1
|
Carneiro L, Fenech C, Liénard F, Grall S, Abed B, Haydar J, Allard C, Desmoulins L, Paccoud R, Brindisi MC, Mouillot T, Brondel L, Fioramonti X, Pénicaud L, Jacquin-Piques A, Leloup C. Hypothalamic Glucose Hypersensitivity-Induced Insulin Secretion in the Obese Zücker Rat Is Reversed by Central Ghrelin Treatment. Antioxid Redox Signal 2024; 40:837-849. [PMID: 36656675 DOI: 10.1089/ars.2022.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aims: Part of hypothalamic (mediobasal hypothalamus [MBH]) neurons detect changes in blood glucose levels that in turn coordinate the vagal control of insulin secretion. This control cascade requires the production of mitochondrial reactive oxygen species (mROS), which is altered in models of obesity and insulin resistance. Obese, insulin-resistant Zücker rats are characterized by hypothalamic hypersensitivity to glucose. This initiates an abnormal vagus-induced insulin secretion, associated with an overproduction of mROS in response to a low glucose dose. Here, we hypothesized that ghrelin, known to buffer reactive oxygen species (ROS) via mitochondrial function, may be a major component of the hypothalamic glucose hypersensitivity in the hypoghrelinemic obese Zücker rat. Results: Hypothalamic glucose hypersensitivity-induced insulin secretion of Zücker obese rats was reversed by ghrelin pretreatment. The overproduction of MBH mROS in response to a low glucose load no longer occurred in obese rats that had previously received the cerebral ghrelin infusion. This decrease in mROS production was accompanied by a normalization of oxidative phosphorylation (OXPHOS). Conversely, blocking the action of ghrelin with a growth hormone secretagogue receptor antagonist in a model of hyperghrelinemia (fasted rats) completely restored hypothalamic glucose sensing-induced insulin secretion that was almost absent in this physiological situation. Accordingly, ROS signaling and mitochondrial activity were increased by the ghrelin receptor antagonist. Innovation: These results demonstrate for the first time that ghrelin addressed only to the brain could have a protective effect on the defective control of insulin secretion in the insulin-resistant, hypoghrelinemic obese subject. Conclusions: Ghrelin, through its action on OXPHOS, modulates mROS signaling in response to cerebral hyperglycemia and the consequent vagal control of insulin secretion. In insulin-resistant obese states, brain hypoghrelinemia could be responsible for the nervous defect in insulin secretion.
Collapse
Affiliation(s)
- Lionel Carneiro
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Toulouse, France
| | - Claire Fenech
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Fabienne Liénard
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Sylvie Grall
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Besma Abed
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Joulia Haydar
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Camille Allard
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, Bordeaux, France
| | - Lucie Desmoulins
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Romain Paccoud
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Marie-Claude Brindisi
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Thomas Mouillot
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Laurent Brondel
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Xavier Fioramonti
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
- NutriNeuro, UMR 1286 INRAE, Bordeaux University, Bordeaux INP, Neurocampus, Bordeaux, France
| | - Luc Pénicaud
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
- STROMALab, CNRS ERL 5311, Toulouse, France
| | - Agnès Jacquin-Piques
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Corinne Leloup
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
2
|
Wu Y, Dong JH, Dai YF, Zhu MZ, Wang MY, Zhang Y, Pan YD, Yuan XR, Guo ZX, Wang CX, Li YQ, Zhu XH. Hepatic soluble epoxide hydrolase activity regulates cerebral Aβ metabolism and the pathogenesis of Alzheimer's disease in mice. Neuron 2023; 111:2847-2862.e10. [PMID: 37402372 DOI: 10.1016/j.neuron.2023.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/10/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023]
Abstract
Alzheimer's disease (AD) is caused by a complex interaction between genetic and environmental factors. However, how the role of peripheral organ changes in response to environmental stimuli during aging in AD pathogenesis remains unknown. Hepatic soluble epoxide hydrolase (sEH) activity increases with age. Hepatic sEH manipulation bidirectionally attenuates brain amyloid-β (Aβ) burden, tauopathy, and cognitive deficits in AD mouse models. Moreover, hepatic sEH manipulation bidirectionally regulates the plasma level of 14,15-epoxyeicosatrienoic acid (-EET), which rapidly crosses the blood-brain barrier and modulates brain Aβ metabolism through multiple pathways. A balance between the brain levels of 14,15-EET and Aβ is essential for preventing Aβ deposition. In AD models, 14,15-EET infusion mimicked the neuroprotective effects of hepatic sEH ablation at biological and behavioral levels. These results highlight the liver's key role in AD pathology, and targeting the liver-brain axis in response to environmental stimuli may constitute a promising therapeutic approach for AD prevention.
Collapse
Affiliation(s)
- Yu Wu
- School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Jing-Hua Dong
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Yong-Feng Dai
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Min-Zhen Zhu
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Meng-Yao Wang
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Yuan Zhang
- School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Yi-Da Pan
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xin-Rui Yuan
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Zhi-Xin Guo
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Chen-Xi Wang
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuan-Qing Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Center for Brain-Computer Interface, Pazhou Lab, Guangzhou 510330, China
| | - Xin-Hong Zhu
- School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Millet AMC, Coustham C, Champigny C, Botella M, Demeilliers C, Devin A, Galinier A, Belenguer P, Bordeneuve-Guibé J, Davezac N. OPA1 deficiency impairs oxidative metabolism in cycling cells, underlining a translational approach for degenerative diseases. Dis Model Mech 2023; 16:dmm050266. [PMID: 37497665 PMCID: PMC10538295 DOI: 10.1242/dmm.050266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023] Open
Abstract
Dominant optic atrophy is an optic neuropathy with varying clinical symptoms and progression. A severe disorder is associated with certain OPA1 mutations and includes additional symptoms for >20% of patients. This underscores the consequences of OPA1 mutations in different cellular populations, not only retinal ganglionic cells. We assessed the effects of OPA1 loss of function on oxidative metabolism and antioxidant defences using an RNA-silencing strategy in a human epithelial cell line. We observed a decrease in the mitochondrial respiratory chain complexes, associated with a reduction in aconitase activity related to an increase in reactive oxygen species (ROS) production. In response, the NRF2 (also known as NFE2L2) transcription factor was translocated into the nucleus and upregulated SOD1 and GSTP1. This study highlights the effects of OPA1 deficiency on oxidative metabolism in replicative cells, as already shown in neurons. It underlines a translational process to use cycling cells to circumvent and describe oxidative metabolism. Moreover, it paves the way to predict the evolution of dominant optic atrophy using mathematical models that consider mitochondrial ROS production and their detoxifying pathways.
Collapse
Affiliation(s)
- Aurélie M. C. Millet
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 31400Toulouse, France
| | - Corentin Coustham
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 31400Toulouse, France
- ISAE-SUPAERO, Toulouse University, 31400 Toulouse, France
| | - Camille Champigny
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 31400Toulouse, France
| | - Marlène Botella
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 31400Toulouse, France
| | | | - Anne Devin
- Laboratoire Métabolisme Energétique Cellulaire IBGC du CNRS, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - Anne Galinier
- RESTORE – Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, Inserm U1031, UPS, Bâtiment INCERE, 4bis avenue Hubert Curien, 31100 Toulouse, France
| | - Pascale Belenguer
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 31400Toulouse, France
| | | | - Noélie Davezac
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 31400Toulouse, France
| |
Collapse
|
4
|
Obesity-Induced Brain Neuroinflammatory and Mitochondrial Changes. Metabolites 2023; 13:metabo13010086. [PMID: 36677011 PMCID: PMC9865135 DOI: 10.3390/metabo13010086] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Obesity is defined as abnormal and excessive fat accumulation, and it is a risk factor for developing metabolic and neurodegenerative diseases and cognitive deficits. Obesity is caused by an imbalance in energy homeostasis resulting from increased caloric intake associated with a sedentary lifestyle. However, the entire physiopathology linking obesity with neurodegeneration and cognitive decline has not yet been elucidated. During the progression of obesity, adipose tissue undergoes immune, metabolic, and functional changes that induce chronic low-grade inflammation. It has been proposed that inflammatory processes may participate in both the peripheral disorders and brain disorders associated with obesity, including the development of cognitive deficits. In addition, mitochondrial dysfunction is related to inflammation and oxidative stress, causing cellular oxidative damage. Preclinical and clinical studies of obesity and metabolic disorders have demonstrated mitochondrial brain dysfunction. Since neuronal cells have a high energy demand and mitochondria play an important role in maintaining a constant energy supply, impairments in mitochondrial activity lead to neuronal damage and dysfunction and, consequently, to neurotoxicity. In this review, we highlight the effect of obesity and high-fat diet consumption on brain neuroinflammation and mitochondrial changes as a link between metabolic dysfunction and cognitive decline.
