seok J, Kim JM, Park KY, Seo SJ. Symmetrical Drug-Related Intertriginous and Flexural Exanthema: Two Cases and Brief Literature Review. Ann Dermatol 2018; 30:606-609. [PMID: 33911487 PMCID: PMC7992480 DOI: 10.5021/ad.2018.30.5.606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 01/15/2023] Open
Abstract
It has been reported that there are a range of causative drugs related to symmetrical drug-related intertriginous and flexural exanthema (SDRIFE). The causative drugs reported so far include the following: antibiotics, intravenous immunoglobulin, chemotherapeutic agents, and biologics. In this study, we report two cases of SDRIFE and a review of the previous literature. We believe that our study makes a significant contribution to the literature because it demonstrates that intradermal injection of the Chinese herbal ball, and not its topical application, elicited a reaction that predicted the occurrence of SDRIFE. This finding is important for the diagnosis of SDRIFE in future studies. Our findings also provide evidence for a SDRIFE reaction after exposure to ranitidine and mosapride.
Collapse
Affiliation(s)
- Joon Seok
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jae Min Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
43
|
Carbamazepine-Mediated Adverse Drug Reactions: CBZ-10,11-epoxide but Not Carbamazepine Induces the Alteration of Peptides Presented by HLA-B∗15:02. J Immunol Res 2018; 2018:5086503. [PMID: 30302345 PMCID: PMC6158965 DOI: 10.1155/2018/5086503] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 01/11/2023] Open
Abstract
Among patients treated with the anticonvulsive and psychotropic drug carbamazepine (CBZ), approximately 10% develop severe and life-threatening adverse drug reactions. These immunological conditions are resolved upon withdrawal of the medicament, suggesting that the drug does not manifest in the body in long term. The HLA allele B∗15:02 has been described to be a genomic biomarker for CBZ-mediated immune reactions. It is not well understood if the immune reactions are triggered by the original drug or by its metabolite carbamazepine-10,11-epoxide (EPX) and how the interaction between the drug and the distinct HLA molecule occurs. Genetically engineered human B-lymphoblastoid cells expressing soluble HLA-B∗15:02 molecules were treated with the drug or its metabolite. Functional pHLA complexes were purified; peptides were eluted and sequenced. Applying mass spectrometric analysis, CBZ and EPX were monitored by analyzing the heavy chain and peptide fractions separately for the presence of the drug. This method enabled the detection of the drug in a biological situation post-pHLA assembly. Both drugs were bound to the HLA-B∗15:02 heavy chain; however, solely EPX altered the peptide-binding motif of B∗15:02-restricted peptides. This observation could be explained through structural insight; EPX binds to the peptide-binding region and alters the biochemical features of the F pocket and thus the peptide motif. Understanding the nature of immunogenic interactions between CBZ and EPX with the HLA immune complex will guide towards effective and safe medications.
Collapse
|
44
|
Cuestas D, Forero Y, Galvis I, Peñaranda E, Cortes C, Motta A, Mora S, Pérez C, Velasquez O, Puentes J. Drug reaction with eosinophilia and systemic symptoms (DRESS) and multiple organ dysfunction syndrome (MODS): one more reason for a new effective treatment against leishmaniasis. Int J Dermatol 2018; 57:1304-1313. [PMID: 30156263 DOI: 10.1111/ijd.14126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 05/15/2018] [Accepted: 06/08/2018] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome is a severe drug-induced reaction associated with eosinophilia and systemic manifestations. Anticonvulsants, sulfonamides, and antivirals are the most related and described drugs in DRESS syndrome. METHODS AND CASE We present a case of severe multiple organ dysfunction syndrome (MODS) with the risk of death associated with DRESS syndrome due to antileishmanial pentavalent antimonial drug and its simultaneous toxicity. Consequently, a comprehensive review of the main clinical problems and comparative discussion of both clinical conditions was made. DISCUSSION The overlap of DRESS syndrome and antileishmanial pentavalent antimonial drug toxicity can be life-threatening. Both conditions represent a true clinical, diagnostic, and therapeutic challenge. We exposed specific clinical and laboratory results with rare occurrence. CONCLUSION Any physician and dermatologists should keep in mind the broad spectrum of clinical manifestations and laboratory findings associated with the use of pentavalent antimonial drugs. The clinical suspicion, an early diagnosis, and aggressive treatment are essential to prevent complications and death.
