1
|
Bayer S, Reik A, von Hesler L, Hauner H, Holzapfel C. Association between Genotype and the Glycemic Response to an Oral Glucose Tolerance Test: A Systematic Review. Nutrients 2023; 15:nu15071695. [PMID: 37049537 PMCID: PMC10096950 DOI: 10.3390/nu15071695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
The inter-individual variability of metabolic response to foods may be partly due to genetic variation. This systematic review aims to assess the associations between genetic variants and glucose response to an oral glucose tolerance test (OGTT). Three databases (PubMed, Web of Science, Embase) were searched for keywords in the field of genetics, OGTT, and metabolic response (PROSPERO: CRD42021231203). Inclusion criteria were available data on single nucleotide polymorphisms (SNPs) and glucose area under the curve (gAUC) in a healthy study cohort. In total, 33,219 records were identified, of which 139 reports met the inclusion criteria. This narrative synthesis focused on 49 reports describing gene loci for which several reports were available. An association between SNPs and the gAUC was described for 13 gene loci with 53 different SNPs. Three gene loci were mostly investigated: transcription factor 7 like 2 (TCF7L2), peroxisome proliferator-activated receptor gamma (PPARγ), and potassium inwardly rectifying channel subfamily J member 11 (KCNJ11). In most reports, the associations were not significant or single findings were not replicated. No robust evidence for an association between SNPs and gAUC after an OGTT in healthy persons was found across the identified studies. Future studies should investigate the effect of polygenic risk scores on postprandial glucose levels.
Collapse
Affiliation(s)
- Sandra Bayer
- Institute for Nutritional Medicine, School of Medicine, University Hospital “Klinikum Rechts der Isar”, Technical University of Munich, 80992 Munich, Germany
| | - Anna Reik
- Institute for Nutritional Medicine, School of Medicine, University Hospital “Klinikum Rechts der Isar”, Technical University of Munich, 80992 Munich, Germany
| | - Lena von Hesler
- Institute for Nutritional Medicine, School of Medicine, University Hospital “Klinikum Rechts der Isar”, Technical University of Munich, 80992 Munich, Germany
| | - Hans Hauner
- Institute for Nutritional Medicine, School of Medicine, University Hospital “Klinikum Rechts der Isar”, Technical University of Munich, 80992 Munich, Germany
- Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Christina Holzapfel
- Institute for Nutritional Medicine, School of Medicine, University Hospital “Klinikum Rechts der Isar”, Technical University of Munich, 80992 Munich, Germany
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, 36037 Fulda, Germany
- Correspondence:
| |
Collapse
|
2
|
Gether L, Thyssen JP, Gyldenløve M, Hartmann B, Holst JJ, Foghsgaard S, Vilsbøll T, Knop FK. Normal insulin sensitivity, glucose tolerance, gut incretin and pancreatic hormone responses in adults with atopic dermatitis. Diabetes Obes Metab 2020; 22:2161-2169. [PMID: 32686877 DOI: 10.1111/dom.14146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/03/2020] [Accepted: 07/16/2020] [Indexed: 11/30/2022]
Abstract
AIM To examine whether adults with mild to moderate atopic dermatitis (AD) had reduced insulin sensitivity and/or exhibited other gluco-metabolic disturbances compared with carefully matched healthy controls. MATERIALS AND METHODS Sixteen adult, non-obese, non-diabetic patients with mild to moderate AD and 16 gender-, age- and body mass index (BMI)-matched healthy controls underwent a hyperinsulinaemic euglycaemic clamp (insulin infusion rate: 40 mU/m2 /minute) and an oral glucose tolerance test (OGTT) with frequent blood sampling for gut and pancreatic hormones. RESULTS The two groups were similar in age (33 ± 3 vs. 33 ± 3 years, mean ± standard error of the mean [SEM]), gender (56% women), BMI (24.5 ± 0.7 vs. 24.4 ± 0.7 kg/m2 ), physical activity level, fasting plasma glucose and HbA1c. Patients with AD had a mean Eczema Area and Severity Index score of 8.5 ± 1.0 (moderate disease) and a mean AD duration of 28 ± 3 years. During the OGTT, circulating glucose, insulin, C-peptide, glucagon and glucose-dependent insulinotropic polypeptide, respectively, were similar in the two groups, except glucagon-like peptide-1, which was higher in patients with AD. The clamp showed no differences in insulin sensitivity between groups (M-value 9.2 ± 0.6 vs. 9.8 ± 0.8, P = .541, 95% CI -1.51; 2.60), or circulating insulin, C-peptide and glucagon levels. CONCLUSIONS Using OGTT and the hyperinsulinaemic euglycaemic clamp technique, we found no difference in insulin sensitivity or other gluco-metabolic characteristics between patients with mild to moderate AD and matched healthy controls, suggesting that the inflammatory skin disease AD has little or no influence on glucose metabolism.
