1
|
Yuanyuan G, Wang D, Hao Y, Guan Y, Bu H, Wang H. Study on serum vitamin A level in patients with type 1 diabetes: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e40029. [PMID: 39465858 PMCID: PMC11479461 DOI: 10.1097/md.0000000000040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND There is controversy about the relationship between type 1 diabetes and vitamin A (VA) levels in the body. Through meta-analysis, the results of related studies can be aggregated to more accurately estimate the relationship between type 1 diabetes mellitus (T1DM) patients and the level of VA in the body. METHODS Our purpose is to review the study to investigate VA levels in type T1DM patients and to provide recommendations for future studies. Until January 2024, we searched the National Library of Medicine (PubMed), Cochrane Library, Embase Databases, Web of Sciences, Scopus, China National Knowledge Infrastructure (CNKI), VIP databases (VIP) and WAN FANG databases. After a systematic search, 8 case-control studies were included in our meta-analysis. In the process of data inclusion and extraction, the 2 reviewers selected literature independently of each other. In this study, RevMan5.3 software was used for meta-analysis. RESULTS Eight case-control studies involving 689 participants were screened. The results after meta-analysis showed that there was a significant difference in serum VA between the patients with T1DM and the control group (standardized mean difference [SMD] = -0.82, 95% CI [-1.29, -0.36], P < .001, random effects model) with significant heterogeneity among these studies (P < .001, I2 = 84%). Similarly, the difference in the high-performance liquid chromatography (HPLC) subgroup on serum VA (SMD = -0.99, 95% CI [-1.60, -0.38], P = .002) as well as the difference in the countries of Asia and Europe subgroup on serum VA (SMD = -0.60, 95% CI [-1.15, -0.05], P = .03; SMD = -1.06, 95% CI [-1.88, -0.24], P = .01) were suggested to be statistically significant. A significant result was also observed in the National Diabetes Data Group (NDDG) criteria subgroup (SMD = -0.48, 95% CI [-0.85, -0.12]). CONCLUSION Serum VA levels seem to have decreased in T1DM patients. Further research is needed to strengthen this finding and clarify possible impact mechanisms.
Collapse
Affiliation(s)
- Guan Yuanyuan
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongjun Wang
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Hao
- Department of Traditional Chinese Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Yun Guan
- Crawford School of Public Policy, Asia and Pacific College, Australian National University, Canberra, Australia
| | - Huaien Bu
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongwu Wang
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Jeong M, Cortopassi F, See JX, De La Torre C, Cerwenka A, Stojanovic A. Vitamin A-treated natural killer cells reduce interferon-gamma production and support regulatory T-cell differentiation. Eur J Immunol 2024; 54:e2250342. [PMID: 38593338 DOI: 10.1002/eji.202250342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes that contribute to immune responses against stressed, transformed, or infected cells. NK cell effector functions are regulated by microenvironmental factors, including cytokines, metabolites, and nutrients. Vitamin A is an essential micronutrient that plays an indispensable role in embryogenesis and development, but was also reported to regulate immune responses. However, the role of vitamin A in regulating NK cell functions remains poorly understood. Here, we show that the most prevalent vitamin A metabolite, all-trans retinoic acid (atRA), induces transcriptional and functional changes in NK cells leading to altered metabolism and reduced IFN-γ production in response to a wide range of stimuli. atRA-exposed NK cells display a reduced ability to support dendritic cell (DC) maturation and to eliminate immature DCs. Moreover, they support the polarization and proliferation of regulatory T cells. These results imply that in vitamin A-enriched environments, NK cells can acquire functions that might promote tolerogenic immunity and/or immunosuppression.
Collapse
Affiliation(s)
- Mingeum Jeong
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Francesco Cortopassi
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jia-Xiang See
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ana Stojanovic
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
3
|
Khandelwal P, Langenberg L, Luebbering N, Lake KE, Butcher A, Bota K, Ramos KN, Taggart C, Choe H, Vasu S, Teusink-Cross A, Koo J, Wallace G, Romick-Rosendale L, Watanabe-Chailland M, Haslam DB, Lane A, Davies SM. A randomized phase 2 trial of oral vitamin A for graft-versus-host disease in children and young adults. Blood 2024; 143:1181-1192. [PMID: 38227933 DOI: 10.1182/blood.2023022865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
ABSTRACT Vitamin A plays a key role in the maintenance of gastrointestinal homeostasis and promotes a tolerogenic phenotype in tissue resident macrophages. We conducted a prospective randomized double-blinded placebo-controlled clinical trial in which 80 recipients of hematopoietic stem cell transplantation (HSCT) were randomized 1:1 to receive pretransplant high-dose vitamin A or placebo. A single oral dose of vitamin A of 4000 IU/kg, maximum 250 000 IU was given before conditioning. The primary end point was incidence of acute graft-versus-host disease (GVHD) at day +100. In an intent-to-treat analysis, incidence of acute GVHD was 12.5% in the vitamin A arm and 20% in the placebo arm (P = .5). Incidence of acute gastrointestinal (GI) GVHD was 2.5% in the vitamin A arm (P = .09) and 12.5% in the placebo arm at day +180. Incidence of chronic GVHD was 5% in the vitamin A arm and 15% in the placebo arm (P = .02) at 1 year. In an "as treated" analysis, cumulative incidence of acute GI GVHD at day +180 was 0% and 12.5% in recipients of vitamin A and placebo, respectively (P = .02), and cumulative incidence of chronic GVHD was 2.7% and 15% in recipients of vitamin A and placebo, respectively (P = .01). The only possibly attributable toxicity was asymptomatic grade 3 hyperbilirubinemia in 1 recipient of vitamin A at day +30, which self-resolved. Absolute CCR9+ CD8+ effector memory T cells, reflecting gut T-cell trafficking, were lower in the vitamin A arm at day +30 after HSCT (P = .01). Levels of serum amyloid A-1, a vitamin A transport protein with proinflammatory effects, were lower in the vitamin A arm. The vitamin A arm had lower interleukin-6 (IL-6), IL-8, and suppressor of tumorigenicity 2 levels and likely a more favorable gut microbiome and short chain fatty acids. Pre-HSCT oral vitamin A is inexpensive, has low toxicity, and reduces GVHD. This trial was registered at www.ClinicalTrials.gov as NCT03202849.
Collapse
Affiliation(s)
- Pooja Khandelwal
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Lucille Langenberg
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Nathan Luebbering
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Kelly E Lake
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Abigail Butcher
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kylie Bota
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Kristie N Ramos
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Cynthia Taggart
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Hannah Choe
- Division of Hematology, The Ohio State Comprehensive Cancer Center, Columbus OH
| | - Sumithira Vasu
- Division of Hematology, The Ohio State Comprehensive Cancer Center, Columbus OH
| | - Ashley Teusink-Cross
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
- Division of Pharmacy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Jane Koo
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Gregory Wallace
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Lindsey Romick-Rosendale
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Miki Watanabe-Chailland
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - David B Haslam
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
- Divison of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Adam Lane
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Stella M Davies
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| |
Collapse
|
4
|
Abdelhamid L, Alajoleen R, Kingsmore KM, Cabana-Puig X, Lu R, Zhu J, Testerman JC, Li Y, Ross AC, Cecere TE, Reilly CM, Grammer AC, Lipsky PE, Luo XM. Hypovitaminosis A Drives the Progression of Tubulointerstitial Lupus Nephritis through Potentiating Predisease Cellular Autoreactivity. Immunohorizons 2023; 7:17-29. [PMID: 36637518 PMCID: PMC10563393 DOI: 10.4049/immunohorizons.2200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 12/12/2022] [Indexed: 01/14/2023] Open
Abstract
Vitamin A (VA) deficiency (VAD) is observed in both humans and mice with lupus nephritis. However, whether VAD is a driving factor for accelerated progression of lupus nephritis is unclear. In this study, we investigated the effect of VAD on the progression of lupus nephritis in a lupus-prone mouse model, MRL/lpr. We initiated VAD either during gestation or after weaning to reveal a potential time-dependent effect. We found exacerbated lupus nephritis at ∼15 wk of age with both types of VAD that provoked tubulointerstitial nephritis leading to renal failure. This was concomitant with significantly higher mortality in all VAD mice. Importantly, restoration of VA levels after weaning reversed VAD-induced mortality. These results suggest VAD-driven acceleration of tubulointerstitial lupus nephritis. Mechanistically, at the earlier time point of 7 wk of age and before the onset of clinical lupus nephritis, continued VAD (from gestation until postweaning) enhanced plasma cell activation and augmented their autoantibody production, while also increasing the expansion of T lymphocytes that could promote plasma cell autoreactivity. Moreover, continued VAD increased the renal infiltration of plasmacytoid dendritic cells. VAD initiated after weaning, in contrast, showed modest effects on autoantibodies and renal plasmacytoid dendritic cells that were not statistically significant. Remarkably, analysis of gene expression in human kidney revealed that the retinoic acid pathway was decreased in the tubulointerstitial region of lupus nephritis, supporting our findings in MRL/lpr mice. Future studies will elucidate the underlying mechanisms of how VAD modulates cellular functions to exacerbate tubulointerstitial lupus nephritis.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
- Department of Microbiology, College of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Razan Alajoleen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | | | - Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Jing Zhu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - James C. Testerman
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Yaqi Li
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA; and
| | - A. Catharine Ross
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA; and
| | - Thomas E. Cecere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Christopher M. Reilly
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Blacksburg, VA
| | | | | | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
5
|
Song J, Hu L, Liu B, Jiang N, Huang H, Luo J, Wang L, Zeng J, Huang F, Huang M, Cai L, Tang L, Chen S, Chen Y, Wu A, Zheng S, Chen Q. The Emerging Role of Immune Cells and Targeted Therapeutic Strategies in Diabetic Wounds Healing. J Inflamm Res 2022; 15:4119-4138. [PMID: 35898820 PMCID: PMC9309318 DOI: 10.2147/jir.s371939] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Poor wound healing in individuals with diabetes has long plagued clinicians, and immune cells play key roles in the inflammation, proliferation and remodeling that occur in wound healing. When skin integrity is damaged, immune cells migrate to the wound bed through the actions of chemokines and jointly restore tissue homeostasis and barrier function by exerting their respective biological functions. An imbalance of immune cells often leads to ineffective and disordered inflammatory responses. Due to the maladjusted microenvironment, the wound is unable to smoothly transition to the proliferation and remodeling stage, causing it to develop into a chronic refractory wound. However, chronic refractory wounds consistently lead to negative outcomes, such as long treatment cycles, high hospitalization rates, high medical costs, high disability rates, high mortality rates, and many adverse consequences. Therefore, strategies that promote the rational distribution and coordinated development of immune cells during wound healing are very important for the treatment of diabetic wounds (DW). Here, we explored the following aspects by performing a literature review: 1) the current situation of DW and an introduction to the biological functions of immune cells; 2) the role of immune cells in DW; and 3) existing (or undeveloped) therapies targeting immune cells to promote wound healing to provide new ideas for basic research, clinical treatment and nursing of DW.
Collapse
Affiliation(s)
- Jianying Song
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Lixin Hu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Bo Liu
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Nan Jiang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Houqiang Huang
- Department of Nursing, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - JieSi Luo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jing Zeng
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Feihong Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Min Huang
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Luyao Cai
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Lingyu Tang
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Shunli Chen
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yinyi Chen
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Silin Zheng
- Department of Nursing, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Qi Chen
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| |
Collapse
|
6
|
RodanSarohan A, Akelma H, Araç E, Aslan Ö, Cen O. Retinol Depletion in COVID-19. CLINICAL NUTRITION OPEN SCIENCE 2022; 43:85-94. [PMID: 35664529 PMCID: PMC9142171 DOI: 10.1016/j.nutos.2022.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
Background and aims COVID-19 has been a devastating pandemic. There are indications that vitamin A is depleted during infections. Vitamin A is important in development and immune homeostasis. It has been used successfully in measles, RSV and AIDS infections. In this study, we aimed to measure the serum retinol levels in severe COVID-19 patients to assess the importance of vitamin A in the COVID-19 pathogenesis. Methods The serum retinol level was measured in two groups of patients: the COVID-19 group, which consisted of 27 severe COVID-19 patients hospitalized in the intensive care unit with respiratory failure, and the control group, which consisted of 23 patients without COVID-19 symptoms. Results The mean serum retinol levels were 0.37 mg/L in the COVID-19 group and 0.52 mg/L in the control group. The difference between the serum retinol levels in the two groups was statistically significant. There was no significant difference in retinol levels between different ages and genders within the COVID-19 group. Comorbidity did not affect serum retinol levels. Conclusion The serum retinol level was significantly lower in patients with severe COVID-19, and this difference was independent of age or underlying comorbidity. Our data show that retinol and retinoic acid signaling might be important in immunopathogenesis of COVID-19.
