1
|
Ramos-Molina B, Rossell J, Pérez-Montes de Oca A, Pardina E, Genua I, Rojo-López MI, Julián MT, Alonso N, Julve J, Mauricio D. Therapeutic implications for sphingolipid metabolism in metabolic dysfunction-associated steatohepatitis. Front Endocrinol (Lausanne) 2024; 15:1400961. [PMID: 38962680 PMCID: PMC11220194 DOI: 10.3389/fendo.2024.1400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), a leading cause of chronic liver disease, has increased worldwide along with the epidemics of obesity and related dysmetabolic conditions characterized by impaired glucose metabolism and insulin signaling, such as type 2 diabetes mellitus (T2D). MASLD can be defined as an excessive accumulation of lipid droplets in hepatocytes that occurs when the hepatic lipid metabolism is totally surpassed. This metabolic lipid inflexibility constitutes a central node in the pathogenesis of MASLD and is frequently linked to the overproduction of lipotoxic species, increased cellular stress, and mitochondrial dysfunction. A compelling body of evidence suggests that the accumulation of lipid species derived from sphingolipid metabolism, such as ceramides, contributes significantly to the structural and functional tissue damage observed in more severe grades of MASLD by triggering inflammatory and fibrogenic mechanisms. In this context, MASLD can further progress to metabolic dysfunction-associated steatohepatitis (MASH), which represents the advanced form of MASLD, and hepatic fibrosis. In this review, we discuss the role of sphingolipid species as drivers of MASH and the mechanisms involved in the disease. In addition, given the absence of approved therapies and the limited options for treating MASH, we discuss the feasibility of therapeutic strategies to protect against MASH and other severe manifestations by modulating sphingolipid metabolism.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Group of Obesity, Diabetes & Metabolism, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Joana Rossell
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Eva Pardina
- Department de Biochemistry & Molecular Biology, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Idoia Genua
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Marina I. Rojo-López
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
| | - María Teresa Julián
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Núria Alonso
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Josep Julve
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Didac Mauricio
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Faculty of Medicine, University of Vic/Central University of Catalonia (UVIC/UCC), Vic, Spain
| |
Collapse
|
2
|
Han X, Yang Y, Liu S, Niu Y, Shao H, Fu L. Aerobic exercise ameliorates insulin resistance in C57BL/6 J mice via activating Sestrin3. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166568. [PMID: 36220588 DOI: 10.1016/j.bbadis.2022.166568] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
Skeletal muscle insulin resistance (IR) is closely linked to hyperglycemia and metabolic disorders. Regular exercise enhances insulin sensitivity in skeletal muscle, but its underlying mechanisms remain unknown. Sestrin3 (SESN3) is a stress-inducible protein that protects against obesity-induced hepatic steatosis and insulin resistance. Regular exercise training is known to increase SESN3 expression in skeletal muscle. The purpose of this study was to explore whether SESN3 mediates the metabolic effects of exercise in the mouse model of high-fat diet (HFD)-induced IR. SESN3-/- mice exhibited severer body weight gain, ectopic lipid accumulation, and dysregulation of glucose metabolism after long-term HFD feeding compared with the wild-type (WT) mice. Moreover, we found that SESN3 deficiency weakened the effects of exercise on reducing serum insulin levels and improving glucose tolerance in mice. Exercise training increased pAKT-S473 and GLUT4 expression, accompanied by enhanced pmTOR-S2481 (an indicator of mTORC2 activity) in WT quadriceps that were less pronounced in SESN3-/- mice. SESN3 overexpression in C2C12 myotubes further confirmed that SESN3 played an important role in skeletal muscle glucose metabolism. SESN3 overexpression increased the binding of Rictor to mTOR and pmTOR-S2481 in C2C12 myotubes. Moreover, SESN3 overexpression resulted in an elevation of glucose uptake and a concomitant increase of pAKT-S473 in C2C12 myotubes, whereas these effects were diminished by downregulation of mTORC2 activity. Taken together, SESN3 is a crucial protein in amplifying the beneficial effects of exercise on insulin sensitivity in skeletal muscle and systemic glucose levels. SESN3/mTORC2/AKT pathway mediated the effects of exercise on skeletal muscle insulin sensitivity.
Collapse
Affiliation(s)
- Xiao Han
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Yang Yang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Sujuan Liu
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Yanmei Niu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Heng Shao
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Li Fu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
3
|
tBHQ Induces a Hormetic Response That Protects L6 Myoblasts against the Toxic Effect of Palmitate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3123268. [PMID: 32509140 PMCID: PMC7246405 DOI: 10.1155/2020/3123268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022]
Abstract
Nutritional status, in particular overweight and obesity, as well as sedentarism and high-fat diet consumption, are important risk factors to develop chronic diseases, which have a higher impact on the elderly's health. Therefore, these nutritional problems have become a concern to human healthspan and longevity. The fatty acids obtained thru the diet or due to fatty acid synthesis during obesity accumulate within the body generating toxicity and cell death. Fat is not only stored in adipose tissue, but it can also be stored in skeletal muscle. Palmitic acid (PA) has been reported as one of the most important saturated free fatty acids; it is associated to chronic oxidative stress and increased mitochondrial ROS production causing cell death by apoptosis. In skeletal muscle, palmitate has been associated with various pathophysiological consequences, which lead to muscle deterioration during aging and obesity. Since molecules that modify redox state have been proven to prevent cellular damage by inducing a hormetic response, the aim of this study was to evaluate if tert-butylhydroquinone (tBHQ) could activate an antioxidant hormetic response that would be able to protect L6 myoblasts from palmitate toxic effect. Our results provide evidence that tBHQ is able to protect L6 myoblasts against the toxicity induced by sodium palmitate due to a synergistic activation of different signaling pathways such as Nrf2 and NF-κB.
Collapse
|
4
|
Improved quantification of muscle insulin sensitivity using oral glucose tolerance test data: the MISI Calculator. Sci Rep 2019; 9:9388. [PMID: 31253846 PMCID: PMC6598992 DOI: 10.1038/s41598-019-45858-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
The Muscle Insulin Sensitivity Index (MISI) has been developed to estimate muscle-specific insulin sensitivity based on oral glucose tolerance test (OGTT) data. To date, the score has been implemented with considerable variation in literature and initial positive evaluations were not reproduced in subsequent studies. In this study, we investigate the computation of MISI on oral OGTT data with differing sampling schedules and aim to standardise and improve its calculation. Seven time point OGTT data for 2631 individuals from the Maastricht Study and seven time point OGTT data combined with a hyperinsulinemic-euglycaemic clamp for 71 individuals from the PRESERVE Study were used to evaluate the performance of MISI. MISI was computed on subsets of OGTT data representing four and five time point sampling schedules to determine minimal requirements for accurate computation of the score. A modified MISI computed on cubic splines of the measured data, resulting in improved identification of glucose peak and nadir, was compared with the original method yielding an increased correlation (ρ = 0.576) with the clamp measurement of peripheral insulin sensitivity as compared to the original method (ρ = 0.513). Finally, a standalone MISI calculator was developed allowing for a standardised method of calculation using both the original and improved methods.
Collapse
|
5
|
Rivas DA, Rice NP, Ezzyat Y, McDonald DJ, Cooper BE, Fielding RA. Sphingosine-1-phosphate analog FTY720 reverses obesity but not age-induced anabolic resistance to muscle contraction. Am J Physiol Cell Physiol 2019; 317:C502-C512. [PMID: 31241988 DOI: 10.1152/ajpcell.00455.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sarcopenia, the age-associated loss of skeletal muscle mass and function, is coupled with declines in physical functioning leading to subsequent higher rates of disability, frailty, morbidity, and mortality. Aging and obesity independently contribute to muscle atrophy that is assumed to be a result of the activation of mutual physiological pathways. Understanding mechanisms contributing to the induction of skeletal muscle atrophy with aging and obesity is important for determining targets that may have pivotal roles in muscle loss in these conditions. We find that aging and obesity equally induce an anabolic resistance to acute skeletal muscle contraction as observed with decreases in anabolic signaling activation after contraction. Furthermore, treatment with the sphingosine-1-phosphate analog FTY720 for 4 wk increased lean mass and strength, and the anabolic signaling response to contraction was improved in obese but not older animals. To determine the role of chronic inflammation and different fatty acids on anabolic resistance in skeletal muscle cells, we overexpressed IKKβ with and without exposure to saturated fatty acid (SFA; palmitic acid), polyunsaturated fatty acid (eicosapentaenoic acid), and monounsaturated fatty acid (oleic acid). We found that IKKβ overexpression increased inflammation markers in muscle cells, and this chronic inflammation exacerbated anabolic resistance in response to SFA. Pretreatment with FTY720 reversed the inflammatory effects of palmitic acid in the muscle cells. Taken together, these data demonstrate chronic inflammation can induce anabolic resistance, SFA aggravates these effects, and FTY720 can reverse this by decreasing ceramide accumulation in skeletal muscle.
Collapse
Affiliation(s)
- Donato A Rivas
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Nicholas P Rice
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Yassine Ezzyat
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Devin J McDonald
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Brittany E Cooper
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Roger A Fielding
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| |
Collapse
|
6
|
Effect of Bangle (Zingiber purpureum) extract and low-intensity exercise on mTOR phosphorylation and autophagy flux in skeletal muscles of rats on a high-fat diet. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Zhao L, Zou T, Gomez NA, Wang B, Zhu MJ, Du M. Raspberry alleviates obesity-induced inflammation and insulin resistance in skeletal muscle through activation of AMP-activated protein kinase (AMPK) α1. Nutr Diabetes 2018; 8:39. [PMID: 29961765 PMCID: PMC6026595 DOI: 10.1038/s41387-018-0049-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/23/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Through dynamic means, etiological factors, including chronic inflammation and insulin resistance have the potential to perpetuate metabolic incidences such as type 2 diabetes and obesity. Abatement of such syndromes can be achieved by complex mechanisms initiated through bioactive compounds such as polyphenols derived from fruits. Using a whole-fruit approach, the effects of dietary red raspberry, which is rich in polyphenols, on inflammatory responses and insulin resistance in the skeletal muscles of Mus musculus were studied along with the potential role of AMP-activated protein kinase (AMPK) to act as a key mediator. SUBJECTS Wild-type (WT) mice and mice deficient in the catalytic subunit (α1) of AMPK (AMPKα1-/-) were fed with a high-fat diet (HFD) or HFD supplemented with raspberry (5% dry weight) for 10 weeks. Factors involved in inflammatory responses, insulin signaling transduction, and mitochondrial biogenesis were evaluated. RESULTS Dietary raspberry reduced ectopic lipid storage, alleviated inflammation responses, improved whole-body insulin sensitivity, and promoted mitochondrial biogenesis in the skeletal muscle of WT mice, but not AMPKα1-/- mice. CONCLUSIONS AMPKα1 is an important mediator for the beneficial effects of raspberry through alleviating inflammatory responses and sensitizing insulin signaling in skeletal muscle of HFD-fed mice.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Animal Sciences, Nutrigenomics and Growth Biology laboratory, Washington State University, Pullman, WA, 99164, USA
| | - Tiande Zou
- Department of Animal Sciences, Nutrigenomics and Growth Biology laboratory, Washington State University, Pullman, WA, 99164, USA
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Noe Alberto Gomez
- Department of Animal Sciences, Nutrigenomics and Growth Biology laboratory, Washington State University, Pullman, WA, 99164, USA
| | - Bo Wang
- Department of Animal Sciences, Nutrigenomics and Growth Biology laboratory, Washington State University, Pullman, WA, 99164, USA
| | - Mei-Jun Zhu
- School of Food Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Min Du
- Department of Animal Sciences, Nutrigenomics and Growth Biology laboratory, Washington State University, Pullman, WA, 99164, USA.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100194, China.
| |
Collapse
|
8
|
Chai BK, Lau YS, Loong BJ, Rais MM, Ting KN, Dharmani DM, Mohankumar SK. Co-administration of conjugated linoleic acid and rosiglitazone increases atherogenic co-efficient and alters isoprenaline-induced vasodilatation in rats fed high fat diet. Physiol Res 2018; 67:729-740. [PMID: 29750886 DOI: 10.33549/physiolres.933706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cis(c)-9, trans(t)-11 (c9,t11) and t10,c12 isomers of conjugated linoleic acid (CLA) have been reported as agonists of peroxisome proliferator-activated receptor (PPAR) and beneficial in lipidemia and glycemia. However, it is unclear whether CLA isomers enhance or antagonize effects of conventional drugs targeting PPAR. Male Sprague-Dawley rats were fed high fat diet (HFD) for 8 weeks and treated without or with CLA, rosiglitazone or both for 4 weeks. Oral glucose tolerance and surrogate markers of insulin resistance were not significantly different for all treatments compared to untreated normal diet (ND) or HFD group, except lipoprotein levels. The combination of CLA and rosiglitazone had suppressed levels of low and high density lipoproteins (46 % and 25 %, respectively), compared to HFD-alone. Conversely, the atherogenic co-efficient of the animals received HFD or HFD+rosiglitazone+CLA was 2-folds higher than ND, HFD+rosiglitazone or HFD+CLA. Isolated aortic rings from the combined CLA and rosiglitazone treated animals were less sensitive to isoprenaline-induced relaxation among endothelium-denuded aortas with a decreased efficacy and potency (R(max)=53+/-4.7 %; pEC50=6+/-0.2) compared to endothelium-intact aortas (R(max)=100+/-9.9 %; pEC50=7+/-0.2). Our findings illustrate that the combination of CLA and rosiglitazone precede the atherogenic state with impaired endothelium-independent vasodilatation before the onset of HFD-induced insulin resistance.