Collapse
Affiliation(s)
- Lise Gether
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Copenhagen Research Group for Inflammatory Skin (CORGIS), Herlev and Gentofte Hospital, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob P Thyssen
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Copenhagen Research Group for Inflammatory Skin (CORGIS), Herlev and Gentofte Hospital, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Gyldenløve
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Copenhagen Research Group for Inflammatory Skin (CORGIS), Herlev and Gentofte Hospital, Hellerup, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe Foghsgaard
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
3
|
Johnson AC, Wu W, Attipoe EM, Sasser JM, Taylor EB, Showmaker KC, Kyle PB, Lindsey ML, Garrett MR. Loss of Arhgef11 in the Dahl Salt-Sensitive Rat Protects Against Hypertension-Induced Renal Injury. Hypertension 2020; 75:1012-1024. [PMID: 32148127 DOI: 10.1161/hypertensionaha.119.14338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Arhgef11 is a Rho-guanine nucleotide exchange factor that was previously implicated in kidney injury in the Dahl salt-sensitive (SS) rat, a model of hypertension-related chronic kidney disease. Reduced Arhgef11 expression in an SS-Arhgef11SHR-minimal congenic strain (spontaneously hypertensive rat allele substituted for S allele) significantly decreased proteinuria, fibrosis, and improved renal hemodynamics, without impacting blood pressure compared with the control SS (SS-wild type). Here, SS-Arhgef11-/- and SS-wild type rats were placed on either low or elevated salt (0.3% or 2% NaCl) from 4 to 12 weeks of age. On low salt, starting at week 6 and through week 12, SS-Arhgef11-/- animals demonstrated a 3-fold decrease in proteinuria compared with SS-wild type. On high salt, beginning at week 6, SS-Arhgef11-/- animals demonstrated >2-fold lower proteinuria from weeks 8 to 12 and 30 mm Hg lower BP compared with SS-wild type. To better understand the molecular mechanisms of the renal protection from loss of Arhgef11, both RNA sequencing and discovery proteomics were performed on kidneys from week 4 (before onset of renal injury/proteinuria between groups) and at week 12 (low salt). The omics data sets revealed loss of Arhgef11 (SS-Arhgef11-/-) initiates early transcriptome/protein changes in the cytoskeleton starting as early as week 4 that impact a number of cellular functions, including actin cytoskeletal regulation, mitochondrial metabolism, and solute carrier transporters. In summary, in vivo phenotyping coupled with a multi-omics approach provides strong evidence that increased Arhgef11 expression in the Dahl SS rat leads to actin cytoskeleton-mediated changes in cell morphology and cell function that promote kidney injury, hypertension, and decline in kidney function.
Collapse
Affiliation(s)
- Ashley C Johnson
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center
| | - Wenjie Wu
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center
| | - Esinam M Attipoe
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center
| | - Jennifer M Sasser
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center
| | - Erin B Taylor
- Department of Physiology (E.B.T., M.L.L.), University of Mississippi Medical Center
| | - Kurt C Showmaker
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center
| | - Patrick B Kyle
- Department of Pathology (P.B.K.), University of Mississippi Medical Center
| | - Merry L Lindsey
- Department of Physiology (E.B.T., M.L.L.), University of Mississippi Medical Center
| | - Michael R Garrett
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center.,Department of Medicine (Nephrology) (M.R.G.), University of Mississippi Medical Center
| |
Collapse
|
4
|
Zhang W, Su R, Feng H, Lin L, Wang C, Yang H. Transgenerational Obesity and Alteration of ARHGEF11 in the Rat Liver Induced by Intrauterine Hyperglycemia. J Diabetes Res 2019; 2019:6320839. [PMID: 31612150 PMCID: PMC6757444 DOI: 10.1155/2019/6320839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/23/2019] [Accepted: 08/05/2019] [Indexed: 11/18/2022] Open
Abstract
It is understood that intrauterine hyperglycemia increases the risk of obesity and diabetes in offspring of consecutive generations but its mechanisms remain obscure. This study is aimed at establishing an intrauterine hyperglycemia rat model to investigate the growth and glycolipid metabolic characteristics in transgenerational offspring and discuss the effects of Rho guanine nucleotide exchange factor 11 (ARHGEF11) and the PI3K/AKT signaling pathway in offspring development. The severe intrauterine hyperglycemia rat model was caused by STZ injection before mating, while offspring development and glycolipid metabolism were observed for the following two generations. The expression of ARHGEF11, ROCK1, PI3K, and AKT was tested in the liver and muscle tissue of F2 offspring. The results showed severe growth restriction in F1 offspring and obesity, fatty liver, and insulin resistance in female F2 offspring, especially the offspring of female intrauterine hyperglycemia-exposed parents (F2G♀C♂) and both (F2G♀G♂). The expression of ARHGEF11 and ROCK1 was significantly elevated; PI3K and phosphorylation of AKT were significantly decreased in liver tissues of F2G♀C♂ and F2G♀G♂. Our study revealed that intrauterine hyperglycemia could cause obesity and abnormal glycolipid metabolism in female transgenerational offspring; the programming effect of the intrauterine environment could cause a more obvious phenotype in the maternal line. Further exploration suggested that increased expression of ARHGEF11 and ROCK1 and the decreased expression of PI3K and phosphorylation of AKT in the liver could be responsible for the abnormal development in F2 offspring.