Collapse
|
5
|
Hashimoto M, Fujimoto M, Konno K, Lee ML, Yamada Y, Yamashita K, Toda C, Tomura M, Watanabe M, Inanami O, Kitamura H. Ubiquitin-Specific Protease 2 in the Ventromedial Hypothalamus Modifies Blood Glucose Levels by Controlling Sympathetic Nervous Activation. J Neurosci 2022; 42:4607-4618. [PMID: 35504726 PMCID: PMC9186793 DOI: 10.1523/jneurosci.2504-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 11/21/2022] Open
Abstract
Ubiquitin-specific protease 2 (USP2) participates in glucose metabolism in peripheral tissues such as the liver and skeletal muscles. However, the glucoregulatory role of USP2 in the CNS is not well known. In this study, we focus on USP2 in the ventromedial hypothalamus (VMH), which has dominant control over systemic glucose homeostasis. ISH, using a Usp2-specific probe, showed that Usp2 mRNA is present in VMH neurons, as well as other glucoregulatory nuclei, in the hypothalamus of male mice. Administration of a USP2-selective inhibitor ML364 (20 ng/head), into the VMH elicited a rapid increase in the circulating glucose level in male mice, suggesting USP2 has a suppressive role on glucose mobilization. ML364 treatment also increased serum norepinephrine concentration, whereas it negligibly affected serum levels of insulin and corticosterone. ML364 perturbated mitochondrial oxidative phosphorylation in neural SH-SY5Y cells and subsequently promoted the phosphorylation of AMP-activated protein kinase (AMPK). Consistent with these findings, hypothalamic ML364 treatment stimulated AMPKα phosphorylation in the VMH. Inhibition of hypothalamic AMPK prevented ML364 from increasing serum norepinephrine and blood glucose. Removal of ROS restored the ML364-evoked mitochondrial dysfunction in SH-SY5Y cells and impeded the ML364-induced hypothalamic AMPKα phosphorylation as well as prevented the elevation of serum norepinephrine and blood glucose levels in male mice. These results indicate hypothalamic USP2 attenuates perturbations in blood glucose levels by modifying the ROS-AMPK-sympathetic nerve axis.SIGNIFICANCE STATEMENT Under normal conditions (excluding hyperglycemia or hypoglycemia), blood glucose levels are maintained at a constant level. In this study, we used a mouse model to identify a hypothalamic protease controlling blood glucose levels. Pharmacological inhibition of USP2 in the VMH caused a deviation in blood glucose levels under a nonstressed condition, indicating that USP2 determines the set point of the blood glucose level. Modification of sympathetic nervous activity accounts for the USP2-mediated glucoregulation. Mechanistically, USP2 mitigates the accumulation of ROS in the VMH, resulting in attenuation of the phosphorylation of AMPK. Based on these findings, we uncovered a novel glucoregulatory axis consisting of hypothalamic USP2, ROS, AMPK, and the sympathetic nervous system.
Collapse
Affiliation(s)
- Mayuko Hashimoto
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 0698501, Japan
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 5848450, Japan
| | | | - Kohtarou Konno
- Department of Anatomy and Embryology, Graduate School of Medicine, Hokkaido University, Sapporo 0600808, Japan
| | - Ming-Liang Lee
- Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 0600808, Japan
| | - Yui Yamada
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 0698501, Japan
| | | | - Chitoku Toda
- Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 0600808, Japan
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 5848450, Japan
| | - Masahiko Watanabe
- Department of Anatomy and Embryology, Graduate School of Medicine, Hokkaido University, Sapporo 0600808, Japan
| | | | - Hiroshi Kitamura
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 0698501, Japan
| |
Collapse
|
6
|
Chen Y, Yu T, Deuster P. Astaxanthin Protects Against Heat-induced Mitochondrial Alterations in Mouse Hypothalamus. Neuroscience 2021; 476:12-20. [PMID: 34543676 DOI: 10.1016/j.neuroscience.2021.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022]
Abstract
The hypothalamus plays an essential role in regulating whole-body energy and temperature homeostasis when adapting to environmental changes. We previously reported that heat exposure causes mitochondrial dysfunction and apoptosis in mouse skeletal muscle, and pretreatment with astaxanthin (AST), an antioxidant, prevents this effect. How the hypothalamus responds to heat stress remains largely unexplored. In this study, we investigated the effects of heat exposure on hypothalamic mitochondria in mice with and without AST pretreatment. During heat exposure, both vehicle and AST-treated mice had a hyperthermic response though no significant differences in peak core body temperature were noted between the two groups. Heat exposure induced mitochondrial fission in the hypothalamus, as manifested by increased mitochondrial fragmentation and expression of both total and phosphorylated dynamin-related protein 1. In addition, transmission electron microscopy revealed damaged and degraded mitochondria in the hypothalamus of heat-exposed mice. Heat induced apoptosis and mitophagy were further confirmed by increased formation of reactive oxygen species, activation of caspase 3/7 and expression of LC3 proteins. Moreover, heat exposure increased the expression of PINK1 and Parkin in mouse hypothalamus. In contrast, pretreatment with AST reduced these effects. These results demonstrate that heat stress-induced hypothalamic apoptosis is associated with altered mitochondrial dynamics favoring fission and mitophagy. AST protects the hypothalamus against heat-induced injury by preserving redox homeostasis and mitochondrial integrity.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, USA.
| | - Tianzheng Yu
- Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Patricia Deuster
- Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
7
|
Mullins CA, Gannaban RB, Khan MS, Shah H, Siddik MAB, Hegde VK, Reddy PH, Shin AC. Neural Underpinnings of Obesity: The Role of Oxidative Stress and Inflammation in the Brain. Antioxidants (Basel) 2020; 9:antiox9101018. [PMID: 33092099 PMCID: PMC7589608 DOI: 10.3390/antiox9101018] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity prevalence is increasing at an unprecedented rate throughout the world, and is a strong risk factor for metabolic, cardiovascular, and neurological/neurodegenerative disorders. While low-grade systemic inflammation triggered primarily by adipose tissue dysfunction is closely linked to obesity, inflammation is also observed in the brain or the central nervous system (CNS). Considering that the hypothalamus, a classical homeostatic center, and other higher cortical areas (e.g. prefrontal cortex, dorsal striatum, hippocampus, etc.) also actively participate in regulating energy homeostasis by engaging in inhibitory control, reward calculation, and memory retrieval, understanding the role of CNS oxidative stress and inflammation in obesity and their underlying mechanisms would greatly help develop novel therapeutic interventions to correct obesity and related comorbidities. Here we review accumulating evidence for the association between ER stress and mitochondrial dysfunction, the main culprits responsible for oxidative stress and inflammation in various brain regions, and energy imbalance that leads to the development of obesity. Potential beneficial effects of natural antioxidant and anti-inflammatory compounds on CNS health and obesity are also discussed.
Collapse
Affiliation(s)
- Caitlyn A. Mullins
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Ritchel B. Gannaban
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Md Shahjalal Khan
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - Harsh Shah
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Md Abu B. Siddik
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - Vijay K. Hegde
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79409, USA;
| | - Andrew C. Shin
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
- Correspondence: ; Tel.: +1-806-834-1713
| |
Collapse
|
8
|
Mens Sana in Corpore Sano: Does the Glycemic Index Have a Role to Play? Nutrients 2020; 12:nu12102989. [PMID: 33003562 PMCID: PMC7599769 DOI: 10.3390/nu12102989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
Although diet interventions are mostly related to metabolic disorders, nowadays they are used in a wide variety of pathologies. From diabetes and obesity to cardiovascular diseases, to cancer or neurological disorders and stroke, nutritional recommendations are applied to almost all diseases. Among such disorders, metabolic disturbances and brain function and/or diseases have recently been shown to be linked. Indeed, numerous neurological functions are often associated with perturbations of whole-body energy homeostasis. In this regard, specific diets are used in various neurological conditions, such as epilepsy, stroke, or seizure recovery. In addition, Alzheimer’s disease and Autism Spectrum Disorders are also considered to be putatively improved by diet interventions. Glycemic index diets are a novel developed indicator expected to anticipate the changes in blood glucose induced by specific foods and how they can affect various physiological functions. Several results have provided indications of the efficiency of low-glycemic index diets in weight management and insulin sensitivity, but also cognitive function, epilepsy treatment, stroke, and neurodegenerative diseases. Overall, studies involving the glycemic index can provide new insights into the relationship between energy homeostasis regulation and brain function or related disorders. Therefore, in this review, we will summarize the main evidence on glycemic index involvement in brain mechanisms of energy homeostasis regulation.
