1
|
Zou S, Meng F, Xu G, Yu R, Yang C, Wei Q, Xue Y. Identification of candidate genes and molecular mechanisms related to asthma progression using bioinformatics. Sleep Breath 2024; 28:2237-2246. [PMID: 39088141 PMCID: PMC11450000 DOI: 10.1007/s11325-024-03122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Asthma is a heterogeneous disorder. This study aimed to identify changes in gene expression and molecular mechanisms associated with moderate to severe asthma. METHODS Differentially expressed genes (DEGs) were analyzed in GSE69683 dataset among moderate asthma and its controls as well as between severe asthma and moderate asthma. Key module genes were identified via co-expression analysis, and the molecular mechanism of the module genes was explored through enrichment analysis and gene set enrichment analysis (GSEA). GSE89809 was used to verify the characteristic genes related to moderate and severe asthma. RESULTS Accordingly, 2540 DEGs were present between moderate asthma and the control group, while 6781 DEGs existed between severe asthma and moderate asthma. These genes were identified into 14 co-expression modules. Module 7 had the highest positive correlation with severe asthma and was recognized to be a key module by STEM. Enrichment analysis demonstrated that the module genes were mainly involved in oxidative stress-related signaling pathways. The expression of HSPA1A, PIK3CG and PIK3R6 was associated with moderate asthma, while MAPK13 and MMP9 were associated with severe asthma. The AUC values were verified by GSE89809. Additionally, 322 drugs were predicted to target five genes. CONCLUSION These results identified characteristic genes related to moderate and severe asthma and their corresponding molecular mechanisms, providing a basis for future research.
Collapse
Affiliation(s)
- Songbing Zou
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Nanning, Guangxi, China
| | - Fangchan Meng
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Nanning, Guangxi, China
| | - Guien Xu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Nanning, Guangxi, China
| | - Rongchang Yu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Nanning, Guangxi, China
| | - Chaomian Yang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Nanning, Guangxi, China
| | - Qiu Wei
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Nanning, Guangxi, China.
| | - Yanlong Xue
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Nanning, Guangxi, China.
| |
Collapse
|
2
|
Guryanova SV. Bacteria and Allergic Diseases. Int J Mol Sci 2024; 25:10298. [PMID: 39408628 PMCID: PMC11477026 DOI: 10.3390/ijms251910298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Microorganisms colonize all barrier tissues and are present on the skin and all mucous membranes from birth. Bacteria have many ways of influencing the host organism, including activation of innate immunity receptors by pathogen-associated molecular patterns and synthesis of various chemical compounds, such as vitamins, short-chain fatty acids, bacteriocins, toxins. Bacteria, using extracellular vesicles, can also introduce high-molecular compounds, such as proteins and nucleic acids, into the cell, regulating the metabolic pathways of the host cells. Epithelial cells and immune cells recognize bacterial bioregulators and, depending on the microenvironment and context, determine the direction and intensity of the immune response. A large number of factors influence the maintenance of symbiotic microflora, the diversity of which protects hosts against pathogen colonization. Reduced bacterial diversity is associated with pathogen dominance and allergic diseases of the skin, gastrointestinal tract, and upper and lower respiratory tract, as seen in atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, food allergies, and asthma. Understanding the multifactorial influence of microflora on maintaining health and disease determines the effectiveness of therapy and disease prevention and changes our food preferences and lifestyle to maintain health and active longevity.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; ; Tel.: +7-(915)3150073
- Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| |
Collapse
|
3
|
Panganiban RA, Nadeau KC, Lu Q. Pyroptosis, gasdermins and allergic diseases. Allergy 2024; 79:2380-2395. [PMID: 39003568 PMCID: PMC11368650 DOI: 10.1111/all.16236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Pyroptosis is an inflammatory form of programmed cell death that is distinct from necrosis and apoptosis. Pyroptosis is primarily mediated by the gasdermin family of proteins (GSDMA-E and PVJK), which, when activated by proteolytic cleavage, form pores in the plasma membrane, leading to cell death. While much of the past research on pyroptosis has focused on its role in cancer, metabolic disorders, and infectious diseases, recent experimental and observational studies have begun to implicate pyroptosis in allergic diseases. These studies suggest that gasdermin-mediated pyroptosis contributes to the development of allergic conditions and could offer novel targets for therapy. Here, we review our current understanding of pyroptosis with an emphasis on the role of gasdermins as executioners of pyroptosis and potential mediators to allergic disease. We highlight new discoveries that establish a mechanistic link between the biochemical actions of gasdermins and the onset of allergic diseases. Additionally, we discuss how pyroptosis and gasdermins might contribute to the dysfunction of epithelial barrier, a key factor believed to initiate the progression of various allergic diseases.
Collapse
Affiliation(s)
- Ronald Allan Panganiban
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Quan Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Singh S, Aparna, Sharma N, Gupta J, Kyada A, Nathiya D, Behl T, Gupta S, Anwer MK, Gulati M, Sachdeva M. Application of nano- and micro-particle-based approaches for selected bronchodilators in management of asthma. 3 Biotech 2024; 14:208. [PMID: 39184911 PMCID: PMC11343956 DOI: 10.1007/s13205-024-04051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
Asthma is a chronic inflammatory condition that affects the airways, posing a substantial health threat to a large number of people worldwide. Bronchodilators effectively alleviate symptoms of airway obstruction by inducing relaxation of the smooth muscles in the airways, thereby reducing breathlessness and enhancing overall quality of life. The drug targeting to lungs poses significant challenges; however, this issue can be resolved by employing nano- and micro-particles drug delivery systems. This review provides brief insights about underlying mechanisms of asthma, including the role of several inflammatory mediators that contribute to the development and progression of this disease. This article provides an overview of the physicochemical features, pharmacokinetics, and mechanism of action of particular groups of bronchodilators, including sympathomimetics, PDE-4 inhibitors (phosphodiesterase-4 inhibitors), methylxanthines, and anticholinergics. This study presents a detailed summary of the most recent developments in incorporation of bronchodilators in nano- and micro-particle-based delivery systems which include solid lipid nanoparticles, bilosomes, novasomes, liposomes, polymeric nano- and micro-particles. Specifically, it focuses on breakthroughs in the categories of sympathomimetics, methylxanthines, PDE-4 inhibitors, and anticholinergics. These medications have the ability to specifically target alveolar macrophages, leading to a higher concentration of pharmaceuticals in the lung tissues.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207 Haryana India
| | - Aparna
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207 Haryana India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207 Haryana India
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406 Uttar Pradesh India
| | - Ashishkumar Kyada
- Department of Pharmacy, Faculty of Health Sciences, Marwadi University Research Center, Marwadi University, Rajkot, 360003 Gujarat India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Rajasthan, Jaipur India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab, India
| | - Sumeet Gupta
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207 Haryana India
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942 Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 1444411 Punjab India
- Faculty of Health, ARCCIM, University of Technology Sydney, Ultimo, NSW 20227 Australia
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Rynne J, Ortiz-Zapater E, Bagley DC, Zanin O, Doherty G, Kanabar V, Ward J, Jackson DJ, Parsons M, Rosenblatt J, Adcock IM, Martinez-Nunez RT. The RNA binding proteins ZFP36L1 and ZFP36L2 are dysregulated in airway epithelium in human and a murine model of asthma. Front Cell Dev Biol 2023; 11:1241008. [PMID: 37928904 PMCID: PMC10624177 DOI: 10.3389/fcell.2023.1241008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction: Asthma is the most common chronic inflammatory disease of the airways. The airway epithelium is a key driver of the disease, and numerous studies have established genome-wide differences in mRNA expression between health and asthma. However, the underlying molecular mechanisms for such differences remain poorly understood. The human TTP family is comprised of ZFP36, ZFP36L1 and ZFP36L2, and has essential roles in immune regulation by determining the stability and translation of myriad mRNAs encoding for inflammatory mediators. We investigated the expression and possible role of the tristetraprolin (TTP) family of RNA binding proteins (RBPs), poorly understood in asthma. Methods: We analysed the levels of ZFP36, ZFP36L1 and ZFP36L2 mRNA in several publicly available asthma datasets, including single cell RNA-sequencing. We also interrogated the expression of known targets of these RBPs in asthma. We assessed the lung mRNA expression and cellular localization of Zfp36l1 and Zfp36l2 in precision cut lung slices in murine asthma models. Finally, we determined the expression in airway epithelium of ZFP36L1 and ZFP36L2 in human bronchial biopsies and performed rescue experiments in primary bronchial epithelium from patients with severe asthma. Results: We found ZFP36L1 and ZFP36L2 mRNA levels significantly downregulated in the airway epithelium of patients with very severe asthma in different cohorts (5 healthy vs. 8 severe asthma; 36 moderate asthma vs. 37 severe asthma on inhaled steroids vs. 26 severe asthma on oral corticoids). Integrating several datasets allowed us to infer that mRNAs potentially targeted by these RBPs are increased in severe asthma. Zfp36l1 was downregulated in the lung of a mouse model of asthma, and immunostaining of ex vivo lung slices with a dual antibody demonstrated that Zfp36l1/l2 nuclear localization was increased in the airway epithelium of an acute asthma mouse model, which was further enhanced in a chronic model. Immunostaining of human bronchial biopsies showed that airway epithelial cell staining of ZFP36L1 was decreased in severe asthma as compared with mild, while ZFP36L2 was upregulated. Restoring the levels of ZFP36L1 and ZFP36L2 in primary bronchial epithelial cells from patients with severe asthma decreased the mRNA expression of IL6, IL8 and CSF2. Discussion: We propose that the dysregulation of ZFP36L1/L2 levels as well as their subcellular mislocalization contributes to changes in mRNA expression and cytoplasmic fate in asthma.
Collapse
Affiliation(s)
- Jennifer Rynne
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Elena Ortiz-Zapater
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Dustin C. Bagley
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
| | - Onofrio Zanin
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - George Doherty
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Varsha Kanabar
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Jon Ward
- Histochemistry Research Unit, University of Southampton, Southampton, United Kingdom
| | - David J. Jackson
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Maddy Parsons
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
| | - Jody Rosenblatt
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
| | - Ian M. Adcock
- National Heart and Lung Institute and Data Science Institute, Imperial College London, London, United Kingdom
| | - Rocio T. Martinez-Nunez
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
6
|
Zhang Q, Liu J, Deng MM, Tong R, Hou G. Relief of ovalbumin-induced airway remodeling by the glycyl-l-histidyl-l-lysine-Cu 2+ tripeptide complex via activation of SIRT1 in airway epithelial cells. Biomed Pharmacother 2023; 164:114936. [PMID: 37257226 DOI: 10.1016/j.biopha.2023.114936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Fixed airflow limitation (FAO), prevalent in patients with severe or difficult-to-treat asthma, is mainly caused by airway remodeling. Airway remodeling is initiated by inflammation and involves subsequent pathological changes. Glycyl-l-histidyl-l-lysine (GHK) is a matrikine with anti-inflammatory and antioxidant effects, naturally existing in human tissue. At present, the GHK level in human plasma and whether it is related to airway remodeling of asthma remain unclear. This study was conducted to determine how GHK is involved in airway remodeling in asthma. Our result showed that the plasma GHK levels of patients with asthma were significantly lower than those of age-matched healthy controls. In asthma patients, plasma GHK levels display a moderate correlation with FEF25-75%, and patients with FAO had significantly lower GHK levels. Ovalbumin-induced mice of asthma model treated with PBS or GHK-Cu (a form of GHK with higher bioavailability) were used to evaluate the effect of exogenous GHK supplement on airway remodeling. GHK-Cu administration alleviated airway remodeling, as reflected by decreased peribronchial collagen deposition and airway mucus secretion, and suppressed epithelial-mesenchymal transition. The therapeutical effect related to decreased TGF-β1 level. Successively, network pharmacology and the validation data of experiments in vivo and vitro demonstrated that GHK-Cu decreased TGF-β1 level by increasing SIRT1 expression and activating SIRT1 deacetylation in airway epithelial cells, thereby alleviating airway remodeling. Collectively, decreased plasma GHK levels were related to FAO in asthma patients. Through the direct binding and activation of SIRT1, exogenous GHK-Cu administration alleviated airway remodeling in asthmatic mice.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; National Clinical Research Center for Respiratory Diseases, Beijing 100029, China; National Center for Respiratory Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China; Institute of Respiratory Disease, the First Hospital of China Medical University, No. 155, Nanjing Street, Heping District, 110000 Shenyang, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555, Zuchongzhi Road, Pudong District, Shanghai 201203, China
| | - Ming-Ming Deng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; National Clinical Research Center for Respiratory Diseases, Beijing 100029, China; National Center for Respiratory Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Run Tong
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; National Clinical Research Center for Respiratory Diseases, Beijing 100029, China; National Center for Respiratory Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; National Clinical Research Center for Respiratory Diseases, Beijing 100029, China; National Center for Respiratory Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China.