Collapse
Affiliation(s)
- Wanyi Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Rina Su
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Hui Feng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Li Lin
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Chen Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| |
Collapse
|
5
|
Zhang W, Su R, Lin L, Yang H. ARHGEF11 affecting the placental insulin signaling pathway in fetal macrosomia of normal glucose tolerance pregnant women. Placenta 2018; 63:7-14. [DOI: 10.1016/j.placenta.2017.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/12/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
|
6
|
Fonseca ACRG, Carvalho E, Eriksson JW, Pereira MJ. Calcineurin is an important factor involved in glucose uptake in human adipocytes. Mol Cell Biochem 2018; 445:157-168. [PMID: 29380240 PMCID: PMC6060758 DOI: 10.1007/s11010-017-3261-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/23/2017] [Indexed: 11/24/2022]
Abstract
Calcineurin inhibitors are used in immunosuppressive therapy applied after transplantation, but they are associated with major metabolic side effects including the development of new onset diabetes. Previously, we have shown that the calcineurin inhibiting drugs tacrolimus and cyclosporin A reduce adipocyte and myocyte glucose uptakes by reducing the amount of glucose transporter type 4 (GLUT4) at the cell surface, due to an increased internalization rate. However, this happens without alteration in total protein and phosphorylation levels of key proteins involved in insulin signalling or in the total amount of GLUT4. The present study evaluates possible pathways involved in the altered internalization of GLUT4 and consequent reduction of glucose uptake provoked by calcineurin inhibitors in human subcutaneous adipose tissue. Short- and long-term treatments with tacrolimus, cyclosporin A or another CNI deltamethrin (herbicide) decreased basal and insulin-dependent glucose uptake in adipocytes, without any additive effects observed when added together. However, no tacrolimus effects were observed on glucose uptake when gene transcription and protein translation were inhibited. Investigation of genes potentially involved in GLUT4 trafficking showed only a small effect on ARHGEF11 gene expression (p < 0.05). In conlusion, the specific inhibition of calcineurin, but not that of protein phosphatases, decreases glucose uptake in human subcutaneous adipocytes, suggesting that calcineurin is an important regulator of glucose transport. This inhibitory effect is mediated via gene transcription or protein translation; however, expression of genes potentially involved in GLUT4 trafficking and endocytosis appears not to be involved in these effects.
Collapse
Affiliation(s)
- Ana Catarina R G Fonseca
- Department of Medical Sciences, University of Uppsala, 751 85, Uppsala, Sweden.,Center of Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Eugénia Carvalho
- Center of Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.,The Portuguese Diabetes Association (APDP), 1250-203, Lisbon, Portugal.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA.,Arkansas Children's Research Institute, Little Rock, AR, 72202, USA
| | - Jan W Eriksson
- Department of Medical Sciences, University of Uppsala, 751 85, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, University of Uppsala, 751 85, Uppsala, Sweden.
| |
Collapse
|
7
|
Human Rho Guanine Nucleotide Exchange Factor 11 (ARHGEF11) Regulates Dendritic Morphogenesis. Int J Mol Sci 2016; 18:ijms18010067. [PMID: 28036092 PMCID: PMC5297702 DOI: 10.3390/ijms18010067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/19/2016] [Accepted: 12/27/2016] [Indexed: 11/17/2022] Open
Abstract
Disturbances of synaptic connectivity during perinatal and adolescent periods have been hypothesized to be related to the pathophysiology of schizophrenia. Rho guanine nucleotide exchange factor 11 (ARHGEF11) is a specific guanine nucleotide exchange factors (GEF) for RhoA, which is a critical regulator of actin cytoskeleton dynamics and organization of dendritic spines and inhibitor of spine maintenance. ARHGEF11 variants are reported to be associated with a higher risk for the onset of schizophrenia in a Japanese population; however, how ARHGEF11 contributes to the pathogenesis of schizophrenia in dendritic spines is unknown. Therefore, we first studied the distribution, binding, and function of ARHGEF11 in the dendritic spines of the rat cerebral cortex. After subcellular fractionation of the rat cerebral cortex, ARHGEF11 was detected with synaptophysin and post-synaptic density protein 95 (PSD-95) in the P2 fractions including synaptosomal fractions containing presynaptic and postsynaptic density proteins. Endogenous ARHGEF11 was coimmunoprecipitated with synaptophysin or PSD-95. In cortical primary neurons at 28 days in vitro, immunostaining revealed that ARHGEF11 located in the dendrites and dendritic spines and colocalized with PSD-95 and synaptophysin. Overexpression of exogenous ARHGEF11 significantly decreased the number of spines (p = 0.008). These results indicate that ARHGEF11 is likely to be associated with synaptic membranes and regulation of spine.
Collapse
|
8
|
Miao Z, Wang J, Wang F, Liu L, Ding H, Shi Z. Comparative proteomics of umbilical vein blood plasma from normal and gestational diabetes mellitus patients reveals differentially expressed proteins associated with childhood obesity. Proteomics Clin Appl 2016; 10:1122-1131. [PMID: 27381806 DOI: 10.1002/prca.201600046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/11/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE Offspring obesity is one of long-term complications of gestational diabetes mellitus (GDM). The aim of this study is to identify proteins differentially expressed in the umbilical vein blood plasma, which could become markers for early diagnosis of childhood obesity. EXPERIMENTAL DESIGN Umbilical vein plasma samples were collected from 30 control and 30 GDM patients in 2007-2008 whose offspring were suffering from obesity at 6-7 years old. Multiplexed isobaric tandem mass tag labeling combined with LC-MS/MS was used to identify differentially expressed proteins. Ingenuity pathway analysis was performed to identify canonical pathways, biological functions, and networks of interacting proteins. Western blotting was used to verify the expression of three selected proteins. RESULTS A total of 318 proteins were identified, of which 12 proteins were upregulated in GDM group while 24 downregulated. Lipid metabolism was the top category identified by ingenuity pathway analysis. Three randomly chosen proteins were validated by Western blotting, which were consistent with LC-MS. CONCLUSION There are significant differences of protein profile in the umbilical vein blood plasma between normal and GDM patients with obese offspring. The results indicate that a variety of proteins and biological mechanisms may contribute to childhood obesity.