Collapse
|
9
|
Stoelzel CR, Zhang Y, Cincotta AH. Circadian-timed dopamine agonist treatment reverses high-fat diet-induced diabetogenic shift in ventromedial hypothalamic glucose sensing. Endocrinol Diabetes Metab 2020; 3:e00139. [PMID: 32704560 PMCID: PMC7375120 DOI: 10.1002/edm2.139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/28/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Within the ventromedial hypothalamus (VMH), glucose inhibitory (GI) neurons sense hypoglycaemia while glucose excitatory (GE) neurons sense hyperglycaemia to initiate counter control mechanisms under normal conditions. However, potential electrophysiological alterations of these two neuronal types in vivo in insulin-resistant states have never been simultaneously fully documented. Further, the anti-diabetic effect of dopamine agonism on this VMH system under insulin resistance has not been studied. METHODS This study examined the impact of a high-fat diet (HFD) on in vivo electrophysiological recordings from VMH GE and GI neurons and the ability of circadian-timed dopamine agonist therapy to reverse any adverse effect of the HFD on such VMH activities and peripheral glucose metabolism. RESULTS HFD significantly inhibited VMH GE neuronal electrophysiological response to local hyperglycaemia (36.3%) and augmented GI neuronal excitation response to local hypoglycaemia (47.0%). Bromocriptine (dopamine agonist) administration at onset of daily activity (but not during the daily sleep phase) completely reversed both VMH GE and GI neuronal aberrations induced by HFD. Such timed treatment also normalized glucose intolerance and insulin resistance. These VMH and peripheral glucose metabolism effects of circadian-timed bromocriptine may involve its known effect to reduce elevated VMH noradrenergic activity in insulin-resistant states as local VMH administration of norepinephrine was observed to significantly inhibit VMH GE neuronal sensing of local hyperglycaemia in insulin-sensitive animals on regular chow diet (52.4%). CONCLUSIONS HFD alters VMH glucose sensing in a manner that potentiates hyperglycaemia and this effect on the VMH can be reversed by appropriately circadian-timed dopamine agonist administration.
Collapse
|
10
|
Garcia-Serrano AM, Duarte JMN. Brain Metabolism Alterations in Type 2 Diabetes: What Did We Learn From Diet-Induced Diabetes Models? Front Neurosci 2020; 14:229. [PMID: 32265637 PMCID: PMC7101159 DOI: 10.3389/fnins.2020.00229] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/02/2020] [Indexed: 12/27/2022] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease with impact on brain function through mechanisms that include glucose toxicity, vascular damage and blood–brain barrier (BBB) impairments, mitochondrial dysfunction, oxidative stress, brain insulin resistance, synaptic failure, neuroinflammation, and gliosis. Rodent models have been developed for investigating T2D, and have contributed to our understanding of mechanisms involved in T2D-induced brain dysfunction. Namely, mice or rats exposed to diabetogenic diets that are rich in fat and/or sugar have been widely used since they develop memory impairment, especially in tasks that depend on hippocampal processing. Here we summarize main findings on brain energy metabolism alterations underlying dysfunction of neuronal and glial cells promoted by diet-induced metabolic syndrome that progresses to a T2D phenotype.
Collapse
Affiliation(s)
- Alba M Garcia-Serrano
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
11
|
de Bona Schraiber R, de Mello AH, Garcez ML, de Bem Silveira G, Zacaron RP, de Souza Goldim MP, Budni J, Silveira PCL, Petronilho F, Ferreira GK, Rezin GT. Diet-induced obesity causes hypothalamic neurochemistry alterations in Swiss mice. Metab Brain Dis 2019; 34:565-573. [PMID: 30635861 DOI: 10.1007/s11011-018-0337-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 11/01/2018] [Indexed: 12/11/2022]
Abstract
The aim of this study was to assess inflammatory parameters, oxidative stress and energy metabolism in the hypothalamus of diet-induced obese mice. Male Swiss mice were divided into two study groups: control group and obese group. The animals in the control group were fed a diet with adequate amounts of macronutrients (normal-lipid diet), whereas the animals in the obese group were fed a high-fat diet to induce obesity. Obesity induction lasted 10 weeks, at the end of this period the disease model was validated in animals. The animals in the obese group had higher calorie consumption, higher body weight and higher weight of mesenteric fat compared to control group. Obesity showed an increase in levels of interleukin 1β and decreased levels of interleukin 10 in the hypothalamus. Furthermore, increased lipid peroxidation and protein carbonylation, and decreased level of glutathione in the hypothalamus of obese animals. However, there was no statistically significant difference in the activity of antioxidant enzymes, superoxide dismutase and catalase. The obese group had lower activity of complex I, II and IV of the mitochondrial respiratory chain, as well as lower activity of creatine kinase in the hypothalamus as compared to the control group. Thus, the results from this study showed changes in inflammatory markers, and dysregulation of metabolic enzymes in the pathophysiology of obesity.
Collapse
Affiliation(s)
- Rosiane de Bona Schraiber
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Aline Haas de Mello
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Michelle Lima Garcez
- Neuroscience Laboratory, Unit Neurodegeneration, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Physiology and Biochemistry of Exercise, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Rubya Pereira Zacaron
- Laboratory of Physiology and Biochemistry of Exercise, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Josiane Budni
- Neuroscience Laboratory, Unit Neurodegeneration, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Physiology and Biochemistry of Exercise, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Fabrícia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | | | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| |
Collapse
|
12
|
Desmoulins L, Chrétien C, Paccoud R, Collins S, Cruciani-Guglielmacci C, Galinier A, Liénard F, Quinault A, Grall S, Allard C, Fenech C, Carneiro L, Mouillot T, Fournel A, Knauf C, Magnan C, Fioramonti X, Pénicaud L, Leloup C. Mitochondrial Dynamin-Related Protein 1 (DRP1) translocation in response to cerebral glucose is impaired in a rat model of early alteration in hypothalamic glucose sensing. Mol Metab 2019; 20:166-177. [PMID: 30553770 PMCID: PMC6358535 DOI: 10.1016/j.molmet.2018.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Hypothalamic glucose sensing (HGS) initiates insulin secretion (IS) via a vagal control, participating in energy homeostasis. This requires mitochondrial reactive oxygen species (mROS) signaling, dependent on mitochondrial fission, as shown by invalidation of the hypothalamic DRP1 protein. Here, our objectives were to determine whether a model with a HGS defect induced by a short, high fat-high sucrose (HFHS) diet in rats affected the fission machinery and mROS signaling within the mediobasal hypothalamus (MBH). METHODS Rats fed a HFHS diet for 3 weeks were compared with animals fed a normal chow. Both in vitro (calcium imaging) and in vivo (vagal nerve activity recordings) experiments to measure the electrical activity of isolated MBH gluco-sensitive neurons in response to increased glucose level were performed. In parallel, insulin secretion to a direct glucose stimulus in isolated islets vs. insulin secretion resulting from brain glucose stimulation was evaluated. Intra-carotid glucose load-induced hypothalamic DRP1 translocation to mitochondria and mROS (H2O2) production were assessed in both groups. Finally, compound C was intracerebroventricularly injected to block the proposed AMPK-inhibited DRP1 translocation in the MBH to reverse the phenotype of HFHS fed animals. RESULTS Rats fed a HFHS diet displayed a decreased HGS-induced IS. Responses of MBH neurons to glucose exhibited an alteration of their electrical activity, whereas glucose-induced insulin secretion in isolated islets was not affected. These MBH defects correlated with a decreased ROS signaling and glucose-induced translocation of the fission protein DRP1, as the vagal activity was altered. AMPK-induced inhibition of DRP1 translocation increased in this model, but its reversal through the injection of the compound C, an AMPK inhibitor, failed to restore HGS-induced IS. CONCLUSIONS A hypothalamic alteration of DRP1-induced fission and mROS signaling in response to glucose was observed in HGS-induced IS of rats exposed to a 3 week HFHS diet. Early hypothalamic modifications of the neuronal activity could participate in a primary defect of the control of IS and ultimately, the development of diabetes.