| |
Collapse
|
7
|
Zhou Y, Duan Q, Yang D. In vitro human cell-based models to study airway remodeling in asthma. Biomed Pharmacother 2023; 159:114218. [PMID: 36638596 DOI: 10.1016/j.biopha.2023.114218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Airway remodeling, as a predominant characteristic of asthma, refers to the structural changes that occurred both in the large and small airways. These pathological changes not only contribute to airway hyperresponsiveness and airway obstruction, but also predict poor outcomes of patients. In vitro models are the alternatives to animal models that facilitate airway remodeling research. Current approaches to mimic airway remodeling in vitro include mono cultures of cell lines and primary cells that are derived from the respiratory tract, and co-culture systems that consist of different cell subpopulations. Moreover, recent advances in microfluid chips and organoids show promise in simulating the complex architecture and functionality of native organs. According, they enable highly physiological-relevant investigations of human diseases in vitro. Here we aim to detail the current human cell-based models regarding their key pros and cons, and to discuss how they may be used to facilitate our understanding of airway remodeling in asthma.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China
| | - Qirui Duan
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China
| | - Dong Yang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China.
| |
Collapse
|
8
|
Liu Y, Li P, Jiang T, Li Y, Wang Y, Cheng Z. Epidermal growth factor receptor in asthma: A promising therapeutic target? Respir Med 2023; 207:107117. [PMID: 36626942 DOI: 10.1016/j.rmed.2023.107117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Activation of the epidermal growth factor receptor (EGFR) pathway is involved in the pathogenesis of asthma. Although decades of intensive research have focused on the role of EGFR in asthma, the specific mechanisms and pathways of EGFR signaling remain unclear. Various reports have indicated that inhibition of EGFR improves the pathological features in asthma models. However, extending these experimental findings to clinical applications is difficult. Several measures can be adopted to promote clinical application of EGFR inhibitors. This review focuses on the role of EGFR in the pathogenesis of asthma and the development of a potentially novel therapeutic target for asthma.
Collapse
Affiliation(s)
- Ye Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pengfei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tianci Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yue Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhe Cheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
9
|
Bendavid G, Hubeau C, Perin F, Gillard A, Nokin MJ, Carnet O, Gerard C, Noel A, Lefebvre P, Rocks N, Cataldo D. Role for the metalloproteinase ADAM28 in the control of airway inflammation, remodelling and responsiveness in asthma. Front Immunol 2023; 13:1067779. [PMID: 36685493 PMCID: PMC9851272 DOI: 10.3389/fimmu.2022.1067779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Background Asthma is characterized by morphological modifications of the airways (inflammation and remodelling) and bronchial hyperresponsiveness. Mechanisms linking these two key features of asthma are still poorly understood. ADAM28 (a disintegrin and metalloproteinase 28) might play a role in asthma pathophysiology. ADAM28 exists as membrane-bound and soluble forms and is mainly expressed by lymphocytes and epithelial cells. Methods ADAM28-/- mice and ADAM28+/+ counterparts were sensitized and exposed to ovalbumin (OVA). Airway responsiveness was measured using the flexiVent® system. After sacrifice, bronchoalveolar lavage (BAL) was performed and lungs were collected for analysis of airway inflammation and remodelling. Results The expression of the soluble form of ADAM28 was lower in the lungs of OVA-exposed mice (as compared to PBS-exposed mice) and progressively increased in correlation with the duration of allergen exposure. In lungs of ADAM28-/- mice exposed to allergens, the proportion of Th2 cells among CD 4 + cells and the number of B cells were decreased. Bronchial responsiveness was lower in ADAM28-/- mice exposed to allergens and similar to the responsiveness of sham-challenged mice. Similarly, features of airway remodelling (collagen deposition, smooth muscle hyperplasia, mucous hyperplasia) were significantly less developed in OVA-exposed ADAM28-/- animals in sharp contrasts to ADAM28+/+. In addition, we report the first evidence of ADAM28 RNA expression by lung fibroblasts and we unveil a decreased capacity of lung fibroblasts extracted from OVA-exposed ADAM28-/- mice to proliferate as compared to those extracted from OVA-exposed ADAM28+/+ suggesting a direct contribution of this enzyme to the modulation of airway remodelling. Conclusion These results suggest that ADAM28 might be a key contributor to the pathophysiology of asthma.
Collapse
Affiliation(s)
- Guillaume Bendavid
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege), Liege, Belgium,Department of Otorhinolaryngology Head and Neck Surgery, University of Liege (ULiege) and Centre Hospitalier Universitaire (CHU) Liege, Liege, Belgium
| | - Céline Hubeau
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege), Liege, Belgium
| | - Fabienne Perin
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege), Liege, Belgium
| | - Alison Gillard
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege), Liege, Belgium
| | - Marie-Julie Nokin
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege), Liege, Belgium
| | - Oriane Carnet
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege), Liege, Belgium
| | - Catherine Gerard
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege), Liege, Belgium
| | - Agnès Noel
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege), Liege, Belgium
| | - Philippe Lefebvre
- Department of Otorhinolaryngology Head and Neck Surgery, University of Liege (ULiege) and Centre Hospitalier Universitaire (CHU) Liege, Liege, Belgium
| | - Natacha Rocks
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege), Liege, Belgium
| | - Didier Cataldo
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege), Liege, Belgium,Department of respiratory diseases, University of Liege (ULiege) and Centre Hospitalier Universitaire (CHU) Liege, Liege, Belgium,*Correspondence: Didier Cataldo,
| |
Collapse
|
10
|
Lohova E, Pilmane M. Expression of MUC-2, MUC-6, NAPE-PLD, IL-6 and IL-13 in Healthy and Metaplastic Bronchial Epithelium. Diseases 2022; 11:diseases11010005. [PMID: 36648870 PMCID: PMC9844475 DOI: 10.3390/diseases11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Background: The normal tissue structure of the respiratory system is necessary to provide adequate protection of the airways and lungs. Prolonged exposure to trigger factors can result in adaptive mechanism activation and lead to the development of chronic pulmonary diseases or even dysplastic changes. Materials and methods: Respiratory system material with a pseudostratified ciliated epithelium was obtained from 12 patients (aged 16 to 95), and material with a stratified squamosa epithelium was obtained from six patients (aged 23 to 93). Routine staining was performed, and an immunohistochemistry was conducted for MUC-2, MUC-6, NAPE-PLD, IL-6 and IL-13. Results: Inflammatory processes were not detected in any of the specimens. A number of correlations were identified, with the most important being a strong positive correlation for IL-13 between the alveolar epithelium and alveolar macrophages and a strong positive correlation for IL-6 between the alveolar epithelium and alveolar macrophages in the stratified squamous epithelium group. We also detected a statistically significant difference in IL-6 in alveolar macrophages. Conclusions: There were no signs of dysplastic changes in either group. Increased secretion of IL-13 in the stratified squamous epithelium group shows its involvement in metaplastic changes in the bronchial epithelium. The secretion of atypical factors by hyaline cartilage demonstrates its plasticity and adaptability.
Collapse
|
11
|
Iwashita J, Maeda H, Ishimura M, Murata J. Type IV collagen reduces MUC5AC secretion in the lungs of ovalbumin-sensitized mice. Front Pharmacol 2022; 13:851374. [PMID: 36188610 PMCID: PMC9523140 DOI: 10.3389/fphar.2022.851374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
Mucin 5AC (MUC5AC) is excessively secreted in the respiratory tract of patients with asthma. Suppressing this secretion is important for improving the air passages, which facilitates easy breathing. We have previously reported that the addition of type IV collagen, a typical extracellular matrix (ECM) protein, to the culture medium for human cell lines and primary cells reduced MUC5AC secretion. In this report, we further investigated the effect of type IV collagen on MUC5AC secretion in vivo. We employed ovalbumin (OVA)-sensitized mice to model of asthma and exposed them to type IV collagen to verify the reducing effect of MUC5AC in vivo. The amount of MUC5AC in bronchoalveolar lavage fluid was examined after nebulization of type IV collagen. Hypersecretion of MUC5AC of the OVA-sensitized mice was suppressed by type IV collagen exposure in a time- and dose-dependent manner. Furthermore, type IV collagen exposure to OVA-sensitized mice decreased integrin α2 and β1 expression in the lungs and increased the levels of Akt and extracellular signal-regulated kinase (ERK) phosphorylation in the trachea. These results suggest that type IV collagen suppresses MUC5AC hypersecretion via modulating integrin expression and Akt/ERK phosphorylation in the respiratory tract of the OVA-sensitized mice.
Collapse
|
12
|
Parnes JR, Molfino NA, Colice G, Martin U, Corren J, Menzies-Gow A. Targeting TSLP in Asthma. J Asthma Allergy 2022; 15:749-765. [PMID: 35685846 PMCID: PMC9172920 DOI: 10.2147/jaa.s275039] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine implicated in the initiation and persistence of inflammatory pathways in asthma. Released in response to a range of epithelial insults (eg, allergens, viruses, bacteria, pollutants, and smoke), TSLP initiates multiple downstream innate and adaptive immune responses involved in asthma inflammation. Inhibition of TSLP is postulated to represent a novel approach to treating the diverse phenotypes and endotypes of asthma. Tezepelumab, the TSLP inhibitor farthest along in clinical development, is a human monoclonal antibody (IgG2λ) that binds specifically to TSLP, preventing interactions with its heterodimeric receptor. Results of recently published phase 2 and 3 studies, reviewed in this article, provide evidence of the safety and efficacy of tezepelumab that builds on initial findings. Tezepelumab is safe, well tolerated, and provides clinically meaningful improvements in asthma control, including reduced incidence of exacerbations and hospitalizations in patients with severe asthma. Clinical benefits were associated with reductions in levels of a broad spectrum of cytokines (eg, interleukin [IL]-5, IL-13) and baseline biomarkers (eg, blood eosinophils, immunoglobulin [Ig]E, fractional exhaled nitric oxide [FeNO]) and were observed across a range of severe asthma phenotypes (ie, eosinophilic and non-eosinophilic). These data strengthen the notion that anti-TSLP elicits broad inhibitory effects on pathways that are key to asthma inflammation rather than on narrower inhibition of individual downstream factors. This review presents the rationale for targeting TSLP to treat asthma, as well as the clinical effects of TSLP blockade on asthma outcomes, biomarkers of disease activity, airway inflammation, lung physiology, and patient symptoms.
Collapse
|
13
|
Thuy PX, Bao TDD, Moon EY. Ursodeoxycholic acid ameliorates cell migration retarded by the SARS-CoV-2 spike protein in BEAS-2B human bronchial epithelial cells. Biomed Pharmacother 2022; 150:113021. [PMID: 35658221 PMCID: PMC9035373 DOI: 10.1016/j.biopha.2022.113021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is caused by severe acute -respiratory syndrome coronavirus 2 (SARS- CoV-2) through interaction of the spike protein (SP) with the receptor-binding domain (RBD) and its receptor, angiotensin converting enzyme 2(ACE2). Repair mechanisms induced following virus infection can restore the protective barrier through wound healing. Then, cells from the epithelial basal layer repopulate the damaged area, followed by cell proliferation and differentiation, as well as changes in gene expression. METHODS Using Beas-2B cells and SP, we investigated whether ursodeoxycholic acid (UDCA) contributes to restoration of the bronchial epithelial layer. ACE2 expression was measured by RT-PCR and Western blotting. SP-ACE2 interaction was analyzed by flow cytometry and visualized through immunostaining. Cell migration was assessed using single cell path tracking and wound healing assay. RESULTS Upon ACE2 overexpression in HeLa, HEK293T, and Beas-2B cells following the transfection of pCMV-ACE2 plasmid DNA, SP binding on each cell was increased in the ACE2 overexpression group compared to pCMV-transfected control cells. SP treatment delayed the migration of BEAS-2B cells compared to the control. SP also reduced cell migration, even under ACE2 overexpression; SP binding was greater in ACE2-overexpressed cells than control cells. UDCA interfered significantly with the binding of SP to ACE2 under our experimental conditions. UDCA also restored the inhibitory migration of Beas-2B cells induced by SP treatment. CONCLSION Our data demonstrate that UDCA can contribute to the inhibition of abnormal airway epithelial cell migration. These results suggest that UDCA can enhance the repair mechanism, to prevent damage caused by SP-ACE2 interaction and enhance restoration of the epithelial basal layer.