Collapse
Affiliation(s)
- Daniel Cuestas
- Dermatology Program, El Bosque University, Bogotá, Colombia
| | - Yency Forero
- Internal Medicine Department, University Hospital of the Samaritan ESE, Bogotá, Colombia.,Advanced Training in Medicine & Postgraduate Medical Residency, University Hospital of the Samaritan ESE, Bogotá, Colombia
| | - Ingrid Galvis
- Advanced Training in Medicine & Postgraduate Medical Residency, University Hospital of the Samaritan ESE, Bogotá, Colombia.,Rheumatology Department, University Hospital of the Samaritan ESE, Bogotá, Colombia
| | - Elkin Peñaranda
- Dermatology Department, University Hospital of the Samaritana ESE, Bogotá, Colombia
| | - Carolina Cortes
- Dermatology Department, University Hospital of the Samaritana ESE, Bogotá, Colombia
| | - Adriana Motta
- Dermatology Program, El Bosque University, Bogotá, Colombia
| | - Sergio Mora
- Head of the Rheumatology Department, University Hospital of the Samaritan ESE, Bogotá, Colombia
| | - Carlos Pérez
- Infectious Diseases Department, Hospital of the Samaritana, Bogotá, Colombia
| | - Oscar Velasquez
- Advanced Training in Medicine & Postgraduate Medical Residency, University Hospital of the Samaritan ESE, Bogotá, Colombia
| | - José Puentes
- Advanced Training in Medicine & Postgraduate Medical Residency, University Hospital of the Samaritan ESE, Bogotá, Colombia
| |
Collapse
|
45
|
Karnes JH, Miller MA, White KD, Konvinse KC, Pavlos RK, Redwood AJ, Peter JG, Lehloenya R, Mallal SA, Phillips EJ. Applications of Immunopharmacogenomics: Predicting, Preventing, and Understanding Immune-Mediated Adverse Drug Reactions. Annu Rev Pharmacol Toxicol 2018; 59:463-486. [PMID: 30134124 DOI: 10.1146/annurev-pharmtox-010818-021818] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adverse drug reactions (ADRs) are a significant health care burden. Immune-mediated adverse drug reactions (IM-ADRs) are responsible for one-fifth of ADRs but contribute a disproportionately high amount of that burden due to their severity. Variation in human leukocyte antigen ( HLA) genes has emerged as a potential preprescription screening strategy for the prevention of previously unpredictable IM-ADRs. Immunopharmacogenomics combines the disciplines of immunogenomics and pharmacogenomics and focuses on the effects of immune-specific variation on drug disposition and IM-ADRs. In this review, we present the latest evidence for HLA associations with IM-ADRs, ongoing research into biological mechanisms of IM-ADRs, and the translation of clinical actionable biomarkers for IM-ADRs, with a focus on T cell-mediated ADRs.