Collapse
Affiliation(s)
- Lucie Desmoulins
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Chloé Chrétien
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Romain Paccoud
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Stephan Collins
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Céline Cruciani-Guglielmacci
- CNRS UMR 8251, Unit of Functional and Adaptive Biology, Paris, France; Department of Physiology, Université Paris Diderot, Paris, France.
| | - Anne Galinier
- STROMALab, UMR CNRS 5273, EFS Pyrénées-Méditerranée, Université Paul Sabatier, Toulouse, France.
| | - Fabienne Liénard
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Aurore Quinault
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Sylvie Grall
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Camille Allard
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Claire Fenech
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Lionel Carneiro
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Thomas Mouillot
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France; Service d'Hépato-Gastroentérologie, hôpital du Bocage, Dijon, France.
| | - Audren Fournel
- Institut de Recherche en Santé Digestive, INSERM U1220, Université Paul Sabatier, Toulouse, France.
| | - Claude Knauf
- Institut de Recherche en Santé Digestive, INSERM U1220, Université Paul Sabatier, Toulouse, France.
| | - Christophe Magnan
- CNRS UMR 8251, Unit of Functional and Adaptive Biology, Paris, France.
| | - Xavier Fioramonti
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France; UMR 1286, NutriNeuro, INRA, Université de Bordeaux, Bordeaux INP, Bordeaux, France.
| | - Luc Pénicaud
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Corinne Leloup
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
13
|
Abstract
The hypothalamus is the brain region responsible for the maintenance of energetic homeostasis. The regulation of this process arises from the ability of the hypothalamus to orchestrate complex physiological responses such as food intake and energy expenditure, circadian rhythm, stress response, and fertility. Metabolic alterations such as obesity can compromise these hypothalamic regulatory functions. Alterations in circadian rhythm, stress response, and fertility further contribute to aggravate the metabolic dysfunction of obesity and contribute to the development of chronic disorders such as depression and infertility.At cellular level, obesity caused by overnutrition can damage the hypothalamus promoting inflammation and impairing hypothalamic neurogenesis. Furthermore, hypothalamic neurons suffer apoptosis and impairment in synaptic plasticity that can compromise the proper functioning of the hypothalamus. Several factors contribute to these phenomena such as ER stress, oxidative stress, and impairments in autophagy. All these observations occur at the same time and it is still difficult to discern whether inflammatory processes are the main drivers of these cellular dysfunctions or if the hypothalamic hormone resistance (insulin, leptin, and ghrelin) can be pinpointed as the source of several of these events.Understanding the mechanisms that underlie the pathophysiology of obesity in the hypothalamus is crucial for the development of strategies that can prevent or attenuate the deleterious effects of obesity.
Collapse
|
14
|
Wang C, Han X, Guo F, Sun X, Luan X, Xu L. Orexin-A signaling in the paraventricular nucleus modulates spontaneous firing of glucose-sensitive neurons and promotes food intake via the NPY pathway in rats. Biochem Biophys Res Commun 2018; 505:162-167. [PMID: 30243725 DOI: 10.1016/j.bbrc.2018.09.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 11/29/2022]
Abstract
Understanding the mechanisms regulating feeding is crucial to unraveling the pathogenesis of obesity. The study primary explored the effects of orexin-A and neuropeptide Y (NPY) signaling in the hypothalamic paraventricular nucleus (PVN) on feeding and glucose-sensitive (GS) neuron activity in rats. Microinjection of orexin-A into the PVN promoted feeding and modulated the spontaneous firing of GS neurons. Those effects were eliminated by pre-injection of the orexin-A receptor-1 (OX1R) antagonist SB-334867 and weaken by the NPY-1 receptor (NPY-1R) antagonist BMS-193885. After orexin-A administration into the PVN, the number of c-fos cells in the arcuate nucleus (ARC) was significantly higher than that in the group receiving normal saline. Furthermore, most cells exhibited co-expression of NPY and c-fos, indicating activation of NPY neurons in the ARC by PVN-administered orexin-A, which might be involved in feeding regulation. These findings indicate that orexin-A and NPY signaling in the PVN are essential to regulating GS neuronal excitability and feeding in rats.
Collapse
Affiliation(s)
- Cheng Wang
- Qingdao University School of Basic Medical Sciences, Shandong, Qingdao, 266071, China
| | - Xiaohua Han
- Qingdao University School of Basic Medical Sciences, Shandong, Qingdao, 266071, China
| | - Feifei Guo
- Qingdao University School of Basic Medical Sciences, Shandong, Qingdao, 266071, China
| | - Xiangrong Sun
- Qingdao University School of Basic Medical Sciences, Shandong, Qingdao, 266071, China
| | - Xiao Luan
- Qingdao University School of Basic Medical Sciences, Shandong, Qingdao, 266071, China
| | - Luo Xu
- Qingdao University School of Basic Medical Sciences, Shandong, Qingdao, 266071, China.
| |
Collapse
|
15
|
Zhou C, Teegala SB, Khan BA, Gonzalez C, Routh VH. Hypoglycemia: Role of Hypothalamic Glucose-Inhibited (GI) Neurons in Detection and Correction. Front Physiol 2018; 9:192. [PMID: 29593556 PMCID: PMC5854653 DOI: 10.3389/fphys.2018.00192] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/23/2018] [Indexed: 01/08/2023] Open
Abstract
Hypoglycemia is a profound threat to the brain since glucose is its primary fuel. As a result, glucose sensors are widely located in the central nervous system and periphery. In this perspective we will focus on the role of hypothalamic glucose-inhibited (GI) neurons in sensing and correcting hypoglycemia. In particular, we will discuss GI neurons in the ventromedial hypothalamus (VMH) which express neuronal nitric oxide synthase (nNOS) and in the perifornical hypothalamus (PFH) which express orexin. The ability of VMH nNOS-GI neurons to depolarize in low glucose closely parallels the hormonal response to hypoglycemia which stimulates gluconeogenesis. We have found that nitric oxide (NO) production in low glucose is dependent on oxidative status. In this perspective we will discuss the potential relevance of our work showing that enhancing the glutathione antioxidant system prevents hypoglycemia associated autonomic failure (HAAF) in non-diabetic rats whereas VMH overexpression of the thioredoxin antioxidant system restores hypoglycemia counterregulation in rats with type 1 diabetes.We will also address the potential role of the orexin-GI neurons in the arousal response needed for hypoglycemia awareness which leads to behavioral correction (e.g., food intake, glucose administration). The potential relationship between the hypothalamic sensors and the neurocircuitry in the hindbrain and portal mesenteric vein which is critical for hypoglycemia correction will then be discussed.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa H. Routh
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
16
|
Ziomber A, Surowka AD, Antkiewicz-Michaluk L, Romanska I, Wrobel P, Szczerbowska-Boruchowska M. Combined brain Fe, Cu, Zn and neurometabolite analysis - a new methodology for unraveling the efficacy of transcranial direct current stimulation (tDCS) in appetite control. Metallomics 2018; 10:397-405. [PMID: 29384550 DOI: 10.1039/c7mt00329c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obesity is a chronic, multifactorial origin disease that has recently become one of the most frequent lifestyle disorders. Unfortunately, current obesity treatments seem to be ineffective. At present, transcranial direct current brain stimulation (tDCS) represents a promising novel treatment methodology that seems to be efficient, well-tolerated and safe for a patient. Unfortunately, the biochemical action of tDCS remains unknown, which prevents its widespread use in the clinical arena, although neurobiochemical changes in brain signaling and metal metabolism are frequently reported. Therefore, our research aimed at exploring the biochemical response to tDCS in situ, in the brain areas triggering feeding behavior in obese animals. The objective was to propose a novel neurochemical (serotoninergic and dopaminergic signaling) and trace metal analysis of Fe, Cu and Zn. In doing so, we used energy-dispersive X-ray fluorescence (EDXRF) and high-performance liquid chromatography (HPLC). Anodal-type stimulation (atDCS) of the right frontal cortex was utilized to down-regulate food intake and body weight gain in obese rats. EDXRF was coupled with the external standard method in order to quantify the chemical elements within appetite-triggering brain areas. Major dopamine metabolites were assessed in the brains, based on the HPLC assay utilizing the external standard assay. Our study confirms that elemental analysis by EDXRF and brain metabolite assay by HPLC can be considered as a useful tool for the in situ investigation of the interplay between neurochemical and Fe/Cu/Zn metabolism in the brain upon atDCS. With this methodology, an increase in both Cu and Zn in the satiety center of the stimulated group could be reported. In turn, the most significant neurochemical changes involved dopaminergic and serotoninergic signaling in the brain reward system.