Collapse
Affiliation(s)
- Pham Xuan Thuy
- Department of Integrated Bioscience and Biotechnology, Seoul 05006, Republic of Korea
| | - Tran Duc Duy Bao
- Department of Integrated Bioscience and Biotechnology, Seoul 05006, Republic of Korea
| | - Eun-Yi Moon
- Department of Integrated Bioscience and Biotechnology, Seoul 05006, Republic of Korea.
| |
Collapse
|
14
|
Sex Plays a Multifaceted Role in Asthma Pathogenesis. Biomolecules 2022; 12:biom12050650. [PMID: 35625578 PMCID: PMC9138801 DOI: 10.3390/biom12050650] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Sex is considered an important risk factor for asthma onset and exacerbation. The prevalence of asthma is higher in boys than in girls during childhood, which shows a reverse trend after puberty—it becomes higher in adult females than in adult males. In addition, asthma severity, characterized by the rate of hospitalization and relapse after discharge from the emergency department, is higher in female patients. Basic research indicates that female sex hormones enhance type 2 adaptive immune responses, and male sex hormones negatively regulate type 2 innate immune responses. However, whether hormone replacement therapy in postmenopausal women increases the risk of current asthma and asthma onset remains controversial in clinical settings. Recently, sex has also been shown to influence the pathophysiology of asthma in its relationship with genetic or other environmental factors, which modulate asthmatic immune responses in the airway mucosa. In this narrative review, we highlight the role of sex in the continuity of the asthmatic immune response from sensing allergens to Th2 cell activation based on our own data. In addition, we elucidate the interactive role of sex with genetic or environmental factors in asthma exacerbation in women.
Collapse
|
15
|
Riemma MA, Cerqua I, Romano B, Irollo E, Bertolino A, Camerlingo R, Granato E, Rea G, Scala S, Terlizzi M, Spaziano G, Sorrentino R, D'Agostino B, Roviezzo F, Cirino G. Sphingosine-1-phosphate/TGF-β axis drives epithelial mesenchymal transition in asthma-like disease. Br J Pharmacol 2022; 179:1753-1768. [PMID: 34825370 PMCID: PMC9306821 DOI: 10.1111/bph.15754] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Airway remodelling is a critical feature of chronic lung diseases. Epithelial-mesenchymal transition (EMT) represents an important source of myofibroblasts, contributing to airway remodelling. Here, we investigated the sphingosine-1-phosphate (S1P) role in EMT and its involvement in asthma-related airway dysfunction. EXPERIMENTAL APPROACH A549 cells were used to assess the S1P effect on EMT and its interaction with TGF-β signalling. To assess the S1P role in vivo and its impact on lung function, two experimental models of asthma were used by exposing BALB/c mice to subcutaneous administration of either S1P or ovalbumin (OVA). KEY RESULTS Following incubation with TGF-β or S1P, A549 acquire a fibroblast-like morphology associated with an increase of mesenchymal markers and down-regulation of the epithelial. These effects are reversed by treatment with the TGF-β receptor antagonist LY2109761. Systemic administration of S1P to BALB/c mice induces asthma-like disease characterized by mucous cell metaplasia and increased levels of TGF-β, IL-33 and FGF-2 within the lung. The bronchi harvested from S1P-treated mice display bronchial hyperresponsiveness associated with overexpression of the mesenchymal and fibrosis markers and reduction of the epithelial.The S1P-induced switch from the epithelial toward the mesenchymal pattern correlates to a significant increase of lung resistance and fibroblast activation. TGF-β blockade, in S1P-treated mice, abrogates these effects. Finally, inhibition of sphingosine kinases by SK1-II in OVA-sensitized mice, abrogates EMT, pulmonary TGF-β up-regulation, fibroblasts recruitment and airway hyperresponsiveness. CONCLUSION AND IMPLICATIONS Targeting S1P/TGF-β axis may hold promise as a feasible therapeutic target to control airway dysfunction in asthma.
Collapse
Affiliation(s)
- Maria A. Riemma
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Ida Cerqua
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Barbara Romano
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Elena Irollo
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaPennsylvaniaUSA
| | - Antonio Bertolino
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Rosa Camerlingo
- RCCS INT Cellular Biology and Bioterapy‐ Research DepartmentNational Cancer Institute G. Pascale FoundationNaplesItaly
| | - Elisabetta Granato
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Giuseppina Rea
- IRCCS INT Microenvironment Molecular TargetsNational Cancer Institute G. Pascale FoundationNaplesItaly
| | - Stefania Scala
- IRCCS INT Microenvironment Molecular TargetsNational Cancer Institute G. Pascale FoundationNaplesItaly
| | - Michela Terlizzi
- Department of Pharmacy (DIFARMA)University of SalernoSalernoItaly
| | - Giuseppe Spaziano
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of MedicineUniversity of Campania Luigi VanvitelliNaplesItaly
| | | | - Bruno D'Agostino
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of MedicineUniversity of Campania Luigi VanvitelliNaplesItaly
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
16
|
Gweon B, Jang TK, Thuy PX, Moon EY. Primary Cilium by Polyinosinic:Polycytidylic Acid Regulates the Regenerative Migration of Beas-2B Bronchial Epithelial Cells. Biomol Ther (Seoul) 2022; 30:170-178. [PMID: 35221299 PMCID: PMC8902458 DOI: 10.4062/biomolther.2022.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022] Open
Abstract
The airway epithelium is equipped with the ability to resist respiratory disease development and airway damage, including the migration of airway epithelial cells and the activation of TLR3, which recognizes double-stranded (ds) RNA. Primary cilia on airway epithelial cells are involved in the cell cycle and cell differentiation and repair. In this study, we used Beas-2B human bronchial epithelial cells to investigate the effects of the TLR3 agonist polyinosinic:polycytidylic acid [Poly(I:C)] on airway cell migration and primary cilia (PC) formation. PC formation increased in cells incubated under serum deprivation. Migration was faster in Beas-2B cells pretreated with Poly(I:C) than in control cells, as judged by a wound healing assay, single-cell path tracking, and a Transwell migration assay. No changes in cell migration were observed when the cells were incubated in conditioned medium from Poly(I:C)-treated cells. PC formation was enhanced by Poly(I:C) treatment, but was reduced when the cells were exposed to the ciliogenesis inhibitor ciliobrevin A (CilioA). The inhibition of Beas-2B cell migration by CilioA was also assessed and a slight decrease in ciliogenesis was detected in SARS-CoV-2 spike protein (SP)-treated Beas-2B cells overexpressing ACE2 compared to control cells. Cell migration was decreased by SP but restored by Poly(I:C) treatment. Taken together, our results demonstrate that impaired migration by SP-treated cells can be attenuated by Poly(I:C) treatment, thus increasing airway cell migration through the regulation of ciliogenesis.
Collapse
Affiliation(s)
- Bomi Gweon
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Tae-Kyu Jang
- Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Pham Xuan Thuy
- Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Eun-Yi Moon
- Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
17
|
Al Heialy S, Ramakrishnan RK, Hamid Q. Recent advances in the immunopathogenesis of severe asthma. J Allergy Clin Immunol 2022; 149:455-465. [DOI: 10.1016/j.jaci.2021.12.765] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
|
18
|
Watkinson RL, Looi K, Laing IA, Cianferoni A, Kicic A. Viral Induced Effects on a Vulnerable Epithelium; Lessons Learned From Paediatric Asthma and Eosinophilic Oesophagitis. Front Immunol 2021; 12:773600. [PMID: 34912343 PMCID: PMC8666438 DOI: 10.3389/fimmu.2021.773600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023] Open
Abstract
The epithelium is integral to the protection of many different biological systems and for the maintenance of biochemical homeostasis. Emerging evidence suggests that particular children have epithelial vulnerabilities leading to dysregulated barrier function and integrity, that resultantly contributes to disease pathogenesis. These epithelial vulnerabilities likely develop in utero or in early life due to various genetic, epigenetic and environmental factors. Although various epithelia are uniquely structured with specific function, prevalent allergic-type epithelial diseases in children potentially have common or parallel disease processes. These include inflammation and immune response dysregulation stemming from atypical epithelial barrier function and integrity. Two diseases where aetiology and pathogenesis are potentially linked to epithelial vulnerabilities include Paediatric Asthma and Eosinophilic Oesophagitis (EoE). For example, rhinovirus C (RV-C) is a known risk factor for paediatric asthma development and is known to disrupt respiratory epithelial barrier function causing acute inflammation. In addition, EoE, a prevalent atopic condition of the oesophageal epithelium, is characterised by similar innate immune and epithelial responses to viral injury. This review examines the current literature and identifies the gaps in the field defining viral-induced effects on a vulnerable respiratory epithelium and resulting chronic inflammation, drawing from knowledge generated in acute wheezing illness, paediatric asthma and EoE. Besides highlighting the importance of epithelial structure and barrier function in allergic disease pathogenesis regardless of specific epithelial sub-types, this review focuses on the importance of examining other parallel allergic-type disease processes that may uncover commonalities driving disease pathogenesis. This in turn may be beneficial in the development of common therapeutics for current clinical management and disease prevention in the future.
Collapse
Affiliation(s)
- Rebecca L Watkinson
- Division of Paediatrics, Medical School, The University of Western Australia, Nedlands, WA, Australia.,Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Kevin Looi
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia
| | - Ingrid A Laing
- Division of Paediatrics, Medical School, The University of Western Australia, Nedlands, WA, Australia.,Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Antonella Cianferoni
- Pediatrics Department, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
19
|
Kadotani H, Asai K, Miyamoto A, Iwasaki K, Kawai T, Nishimura M, Tohda M, Okamoto A, Sato K, Yamada K, Ijiri N, Watanabe T, Kawaguchi T. The Fermented Soy Product ImmuBalance TM Suppresses Airway Inflammation in a Murine Model of Asthma. Nutrients 2021; 13:3380. [PMID: 34684380 PMCID: PMC8537480 DOI: 10.3390/nu13103380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
The fermented soy product ImmuBalance contains many active ingredients and its beneficial effects on some allergic diseases have been reported. We hypothesized that ImmuBalance could have potential effects on airway inflammation in a murine model of asthma. Mice sensitized and challenged with ovalbumin developed airway inflammation. Bronchoalveolar lavage fluid was assessed for inflammatory cell counts and levels of cytokines. Lung tissues were examined for cell infiltration and mucus hypersecretion. Oral administration of ImmuBalance significantly inhibited ovalbumin-induced eosinophilic inflammation and decreased Th2 cytokine levels in bronchoalveolar lavage fluid (p < 0.05). In addition, lung histological analysis showed that ImmuBalance inhibited inflammatory cell infiltration and airway mucus production. Our findings suggest that supplementation with ImmuBalance may provide a novel strategy for the prevention or treatment of allergic airway inflammation.