Collapse
Affiliation(s)
- Zhijing Miao
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jianqing Wang
- Yancheng No. 1 People's Hospital Affiliated to Nantong University, Nantong, China
| | - Fuqiang Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Lan Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Hongjuan Ding
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhonghua Shi
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Chang YJ, Pownall S, Jensen TE, Mouaaz S, Foltz W, Zhou L, Liadis N, Woo M, Hao Z, Dutt P, Bilan PJ, Klip A, Mak T, Stambolic V. The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes. eLife 2015; 4. [PMID: 26512886 PMCID: PMC4709268 DOI: 10.7554/elife.06011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 10/25/2015] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue is crucial for the maintenance of energy and metabolic homeostasis and its deregulation can lead to obesity and type II diabetes (T2D). Using gene disruption in the mouse, we discovered a function for a RhoA-specific guanine nucleotide exchange factor PDZ-RhoGEF (Arhgef11) in white adipose tissue biology. While PDZ-RhoGEF was dispensable for a number of RhoA signaling-mediated processes in mouse embryonic fibroblasts, including stress fiber formation and cell migration, it's deletion led to a reduction in their proliferative potential. On a whole organism level, PDZ-RhoGEF deletion resulted in an acute increase in energy expenditure, selectively impaired early adipose tissue development and decreased adiposity in adults. PDZ-RhoGEF-deficient mice were protected from diet-induced obesity and T2D. Mechanistically, PDZ-RhoGEF enhanced insulin/IGF-1 signaling in adipose tissue by controlling ROCK-dependent phosphorylation of the insulin receptor substrate-1 (IRS-1). Our results demonstrate that PDZ-RhoGEF acts as a key determinant of mammalian metabolism and obesity-associated pathologies. DOI:http://dx.doi.org/10.7554/eLife.06011.001 Obesity is a growing public health concern around the world, and can lead to the development of type 2 diabetes, heart disease and cancer. Both genetics and environmental factors such as diet contribute to obesity. Fat cells are essential to good health, but the excess accumulation of fat cells in obese people involves a complex process that is regulated by interactions between numerous genes, cellular messengers and mechanical forces. Learning more about these factors could help prevent or treat obesity. One mutation in the gene encoding a protein called PDZ-RhoGEF has been linked to both obesity and type 2 diabetes. People with mutations in this gene are not responsive enough to insulin, a hormone important for sugar metabolism. This can interfere with the body’s ability to burn energy in food or lead to a dangerous build up of sugar in the blood as seen in type 2 diabetes. But exactly what PDZ-RhoGEF normally does to prevent this is unclear. Chang et al. now show that PDZ-RhoGEF controls fat cell production and the body’s ability to release the energy contained in food. First, mice that had been genetically engineered to lack PDZ-RhoGEF were compared to typical mice. The mice without PDZ-RhoGEF had fewer fat cells than the typical mice, and they burned more energy. The mutant mice walked around about as much as the typical mice but they were more likely to have repetitive movements, the mouse equivalent of human nervous ticks. Insulin normally stimulates the production of fat cells. But the mutant mice were less able to produce fat cells as they developed into adults. When fed a high fat food diet, the normal mice became fatter and insensitive to insulin and developed other health problems linked to excess fat in the body. The mutant mice on the same diet, however, stayed thin and avoided these health issues. The experiments show that PDZ-RhoGEF helps relay insulin’s message within the body, and as such it plays a critical role in regulating metabolism, sugar levels and fat accumulation. Future work should ask how PDZ-RhoGEF affects other complications linked to obesity, and explore the possibility of developing treatments for obesity based on the biology of this molecule. DOI:http://dx.doi.org/10.7554/eLife.06011.002
Collapse
Affiliation(s)
- Ying-Ju Chang
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Scott Pownall
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Thomas E Jensen
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Samar Mouaaz
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Warren Foltz
- Spatio-Temporal Targeting and Amplification of Radiation Response Program, Office of Research Trainees, University Health Network, Toronto, Canada
| | - Lily Zhou
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Nicole Liadis
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Minna Woo
- Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Zhenyue Hao
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Previn Dutt
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Tak Mak
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Vuk Stambolic
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Jia Z, Johnson AC, Wang X, Guo Z, Dreisbach AW, Lewin JR, Kyle PB, Garrett MR. Allelic Variants in Arhgef11 via the Rho-Rock Pathway Are Linked to Epithelial-Mesenchymal Transition and Contributes to Kidney Injury in the Dahl Salt-Sensitive Rat. PLoS One 2015; 10:e0132553. [PMID: 26172442 PMCID: PMC4501567 DOI: 10.1371/journal.pone.0132553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022] Open
Abstract
Previously, genetic analyses identified that variants in Arhgef11 may influence kidney injury in the Dahl salt-sensitive (S) rat, a model of hypertensive chronic kidney disease. To understand the potential mechanism by which altered expression and/or protein differences in Arhgef11 could play a role in kidney injury, stably transduced Arhgef11 knockdown cell lines as well as primary cultures of proximal tubule cells were studied. Genetic knockdown of Arhgef11 in HEK293 and NRK resulted in reduced RhoA activity, decreased activation of Rho-ROCK pathway, and less stress fiber formation versus control, similar to what was observed by pharmacological inhibition (fasudil). Primary proximal tubule cells (PTC) cultured from the S exhibited increased expression of Arhgef11, increased RhoA activity, and up regulation of Rho-ROCK signaling compared to control (small congenic). The cells were also more prone (versus control) to TGFβ-1 induced epithelial-mesenchymal transition (EMT), a hallmark feature of the development of renal interstitial fibrosis, and characterized by development of spindle shape morphology, gene expression changes in EMT markers (Col1a3, Mmp9, Bmp7, and Ocln) and increased expression of N-Cadherin and Vimentin. S derived PTC demonstrated a decreased ability to uptake FITC-albumin compared to the small congenic in vitro, which was confirmed by assessment of albumin re-uptake in vivo by infusion of FITC-albumin and immunofluorescence imaging. In summary, these studies suggest that genetic variants in the S form of Arhgef11 via increased expression and/or protein activity play a role in promoting kidney injury in the S rat through changes in cell morphology (Rho-Rock and/or EMT) that impact the function of tubule cells.