Collapse
|
7
|
Luo Y, Bednarek J, Chaidez A, Atif S, Wang D, Mack CL. Regulatory T Cell (Treg) Cytotoxic T Lymphocyte-associated Antigen-4 Deficits in Biliary Atresia (BA) and Disease Rescue With Treg Augmentation in Murine BA. GASTRO HEP ADVANCES 2022; 1:461-470. [PMID: 39131670 PMCID: PMC11307853 DOI: 10.1016/j.gastha.2021.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 08/13/2024]
Abstract
Background and Aims Biliary atresia (BA) entails an inflammatory injury of the biliary tree, leading to fibrosis of the extrahepatic and intrahepatic bile ducts. The chronic inflammatory biliary injury may be due to lack of appropriate regulatory T cell (Treg) suppression of inflammation. The aims of the study were to characterize Treg deficits in human BA and to determine if Treg augmentation therapy improved outcomes in the rhesus rotavirus (RRV)-induced mouse model of BA. Methods Immunophenotyping of human peripheral blood and liver Tregs was performed with flow cytometry, Vectra-6 multicolor immunohistochemistry (IHC), and real-time polymerase chain reaction. Measured outcomes of Treg augmentation with the interleukin-2 monoclonal antibody JES6-1/interleukin-2 in the RRV-induced mouse model of BA included survival, direct bilirubin, IHC, and liver flow cytometry. Results Patients with BA had decreased peripheral blood Treg frequency and lack of cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) upregulation despite a highly activated, effector Treg phenotype. IHC revealed decreased liver Treg frequency and Treg CTLA-4 expression. Treg augmentation in the murine model led to increased survival, decreased direct bilirubin levels and liver inflammation, and expansion of resident macrophages. In addition to the M2 phenotype of resident macrophages, these cells adopted an inflammatory M1 phenotype in response to RRV infection, which was inhibited with Treg augmentation. Conclusion Patients with BA have Treg deficiencies associated with lack of sufficient CTLA-4 expression that is necessary for cell-cell contact inhibition of inflammatory responses. Treg augmentation therapy in murine BA protected from disease. Future treatment trials for BA should include agents that enhance Treg number or function, mimic CTLA-4 function, and promote anti-inflammatory M2 macrophage phenotypes.
Collapse
Affiliation(s)
- Yuhuan Luo
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine. Aurora, Colorado
| | - Joseph Bednarek
- Department of Pathology, University of Utah. Salt Lake City, Utah
| | - Alexander Chaidez
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine. Aurora, Colorado
| | - Shaikh Atif
- Division of Allergy & Immunology, Department of Medicine, University of Colorado School of Medicine. Aurora, Colorado
| | - Dong Wang
- University of Colorado School of Medicine. Aurora, Colorado
| | - Cara L. Mack
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine. Aurora, Colorado
| |
Collapse
|
8
|
Napoli JL. Retinoic Acid: Sexually Dimorphic, Anti-Insulin and Concentration-Dependent Effects on Energy. Nutrients 2022; 14:1553. [PMID: 35458115 PMCID: PMC9027308 DOI: 10.3390/nu14081553] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/26/2022] Open
Abstract
This review addresses the fasting vs. re-feeding effects of retinoic acid (RA) biosynthesis and functions, and sexually dimorphic RA actions. It also discusses other understudied topics essential for understanding RA activities-especially interactions with energy-balance-regulating hormones, including insulin and glucagon, and sex hormones. This report will introduce RA homeostasis and hormesis to provide context. Essential context also will encompass RA effects on adiposity, muscle function and pancreatic islet development and maintenance. These comments provide background for explaining interactions among insulin, glucagon and cortisol with RA homeostasis and function. One aim would clarify the often apparent RA contradictions related to pancreagenesis vs. pancreas hormone functions. The discussion also will explore the adverse effects of RA on estrogen action, in contrast to the enhancing effects of estrogen on RA action, the adverse effects of androgens on RA receptors, and the RA induction of androgen biosynthesis.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, The University of California-Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
9
|
Lu J, Wang D, Ma B, Gai X, Kang X, Wang J, Xiong K. Blood retinol and retinol-binding protein concentrations are associated with diabetes: a systematic review and meta-analysis of observational studies. Eur J Nutr 2022; 61:3315-3326. [PMID: 35318493 DOI: 10.1007/s00394-022-02859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 03/02/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE The associations between blood retinol, retinol-binding protein (RBP) concentrations and diabetes mellitus were inconsistent in literature. The objective is to investigate these associations by a systematic review and meta-analysis and provide basis for clinical intervention. METHODS PubMed, Web of science, and Cochrane databases were searched from the beginning to July 1, 2021. A total of 13 studies on retinol and 31 studies on RBP are included in the current meta-analysis. RESULTS The blood retinol concentration was significantly lower in the type I diabetes mellitus (T1DM) [standardized mean difference (SMD) (95% CI): - 0.59 (- 0.81, - 0.37), P < 0.01] and gestational diabetes mellitus (GDM) patients [SMD (95% CI): - 0.54 (- 0.87, - 0.20), P < 0.01] than in the controls. However, the difference was not significant between the type II diabetes mellitus (T2DM) patients and the controls. The RBP concentration was significantly higher in the diabetic patients than in the controls [SMD (95% CI): 0.24 (0.12, 0.35), P < 0.01]. Particularly, the RBP concentration was significantly higher in the T2DM and GDM patients. CONCLUSION The blood retinol concentration was negatively associated with T1DM and GDM, while the blood RBP concentration was positively associated with T2DM and GDM. Future work should use a more sensitive retinol measurement method like retinol isotope dilution method to confirm whether blood retinol concentration differs between the diabetes patients and the controls.
Collapse
Affiliation(s)
- Jialin Lu
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Dandan Wang
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Baolan Ma
- Health Management Center, The 971 Naval Hospital, Qingdao, Shandong, China
| | - Xiaochun Gai
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Xiao Kang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Jinyu Wang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Ke Xiong
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
10
|
Carey ST, Gammon JM, Jewell CM. Biomaterial-enabled induction of pancreatic-specific regulatory T cells through distinct signal transduction pathways. Drug Deliv Transl Res 2021; 11:2468-2481. [PMID: 34611846 PMCID: PMC8581478 DOI: 10.1007/s13346-021-01075-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Autoimmune diseases-where the immune system mistakenly targets self-tissue-remain hindered by non-specific therapies. For example, even molecularly specific monoclonal antibodies fail to distinguish between healthy cells and self-reactive cells. An experimental therapeutic approach involves delivery of self-molecules targeted by autoimmunity, along with immune modulatory signals to produce regulatory T cells (TREG) that selectively stop attack of host tissue. Much has been done to increase the efficiency of signal delivery using biomaterials, including encapsulation in polymer microparticles (MPs) to allow for co-delivery and cargo protection. However, less research has compared particles encapsulating drugs that target different TREG inducing pathways. In this paper, we use poly (lactic-co-glycolide) (PLGA) to co-encapsulate type 1 diabetes (T1D)-relevant antigen and 3 distinct TREG-inducing molecules - rapamycin (Rapa), all-trans retinoic acid (atRA), and butyrate (Buty) - that target the mechanistic target of Rapa (mTOR), the retinoid pathway, and histone deacetylase (HDAC) inhibition, respectively. We show all formulations are effectively taken up by antigen presenting cells (APCs) and that antigen-containing formulations are able to induce proliferation in antigen-specific T cells. Further, atRA and Rapa MP formulations co-loaded with antigen decrease APC activation levels, induce TREG differentiation, and reduce inflammatory cytokines in pancreatic-reactive T cells.
Collapse
Affiliation(s)
- Sean T Carey
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Joshua M Gammon
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
- US Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, 21201, USA.
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, 20742, USA.
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA.
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
11
|
Sarohan AR, Kızıl M, İnkaya AÇ, Mahmud S, Akram M, Cen O. A novel hypothesis for COVID-19 pathogenesis: Retinol depletion and retinoid signaling disorder. Cell Signal 2021; 87:110121. [PMID: 34438017 PMCID: PMC8380544 DOI: 10.1016/j.cellsig.2021.110121] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023]
Abstract
The SARS-CoV-2 virus has caused a worldwide COVID-19 pandemic. In less than a year and a half, more than 200 million people have been infected and more than four million have died. Despite some improvement in the treatment strategies, no definitive treatment protocol has been developed. The pathogenesis of the disease has not been clearly elucidated yet. A clear understanding of its pathogenesis will help develop effective vaccines and drugs. The immunopathogenesis of COVID-19 is characteristic with acute respiratory distress syndrome and multiorgan involvement with impaired Type I interferon response and hyperinflammation. The destructive systemic effects of COVID-19 cannot be explained simply by the viral tropism through the ACE2 and TMPRSS2 receptors. In addition, the recently identified mutations cannot fully explain the defect in all cases of Type I interferon synthesis. We hypothesize that retinol depletion and resulting impaired retinoid signaling play a central role in the COVID-19 pathogenesis that is characteristic for dysregulated immune system, defect in Type I interferon synthesis, severe inflammatory process, and destructive systemic multiorgan involvement. Viral RNA recognition mechanism through RIG-I receptors can quickly consume a large amount of the body's retinoid reserve, which causes the retinol levels to fall below the normal serum levels. This causes retinoid insufficiency and impaired retinoid signaling, which leads to interruption in Type I interferon synthesis and an excessive inflammation. Therefore, reconstitution of the retinoid signaling may prove to be a valid strategy for management of COVID-19 as well for some other chronic, degenerative, inflammatory, and autoimmune diseases.
Collapse
Affiliation(s)
- Aziz Rodan Sarohan
- Department of Obstetrics and Gynecology, Medicina Plus Medical Center, 75. Yıl Mah., İstiklal Cad. 1305 Sk., No: 16 Sultangazi, İstanbul, Turkey.
| | - Murat Kızıl
- Department of Chemistry, Faculty of Science, Dicle University. Diyarbakır, Turkey
| | - Ahmet Çağkan İnkaya
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey
| | - Shokhan Mahmud
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Muhammad Akram
- Department of Eastern Medicine Government College, University Faisalabad, Pakistan
| | - Osman Cen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America; Department of Natural Sciences and Engineering, John Wood College, Quincy, IL, United States of America
| |
Collapse
|
12
|
Juin SK, Pushpakumar S, Sen U. GYY4137 Regulates Extracellular Matrix Turnover in the Diabetic Kidney by Modulating Retinoid X Receptor Signaling. Biomolecules 2021; 11:biom11101477. [PMID: 34680110 PMCID: PMC8533431 DOI: 10.3390/biom11101477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic kidney is associated with an accumulation of extracellular matrix (ECM) leading to renal fibrosis. Dysregulation of retinoic acid metabolism involving retinoic acid receptors (RARs) and retinoid X receptors (RXRs) has been shown to play a crucial role in diabetic nephropathy (DN). Furthermore, RARs and peroxisome proliferator-activated receptor γ (PPARγ) are known to control the RXR-mediated transcriptional regulation of several target genes involved in DN. Recently, RAR and RXR have been shown to upregulate plasminogen activator inhibitor-1 (PAI-1), a major player involved in ECM accumulation and renal fibrosis during DN. Interestingly, hydrogen sulfide (H2S) has been shown to ameliorate adverse renal remodeling in DN. We investigated the role of RXR signaling in the ECM turnover in diabetic kidney, and whether H2S can mitigate ECM accumulation by modulating PPAR/RAR-mediated RXR signaling. We used wild-type (C57BL/6J), diabetic (C57BL/6-Ins2Akita/J) mice and mouse mesangial cells (MCs) as experimental models. GYY4137 was used as a H2S donor. Results showed that in diabetic kidney, the expression of PPARγ was decreased, whereas upregulations of RXRα, RXRβ, and RARγ1 expression were observed. The changes were associated with elevated PAI-1, MMP-9 and MMP-13. In addition, the expressions of collagen IV, fibronectin and laminin were increased, whereas elastin expression was decreased in the diabetic kidney. Excessive collagen deposition was observed predominantly in the peri-glomerular and glomerular regions of the diabetic kidney. Immunohistochemical localization revealed elevated expression of fibronectin and laminin in the glomeruli of the diabetic kidney. GYY4137 reversed the pathological changes. Similar results were observed in in vitro experiments. In conclusion, our data suggest that RXR signaling plays a significant role in ECM turnover, and GYY4137 modulates PPAR/RAR-mediated RXR signaling to ameliorate PAI-1-dependent adverse ECM turnover in DN.