Collapse
Affiliation(s)
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (H.K.); (A.M.); (K.I.); (T.K.); (M.N.); (M.T.); (A.O.); (K.S.); (K.Y.); (N.I.); (T.W.); (T.K.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Burr AC, Velazquez JV, Ulu A, Kamath R, Kim SY, Bilg AK, Najera A, Sultan I, Botthoff JK, Aronson E, Nair MG, Nordgren TM. Lung Inflammatory Response to Environmental Dust Exposure in Mice Suggests a Link to Regional Respiratory Disease Risk. J Inflamm Res 2021; 14:4035-4052. [PMID: 34456580 PMCID: PMC8387588 DOI: 10.2147/jir.s320096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE The Salton Sea, California's largest lake, is designated as an agricultural drainage reservoir. In recent years, the lake has experienced shrinkage due to reduced water sources, increasing levels of aerosolized dusts in surrounding regions. Communities surrounding the Salton Sea have increased asthma prevalence versus the rest of California; however, a connection between dust inhalation and lung health impacts has not been defined. METHODS We used an established intranasal dust exposure murine model to study the lung inflammatory response following single or repetitive (7-day) exposure to extracts of dusts collected in regions surrounding the Salton Sea (SSDE), complemented with in vitro investigations assessing SSDE impacts on the airway epithelium. RESULTS In these investigations, single or repetitive SSDE exposure induced significant lung inflammatory cytokine release concomitant with neutrophil influx. Repetitive SSDE exposure led to significant lung eosinophil recruitment and altered expression of genes associated with allergen-mediated immune response, including Clec4e. SSDE treatment of human bronchial epithelial cells (BEAS-2B) induced inflammatory cytokine production at 5- and 24-hours post-treatment. When BEAS-2B were exposed to protease activity-depleted SSDE (PDSSDE) or treated with SSDE in the context of protease-activated receptor-1 and -2 antagonism, inflammatory cytokine release was decreased. Furthermore, repetitive exposure to PDSSDE led to decreased neutrophil and eosinophilic influx and IL-6 release in mice compared to SSDE-challenged mice. CONCLUSION These investigations demonstrate potent lung inflammatory responses and tissue remodeling in response to SSDE, in part due to environmental proteases found within the dusts. These studies provide the first evidence supporting a link between environmental dust exposure, protease-mediated immune activation, and respiratory disease in the Salton Sea region.
Collapse
Affiliation(s)
- Abigail C Burr
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Jalene V Velazquez
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Arzu Ulu
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Rohan Kamath
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Sang Yong Kim
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Amanpreet K Bilg
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Aileen Najera
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Iman Sultan
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Jon K Botthoff
- Center for Conservation Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Emma Aronson
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, CA, 92521, USA
| | - Meera G Nair
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Tara M Nordgren
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
21
|
Looi K, Larcombe AN, Perks KL, Berry LJ, Zosky GR, Rigby P, Knight DA, Kicic A, Stick SM. Previous Influenza Infection Exacerbates Allergen Specific Response and Impairs Airway Barrier Integrity in Pre-Sensitized Mice. Int J Mol Sci 2021; 22:ijms22168790. [PMID: 34445491 PMCID: PMC8395745 DOI: 10.3390/ijms22168790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 01/15/2023] Open
Abstract
In this study we assessed the effects of antigen exposure in mice pre-sensitized with allergen following viral infection on changes in lung function, cellular responses and tight junction expression. Female BALB/c mice were sensitized to ovalbumin and infected with influenza A before receiving a second ovalbumin sensitization and challenge with saline, ovalbumin (OVA) or house dust mite (HDM). Fifteen days post-infection, bronchoalveolar inflammation, serum antibodies, responsiveness to methacholine and barrier integrity were assessed. There was no effect of infection alone on bronchoalveolar lavage cellular inflammation 15 days post-infection; however, OVA or HDM challenge resulted in increased bronchoalveolar inflammation dominated by eosinophils/neutrophils or neutrophils, respectively. Previously infected mice had higher serum OVA-specific IgE compared with uninfected mice. Mice previously infected, sensitized and challenged with OVA were most responsive to methacholine with respect to airway resistance, while HDM challenge caused significant increases in both tissue damping and tissue elastance regardless of previous infection status. Previous influenza infection was associated with decreased claudin-1 expression in all groups and decreased occludin expression in OVA or HDM-challenged mice. This study demonstrates the importance of the respiratory epithelium in pre-sensitized individuals, where influenza-infection-induced barrier disruption resulted in increased systemic OVA sensitization and downstream effects on lung function.
Collapse
Affiliation(s)
- Kevin Looi
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands 6009, Australia; (K.L.); (K.L.P.); (L.J.B.); (A.K.); (S.M.S.)
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia
| | - Alexander N. Larcombe
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands 6009, Australia; (K.L.); (K.L.P.); (L.J.B.); (A.K.); (S.M.S.)
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia
- Correspondence:
| | - Kara L. Perks
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands 6009, Australia; (K.L.); (K.L.P.); (L.J.B.); (A.K.); (S.M.S.)
| | - Luke J. Berry
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands 6009, Australia; (K.L.); (K.L.P.); (L.J.B.); (A.K.); (S.M.S.)
| | - Graeme R. Zosky
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart 7001, Australia;
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart 7001, Australia
| | - Paul Rigby
- Centre for Microscopy, Characterisation and Analysis (CMCA), University of Western Australia, Nedlands 6009, Australia;
| | - Darryl A. Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia;
- Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, Newcastle 2305, Australia
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands 6009, Australia; (K.L.); (K.L.P.); (L.J.B.); (A.K.); (S.M.S.)
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia
- Centre for Cell Therapy and Regenerative Medicine, University of Western Australia, Nedlands 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth 6009, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands 6009, Australia; (K.L.); (K.L.P.); (L.J.B.); (A.K.); (S.M.S.)
- Centre for Cell Therapy and Regenerative Medicine, University of Western Australia, Nedlands 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth 6009, Australia
| |
Collapse
|
22
|
Zhang Y, Wang X, Zhang H, Tang H, Hu H, Wang S, Wong VKW, Li Y, Deng J. Autophagy Modulators From Chinese Herbal Medicines: Mechanisms and Therapeutic Potentials for Asthma. Front Pharmacol 2021; 12:710679. [PMID: 34366865 PMCID: PMC8342996 DOI: 10.3389/fphar.2021.710679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 01/21/2023] Open
Abstract
Asthma has become a global health issue, suffering more than 300 million people in the world, which is a heterogeneous disease, usually characterized by chronic airway inflammation and airway hyperreactivity. Combination of inhaled corticosteroids (ICS) and long acting β-agonists (LABA) can relieve asthma symptoms and reduce the frequency of exacerbations, especially for patients with refractory asthma, but there are limited treatment options for people who do not gain control on combination ICS/LABA. The increase in ICS dose generally provides little additional benefit, and there is an increased risk of side effects. Therefore, therapeutic interventions integrating the use of different agents that focus on different targets are needed to overcome this set of diseases. Some findings suggest autophagy is closely correlated with the severity of asthma through eosinophilic inflammation, and its modulation may provide novel therapeutic approaches for severe allergic asthma. The chinese herbal medicine (CHM) have been demonstrated clinically as potent therapeutic interventions for asthma. Moreover some reports have found that the bioactive components isolated from CHM could modulate autophagy, and exhibit potent Anti-inflammatory activity. These findings have implied the potential for CHMs in asthma or allergic inflammation therapy via the modulation of autophagy. In this review, we discuss the basic pathomechanisms underpinning asthma, and the potential role of CHMs in treating asthma with modulating autophagy.
Collapse
Affiliation(s)
- Yun Zhang
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xing Wang
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - He Zhang
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hongmei Tang
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hang Hu
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Songping Wang
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yuying Li
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Deng
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
23
|
Yang Y, Jia M, Ou Y, Adcock IM, Yao X. Mechanisms and biomarkers of airway epithelial cell damage in asthma: A review. CLINICAL RESPIRATORY JOURNAL 2021; 15:1027-1045. [PMID: 34097803 DOI: 10.1111/crj.13407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Bronchial asthma is a heterogeneous disease with complex pathological mechanisms representing different phenotypes, including severe asthma. The airway epithelium is a major site of complex pathological changes in severe asthma due, in part, to activation of inflammatory and immune mechanisms in response to noxious agents. Current imaging procedures are unable to accurately measure epithelial and airway remodeling. Damage of airway epithelial cells occurs is linked to specific phenotypes and endotypes which provides an opportunity for the identification of biomarkers reflecting epithelial, and airway, remodeling. Identification of patients with more severe epithelial disruption using biomarkers may also provide personalised therapeutic opportunities and/or markers of successful therapeutic intervention. Here, we review the evidence for ongoing epithelial cell dysregulation in the pathogenesis of asthma, the sentinel role of the airway epithelium and how understanding these molecular mechanisms provides the basis for the identification of candidate biomarkers for asthma prediction, prevention, diagnosis, treatment and monitoring.
Collapse
Affiliation(s)
- Yuemei Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Man Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingwei Ou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Emergency Medical, Zhejiang Province People's Hospital, Zhejiang, China
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Li X, Zhao F, Wang A, Cheng P, Chen H. Role and mechanisms of autophagy in lung metabolism and repair. Cell Mol Life Sci 2021; 78:5051-5068. [PMID: 33864479 PMCID: PMC11072280 DOI: 10.1007/s00018-021-03841-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023]
Abstract
Mammalian lungs are metabolically active organs that frequently encounter environmental insults. Stress responses elicit protective autophagy in epithelial barrier cells and the supportive niche. Autophagy promotes the recycling of damaged intracellular organelles, denatured proteins, and other biological macromolecules for reuse as components required for lung cell survival. Autophagy, usually induced by metabolic defects, regulates cellular metabolism. Autophagy is a major adaptive response that protects cells and organisms from injury. Endogenous region-specific stem/progenitor cell populations are found in lung tissue, which are responsible for epithelial repair after lung damage. Additionally, glucose and fatty acid metabolism is altered in lung stem/progenitor cells in response to injury-related lung fibrosis. Autophagy deregulation has been observed to be involved in the development and progression of other respiratory diseases. This review explores the role and mechanisms of autophagy in regulating lung metabolism and epithelial repair.
Collapse
Affiliation(s)
- Xue Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| | - An Wang
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| | - Peiyong Cheng
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China.
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China.
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
25
|
Chakraborty A, Pinar AA, Lam M, Bourke JE, Royce SG, Selomulya C, Samuel CS. Pulmonary myeloid cell uptake of biodegradable nanoparticles conjugated with an anti-fibrotic agent provides a novel strategy for treating chronic allergic airways disease. Biomaterials 2021; 273:120796. [PMID: 33894403 DOI: 10.1016/j.biomaterials.2021.120796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/06/2023]
Abstract
Asthma (chronic allergic airways disease, AAD) is characterized by airway inflammation (AI), airway remodeling (AWR) and airway hyperresponsiveness (AHR). Current treatments for AAD mainly focus on targeting AI and its contribution AHR, with the use of corticosteroids. However, there are no therapies for the direct treatment of AWR, which can contribute to airway obstruction, AHR and corticosteroid resistance independently of AI. The acute heart failure drug, serelaxin (recombinant human gene-2 relaxin, RLX), has potential anti-remodeling and anti-fibrotic effects but only when continuously infused or injected to overcome its short half-life. To alleviate this limitation, we conjugated serelaxin to biodegradable and noninflammatory nanoparticles (NP-RLX) and evaluated their therapeutic potential on measures of AI, AWR and AHR, when intranasally delivered to a preclinical rodent model of chronic AAD and TGF-β1-stimulated collagen gel contraction from asthma patient-derived myofibroblasts. NP-RLX was preferentially taken-up by CD206+-infiltrating and CD68+-tissue resident alveolar macrophages. Furthermore, NP-RLX ameliorated the chronic AAD-induced AI, pro-inflammatory cytokines (IL-1β, IL-6, TNF-α), chemokines (CCL2, CCL11) and the pro-fibrotic TGF-β1/IL-1β axis on AWR and resulting AHR, as well as human myofibroblast-induced collagen gel contraction, to a similar extent as unconjugated RLX. Hence, NP-RLX represents a novel strategy for treating the central features of asthma.
Collapse
Affiliation(s)
- Amlan Chakraborty
- Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | - Anita A Pinar
- Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Maggie Lam
- Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Jane E Bourke
- Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Simon G Royce
- Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Clinical Pathology and Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Cordelia Selomulya
- School of Chemical Engineering, UNSW Sydney, New South Wales, Australia.
| | - Chrishan S Samuel
- Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
26
|
Zeng H, Gao H, Zhang M, Wang J, Gu Y, Wang Y, Zhang H, Liu P, Zhang X, Zhao L. Atractylon Treatment Attenuates Pulmonary Fibrosis via Regulation of the mmu_circ_0000981/miR-211-5p/TGFBR2 Axis in an Ovalbumin-Induced Asthma Mouse Model. Inflammation 2021; 44:1856-1864. [PMID: 33855682 DOI: 10.1007/s10753-021-01463-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/09/2020] [Accepted: 04/03/2021] [Indexed: 12/01/2022]
Abstract
Asthma-induced pulmonary fibrosis (PF) is an important public health concern that has few treatment options given its poorly understood etiology; however, the epithelial to mesenchymal transition (EMT) of pulmonary epithelial cells has been implicated to play an important role in inducing PF. Although previous studies have found atractylon (Atr) to have anti-inflammatory effects, whether Atr has anti-PF abilities remains unknown. The purpose of the current study was to validate the protective efficiency of Atr in both an animal model of ovalbumin (OVA)-induced asthma and an EMT model induced by transforming growth factor-β1 (TGF-β1) using TC-1 cells. The results of this study revealed that Atr treatment suppressed OVA-induced PF via fibrosis-related protein expression. Atr treatment suppressed OVA-induced circRNA-0000981 and TGFBR2 expression but promoted miR-211-5p expression. In vivo studies revealed that Atr suppressed TGF-β1-induced EMT and fibrosis-related protein expression via suppressing circRNA-0000981 and TGFBR2 expression. The results also suggested that the downregulation of circRNA-0000981 expression suppressed TGFBR2 by sponging miR-211-5p, which was validated by a luciferase reporter assay. Collectively, the findings of the present study suggest that Atr treatment attenuates PF by regulating the mmu_circ_0000981/miR-211-5p/TGFBR2 axis in an OVA-induced asthma mouse model.