Collapse
Affiliation(s)
- B K Chai
- Department of Biomedical Sciences, Faculty of Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia. TIFAC CORE Herbal Drugs JSS College of Pharmacy, Jagadguru Sri Shivrathreeshwara University, Mysuru, India. or
| | | | | | | | | | | | | |
Collapse
|
9
|
Piao SJ, Kim SH, Suh YJ, Hong SB, Ahn SH, Seo DH, Park IS, Nam M. Beneficial Effects of Aerobic Exercise Training Combined with Rosiglitazone on Glucose Metabolism in Otsuka Long Evans Tokushima Fatty Rats. Diabetes Metab J 2017; 41:474-485. [PMID: 29199408 PMCID: PMC5741557 DOI: 10.4093/dmj.2017.41.6.474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/26/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Regular aerobic exercise is essential for the prevention and management of type 2 diabetes mellitus and may be particularly beneficial for those treated with thiazolidinediones, since it may prevent associated weight gain. This study aimed to evaluate the effect of combined exercise and rosiglitazone treatment on body composition and glucose metabolism in obese diabetes-prone animals. METHODS We analyzed metabolic parameters, body composition, and islet profiles in Otsuka Long Evans Tokushima Fatty rats after 28 weeks of aerobic exercise, rosiglitazone treatment, and combined exercise and rosiglitazone treatment. RESULTS Combined exercise with rosiglitazone showed significantly less increase in weight and epididymal fat compared to rosiglitazone treatment. Aerobic exercise alone and combined rosiglitazone and exercise treatment led to similar retention of lean body mass. All experimental groups showed a decrease in fasting glucose. However, the combined exercise and rosiglitazone therapy group showed prominent improvement in glucose tolerance compared to the other groups. Rescue of islet destruction was observed in all experimental groups, but was most prominent in the combined therapy group. CONCLUSION Regular aerobic exercise combined with rosiglitazone treatment can compensate for the adverse effect of rosiglitazone treatment and has benefit for islet preservation.
Collapse
Affiliation(s)
- Shan Ji Piao
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
- Qingdao Endocrine and Diabetes Hospital, Qingdao, China
| | - So Hun Kim
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Young Ju Suh
- Department of Biomedical Sciences, Inha University School of Medicine, Incheon, Korea
| | - Seong Bin Hong
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Seong Hee Ahn
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Da Hae Seo
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - In Sun Park
- Department of Anatomy, Inha University School of Medicine, Incheon, Korea.
| | - Moonsuk Nam
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea.
| |
Collapse
|
10
|
Puttabyatappa M, Andriessen V, Mesquitta M, Zeng L, Pennathur S, Padmanabhan V. Developmental Programming: Impact of Gestational Steroid and Metabolic Milieus on Mediators of Insulin Sensitivity in Prenatal Testosterone-Treated Female Sheep. Endocrinology 2017; 158:2783-2798. [PMID: 28911168 PMCID: PMC5659659 DOI: 10.1210/en.2017-00460] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022]
Abstract
Prenatal testosterone (T) excess in sheep leads to peripheral insulin resistance (IR), reduced adipocyte size, and tissue-specific changes, with liver and muscle but not adipose tissue being insulin resistant. To determine the basis for the tissue-specific differences in insulin sensitivity, we assessed changes in negative (inflammation, oxidative stress, and lipotoxicity) and positive mediators (adiponectin and antioxidants) of insulin sensitivity in the liver, muscle, and adipose tissues of control and prenatal T-treated sheep. Because T excess leads to maternal hyperinsulinemia, fetal hyperandrogenism, and functional hyperandrogenism and IR in their female offspring, prenatal and postnatal interventions with antiandrogen, flutamide, and the insulin sensitizer rosiglitazone were used to parse out the contribution of androgenic and metabolic pathways in programming and maintaining these defects. Results showed that (1) peripheral IR in prenatal T-treated female sheep is related to increases in triglycerides and 3-nitrotyrosine, which appear to override the increase in high-molecular-weight adiponectin; (2) liver IR is a function of the increase in oxidative stress (3-nitrotyrosine) and lipotoxicity; (3) muscle IR is related to lipotoxicity; and (4) the insulin-sensitive status of visceral adipose tissue appears to be a function of the increase in antioxidants that likely overrides the increase in proinflammatory cytokines, macrophages, and oxidative stress. Prenatal and postnatal intervention with either antiandrogen or insulin sensitizer had partial effects in preventing or ameliorating the prenatal T-induced changes in mediators of insulin sensitivity, suggesting that both pathways are critical for the programming and maintenance of the prenatal T-induced changes and point to potential involvement of estrogenic pathways.
Collapse
Affiliation(s)
| | | | - Makeda Mesquitta
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109
| | - Lixia Zeng
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Subramaniam Pennathur
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
11
|
An ErChen and YinChen Decoction Ameliorates High-Fat-Induced Nonalcoholic Steatohepatitis in Rats by Regulating JNK1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4603701. [PMID: 28680450 PMCID: PMC5478830 DOI: 10.1155/2017/4603701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/06/2017] [Accepted: 05/16/2017] [Indexed: 02/06/2023]
Abstract
ErChen and YinChen decoction (ECYCD) is an effective traditional Chinese medicine and has been widely used in traditional Chinese medicine to treat nonalcoholic steatohepatitis (NASH), with good curative effects. However, the specific mechanisms underlying these effects are unclear. In this study, we determined the efficacy of ECYCD in a high-fat diet-induced NASH rat model, established by 8-week administration of a high-fat diet. ECYCD was administered daily for 4 weeks, after which the rats were euthanized. The results demonstrated that ECYCD ameliorated high-fat diet-induced NASH, as evidenced by decreased liver indexes, reduced hepatic lipid deposition and liver injury, lower serum biochemistry markers (including low-density lipoprotein), and reduced HOMA-IR scores. Moreover, levels of free fatty acids, tumor necrosis factor, and malondialdehyde were decreased, whereas glutathione was increased in the liver. Serum high-density lipoprotein was also increased in the liver, and ECYCD regulated the c-Jun N-terminal kinase 1 (JNK1) signaling pathway by decreasing the levels of JNK1 protein, JNK1 mRNA, activator protein- (AP-) 1 protein, AP-1 mRNA, and phospho-insulin receptor substrate- (IRS-) 1ser307 and increasing phopsho-PKBser473 levels. These results suggested that ECYCD could ameliorate high-fat diet-induced NASH in rats through JNK1 signaling. ECYCD may be a safe therapeutic option for the treatment of NASH.
Collapse
|
12
|
Shao A, Campbell WW, Chen CYO, Mittendorfer B, Rivas DA, Griffiths JC. The emerging global phenomenon of sarcopenic obesity: Role of functional foods; a conference report. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
13
|
Tsujimoto S, Kishina M, Koda M, Yamamoto Y, Tanaka K, Harada Y, Yoshida A, Hisatome I. Nimesulide, a cyclooxygenase-2 selective inhibitor, suppresses obesity-related non-alcoholic fatty liver disease and hepatic insulin resistance through the regulation of peroxisome proliferator-activated receptor γ. Int J Mol Med 2016; 38:721-8. [PMID: 27431935 PMCID: PMC4990319 DOI: 10.3892/ijmm.2016.2674] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/30/2016] [Indexed: 12/25/2022] Open
Abstract
Cyclooxygenase (COX)-2 selective inhibitors suppress non-alcoholic fatty liver disease (NAFLD); however, the precise mechanism of action remains unknown. The aim of this study was to examine how the COX-2 selective inhibitor nimesulide suppresses NAFLD in a murine model of high-fat diet (HFD)‑induced obesity. Mice were fed either a normal chow diet (NC), an HFD, or HFD plus nimesulide (HFD-nime) for 12 weeks. Body weight, hepatic COX-2 mRNA expression and triglyceride accumulation were significantly increased in the HFD group. Triglyceride accumulation was suppressed in the HFD-nime group. The mRNA expression of hepatic peroxisome proliferator-activated receptor γ (PPARγ) and the natural PPARγ agonist 15-deoxy-Δ12,14-prostaglandin J2 (15d‑PGJ2) were significantly increased in the HFD group and significantly suppressed in the HFD-nime group. Glucose metabolism was impaired in the HFD group compared with the NC group, and it was significantly improved in the HFD-nime group. In addition, the plasma insulin levels in the HFD group were increased compared with those in the NC group, and were decreased in the HFD-nime group. These results indicate that HFD-induced NAFLD is mediated by the increased hepatic expression of COX-2. We suggest that the production of 15d-PGJ2, which is mediated by COX-2, induces NAFLD and hepatic insulin resistance by activating PPARγ. Furthermore, the mRNA expression of tissue inhibitor of metalloproteinases-1 (TIMP‑1), procollagen-1 and monocyte chemoattractant protein-1 (MCP-1), as well as the number of F4/80-positive hepatic (Kupffer) cells, were significantly increased in the HFD group compared with the NC group, and they were reduced by nimesulide. In conclusion, COX-2 may emerge as a molecular target for preventing the development of NAFLD and insulin resistance in diet-related obesity.