Collapse
Affiliation(s)
| | | | - Utpal Sen
- Correspondence: ; Tel.: +1-502-852-2030; Fax: +1-502-852-6239
| |
Collapse
|
13
|
Jia LL, Zhang M, Liu H, Sun J, Pan LL. Early-life fingolimod treatment improves intestinal homeostasis and pancreatic immune tolerance in non-obese diabetic mice. Acta Pharmacol Sin 2021; 42:1620-1629. [PMID: 33473182 PMCID: PMC8463616 DOI: 10.1038/s41401-020-00590-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
Fingolimod has beneficial effects on multiple diseases, including type 1 diabetes (T1D) and numerous preclinical models of colitis. Intestinal dysbiosis and intestinal immune dysfunction contribute to disease pathogenesis of T1D. Thus, the beneficial effect of fingolimod on T1D may occur via the maintenance of intestinal homeostasis to some extent. Herein, we investigated the role of fingolimod in intestinal dysfunction in non-obese diabetic (NOD) mice and possible mechanisms. NOD mice were treated with fingolimod (1 mg · kg-1 per day, i.g.) from weaning (3-week-old) to 31 weeks of age. We found that fingolimod administration significantly enhanced the gut barrier (evidenced by enhanced expression of tight junction proteins and reduced intestinal permeability), attenuated intestinal microbial dysbiosis (evidenced by the reduction of enteric pathogenic Proteobacteria clusters), as well as intestinal immune dysfunction (evidenced by inhibition of CD4+ cells activation, reduction of T helper type 1 cells and macrophages, and the expansion of regulatory T cells). We further revealed that fingolimod administration suppressed the activation of CD4+ cells and the differentiation of T helper type 1 cells, promoted the expansion of regulatory T cells in the pancreas, which might contribute to the maintenance of pancreatic immune tolerance and the reduction of T1D incidence. The protection might be due to fingolimod inhibiting the toll-like receptor 2/4/nuclear factor-κB/NOD-like receptor protein 3 inflammasome pathway in the colon. Collectively, early-life fingolimod treatment attenuates intestinal microbial dysbiosis and intestinal immune dysfunction in the T1D setting, which might contribute to its anti-diabetic effect.
Collapse
Affiliation(s)
- Ling-Ling Jia
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Ming Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - He Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
14
|
Sun T, Xue M, Yang J, Pei Z, Zhang N, Qin K, Liang H. Metabolic regulation mechanism of fucoidan via intestinal microecology in diseases. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4456-4463. [PMID: 33682122 DOI: 10.1002/jsfa.11202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
The intestinal microecology is an extremely complex ecosystem consisting of gut microbiota, intestinal mucosa and the intestinal immune system. The intestinal microecology performs several important functions and is considered to be an essential 'organ' because it plays an important role in regulating human metabolism. Fucoidan contains a large amount of fucose and galactose residues, as well as various other neutral and acidic monosaccharides. Fucoidan particularly effects tumors, inflammatory bowel disease, diabetes and obesity by repairing intestinal mucosal damage and improving the intestinal microecological environment. It has been proposed that fucoidan could be used as a prebiotic agent for pharmaceutical and functional foods. In this review, we elucidate the potential mechanisms of the metabolic regulation of fucoidan with respect to the intestinal microecology of diseases. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting Sun
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Meilan Xue
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Jia Yang
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Zhongqian Pei
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Nan Zhang
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Kunpeng Qin
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University of Medicine, Qingdao, China
| |
Collapse
|
15
|
Sowka A, Dobrzyn P. Role of Perivascular Adipose Tissue-Derived Adiponectin in Vascular Homeostasis. Cells 2021; 10:cells10061485. [PMID: 34204799 PMCID: PMC8231548 DOI: 10.3390/cells10061485] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022] Open
Abstract
Studies of adipose tissue biology have demonstrated that adipose tissue should be considered as both passive, energy-storing tissue and an endocrine organ because of the secretion of adipose-specific factors, called adipokines. Adiponectin is a well-described homeostatic adipokine with metabolic properties. It regulates whole-body energy status through the induction of fatty acid oxidation and glucose uptake. Adiponectin also has anti-inflammatory and antidiabetic properties, making it an interesting subject of biomedical studies. Perivascular adipose tissue (PVAT) is a fat depot that is conterminous to the vascular wall and acts on it in a paracrine manner through adipokine secretion. PVAT-derived adiponectin can act on the vascular wall through endothelial cells and vascular smooth muscle cells. The present review describes adiponectin's structure, receptors, and main signaling pathways. We further discuss recent studies of the extent and nature of crosstalk between PVAT-derived adiponectin and endothelial cells, vascular smooth muscle cells, and atherosclerotic plaques. Furthermore, we argue whether adiponectin and its receptors may be considered putative therapeutic targets.
Collapse
|
16
|
Bahmani L, Baghi M, Peymani M, Javeri A, Ghaedi K. MiR-141-3p and miR-200a-3p are involved in Th17 cell differentiation by negatively regulating RARB expression. Hum Cell 2021; 34:1375-1387. [PMID: 34086186 DOI: 10.1007/s13577-021-00558-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023]
Abstract
Among T helper (Th) lineages differentiated from naïve CD4+ T cells, interleukin (IL)-17-producing Th17 cells are highly correlated with the pathogenesis of autoimmune disorders. This study aimed to clarify the involvement of miR-141-3p and miR-200a-3p in Th17 cell differentiation as well as explore their potential target genes involved. For this purpose, human naïve CD4+ T cells were cultured under Th17 cell polarizing condition. The differentiation process was confirmed through measurement of IL-17 secretion using the ELISA method and assessment of Th17 cell-defining genes expression during the differentiation period. MiR-141-3p and miR-200a-3p downstream genes were identified via consensus and integration in silico approach and their expression pattern and alterations were evaluated by quantitative real-time PCR. Finally, direct interaction between both microRNAs (miRNAs) and their common predicted target sequences was approved by dual-luciferase reporter assay. Highly increased IL-17 secretion and Th17 lineage-specific genes expression confirmed Th17 cell differentiation. Our results have demonstrated that miR-141-3p and miR-200a-3p are Th17 cell-associated miRNAs and their expression level is upregulated significantly during Th17 cell induction. We have also found that retinoic acid receptor beta (RARB) gene, whose product has been reported as a negative regulator of Th17 cell generation, is a direct target of both miRNAs and its downregulation can affect the transcriptional level of JAK/STAT pathway genes. Overall, our results have identified two novel Th17 lineage-associated miRNAs and have provided evidence for the RARB-dependent mechanism of miR-141-3p and miR-200a-3p-induced Th17 cell differentiation and hence Th17-mediated autoimmunity.
Collapse
Affiliation(s)
- Leila Bahmani
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Pajoohesh Blvd., P.O. Code 14965-161, Tehran, Iran
| | - Masoud Baghi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., P.O. Code 81746-73441, Isfahan, Iran.,Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Pajoohesh Blvd., P.O. Code 14965-161, Tehran, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., P.O. Code 81746-73441, Isfahan, Iran.
| |
Collapse
|
17
|
Holl J, Kowalewski C, Zimek Z, Fiedor P, Kaminski A, Oldak T, Moniuszko M, Eljaszewicz A. Chronic Diabetic Wounds and Their Treatment with Skin Substitutes. Cells 2021; 10:cells10030655. [PMID: 33804192 PMCID: PMC8001234 DOI: 10.3390/cells10030655] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
With the global prevalence of type 2 diabetes mellitus steeply rising, instances of chronic, hard-healing, or non-healing diabetic wounds and ulcers are predicted to increase. The growing understanding of healing and regenerative mechanisms has elucidated critical regulators of this process, including key cellular and humoral components. Despite this, the management and successful treatment of diabetic wounds represents a significant therapeutic challenge. To this end, the development of novel therapies and biological dressings has gained increased interest. Here we review key differences between normal and chronic non-healing diabetic wounds, and elaborate on recent advances in wound healing treatments with a particular focus on biological dressings and their effect on key wound healing pathways.
Collapse
Affiliation(s)
- Jordan Holl
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Cezary Kowalewski
- Department of Dermatology and Immunodermatology, Medical University of Warsaw, 02-008 Warsaw, Poland;
| | - Zbigniew Zimek
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
| | - Piotr Fiedor
- Department of General and Transplantation Surgery, Medical University of Warsaw, 02-006 Warsaw, Poland;
| | - Artur Kaminski
- Department of Transplantology and Central Tissue Bank, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Tomasz Oldak
- Polish Stem Cell Bank (PBKM), 00-867 Warsaw, Poland;
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Allergology and Internal Medicine, Medical University of Białystok, 15-276 Białystok, Poland
- Correspondence: (M.M.); (A.E.); Tel.: +48-85-748-59-72 (M.M. & A.E.); Fax: +48-85-748-59-71 (M.M. & A.E.)
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Correspondence: (M.M.); (A.E.); Tel.: +48-85-748-59-72 (M.M. & A.E.); Fax: +48-85-748-59-71 (M.M. & A.E.)
| |
Collapse
|
18
|
El-Mansi AA, Al-Kahtani MA, Rady AM, El-Bealy EA, Al-Asmari AM. Vitamin A and Daucus carota root extract mitigate STZ-induced diabetic retinal degeneration in Wistar albino rats by modulating neurotransmission and downregulation of apoptotic pathways. J Food Biochem 2021; 45:e13688. [PMID: 33687088 DOI: 10.1111/jfbc.13688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/14/2021] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
The objective of our study was to explore the deleterious effects of diabetes on the visual functions of the retina and to address whether the administration of vitamin A and carrot root extract (CE) confer retinal protection in hyperglycemic rats via modulation of oxidative stress, biochemical alternations, and retinal neurotransmission. Fifty male Wistar albino rats weighing 180 ± 12.41 g were randomized into five groups (n = 10): controls, diabetic group (injected with 40 mg/kg dissolved in 0.1 sodium citrate buffer), diabetic group treated with vitamin A (2,500 IU/kg, low dose), diabetic group treated with vitamin (5,000 IU/kg, high dose), and diabetic groups administered CE (200 mg/kg/every other day). Our findings showed that, compared to controls, diabetic rats showed a significant decrease in their retinal thickness, increased apoptotic ganglion cells, and a noticeable degeneration of their synaptic layers. The inner retina displayed increased activity of neovascularization; however, the outer retina exhibited vacuolar degeneration of the photoreceptor cell layer. Our biochemical assessments showed reduced levels of CAT, SOD, and GST along with increased lipid peroxidation. Concurrently, cellular angiogenic and stress markers were significantly elevated associated with increased apoptotic activities as evidenced by increased expressions of annexin-V and PARP. Furthermore, the neurotransmitter content of the retina was altered in diabetic rats compared to controls and diabetic-treated groups. Paradoxically, vitamin A and CE supplementation attenuate these retinal insults in diabetic animals and normalized aforementioned assayed parameters; evidencing that both treatments exerted ameliorative impacts and restored visual functions by diminishing oxidative stress and neuronal degeneration. PRACTICAL APPLICATIONS: Diabetes is a complex disease that involves various physiological perturbations especially visual functions. In our study, we showed that vitamin A and carrot root extract (CE) confer remarkable protection against retinal degeneration in STZ-induced diabetic rats. Our findings showed that the chemical and phytochemical ingredients of the vitamin A and CE substantially attenuated the histopathological changes, oxidative stress, inflammatory reactions, and cellular death in diabetic rats. These favorable changes are attributable to the high content of retinoic acid, carotenoids, and phenolic compounds that effectively regulates the production of visual pigments, increases the antioxidant defense system, and diminishes the pro-inflammatory and apoptotic pathways. Thus, the nutritional values of vitamin A and CE represent promising therapeutic choices to mitigate the retinal-induced diabetic insults.