Collapse
Affiliation(s)
- Haizhu Zeng
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China.
| | - Hongchang Gao
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Meilan Zhang
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Jinrui Wang
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Yuxia Gu
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Yumeng Wang
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Huali Zhang
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Panpan Liu
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Xia Zhang
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Lei Zhao
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China.
| |
Collapse
|
27
|
Paw M, Wnuk D, Jakieła B, Bochenek G, Sładek K, Madeja Z, Michalik M. Responsiveness of human bronchial fibroblasts and epithelial cells from asthmatic and non-asthmatic donors to the transforming growth factor-β 1 in epithelial-mesenchymal trophic unit model. BMC Mol Cell Biol 2021; 22:19. [PMID: 33711932 PMCID: PMC7953709 DOI: 10.1186/s12860-021-00356-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The asthma-related airway wall remodeling is associated i.a. with a damage of bronchial epithelium and subepithelial fibrosis. Functional interactions between human bronchial epithelial cells and human bronchial fibroblasts are known as the epithelial-mesenchymal trophic unit (EMTU) and are necessary for a proper functioning of lung tissue. However, a high concentration of the transforming growth factor-β1 (TGF-β1) in the asthmatic bronchi drives the structural disintegrity of epithelium with the epithelial-to-mesenchymal transition (EMT) of the bronchial epithelial cells, and of subepithelial fibrosis with the fibroblast-to-myofibroblast transition (FMT) of the bronchial fibroblasts. Since previous reports indicate different intrinsic properties of the human bronchial epithelial cells and human bronchial fibroblasts which affect their EMT/FMT potential beetween cells derived from asthmatic and non-asthmatic patients, cultured separatelly in vitro, we were interested to see whether corresponding effects could be obtained in a co-culture of the bronchial epithelial cells and bronchial fibroblasts. In this study, we investigate the effects of the TGF-β1 on the EMT markers of the bronchial epithelial cells cultured in the air-liquid-interface and effectiveness of FMT in the bronchial fibroblast populations in the EMTU models. RESULTS Our results show that the asthmatic co-cultures are more sensitive to the TGF-β1 than the non-asthmatic ones, which is associated with a higher potential of the asthmatic bronchial cells for a profibrotic response, analogously to be observed in '2D' cultures. They also indicate a noticeable impact of human bronchial epithelial cells on the TGF-β1-induced FMT, stronger in the asthmatic bronchial fibroblast populations in comparison to the non-asthmatic ones. Moreover, our results suggest the protective effects of fibroblasts on the structure of the TGF-β1-exposed mucociliary differentiated bronchial epithelial cells and their EMT potential. CONCLUSIONS Our data are the first to demonstrate a protective effect of the human bronchial fibroblasts on the properties of the human bronchial epithelial cells, which suggests that intrinsic properties of not only epithelium but also subepithelial fibroblasts affect a proper condition and function of the EMTU in both normal and asthmatic individuals.
Collapse
Affiliation(s)
- Milena Paw
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-378, Kraków, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-378, Kraków, Poland
| | - Bogdan Jakieła
- Division of Molecular Biology and Clinical Genetics, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Grażyna Bochenek
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Krzysztof Sładek
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-378, Kraków, Poland
| | - Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-378, Kraków, Poland.
| |
Collapse
|
28
|
He RW, Braakhuis HM, Vandebriel RJ, Staal YC, Gremmer ER, Fokkens PH, Kemp C, Vermeulen J, Westerink RH, Cassee FR. Optimization of an air-liquid interface in vitro cell co-culture model to estimate the hazard of aerosol exposures. JOURNAL OF AEROSOL SCIENCE 2021; 153:105703. [PMID: 33658726 PMCID: PMC7874005 DOI: 10.1016/j.jaerosci.2020.105703] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Inhalation exposure to environmental and occupational aerosol contaminants is associated with many respiratory health problems. To realistically mimic long-term inhalation exposure for toxicity testing, lung epithelial cells need to maintained and exposed under air-liquid interface (ALI) conditions for a prolonged period of time. In addition, to study cellular responses to aerosol particles, lung epithelial cells have to be co-cultured with macrophages. To that aim, we evaluated human bronchial epithelial Calu-3, 16HBE14o- (16HBE), H292, and BEAS-2B cell lines with respect to epithelial morphology, barrier function and cell viability under prolonged ALI culture conditions. Only the Calu-3 cells can retain the monolayer structure and maintain a strong tight junction under long-term ALI culture at least up to 2 weeks. As such, Calu-3 cells were applied as the structural barrier to create co-culture models with human monocyte-derived macrophages (MDMs) and THP-1 derived macrophages (TDMs). Adhesion of macrophages onto the epithelial monolayer was allowed for 4 h with a density of 5 × 104 macrophages/cm2. In comparison to the Calu-3 mono-culture model, Calu-3 + TDM and Calu-3 + MDM co-culture models showed an increased sensitivity in inflammatory responses to lipopolysaccharide (LPS) aerosol at Day 1 of co-culture, with the Calu-3 + MDM model giving a stronger response than Calu-3 + TDM. Therefore, the epithelial monolayer integrity and increased sensitivity make the Calu-3 + MDM co-culture model a preferred option for ALI exposure to inhaled aerosols for toxicity testing.
Collapse
Affiliation(s)
- Rui-Wen He
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508, TD, Utrecht, the Netherlands
| | - Hedwig M. Braakhuis
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Rob J. Vandebriel
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Yvonne C.M. Staal
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Eric R. Gremmer
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Paul H.B. Fokkens
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Claudia Kemp
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Jolanda Vermeulen
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Remco H.S. Westerink
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508, TD, Utrecht, the Netherlands
| | - Flemming R. Cassee
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508, TD, Utrecht, the Netherlands
- Corresponding author. National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands.
| |
Collapse
|
29
|
Ravi A, Goorsenberg AWM, Dijkhuis A, Dierdorp BS, Dekker T, van Weeghel M, Sabogal Piñeros YS, Shah PL, Ten Hacken NHT, Annema JT, Sterk PJ, Vaz FM, Bonta PI, Lutter R. Metabolic differences between bronchial epithelium from healthy individuals and patients with asthma and the effect of bronchial thermoplasty. J Allergy Clin Immunol 2021; 148:1236-1248. [PMID: 33556463 DOI: 10.1016/j.jaci.2020.12.653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Asthma is a heterogeneous disease with differences in onset, severity, and inflammation. Bronchial epithelial cells (BECs) contribute to asthma pathophysiology. OBJECTIVE We determined whether transcriptomes of BECs reflect heterogeneity in inflammation and severity in asthma, and whether this was affected in BECs from patients with severe asthma after their regeneration by bronchial thermoplasty. METHODS RNA sequencing was performed on BECs obtained by bronchoscopy from healthy controls (n = 16), patients with mild asthma (n = 17), patients with moderate asthma (n = 5), and patients with severe asthma (n = 17), as well as on BECs from treated and untreated airways of the latter (also 6 months after bronchial thermoplasty) (n = 23). Lipidome and metabolome analyses were performed on cultured BECs from healthy controls (n = 7); patients with severe asthma (n = 9); and, for comparison, patients with chronic obstructive pulmonary disease (n = 7). RESULTS Transcriptome analysis of BECs from patients showed a reduced expression of oxidative phosphorylation (OXPHOS) genes, most profoundly in patients with severe asthma but less profoundly and more heterogeneously in patients with mild asthma. Genes related to fatty acid metabolism were significantly upregulated in asthma. Lipidomics revealed enhanced levels of lipid species (phosphatidylcholines, lysophosphatidylcholines. and bis(monoacylglycerol)phosphate), whereas levels of OXPHOS metabolites were reduced in BECs from patients with severe asthma. BECs from patients with mild asthma characterized by hyperresponsive production of mediators implicated in neutrophilic inflammation had decreased expression of OXPHOS genes compared with that in BECs from patients with mild asthma with normoresponsive production. BECs obtained after thermoplasty had significantly increased expression of OXPHOS genes and decreased expression of fatty acid metabolism genes compared with BECs obtained from untreated airways. CONCLUSION BECs in patients with asthma are metabolically different from those in healthy individuals. These differences are linked with inflammation and asthma severity, and they can be reversed by bronchial thermoplasty.
Collapse
Affiliation(s)
- Abilash Ravi
- Department of Respiratory Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Annika W M Goorsenberg
- Department of Respiratory Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemiek Dijkhuis
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Barbara S Dierdorp
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tamara Dekker
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Core Facility Metabolomics, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yanaika S Sabogal Piñeros
- Department of Respiratory Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Pallav L Shah
- Royal Brompton Hospital, London, United Kingdom; National Heart and Lung Institute, Imperial College, London, United Kingdom; Chelsea and Westminster Hospital, London, United Kingdom
| | - Nick H T Ten Hacken
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jouke T Annema
- Department of Respiratory Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter J Sterk
- Department of Respiratory Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Core Facility Metabolomics, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter I Bonta
- Department of Respiratory Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - René Lutter
- Department of Respiratory Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Qian X, Xiao Q, Li Z. Tectorigenin regulates migration, invasion, and apoptosis in dexamethasone-induced human airway epithelial cells through up-regulating miR-222-3p. Drug Dev Res 2021; 82:959-968. [PMID: 33543488 DOI: 10.1002/ddr.21795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/21/2020] [Accepted: 01/18/2021] [Indexed: 11/09/2022]
Abstract
Glucocorticoids (GCs) can effectively control airway inflammation, but can also cause airway epithelial injury. Tectorigenin, a type of isoflavone isolated from various medicinal plants, has hypolipidemic activity, hepatoprotective, and antioxidant effects. We aimed to investigate whether Tectorigenin can repair GCs-induced airway epithelial injury. Airway epithelial cell line (9HTE cells) were treated with dexamethasone (Dex), Tectorigenin, or further transfected, then cell viability, migration, and invasion were examined by Cell Counting Kit (CCK-8), wound healing, and Transwell assays. The expressions of potential miRNAs related to the effect of Tectorigenin were detected by quantitative polymerase chain reaction (qPCR). Expressions of poptosis-related proteins Bcl-2-associated protein-X (Bax), B-cell lymphoma-2 (Bcl-2), Cleaved Caspase-3, and related to Mitorgen-activated protein kinase (MAPK) signaling pathway serine/threonine kinase (Raf1), extracellular signal-regulated kinase kinase 1/2 (MEK1/2), and extracellular signal-regulated kinase 1/2 (ERK1/2) were detected by Western blot. Dex inhibited the cell viability, migration and invasion by promoting Bax and Cleaved Caspase-3 expressions (p <.001) and by inhibiting the expressions of Bcl-2 and miR-222-3p (p <.001). Then, 10 μmol/L Tectorigenin itself did not affect cell viability but could inhibit the effect of Dex on cell viability, migration, and invasion. Tectorigenin up-regulated the expressions of miR-222-3p, Bcl-2, p-Raf1, p-MEK1/2, and p-ERK1/2 (p <.01), but down-regulated the expressions of Bax and Cleaved Caspase-3 (p <.05) in Dex-induced cells. MiR-222-3p inhibitor reversed the antagonistic effect of Tectorigenin on Dex. The study demonstrates that Tectorigenin inhibits apoptosis of Dex-induced 9HTE cells by up-regulating the expression of miR-222-3p, which involves with the MAPK pathway.