Collapse
Affiliation(s)
- Shunsuke Tsujimoto
- Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science, Yonago, Tottori 683-8504, Japan
| | - Manabu Kishina
- Second Department of Internal Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Masahiko Koda
- Second Department of Internal Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Yasutaka Yamamoto
- Pharmaceutical Research Group II, Pharmacology Research Department, Pharmaceutical Development Research Laboratories, Tokyo 191‑8512, Japan
| | - Kohei Tanaka
- Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science, Yonago, Tottori 683-8504, Japan
| | - Yusuke Harada
- Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science, Yonago, Tottori 683-8504, Japan
| | - Akio Yoshida
- Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science, Yonago, Tottori 683-8504, Japan
| | - Ichiro Hisatome
- Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science, Yonago, Tottori 683-8504, Japan
| |
Collapse
|
14
|
Kim JC. The effect of exercise training combined with PPARγ agonist on skeletal muscle glucose uptake and insulin sensitivity in induced diabetic obese Zucker rats. J Exerc Nutrition Biochem 2016; 20:42-50. [PMID: 27508153 PMCID: PMC4977909 DOI: 10.20463/jenb.2016.06.20.2.6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/02/2016] [Accepted: 06/09/2016] [Indexed: 12/25/2022] Open
Abstract
[Purpose] Exercise training with PPARγ agonist is expected to increase glucose uptake and improve insulin sensitivity in skeletal muscle of patients with diabetes. However, its mechanisms to effect glucose uptake and insulin sensitivity in skeletal muscle are unclear. [Methods] The mechanism of action was determined by co-treatment with PPARγ agonist- rosiglitazone and exercise training in streptozotocin induced-diabetic obese Zucker rats. Exercise training was carried out for 6 weeks (swimming, 1 h/day, 5 times/week, 5% weight/g, 32±1℃) with rosiglitazone treatment (3mg/kg/day, 6weeks). [Results] Glucose uptake and insulin sensitivity was decreased in diabetic than normal animals. Exercise training and rosiglitazone treatment respectively increased the expression of PPAR(peroxisome proliferators-activated receptor)-α, -β/δ, -γ, PGC-1α(PPAR-γ coactivator-1α), adiponectin, GLUT-4(glucose transportor-4) and p-AMPK-α2(phospho-AMP activated protein kinase-α2) in EDL and SOL of diabetic, as compared to normal animals. Interestingly, training combined with rosiglitazone significantly increased glucose uptake and insulin sensitivity, which resulted in high expression of all molecules in diabetic than all other groups. [Conclusion] These results indicated that exercise training combined with rosiglitazone might mediate regulation of glucose uptake and insulin sensitivity in skeletal muscle. Therefore, exercise training combined with rosiglitazone may be recommended as complementary therapies for diabetes.
Collapse
Affiliation(s)
- Jae-Cheol Kim
- Department of Sports Science, College of Natural Science, Chonbuk National University, Jeonju Republic of Korea
| |
Collapse
|
15
|
Bae JY, Shin KO, Woo J, Woo SH, Jang KS, Lee YH, Kang S. Exercise and dietary change ameliorate high fat diet induced obesity and insulin resistance via mTOR signaling pathway. J Exerc Nutrition Biochem 2016; 20:28-33. [PMID: 27508151 PMCID: PMC4977908 DOI: 10.20463/jenb.2016.06.20.2.4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/25/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022] Open
Abstract
[Purpose] The purpose of this study was to investigate the effect of exercise and dietary change on obesity and insulin resistance and mTOR signaling protein levels in skeletal muscles of obese rats. [Methods] Sixty male Sprague-Dawley rats were divided into CO (Normal diet) and HF (High Fat diet) groups in order to induce obesity for 15 weeks. The rats were then subdivided into CO, COT (CO + Training), HF, HFT (HF + Training), HFND (Dietary change), and HFNDT (HFND + Training) groups (10 rats / group). The training groups underwent moderate-intensity treadmill exercise for 8 weeks, after which soleus muscles were excised and analyzed. Data was statistically analyzed by independent t-test and One-way ANOVA tests with a 0.05 significance level. [Results] Fasting blood glucose, plasma insulin, and HOMA-IR in the HF group were significantly higher, as compared with other groups (p <.05). Protein levels of insulin receptor subunit-1 (IRS-1), IRS-2, and p-Akt were significantly higher in the HFT, HFND, and HFNDT groups, as compared with HF group. In addition, the protein levels of the mammalian target of rapamycin complex 1 (mTORC1) and ribosomal S6 protein kinase 1 were significantly decreased by exercise and dietary change (p <.05). However, mTORC2 and phosphoinositide 3-kinase were significantly increased (p <.05). [Conclusion] In summary, despite the negative impact of continuous high fat intake, regular exercise and dietary change showed a positive effect on insulin resistance and mTOR signaling protein levels.
Collapse
Affiliation(s)
- Ju Yong Bae
- Laboratory of Exercise Biochemistry, Department of Physical Education, Dong-A University, Busan Republic of Korea
| | - Ki Ok Shin
- Laboratory of Exercise Biochemistry, Department of Physical Education, Dong-A University, Busan Republic of Korea
| | - Jinhee Woo
- Laboratory of Exercise Biochemistry, Department of Physical Education, Dong-A University, Busan Republic of Korea
| | - Sang Heon Woo
- Laboratory of Exercise Biochemistry, Department of Physical Education, Dong-A University, Busan Republic of Korea
| | - Ki Soeng Jang
- Laboratory of Exercise Biochemistry, Department of Physical Education, Dong-A University, Busan Republic of Korea
| | - Yul Hyo Lee
- Laboratory of Exercise Biochemistry, Department of Physical Education, Dong-A University, Busan Republic of Korea
| | - Sunghwun Kang
- Laboratory of Exercise physiology, Division of Sport Science, Kangwon National University, Chuncheon Republic of Korea
| |
Collapse
|
16
|
Lu C, Cardoso RC, Puttabyatappa M, Padmanabhan V. Developmental Programming: Prenatal Testosterone Excess and Insulin Signaling Disruptions in Female Sheep. Biol Reprod 2016; 94:113. [PMID: 27053365 PMCID: PMC4939741 DOI: 10.1095/biolreprod.115.136283] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/05/2016] [Indexed: 12/25/2022] Open
Abstract
Women with polycystic ovary syndrome often manifest insulin resistance. Using a sheep model of polycystic ovary syndrome-like phenotype, we explored the contribution of androgen and insulin in programming and maintaining disruptions in insulin signaling in metabolic tissues. Phosphorylation of AKT, ERK, GSK3beta, mTOR, and p70S6K was examined in the liver, muscle, and adipose tissue of control and prenatal testosterone (T)-, prenatal T plus androgen antagonist (flutamide)-, and prenatal T plus insulin sensitizer (rosiglitazone)-treated fetuses as well as 2-yr-old females. Insulin-stimulated phospho (p)-AKT was evaluated in control and prenatal T-, prenatal T plus postnatal flutamide-, and prenatal T plus postnatal rosiglitazone-treated females at 3 yr of age. GLUT4 expression was evaluated in the muscle at all time points. Prenatal T treatment increased mTOR, p-p70S6K, and p-GSK3beta levels in the fetal liver with both androgen antagonist and insulin sensitizer preventing the mTOR increase. Both interventions had partial effect in preventing the increase in p-GSK3beta. In the fetal muscle, prenatal T excess decreased p-GSK3beta and GLUT4. The decrease in muscle p-GSK3beta was partially prevented by insulin sensitizer cotreatment. Both interventions partially prevented the decrease in GLUT4. Prenatal T treatment had no effect on basal expression of any of the markers in 2-yr-old females. At 3 yr of age, prenatal T treatment prevented the insulin-stimulated increase in p-AKT in liver and muscle, but not in adipose tissue, and neither postnatal intervention restored p-AKT response to insulin stimulation. Our findings provide evidence that prenatal T excess changes insulin sensitivity in a tissue- and development-specific manner and that both androgens and insulin may be involved in the programming of these metabolic disruptions.
Collapse
Affiliation(s)
- Chunxia Lu
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Rodolfo C Cardoso
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | | |
Collapse
|
17
|
Choi JW, Jo A, Kim M, Park HS, Chung SS, Kang S, Park KS. BNIP3 is essential for mitochondrial bioenergetics during adipocyte remodelling in mice. Diabetologia 2016; 59:571-81. [PMID: 26693709 DOI: 10.1007/s00125-015-3836-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/13/2015] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Adipose tissue is a highly versatile system in which mitochondria in adipocytes undergo significant changes during active tissue remodelling. BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) is a mitochondrial protein and a known mitochondrial quality regulator. In this study, we investigated the role of BNIP3 in adipocytes, specifically under conditions of peroxisome proliferator-activated receptor-γ (PPARγ)-induced adipose tissue remodelling. METHODS The expression of BNIP3 was evaluated in 3T3-L1 adipocytes in vitro, C57BL/6 mice fed a high-fat diet and db/db mice in vivo. Mitochondrial bioenergetics was investigated in BNIP3-knockdown adipocytes after rosiglitazone treatment. A putative peroxisome proliferator hormone responsive element (PPRE) was characterised by promoter assay and electrophoretic mobility shift assay (EMSA). RESULTS The protein BNIP3 was more abundant in brown adipose tissue than white adipose tissue. Furthermore, BNIP3 expression was upregulated by 3T3-L1 pre-adipocyte differentiation, starvation and rosiglitazone treatment. Conversely, BNIP3 expression in adipocytes decreased under various conditions associated with insulin resistance. This downregulation of BNIP3 was restored by rosiglitazone treatment. Knockdown of BNIP3 in adipocytes inhibited rosiglitazone-induced mitochondrial biogenesis and function, partially mediated by the 5' AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor γ, co-activator 1 α (PGC1α) signalling pathway. Rosiglitazone treatment increased the transcription level of Bnip3 in the reporter assay and the presence of the PPRE site in the Bnip3 promoter was demonstrated by EMSA. CONCLUSIONS/INTERPRETATION The protein BNIP3 contributes to the improvement of mitochondrial bioenergetics that occurs on exposure to rosiglitazone. It may be a novel therapeutic target for restoring mitochondrial dysfunction under insulin-resistant conditions.
Collapse
Affiliation(s)
- Jin Woo Choi
- Department of Internal Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Anna Jo
- Department of Internal Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Min Kim
- Department of Internal Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Ho Seon Park
- Department of Internal Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro (146-92 Dogok-dong), Gangnam-gu, Seoul, 135-710, South Korea
| | - Sung Soo Chung
- Department of Internal Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Shinae Kang
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro (146-92 Dogok-dong), Gangnam-gu, Seoul, 135-710, South Korea.
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, South Korea.
| | - Kyong Soo Park
- Department of Internal Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.
| |
Collapse
|
18
|
Rivas DA, McDonald DJ, Rice NP, Haran PH, Dolnikowski GG, Fielding RA. Diminished anabolic signaling response to insulin induced by intramuscular lipid accumulation is associated with inflammation in aging but not obesity. Am J Physiol Regul Integr Comp Physiol 2016; 310:R561-9. [PMID: 26764052 DOI: 10.1152/ajpregu.00198.2015] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 01/11/2016] [Indexed: 12/24/2022]
Abstract
The loss of skeletal muscle mass is observed in many pathophysiological conditions, including aging and obesity. The loss of muscle mass and function with aging is defined as sarcopenia and is characterized by a mismatch between skeletal muscle protein synthesis and breakdown. Characteristic metabolic features of both aging and obesity are increases in intramyocellular lipid (IMCL) content in muscle. IMCL accumulation may play a mechanistic role in the development of anabolic resistance and the progression of muscle atrophy in aging and obesity. In the present study, aged and high-fat fed mice were used to determine mechanisms leading to muscle loss. We hypothesized the accumulation of bioactive lipids in skeletal muscle, such as ceramide or diacylglycerols, leads to insulin resistance with aging and obesity and the inability to activate protein synthesis, contributing to skeletal muscle loss. We report a positive association between bioactive lipid accumulation and the loss of lean mass and muscle strength. Obese and aged animals had significantly higher storage of ceramide and diacylglycerol compared with young. Furthermore, there was an attenuated insulin response in components of the mTOR anabolic signaling pathway. We also observed differential increases in the expression of inflammatory cytokines and the phosphorylation of IκBα with aging and obesity. These data challenge the accepted role of increased inflammation in obesity-induced insulin resistance in skeletal muscle. Furthermore, we have now established IκBα with a novel function in aging-associated muscle loss that may be independent of its previously understood role as an NF-κB inhibitor.