Collapse
Affiliation(s)
- Ahmed A El-Mansi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - M A Al-Kahtani
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed M Rady
- Biology Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Eman A El-Bealy
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - A M Al-Asmari
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
19
|
All-trans-retinoic acid ameliorates atherosclerosis, promotes perivascular adipose tissue browning, and increases adiponectin production in Apo-E mice. Sci Rep 2021; 11:4451. [PMID: 33627760 PMCID: PMC7904836 DOI: 10.1038/s41598-021-83939-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
All-trans-retinoic acid (atRA), an active metabolite of vitamin A, exerts a potential role in the prevention of cardiovascular diseases. It has been shown that atRA ameliorates atherosclerosis while the exact mechanism underlying this protection remains unknown. This study investigated the influence of atRA on insulin resistance (IR), atherosclerosis, and the process of perivascular adipose tissue (PVAT) browning. Moreover, syntheses of adiponectin, adipokine with anti-atherogenic effects, and tumor necrosis factor-alpha (TNF-α), a pro-inflammatory cytokine, were determined in PVAT. Apolipoprotein E-deficient mice (Apo-E) and control C57BL/6J wild-type mice were treated with atRA (5 mg/kg/day) or vehicle (corn oil) by plastic feeding tubes for 8 weeks. Long-term atRA treatment in Apo-E mice did not affect insulin resistance. AtRa administration ameliorated atherosclerosis, induced PVAT browning, and increased adiponectin production in PVAT in Apo-E mice. Furthermore, atRA increased nitric oxide (NO) level but did not affect adiponectin concentration in the aorta of Apo-E mice. These results indicate that atRA ameliorates atherosclerosis in Apo-E mice. We also observed the browning of PVAT. Besides, atRA increased the synthesis of adiponectin in PVAT and augmented NO level in the aorta in ApoE mice.
Collapse
|
20
|
Rampal R, Wari N, Singh AK, Das U, Bopanna S, Gupta V, Nayak B, Velapandian T, Kedia S, Kumar D, Awasthi A, Ahuja V. Retinoic Acid Is Elevated in the Mucosa of Patients With Active Ulcerative Colitis and Displays a Proinflammatory Role by Augmenting IL-17 and IFNγ Production. Inflamm Bowel Dis 2021; 27:74-83. [PMID: 32469071 DOI: 10.1093/ibd/izaa121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND All-trans retinoic acid (RA) plays a crucial role in promoting Foxp3+ Treg generation while reciprocally inhibiting Th1/Th17 generation. Our previous research highlighted that in the face of inflammatory conditions, RA plays a contrary role where it aggravates intestinal inflammation by promoting interferon (IFN) γ and interleukin (IL)-17 differentiation in vitro. METHODS In this study we translated our in vitro results into a clinical setting where we estimated mucosal and serum RA levels along with the immunophenotypic profile (IL-17, IFNγ, Foxp3, IL-10) in adaptive (CD4, CD8) and innate-like T cells (mucosal associated invariant T cells and γδ T cells) in patients with ulcerative colitis in remission or with active inflammation. RESULTS This is the first study to estimate RA levels in the human gut and shows that patients with active disease had increased mucosal RA levels as compared with patients in remission (4.0 vs 2.5 ng/mL; P < 0.01) and control patients (3.4 vs 0.8 ng/mL; P < 0.0001). This effect was accompanied by significantly elevated IL-17 and IFNγ in tissue CD4+, CD8+, mucosal associated invariant T+ cells, and γδ + T cells. Moreover, the raised RA levels in patients with active disease showed a positive correlation with proinflammatory cytokines (IL-17, IFNγ) and a negative correlation with IL-10. We also found that RA negatively correlated with IL-9, thereby reinstating our previous finding that RA inhibits Th9 differentiation. CONCLUSIONS These data confirm our previous in vitro results that in the presence of inflammation, RA plays a crucial role in maintaining gut inflammation by upregulating proinflammatory markers.
Collapse
Affiliation(s)
- Ritika Rampal
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Nahidul Wari
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Kumar Singh
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Ujjwalkumar Das
- Department of Ocular Pharmacology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sawan Bopanna
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Vipin Gupta
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Baibaswata Nayak
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - T Velapandian
- Department of Ocular Pharmacology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Kedia
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Dhiraj Kumar
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Amit Awasthi
- Centre for Human Microbial Ecology, Translational Heath Science and Technology Institute, Haryana, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
21
|
Zhou Y, Wang H, Zhou J, Qiu S, Cai T, Li H, Shen Z, Hu Y, Ding B, Luo M, Huang R, Yan R, Xu W, He C, Zhang Y, Li F, Sun Z, Ma J. Vitamin A and Its Multi-Effects on Pancreas: Recent Advances and Prospects. Front Endocrinol (Lausanne) 2021; 12:620941. [PMID: 33679618 PMCID: PMC7930481 DOI: 10.3389/fendo.2021.620941] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Vitamin A (VA), which is stored in several forms in most tissues, is required to maintain metabolite homeostasis and other processes, including the visual cycle, energy balance, epithelial cell integrity, and infection resistance. In recent years, VA molecules, also known as retinoids, have been extensively explored and used in the treatment of skin disorders and immune-related tumors. To date, several observational and interventional studies have explored the relationship between VA status and the pathogenesis of diabetes. In particular, VA micronutrients have been shown to regulate pancreatic development, β-cell function, pancreatic innate immune responses, and pancreatic stellate cells phenotypes through multiple mechanisms. However, there are still many problems to be proven or resolved. In this review, we summarize and discuss recent and available evidence on VA biological metabolism in the pancreas. Analysis of the effects of VA on metabolism in the pancreas will contribute to our understanding of the supportive physiological roles of VA in pancreas protection.
Collapse
Affiliation(s)
- Yunting Zhou
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiying Wang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junming Zhou
- Department of Cadre Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shanhu Qiu
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
- Department of Endocrinology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Tingting Cai
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiqin Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ziyang Shen
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yun Hu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bo Ding
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Menghui Luo
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rong Huang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rengna Yan
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Xu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, China
| | - Cong He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yumin Zhang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Fengfei Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Jianhua Ma,
| |
Collapse
|
22
|
Jia L, Cao M, Chen H, Zhang M, Dong X, Ren Z, Sun J, Pan LL. Butyrate Ameliorates Antibiotic-Driven Type 1 Diabetes in the Female Offspring of Nonobese Diabetic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3112-3120. [PMID: 32046486 DOI: 10.1021/acs.jafc.9b07701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Maternal gut dysbiosis affects the development of the offspring immune system. Our previous study has indicated that microbial metabolite butyrate directly shapes pancreatic immune tolerance and dampens type 1 diabetes (T1D) progression. Therefore, maternal butyrate intervention may protect their offspring from maternal gut dysbiosis-accelerated T1D. To test this, pregnant nonobese diabetic (NOD) mice were treated with vancomycin in drinking water with or without a butyrate-supplemented diet during gestation and nursing (oral vancomycin is used to induce maternal gut dysbiosis). Three weeks after delivery, T1D-associated innate and adaptive immune cells were detected to investigate the effects of butyrate on the vancomycin-exacerbated pancreatic immune disorder in dams and pups. The results showed that butyrate inhibited maternal vancomycin-exacerbated secretion of proinflammation cytokines (interferon γ and interleukin-1β) and maternal vancomycin-exacerbated recruitment of interferon γ+ T cells (cytotoxic T lymphocytes 1 cells and T helper type 1 cells) in the pancreas of the female offspring, thus dampening T1D development. The protection may be due to butyrate inhibiting the activation of pancreatic dendritic cells (DCs). Our data thus demonstrate that maternal gut dysbiosis can exacerbate pancreatic-directed autoimmunity in the female offspring through T cell- and DC-associated mechanisms that are inhibited by butyrate.
Collapse
Affiliation(s)
- Lingling Jia
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Minkai Cao
- Department of Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, P. R. China
| | - Hao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Ming Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Xiaoliang Dong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Zhengnan Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| |
Collapse
|
23
|
Conserva MR, Anelli L, Zagaria A, Specchia G, Albano F. The Pleiotropic Role of Retinoic Acid/Retinoic Acid Receptors Signaling: From Vitamin A Metabolism to Gene Rearrangements in Acute Promyelocytic Leukemia. Int J Mol Sci 2019; 20:ijms20122921. [PMID: 31207999 PMCID: PMC6627493 DOI: 10.3390/ijms20122921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
The family of retinoic acid receptors (RARs: RARα, -β, and -γ) has remarkable pleiotropy characteristics, since the retinoic acid/RARs pathway is involved in numerous biological processes not only during embryonic development, but also in the postnatal phase and during adulthood. In this review, we trace the roles of RA/RARs signaling in the immune system (where this pathway has both an immunosuppressive role or is involved in the inflammatory response), in hematopoiesis (enhancing hematopoietic stem cell self-renewal, progenitor cells differentiation or maintaining the bone marrow microenvironment homeostasis), and in bone remodeling (where this pathway seems to have controversial effects on bone formation or osteoclast activation). Moreover, in this review is shown the involvement of RAR genes in multiple chromosomal rearrangements generating different fusion genes in hematological neoplasms, with a particular focus on acute promyelocytic leukemia and its variant subtypes. The effect of different RARs fusion proteins on leukemic transformation, on patients’ outcome, and on therapy response is also discussed.
Collapse
Affiliation(s)
- Maria Rosa Conserva
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| |
Collapse
|
24
|
Abstract
Functional interpretation of noncoding genetic variants identified by genome-wide association studies is a major challenge in human genetics and gene regulation. We generated epigenomics data using primary cells from type 1 diabetes patients. Using these data, we identified and validated multiple novel risk variants for this disease. In addition, our ranked list of candidate risk SNPs represents the most comprehensive annotation based on T1D-specific T-cell data. Because many autoimmune diseases share some genetic underpinnings, our dataset may be used to understand causal noncoding mutations in related autoimmune diseases. Genome-wide association studies (GWASs) have revealed 59 genomic loci associated with type 1 diabetes (T1D). Functional interpretation of the SNPs located in the noncoding region of these loci remains challenging. We perform epigenomic profiling of two enhancer marks, H3K4me1 and H3K27ac, using primary TH1 and TREG cells isolated from healthy and T1D subjects. We uncover a large number of deregulated enhancers and altered transcriptional circuitries in both cell types of T1D patients. We identify four SNPs (rs10772119, rs10772120, rs3176792, rs883868) in linkage disequilibrium (LD) with T1D-associated GWAS lead SNPs that alter enhancer activity and expression of immune genes. Among them, rs10772119 and rs883868 disrupt the binding of retinoic acid receptor α (RARA) and Yin and Yang 1 (YY1), respectively. Loss of binding by YY1 also results in the loss of long-range enhancer–promoter interaction. These findings provide insights into how noncoding variants affect the transcriptomes of two T-cell subtypes that play critical roles in T1D pathogenesis.