Collapse
Affiliation(s)
- Xiong Qian
- Pediatric Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang Province, China
| | - Qi Xiao
- Pediatric Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang Province, China
| | - Zongqi Li
- Pediatric Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang Province, China
| |
Collapse
|
31
|
Epithelial dysfunction in chronic respiratory diseases, a shared endotype? Curr Opin Pulm Med 2021; 26:20-26. [PMID: 31688241 DOI: 10.1097/mcp.0000000000000638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Epithelial barrier defects are being appreciated in various inflammatory disorders; however, causal underlying mechanisms are lacking. In this review, we describe the disruption of the airway epithelium with regard to upper and lower airway diseases, the role of epigenetic alterations underlying this process, and potential novel ways of interfering with dysfunctional epithelial barriers as a novel therapeutic approach. RECENT FINDINGS A defective epithelial barrier, impaired innate defence mechanisms or hampered epithelial cell renewal are found in upper and lower airway diseases. Barrier dysfunction might facilitate the entrance of foreign substances, initiating and facilitating the onset of disease. Latest data provided novel insights for possible involvement of epigenetic alterations induced by inflammation or other unknown mechanisms as a potential mechanism responsible for epithelial defects. Additionally, these mechanisms might precede disease development, and represent a novel therapeutic approach for restoring epithelial defects. SUMMARY A better understanding of the role of epigenetics in driving and maintaining epithelial defects in various inflammatory diseases, using state-of-the-art biology tools will be crucial in designing novel therapies to protect or reconstitute a defective airway epithelial barrier.
Collapse
|
32
|
Airway epithelial cell necroptosis contributes to asthma exacerbation in a mouse model of house dust mite-induced allergic inflammation. Mucosal Immunol 2021; 14:1160-1171. [PMID: 34045680 PMCID: PMC8379077 DOI: 10.1038/s41385-021-00415-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 02/04/2023]
Abstract
Regulation of epithelial cell death has emerged as a key mechanism controlling immune homeostasis in barrier surfaces. Necroptosis is a type of regulated necrotic cell death induced by receptor interacting protein kinase 3 (RIPK3) that has been shown to cause inflammatory pathologies in different tissues. The role of regulated cell death and particularly necroptosis in lung homeostasis and disease remains poorly understood. Here we show that mice with Airway Epithelial Cell (AEC)-specific deficiency of Fas-associated with death domain (FADD), an adapter essential for caspase-8 activation, developed exacerbated allergic airway inflammation in a mouse model of asthma induced by sensitization and challenge with house dust mite (HDM) extracts. Genetic inhibition of RIPK1 kinase activity by crossing to mice expressing kinase inactive RIPK1 as well as RIPK3 or MLKL deficiency prevented the development of exaggerated HDM-induced asthma pathology in FADDAEC-KO mice, suggesting that necroptosis of FADD-deficient AECs augmented the allergic immune response. These results reveal a role of AEC necroptosis in amplifying airway allergic inflammation and suggest that necroptosis could contribute to asthma exacerbations caused by respiratory virus infections inducing AEC death.
Collapse
|
33
|
Wang X, Wang M, Chen S, Wei B, Gao Y, Huang L, Liu C, Huang T, Yu M, Zhao SH, Li X. Ammonia exposure causes lung injuries and disturbs pulmonary circadian clock gene network in a pig study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111050. [PMID: 32827960 DOI: 10.1016/j.ecoenv.2020.111050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Ammonia toxicity to respiratory system in pig faming is of particular concern, but the molecular mechanism remains still unclear. The present study was devoted to assess the impacts of the ammonia exposure on the lung tissues based on a pig study using 80 ppm ammonia exposing to piglets for different days. The histology analysis revealed ammonia exposure induced lung injury and inflammatory response, as indicated by epithelial-mesenchymal transition (EMT), significant thickening of alveolar septa, infiltration of inflammatory cells and excessive mucus production. The transcriptome analysis revealed many more up-regulated genes in exposure groups when compared with the control group, and these genes were significantly enriched in the GO term of extracellular exosome, proteolysis, and regulation of circadian rhythm. The study discovered the induction of seven genes (CRY2, CIART, CREM, NR1D1, NR1D2, PER1 and PER3) that encode repressors of circadian clock. One gene (ARNTL) that encodes activator of circadian clock was down-regulated after ammonia exposure. The results of this study suggest that ammonia exposure disturbed the pulmonary circadian clock gene expression, which may establish new evidence for further understanding the toxicity of ammonia to lungs.
Collapse
Affiliation(s)
- Xiaotong Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengyao Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangzhao Chen
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baoxin Wei
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Gao
- College of Engineering, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Longhui Huang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Huang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei Yu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shu-Hong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoping Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
34
|
Li BB, Chen YL, Pang F. MicroRNA-30a Targets ATG5 and Attenuates Airway Fibrosis in Asthma by Suppressing Autophagy. Inflammation 2020; 43:44-53. [PMID: 31748850 DOI: 10.1007/s10753-019-01076-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Asthma is the most common chronic disease of childhood, chronic airway inflammation; bronchial tissue fibrosis, is a pathological feature common to children asthma, and an emerging data has indicted that autophagy plays critical roles in airway inflammation and fibrosis-mediated airway remodeling. The aim of this study was to examine whether the antifibrotic effect of epithelial microRNAs (miRNAs) relies on regulating autophagy-mediated airway remodeling and to identify the factors involved and the underlying mechanisms. Our results showed miR-30a were downregulated in children with asthma and ovalbumin (OVA) mouse model in parallel with the upregulation of autophagy-related proteins; moreover, we observed miR-30a inhibited the autophagy by downregulated autophagy-related 5 (ATG5). Then, we observed that overexpression of miR-30a suppressed the fibrogenesis and autophagic flux which was stimulated by interleukin-33 (IL-33) in bronchial epithelial cells. In vivo experiments showed that miR-30a overexpression decreased airway remodeling by decreased autophagy. This study uncovered a previously unrecognized antifibrotic role of miR-30a in asthma, in IL-33-induced lung epithelial cells in vitro, and in a murine model of OVA-induced airway inflammation in vivo and explored the underlying mechanisms.
Collapse
Affiliation(s)
- Bin Bin Li
- Department of Paediatrics, Tiantai County People's Hospital, 1 Kang ling Road, Tiantai County, Taizhou City, Zhejiang, China
| | - Yun Long Chen
- Department of Medicine, The Children's Hospital of Hangzhou, 196 Wen Hui Road, Hangzhou, 310014, China.
| | - Fuzhen Pang
- Department of Paediatrics, Tiantai County People's Hospital, 1 Kang ling Road, Tiantai County, Taizhou City, Zhejiang, China.
| |
Collapse
|
35
|
Cheng J, Eroglu A. The Promising Effects of Astaxanthin on Lung Diseases. Adv Nutr 2020; 12:850-864. [PMID: 33179051 PMCID: PMC8166543 DOI: 10.1093/advances/nmaa143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/25/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Astaxanthin (ASX) is a naturally occurring xanthophyll carotenoid. Both in vitro and in vivo studies have shown that it is a potent antioxidant with anti-inflammatory properties. Lung cancer is the leading cause of cancer death worldwide, whereas other lung diseases such as chronic obstructive pulmonary disease, emphysema, and asthma are of high prevalence. In the past decade, mounting evidence has suggested a protective role for ASX against lung diseases. This article reviews the potential role of ASX in protecting against lung diseases, including lung cancer. It also summarizes the underlying molecular mechanisms by which ASX protects against pulmonary diseases, including regulating the nuclear factor erythroid 2-related factor/heme oxygenase-1 pathway, NF-κB signaling, mitogen-activated protein kinase signaling, Janus kinase-signal transducers and activators of transcription-3 signaling, the phosphoinositide 3-kinase/Akt pathway, and modulating immune response. Several future directions are proposed in this review. However, most in vitro and in vivo studies have used ASX at concentrations that are not achievable by humans. Also, no clinical trials have been conducted and/or reported. Thus, preclinical studies with ASX treatment within physiological concentrations as well as human studies are required to examine the health benefits of ASX with respect to lung diseases.
Collapse
Affiliation(s)
- Junrui Cheng
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | | |
Collapse
|
36
|
Bidirectional interaction of airway epithelial remodeling and inflammation in asthma. Clin Sci (Lond) 2020; 134:1063-1079. [PMID: 32369100 DOI: 10.1042/cs20191309] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/28/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic disease of the airways that has long been viewed predominately as an inflammatory condition. Accordingly, current therapeutic interventions focus primarily on resolving inflammation. However, the mainstay of asthma therapy neither fully improves lung function nor prevents disease exacerbations, suggesting involvement of other factors. An emerging concept now holds that airway remodeling, another major pathological feature of asthma, is as important as inflammation in asthma pathogenesis. Structural changes associated with asthma include disrupted epithelial integrity, subepithelial fibrosis, goblet cell hyperplasia/metaplasia, smooth muscle hypertrophy/hyperplasia, and enhanced vascularity. These alterations are hypothesized to contribute to airway hyperresponsiveness, airway obstruction, airflow limitation, and progressive decline of lung function in asthmatic individuals. Consequently, targeting inflammation alone does not suffice to provide optimal clinical benefits. Here we review asthmatic airway remodeling, focusing on airway epithelium, which is critical to maintaining a healthy respiratory system, and is the primary defense against inhaled irritants. In asthma, airway epithelium is both a mediator and target of inflammation, manifesting remodeling and resulting obstruction among its downstream effects. We also highlight the potential benefits of therapeutically targeting airway structural alterations. Since pathological tissue remodeling is likewise observed in other injury- and inflammation-prone tissues and organs, our discussion may have implications beyond asthma and lung disease.
Collapse
|
37
|
Nam YK, Jin SC, Kim MH, Choi LY, Lee YB, Yang WM. Banhahubak-Tang Tablet, a Standardized Medicine Attenuates Allergic Asthma via Inhibition of Janus Kinase 1 (JAK1)/ Signal Transducer and Activator of Transcription 6 (STAT6) Signal Pathway. Molecules 2020; 25:E2206. [PMID: 32397290 PMCID: PMC7248972 DOI: 10.3390/molecules25092206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022] Open
Abstract
Exposure to particulate matter (PM) has been known to be one of the risk factors to cause allergic asthma, leading to development of respiratory disease. Banhahubak-tang tablet (BHT), a standardized Korean Medicine, is prescribed for neurasthenia, laryngopharyngitis and asthma. In this study, we investigated therapeutic effects of BHT on airway inflammation in ovalbumin (OVA) and PM smaller than 10 μm (PM10)-induced allergic asthma mice. To establish allergic asthma with airway hyper-responsiveness by PM10, BALB/c mice were sensitized and challenged with OVA and PM10, and orally administered BHT. Histological staining was performed to assess airway remodeling. Serum and bronchoalveolar lavage fluid (BALF) was collected for measuring immunoglobulin levels and counting inflammatory cells, respectively. Expression levels of Janus kinase 1 (JAK1)/signal transducer and activator of transcription 6 (STAT6), pro-inflammatory cytokines and type 2 T-helper (Th2)-related cytokines were analyzed in vivo and in vitro models. Histopathological analysis demonstrated that BHT suppressed inflammatory cell infiltration, mucus hypersecretion and collagen deposition in the airway. BHT administration effectively decreased number of inflammatory cells in BALF. BHT reduced total serum Immunoglobulin E (IgE) and Immunoglobulin G (IgG) levels. In addition, BHT significantly inhibited the phosphorylation of JAK1 and STAT6 expressions. Release of pro-inflammatory cytokines and Th2-related cytokines were down-regulated by BHT. In conclusion, BHT mitigated airway inflammation by down-regulating pro-inflammatory and Th2-related cytokines via JAK1/STAT6 signaling. BHT might be a promising herbal medicine for preventing airway inflammation. Moreover, an intervention study among humans is needed to further evaluate the possible beneficial effects of BHT in allergic asthma.
Collapse
Affiliation(s)
- Yeon Kyung Nam
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (Y.K.N.); (S.C.J.); (M.H.K.); (L.Y.C.)
| | - Seong Chul Jin
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (Y.K.N.); (S.C.J.); (M.H.K.); (L.Y.C.)
| | - Mi Hye Kim
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (Y.K.N.); (S.C.J.); (M.H.K.); (L.Y.C.)
| | - La Yoon Choi
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (Y.K.N.); (S.C.J.); (M.H.K.); (L.Y.C.)