Collapse
Affiliation(s)
- Donato A Rivas
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Tufts University, Boston, Massachusetts; and
| | - Devin J McDonald
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Tufts University, Boston, Massachusetts; and
| | - Nicholas P Rice
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Tufts University, Boston, Massachusetts; and
| | - Prashanth H Haran
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Tufts University, Boston, Massachusetts; and
| | - Gregory G Dolnikowski
- Mass Spectrometry Unit; Jean Mayer U.S. Department of Agriculture, Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Roger A Fielding
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Tufts University, Boston, Massachusetts; and
| |
Collapse
|
19
|
Exercise training and calorie restriction influence the metabolic parameters in ovariectomized female rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:787063. [PMID: 25874022 PMCID: PMC4383370 DOI: 10.1155/2015/787063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/15/2014] [Indexed: 01/13/2023]
Abstract
The estrogen deficiency after menopause leads to overweight or obesity, and physical exercise is one of the important modulators of this body weight gain. Female Wistar rats underwent ovariectomy surgery (OVX) or sham operation (SO). OVX and SO groups were randomized into new groups based on the voluntary physical activity (with or without running) and the type of diet for 12 weeks. Rats were fed standard chow (CTRL), high triglyceride diet (HT), or restricted diet (CR). The metabolic syndrome was assessed by measuring the body weight gain, the glucose sensitivity, and the levels of insulin, triglyceride, leptin, and aspartate aminotransferase transaminase (AST) and alanine aminotransferase (ALT). The exercise training combined with the CR resulted in improvements in the glucose tolerance and the insulin sensitivity. Plasma TG, AST, and ALT levels were significantly higher in OVX rats fed with HT but these high values were suppressed by exercise and CR. Compared to SO animals, estrogen deprivation with HT caused a significant increase in leptin level. Our data provide evidence that CR combined with voluntary physical exercise can be a very effective strategy to prevent the development of a metabolic syndrome induced by high calorie diet.
Collapse
|
20
|
Probiotic supplementation prevents high-fat, overfeeding-induced insulin resistance in human subjects. Br J Nutr 2015; 113:596-602. [PMID: 25630516 DOI: 10.1017/s0007114514004097] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The purpose of the present study was to determine whether probiotic supplementation (Lactobacillus casei Shirota (LcS)) prevents diet-induced insulin resistance in human subjects. A total of seventeen healthy subjects were randomised to either a probiotic (n 8) or a control (n 9) group. The probiotic group consumed a LcS-fermented milk drink twice daily for 4 weeks, whereas the control group received no supplementation. Subjects maintained their normal diet for the first 3 weeks of the study, after which they consumed a high-fat (65 % of energy), high-energy (50 % increase in energy intake) diet for 7 d. Whole-body insulin sensitivity was assessed by an oral glucose tolerance test conducted before and after overfeeding. Body mass increased by 0·6 (SE 0·2) kg in the control group (P< 0·05) and by 0·3 (SE 0·2) kg in the probiotic group (P>0·05). Fasting plasma glucose concentrations increased following 7 d of overeating (control group: 5·3 (SE 0·1) v. 5·6 (SE 0·2) mmol/l before and after overfeeding, respectively, P< 0·05), whereas fasting serum insulin concentrations were maintained in both groups. Glucose AUC values increased by 10 % (from 817 (SE 45) to 899 (SE 39) mmol/l per 120 min, P< 0·05) and whole-body insulin sensitivity decreased by 27 % (from 5·3 (SE 1·4) to 3·9 (SE 0·9), P< 0·05) in the control group, whereas normal insulin sensitivity was maintained in the probiotic group (4·4 (SE 0·8) and 4·5 (SE 0·9) before and after overeating, respectively (P>0·05). These results suggest that probiotic supplementation may be useful in the prevention of diet-induced metabolic diseases such as type 2 diabetes.
Collapse
|
21
|
Kim JS, Lee YH, Kim JC, Ko YH, Yoon CS, Yi HK. Effect of exercise training of different intensities on anti-inflammatory reaction in streptozotocin-induced diabetic rats. Biol Sport 2014; 31:73-9. [PMID: 25187675 PMCID: PMC3994589 DOI: 10.5604/20831862.1093775] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2014] [Indexed: 01/04/2023] Open
Abstract
The study investigated the effect of high- and low-intensity exercise training on inflammatory reaction of blood and skeletal muscle in streptozotocin (STZ)-induced diabetic male Sprague-Dawley rats (243 ± 7 g, 8 weeks). The rats completed treadmill running in either high-intensity exercise (6 weeks of exercise training, acute bouts of exercise) or low-intensity exercise (6 weeks of exercise training). Non-running, sedentary rats served as controls. To induce diabetes mellitus, rats received a peritoneal injection of STZ (50 mg · kg−1). Rats were sacrificed immediately after an acute bout of exercise and 6 weeks of exercise training. Inflammatory factors were analyzed by ELISA and by immune blotting from the soleus and extensor digitorum longus muscles. In the serum, inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-4) and reactive oxygen species (ROS) (nitric oxide and malondialdehyde) increased in diabetic rats. However, all exercise training groups displayed reduced inflammatory cytokines and reactive oxygen species. In skeletal muscles, low-intensity exercise training, but not high intensity exercise, reduced the levels of COX-2, iNOS, and MMP-2, which were otherwise markedly elevated in the presence of STZ. Moreover, the levels of GLUT-4 and MyoD were effectively increased by different exercise intensity and exercise duration. Low-intensity exercise training appeared most effective to reduce diabetes-related inflammation. However, high-intensity training also reduced inflammatory factors in tissue-specific muscles. The data implicate regular exercise in protecting against chronic inflammatory diseases, such as diabetes.
Collapse
Affiliation(s)
- J-S Kim
- Department of Oral Biochemistry, Institute of Oral Bioscience, BK21 program, School of Dentistry ; Department of Sports Science, College of Natural Science ; Department of Physical Education, College of Education, Chonbuk National University, Jeonju, Korea
| | - Y-H Lee
- Department of Oral Biochemistry, Institute of Oral Bioscience, BK21 program, School of Dentistry
| | - J-C Kim
- Department of Sports Science, College of Natural Science
| | - Y-H Ko
- Department of Physical Education, College of Education, Chonbuk National University, Jeonju, Korea
| | - C-S Yoon
- Department of Physical Education, College of Education, Chonbuk National University, Jeonju, Korea
| | - H-K Yi
- Department of Oral Biochemistry, Institute of Oral Bioscience, BK21 program, School of Dentistry
| |
Collapse
|
22
|
Nemanich S, Rani S, Shoghi K. In vivo multi-tissue efficacy of peroxisome proliferator-activated receptor-γ therapy on glucose and fatty acid metabolism in obese type 2 diabetic rats. Obesity (Silver Spring) 2013; 21:2522-9. [PMID: 23512563 PMCID: PMC3695080 DOI: 10.1002/oby.20378] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/07/2013] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To identify the disturbances in glucose and lipid metabolism observed in type 2 diabetes mellitus, we examined the interaction and contribution of multiple tissues (liver, heart, muscle, and brown adipose tissue) and monitored the effects of the Peroxisome Proliferator-Activated Receptor-γ (PPARγ) agonist rosiglitazone (RGZ) on metabolism in these tissues. DESIGN AND METHODS Rates of [(18) F]fluorodeoxyglucose ([(18) F]FDG) and [(11) C]Palmitate uptake and utilization in the Zucker diabetic fatty (ZDF) rat were quantified using noninvasive positron emission tomography imaging and quantitative modeling in comparison to lean Zucker rats. Furthermore, we studied two separate groups of RGZ-treated and untreated ZDF rats. RESULTS Glucose uptake is impaired in ZDF brown fat, muscle, and heart tissues compared to leans, while RGZ treatment increased glucose uptake compared to untreated ZDF rats. Fatty acid (FA) uptake decreased, but FA flux increased in brown fat and skeletal muscle of ZDF rats. RGZ treatment increased uptake of FA in brown fat but decreased uptake and utilization in liver, muscle, and heart. CONCLUSION Our data indicate tissue-specific mechanisms for glucose and FA disposal as well as differential action of insulin-sensitizing drugs to normalize substrate handling and highlight the role that preclinical imaging may play in screening drugs for obesity and diabetes.
Collapse
Affiliation(s)
- Samuel Nemanich
- Department of Radiology, Washington University in St. Louis, Saint Louis, MO
| | - Sudheer Rani
- Department of Radiology, Washington University in St. Louis, Saint Louis, MO
| | - Kooresh Shoghi
- Department of Radiology, Washington University in St. Louis, Saint Louis, MO
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, Saint Louis, MO
| |
Collapse
|
23
|
Role of ceramide in diabetes mellitus: evidence and mechanisms. Lipids Health Dis 2013; 12:98. [PMID: 23835113 PMCID: PMC3716967 DOI: 10.1186/1476-511x-12-98] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a metabolic disease with multiple complications that causes serious diseases over the years. The condition leads to severe economic consequences and is reaching pandemic level globally. Much research is being carried out to address this disease and its underlying molecular mechanism. This review focuses on the diverse role and mechanism of ceramide, a prime sphingolipid signaling molecule, in the pathogenesis of type 1 and type 2 diabetes and its complications. Studies using cultured cells, animal models, and human subjects demonstrate that ceramide is a key player in the induction of β-cell apoptosis, insulin resistance, and reduction of insulin gene expression. Ceramide induces β-cell apoptosis by multiple mechanisms namely; activation of extrinsic apoptotic pathway, increasing cytochrome c release, free radical generation, induction of endoplasmic reticulum stress and inhibition of Akt. Ceramide also modulates many of the insulin signaling intermediates such as insulin receptor substrate, Akt, Glut-4, and it causes insulin resistance. Ceramide reduces the synthesis of insulin hormone by attenuation of insulin gene expression. Better understanding of this area will increase our understanding of the contribution of ceramide to the pathogenesis of diabetes, and further help in identifying potential therapeutic targets for the management of diabetes mellitus and its complications.
Collapse
|
24
|
Palmitate diet-induced loss of cardiac caveolin-3: a novel mechanism for lipid-induced contractile dysfunction. PLoS One 2013; 8:e61369. [PMID: 23585895 PMCID: PMC3621834 DOI: 10.1371/journal.pone.0061369] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 03/12/2013] [Indexed: 01/22/2023] Open
Abstract
Obesity is associated with an increased risk of cardiomyopathy, and mechanisms linking the underlying risk and dietary factors are not well understood. We tested the hypothesis that dietary intake of saturated fat increases the levels of sphingolipids, namely ceramide and sphingomyelin in cardiac cell membranes that disrupt caveolae, specialized membrane micro-domains and important for cellular signaling. C57BL/6 mice were fed two high-fat diets: palmitate diet (21% total fat, 47% is palmitate), and MCT diet (21% medium-chain triglycerides, no palmitate). We established that high-palmitate feeding for 12 weeks leads to 40% and 50% increases in ceramide and sphingomyelin, respectively, in cellular membranes. Concomitant with sphingolipid accumulation, we observed a 40% reduction in systolic contractile performance. To explore the relationship of increased sphingolipids with caveolins, we analyzed caveolin protein levels and intracellular localization in isolated cardiomyocytes. In normal cardiomyocytes, caveolin-1 and caveolin-3 co-localize at the plasma membrane and the T-tubule system. However, mice maintained on palmitate lost 80% of caveolin-3, mainly from the T-tubule system. Mice maintained on MCT diet had a 90% reduction in caveolin-1. These data show that caveolin isoforms are sensitive to the lipid environment. These data are further supported by similar findings in human cardiac tissue samples from non-obese, obese, non-obese cardiomyopathic, and obese cardiomyopathic patients. To further elucidate the contractile dysfunction associated with the loss of caveolin-3, we determined the localization of the ryanodine receptor and found lower expression and loss of the striated appearance of this protein. We suggest that palmitate-induced loss of caveolin-3 results in cardiac contractile dysfunction via a defect in calcium-induced calcium release.