Collapse
|
25
|
Gudi R, Perez N, Johnson BM, Sofi MH, Brown R, Quan S, Karumuthil-Melethil S, Vasu C. Complex dietary polysaccharide modulates gut immune function and microbiota, and promotes protection from autoimmune diabetes. Immunology 2019; 157:70-85. [PMID: 30712258 DOI: 10.1111/imm.13048] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
The dietary supplement and prebiotic values of β-glucan-rich products have been widely recognized and dietary approaches for modulating autoimmunity have been increasingly explored, we assess the impact of oral administration of high-purity yeast β-glucan (YBG) on gut immune function, microbiota and type 1 diabetes (T1D) using mouse models. Oral administration of this non-digestible complex polysaccharide caused a dectin-1-dependent immune response involving increased expression of interleukin-10 (IL-10), retinaldehyde dehydrogenase (Raldh) and pro-inflammatory cytokines in the gut mucosa. YBG-exposed intestinal dendritic cells induced/expanded primarily Foxp3+ , IL-10+ and IL-17+ T cells, ex vivo. Importantly, prolonged oral administration of low-dose YBG at pre-diabetic stage suppressed insulitis and significantly delayed the appearance of T1D in non-obese diabetic (NOD) mice. Further, prolonged treatment with YBG showed increased Foxp3+ T-cell frequencies, and a significant change in the gut microbiota, particularly an increase in the abundance of Bacteroidetes and a decrease in the Firmicute members. Oral administration of YBG, together with Raldh-substrate and β-cell antigen, resulted in better protection of NOD mice from T1D. These observations suggest that YBG not only has a prebiotic property, but also an oral tolerogenic-adjuvant-like effect, and these features could be exploited for modulating autoimmunity in T1D.
Collapse
Affiliation(s)
- Radhika Gudi
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | - Benjamin M Johnson
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - M Hanief Sofi
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Robert Brown
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Songhua Quan
- University of Illinois at Chicago, Chicago, IL, USA
| | | | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
26
|
Abdelhamid L, Luo XM. Retinoic Acid, Leaky Gut, and Autoimmune Diseases. Nutrients 2018; 10:E1016. [PMID: 30081517 PMCID: PMC6115935 DOI: 10.3390/nu10081016] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
A leaky gut has been observed in a number of autoimmune diseases including type 1 diabetes, multiple sclerosis, inflammatory bowel disease, and systemic lupus erythematosus. Previous studies from our laboratory have shown that lupus mice also bear a leaky gut and that the intestinal barrier function can be enhanced by gut colonization of probiotics such as Lactobacillus spp. Retinoic acid (RA) can increase the relative abundance of Lactobacillus spp. in the gut. Interestingly, RA has also been shown to strengthen the barrier function of epithelial cells in vitro and in the absence of probiotic bacteria. These reports bring up an interesting question of whether RA exerts protective effects on the intestinal barrier directly or through regulating the microbiota colonization. In this review, we will discuss the roles of RA in immunomodulation, recent literature on the involvement of a leaky gut in different autoimmune diseases, and how RA shapes the outcomes of these diseases.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
27
|
All-Trans Retinoic Acid Induces CD4+CD25+FOXP3+ Regulatory T Cells by Increasing FOXP3 Demethylation in Systemic Sclerosis CD4+ T Cells. J Immunol Res 2018; 2018:8658156. [PMID: 29854846 PMCID: PMC5952589 DOI: 10.1155/2018/8658156] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/03/2018] [Accepted: 02/18/2018] [Indexed: 12/21/2022] Open
Abstract
Background Retinoic acid (RA) is an active metabolite of vitamin A and has been reported to improve the clinical symptoms of patients with systemic sclerosis (SSc). However, the mechanism of RA in the prevention of SSc remains unclear. Regulatory T cells (Tregs) are a subpopulation of T cells with immunosuppressive activity. The quantitative and functional defects of Tregs may mediate the immune dysfunction in SSc. The addition of all-trans retinoic acid (ATRA) to human naïve CD4+ cells could promote the maturation of Tregs and increase the stable expression of Foxp3. In this study, we explored the role of RA on Tregs in SSc CD4+ T cells and its possible epigenetic mechanisms, so as to further understand the mechanisms of RA on SSc. Methods CD4+ T cells were isolated from peripheral blood of SSc and treated with or without ATRA and/or transforming growth factor-β (TGF-β). The percentage of CD4+CD25+FOXP3+ Tregs was counted by flow cytometry. FOXP3 mRNA and protein levels were measured by quantitative real-time reverse transcriptase polymerase chain reaction and Western blotting, respectively. Bisulfite sequencing was performed to determine the methylation status of the FOXP3 proximal promoter sequences. Results The expression of Tregs and FOXP3 in CD4+ T cells from patients with SSc increased in response to ATRA. Moreover, combined stimulation with ATRA and TGF-β resulted in the enhancement of these effects. Further studies revealed that stimulation with ATRA increased the expression of FOXP3 in SSc CD4+ T cells by downregulating FOXP3 promoter methylation levels. Conclusions ATRA acts as an inducer of Treg response in SSc CD4+ T cells via demethylation of the FOXP3 promoter and activation of FOXP3 expression. This may be one of the molecular mechanisms for ATRA, and therefore, RA can be used for the treatment of SSc.
Collapse
|
28
|
Intestinal Immunomodulatory Cells (T Lymphocytes): A Bridge between Gut Microbiota and Diabetes. Mediators Inflamm 2018; 2018:9830939. [PMID: 29713241 PMCID: PMC5866888 DOI: 10.1155/2018/9830939] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/10/2018] [Accepted: 01/28/2018] [Indexed: 12/20/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most familiar chronic diseases threatening human health. Recent studies have shown that the development of diabetes is closely related to an imbalance of the gut microbiota. Accordingly, there is increasing interest in how changes in the gut microbiota affect diabetes and its underlying mechanisms. Immunomodulatory cells play important roles in maintaining the normal functioning of the human immune system and in maintaining homeostasis. Intestinal immunomodulatory cells (IICs) are located in the intestinal mucosa and are regarded as an intermediary by which the gut microbiota affects physiological and pathological properties. Diabetes can be regulated by IICs, which act as a bridge linking the gut microbiota and DM. Understanding this bridge role of IICs may clarify the mechanisms by which the gut microbiota contributes to DM. Based on recent research, we summarize this process, thereby providing a basis for further studies of diabetes and other similar immune-related diseases.
Collapse
|
29
|
Larange A, Cheroutre H. Retinoic Acid and Retinoic Acid Receptors as Pleiotropic Modulators of the Immune System. Annu Rev Immunol 2017; 34:369-94. [PMID: 27168242 DOI: 10.1146/annurev-immunol-041015-055427] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vitamin A is a multifunctional vitamin implicated in a wide range of biological processes. Its control over the immune system and functions are perhaps the most pleiotropic not only for development but also for the functional fate of almost every cell involved in protective or regulatory adaptive or innate immunity. This is especially key at the intestinal border, where dietary vitamin A is first absorbed. Most effects of vitamin A are exerted by its metabolite, retinoic acid (RA), which through ligation of nuclear receptors controls transcriptional expression of RA target genes. In addition to this canonical function, RA and RA receptors (RARs), either as ligand-receptor or separately, play extranuclear, nongenomic roles that greatly expand the multiple mechanisms employed for their numerous and paradoxical functions that ultimately link environmental sensing with immune cell fate. This review discusses RA and RARs and their complex roles in innate and adaptive immunity.
Collapse
Affiliation(s)
- Alexandre Larange
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, La Jolla, California 92037; ,
| | - Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, La Jolla, California 92037; ,
| |
Collapse
|
30
|
Xu LL, Fu HX, Zhang JM, Feng FE, Wang QM, Zhu XL, Xue J, Wang CC, Chen Q, Liu X, Wang YZ, Qin YZ, Kong Y, Chang YJ, Xu LP, Liu KY, Huang XJ, Zhang XH. Impaired Function of Bone Marrow Mesenchymal Stem Cells from Immune Thrombocytopenia Patients in Inducing Regulatory Dendritic Cell Differentiation Through the Notch-1/Jagged-1 Signaling Pathway. Stem Cells Dev 2017; 26:1648-1661. [PMID: 28946811 DOI: 10.1089/scd.2017.0078] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease in which dendritic cells (DCs) play a crucial role in the breakdown of self-tolerance. Studies have identified the function of mesenchymal stem cells (MSCs) in promoting the development of regulatory DCs (regDCs). Our previous work revealed that MSCs in ITP exerted senescence, apoptosis, and impaired immunosuppressive effects on T and B cells. However, it is unclear whether the effects of MSCs on regDC induction are altered in ITP. Our data demonstrated that MSCs in ITP were impaired in inhibiting CD1a+ DC and CD14+ DC differentiation from CD34+ hematopoietic progenitor cells (CD34+ HPCs). DCs differentiated with MSCs in ITP exhibited an increased expression of costimulatory molecules CD80/CD86 and secretion of proinflammatory interleukin-12 (IL-12). Accordingly, the tolerogenic characteristics were deficient in DCs induced by MSCs in ITP. DCs differentiated with MSCs in ITP exhibited an impaired ability to inhibit CD3+ T cell proliferation, to suppress T helper (Th)1 cell differentiation, and to induce anergic and regulatory T cells (Tregs). The expression of Notch signaling components was measured in MSCs in ITP. Reduced expression of the ligand Jagged-1, the receptor Notch-1 intracellular domain (NICD-1), and the target gene Hes-1 was identified in MSCs in ITP. The addition of biologically active Jagged-1 to CD34+ HPCs was observed to promote regDC differentiation. When cultured on Jagged-1-coated plates, MSCs in ITP showed an enhancement of the Notch-1 pathway activation, Jagged-1 expression, and the function in inducing regDCs. Pretreatment with all-trans retinoic acid (ATRA) was found to partially restore the capacity of MSCs in both ITP patients and healthy controls in inducing CD34+-derived regDCs. Our data elucidated that MSCs in ITP were impaired in inducing CD34+-regDCs, associated with the Notch-1/Jagged-1 signaling pathway. ATRA could partially correct the impairment of MSCs, suggesting that ATRA could serve as a potential therapeutic alternative for ITP.