Collapse
Affiliation(s)
- Zhen Jia
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Ashley C. Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Xuexiang Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Zibiao Guo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States of America
- Molecular and Genomics Core Facility, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Albert W. Dreisbach
- Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Jack R. Lewin
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Patrick B. Kyle
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Michael R. Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States of America
- Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, MS, United States of America
- * E-mail:
| |
Collapse
|
11
|
Lu W, Cheng YC, Chen K, Wang H, Gerhard GS, Still CD, Chu X, Yang R, Parihar A, O'Connell JR, Pollin TI, Angles-Cano E, Quon MJ, Mitchell BD, Shuldiner AR, Fu M. Evidence for several independent genetic variants affecting lipoprotein (a) cholesterol levels. Hum Mol Genet 2015; 24:2390-400. [PMID: 25575512 PMCID: PMC4380064 DOI: 10.1093/hmg/ddu731] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/05/2014] [Accepted: 12/22/2014] [Indexed: 01/06/2023] Open
Abstract
Lipoprotein (a) [Lp(a)] is an independent risk factor for atherosclerosis-related events that is under strong genetic control (heritability = 0.68-0.98). However, causal mutations and functional validation of biological pathways modulating Lp(a) metabolism are lacking. We performed a genome-wide association scan to identify genetic variants associated with Lp(a)-cholesterol levels in the Old Order Amish. We confirmed a previously known locus on chromosome 6q25-26 and found Lp(a) levels also to be significantly associated with a SNP near the APOA5-APOA4-APOC3-APOA1 gene cluster on chromosome 11q23 linked in the Amish to the APOC3 R19X null mutation. On 6q locus, we detected associations of Lp(a)-cholesterol with 118 common variants (P = 5 × 10(-8) to 3.91 × 10(-19)) spanning a ∼5.3 Mb region that included the LPA gene. To further elucidate variation within LPA, we sequenced LPA and identified two variants most strongly associated with Lp(a)-cholesterol, rs3798220 (P = 1.07 × 10(-14)) and rs10455872 (P = 1.85 × 10(-12)). We also measured copy numbers of kringle IV-2 (KIV-2) in LPA using qPCR. KIV-2 numbers were significantly associated with Lp(a)-cholesterol (P = 2.28 × 10(-9)). Conditional analyses revealed that rs3798220 and rs10455872 were associated with Lp(a)-cholesterol levels independent of each other and KIV-2 copy number. Furthermore, we determined for the first time that levels of LPA mRNA were higher in the carriers than non-carriers of rs10455872 (P = 0.0001) and were not different between carriers and non-carriers of rs3798220. Protein levels of apo(a) were higher in the carriers than non-carriers of both rs10455872 and rs3798220. In summary, we identified multiple independent genetic determinants for Lp(a)-cholesterol. These findings provide new insights into Lp(a) regulation.
Collapse
Affiliation(s)
- Wensheng Lu
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA, Department of Endocrinology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Yu-Ching Cheng
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA, Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, USA
| | - Keping Chen
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hong Wang
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Glenn S Gerhard
- Geisinger Obesity Institute, Geisinger Clinic, Danville, PA 17822, USA, Penn State Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Xin Chu
- Geisinger Obesity Institute, Geisinger Clinic, Danville, PA 17822, USA
| | - Rongze Yang
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ankita Parihar
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffrey R O'Connell
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Toni I Pollin
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Eduardo Angles-Cano
- Inserm U1140, Institut National de la Santé et de la Recherche Médicale, Paris, France and Faculty of Pharmaceutical and Biological Sciences, University Paris Descartes, Paris F-75006, France
| | - Michael J Quon
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alan R Shuldiner
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA, Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, USA
| | - Mao Fu
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA,
| |
Collapse
|
12
|
Mizuki Y, Takaki M, Okahisa Y, Sakamoto S, Kodama M, Ujike H, Uchitomi Y. Human Rho guanine nucleotide exchange factor 11 gene is associated with schizophrenia in a Japanese population. Hum Psychopharmacol 2014; 29:552-8. [PMID: 25319871 DOI: 10.1002/hup.2435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 07/04/2014] [Accepted: 08/13/2014] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The human Rho guanine nucleotide exchange factor 11 (ARHGEF11) gene is one of the candidate genes for type 2 diabetes mellitus (T2DM). ARHGEF11 is mapped to chromosome 1q21, which has susceptible risk loci for T2DM and schizophrenia. We hypothesized that ARHGEF11 contributes to the pathogenesis of schizophrenia. METHOD We selected eight single nucleotide polymorphisms of ARHGEF11 that had significant associations with T2DM for a case-control association study of 490 patients with schizophrenia and 500 age-matched and sex-matched controls. RESULTS We did not find any differences in allelic, genotypic associations, or minor allele frequencies with schizophrenia. Analysis of the rs6427340-rs6427339 haplotype and the rs822585-rs6427340-rs6427339 haplotype combination provided significant evidence of an association with schizophrenia (global permutations p = 0.00047 and 0.0032, respectively). C-C of the rs6427340-rs6427339 haplotype and A-C-C of the rs822585-rs6427340-rs6427339 haplotype carried higher risk factors for schizophrenia (permutation p = 0.0010 and 0.0018, respectively). A-C-T of the rs822585-rs6427340-rs6427339 haplotype had a possible protective effect (permutation p = 0.031). CONCLUSION These results provide new evidence that ARHGEF11 may constitute a risk factor for schizophrenia.