Collapse
Affiliation(s)
- Agata Ziomber
- Jagiellonian University, Chair of Pathophysiology, Faculty of Medicine, Krakow, Poland
| | - Artur Dawid Surowka
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland.
| | - Lucyna Antkiewicz-Michaluk
- Department of Neurochemistry, Institute of Pharmacology Polish Academy of Sciences, ul. Smetna 12, 31-343 Kraków, Poland
| | - Irena Romanska
- Department of Neurochemistry, Institute of Pharmacology Polish Academy of Sciences, ul. Smetna 12, 31-343 Kraków, Poland
| | - Pawel Wrobel
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland.
| | - Magdalena Szczerbowska-Boruchowska
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland.
| |
Collapse
|
17
|
Cunarro J, Casado S, Lugilde J, Tovar S. Hypothalamic Mitochondrial Dysfunction as a Target in Obesity and Metabolic Disease. Front Endocrinol (Lausanne) 2018; 9:283. [PMID: 29904371 PMCID: PMC5990598 DOI: 10.3389/fendo.2018.00283] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/14/2018] [Indexed: 01/06/2023] Open
Abstract
Mitochondria are important organelles for the adaptation to energy demand that play a central role in bioenergetics metabolism. The mitochondrial architecture and mitochondrial machinery exhibits a high degree of adaptation in relation to nutrient availability. On the other hand, its disruption markedly affects energy homeostasis. The brain, more specifically the hypothalamus, is the main hub that controls energy homeostasis. Nevertheless, until now, almost all studies in relation to mitochondrial dysfunction and energy metabolism have focused in peripheral tissues like brown adipose tissue, muscle, and pancreas. In this review, we highlight the relevance of the hypothalamus and the influence on mitochondrial machinery in its function as well as its consequences in terms of alterations in both energy and metabolic homeostasis.
Collapse
Affiliation(s)
- Juan Cunarro
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Sabela Casado
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Javier Lugilde
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Sulay Tovar
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- *Correspondence: Sulay Tovar,
| |
Collapse
|
18
|
Fioramonti X, Chrétien C, Leloup C, Pénicaud L. Recent Advances in the Cellular and Molecular Mechanisms of Hypothalamic Neuronal Glucose Detection. Front Physiol 2017; 8:875. [PMID: 29184506 PMCID: PMC5694446 DOI: 10.3389/fphys.2017.00875] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/18/2017] [Indexed: 11/18/2022] Open
Abstract
The hypothalamus have been recognized for decades as one of the major brain centers for the control of energy homeostasis. This area contains specialized neurons able to detect changes in nutrients level. Among them, glucose-sensing neurons use glucose as a signaling molecule in addition to its fueling role. In this review we will describe the different sub-populations of glucose-sensing neurons present in the hypothalamus and highlight their nature in terms of neurotransmitter/neuropeptide expression. This review will particularly discuss whether pro-opiomelanocortin (POMC) neurons from the arcuate nucleus are directly glucose-sensing. In addition, recent observations in glucose-sensing suggest a subtle system with different mechanisms involved in the detection of changes in glucose level and their involvement in specific physiological functions. Several data point out the critical role of reactive oxygen species (ROS) and mitochondria dynamics in the detection of increased glucose. This review will also highlight that ATP-dependent potassium (KATP) channels are not the only channels mediating glucose-sensing and discuss the new role of transient receptor potential canonical channels (TRPC). We will discuss the recent advances in the determination of glucose-sensing machinery and propose potential line of research needed to further understand the regulation of brain glucose detection.
Collapse
Affiliation(s)
- Xavier Fioramonti
- NutriNeuro, Institut National de la Recherche Agronomique, Université de Bordeaux, Bordeaux, France.,Centre des Sciences du Goût et de l'Alimentation, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Chloé Chrétien
- Centre des Sciences du Goût et de l'Alimentation, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Corinne Leloup
- Centre des Sciences du Goût et de l'Alimentation, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Luc Pénicaud
- Centre des Sciences du Goût et de l'Alimentation, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France.,Stromalab, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Toulouse, Toulouse, France
| |
Collapse
|
19
|
Inhibition of central de novo ceramide synthesis restores insulin signaling in hypothalamus and enhances β-cell function of obese Zucker rats. Mol Metab 2017; 8:23-36. [PMID: 29233519 PMCID: PMC5985020 DOI: 10.1016/j.molmet.2017.10.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/17/2017] [Accepted: 10/27/2017] [Indexed: 12/29/2022] Open
Abstract
Objectives Hypothalamic lipotoxicity has been shown to induce central insulin resistance and dysregulation of glucose homeostasis; nevertheless, elucidation of the regulatory mechanisms remains incomplete. Here, we aimed to determine the role of de novo ceramide synthesis in hypothalamus on the onset of central insulin resistance and the dysregulation of glucose homeostasis induced by obesity. Methods Hypothalamic GT1-7 neuronal cells were treated with palmitate. De novo ceramide synthesis was inhibited either by pharmacological (myriocin) or molecular (si-Serine Palmitoyl Transferase 2, siSPT2) approaches. Obese Zucker rats (OZR) were intracerebroventricularly infused with myriocin to inhibit de novo ceramide synthesis. Insulin resistance was determined by quantification of Akt phosphorylation. Ceramide levels were quantified either by a radioactive kinase assay or by mass spectrometry analysis. Glucose homeostasis were evaluated in myriocin-treated OZR. Basal and glucose-stimulated parasympathetic tonus was recorded in OZR. Insulin secretion from islets and β-cell mass was also determined. Results We show that palmitate impaired insulin signaling and increased ceramide levels in hypothalamic neuronal GT1-7 cells. In addition, the use of deuterated palmitic acid demonstrated that palmitate activated several enzymes of the de novo ceramide synthesis pathway in hypothalamic cells. Importantly, myriocin and siSPT2 treatment restored insulin signaling in palmitate-treated GT1-7 cells. Protein kinase C (PKC) inhibitor or a dominant-negative PKCζ also counteracted palmitate-induced insulin resistance. Interestingly, attenuating the increase in levels of hypothalamic ceramides with intracerebroventricular infusion of myriocin in OZR improved their hypothalamic insulin-sensitivity. Importantly, central myriocin treatment partially restored glucose tolerance in OZR. This latter effect is related to the restoration of glucose-stimulated insulin secretion and an increase in β-cell mass of OZR. Electrophysiological recordings also showed an improvement of glucose-stimulated parasympathetic nerve activity in OZR centrally treated with myriocin. Conclusion Our results highlight a key role of hypothalamic de novo ceramide synthesis in central insulin resistance installation and glucose homeostasis dysregulation associated with obesity. de novo ceramide synthesis induces hypothalamic insulin resistance through PKCζ. Hypothalamic ceramides induce glucose homeostasis dysregulation seen with obesity. Hypothalamic ceramides mediate inhibition of insulin secretion induced by obesity. Hypothalamic ceramides decreases β cell mass in obese rats. Hypothalamic ceramides decreases parasympathetic tonus.