Collapse
Affiliation(s)
- Lin-Lin Xu
- 1 Peking University People's Hospital, Peking University Institute of Hematology , Beijing, China .,2 Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China .,3 Collaborative Innovation Center of Hematology, Peking University , Beijing, China
| | - Hai-Xia Fu
- 1 Peking University People's Hospital, Peking University Institute of Hematology , Beijing, China .,2 Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China .,3 Collaborative Innovation Center of Hematology, Peking University , Beijing, China
| | - Jia-Min Zhang
- 1 Peking University People's Hospital, Peking University Institute of Hematology , Beijing, China .,2 Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China .,3 Collaborative Innovation Center of Hematology, Peking University , Beijing, China
| | - Fei-Er Feng
- 1 Peking University People's Hospital, Peking University Institute of Hematology , Beijing, China .,2 Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China .,3 Collaborative Innovation Center of Hematology, Peking University , Beijing, China
| | - Qian-Ming Wang
- 1 Peking University People's Hospital, Peking University Institute of Hematology , Beijing, China .,2 Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China .,3 Collaborative Innovation Center of Hematology, Peking University , Beijing, China
| | - Xiao-Lu Zhu
- 1 Peking University People's Hospital, Peking University Institute of Hematology , Beijing, China .,2 Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China .,3 Collaborative Innovation Center of Hematology, Peking University , Beijing, China
| | - Jing Xue
- 1 Peking University People's Hospital, Peking University Institute of Hematology , Beijing, China .,2 Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China .,3 Collaborative Innovation Center of Hematology, Peking University , Beijing, China
| | - Chen-Cong Wang
- 1 Peking University People's Hospital, Peking University Institute of Hematology , Beijing, China .,2 Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China .,3 Collaborative Innovation Center of Hematology, Peking University , Beijing, China
| | - Qi Chen
- 1 Peking University People's Hospital, Peking University Institute of Hematology , Beijing, China .,2 Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China .,3 Collaborative Innovation Center of Hematology, Peking University , Beijing, China
| | - Xiao Liu
- 1 Peking University People's Hospital, Peking University Institute of Hematology , Beijing, China .,2 Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China .,3 Collaborative Innovation Center of Hematology, Peking University , Beijing, China
| | - Ya-Zhe Wang
- 1 Peking University People's Hospital, Peking University Institute of Hematology , Beijing, China .,2 Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China .,3 Collaborative Innovation Center of Hematology, Peking University , Beijing, China
| | - Ya-Zhen Qin
- 1 Peking University People's Hospital, Peking University Institute of Hematology , Beijing, China .,2 Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China .,3 Collaborative Innovation Center of Hematology, Peking University , Beijing, China
| | - Yuan Kong
- 1 Peking University People's Hospital, Peking University Institute of Hematology , Beijing, China .,2 Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China .,3 Collaborative Innovation Center of Hematology, Peking University , Beijing, China
| | - Ying-Jun Chang
- 1 Peking University People's Hospital, Peking University Institute of Hematology , Beijing, China .,2 Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China .,3 Collaborative Innovation Center of Hematology, Peking University , Beijing, China
| | - Lan-Ping Xu
- 1 Peking University People's Hospital, Peking University Institute of Hematology , Beijing, China .,2 Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China .,3 Collaborative Innovation Center of Hematology, Peking University , Beijing, China
| | - Kai-Yan Liu
- 1 Peking University People's Hospital, Peking University Institute of Hematology , Beijing, China .,2 Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China .,3 Collaborative Innovation Center of Hematology, Peking University , Beijing, China
| | - Xiao-Jun Huang
- 1 Peking University People's Hospital, Peking University Institute of Hematology , Beijing, China .,2 Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China .,3 Collaborative Innovation Center of Hematology, Peking University , Beijing, China
| | - Xiao-Hui Zhang
- 1 Peking University People's Hospital, Peking University Institute of Hematology , Beijing, China .,2 Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China .,3 Collaborative Innovation Center of Hematology, Peking University , Beijing, China
| |
Collapse
|
31
|
Jia L, Shan K, Pan LL, Feng N, Lv Z, Sun Y, Li J, Wu C, Zhang H, Chen W, Diana J, Sun J, Chen YQ. Clostridium butyricum CGMCC0313.1 Protects against Autoimmune Diabetes by Modulating Intestinal Immune Homeostasis and Inducing Pancreatic Regulatory T Cells. Front Immunol 2017; 8:1345. [PMID: 29097999 PMCID: PMC5654235 DOI: 10.3389/fimmu.2017.01345] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
Recent evidence indicates that indigenous Clostridium species induce colonic regulatory T cells (Tregs), and gut lymphocytes are able to migrate to pancreatic islets in an inflammatory environment. Thus, we speculate that supplementation with the well-characterized probiotics Clostridium butyricum CGMCC0313.1 (CB0313.1) may induce pancreatic Tregs and consequently inhibit the diabetes incidence in non-obese diabetic (NOD) mice. CB0313.1 was administered daily to female NOD mice from 3 to 45 weeks of age. The control group received an equal volume of sterile water. Fasting glucose was measured twice a week. Pyrosequencing of the gut microbiota and flow cytometry of mesenteric lymph node (MLN), pancreatic lymph node (PLN), pancreatic and splenic immune cells were performed to investigate the effect of CB0313.1 treatment. Early oral administration of CB0313.1 mitigated insulitis, delayed the onset of diabetes, and improved energy metabolic dysfunction. Protection may involve increased Tregs, rebalanced Th1/Th2/Th17 cells and changes to a less proinflammatory immunological milieu in the gut, PLN, and pancreas. An increase of α4β7+ (the gut homing receptor) Tregs in the PLN suggests that the mechanism may involve increased migration of gut-primed Tregs to the pancreas. Furthermore, 16S rRNA gene sequencing revealed that CB0313.1 enhanced the Firmicutes/Bacteroidetes ratio, enriched Clostridium-subgroups and butyrate-producing bacteria subgroups. Our results provide the basis for future clinical investigations in preventing type 1 diabetes by oral CB0313.1 administration.
Collapse
Affiliation(s)
- Lingling Jia
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Kai Shan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Ninghan Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Wuxi No. 2 Hospital, Wuxi, China
| | - Zhuwu Lv
- Department of Obstetrics, Nanjing Medical University Affiliated Wuxi Renmin Hospital, Wuxi, China
| | - Yajun Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiahong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chengfei Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Julien Diana
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1151, Institute Necker-Enfants Malades (INEM), Centre National de la Recherche Scienctifique, Unité 8253, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jia Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yong Q. Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
32
|
Qiang Y, Xu J, Yan C, Jin H, Xiao T, Yan N, Zhou L, An H, Zhou X, Shao Q, Xia S. Butyrate and retinoic acid imprint mucosal-like dendritic cell development synergistically from bone marrow cells. Clin Exp Immunol 2017; 189:290-297. [PMID: 28542882 DOI: 10.1111/cei.12990] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2017] [Indexed: 12/27/2022] Open
Abstract
Accumulating data show that the phenotypes and functions of distinctive mucosal dendritic cells (DCs) in the gut are regulated by retinoic acid (RA). Unfortunately, the exact role of butyrate in RA-mediated mucosal DC differentiation has not been elucidated thoroughly to date. Mucosal-like dendritic cell differentiation was completed in vitro by culturing bone marrow cells with growth factors [granulocyte-macrophage colony-stimulating factor (GM-CSF/interleukin (IL)-4], RA and/or butyrate. The phenotypes, cytokine secretion, immune functions and levels of retinal dehydrogenase of different DCs were detected using quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively. The results showed that RA-induced DCs (RA-DCs) showed mucosal DC properties, including expression of CD103 and gut homing receptor α4 β7 , low proinflammatory cytokine secretion and low priming capability to antigen-specific CD4+ T cells. Butyrate-treated RA-DCs (Bu-RA-DCs) decreased CD11c, but increased CD103 and α4 β7 expression. Moreover, the CD4+ T priming capability and the levels of retinal dehydrogenase of RA-DCs were suppressed significantly by butyrate. Thus, butyrate and retinoic acid have different but synergistic regulatory functions on mucosal DC differentiation, indicating that immune homeostasis in the gut depends largely upon RA and butyrate to imprint different mucosal DC subsets, both individually and collectively.
Collapse
Affiliation(s)
- Y Qiang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Institute of Clinic Laboratory Diagnosis, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Clinical Laboratory, the Second People's Hospital of Changzhou Affiliated to Nanjing Medical University, Changzhou, Jiangsu, China
| | - J Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Institute of Clinic Laboratory Diagnosis, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - C Yan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Institute of Clinic Laboratory Diagnosis, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - H Jin
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Institute of Clinic Laboratory Diagnosis, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - T Xiao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Institute of Clinic Laboratory Diagnosis, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - N Yan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Institute of Clinic Laboratory Diagnosis, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - L Zhou
- Institute of Clinic Laboratory Diagnosis, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - H An
- Cancer Institute, Institute of Translational Medicine, Second Military Medical University, Shanghai, China
| | - X Zhou
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Q Shao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Institute of Clinic Laboratory Diagnosis, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - S Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Institute of Clinic Laboratory Diagnosis, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
33
|
Chiasson VL, Pakanati AR, Hernandez M, Young KJ, Bounds KR, Mitchell BM. Regulatory T-Cell Augmentation or Interleukin-17 Inhibition Prevents Calcineurin Inhibitor-Induced Hypertension in Mice. Hypertension 2017; 70:183-191. [PMID: 28584011 DOI: 10.1161/hypertensionaha.117.09374] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/22/2017] [Accepted: 05/02/2017] [Indexed: 12/20/2022]
Abstract
The immunosuppressive calcineurin inhibitors cyclosporine A and tacrolimus alter T-cell subsets and can cause hypertension, vascular dysfunction, and renal toxicity. We and others have reported that cyclosporine A and tacrolimus decrease anti-inflammatory regulatory T cells and increase proinflammatory interleukin-17-producing T cells; therefore, we hypothesized that inhibition of these effects using noncellular therapies would prevent the hypertension, endothelial dysfunction, and renal glomerular injury induced by calcineurin inhibitor therapy. Daily treatment of mice with cyclosporine A or tacrolimus for 1 week significantly decreased CD4+/FoxP3+ regulatory T cells in the spleen and lymph nodes, as well as induced hypertension, vascular injury and dysfunction, and glomerular mesangial expansion in mice. Daily cotreatment with all-trans retinoic acid reported to increase regulatory T cells and decrease interleukin-17-producing T cells, prevented all of the detrimental effects of cyclosporine A and tacrolimus. All-trans retinoic acid also increased regulatory T cells and prevented the hypertension, endothelial dysfunction, and glomerular injury in genetically modified mice that phenocopy calcineurin inhibitor-treated mice (FKBP12-Tie2 knockout). Treatment with an interleukin-17-neutralizing antibody also increased regulatory T-cell levels and prevented the hypertension, endothelial dysfunction, and glomerular injury in cyclosporine A-treated and tacrolimus-treated mice and FKBP12-Tie2 knockout mice, whereas an isotype control had no effect. Augmenting regulatory T cells and inhibiting interleukin-17 signaling using noncellular therapies prevents the cardiovascular and renal toxicity of calcineurin inhibitors in mice.
Collapse
Affiliation(s)
- Valorie L Chiasson
- From the Department of Internal Medicine (V.L.C., A.R.P., M.H., K.J.Y., K.R.B., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center, College of Medicine, Baylor Scott & White Health, Temple
| | - Abhinandan R Pakanati
- From the Department of Internal Medicine (V.L.C., A.R.P., M.H., K.J.Y., K.R.B., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center, College of Medicine, Baylor Scott & White Health, Temple
| | - Marcos Hernandez
- From the Department of Internal Medicine (V.L.C., A.R.P., M.H., K.J.Y., K.R.B., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center, College of Medicine, Baylor Scott & White Health, Temple
| | - Kristina J Young
- From the Department of Internal Medicine (V.L.C., A.R.P., M.H., K.J.Y., K.R.B., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center, College of Medicine, Baylor Scott & White Health, Temple
| | - Kelsey R Bounds
- From the Department of Internal Medicine (V.L.C., A.R.P., M.H., K.J.Y., K.R.B., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center, College of Medicine, Baylor Scott & White Health, Temple
| | - Brett M Mitchell
- From the Department of Internal Medicine (V.L.C., A.R.P., M.H., K.J.Y., K.R.B., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center, College of Medicine, Baylor Scott & White Health, Temple.
| |
Collapse
|
34
|
Ye L, Li L, Wan B, Yang M, Hong J, Gu W, Wang W, Ning G. Immune response after autologous hematopoietic stem cell transplantation in type 1 diabetes mellitus. Stem Cell Res Ther 2017; 8:90. [PMID: 28420440 PMCID: PMC5395765 DOI: 10.1186/s13287-017-0542-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/10/2017] [Accepted: 03/23/2017] [Indexed: 01/07/2023] Open
Abstract
Background This study explored the details of the immune response after autologous hematopoietic stem cell transplantation (AHSCT) treatment in type 1 diabetes mellitus. Methods Peripheral blood mononuclear cells (PBMCs) from 18 patients with type 1 diabetes mellitus were taken at baseline and 12 months after AHSCT or insulin-only therapy. The lymphocyte proliferation, mRNA expression and secretion of pro-inflammatory and anti-inflammatory cytokines belonging to T-helper type 1 (Th1), T-helper type 17 (Th17) and regulatory T (Treg) cells in PBMC culture supernatants were assessed. Results Compared with patients receiving insulin-only treatment, the patients receiving AHSCT treatment showed better residual C-peptide secretion, lower anti-GAD titers and less exogenous insulin dosages after 12 months of follow-up. AHSCT treatment was associated with significantly reduced Th1 and Th17 cell proportions as well as decreased IFN-γ, IL-2, IL-12p40 and IL-17A levels in the PBMC culture supernatants (all P < 0.05). Although there was no significant Treg cell expansion after AHSCT treatment, we observed increased IL-10, TGF-β and Foxp3 mRNA expression and increased TGF-β levels. However, we found no significant changes in the T-cell subpopulations after insulin treatment, except for higher IL-12p40 mRNA expression and a lower proportion of Treg cells. Conclusions AHSCT treatment was associated with decreased expansion and function of Th1 and Th17 cells, which may explain the better therapeutic effect of AHSCT compared with the traditional intensive insulin therapy. Trial registration Clinicaltrials.gov NCT00807651. Registered 18 December 2008.