Collapse
Affiliation(s)
- Yutaka Mizuki
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | | | | | | | | | | | | |
Collapse
|
13
|
Williams JM, Johnson AC, Stelloh C, Dreisbach AW, Franceschini N, Regner KR, Townsend RR, Roman RJ, Garrett MR. Genetic variants in Arhgef11 are associated with kidney injury in the Dahl salt-sensitive rat. Hypertension 2012; 60:1157-68. [PMID: 22987919 DOI: 10.1161/hypertensionaha.112.199240] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A previous genetic analysis comparing the Dahl salt-sensitive (S) rat with the spontaneously hypertensive rat identified a major locus on chromosome 2 that influences proteinuria in the S rat. In the present study, blood pressure, proteinuria, and renal hemodynamics were evaluated in congenic strains with small segments of the protective spontaneously hypertensive rat genome on the S background. Proteinuria and renal function were significantly improved in the congenic strains compared with the S. The causative locus interval was narrowed to <375 kb on the basis of congenic strains, haplotype data, comparative mapping, and concordance with human genetic studies. Sequencing of the coding region of genes in this region identified 36 single nucleotide polymorphisms (13 nonsynonymous and 23 synonymous). Gene expression profiling indicated that only a few genes exhibited differential expression. Arhgef11, Pear1, and Sh2d2 were identified as important candidate genes that may be linked to kidney injury in the S rat. In particular, Arhgef11 plays an important role in the activation of the Rho-ROCK signaling pathway. Inhibition of this pathway using fasudil resulted in a significant reduction of proteinuria in treated S rats (compared with untreated S). However, no difference was observed between treated or untreated spontaneously hypertensive rat or congenic strains. The homologous region in humans was found to be associated with estimated glomerular filtration rate in the Candidate Gene Association Resource population. In summary, these findings demonstrate that allelic variants in Arhgef11, acting through the Rho-ROCK pathway, could influence kidney injury in the S as well as provide insight into human kidney disease.
Collapse
Affiliation(s)
- Jan M Williams
- University of Mississippi Medical Center, Department of Pharmacology and Toxicology, 2500 North State St, Jackson, MS 39216, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Csépányi-Kömi R, Lévay M, Ligeti E. Small G proteins and their regulators in cellular signalling. Mol Cell Endocrinol 2012; 353:10-20. [PMID: 22108439 DOI: 10.1016/j.mce.2011.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 09/27/2011] [Accepted: 11/07/2011] [Indexed: 01/04/2023]
Abstract
Small molecular weight GTPases (small G proteins) are essential in the transduction of signals from different plasma membrane receptors. Due to their endogenous GTP-hydrolyzing activity, these proteins function as time-dependent biological switches controlling diverse cellular functions including cell shape and migration, cell proliferation, gene transcription, vesicular transport and membrane-trafficking. This review focuses on endocrine diseases linked to small G proteins. We provide examples for the regulation of the activity of small G proteins by various mechanisms such as posttranslational modifications, guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) or guanine nucleotide dissociation inhibitors (GDIs). Finally we summarize endocrine diseases where small G proteins or their regulatory proteins have been revealed as the cause.
Collapse
Affiliation(s)
- Roland Csépányi-Kömi
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | | | | |
Collapse
|
15
|
Association of ARHGEF11 R1467H polymorphism with risk for type 2 diabetes mellitus and insulin resistance in Chinese population. Mol Biol Rep 2011; 38:2499-505. [DOI: 10.1007/s11033-010-0387-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 11/08/2010] [Indexed: 01/25/2023]
|
16
|
Jin QS, Kim SH, Piao SJ, Lim HA, Lee SY, Hong SB, Kim YS, Lee HJ, Nam M. R1467H Variants of Rho Guanine Nucleotide Exchange Factor 11 (ARHGEF11) are Associated with Type 2 Diabetes Mellitus in Koreans. KOREAN DIABETES JOURNAL 2010; 34:368-73. [PMID: 21246010 PMCID: PMC3021113 DOI: 10.4093/kdj.2010.34.6.368] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 09/28/2010] [Indexed: 01/22/2023]
Abstract
Background The human Rho guanine nucleotide exchange factor 11 (ARHGEF11) functions as an activator of Rho GTPases and is thought to influence insulin signaling. The R1467H variant of ARHGEF11 has been reported to be associated with susceptibility to type 2 diabetes mellitus (T2DM) in Western populations. Methods We investigated the effects of the R1467H variant on susceptibility to T2DM as well as related traits in a Korean population. We genotyped the R1467H (rs945508) of ARHGEF11 in 689 unrelated T2DM patients and 249 non-diabetic individuals and compared the clinical and biochemical characteristics according to different alleles. Results The H allele was significantly more frequent in T2DM cases than in controls (P = 0.037, 17.1% and 13.1%; respectively). H homozygocity was associated with a higher risk of T2DM compared to those with R/R or R/H genotype (odds ratio, 5.24; 95% confidence interval, 1.06 to 25.83; P = 0.042). The fasting plasma glucose, HbA1c, fasting insulin, HOMA2-IR and HOMA2-%β levels did not differ significantly between different genotypes. Conclusion Our study replicated associations of the ARHGEF11 polymorphism with increased risk of T2DM in a Korean population and thus supports previous data implicating a potential role of ARHGEF11 in the etiology of T2DM. Further studies revealing the underlying mechanism for this association are needed.