Collapse
|
25
|
Cao S, Li B, Yi X, Chang B, Zhu B, Lian Z, Zhang Z, Zhao G, Liu H, Zhang H. Effects of exercise on AMPK signaling and downstream components to PI3K in rat with type 2 diabetes. PLoS One 2012; 7:e51709. [PMID: 23272147 PMCID: PMC3521695 DOI: 10.1371/journal.pone.0051709] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/05/2012] [Indexed: 01/31/2023] Open
Abstract
Exercise can increase skeletal muscle sensitivity to insulin, improve insulin resistance and regulate glucose homeostasis in rat models of type 2 diabetes. However, the potential mechanism remains poorly understood. In this study, we established a male Sprague–Dawley rat model of type 2 diabetes, with insulin resistance and β cell dysfunction, which was induced by a high-fat diet and low-dose streptozotocin to replicate the pathogenesis and metabolic characteristics of type 2 diabetes in humans. We also investigated the possible mechanism by which chronic and acute exercise improves metabolism, and the phosphorylation and expression of components of AMP-activated protein kinase (AMPK) and downstream components of phosphatidylinositol 3-kinase (PI3K) signaling pathways in the soleus. As a result, blood glucose, triglyceride, total cholesterol, and free fatty acid were significantly increased, whereas insulin level progressively declined in diabetic rats. Interestingly, chronic and acute exercise reduced blood glucose, increased phosphorylation and expression of AMPKα1/2 and the isoforms AMPKα1 and AMPKα2, and decreased phosphorylation and expression of AMPK substrate, acetyl CoA carboxylase (ACC). Chronic exercise upregulated phosphorylation and expression of AMPK upstream kinase, LKB1. But acute exercise only increased LKB1 expression. In particular, exercise reversed the changes in protein kinase C (PKC)ζ/λ phosphorylation, and PKCζ phosphorylation and expression. Additionally, exercise also increased protein kinase B (PKB)/Akt1, Akt2 and GLUT4 expression, but AS160 protein expression was unchanged. Chronic exercise elevated Akt (Thr308) and (Ser473) and AS160 phosphorylation. Finally, we found that exercise increased peroxisome proliferator-activated receptor-γ coactivator 1 (PGC1) mRNA expression in the soleus of diabetic rats. These results indicate that both chronic and acute exercise influence the phosphorylation and expression of components of the AMPK and downstream to PIK3 (aPKC, Akt), and improve GLUT4 trafficking in skeletal muscle. These data help explain the mechanism how exercise regulates glucose homeostasis in diabetic rats.
Collapse
Affiliation(s)
- Shicheng Cao
- Department of Sport Medicine, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
The role of AMPK/mTOR/S6K1 signaling axis in mediating the physiological process of exercise-induced insulin sensitization in skeletal muscle of C57BL/6 mice. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1716-26. [DOI: 10.1016/j.bbadis.2012.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 07/09/2012] [Accepted: 07/21/2012] [Indexed: 01/09/2023]
|
27
|
Rivas DA, Morris EP, Haran PH, Pasha EP, Morais MDS, Dolnikowski GG, Phillips EM, Fielding RA. Increased ceramide content and NFκB signaling may contribute to the attenuation of anabolic signaling after resistance exercise in aged males. J Appl Physiol (1985) 2012; 113:1727-36. [PMID: 23042913 DOI: 10.1152/japplphysiol.00412.2012] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
One of the most fundamental adaptive physiological events is the response of skeletal muscle to high-intensity resistance exercise, resulting in increased protein synthesis and ultimately larger muscle mass. However, muscle growth in response to contraction is attenuated in older humans. Impaired contractile-induced muscle growth may contribute to sarcopenia: the age-associated loss of muscle mass and function that is manifested by loss of strength, contractile capacity, and endurance. We hypothesized that the storage of ceramide would be increased in older individuals and this would be associated with increases in NFκB signaling and a decreased anabolic response to exercise. To test this hypothesis we measured ceramides at rest and anabolic and NFκB signaling after an acute bout of high-intensity resistance exercise in young and older males. Using lipidomics analysis we show there was a 156% increase in the accumulation of C16:0-ceramide (P < 0.05) and a 30% increase in C20:0-ceramide (P < 0.05) in skeletal muscle with aging, although there was no observable difference in total ceramide. C16:0-ceramide content was negatively correlated (P = 0.008) with lower leg lean mass. Aging was associated with a ~60% increase in the phosphorylation of the proinflammatory transcription factor NFκB in the total and nuclear cell fractions (P < 0.05). Furthermore, there was an attenuated activation of anabolic signaling molecules such as Akt (P < 0.05), FOXO1 (P < 0.05), and S6K1 (P < 0.05) after an acute bout of high-intensity resistance exercise in older males. We conclude that ceramide may have a significant role in the attenuation of contractile-induced skeletal muscle adaptations and atrophy that is observed with aging.
Collapse
Affiliation(s)
- Donato A Rivas
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Zolotnik IA, Figueroa TY, Yaspelkis BB. Insulin receptor and IRS-1 co-immunoprecipitation with SOCS-3, and IKKα/β phosphorylation are increased in obese Zucker rat skeletal muscle. Life Sci 2012; 91:816-22. [PMID: 22982470 DOI: 10.1016/j.lfs.2012.08.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/27/2012] [Accepted: 08/27/2012] [Indexed: 01/21/2023]
Abstract
AIMS We evaluated if selected pro-inflammatory cytokines and/or the protein suppressor of cytokine signaling 3 (SOCS-3) could account for decreased insulin-stimulated phosphatidylinositol 3-kinase (PI3-K) activity in the skeletal muscle of the obese Zucker rat. MAIN METHODS Eight lean and eight obese Zucker rats ~4weeks of age were obtained and allowed to feed ad libitum for 4weeks before undergoing hind limb perfusion in the presence of 500μU/ml insulin. KEY FINDINGS Insulin-stimulated skeletal muscle PI3-K activity and 3-O-methylglucose transport rates were reduced (P<0.05) in obese compared to lean animals. IRS-1 concentration remained unchanged although IRS-1 tyrosine phosphorylation was decreased (P<0.05), and IRS-1 serine phosphorylation (pS) was increased (P<0.05) in obese animals compared to lean animals. IKKα/β pS and JNK theronine/tyrosine phosphorylation was increased (P<0.05) in the obese animals. IκBα concentration was decreased (P<0.05) and IκBα pS was increased (P<0.05) in the obese compared to lean Zucker animals. SOCS-3 concentration and SOCS-3 co-immunoprecipitation with both insulin receptor β-subunit (IR-β) and IRS-1 were elevated (P<0.05) in obese compared to lean animals. IRS-1 co-immunoprecipitation with IR-β was reduced 56% in the obese animals. SIGNIFICANCE Increased IKKα/β and JNK serine phosphorylation may contribute to increasing IRS-1 serine phosphorylation, while concurrent co-localization of SOCS-3 with both IR-β and IRS-1 may prevent IRS-1 from interacting with IR-β. These two mechanisms thusly may independently contribute to impairing insulin-stimulated PI3-K activation in the skeletal muscle of the obese Zucker rat.
Collapse
Affiliation(s)
- Ilya A Zolotnik
- Exercise Biochemistry Laboratory, Department of Kinesiology, California State University Northridge, CA 91330, USA
| | | | | |
Collapse
|
29
|
Stephenson EJ, Stepto NK, Koch LG, Britton SL, Hawley JA. Divergent skeletal muscle respiratory capacities in rats artificially selected for high and low running ability: a role for Nor1? J Appl Physiol (1985) 2012; 113:1403-12. [PMID: 22936731 DOI: 10.1152/japplphysiol.00788.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inactivity-related diseases are becoming a huge burden on Western society. While there is a major environmental contribution to metabolic health, the intrinsic properties that predispose or protect against particular health traits are harder to define. We used rat models of inborn high running capacity (HCR) and low running capacity (LCR) to determine inherent differences in mitochondrial volume and function, hypothesizing that HCR rats would have greater skeletal muscle respiratory capacity due to an increase in mitochondrial number. Additionally, we sought to determine if there was a link between the expression of the orphan nuclear receptor neuron-derived orphan receptor (Nor)1, a regulator of oxidative metabolism, and inherent skeletal muscle respiratory capacity. LCR rats were 28% heavier (P < 0.0001), and fasting serum insulin concentrations were 62% greater than in HCR rats (P = 0.02). In contrast, HCR rats had better glucose tolerance and reduced adiposity. In the primarily oxidative soleus muscle, maximal respiratory capacity was 21% greater in HCR rats (P = 0.001), for which the relative contribution of fat oxidation was 20% higher than in LCR rats (P = 0.02). This was associated with increased citrate synthase (CS; 33%, P = 0.009) and β-hydroxyacyl-CoA (β-HAD; 33%, P = 0.0003) activities. In the primarily glycolytic extensor digitum longus muscle, CS activity was 29% greater (P = 0.01) and β-HAD activity was 41% (P = 0.0004) greater in HCR rats compared with LCR rats. Mitochondrial DNA copy numbers were also elevated in the extensor digitum longus muscles of HCR rats (35%, P = 0.049) and in soleus muscles (44%, P = 0.16). Additionally, HCR rats had increased protein expression of individual mitochondrial respiratory complexes, CS, and uncoupling protein 3 in both muscle types (all P < 0.05). In both muscles, Nor1 protein was greater in HCR rats compared with LCR rats (P < 0.05). We propose that the differential expression of Nor1 may contribute to the differences in metabolic regulation between LCR and HCR phenotypes.
Collapse
Affiliation(s)
- Erin J Stephenson
- School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia
| | | | | | | | | |
Collapse
|
30
|
Stephenson EJ, Camera DM, Jenkins TA, Kosari S, Lee JS, Hawley JA, Stepto NK. Skeletal muscle respiratory capacity is enhanced in rats consuming an obesogenic Western diet. Am J Physiol Endocrinol Metab 2012; 302:E1541-9. [PMID: 22496344 DOI: 10.1152/ajpendo.00590.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity-induced lipid oversupply promotes skeletal muscle mitochondrial biogenesis. Previous investigations have utilized extreme high-fat diets (HFD) to induce such mitochondrial perturbations despite their disparity from human obesogenic diets. Here, we evaluate the effects of Western diet (WD)-induced obesity on skeletal muscle mitochondrial function. Long-Evans rats were given ad libitum access to either a WD [40% energy (E) from fat, 17% protein, and 43% carbohydrate (30% sucrose); n = 12] or a control diet (CON; 16% of E from fat, 21% protein, and 63% carbohydrate; n = 12) for 12 wk. Rats fed the WD consumed 23% more E than CON (P = 0.0001), which was associated with greater increases in body mass (23%, P = 0.0002) and adiposity (17%, P = 0.03). There were no differences in fasting blood glucose concentration or glucose tolerance between diets, although fasting insulin was increased by 40% (P = 0.007). Fasting serum triglycerides were also elevated in WD (86%, P = 0.001). The maximal capacity of the electron transfer system was greater following WD (37%, P = 0.02), as were the maximal activities of several mitochondrial enzymes (citrate synthase, β-hydroxyacyl-CoA dehydrogenase, carnitine palmitoyltransferase). Protein expression of citrate synthase, UCP3, and individual respiratory complexes was greater after WD (P < 0.05) despite no differences in the expression of peroxisome proliferator-activated receptor (PPAR)α, PPARδ, or PPARγ coactivator-1 mRNA or protein abundance. We conclude that the respiratory capacity of skeletal muscle is enhanced in response to the excess energy supplied by a WD. This is likely due to an increase in mitochondrial density, which at least in the short term, and in the absence of increased energy demand, may protect the tissue from lipid-induced impairments in glycemic control.