Collapse
Affiliation(s)
- Jason H Karnes
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, Arizona 85721, USA.,Sarver Heart Center, University of Arizona College of Medicine, Tucson, Arizona 85724, USA.,Division of Pharmacogenomics, Center for Applied Genetics and Genomic Medicine (TCAG2M), Tucson, Arizona 85721, USA
| | - Matthew A Miller
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, Arizona 85721, USA
| | - Katie D White
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA;
| | - Katherine C Konvinse
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.,Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Rebecca K Pavlos
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Subiaco, Western Australia 6008, Australia.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia
| | - Alec J Redwood
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia
| | - Jonathan G Peter
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa.,Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Rannakoe Lehloenya
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Simon A Mallal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA; .,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA; .,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia
| |
Collapse
|
46
|
Norton AE, Konvinse K, Phillips EJ, Broyles AD. Antibiotic Allergy in Pediatrics. Pediatrics 2018; 141:peds.2017-2497. [PMID: 29700201 PMCID: PMC5914499 DOI: 10.1542/peds.2017-2497] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
The overlabeling of pediatric antibiotic allergy represents a huge burden in society. Given that up to 10% of the US population is labeled as penicillin allergic, it can be estimated that at least 5 million children in this country are labeled with penicillin allergy. We now understand that most of the cutaneous symptoms that are interpreted as drug allergy are likely viral induced or due to a drug-virus interaction, and they usually do not represent a long-lasting, drug-specific, adaptive immune response to the antibiotic that a child received. Because most antibiotic allergy labels acquired in childhood are carried into adulthood, the overlabeling of antibiotic allergy is a liability that leads to unnecessary long-term health care risks, costs, and antibiotic resistance. Fortunately, awareness of this growing burden is increasing and leading to more emphasis on antibiotic allergy delabeling strategies in the adult population. There is growing literature that is used to support the safe and efficacious use of tools such as skin testing and drug challenge to evaluate and manage children with antibiotic allergy labels. In addition, there is an increasing understanding of antibiotic reactivity within classes and side-chain reactions. In summary, a better overall understanding of the current tools available for the diagnosis and management of adverse drug reactions is likely to change how pediatric primary care providers evaluate and treat patients with such diagnoses and prevent the unnecessary avoidance of antibiotics, particularly penicillins.
Collapse
Affiliation(s)
- Allison Eaddy Norton
- Division of Allergy, Immunology and Pulmonology, Monroe Carell Jr. Children's Hospital at Vanderbilt, and
| | - Katherine Konvinse
- Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elizabeth J. Phillips
- Division of Allergy, Immunology and Pulmonology, Monroe Carell Jr. Children's Hospital at Vanderbilt, and,John A. Oates Institute for Experimental Therapeutics and Department of Pharmacology, School of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee;,Division of Infectious Disease, Departments of Medicine and,Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee;,Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia; and
| | - Ana Dioun Broyles
- Division of Allergy and Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
47
|
Fricke-Galindo I, Jung-Cook H, LLerena A, López-López M. Pharmacogenetics of adverse reactions to antiepileptic drugs. NEUROLOGÍA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.nrleng.2015.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
48
|
Recent Advances in Drug-Induced Hypersensitivity Syndrome/Drug Reaction with Eosinophilia and Systemic Symptoms. J Immunol Res 2018; 2018:5163129. [PMID: 29744372 PMCID: PMC5878892 DOI: 10.1155/2018/5163129] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/02/2017] [Accepted: 02/08/2018] [Indexed: 12/17/2022] Open
Abstract
Drug-induced hypersensitivity syndrome (DIHS), also termed as drug reaction with eosinophilia and systemic symptoms (DRESS), is a multiorgan systemic reaction characterized by a close relationship with the reactivation of herpes virus. Published data has demonstrated that among patients with DIHS/DRESS, 75–95% have leukocytosis, 18.2–90% show atypical lymphocytes, 52–95% have eosinophilia, and 75–100% have hepatic abnormalities. Histologically, eosinophils were observed less frequently than we expected (20%). The mainstay of DIHS/DRESS treatment is a moderate dose of systemic corticosteroids, followed by gradual dose reduction. In this review, we will emphasize that elevations in the levels of several cytokines/chemokines, including tumor necrosis factor- (TNF-) α and the thymus and activation-regulated chemokine (TARC/CCL17), during the early stage of disease, are good markers allowing the early recognition of HHV-6 reactivation. TNF-α and TARC levels also reflect therapeutic responses and may be useful markers of the DIHS disease process. Recently, the pathogenic mechanism of T-cell activation triggered by human leukocyte antigen- (HLA-) restricted presentation of a drug or metabolites was elucidated. Additionally, we recently reported that dapsone would fit within the unique subpocket of the antigen-recognition site of HLA-B∗13:01. Further studies will render it possible to choose better strategies for DIHS prevention and therapy.