Collapse
|
20
|
Le Thuc O, Rovère C. [Hypothalamic inflammation and energy balance deregulations: focus on chemokines.]. Biol Aujourdhui 2017; 210:211-225. [PMID: 28327280 DOI: 10.1051/jbio/2016026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Indexed: 02/01/2023]
Abstract
The hypothalamus is a key brain region in the regulation of energy balance. It especially controls food intake and both energy storage and expenditure through integration of humoral, neural and nutrient-related signals and cues. Hypothalamic neurons and glial cells act jointly to orchestrate, both spatially and temporally, regulated metabolic functions of the hypothalamus. Thus, the existence of a causal link between hypothalamic inflammation and deregulations of feeding behavior, such as involuntary weight-loss or obesity, has been suggested. Among the inflammatory mediators that could induce deregulations of hypothalamic control of the energy balance, chemokines represent interesting candidates. Indeed, chemokines, primarily known for their chemoattractant role of immune cells to the inflamed site, have also been suggested capable of neuromodulation. Thus, chemokines could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators that are involved in the maintenance of energy balance. Here, we relate, on one hand, recent results showing the primary role of the central chemokinergic signaling CCL2/CCR2 for metabolic and behavioral adaptation to high-grade inflammation, especially loss of appetite and weight, through its activity on hypothalamic neurons producing the orexigenic peptide Melanin-Concentrating Hormone (MCH) and, on the other hand, results that suggest that chemokines could also deregulate hypothalamic neuropeptidergic circuits to induce an opposite phenotype and eventually participate in the onset/development of obesity. In more details, we will emphasize a study recently showing, in a model of high-grade acute inflammation of LPS injection in mice, that central CCL2/CCR2 signaling is of primary importance for several aspects explaining weight loss associated with inflammation: after LPS injection, animals lose weight, reduce their food intake, increase their fat oxidation (thus energy consumption from fat storage)...These inflammation-induced metabolic and behavioral changes are reduced when central CCR2 signaling is disrupted either pharmacologically (by a specific inhibitor of CCR2) or genetically (in mice deficient for CCR2). This underlines the importance of this signaling in inflammation-related weight loss. We further determined that the LPS-induced and CCR2-mediated weight loss depends on the direct effect of CCR2 activation on MCH neurons activity. Indeed, the MCH neurons express CCR2, and the application of CCL2 on brain slices revealed that activation of CCR2 actually depolarizes MCH neurons and induces delays and/or failures of action potential emission. Furthermore, CCL2 is able to reduce KCl-evoked MCH secretion from hypothalamic explants. Taken together, these results demonstrate the role of the central CCL2/CCR2 signaling in metabolic and behavioral adaptation to inflammation. On the other hand, this first description of how the chemokinergic system can actually modulate the activity of the hypothalamic regulation of energy balance, but also some less advanced studies and some unpublished data, suggest that some other chemokines, such as CCL5, could participate in the development of the opposite phenotype, that is to say obesity.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France - Helmholtz Diabetes Center (HDC) & German Center for Diabetes Research (DZD), Helmholtz Zentrum München & Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Carole Rovère
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| |
Collapse
|
21
|
Le Thuc O, Stobbe K, Cansell C, Nahon JL, Blondeau N, Rovère C. Hypothalamic Inflammation and Energy Balance Disruptions: Spotlight on Chemokines. Front Endocrinol (Lausanne) 2017; 8:197. [PMID: 28855891 PMCID: PMC5557773 DOI: 10.3389/fendo.2017.00197] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022] Open
Abstract
The hypothalamus is a key brain region in the regulation of energy balance as it controls food intake and both energy storage and expenditure through integration of humoral, neural, and nutrient-related signals and cues. Many years of research have focused on the regulation of energy balance by hypothalamic neurons, but the most recent findings suggest that neurons and glial cells, such as microglia and astrocytes, in the hypothalamus actually orchestrate together several metabolic functions. Because glial cells have been described as mediators of inflammatory processes in the brain, the existence of a causal link between hypothalamic inflammation and the deregulations of feeding behavior, leading to involuntary weight loss or obesity for example, has been suggested. Several inflammatory pathways that could impair the hypothalamic control of energy balance have been studied over the years such as, among others, toll-like receptors and canonical cytokines. Yet, less studied so far, chemokines also represent interesting candidates that could link the aforementioned pathways and the activity of hypothalamic neurons. Indeed, chemokines, in addition to their role in attracting immune cells to the inflamed site, have been suggested to be capable of neuromodulation. Thus, they could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators involved in the maintenance of energy balance. This review discusses the different inflammatory pathways that have been identified so far in the hypothalamus in the context of feeding behavior and body weight control impairments, with a particular focus on chemokines signaling that opens a new avenue in the understanding of the major role played by inflammation in obesity.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
- Helmholtz Diabetes Center (HDC), German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Katharina Stobbe
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Céline Cansell
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Jean-Louis Nahon
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Nicolas Blondeau
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Carole Rovère
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
- *Correspondence: Carole Rovère,
| |
Collapse
|
22
|
Gonzalez-Franquesa A, Patti ME. Insulin Resistance and Mitochondrial Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:465-520. [DOI: 10.1007/978-3-319-55330-6_25] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Pauliina Markkula S, Lyons D, Yueh CY, Riches C, Hurst P, Fielding B, Heisler LK, Evans ML. Intracerebroventricular Catalase Reduces Hepatic Insulin Sensitivity and Increases Responses to Hypoglycemia in Rats. Endocrinology 2016; 157:4669-4676. [PMID: 27740870 PMCID: PMC5133351 DOI: 10.1210/en.2015-2054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Specialized metabolic sensors in the hypothalamus regulate blood glucose levels by influencing hepatic glucose output and hypoglycemic counterregulatory responses. Hypothalamic reactive oxygen species (ROS) may act as a metabolic signal-mediating responses to changes in glucose, other substrates and hormones. The role of ROS in the brain's control of glucose homeostasis remains unclear. We hypothesized that hydrogen peroxide (H2O2), a relatively stable form of ROS, acts as a sensor of neuronal glucose consumption and availability and that lowering brain H2O2 with the enzyme catalase would lead to systemic responses increasing blood glucose. During hyperinsulinemic euglycemic clamps in rats, intracerebroventricular catalase infusion resulted in increased hepatic glucose output, which was associated with reduced neuronal activity in the arcuate nucleus of the hypothalamus. Electrophysiological recordings revealed a subset of arcuate nucleus neurons expressing proopiomelanocortin that were inhibited by catalase and excited by H2O2. During hypoglycemic clamps, intracerebroventricular catalase increased glucagon and epinephrine responses to hypoglycemia, consistent with perceived lower glucose levels. Our data suggest that H2O2 represents an important metabolic cue, which, through tuning the electrical activity of key neuronal populations such as proopiomelanocortin neurons, may have a role in the brain's influence of glucose homeostasis and energy balance.
Collapse
Affiliation(s)
- S Pauliina Markkula
- Wellcome Trust/Medical Research Council Institute of Metabolic Science and Department of Medicine (S.P.M., C.-Y.Y., C.R., P.H., M.L.E.), University of Cambridge, Cambridge CB20QQ, United Kingdom; Rowett Institute of Nutrition and Health (D.L., L.K.H.), University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom; Department of Family Medicine (C.-Y.Y.), Chang Gung Memorial Hospital, Chiayi, Taiwan; Chang Gung University of Science and Technology (C.-Y.Y.), Taoyuan City 33303, Taiwan; Oxford Centre for Diabetes, Endocrinology and Metabolism (B.F.), University of Oxford, Oxford OX37JT, United Kingdom; and Department of Nutritional Sciences (B.F.), University of Surrey, Guildford GU27XH, United Kingdom
| | - David Lyons
- Wellcome Trust/Medical Research Council Institute of Metabolic Science and Department of Medicine (S.P.M., C.-Y.Y., C.R., P.H., M.L.E.), University of Cambridge, Cambridge CB20QQ, United Kingdom; Rowett Institute of Nutrition and Health (D.L., L.K.H.), University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom; Department of Family Medicine (C.-Y.Y.), Chang Gung Memorial Hospital, Chiayi, Taiwan; Chang Gung University of Science and Technology (C.-Y.Y.), Taoyuan City 33303, Taiwan; Oxford Centre for Diabetes, Endocrinology and Metabolism (B.F.), University of Oxford, Oxford OX37JT, United Kingdom; and Department of Nutritional Sciences (B.F.), University of Surrey, Guildford GU27XH, United Kingdom