Collapse
Affiliation(s)
- Erin J Stephenson
- School of Medical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
Laker RC, Wlodek ME, Wadley GD, Gallo LA, Meikle PJ, McConell GK. Exercise early in life in rats born small does not normalize reductions in skeletal muscle PGC-1α in adulthood. Am J Physiol Endocrinol Metab 2012; 302:E1221-30. [PMID: 22354784 DOI: 10.1152/ajpendo.00583.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have previously shown that 4 wk of exercise training early in life normalizes the otherwise greatly reduced pancreatic β-cell mass in adult male rats born small. The aim of the current study was to determine whether a similar normalization in adulthood of reduced skeletal muscle mitochondrial biogenesis markers and alterations in skeletal muscle lipids of growth-restricted male rats occurs following early exercise training. Bilateral uterine vessel ligation performed on day 18 of gestation resulted in Restricted offspring born small (P < 0.05) compared with both sham-operated Controls and a sham-operated Reduced litter group. Offspring remained sedentary or underwent treadmill running from 5-9 (early exercise) or 20-24 (later exercise) wk of age. At 24 wk of age, Restricted and Reduced litter offspring had lower (P < 0.05) skeletal muscle peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) protein expression compared with Control offspring. Early exercise training had the expected effect of increasing skeletal muscle markers of mitochondrial biogenesis, but, at this early age (9 wk), there was no deficit in Restricted and Reduced litter skeletal muscle mitochondrial biogenesis. Unlike our previous observations in pancreatic β-cell mass, there was no "reprogramming" effect of early exercise on adult skeletal muscle such that PGC-1α was lower in adult Restricted and Reduced litter offspring irrespective of exercise training. Later exercise training increased mitochondrial biogenesis in all groups. In conclusion, although the response to exercise training remains intact, early exercise training in rats born small does not have a reprogramming effect to prevent deficits in skeletal muscle markers of mitochondrial biogenesis in adulthood.
Collapse
Affiliation(s)
- Rhianna C Laker
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Chabowski A, Zendzian-Piotrowska M, Nawrocki A, Górski J. Not only accumulation, but also saturation status of intramuscular lipids is significantly affected by PPARγ activation. Acta Physiol (Oxf) 2012; 205:145-58. [PMID: 22023892 DOI: 10.1111/j.1748-1716.2011.02380.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AIM Intramuscular lipid accumulation has been associated with insulin resistance, and after thiazolidinediones (TZD) treatment, it was shown to be reduced in some, but not all, studies. This work was undertaken to investigate the relationships between intramuscular lipids [free fatty acids (FFA), diacylglycerols (DAG), triacylglycerol (TAG) and phospholipids] and plasmalemmal expression of fatty acid (FA) transporter [FAT/CD36 and FABPpm] in the muscles of varying oxidative capacity, after peroxisome proliferator-activated receptors gamma (PPARγ) activation (rosiglitazone) in an animal model of high-fat-diet-induced insulin resistance. Endurance training was also included to further explore the differences in these relationships. METHODS We have used gas liquid chromatography to estimate FA content and composition in each lipid fraction. For sarcolemmal expression of FA transporters, subfractionation of skeletal muscles with subsequent western blot technique was applied. RESULTS High-fat diet induced intramuscular accumulation of FFA, DAG and TAG, irrespective of muscle's fibre composition. PPARγ activation (rosiglitazone) and, to a lesser extent, endurance training further increased TAG accumulation, while it reduced DAG in oxidative muscles (soleus and red gastrocnemius). Aforementioned interventions increased also sarcolemmal FAT/CD36 and FABPpm expressions in particular muscles. Irrespective of diet, rosiglitazone and exercise decreased significantly FA saturation status favouring proportionate enhancement in monounsaturated FA (rosiglitazone) or polyunsaturated FAs (endurance training). CONCLUSION These findings support the conclusion that not only the change in total lipid content (DAG and TAG), but also FA composition is affected by rosiglitazone in an animal model of high-fat-diet-induced insulin resistance.
Collapse
Affiliation(s)
- A Chabowski
- Department of Physiology, Medical University of Bialystok, Poland.
| | | | | | | |
Collapse
|
33
|
Pita J, Panadero A, Soriano-Guillén L, Rodríguez E, Rovira A. The insulin sensitizing effects of PPAR-γ agonist are associated to changes in adiponectin index and adiponectin receptors in Zucker fatty rats. ACTA ACUST UNITED AC 2012; 174:18-25. [DOI: 10.1016/j.regpep.2011.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/11/2011] [Accepted: 11/10/2011] [Indexed: 12/15/2022]
|
34
|
Panveloski-Costa AC, Pinto Júnior DAC, Brandão BB, Moreira RJ, Machado UF, Seraphim PM. [Resistive training reduces inflammation in skeletal muscle and improves the peripheral insulin sensitivity in obese rats induced by hyperlipidic diet]. ACTA ACUST UNITED AC 2012; 55:155-63. [PMID: 21584433 DOI: 10.1590/s0004-27302011000200008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 02/07/2011] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To determine if resistive exercise protocol can modulate Tnf-α, SOCS3 and glucose transporter GLUT4 genes expression in skeletal muscle, and peripheral insulin sensitivity in obese rats induced by hyperlipidic diet. MATERIALS AND METHODS Wistar obese rats induced by hyperlipidic diet were subjected a resistive exercise protocol as jump squat. Insulin sensitivity and mRNA content of Tnf-α, SOCS3 and GLUT4 were assayed and compared among the groups: obese sedentary (OS) and exercised (OE), control sedentary (CS) and exercised (CE). RESULTS The mRNA content of Tnf-α and SOCS3 has increased in skeletal muscle from OS and has decreased in OE group. The protein and GLUT4 mRNA contents were correlated but they did not change among the groups. Peripheral insulin sensitivity has increased in the OE compared to OS group. CONCLUSION The resistive exercise reverses the peripheral insulin resistance and the inflammatory state in skeletal muscle from diet-induced obese rats.
Collapse
Affiliation(s)
- Ana Carolina Panveloski-Costa
- Departamento de Fisioterapia, Universidade Estadual Paulista Júlio de Mesquita Filho, Presidente Prudente, SP, Brasil
| | | | | | | | | | | |
Collapse
|
35
|
Li P, Fan W, Xu J, Lu M, Yamamoto H, Auwerx J, Sears DD, Talukdar S, Oh D, Chen A, Bandyopadhyay G, Scadeng M, Ofrecio JM, Nalbandian S, Olefsky JM. Adipocyte NCoR knockout decreases PPARγ phosphorylation and enhances PPARγ activity and insulin sensitivity. Cell 2012; 147:815-26. [PMID: 22078880 DOI: 10.1016/j.cell.2011.09.050] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/22/2011] [Accepted: 09/23/2011] [Indexed: 01/06/2023]
Abstract
Insulin resistance, tissue inflammation, and adipose tissue dysfunction are features of obesity and Type 2 diabetes. We generated adipocyte-specific Nuclear Receptor Corepressor (NCoR) knockout (AKO) mice to investigate the function of NCoR in adipocyte biology, glucose and insulin homeostasis. Despite increased obesity, glucose tolerance was improved in AKO mice, and clamp studies demonstrated enhanced insulin sensitivity in liver, muscle, and fat. Adipose tissue macrophage infiltration and inflammation were also decreased. PPARγ response genes were upregulated in adipose tissue from AKO mice and CDK5-mediated PPARγ ser-273 phosphorylation was reduced, creating a constitutively active PPARγ state. This identifies NCoR as an adaptor protein that enhances the ability of CDK5 to associate with and phosphorylate PPARγ. The dominant function of adipocyte NCoR is to transrepress PPARγ and promote PPARγ ser-273 phosphorylation, such that NCoR deletion leads to adipogenesis, reduced inflammation, and enhanced systemic insulin sensitivity, phenocopying the TZD-treated state.
Collapse
Affiliation(s)
- Pingping Li
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Putative factors that may modulate the effect of exercise on liver fat: insights from animal studies. J Nutr Metab 2011; 2012:827417. [PMID: 21912741 PMCID: PMC3168901 DOI: 10.1155/2012/827417] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 07/11/2011] [Indexed: 12/20/2022] Open
Abstract
An increase in intrahepatic triglyceride (IHTG) content is the hallmark of nonalcoholic fatty liver disease (NAFLD) and is strongly associated with insulin resistance and dyslipidemia. Although regular aerobic exercise improves metabolic function, its role in regulating fat accumulation in the liver is incompletely understood, and human data are scarce. Results from exercise training studies in animals highlight a number of potential factors that could possibly mediate the effect of exercise on liver fat, but none of them has been formally tested in man. The effect of exercise on IHTG content strongly depends on the background diet, so that exercise is more effective in reducing IHTG under conditions that favor liver fat accretion (e.g., when animals are fed high-fat diets). Concurrent loss of body weight or visceral fat does not appear to mediate the effect of exercise on IHTG, whereas sex (males versus females), prandial status (fasted versus fed), and duration of training, as well as the time elapsed from the last bout of exercise could all be affecting the observed exercise-induced changes in IHTG content. The potential importance of these factors remains obscure, thus providing a wide array of opportunities for future research on the effects of exercise (and diet) on liver fat accumulation.
Collapse
|
37
|
Rivas DA, Morris EP, Fielding RA. Lipogenic regulators are elevated with age and chronic overload in rat skeletal muscle. Acta Physiol (Oxf) 2011; 202:691-701. [PMID: 21439027 DOI: 10.1111/j.1748-1716.2011.02289.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Both muscle mass and strength decline with ageing, but the loss of strength far surpasses what is projected based on the decline in mass. Interestingly, the accumulation of fat mass has been shown to be a strong predictor of functional loss and disability. Furthermore, there is a known attenuated hypertrophic response to skeletal muscle overload with ageing. The purpose of this study was to determine the effect of 28 days of overload on the storage of intramuscular triglycerides (IMTG) and metabolic regulators of lipid synthesis in young and old skeletal muscle. METHODS The phosphorylation and expression of essential lipogenic regulators were determined in the plantaris of young (YNG; 6-month-old) and aged (OLD; 30-month-old) rats subjected to bilateral synergist ablation (SA) of two-thirds of the gastrocnemius muscle or sham surgery. RESULTS We demonstrate that age-induced increases in IMTG are associated with enhancements in the expression of lipogenic regulators in muscle. We also show that the phosphorylation and concentration of the 5'AMP-activated protein kinase (AMPK) isoforms are altered in OLD. We observed increases in the expression of lipogenic regulators and AMPK signalling after SA in YNG, despite no increase in IMTG. Markers of oxidative capacity were increased in YNG after SA. These overload-induced effects were blunted in OLD. CONCLUSION These data suggest that lipid metabolism may be altered in ageing skeletal muscle and is unaffected by mechanical overload via SA. By determining the role of increased lipid storage on skeletal muscle mass during ageing, possible gene targets for the treatment of sarcopenia may be identified.
Collapse
Affiliation(s)
- D A Rivas
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | | | | |
Collapse
|
38
|
Castorena CM, Mackrell JG, Bogan JS, Kanzaki M, Cartee GD. Clustering of GLUT4, TUG, and RUVBL2 protein levels correlate with myosin heavy chain isoform pattern in skeletal muscles, but AS160 and TBC1D1 levels do not. J Appl Physiol (1985) 2011; 111:1106-17. [PMID: 21799128 DOI: 10.1152/japplphysiol.00631.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle is a heterogeneous tissue. To further elucidate this heterogeneity, we probed relationships between myosin heavy chain (MHC) isoform composition and abundance of GLUT4 and four other proteins that are established or putative GLUT4 regulators [Akt substrate of 160 kDa (AS160), Tre-2/Bub2/Cdc 16-domain member 1 (TBC1D1), Tethering protein containing an UBX-domain for GLUT4 (TUG), and RuvB-like protein two (RUVBL2)] in 12 skeletal muscles or muscle regions from Wistar rats [adductor longus, extensor digitorum longus, epitrochlearis, gastrocnemius (mixed, red, and white), plantaris, soleus, tibialis anterior (red and white), tensor fasciae latae, and white vastus lateralis]. Key results were 1) significant differences found among the muscles (range of muscle expression values) for GLUT4 (2.5-fold), TUG (1.7-fold), RUVBL2 (2.0-fold), and TBC1D1 (2.7-fold), but not AS160; 2) significant positive correlations for pairs of proteins: GLUT4 vs. TUG (R = 0.699), GLUT4 vs. RUVBL2 (R = 0.613), TUG vs. RUVBL2 (R = 0.564), AS160 vs. TBC1D1 (R = 0.293), and AS160 vs. TUG (R = 0.246); 3) significant positive correlations for %MHC-I: GLUT4 (R = 0.460), TUG (R = 0.538), and RUVBL2 (R = 0.511); 4) significant positive correlations for %MHC-IIa: GLUT4 (R = 0.293) and RUVBL2 (R = 0.204); 5) significant negative correlations for %MHC-IIb vs. GLUT4 (R = -0.642), TUG (R = -0.626), and RUVBL2 (R = -0.692); and 6) neither AS160 nor TBC1D1 significantly correlated with MHC isoforms. In 12 rat muscles, GLUT4 abundance tracked with TUG and RUVBL2 and correlated with MHC isoform expression, but was unrelated to AS160 or TBC1D1. Our working hypothesis is that some of the mechanisms that regulate GLUT4 abundance in rat skeletal muscle also influence TUG and RUVBL2 abundance.