Collapse
Affiliation(s)
- Lei Ye
- The Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institution of Endocrine and Metabolism Diseases, Endocrine and Metabolic E-Institutes of Shanghai Universities and Key Laboratory for Endocrinology and Metabolism of Chinese Health Ministry, No. 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Li Li
- The Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institution of Endocrine and Metabolism Diseases, Endocrine and Metabolic E-Institutes of Shanghai Universities and Key Laboratory for Endocrinology and Metabolism of Chinese Health Ministry, No. 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Bing Wan
- The Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiao-tong University School of Medicine and Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM, Shanghai, People's Republic of China
| | - Minglan Yang
- The Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institution of Endocrine and Metabolism Diseases, Endocrine and Metabolic E-Institutes of Shanghai Universities and Key Laboratory for Endocrinology and Metabolism of Chinese Health Ministry, No. 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Jie Hong
- The Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institution of Endocrine and Metabolism Diseases, Endocrine and Metabolic E-Institutes of Shanghai Universities and Key Laboratory for Endocrinology and Metabolism of Chinese Health Ministry, No. 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Weiqiong Gu
- The Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institution of Endocrine and Metabolism Diseases, Endocrine and Metabolic E-Institutes of Shanghai Universities and Key Laboratory for Endocrinology and Metabolism of Chinese Health Ministry, No. 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China.
| | - Weiqing Wang
- The Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institution of Endocrine and Metabolism Diseases, Endocrine and Metabolic E-Institutes of Shanghai Universities and Key Laboratory for Endocrinology and Metabolism of Chinese Health Ministry, No. 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Guang Ning
- The Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institution of Endocrine and Metabolism Diseases, Endocrine and Metabolic E-Institutes of Shanghai Universities and Key Laboratory for Endocrinology and Metabolism of Chinese Health Ministry, No. 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China.,The Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai Institutes for Biological Sciences, Laboratory of Endocrinology and Metabolism, Institute of Health Sciences, Shanghai, People's Republic of China
| |
Collapse
|
35
|
Parastouei K, Mirshafiey A, Eshraghian MR, Shiri-Shahsavar MR, Solaymani-Mohammadi F, Chahardoli R, Alvandi E, Saboor-Yaraghi AA. The effect of 1, 25(OH)2 D3 (calcitriol) alone and in combination with all-trans retinoic acid on ROR-γt, IL-17, TGF-β, and FOXP3 gene expression in experimental autoimmune encephalomyelitis. Nutr Neurosci 2016; 21:210-218. [PMID: 27996890 DOI: 10.1080/1028415x.2016.1263039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES It has been shown that calcitriol and all-trans retinoic acid (ATRA) have modulatory effects on the immune system. The present study investigates the synergistic effects of combination treatment of calcitriol and ATRA in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). METHODS The mice were allocated to four preventive groups, each consisting of eight animals, ATRA (250 μg/mouse), calcitriol (100 ng/mouse), combination of ATRA and calcitriol (125 μg/mouse and 50 ng/mouse) and vehicle groups. EAE was induced by MOG35-55 peptide in female C57BL/6 mice. Treatments were initiated at day 1 before immunization and continued every other day throughout the study until the day 21 post-immunization. Splenocytes were isolated from EAE-induced mice and the expression of retinoic acid receptor-related orphan receptor gamma t (ROR-γt), Interleukin-17 (IL-17), transforming growth factor beta (TGF-β), and forkhead box P3 (FOXP3) genes was measured using real-time polymerase chain reaction. RESULTS The expression of FOXP3 and TGF-β genes in the splenocytes of combination-treated and calcitriol alone-treated mice was significantly increased compared to vehicle group (P < 0.05). The expression of ROR-γt and IL-17 genes in the splenocytes of ATRA, calcitriol and combination- treated mice was significantly reduced compared to those of vehicle- treated mice (P < 0.05). The relative expression level of ROR-γt was significantly (P < 0.05) lower in the combination group than in the mice treated by ATRA or calcitriol alone. DISCUSSION This study demonstrated that treatment with combination of calcitriol and ATRA can be considered as a new strategy for MS prevention and treatment.
Collapse
Affiliation(s)
- Karim Parastouei
- a Department of Cellular and Molecular Nutrition , School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences , Tehran , Iran
| | - Abbas Mirshafiey
- b Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Reza Eshraghian
- c Department of Biostatistics , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Reza Shiri-Shahsavar
- d Department of Cellular and Molecular Nutrition , School of Nutritional Sciences and Dietetics, International Campus, Tehran University of Medical Sciences , Tehran , Iran
| | - Farid Solaymani-Mohammadi
- e Department of Virology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Reza Chahardoli
- a Department of Cellular and Molecular Nutrition , School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences , Tehran , Iran
| | - Ehsan Alvandi
- a Department of Cellular and Molecular Nutrition , School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences , Tehran , Iran
| | - Ali Akbar Saboor-Yaraghi
- a Department of Cellular and Molecular Nutrition , School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences , Tehran , Iran.,b Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
36
|
Jeffery HC, Braitch MK, Brown S, Oo YH. Clinical Potential of Regulatory T Cell Therapy in Liver Diseases: An Overview and Current Perspectives. Front Immunol 2016; 7:334. [PMID: 27656181 PMCID: PMC5012133 DOI: 10.3389/fimmu.2016.00334] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/19/2016] [Indexed: 01/06/2023] Open
Abstract
The increasing demand for liver transplantation and the decline in donor organs has highlighted the need for alternative novel therapies to prevent chronic active hepatitis, which eventually leads to liver cirrhosis and liver cancer. Liver histology of chronic hepatitis is composed of both effector and regulatory lymphocytes. The human liver contains different subsets of effector lymphocytes that are kept in check by a subpopulation of T cells known as Regulatory T cells (Treg). The balance of effector and regulatory lymphocytes generally determines the outcome of hepatic inflammation: resolution, fulminant hepatitis, or chronic active hepatitis. Thus, maintaining and adjusting this balance is crucial in immunological manipulation of liver diseases. One of the options to restore this balance is to enrich Treg in the liver disease patients. Advances in the knowledge of Treg biology and development of clinical grade isolation reagents, cell sorting equipment, and good manufacturing practice facilities have paved the way to apply Treg cells as a potential therapy to restore peripheral self-tolerance in autoimmune liver diseases (AILD), chronic rejection, and posttransplantation. Past and on-going studies have applied Treg in type-1 diabetes mellitus, systemic lupus erythematosus, graft versus host diseases, and solid organ transplantations. There have not been any new therapies for the AILD for more than three decades; thus, the clinical potential for the application of autologous Treg cell therapy to treat autoimmune liver disease is an attractive and novel option. However, it is fundamental to understand the deep immunology, genetic profiles, biology, homing behavior, and microenvironment of Treg before applying the cells to the patients.
Collapse
Affiliation(s)
- Hannah C Jeffery
- NIHR Biomedical Research Unit in Liver Diseases, Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham , Birmingham , UK
| | - Manjit Kaur Braitch
- NIHR Biomedical Research Unit in Liver Diseases, Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham , Birmingham , UK
| | - Solomon Brown
- NIHR Biomedical Research Unit in Liver Diseases, Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham , Birmingham , UK
| | - Ye Htun Oo
- NIHR Biomedical Research Unit in Liver Diseases, Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; Liver and Hepatobiliary Unit, University Hospital NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
37
|
Verma P, Subodh S, Tiwari V, Rampal R, Tuteja A, Toteja GS, Gupta SD, Ahuja V. Correlation of Serum Vitamin A Levels with Disease Activity Indices and Colonic IL-23R and FOXP3 mRNA Expression in Ulcerative Colitis Patients. Scand J Immunol 2016; 84:110-7. [DOI: 10.1111/sji.12450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/19/2022]
Affiliation(s)
- P. Verma
- Department of Gastroenterology and Human Nutrition; All India Institute of Medical Sciences; New Delhi India
| | - S. Subodh
- The Centre for Genomic Application (An IGIB-IMM collaboration); New Delhi India
| | - V. Tiwari
- Department of Gastroenterology and Human Nutrition; All India Institute of Medical Sciences; New Delhi India
| | - R. Rampal
- Department of Gastroenterology and Human Nutrition; All India Institute of Medical Sciences; New Delhi India
| | - A. Tuteja
- The Centre for Genomic Application (An IGIB-IMM collaboration); New Delhi India
| | - G. S. Toteja
- ICMR laboratory in Centre for Promotion of Nutrition Research and Training with Special Focus on North- East, Tribal and Inaccessible Population; New Delhi India
| | - S. D. Gupta
- Department of Pathology; All India Institute of Medical Sciences; New Delhi India
| | - V. Ahuja
- Department of Gastroenterology and Human Nutrition; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
38
|
Bono MR, Tejon G, Flores-Santibañez F, Fernandez D, Rosemblatt M, Sauma D. Retinoic Acid as a Modulator of T Cell Immunity. Nutrients 2016; 8:E349. [PMID: 27304965 PMCID: PMC4924190 DOI: 10.3390/nu8060349] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 05/20/2016] [Accepted: 06/01/2016] [Indexed: 12/30/2022] Open
Abstract
Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity.
Collapse
Affiliation(s)
- Maria Rosa Bono
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile.
| | - Gabriela Tejon
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile.
| | - Felipe Flores-Santibañez
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile.
| | - Dominique Fernandez
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile.
| | - Mario Rosemblatt
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile.
- Fundacion Ciencia & Vida, Santiago 7780272, Chile.
- Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago 8370146, Chile.
| | - Daniela Sauma
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile.
| |
Collapse
|
39
|
Yosaee S, Akbari Fakhrabadi M, Shidfar F. Positive evidence for vitamin A role in prevention of type 1 diabetes. World J Diabetes 2016; 7:177-88. [PMID: 27162582 PMCID: PMC4856890 DOI: 10.4239/wjd.v7.i9.177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 03/23/2016] [Accepted: 04/07/2016] [Indexed: 02/05/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) as one of the most well-known autoimmune disease, results from the destruction of β-cells in pancreas by autoimmune process. T1DM is fatal without insulin treatment. The expansion of alternative treatment to insulin is a dream to be fulfilled. Currently autoimmunity is considered as main factor in development of T1DM. So manipulation of the immune system can be considered as alternative treatment to insulin. For the past decades, vitamin A has been implicated as an essential dietary micronutrient in regulator of immune function. Despite major advantage in the knowledge of vitamin A biology, patients who present T1DM are at risk for deficiency in vitamin A and carotenoids. Applying such evidences, vitamin A treatment may be the key approach in preventing T1DM.
Collapse
|
40
|
The dual nature of retinoic acid in pemphigus and its therapeutic potential: Special focus on all-trans Retinoic Acid. Int Immunopharmacol 2016; 36:180-186. [PMID: 27156125 DOI: 10.1016/j.intimp.2016.04.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/17/2016] [Accepted: 04/20/2016] [Indexed: 01/13/2023]
Abstract
The efficient treatment of pemphigus with no certain side effect remained a controversial issue. Although there are various options for controlling disease severity, the majority of them may cause serious side effects. Retinoic acid (RA), an active metabolite converted from vitamin A, plays an active role in immune functions. Effects of RA, especially all-trans-Retinoic Acid (ATRA) on different types of cells involved in immune responses were analyzed in vitro and in vivo. RAs could affect the differentiation of T helper (Th) cells, B cells responses, stabilization of both natural regulatory T cells (nTregs) and regulatory B cells (Bregs) populations, and regulating the expression of critical genes in immune responses. The role of RA, based on major immune cells involved in pemphigus has not been addressed so far. In this study, we sought to determine the possible effects of RA, with a special focus on ATRA in pemphigus. All the evidences of ATRA effects on the immune system were collected and their association with the pemphigus was analyzed. According to the previous results, ATRA causes a decline in Th17 populations; increase in CD4+ induced regulatory T cells (iTregs), stabilization of nTregs, and promotion of suppressive B cells, which are critical in the improvement of pemphigus. Nevertheless, it also causes shifting of the Th1:Th2 balance toward Th2 cells, which is not favorable for pemphigus patients. In conclusion, ATRA acts via different ways in pemphigus. Due to increase in the suppressive function via iTregs, nTregs, and Bregs, it is suggested that patients with pemphigus may benefit from systemic ATRA therapy. To clarify this issue, further studies, such as clinical trials are needed.