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea;
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (Y.K.N.); (S.C.J.); (M.H.K.); (L.Y.C.)
| |
Collapse
|
38
|
García LN, Leimgruber C, Nicola JP, Quintar AA, Maldonado CA. Neonatal endotoxin stimulation is associated with a long-term bronchiolar epithelial expression of innate immune and anti-allergic markers that attenuates the allergic response. PLoS One 2020; 15:e0226233. [PMID: 32379832 PMCID: PMC7205282 DOI: 10.1371/journal.pone.0226233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/22/2020] [Indexed: 11/19/2022] Open
Abstract
Allergic asthma is the most common phenotype of the pathology, having an early-onset in childhood and producing a Th2-driven airways remodeling process that leads to symptoms and pathophysiological changes. The avoidance of aeroallergen exposure in early life has been shown to prevent asthma, but without repeated success and with the underlying preventive mechanisms at the beginning of asthma far to be fully recognized. In the present study, we aimed to evaluate if neonatal LPS-induced boost in epithelial host defenses contribute to prevent OVA-induced asthma in adult mice. To this, we focused on the response of bronchiolar club cells (CC), which are highly specialized in maintaining the epithelial homeostasis in the lung. In these cells, neonatal LPS administration increased the expression of TLR4 and TNFα, as well as the immunodulatory/antiallergic proteins: club cell secretory protein (CCSP) and surfactant protein D (SP-D). LPS also prevented mucous metaplasia of club cells and reduced the epidermal growth factor receptor (EGFR)-dependent mucin overproduction, with mice displaying normal breathing patterns after OVA challenge. Furthermore, the overexpression of the epithelial Th2-related molecule TSLP was blunted, and normal TSLP and IL-4 levels were found in the bronchoalveolar lavage. A lower eosinophilia was detected in LPS-pretreated mice, along with an increase in phagocytes and regulatory cells (CD4+CD25+FOXP3+ and CD4+IL-10+), together with higher levels of IL-12 and TNFα. In conclusion, our study demonstrates stable asthma-preventive epithelial effects promoted by neonatal LPS stimulation, leading to the presence of regulatory cells in the lung. These anti-allergic dynamic mechanisms would be overlaid in the epithelium, favored by an adequate epidemiological environment, during the development of asthma.
Collapse
Affiliation(s)
- Luciana Noemi García
- Centro de Microscopía Electrónica, Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Carolina Leimgruber
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Juan Pablo Nicola
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Amado Alfredo Quintar
- Centro de Microscopía Electrónica, Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Cristina Alicia Maldonado
- Centro de Microscopía Electrónica, Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| |
Collapse
|
39
|
Almohawes ZN, Alruhaimi HS. Effect of Lavandula dentata extract on Ovalbumin-induced Asthma in Male Guinea Pigs. BRAZ J BIOL 2020; 80:87-96. [PMID: 31017237 DOI: 10.1590/1519-6984.191485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/24/2018] [Indexed: 01/22/2023] Open
Abstract
Asthma is an inflammatory disease of the lungs, and it causes oxidative stress. Lavandula dentata is an aromatic herb with anti-oxidative and anti-inflammatory activities. This study examined the activity of L. dentata extract on a guinea pig model of asthma. Adult males were divided into five groups: First group was control, second was asthma model induced by OVA, third was treated with L. dentata extract orally (300 mg/kg) for 21 days; the fourth was an asthma model with L. dentata extract (300 mg/kg) and fifth was treated with Tween 80 for 21 days. OVA treatment increased IgE, triglycerides, total cholesterol, glucose levels in serum, WBC count in blood and MDA in lungs. Also, OVA reduced SOD activity, GSH content in lungs, and GGT activity in serum (p<0.05). L. dentata extract treatment in asthma model reduced elevated IgE, triglycerides, total cholesterol, glucose levels in serum, and MDA in lungs (p<0.05), while it increased GSH content in lungs (p<0.05). These results suggest the possibility that L . dentata extract can exert suppressive effects on asthma, and may provide evidence that it is a useful agent for the treatment of allergic airway disease, it also limits oxidative stress induced by OVA. L. dentata extract appears to have hypolipidemic and hypoglycemic activities.
Collapse
Affiliation(s)
- Z N Almohawes
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - H S Alruhaimi
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
40
|
Sugita K, Kabashima K. Tight junctions in the development of asthma, chronic rhinosinusitis, atopic dermatitis, eosinophilic esophagitis, and inflammatory bowel diseases. J Leukoc Biol 2020; 107:749-762. [PMID: 32108379 DOI: 10.1002/jlb.5mr0120-230r] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/12/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
This review focuses on recent developments related to asthma, chronic rhinosinusitis, atopic dermatitis (AD), eosinophilic esophagitis, and inflammatory bowel diseases (IBD), with a particular focus on tight junctions (TJs) and their role in the pathogenetic mechanisms of these diseases. Lung, skin, and intestinal surfaces are lined by epithelial cells that interact with environmental factors and immune cells. Therefore, together with the cellular immune system, the epithelium performs a pivotal role as the first line physical barrier against external antigens. Paracellular space is almost exclusively sealed by TJs and is maintained by complex protein-protein interactions. Thus, TJ dysfunction increases paracellular permeability, resulting in enhanced flux across TJs. Epithelial TJ dysfunction also causes immune cell activation and contributes to the pathogenesis of chronic lung, skin, and intestinal inflammation. Characterization of TJ protein alteration is one of the key factors for enhancing our understanding of allergic diseases as well as IBDs. Furthermore, TJ-based epithelial disturbance can promote immune cell behaviors, such as those in dendritic cells, Th2 cells, Th17 cells, and innate lymphoid cells (ILCs), thereby offering new insights into TJ-based targets. The purpose of this review is to illustrate how TJ dysfunction can lead to the disruption of the immune homeostasis in barrier tissues and subsequent inflammation. This review also highlights the various TJ barrier dysfunctions across different organ sites, which would help to develop future drugs to target allergic diseases and IBD.
Collapse
Affiliation(s)
- Kazunari Sugita
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
41
|
Effects of Pelargonium sidoides and Coptis Rhizoma 2 : 1 Mixed Formula (PS + CR) on Ovalbumin-Induced Asthma in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9135637. [PMID: 32190091 PMCID: PMC7066403 DOI: 10.1155/2020/9135637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/23/2020] [Accepted: 02/08/2020] [Indexed: 11/18/2022]
Abstract
Pelargonium sidoides (PS) is traditionally used to treat respiratory and gastrointestinal infections, dysmenorrhea, and hepatic disorders in South Africa. Coptis Rhizoma (CR) is used to treat gastroenteric disorders, cardiovascular diseases, and cancer in East Asia. In the present study, we intended to observe the possible beneficial antiasthma effects of PS and CR on the ovalbumin- (OVA-) induced asthma C57BL/6J mice. Asthma in mice was induced by OVA sensitization and subsequent boosting. PS + CR (300 and 1,000 mg/kg; PO) or dexamethasone (IP) was administered once a day for 16 days. The changes in the body weight and gains, lung weights and gross inspections, total and differential cell counts of leukocytes in bronchoalveolar lavage fluid (BALF), serum OVA-specific immunoglobulin E (OVA-sIgE) levels, interleukin-4 (IL-4) and IL-5 levels in BALF and lung tissue homogenate, and IL-4 and IL-5 mRNA levels in lung tissue homogenates were analyzed with lung histopathology: mean alveolar surface area (ASA), alveolar septal thickness, numbers of inflammatory cells, mast cells, and eosinophils infiltrated in the alveolar regions, respectively. Significant increases in lung weights, total and differential cell counts of leukocytes in BALF, serum OVA-sIgE levels, and IL-4 and IL-5 levels in BALF and lung tissue homogenate were observed in OVA control as compared to those of intact control. In addition, OVA control showed a significant decrease in mean ASA and increases in alveolar septal thickness, numbers of inflammatory cells, mast cells, and eosinophils infiltrated in alveolar regions. However, these allergic and inflammatory asthmatic changes were significantly inhibited by PS + CR in a dose-dependent manner. In this study, PS + CR showed dose-dependent beneficial effects on OVA-induced asthma in mice through anti-inflammatory and antiallergic activities. Therefore, it is expected that PS + CR have enough potential as a new therapeutic agent or as an ingredient of a medicinal agent for various allergic and inflammatory respiratory diseases including asthma.
Collapse
|
42
|
Ingawale DK, Mandlik SK, Patel SS. Combination of Sarsasapogenin and Fluticasone attenuates ovalbumin-induced airway inflammation in a mouse asthma model. Immunopharmacol Immunotoxicol 2020; 42:128-137. [PMID: 32070162 DOI: 10.1080/08923973.2020.1728541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective: Asthma is a very common airway inflammatory disease for which the existing drug therapy options are insufficient. In this study, we explored the mechanisms underlying the anti-inflammatory potential of Sarsapogenin (SG) and its combination with Fluticasone (FC) in ovalbumin (OVA)-induced allergic asthma in mice.Methods: In a standard experimental model, asthma in mice was sensitized and challenged by OVA. The mice were treated with SG and SG + FC during OVA challenge. At the completion, lung weight, inflammatory cell count in bronchoalveolar lavage fluid (BALF), serum cytokines levels, immunoglobulin E (IgE) levels, lung nitrate/nitrite (NO) levels, and lung tissue oxidative stress biomarkers were determined. Histopathological evaluation of the lung tissue was also performed.Key findings: Treatment of mice with SG and SG + FC combination intensely diminished the trafficking of total and differential inflammatory cells count into BALF. SG and SG + FC administration significantly reduced the production of inflammatory cytokines, serum IgE levels and restoration of antioxidant stress markers. Histopathological analysis of lung samples effectually weakened bronchial inflammation and mucus production in the lung with a significant reduction in inflammation and mucus score.Conclusion: Our study results suggested that SG and SG + FC effectively reduced allergic airway inflammation via inhibiting pro-inflammatory cytokines, NO expressions and oxidative stress parameters. So, it could be used as a therapeutic potential agent for the treatment of asthma by decreasing its dose in combination with FC to avoid the chronic adverse effects of FC.
Collapse
Affiliation(s)
- Deepa K Ingawale
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | | | - Snehal S Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
43
|
Kan S, Hariyadi DM, Grainge C, Knight DA, Bartlett NW, Liang M. Airway epithelial-targeted nanoparticles for asthma therapy. Am J Physiol Lung Cell Mol Physiol 2020; 318:L500-L509. [PMID: 31913649 DOI: 10.1152/ajplung.00237.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Asthma is a common chronic inflammatory disease associated with intermittent airflow obstruction caused by airway inflammation, mucus overproduction, and bronchial hyperresponsiveness. Despite current treatment and management options, a large number of patients with asthma still have poorly controlled disease and are susceptible to acute exacerbations, usually caused by a respiratory virus infection. As a result, there remains a need for novel therapies to achieve better control and prevent/treat exacerbations. Nanoparticles (NPs), including extracellular vesicles (EV) and their synthetic counterparts, have been developed for drug delivery in respiratory diseases. In the case of asthma, where airway epithelium dysfunction, including dysregulated differentiation of epithelial cells, impaired barrier, and immune response, is a driver of disease, targeting airway epithelial cells with NPs may offer opportunities to repair or reverse these dysfunctions with therapeutic interventions. EVs possess multiple advantages for airway epithelial targeting, such as their natural intrinsic cell-targeting properties and low immunogenicity. Synthetic NPs can be coated with muco-inert polymers to overcome biological barriers such as mucus and the phagocytic response of immune cells. Targeting ligands could be also added to enhance targeting specificity to epithelial cells. The review presents current understanding and advances in NP-mediated drug delivery to airway epithelium for asthma therapy. Future perspectives in this therapeutic strategy will also be discussed, including the development of novel formulations and physiologically relevant preclinical models.