Collapse
Affiliation(s)
- Carlos M Castorena
- Muscle Biology Laboratory, Univ. of Michigan, School of Kinesiology, Ann Arbor, MI 48109-2214, USA
| | | | | | | | | |
Collapse
|
39
|
Waller AP, Kohler K, Burns TA, Mudge MC, Belknap JK, Lacombe VA. Naturally occurring compensated insulin resistance selectively alters glucose transporters in visceral and subcutaneous adipose tissues without change in AS160 activation. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1098-103. [PMID: 21352908 DOI: 10.1016/j.bbadis.2011.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/24/2011] [Accepted: 02/17/2011] [Indexed: 12/17/2022]
Abstract
Although the importance of adipose tissue (AT) glucose transport in regulating whole-body insulin sensitivity is becoming increasingly evident and insulin resistance (IR) has been widely recognized, the underlying mechanisms of IR are still not well understood. The purpose of the present study was to determine the early pathological changes in glucose transport by characterizing the alterations in glucose transporters (GLUT) in multiple visceral and subcutaneous adipose depots in a large animal model of naturally occurring compensated IR. AT biopsies were collected from horses, which were classified as insulin-sensitive (IS) or compensated IR based on the results of an insulin-modified frequently sampled intravenous glucose tolerance test. Protein expression of GLUT4 (major isoform) and GLUT12 (one of the most recently discovered isoforms) were measured by Western blotting in multiple AT depots, as well as AS160 (a potential key player in GLUT trafficking pathway). Using a biotinylated bis-mannose photolabeled technique, active cell surface GLUT content was quantified. Omental AT had the highest total GLUT content compared to other sites during the IS state. IR was associated with a significantly reduced total GLUT4 content in omental AT, without a change in content in other visceral or subcutaneous adipose sites. In addition, active cell surface GLUT-4, but not -12, was significantly lower in AT of IR compared to IS horses, without change in AS160 phosphorylation between groups. Our data suggest that GLUT4, but not GLUT12, is a pathogenic factor in AT during naturally occurring compensated IR, despite normal AS160 activation.
Collapse
Affiliation(s)
- A P Waller
- College of Pharmacy, 500 W. 12th Avenue, The Ohio State University, Columbus, OH 43215, USA
| | | | | | | | | | | |
Collapse
|
40
|
Waller AP, Burns TA, Mudge MC, Belknap JK, Lacombe VA. Insulin resistance selectively alters cell-surface glucose transporters but not their total protein expression in equine skeletal muscle. J Vet Intern Med 2011; 25:315-21. [PMID: 21314720 DOI: 10.1111/j.1939-1676.2010.0674.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Insulin resistance (IR) has been widely recognized in humans, and more recently in horses, but its underlying mechanisms are still not well understood. The translocation of glucose transporter 4 (GLUT4) to the cell surface is the limiting step for glucose uptake in insulin-sensitive tissues. Although the downstream signaling pathways regulating GLUT translocation are not well defined, AS160 recently has emerged as a potential key component. In addition, the role of GLUT12, one of the most recently identified insulin-sensitive GLUTs, during IR is unknown. HYPOTHESIS/OBJECTIVES We hypothesized that cell-surface GLUT will be decreased in muscle by an AS160-dependent pathway in horses with IR. ANIMALS Insulin-sensitive (IS) or IR mares (n = 5/group). METHODS Muscle biopsies were performed in mares classified as IS or IR based on results of an insulin-modified frequently sampled IV glucose tolerance test. By an exofacial bis-mannose photolabeled method, we specifically quantified active cell-surface GLUT4 and GLUT12 transporters. Total GLUT4 and GLUT12 and AS160 protein expression were measured by Western blots. RESULTS IR decreased basal cell-surface GLUT4 expression (P= .027), but not GLUT12, by an AS160-independent pathway, without affecting total GLUT4 and GLUT12 content. Cell-surface GLUT4 was not further enhanced by insulin stimulation in either group. CONCLUSIONS AND CLINICAL IMPORTANCE IR induced defects in the skeletal muscle glucose transport pathway by decreasing active cell-surface GLUT4.
Collapse
Affiliation(s)
- A P Waller
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
41
|
Rivas DA, Lessard SJ, Saito M, Friedhuber AM, Koch LG, Britton SL, Yaspelkis BB, Hawley JA. Low intrinsic running capacity is associated with reduced skeletal muscle substrate oxidation and lower mitochondrial content in white skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2011; 300:R835-43. [PMID: 21270346 DOI: 10.1152/ajpregu.00659.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic metabolic diseases develop from the complex interaction of environmental and genetic factors, although the extent to which each contributes to these disorders is unknown. Here, we test the hypothesis that artificial selection for low intrinsic aerobic running capacity is associated with reduced skeletal muscle metabolism and impaired metabolic health. Rat models for low- (LCR) and high- (HCR) intrinsic running capacity were derived from genetically heterogeneous N:NIH stock for 20 generations. Artificial selection produced a 530% difference in running capacity between LCR/HCR, which was associated with significant functional differences in glucose and lipid handling by skeletal muscle, as assessed by hindlimb perfusion. LCR had reduced rates of skeletal muscle glucose uptake (∼30%; P = 0.04), glucose oxidation (∼50%; P = 0.04), and lipid oxidation (∼40%; P = 0.02). Artificial selection for low aerobic capacity was also linked with reduced molecular signaling, decreased muscle glycogen, and triglyceride storage, and a lower mitochondrial content in skeletal muscle, with the most profound changes to these parameters evident in white rather than red muscle. We show that a low intrinsic aerobic running capacity confers reduced insulin sensitivity in skeletal muscle and is associated with impaired markers of metabolic health compared with high intrinsic running capacity. Furthermore, selection for high running capacity, in the absence of exercise training, endows increased skeletal muscle insulin sensitivity and oxidative capacity in specifically white muscle rather than red muscle. These data provide evidence that differences in white muscle may have a role in the divergent aerobic capacity observed in this generation of LCR/HCR.
Collapse
Affiliation(s)
- Donato A Rivas
- Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Australia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wu M, Falasca M, Blough ER. Akt/protein kinase B in skeletal muscle physiology and pathology. J Cell Physiol 2010; 226:29-36. [PMID: 20672327 DOI: 10.1002/jcp.22353] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Akt/protein kinase B is critical regulator of cellular homeostasis with diminished Akt activity being associated with dysregulation of cellular metabolism and cell death while Akt over-activation has been linked to inappropriate cell growth and proliferation. Although the regulation of Akt function has been well characterized in vitro, much less is known regarding the function of Akt in vivo. Here we examine how skeletal muscle Akt expression and enzymatic activity are controlled, the role of Akt in the regulation of skeletal muscle contraction, stress response glucose utilization, and protein metabolism, and the potential participation of this important molecule in skeletal muscle atrophy, aging, and cancer.
Collapse
Affiliation(s)
- Miaozong Wu
- Center for Diagnostic Nanosystems, Marshall University, Huntington, West Virginia 25755-1090, USA
| | | | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Fat accumulation in the liver is strongly associated with metabolic dysfunction. Regular exercise improves many cardiometabolic risks factors; however, its effect on intrahepatic triglyceride (IHTG) content remains elusive. This article summarizes available data regarding the effects of exercise on IHTG. RECENT FINDINGS Several but not all observational studies report negative associations of habitual physical activity and cardiorespiratory fitness with IHTG and the prevalence of fatty liver. Aerobic exercise training in combination with hypocaloric diet reduces IHTG by a considerable amount (20-60%), even when weight loss is mild (<5%); hence weight loss per se may not be a critical factor. Longitudinal studies involving exercise training without dietary restriction and no weight loss demonstrate that increased cardiorespiratory fitness and reduced intra-abdominal adiposity are not invariably associated with liver fat depletion, whereas relatively large exercise-induced reductions in IHTG content (20-40%) can occur even in the absence of changes in body weight, body composition, or visceral adipose tissue. Although the majority of studies have examined aerobic training, resistance exercise has also been shown to be inversely associated with the prevalence of fatty liver in humans and effectively reduces IHTG content in animals. SUMMARY Exercise does hold promise as an effective treatment for hepatic steatosis; this field of research is still in its infancy, and there is much more to be learned.
Collapse
Affiliation(s)
- Faidon Magkos
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
44
|
Ritchie IRW, Gulli RA, Stefanyk LE, Harasim E, Chabowski A, Dyck DJ. Restoration of skeletal muscle leptin response does not precede the exercise-induced recovery of insulin-stimulated glucose uptake in high-fat-fed rats. Am J Physiol Regul Integr Comp Physiol 2010; 300:R492-500. [PMID: 21084675 DOI: 10.1152/ajpregu.00602.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leptin administration increases fatty acid (FA) oxidation rates and decreases lipid storage in oxidative skeletal muscle, thereby improving insulin response. We have previously shown high-fat (HF) diets to rapidly induce skeletal muscle leptin resistance, prior to the disruption of normal muscle FA metabolism (increase in FA transport; accumulation of triacylglycerol, diacylglycerol, ceramide) that occurs in advance of impaired insulin signaling and glucose transport. All of this occurs within a 4-wk period. Conversely, exercise can rapidly improve insulin response, in as little as one exercise bout. Thus, if the early development of leptin resistance is a contributor to HF diet-induced insulin resistance (IR) in skeletal muscle, then it is logical to predict that the rapid restoration of insulin response by exercise training would be preceded by the recovery of leptin response. In the current study, we sought to determine 1) whether 1, 2, or 4 wk of exercise training was sufficient to restore leptin response in isolated soleus muscle of rats already consuming a HF diet (60% kcal), and 2) whether this preceded the training-induced corrections in FA metabolism and improved insulin-stimulated glucose transport. In the low-fat (LF)-fed control group, insulin increased glucose transport by 153% and leptin increased AMPK and ACC phosphorylation and the rate of palmitate oxidation (+73%). These responses to insulin and leptin were either severely blunted or absent following 4 wk of HF feeding. Exercise intervention decreased muscle ceramide content (-28%) and restored insulin-stimulated glucose transport to control levels within 1 wk; muscle leptin response (AMPK and ACC phosphorylation, FA oxidation) was also restored, but not until the 2-wk time point. In conclusion, endurance exercise training is able to restore leptin response, but this does not appear to be a necessary precursor for the restoration of insulin response.