| | - Chen-Yu Yueh
- Wellcome Trust/Medical Research Council Institute of Metabolic Science and Department of Medicine (S.P.M., C.-Y.Y., C.R., P.H., M.L.E.), University of Cambridge, Cambridge CB20QQ, United Kingdom; Rowett Institute of Nutrition and Health (D.L., L.K.H.), University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom; Department of Family Medicine (C.-Y.Y.), Chang Gung Memorial Hospital, Chiayi, Taiwan; Chang Gung University of Science and Technology (C.-Y.Y.), Taoyuan City 33303, Taiwan; Oxford Centre for Diabetes, Endocrinology and Metabolism (B.F.), University of Oxford, Oxford OX37JT, United Kingdom; and Department of Nutritional Sciences (B.F.), University of Surrey, Guildford GU27XH, United Kingdom
| | - Christine Riches
- Wellcome Trust/Medical Research Council Institute of Metabolic Science and Department of Medicine (S.P.M., C.-Y.Y., C.R., P.H., M.L.E.), University of Cambridge, Cambridge CB20QQ, United Kingdom; Rowett Institute of Nutrition and Health (D.L., L.K.H.), University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom; Department of Family Medicine (C.-Y.Y.), Chang Gung Memorial Hospital, Chiayi, Taiwan; Chang Gung University of Science and Technology (C.-Y.Y.), Taoyuan City 33303, Taiwan; Oxford Centre for Diabetes, Endocrinology and Metabolism (B.F.), University of Oxford, Oxford OX37JT, United Kingdom; and Department of Nutritional Sciences (B.F.), University of Surrey, Guildford GU27XH, United Kingdom
| | - Paul Hurst
- Wellcome Trust/Medical Research Council Institute of Metabolic Science and Department of Medicine (S.P.M., C.-Y.Y., C.R., P.H., M.L.E.), University of Cambridge, Cambridge CB20QQ, United Kingdom; Rowett Institute of Nutrition and Health (D.L., L.K.H.), University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom; Department of Family Medicine (C.-Y.Y.), Chang Gung Memorial Hospital, Chiayi, Taiwan; Chang Gung University of Science and Technology (C.-Y.Y.), Taoyuan City 33303, Taiwan; Oxford Centre for Diabetes, Endocrinology and Metabolism (B.F.), University of Oxford, Oxford OX37JT, United Kingdom; and Department of Nutritional Sciences (B.F.), University of Surrey, Guildford GU27XH, United Kingdom
| | - Barbara Fielding
- Wellcome Trust/Medical Research Council Institute of Metabolic Science and Department of Medicine (S.P.M., C.-Y.Y., C.R., P.H., M.L.E.), University of Cambridge, Cambridge CB20QQ, United Kingdom; Rowett Institute of Nutrition and Health (D.L., L.K.H.), University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom; Department of Family Medicine (C.-Y.Y.), Chang Gung Memorial Hospital, Chiayi, Taiwan; Chang Gung University of Science and Technology (C.-Y.Y.), Taoyuan City 33303, Taiwan; Oxford Centre for Diabetes, Endocrinology and Metabolism (B.F.), University of Oxford, Oxford OX37JT, United Kingdom; and Department of Nutritional Sciences (B.F.), University of Surrey, Guildford GU27XH, United Kingdom
| | - Lora K Heisler
- Wellcome Trust/Medical Research Council Institute of Metabolic Science and Department of Medicine (S.P.M., C.-Y.Y., C.R., P.H., M.L.E.), University of Cambridge, Cambridge CB20QQ, United Kingdom; Rowett Institute of Nutrition and Health (D.L., L.K.H.), University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom; Department of Family Medicine (C.-Y.Y.), Chang Gung Memorial Hospital, Chiayi, Taiwan; Chang Gung University of Science and Technology (C.-Y.Y.), Taoyuan City 33303, Taiwan; Oxford Centre for Diabetes, Endocrinology and Metabolism (B.F.), University of Oxford, Oxford OX37JT, United Kingdom; and Department of Nutritional Sciences (B.F.), University of Surrey, Guildford GU27XH, United Kingdom
| | - Mark L Evans
- Wellcome Trust/Medical Research Council Institute of Metabolic Science and Department of Medicine (S.P.M., C.-Y.Y., C.R., P.H., M.L.E.), University of Cambridge, Cambridge CB20QQ, United Kingdom; Rowett Institute of Nutrition and Health (D.L., L.K.H.), University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom; Department of Family Medicine (C.-Y.Y.), Chang Gung Memorial Hospital, Chiayi, Taiwan; Chang Gung University of Science and Technology (C.-Y.Y.), Taoyuan City 33303, Taiwan; Oxford Centre for Diabetes, Endocrinology and Metabolism (B.F.), University of Oxford, Oxford OX37JT, United Kingdom; and Department of Nutritional Sciences (B.F.), University of Surrey, Guildford GU27XH, United Kingdom
| |
Collapse
|
24
|
Fournel A, Marlin A, Abot A, Pasquio C, Cirillo C, Cani PD, Knauf C. Glucosensing in the gastrointestinal tract: Impact on glucose metabolism. Am J Physiol Gastrointest Liver Physiol 2016; 310:G645-58. [PMID: 26939867 PMCID: PMC4867329 DOI: 10.1152/ajpgi.00015.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/25/2016] [Indexed: 01/31/2023]
Abstract
The gastrointestinal tract is an important interface of exchange between ingested food and the body. Glucose is one of the major dietary sources of energy. All along the gastrointestinal tube, e.g., the oral cavity, small intestine, pancreas, and portal vein, specialized cells referred to as glucosensors detect variations in glucose levels. In response to this glucose detection, these cells send hormonal and neuronal messages to tissues involved in glucose metabolism to regulate glycemia. The gastrointestinal tract continuously communicates with the brain, especially with the hypothalamus, via the gut-brain axis. It is now well established that the cross talk between the gut and the brain is of crucial importance in the control of glucose homeostasis. In addition to receiving glucosensing information from the gut, the hypothalamus may also directly sense glucose. Indeed, the hypothalamus contains glucose-sensitive cells that regulate glucose homeostasis by sending signals to peripheral tissues via the autonomous nervous system. This review summarizes the mechanisms by which glucosensors along the gastrointestinal tract detect glucose, as well as the results of such detection in the whole body, including the hypothalamus. We also highlight how disturbances in the glucosensing process may lead to metabolic disorders such as type 2 diabetes. A better understanding of the pathways regulating glucose homeostasis will further facilitate the development of novel therapeutic strategies for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Audren Fournel
- 1NeuroMicrobiota, European Associated Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) U1220, Institut de Recherche en Santé Digestive (IRSD), Toulouse, France;
| | - Alysson Marlin
- 1NeuroMicrobiota, European Associated Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) U1220, Institut de Recherche en Santé Digestive (IRSD), Toulouse, France;
| | - Anne Abot
- 1NeuroMicrobiota, European Associated Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) U1220, Institut de Recherche en Santé Digestive (IRSD), Toulouse, France;
| | - Charles Pasquio
- 1NeuroMicrobiota, European Associated Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) U1220, Institut de Recherche en Santé Digestive (IRSD), Toulouse, France;
| | - Carla Cirillo
- 2Laboratory for Enteric NeuroScience (LENS), University of Leuven, Leuven, Belgium; and
| | - Patrice D. Cani
- 3NeuroMicrobiota, European Associated Laboratory, Université Catholique de Louvain (UCL), Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Brussels, Belgium
| | - Claude Knauf
- NeuroMicrobiota, European Associated Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) U1220, Institut de Recherche en Santé Digestive (IRSD), Toulouse, France;
| |
Collapse
|
25
|
Millet AMC, Bertholet AM, Daloyau M, Reynier P, Galinier A, Devin A, Wissinguer B, Belenguer P, Davezac N. Loss of functional OPA1 unbalances redox state: implications in dominant optic atrophy pathogenesis. Ann Clin Transl Neurol 2016; 3:408-21. [PMID: 27547769 PMCID: PMC4891995 DOI: 10.1002/acn3.305] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 12/14/2022] Open
Abstract
Objective OPA1 mutations cause protein haploinsufficiency leading to dominant optic atrophy (DOA), an incurable retinopathy with variable severity. Up to 20% of patients also develop extraocular neurological complications. The mechanisms that cause this optic atrophy or its syndromic forms are still unknown. After identifying oxidative stress in a mouse model of the pathology, we sought to determine the consequences of OPA1 dysfunction on redox homeostasis. Methods Mitochondrial respiration, reactive oxygen species levels, antioxidant defenses, and cell death were characterized by biochemical and in situ approaches in both in vitro and in vivo models of OPA1 haploinsufficiency. Results A decrease in aconitase activity suggesting an increase in reactive oxygene species and an induction of antioxidant defenses was observed in cortices of a murine model as well as in OPA1 downregulated cortical neurons. This increase is associated with a decline in mitochondrial respiration in vitro. Upon exogenous oxidative stress, OPA1‐depleted neurons did not further exhibit upregulated antioxidant defenses but were more sensitive to cell death. Finally, low levels of antioxidant enzymes were found in fibroblasts from patients supporting their role as modifier factors. Interpretation Our study suggests that the pro‐oxidative state induced by OPA1 loss may contribute to DOA pathogenesis and that differences in antioxidant defenses can explain the variability in expressivity. Furthermore, antioxidants may be used as therapy as they could prevent or delay DOA symptoms in patients.