Collapse
Affiliation(s)
- Stanislav Kan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | | | - Christopher Grainge
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Nathan W Bartlett
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia.,Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
44
|
Montaño LM, Flores-Soto E, Sommer B, Solís-Chagoyán H, Perusquía M. Androgens are effective bronchodilators with anti-inflammatory properties: A potential alternative for asthma therapy. Steroids 2020; 153:108509. [PMID: 31586608 DOI: 10.1016/j.steroids.2019.108509] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
Abstract
Changes in plasma androgen levels in asthmatic men may be linked to asthma severity, seemingly acting through nongenomic and genomic effects. Nongenomic effects include rapid relaxation of carbachol or antigenic challenge pre-contracted guinea pig airway smooth muscle (ASM) in vitro: testosterone (TES) blocks l-type voltage dependent Ca2+ channels, stored operated Ca2+ channels, inositol 1,4,5-trisphosphate receptors and promotes prostaglandin E2 biosynthesis. In ASM at rest, TES lowers basal intracellular Ca2+ concentration and tension, maintaining a proper airway patency keeping steady smooth muscle tension and basal intracellular Ca2+ concentration at rest. Moreover, the bronchospasm in sensitized guinea-pigs was ablated by dehydroepiandrosterone (DHEA), a precursor of steroids, TES and its metabolites 5α- and 5β-dihydrotestosterone (DHT). On the other hand, genomic effects related to androgens' anti-inflammatory properties in asthma have been recently studied. Briefly, TES negatively regulates type 2 immune response sustained by CD4+ Th2 and group 2 innate lymphoid cells, diminishing allergic airway inflammation in males. Also, novel findings establish that TES decreases interleukin (IL)-17A protein expression produced by CD4+ Th17 cells and therefore neutrophilic airway inflammation. Clearly, DHEA, TES or its 5β-reduced metabolite that possesses minimal androgenic effect, might have potential therapeutic capacities in the treatment of severe asthma via mechanisms distinct from corticosteroid treatment.
Collapse
Affiliation(s)
- Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico.
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, CDMX, Mexico.
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, CDMX, Mexico.
| | - Mercedes Perusquía
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, Mexico.
| |
Collapse
|
45
|
Vasan R, Maleckar MM, Williams CD, Rangamani P. DLITE Uses Cell-Cell Interface Movement to Better Infer Cell-Cell Tensions. Biophys J 2019; 117:1714-1727. [PMID: 31648791 PMCID: PMC6838938 DOI: 10.1016/j.bpj.2019.09.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 11/30/2022] Open
Abstract
Cell shapes and connectivities evolve over time as the colony changes shape or embryos develop. Shapes of intercellular interfaces are closely coupled with the forces resulting from actomyosin interactions, membrane tension, or cell-cell adhesions. Although it is possible to computationally infer cell-cell forces from a mechanical model of collective cell behavior, doing so for temporally evolving forces in a manner robust to digitization difficulties is challenging. Here, we introduce a method for dynamic local intercellular tension estimation (DLITE) that infers such evolution in temporal force with less sensitivity to digitization ambiguities or errors. This method builds upon previous work on single time points (cellular force-inference toolkit). We validate our method using synthetic geometries. DLITE's inferred cell colony tension evolutions correlate better with ground truth for these synthetic geometries as compared to tension values inferred from methods that consider each time point in isolation. We introduce cell connectivity errors, angle estimate errors, connection mislocalization, and connection topological changes to synthetic data and show that DLITE has reduced sensitivity to these conditions. Finally, we apply DLITE to time series of human-induced pluripotent stem cell colonies with endogenously expressed GFP-tagged zonulae occludentes-1. We show that DLITE offers improved stability in the inference of cell-cell tensions and supports a correlation between the dynamics of cell-cell forces and colony rearrangement.
Collapse
Affiliation(s)
- Ritvik Vasan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, California
| | | | | | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, California.
| |
Collapse
|
46
|
He Y, Liang Y, Han R, Lu WL, Mak JCW, Zheng Y. Rational particle design to overcome pulmonary barriers for obstructive lung diseases therapy. J Control Release 2019; 314:48-61. [PMID: 31644935 DOI: 10.1016/j.jconrel.2019.10.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Pulmonary delivery of active drugs has been applied for the treatment of obstructive lung diseases, including asthma, chronic obstructive pulmonary disease and cystic fibrosis, for several decades and has achieved progress in symptom management by bronchodilator inhalation. However, substantial progress in anti-inflammation, prevention of airway remodeling and disease progression is limited, since the majority of the formulation strategies focus only on particle deposition, which is insufficient for pulmonary delivery of the drugs. The lack of knowledge on lung absorption barriers in obstructive lung diseases and on pathogenesis impedes the development of functional formulations by rational design. In this review, we describe the physiological structure and biological functions of the barriers in various regions of the lung, review the pathogenesis and functional changes of barriers in obstructive lung diseases, and examine the interaction of these barriers with particles to influence drug delivery efficiency. Subsequently, we review rational particle design for overcoming lung barriers based on excipients selection, particle size and surface properties, release properties and targeting ability. Additionally, useful particle fabrication strategies and commonly used drug carriers for pulmonary delivery in obstructive lung diseases are proposed in this article.
Collapse
Affiliation(s)
- Yuan He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Yingmin Liang
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Run Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Wan-Liang Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Judith Choi Wo Mak
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Pharmacology & Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
47
|
Comparing the Protection Imparted by Different Fraction Extracts of Garlic ( Allium sativum L.) against Der p-Induced Allergic Airway Inflammation in Mice. Int J Mol Sci 2019; 20:ijms20194879. [PMID: 31581442 PMCID: PMC6801723 DOI: 10.3390/ijms20194879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/19/2019] [Accepted: 09/29/2019] [Indexed: 01/02/2023] Open
Abstract
Garlic (Allium sativum L.) has been used extensively as a food ingredient and medicinally, but the effect on asthmatic airway inflammation has not been studied in detail. We accordingly explored the protective effects exerted by various garlic fraction extracts against airway inflammation with Dermatophagoides pteronyssinus (Der p)-induced allergic asthma in vivo and in vitro. Garlic extraction was realized using n-hexane, dichloromethane, ethylacetate, n-butanol, and water in sequence to obtain different fraction extracts. Mice were orally administered different fractions (80 mg/kg) daily for four weeks. The histological results showed that the water fraction could ameliorate lung-based goblet cell hyperplasia, inflammatory cell infiltration, and mucus hypersecretion. The water fraction extracts decreased IgE and IgG1, and they decreased inflammatory cells as quantified in bronchoalveolar lavage fluid (BALF); however, they increased IgG2a in serum. Moreover, the water fraction extracts increased IFN-γ and IL-12 (both constituting Th1 cytokines) in BALF, but they reduced IL-13, -4, and -5 (all constituting Th2 cytokines), and also inhibited the expression of IL-1β, IL-6, and TNF-α. The water fraction also inhibited the PI3K/Akt/NF-κB signal pathways in A549 cells. These findings suggest that water fraction extracts of garlic have a clear anti-inflammatory effect on Der p-induced allergic asthma.
Collapse
|
48
|
Zhang J, Koussih L, Shan L, Halayko AJ, Tliba O, Gounni AS. Glucocorticoids regulate pentraxin-3 expression in human airway smooth muscle cells. PLoS One 2019; 14:e0220772. [PMID: 31437159 PMCID: PMC6706008 DOI: 10.1371/journal.pone.0220772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
Pentraxin-3 (PTX3) is a multifunctional protein involved in both innate and adaptive immunity. Glucocorticoid (GC) is the first-line therapy to mitigate airway inflammation in asthma. Previous pieces of evidence showed that GC has divergent effects on PTX3 production in various cell types. The molecular mechanisms controlling PTX3 expression in HASMC are, however, not yet characterized. In this study, we demonstrate that the synthetic GC, dexamethasone (DEX) increases the expression of PTX3 both at the protein and mRNA levels. We also found that such an effect of DEX was dependent on de novo protein synthesis and the GC receptor (GR). While DEX increases PTX3 mRNA stability, it did not affect its promoter activity. Interestingly, HASMC pre-treated with p42/p44 ERK inhibitor, but not with p38 or JNK-MAPK inhibitors, significantly interfered with DEX-induced PTX3 secretion. Taken together, our data suggest that GC regulates PTX3 expression in HASMC through transcriptional and post-transcriptional mechanisms in a GR and ERK-dependent manner.
Collapse
Affiliation(s)
- Jingbo Zhang
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Latifa Koussih
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Experimental Sciences, University of Saint Boniface, Winnipeg, Manitoba, Canada
| | - Lianyu Shan
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Max Rady College of Medicine, Rady Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, United States of America
| | - Abdelilah S Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
49
|
Daines M, Zhu L, Pereira R, Zhou X, Bondy C, Pryor BM, Zhou J, Chen Y. Alternaria induces airway epithelial cytokine expression independent of protease-activated receptor. Respirology 2019; 25:502-510. [PMID: 31430011 DOI: 10.1111/resp.13675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 04/24/2019] [Accepted: 07/01/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVE A novel fungal allergen, Alternaria (Alt), has been previously shown to associate with the pathogenesis of allergic rhinitis and bronchial asthma, particularly in arid and semi-arid regions. Airway epithelial cells are among the first to encounter Alt, and epithelial cytokine production and subsequent airway inflammation are early events in the response to Alt exposure. However, the underlying mechanism is unclear. As protease-activated receptor 2 (PAR2) has been implicated in most of the Alt-induced biological events, we investigated the regulation of airway inflammation and epithelial cytokine expression by PAR2. METHODS Wild-type (WT) and Par2 knockout (Par2-KO) mice were used to evaluate the in vivo role of PAR2. Primary human and mouse airway epithelial cells were used to examine the mechanistic basis of epithelial cytokine regulation in vitro. RESULTS Surprisingly, Par2 deficiency had no negative impact on the change of lung function, inflammation and cytokine production in the mouse model of Alt-induced asthma. Alt-induced cytokine production in murine airway epithelial cells from Par2-KO mice was not significantly different from the WT cells. Consistently, PAR2 knockdown in human cells also had no effect on cytokine expression. In contrast, the cytokine expressions induced by synthetic PAR2 agonist or other asthma-related allergens (e.g. cockroach extracts) were indeed mediated via a PAR2-dependent mechanism. Finally, we found that EGFR pathway was responsible for Alt-induced epithelial cytokine expression. CONCLUSION The activation of EGFR, but not PAR2, was likely to drive the airway inflammation and epithelial cytokine production induced by Alt.
Collapse
Affiliation(s)
- Michael Daines
- Department of Internal Medicine, School of Medicine, University of Arizona, Tucson, AZ, USA.,Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Lingxiang Zhu
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Rhea Pereira
- Department of Internal Medicine, School of Medicine, University of Arizona, Tucson, AZ, USA
| | - Xu Zhou
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Cheryl Bondy
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Barry M Pryor
- School of Plant Science, University of Arizona, Tucson, AZ, USA
| | - Jin Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, University of Arizona, Tucson, AZ, USA
| | - Yin Chen
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
50
|
Evasovic JM, Singer CA. Regulation of IL-17A and implications for TGF-β1 comodulation of airway smooth muscle remodeling in severe asthma. Am J Physiol Lung Cell Mol Physiol 2019; 316:L843-L868. [PMID: 30810068 PMCID: PMC6589583 DOI: 10.1152/ajplung.00416.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/04/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Severe asthma develops as a result of heightened, persistent symptoms that generally coincide with pronounced neutrophilic airway inflammation. In individuals with severe asthma, symptoms are poorly controlled by high-dose inhaled glucocorticoids and often lead to elevated morbidity and mortality rates that underscore the necessity for novel drug target identification that overcomes limitations in disease management. Many incidences of severe asthma are mechanistically associated with T helper 17 (TH17) cell-derived cytokines and immune factors that mediate neutrophilic influx to the airways. TH17-secreted interleukin-17A (IL-17A) is an independent risk factor for severe asthma that impacts airway smooth muscle (ASM) remodeling. TH17-derived cytokines and diverse immune mediators further interact with structural cells of the airway to induce pathophysiological processes that impact ASM functionality. Transforming growth factor-β1 (TGF-β1) is a pivotal mediator involved in airway remodeling that correlates with enhanced TH17 activity in individuals with severe asthma and is essential to TH17 differentiation and IL-17A production. IL-17A can also reciprocally enhance activation of TGF-β1 signaling pathways, whereas combined TH1/TH17 or TH2/TH17 immune responses may additively impact asthma severity. This review seeks to provide a comprehensive summary of cytokine-driven T cell fate determination and TH17-mediated airway inflammation. It will further review the evidence demonstrating the extent to which IL-17A interacts with various immune factors, specifically TGF-β1, to contribute to ASM remodeling and altered function in TH17-driven endotypes of severe asthma.
Collapse
Affiliation(s)
- Jon M Evasovic
- Department of Pharmacology, School of Medicine, University of Nevada , Reno, Nevada
| | - Cherie A Singer
- Department of Pharmacology, School of Medicine, University of Nevada , Reno, Nevada
| |
Collapse
|