Collapse
|
49
|
Uno K. [Pathogenic Mechanism and Diagnostic Testing for Drug Allergies]. YAKUGAKU ZASSHI 2018; 138:151-167. [PMID: 29386429 DOI: 10.1248/yakushi.17-00174-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three stages of the pathogenic mechanism of drug allergies can be considered: antigen formation, immune reaction and inflammation/disorder reaction. Drugs are thought to form 4 types of antigens: drug only, polymers, drug-carrier conjugates, and metabolite-carrier complexes. Antigens are recognized by B cell receptors and T cell receptors. Helper T cells (Th) are differentiated into four subsets, namely, Th1, Th2, Th17 and regulatory T cells (Treg). Th1 produces interleukin (IL)-2 and interferon (IFN)-γ, and activates macrophages and cytotoxic T cells (Tc). Macrophages induce type IV allergies, and Tc lead to serious type IV allergies. On the other hand, Th2 produces IL-4, IL-5, and IL-6, etc., and activates B cells. B cells produce IgE antibodies, and the IgE antibody affects mast cells and induces type I allergies. Activated eosinophil leads to the chronic state of type I allergy. Diagnostic testing for allergenic drugs is necessary for patients with drug allergies. Because in vivo diagnostic tests for allergenic drugs are associated with a risk and burden to the patient, in vitro allergy tests are recommended to identify allergenic drugs. In allergy tests performed in vitro, cytological tests are more effective than serological tests, and the leukocyte migration test (LMT) presently has the highest efficacy. An LMT-chamber is better than LMT-agarose in terms of usability and sensitivity, and it can detect about 80% of allergenic drugs.
Collapse
Affiliation(s)
- Katsuji Uno
- Faculty of Pharmacy, Chiba Institute of Science.,Kyoeido, Co. Ltd
| |
Collapse
|
50
|
Van Den Driessche G, Fourches D. Adverse drug reactions triggered by the common HLA-B*57:01 variant: virtual screening of DrugBank using 3D molecular docking. J Cheminform 2018; 10:3. [PMID: 29383457 PMCID: PMC5790764 DOI: 10.1186/s13321-018-0257-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/17/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Idiosyncratic adverse drug reactions have been linked to a drug's ability to bind with a human leukocyte antigen (HLA) protein. However, due to the thousands of HLA variants and limited structural data for drug-HLA complexes, predicting a specific drug-HLA combination represents a significant challenge. Recently, we investigated the binding mode of abacavir with the HLA-B*57:01 variant using molecular docking. Herein, we developed a new ensemble screening workflow involving three X-ray crystal derived docking procedures to screen the DrugBank database and identify potentially HLA-B*57:01 liable drugs. Then, we compared our workflow's performance with another model recently developed by Metushi et al., which proposed seven in silico HLA-B*57:01 actives, but were later found to be experimentally inactive. METHODS After curation, there were over 6000 approved and experimental drugs remaining in DrugBank for docking using Schrodinger's GLIDE SP and XP scoring functions. Docking was performed with our new consensus-like ensemble workflow, relying on three different X-ray crystals (3VRI, 3VRJ, and 3UPR) in presence and absence of co-binding peptides. The binding modes of HLA-B*57:01 hit compounds for all three peptides were further explored using 3D interaction fingerprints and hierarchical clustering. RESULTS The screening resulted in 22 hit compounds forecasted to bind HLA-B*57:01 in all docking conditions (SP and XP with and without peptides P1, P2, and P3). These 22 compounds afforded 2D-Tanimoto similarities being less than 0.6 when compared to the structure of native abacavir, whereas their 3D binding mode similarities varied in a broader range (0.2-0.8). Hierarchical clustering using a Ward Linkage revealed different clustering patterns for each co-binding peptide. When we docked Metushi et al.'s seven proposed hits using our workflow, our screening platform identified six out of seven as being inactive. Molecular dynamic simulations were used to explore the stability of abacavir and acyclovir in complex with peptide P3. CONCLUSIONS This study reports on the extensive docking of the DrugBank database and the 22 HLA-B*57:01 liable candidates we identified. Importantly, comparisons between this study and the one by Metushi et al. highlighted new critical and complementary knowledge for the development of future HLA-specific in silico models.
Collapse
Affiliation(s)
- George Van Den Driessche
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Denis Fourches
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|