Collapse
Affiliation(s)
- Qing Song Jin
- Diabetes Clinical Research Center, Inha University Hospital, Incheon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pilot-Storck F, Chopin E, Rual JF, Baudot A, Dobrokhotov P, Robinson-Rechavi M, Brun C, Cusick ME, Hill DE, Schaeffer L, Vidal M, Goillot E. Interactome mapping of the phosphatidylinositol 3-kinase-mammalian target of rapamycin pathway identifies deformed epidermal autoregulatory factor-1 as a new glycogen synthase kinase-3 interactor. Mol Cell Proteomics 2010; 9:1578-93. [PMID: 20368287 DOI: 10.1074/mcp.m900568-mcp200] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The phosphatidylinositol 3-kinase-mammalian target of rapamycin (PI3K-mTOR) pathway plays pivotal roles in cell survival, growth, and proliferation downstream of growth factors. Its perturbations are associated with cancer progression, type 2 diabetes, and neurological disorders. To better understand the mechanisms of action and regulation of this pathway, we initiated a large scale yeast two-hybrid screen for 33 components of the PI3K-mTOR pathway. Identification of 67 new interactions was followed by validation by co-affinity purification and exhaustive literature curation of existing information. We provide a nearly complete, functionally annotated interactome of 802 interactions for the PI3K-mTOR pathway. Our screen revealed a predominant place for glycogen synthase kinase-3 (GSK3) A and B and the AMP-activated protein kinase. In particular, we identified the deformed epidermal autoregulatory factor-1 (DEAF1) transcription factor as an interactor and in vitro substrate of GSK3A and GSK3B. Moreover, GSK3 inhibitors increased DEAF1 transcriptional activity on the 5-HT1A serotonin receptor promoter. We propose that DEAF1 may represent a therapeutic target of lithium and other GSK3 inhibitors used in bipolar disease and depression.
Collapse
Affiliation(s)
- Fanny Pilot-Storck
- UMR5239 Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
The role of rho kinase in sex-dependent vascular dysfunction in type 1 diabetes. EXPERIMENTAL DIABETES RESEARCH 2010; 2010:176361. [PMID: 20368772 PMCID: PMC2846338 DOI: 10.1155/2010/176361] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 12/01/2009] [Accepted: 01/14/2010] [Indexed: 11/18/2022]
Abstract
We hypothesized that rho/rho kinase plays a role in sex differences in vascular dysfunction of diabetics. Contractions to serotonin were greater in isolated aortic rings from nondiabetic males versus females and increased further in streptozotocin-induced diabetic males but not females. The increased contractions to serotonin in males were reduced by inhibitors of rho kinase (fasudil, Y27632 and H1152) despite no change in expression of rhoA or rho kinase. Contractions to U46619 were not altered by fasudil or Y27632 or the presence of diabetes. In contrast to acute effects of fasudil, chronic treatment with fasudil increased contractions to serotonin in aorta from both non-diabetic and diabetic males. In summary, serotonin-induced contractions were increased in aorta from diabetic males but not females. Although administration of rho kinase inhibitors acutely decreased contractions to serotonin, long-term treatment with fasudil increased contractions. Long-term fasudil treatment may increase compensatory mechanisms to enhance vasoconstrictions.
Collapse
|
19
|
Matsushita T, Ashikawa K, Yonemoto K, Hirakawa Y, Hata J, Amitani H, Doi Y, Ninomiya T, Kitazono T, Ibayashi S, Iida M, Nakamura Y, Kiyohara Y, Kubo M. Functional SNP of ARHGEF10 confers risk of atherothrombotic stroke. Hum Mol Genet 2009; 19:1137-46. [DOI: 10.1093/hmg/ddp582] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
20
|
Gasmi-Seabrook GMC, Marshall CB, Cheung M, Kim B, Wang F, Jang YJ, Mak TW, Stambolic V, Ikura M. Real-time NMR study of guanine nucleotide exchange and activation of RhoA by PDZ-RhoGEF. J Biol Chem 2009; 285:5137-45. [PMID: 20018869 DOI: 10.1074/jbc.m109.064691] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small guanosine triphosphatases (GTPases) become activated when GDP is replaced by GTP at the highly conserved nucleotide binding site. This process is intrinsically very slow in most GTPases but is significantly accelerated by guanine nucleotide exchange factors (GEFs). Nucleotide exchange in small GTPases has been widely studied using spectroscopy with fluorescently tagged nucleotides. However, this method suffers from effects of the bulky fluorescent moiety covalently attached to the nucleotide. Here, we have used a newly developed real-time NMR-based assay to monitor small GTPase RhoA nucleotide exchange by probing the RhoA conformation. We compared RhoA nucleotide exchange from GDP to GTP and GTP analogues in the absence and presence of the catalytic DH-PH domain of PDZ-RhoGEF (DH-PH(PRG)). Using the non-hydrolyzable analogue guanosine-5'-O-(3-thiotriphosphate), which we found to be a reliable mimic of GTP, we obtained an intrinsic nucleotide exchange rate of 5.5 x 10(-4) min(-1). This reaction is markedly accelerated to 1179 x 10(-4) min(-1) in the presence of DH-PH(PRG) at a ratio of 1:8,000 relative to RhoA. Mutagenesis studies confirmed the importance of Arg-868 near a conserved region (CR3) of the Dbl homology (DH) domain and revealed that Glu-741 in CR1 is critical for full activity of DH-PH(PRG), together suggesting that the catalytic mechanism of PDZ-RhoGEF is similar to Tiam1. Mutation of the single RhoA (E97A) residue that contacts the pleckstrin homology (PH) domain rendered the mutant 10-fold less sensitive to the activity of DH-PH(PRG). Interestingly, this mutation does not affect RhoA activation by leukemia-associated RhoGEF (LARG), indicating that the PH domains of these two homologous GEFs may play different roles.