Collapse
Affiliation(s)
- Ian R W Ritchie
- Dept. of Human Health and Nutritional Sciences, Animal Science and Nutrition Bldg., Rm 205, University of Guelph, Guelph, ON, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Lessard SJ, Rivas DA, Stephenson EJ, Yaspelkis BB, Koch LG, Britton SL, Hawley JA. Exercise training reverses impaired skeletal muscle metabolism induced by artificial selection for low aerobic capacity. Am J Physiol Regul Integr Comp Physiol 2010; 300:R175-82. [PMID: 21048074 DOI: 10.1152/ajpregu.00338.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have used a novel model of genetically imparted endurance exercise capacity and metabolic health to study the genetic and environmental contributions to skeletal muscle glucose and lipid metabolism. We hypothesized that metabolic abnormalities associated with low intrinsic running capacity would be ameliorated by exercise training. Selective breeding for 22 generations resulted in rat models with a fivefold difference in intrinsic aerobic capacity. Low (LCR)- and high (HCR)-capacity runners remained sedentary (SED) or underwent 6 wk of exercise training (EXT). Insulin-stimulated glucose transport, insulin signal transduction, and rates of palmitate oxidation were lower in LCR SED vs. HCR SED (P < 0.05). Decreases in glucose and lipid metabolism were associated with decreased β₂-adrenergic receptor (β₂-AR), and reduced expression of Nur77 target proteins that are critical regulators of muscle glucose and lipid metabolism [uncoupling protein-3 (UCP3), fatty acid transporter (FAT)/CD36; P < 0.01 and P < 0.05, respectively]. EXT reversed the impairments to glucose and lipid metabolism observed in the skeletal muscle of LCR, while increasing the expression of β₂-AR, Nur77, GLUT4, UCP3, and FAT/CD36 (P < 0.05) in this tissue. However, no metabolic improvements were observed following exercise training in HCR. Our results demonstrate that metabolic impairments resulting from genetic factors (low intrinsic aerobic capacity) can be overcome by an environmental intervention (exercise training). Furthermore, we identify Nur77 as a potential mechanism for improved skeletal muscle metabolism in response to EXT.
Collapse
Affiliation(s)
- Sarah J Lessard
- Royal Melbourne Institute of Technology, Bundoora, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
46
|
Jin D, Guo H, Bu SY, Zhang Y, Hannaford J, Mashek DG, Chen X. Lipocalin 2 is a selective modulator of peroxisome proliferator-activated receptor-gamma activation and function in lipid homeostasis and energy expenditure. FASEB J 2010; 25:754-64. [PMID: 20974668 DOI: 10.1096/fj.10-165175] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have previously identified lipocalin 2 (Lcn2) as a cytokine playing a critical role in the regulation of body fat mass, lipid metabolism, and insulin resistance. Lcn2 deficiency reduces PPARγ gene expression in adipocytes. In this study, we investigated the role of Lcn2 in PPARγ activation and function via assessing the insulin sensitization and fatty acid (FA) homeostasis of PPARγ agonist in high-fat diet (HFD)-induced obesity in Lcn2(-/-) mice. We found that rosiglitazone (Rosi) significantly improved insulin sensitivity in Lcn2(-/-) mice as effectively as in wild-type (WT) mice; unfed-state levels of blood glucose, free FAs, and triglycerides (TGs) were significantly reduced after a 25-d treatment of Rosi in Lcn2(-/-) mice. However, Rosi action on fat deposition and FA homeostasis was altered; Rosi-induced body weight and subcutaneous fat gain and liver lipid accumulation were markedly lessened in Lcn2(-/-) mice. The results of in vivo metabolic labeling showed that Rosi markedly reduced de novo lipogenesis in adipose tissue of Lcn2(-/-) mice. In brown adipose tissue (BAT), the expression of the genes functioning in TG hydrolysis and mitochondrial oxidation was up-regulated more in Lcn2(-/-) than in WT mice. Most strikingly, Rosi stimulated significantly higher levels of uncoupling protein-1 expression in BAT, and completely rescued cold intolerance in Lcn2(-/-) mice. We demonstrate that Lcn2 is a critical selective modulator of PPARγ activation and function in lipid homeostasis and energy expenditure.
Collapse
Affiliation(s)
- Daozhong Jin
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN 55108-1038, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Tsuchiya Y, Hatakeyama H, Emoto N, Wagatsuma F, Matsushita S, Kanzaki M. Palmitate-induced down-regulation of sortilin and impaired GLUT4 trafficking in C2C12 myotubes. J Biol Chem 2010; 285:34371-81. [PMID: 20805226 DOI: 10.1074/jbc.m110.128520] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elevated saturated FFAs including palmitate (C16:0) are a primary trigger for peripheral insulin resistance characterized by impaired glucose uptake/disposal in skeletal muscle, resulting from impaired GLUT4 translocation in response to insulin. We herein demonstrate that palmitate induces down-regulation of sortilin, a sorting receptor implicated in the formation of insulin-responsive GLUT4 vesicles, via mechanisms involving PKC and TNF-α-converting enzyme, but not p38, JNK, or mitochondrial reactive oxygen species generation, leading to impaired GLUT4 trafficking in C2C12 myotubes. Intriguingly, unsaturated FFAs such as palmitoleate (C16:1) and oleate (C18:1) had no such detrimental effects, appearing instead to effectively reverse palmitate-induced impairment of insulin-responsive GLUT4 recycling along with restoration of sortilin abundance by preventing aberrant PKC activation. On the other hand, shRNA-mediated reduction of sortilin in intact C2C12 myotubes inhibited insulin-induced GLUT4 recycling without dampening Akt phosphorylation. We found that the peroxisome proliferator-activated receptor γ agonist troglitazone prevented the palmitate-induced sortilin reduction and also ameliorated insulin-responsive GLUT4 recycling without altering the palmitate-evoked insults on signaling cascades; neither highly phosphorylated PKC states nor impaired insulin-responsive Akt phosphorylation was affected. Taken together, our data provide novel insights into the pathogenesis of PKC-dependent insulin resistance with respect to insulin-responsive GLUT4 translocation, which could occur not only through defects of insulin signaling but also via a reduction of sortilin, which directly controls trafficking/sorting of GLUT4 in skeletal muscle cells. In addition, our data suggest the insulin-sensitizing action of peroxisome proliferator-activated receptor γ agonists to be at least partially mediated through the restoration of proper GLUT4 trafficking/sorting events governed by sortilin.
Collapse
Affiliation(s)
- Yo Tsuchiya
- Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Brandt N, De Bock K, Richter EA, Hespel P. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats. Am J Physiol Endocrinol Metab 2010; 299:E215-24. [PMID: 20484011 DOI: 10.1152/ajpendo.00098.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Excess energy intake via a palatable low-fat diet (cafeteria diet) is known to induce obesity and glucose intolerance in rats. However, the molecular mechanisms behind this adaptation are not known, and it is also not known whether exercise training can reverse it. Male Wistar rats were assigned to 12-wk intervention groups: chow-fed controls (CON), cafeteria diet (CAF), and cafeteria diet plus swimming exercise during the last 4 wk (CAF(TR)). CAF feeding led to increased body weight (16%, P < 0.01) and increased plasma glucose (P < 0.05) and insulin levels (P < 0.01) during an IVGTT, which was counteracted by training. In the perfused hindlimb, insulin-stimulated glucose transport in red gastrocnemius muscle was completely abolished in CAF and rescued by exercise training. Apart from a tendency toward an approximately 20% reduction in both basal and insulin-stimulated Akt Ser(473) phosphorylation (P = 0.051) in the CAF group, there were no differences in insulin signaling (IR Tyr(1150/1151), PI 3-kinase activity, Akt Thr(308), TBC1D4 Thr(642), GSK3-alpha/beta Ser(21/9)) or changes in AMPKalpha1 or -alpha2, GLUT4, Munc18c, or syntaxin 4 protein expression or in phosphorylation of AMPK Thr(172) among the groups. In conclusion, surplus energy intake of a palatable but low-fat cafeteria diet resulted in obesity and insulin resistance that was rescued by exercise training. Interestingly, insulin resistance was not accompanied by major defects in the insulin-signaling cascade or in altered AMPK expression or phosphorylation. Thus, compared with previous studies of high-fat feeding, where insulin signaling is significantly impaired, the mechanism by which CAF diet induces insulin resistance seems different.
Collapse
Affiliation(s)
- Nina Brandt
- Molecular Physiology Group, Department of Exercise and Sport Sciences, Copenhagen Muscle Research Centre, University of Copenhagen, 13 Universitetsparken, Copenhagen, Denmark
| | | | | | | |
Collapse
|
49
|
Yaspelkis BB, Kvasha IA, Lessard SJ, Rivas DA, Hawley JA. Aerobic training reverses high-fat diet-induced pro-inflammatory signalling in rat skeletal muscle. Eur J Appl Physiol 2010; 110:779-88. [PMID: 20596724 DOI: 10.1007/s00421-010-1559-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2010] [Indexed: 12/16/2022]
Abstract
High-fat feeding activates components of the pro-inflammatory pathway and increases co-immunoprecipitation of suppressor of cytokine signalling (SOCS)-3 with both the insulin receptor (IR)-β subunit and IRS-1, which together contribute to keeping PI-3 kinase from being fully activated. However, whether aerobic training reverses these impairments is unknown. Sprague-Dawley rats were fed a chow (CON, n = 8) or saturated high-fat (n = 16) diets for 4 weeks. High-fat-fed rats were then allocated (n = 8/group) to either sedentary (HF) or aerobic exercise training (HFX) for an additional 4 weeks after which all animals underwent hind limb perfusions. Insulin-stimulated red quadriceps 3-O-methylglucose transport rates and PI-3 kinase activity were greater (p < 0.05) in CON and HFX compared to HF. IRS-1 tyrosine phosphorylation was increased (p < 0.05) and IRS-1 serine 307 phosphorylation was decreased (p < 0.05) in HFX compared to HF. IR-β subunit co-immunoprecipitation with IRS-1 was increased in HFX compared to HF. SOCS-3 co-immunoprecipitation with both the IR-β subunit and IRS-1 was decreased (p < 0.05) in HFX compared to HF. IKKα/β serine phosphorylation, and IκBα serine phosphorylation were decreased (p < 0.05) while IκBα protein concentration was increased in HFX compared to HF. By decreasing the association of SOCS-3 with both the IR-β subunit and IRS-1 the interaction between IRS-1 and the IR-β subunit was normalized in the HFX, and may have contributed to skeletal muscle PI-3 kinase being fully activated by insulin. Additionally, the reduction in IKKα/β serine phosphorylation in HFX may have contributed to decreasing IRS-1 serine phosphorylation, and in turn, promoted the normalization of insulin-stimulated activation of PI-3 kinase.
Collapse
Affiliation(s)
- Ben B Yaspelkis
- Exercise Biochemistry Laboratory, Department of Kinesiology, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8287, USA.
| | | | | | | | | |
Collapse
|
50
|
Anavi S, Ilan E, Tirosh O, Madar Z. Infusion of a lipid emulsion modulates AMPK and related proteins in rat liver, muscle, and adipose tissues. Obesity (Silver Spring) 2010; 18:1108-15. [PMID: 20057367 DOI: 10.1038/oby.2009.489] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The primary objective of this study was to investigate the impact of lipid oversupply on the AMPK pathway in skeletal muscle, liver, and adipose tissue. Male Wistar rats were infused with lipid emulsion (LE) or phosphate-buffered saline for 5 h/day for 6 days. Muscles exposed to LE for 6 days exhibited increased AMPK and acetyl-CoA carboxylase (ACC) phosphorylation, along with a greater association between AMPK and Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK). No differences in muscle protein phosphatase 2C (PP2C) activity, LKB1 phosphorylation or AMPK and LKB1 association were observed. Muscle ACCbeta, and adiponectin receptor 1 (AdipoR1) mRNA levels and PPARgamma-co-activator 1alpha (PGC1alpha) protein levels were also increased in LE-treated rats. In contrast, AMPK and ACC phosphorylation decreased and PP2C activity increased in rat livers exposed to LE. Hepatic mRNA levels of ACCalpha, PPARalpha, AdipoR1, AdipoR2, and sterol regulatory element-binding protein-1c (SREBP1c) were also reduced after LE infusion. In adipose tissue, there was no significant alteration in AMPK or ACC phosphorylation. These results demonstrate that following lipid oversupply the AMPK pathway was enhanced in rat skeletal muscle while diminished in the liver and was unchanged in adipose tissue. CaMKK in skeletal muscle and PP2C in the liver, at least in part, appear to mediate these alterations. Alterations in AMPK pathway in the liver induced metabolic defects associated with lipid oversupply.
Collapse
Affiliation(s)
- Sarit Anavi
- The Hebrew University of Jerusalem, Faculty of Agricultural, Food and Environmental Quality Sciences, Institute of Biochemistry, Food Science and Nutrition, Rehovot, Israel
| | | | | | | |
Collapse
|