Collapse
|
41
|
Dai L, Zhang R, Wang Z, He Y, Bai X, Zhu M, Yu Z, Ruan CG. Efficacy of immunomodulatory therapy with all- trans retinoid acid in adult patients with chronic immune thrombocytopenia. Thromb Res 2016; 140:73-80. [DOI: 10.1016/j.thromres.2016.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/22/2016] [Accepted: 02/12/2016] [Indexed: 02/03/2023]
|
42
|
Goswami R, Kaplan MH. Essential vitamins for an effective T cell response. World J Immunol 2016; 6:39-59. [DOI: 10.5411/wji.v6.i1.39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/07/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Effective adaptive immune responses rely upon appropriate activation of T cells by antigenic peptide-major histocompatibility complex on the surface of antigen presenting cells (APCs). Activation relies on additional signals including co-stimulatory molecules on the surface of the APCs that promote T cell expansion. The immune response is further sculpted by the cytokine environment. However, T cells also respond to other environmental signals including hormones, neurotransmitters, and vitamins. In this review, we summarize the mechanisms through which vitamins A and D impact immune responses, particularly in the context of T cell responses.
Collapse
|
43
|
Rampal R, Awasthi A, Ahuja V. Retinoic acid-primed human dendritic cells inhibit Th9 cells and induce Th1/Th17 cell differentiation. J Leukoc Biol 2016; 100:111-20. [PMID: 26980802 DOI: 10.1189/jlb.3vma1015-476r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/25/2016] [Indexed: 01/08/2023] Open
Abstract
All-trans-retinoic acid plays a central role in mucosal immunity, where it promotes its synthesis by up-regulating CD103 expression on dendritic cells, induces gut tropic (α4β7(+) and CCR9(+)) T cells, and inhibits Th1/Th17 differentiation. Recently, murine studies have highlighted the proinflammatory role of retinoic acid in maintaining inflammation under a variety of pathologic conditions. However, as a result of limited human data, we investigated the effect of retinoic acid on human dendritic cells and CD4(+) T cell responses in the presence of polarizing (Th1/Th9/Th17) and inflammatory (LPS-induced dendritic cells) conditions. We report a novel role of retinoic acid in an inflammatory setup, where retinoic acid-primed dendritic cells (retinoic acid-monocyte-derived dendritic cells) up-regulated CCR9(+)T cells, which were observed to express high levels of IFN-γ in the presence of Th1/Th17 conditions. Retinoic acid-monocyte-derived dendritic cells, under Th17 conditions, also favored the induction of IL-17(+) T cells. Furthermore, in the presence of TGF-β1 and IL-4, retinoic acid-monocyte-derived dendritic cells inhibited IL-9 and induced IFN-γ expression on T cells. Experiments with naïve CD4(+) T cells, activated in the presence of Th1/Th17 conditions and absence of DCs, indicated that retinoic acid inhibited IFN-γ and IL-17 expression on T cells. These data revealed that in the face of inflammatory conditions, retinoic acid, in contrast from its anti-inflammatory role, could maintain or aggravate the intestinal inflammation.
Collapse
Affiliation(s)
- Ritika Rampal
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India; and
| | - Amit Awasthi
- Center for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India; and
| |
Collapse
|
44
|
Ferretti C, La Cava A. Adaptive immune regulation in autoimmune diabetes. Autoimmun Rev 2016; 15:236-41. [DOI: 10.1016/j.autrev.2015.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/19/2015] [Indexed: 12/16/2022]
|
45
|
Vitamin A Impairs the Reprogramming of Tregs into IL-17-Producing Cells during Intestinal Inflammation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:137893. [PMID: 26583087 PMCID: PMC4637025 DOI: 10.1155/2015/137893] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/11/2015] [Indexed: 12/21/2022]
Abstract
Maintaining the identity of Foxp3+ regulatory T cells (Tregs) is critical for controlling immune responses in the gut, where an imbalance between Tregs and T effector cells has been linked to inflammatory bowel disease. Accumulating evidence suggests that Tregs can convert into Th17 cells and acquire an inflammatory phenotype. In this study, we used an adoptive transfer model of Ag-specific T cells to study the contribution of different factors to the reprogramming of in vitro-generated Treg cells (iTreg) into IL-17-producing cells in a mouse model of gut inflammation in vivo. Our results show that intestinal inflammation induces the reprogramming of iTreg cells into IL-17-producing cells and that vitamin A restrains reprogramming in the gut. We also demonstrate that the presence of IL-2 during the in vitro generation of iTreg cells confers resistance to Th17 conversion but that IL-2 and retinoic acid (RA) cooperate to maintain Foxp3 expression following stimulation under Th17-polarizing conditions. Additionally, although IL-2 and RA differentially regulate the expression of different Treg cell suppressive markers, Treg cells generated under different polarizing conditions present similar suppressive capacity.
Collapse
|
46
|
Abstract
Vitamin A has a critical role in embryonic development, immunity and the visual cycle. In recent years, evidence has demonstrated that vitamin A can also regulate metabolic pathways implicated in the pathogenesis of obesity and diabetes. This has increased interest in the possible antiobesity and antidiabetic properties of natural and synthetic vitamin A derivatives. However, whether vitamin A deficiency or aberrations in vitamin A metabolism contribute to the pathogenesis of diabetes is not known. This perspective article will review what is currently known and new data regarding the link between vitamin A and the clinical manifestations of common and atypical forms of diabetes.
Collapse
Affiliation(s)
- Steven E Trasino
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
47
|
All-Trans Retinoic Acid Improves the Effects of Bone Marrow-Derived Mesenchymal Stem Cells on the Treatment of Ankylosing Spondylitis: An In Vitro Study. Stem Cells Int 2015; 2015:484528. [PMID: 26124839 PMCID: PMC4466433 DOI: 10.1155/2015/484528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/29/2022] Open
Abstract
Previous studies have demonstrated the immunosuppressive effects of both all-trans retinoic acid (ATRA) and mesenchymal stem cells (MSCs). The present study aimed to assess the immunoregulatory effects of ATRA on MSCs in the treatment of ankylosing spondylitis (AS). Bone marrow-derived MSCs from healthy donors were pretreated with ATRA and cocultured with CD3/28-activated peripheral blood mononuclear cells (PBMCs) derived from AS patients. Frequencies of Th17 and regulatory T (Treg) cells were analyzed using flow cytometry. The secretion and the mRNA level of key cytokines were measured with cytometric bead array and quantitative real-time PCR, respectively. ATRA pretreatment increased interleukin-6 (IL-6) secretion of MSCs. Th17 and Treg subset populations were increased and reduced by ATRA-pretreated MSCs, respectively. ATRA-pretreated MSCs significantly decreased not only the vital pathogenic cytokine in AS, tumor necrosis factor-α (TNF-α), but also AS-boosting factors interleukin-17 (IL-17A) and interferon-γ (IFN-γ). These results indicated that IL-6 may be a potential protective factor in AS and highlighted the promising role of ATRA in improving the efficacy of MSC-based treatment of AS.
Collapse
|
48
|
Brown CC, Noelle RJ. Seeing through the dark: New insights into the immune regulatory functions of vitamin A. Eur J Immunol 2015; 45:1287-95. [PMID: 25808452 PMCID: PMC4426035 DOI: 10.1002/eji.201344398] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 12/08/2014] [Accepted: 03/20/2015] [Indexed: 12/20/2022]
Abstract
The importance of vitamin A for host defense is undeniable and the study of its mechanisms is paramount. Of the estimated 250 million preschool children who are vitamin A-deficient (VAD), 10% will die from their increased susceptibility to infectious disease. Vitamin A supplementation was established in the 1980s as one of the most successful interventions in the developing world. Understanding how vitamin A controls immunity will help curb the mortality and morbidity associated with vitamin A deficiency and exploit the immune-enhancing capacity of vitamin A to heighten host resistance to infectious disease. The discoveries that retinoic acid (RA) imprints the homing of leukocytes to the gut and enhances the induction of regulatory T cells, highlighted a potential role for RA in mucosal tolerance. However, more recently emerging data tell of a more profound systemic impact of RA on leukocyte function and commitment. In animal models using genetic manipulation of RA signaling, we learned when and how RA controls T cell fate. Here, we review the role for RA as a critical checkpoint regulator in the differentiation of CD4(+) T cells within the immune system.
Collapse
Affiliation(s)
- Chrysothemis C Brown
- Division of Transplantation Immunology and Mucosal Biology, Kings College London, United Kingdom
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH, USA
| |
Collapse
|
49
|
Kuczma M, Wang CY, Ignatowicz L, Gourdie R, Kraj P. Altered connexin 43 expression underlies age-dependent decrease of regulatory T cell suppressor function in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2015; 194:5261-71. [PMID: 25911751 DOI: 10.4049/jimmunol.1400887] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 03/24/2015] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes is one of the most extensively studied autoimmune diseases, but the cellular and molecular mechanisms leading to T cell-mediated destruction of insulin-producing β cells are still not well understood. In this study, we show that regulatory T cells (T(regs)) in NOD mice undergo age-dependent loss of suppressor functions exacerbated by the decreased ability of activated effector T cells to upregulate Foxp3 and generate T(regs) in the peripheral organs. This age-dependent loss is associated with reduced intercellular communication mediated by gap junctions, which is caused by impaired upregulation and decreased expression of connexin 43. Regulatory functions can be corrected, even in T cells isolated from aged, diabetic mice, by a synergistic activity of retinoic acid, TGF-β, and IL-2, which enhance connexin 43 and Foxp3 expression in T(regs) and restore the ability of conventional CD4(+) T cells to upregulate Foxp3 and generate peripherally derived T(regs). Moreover, we demonstrate that suppression mediated by T(regs) from diabetic mice is enhanced by a novel reagent, which facilitates gap junction aggregation. In summary, our report identifies gap junction-mediated intercellular communication as an important component of the T(reg) suppression mechanism compromised in NOD mice and suggests how T(reg) mediated immune regulation can be improved.
Collapse
Affiliation(s)
- Michal Kuczma
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, GA 30912
| | - Cong-Yi Wang
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, GA 30912; The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; and
| | - Leszek Ignatowicz
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, GA 30912
| | - Robert Gourdie
- Virginia Tech Carilion Research Institute, Roanoke, VA 24015
| | - Piotr Kraj
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, GA 30912;
| |
Collapse
|
50
|
Guo Y, Brown C, Ortiz C, Noelle RJ. Leukocyte homing, fate, and function are controlled by retinoic acid. Physiol Rev 2015; 95:125-48. [PMID: 25540140 DOI: 10.1152/physrev.00032.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although vitamin A was recognized as an "anti-infective vitamin" over 90 years ago, the mechanism of how vitamin A regulates immunity is only beginning to be understood. Early studies which focused on the immune responses in vitamin A-deficient (VAD) animals clearly demonstrated compromised immunity and consequently increased susceptibility to infectious disease. The active form of vitamin A, retinoic acid (RA), has been shown to have a profound impact on the homing and differentiation of leukocytes. Both pharmacological and genetic approaches have been applied to the understanding of how RA regulates the development and differentiation of various immune cell subsets, and how RA influences the development of immunity versus tolerance. These studies clearly show that RA profoundly impacts on cell- and humoral-mediated immunity. In this review, the early findings on the complex relationship between VAD and immunity are discussed as well as vitamin A metabolism and signaling within hematopoietic cells. Particular attention is focused on how RA impacts on T-cell lineage commitment and plasticity in various diseases.
Collapse
Affiliation(s)
- Yanxia Guo
- Department of Microbiology and Immunology, Dartmouth Medical School, Norris Cotton Cancer Center, Lebanon, New Hampshire; and Medical Research Council Centre of Transplantation, Guy's Hospital, King's College London, King's Health Partners, London, United Kingdom
| | - Chrysothemis Brown
- Department of Microbiology and Immunology, Dartmouth Medical School, Norris Cotton Cancer Center, Lebanon, New Hampshire; and Medical Research Council Centre of Transplantation, Guy's Hospital, King's College London, King's Health Partners, London, United Kingdom
| | - Carla Ortiz
- Department of Microbiology and Immunology, Dartmouth Medical School, Norris Cotton Cancer Center, Lebanon, New Hampshire; and Medical Research Council Centre of Transplantation, Guy's Hospital, King's College London, King's Health Partners, London, United Kingdom
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Dartmouth Medical School, Norris Cotton Cancer Center, Lebanon, New Hampshire; and Medical Research Council Centre of Transplantation, Guy's Hospital, King's College London, King's Health Partners, London, United Kingdom
| |
Collapse
|