Collapse
Affiliation(s)
- Geneviève M C Gasmi-Seabrook
- Division of Signaling Biology, Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
R1467H variant in the rho guanine nucleotide exchange factor 11 (ARHGEF11) is associated with impaired glucose tolerance and type 2 diabetes in German Caucasians. J Hum Genet 2008; 53:365-367. [DOI: 10.1007/s10038-008-0252-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 01/06/2008] [Indexed: 02/02/2023]
|
22
|
Muller YL, Hanson RL, Zimmerman C, Harper I, Sutherland J, Kobes S, Knowler WC, Bogardus C, Baier LJ. Variants in the Ca V 2.3 (alpha 1E) subunit of voltage-activated Ca2+ channels are associated with insulin resistance and type 2 diabetes in Pima Indians. Diabetes 2007; 56:3089-94. [PMID: 17720895 DOI: 10.2337/db07-0587] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Linkage to type 2 diabetes has been reported on chromosome 1q21-25 in Pima Indians. Fine mapping identified single nucleotide polymorphisms (SNPs) near the CACNA1E gene associated with this disease. CACNA1E encodes the voltage-dependent calcium channel Ca(v)2.3 Ca(2+), and mice lacking this channel exhibit impaired glucose tolerance and insulin secretion. Therefore, CACNA1E was investigated as a positional candidate gene. RESEARCH DESIGN AND METHODS CACNA1E was sequenced, and 28 SNPs were genotyped in the same group of Pima subjects who had been analyzed in the linkage study. Allele-specific expression was used to functionally evaluate a variant in the 3' untranslated region (UTR). RESULTS A novel G/A variant in the 3'-UTR was associated with young-onset type 2 diabetes (odds ratio 2.09 per copy of the G-allele [95% CI 1.31-3.33], adjusted P = 0.001) and had an effect on the evidence for linkage at chromosome 1q21-25 (P = 0.004). Among 372 nondiabetic Pima subjects who had undergone metabolic testing, the risk allele was associated with reduced insulin action including increased fasting, 30, 60, and 120 min plasma glucose concentrations and increased fasting plasma insulin during an oral glucose tolerance test (all P < 0.01), as well as a decreased rate of insulin-stimulated glucose disposal at both physiologically and maximally stimulated insulin concentrations (both P < 0.002). Functional analysis of this variant showed that the nonrisk allele had a 2.3-fold higher expression compared with the risk allele. CONCLUSIONS A functional variant in CACNA1E contributes to type 2 diabetes susceptibility by affecting insulin action. This variant partially explains the linkage to type 2 diabetes on chromosome 1q21-25 in Pima Indians.
Collapse
Affiliation(s)
- Yunhua Li Muller
- Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, 455 North 5th St., Phoenix, AZ 85004, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Taylor KD, Norris JM, Rotter JI. Genome-wide association: which do you want first: the good news, the bad news, or the good news? Diabetes 2007; 56:2844-8. [PMID: 18042761 DOI: 10.2337/db07-1324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kent D Taylor
- Medical Genetics Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Suite 665, West Los Angeles, California 90048-1804, USA
| | | | | |
Collapse
|
24
|
Ma L, Hanson RL, Que LN, Cali AMG, Fu M, Mack JL, Infante AM, Kobes S, Bogardus C, Shuldiner AR, Baier LJ. Variants in ARHGEF11, a candidate gene for the linkage to type 2 diabetes on chromosome 1q, are nominally associated with insulin resistance and type 2 diabetes in Pima Indians. Diabetes 2007; 56:1454-9. [PMID: 17287471 DOI: 10.2337/db06-0640] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A prior genome-wide linkage scan in Pima Indians indicated a young-onset (aged <45 years) type 2 diabetes susceptibility locus on chromosome 1q21-q23. ARHGEF11, which encodes the Rho guanine nucleotide exchange factor 11, was analyzed as a positional candidate gene for this linkage because this protein may stimulate Rho-dependent signals, such as the insulin signaling cascade. The ARHGEF11 gene, and two adjacent genes NTRK1 and INSRR, were sequenced in 24 Pima Indians who were not first-degree relatives. Sequencing of the coding regions, 5' and 3' untranslated regions and putative promoter regions of these genes, identified 28 variants in ARHGEF11, 11 variants in NTRK1, and 8 variants in INSSR. These 47 variants, as well as 84 additional public database variants within/between these genes, were genotyped for association analysis in the same group of Pima Indians who had participated in the linkage study (n = 1,228). An R1467H in ARHGEF11, and several additional noncoding variants that were in high linkage disequilibrium with this variant, were nominally associated with young-onset type 2 diabetes (P = 0.01; odds ratio 3.39) after adjusting for sex, family membership, and Pima heritage. The risk allele H had a frequency of 0.10. In a subgroup of 262 nondiabetic, full-heritage Pima Indians who had undergone detailed metabolic testing, the risk allele H also was associated with a lower mean insulin-mediated glucose disposal rate and a lower mean nonoxidative glucose storage rate after adjusting for age, sex, nuclear family membership, and percentage of body fat (P < or = 0.01). These findings suggest that variation within ARHGEF11 nominally increases risk of type 2 diabetes, possibly as a result of increased insulin resistance.
Collapse
Affiliation(s)
- Lijun Ma
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85004, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The unbiased approach of genome-wide linkage analysis has shown evidence for linkage of type 2 diabetes mellitus to the chromosome 1q21-25 region in at least eight independent studies. More than 26 candidate genes have already been evaluated, but to date none explain the evidence for linkage in this gene-dense region. Considerable data suggest that multiple genes account for this linkage result. The search for these genes is now the focus of an international consortium of groups reporting linkage of type 2 diabetes to this region of chromosome 1q21-q25.
Collapse
Affiliation(s)
- Swapan Kumar Das
- John L. McClellan Veterans Hospital, Endocrinology 111J-1/LR, 4301 West 7th Street, Little Rock, AR 72205, USA
| | | |
Collapse
|