Collapse
Affiliation(s)
- Aurélie M C Millet
- Center of Developmental Biology (CBD)/Research Center on Animal Cognition (CRCA) Center for Integrative Biology (CBI) Toulouse University, CNRS, UPS Toulouse France
| | - Ambre M Bertholet
- Center of Developmental Biology (CBD)/Research Center on Animal Cognition (CRCA) Center for Integrative Biology (CBI) Toulouse University, CNRS, UPS Toulouse France
| | - Marlène Daloyau
- Center of Developmental Biology (CBD)/Research Center on Animal Cognition (CRCA) Center for Integrative Biology (CBI) Toulouse University, CNRS, UPS Toulouse France
| | - Pascal Reynier
- CNRS UMR 6214 Inserm UMR 1083 UFR Sciences médicales Rue Haute de Reculee Angers Cedex 01 49045 France
| | - Anne Galinier
- Laboratoire de Biochimie Nutritionnelle "STROMALab" UMR UPS/CNRS/EFS 5273 Inserm U1031, CHU Rangueil 1 avenue Jean Poulhès Toulouse Cedex 9 31059 France
| | - Anne Devin
- Laboratoire métabolisme énergétique cellulaire IBGC du CNRS 1 rue Camille Saint Saëns Bordeaux Cedex 33077 France
| | - Bernd Wissinguer
- Centre for Ophthalmology University of Tübingen Roentgenweg 11 Tübingen D-72076 Germany
| | - Pascale Belenguer
- Center of Developmental Biology (CBD)/Research Center on Animal Cognition (CRCA) Center for Integrative Biology (CBI) Toulouse University, CNRS, UPS Toulouse France
| | - Noélie Davezac
- Center of Developmental Biology (CBD)/Research Center on Animal Cognition (CRCA) Center for Integrative Biology (CBI) Toulouse University, CNRS, UPS Toulouse France
| |
Collapse
|
26
|
Vázquez-Martínez O, Pérez-Mendoza M, Valente-Godínez H, Revueltas-Guillén F, Carmona-Castro A, Díaz-Muñoz M, Miranda-Anaya M. Day-night variations in pro-oxidant reactions of hypothalamic, hepatic and pancreatic tissue in mice with spontaneous obesity (Neotomodon alstoni). BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1108061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Taurine supplementation preserves hypothalamic leptin action in normal and protein-restricted mice fed on a high-fat diet. Amino Acids 2015; 47:2419-35. [DOI: 10.1007/s00726-015-2035-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/17/2015] [Indexed: 12/19/2022]
|
28
|
Jankovic A, Korac A, Buzadzic B, Otasevic V, Stancic A, Daiber A, Korac B. Redox implications in adipose tissue (dys)function--A new look at old acquaintances. Redox Biol 2015; 6:19-32. [PMID: 26177468 PMCID: PMC4511633 DOI: 10.1016/j.redox.2015.06.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
Obesity is an energy balance disorder associated with dyslipidemia, insulin resistance and diabetes type 2, also summarized with the term metabolic syndrome or syndrome X. Increasing evidence points to “adipocyte dysfunction”, rather than fat mass accretion per se, as the key pathophysiological factor for metabolic complications in obesity. The dysfunctional fat tissue in obesity characterizes a failure to safely store metabolic substrates into existing hypertrophied adipocytes and/or into new preadipocytes recruited for differentiation. In this review we briefly summarize the potential of redox imbalance in fat tissue as an instigator of adipocyte dysfunction in obesity. We reveal the challenge of the adipose redox changes, insights in the regulation of healthy expansion of adipose tissue and its reduction, leading to glucose and lipids overflow. Adipose tissue (AT) buffers nutrient excess determining overall metabolic health. Redox insight in lipid storage and adipogenesis of AT is reviewed. Redox modulation of AT as therapeutic target in obesity/syndrome X is considered.
Collapse
Affiliation(s)
- Aleksandra Jankovic
- University of Belgrade, Department of Physiology, Institute for Biological Research "Sinisa Stankovic", Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Aleksandra Korac
- University of Belgrade, Faculty of Biology, Center for Electron Microscopy, Belgrade, Serbia
| | - Biljana Buzadzic
- University of Belgrade, Department of Physiology, Institute for Biological Research "Sinisa Stankovic", Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Vesna Otasevic
- University of Belgrade, Department of Physiology, Institute for Biological Research "Sinisa Stankovic", Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Ana Stancic
- University of Belgrade, Department of Physiology, Institute for Biological Research "Sinisa Stankovic", Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Andreas Daiber
- 2nd Medical Department, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Bato Korac
- University of Belgrade, Department of Physiology, Institute for Biological Research "Sinisa Stankovic", Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| |
Collapse
|
29
|
Diet-induced obesity impairs hypothalamic glucose sensing but not glucose hypothalamic extracellular levels, as measured by microdialysis. Nutr Diabetes 2015; 5:e162. [PMID: 26075639 PMCID: PMC4491853 DOI: 10.1038/nutd.2015.12] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 04/09/2015] [Accepted: 04/22/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/OBJECTIVES Glucose from the diet may signal metabolic status to hypothalamic sites controlling energy homeostasis. Disruption of this mechanism may contribute to obesity but its relevance has not been established. The present experiments aimed at evaluating whether obesity induced by chronic high-fat intake affects the ability of hypothalamic glucose to control feeding. We hypothesized that glucose transport to the hypothalamus as well as glucose sensing and signaling could be impaired by high-fat feeding. SUBJECTS/METHODS Female Wistar rats were studied after 8 weeks on either control or high-lard diet. Daily food intake was measured after intracerebroventricular (i.c.v.) glucose. Glycemia and glucose content of medial hypothalamus microdialysates were measured in response to interperitoneal (i.p.) glucose or meal intake after an overnight fast. The effect of refeeding on whole hypothalamus levels of glucose transporter proteins (GLUT) 1, 2 and 4, AMPK and phosphorylated AMPK levels was determined by immunoblotting. RESULTS High-fat rats had higher body weight and fat content and serum leptin than control rats, but normal insulin levels and glucose tolerance. I.c.v. glucose inhibited food intake in control but failed to do so in high-fat rats. Either i.p. glucose or refeeding significantly increased glucose hypothalamic microdialysate levels in the control rats. These levels showed exacerbated increases in the high-fat rats. GLUT1 and 4 levels were not affected by refeeding. GLUT2 levels decreased and phosphor-AMPK levels increased in the high-fat rats but not in the controls. CONCLUSIONS The findings suggest that, in the high-fat rats, a defective glucose sensing by decreased GLUT2 levels contributed to an inappropriate activation of AMPK after refeeding, despite increased extracellular glucose levels. These derangements were probably involved in the abolition of hypophagia in response to i.c.v. glucose. It is proposed that 'glucose resistance' in central sites of feeding control may be relevant in the disturbances of energy homeostasis induced by high-fat feeding.
Collapse
|
30
|
Glucose and hypothalamic astrocytes: More than a fueling role? Neuroscience 2015; 323:110-20. [PMID: 26071958 DOI: 10.1016/j.neuroscience.2015.06.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 01/19/2023]
Abstract
Brain plays a central role in energy homeostasis continuously integrating numerous peripheral signals such as circulating nutrients, and in particular blood glucose level, a variable that must be highly regulated. Then, the brain orchestrates adaptive responses to modulate food intake and peripheral organs activity in order to achieve the fine tuning of glycemia. More than fifty years ago, the presence of glucose-sensitive neurons was discovered in the hypothalamus, but what makes them specific and identifiable still remains disconnected from their electrophysiological signature. On the other hand, astrocytes represent the major class of macroglial cells and are now recognized to support an increasing number of neuronal functions. One of these functions consists in the regulation of energy homeostasis through neuronal fueling and nutrient sensing. Twenty years ago, we discovered that the glucose transporter GLUT2, the canonical "glucosensor" of the pancreatic beta-cell together with the glucokinase, was also present in astrocytes and participated in hypothalamic glucose sensing. Since then, many studies have identified other actors and emphasized the astroglial participation in this mechanism. Growing evidence suggest that astrocytes form a complex network and have to be considered as spatially coordinated and regulated metabolic units. In this review we aim to provide an updated view of the molecular and respective cellular pathways involved in hypothalamic glucose sensing, and their relevance in physiological and pathological states.
Collapse
|
31
|
Drougard A, Fournel A, Valet P, Knauf C. Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake. Front Neurosci 2015; 9:56. [PMID: 25759638 PMCID: PMC4338676 DOI: 10.3389/fnins.2015.00056] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/07/2015] [Indexed: 12/31/2022] Open
Abstract
Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites) from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS) as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC) and agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,…), neurotransmitters and nutrients (glucose, lipids,…). The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes. In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders.
Collapse
Affiliation(s)
- Anne Drougard
- NeuroMicrobiota, European Associated Laboratory, INSERM/UCL, Institut National de la Santé et de la Recherche Médicale, U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, Université Paul SabatierToulouse, France
| | | | | | - Claude Knauf
- NeuroMicrobiota, European Associated Laboratory, INSERM/UCL, Institut National de la Santé et de la Recherche Médicale, U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, Université Paul SabatierToulouse, France
| |
Collapse
|
32
|
Dietary sugars: their detection by the gut-brain axis and their peripheral and central effects in health and diseases. Eur J Nutr 2014; 54:1-24. [PMID: 25296886 PMCID: PMC4303703 DOI: 10.1007/s00394-014-0776-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/24/2014] [Indexed: 12/25/2022]
Abstract
Background Substantial increases in dietary sugar intake together with the increasing prevalence of obesity worldwide, as well as the parallels found between sugar overconsumption and drug abuse, have motivated research on the adverse effects of sugars on health and eating behaviour. Given that the gut–brain axis depends on multiple interactions between peripheral and central signals, and because these signals are interdependent, it is crucial to have a holistic view about dietary sugar effects on health. Methods Recent data on the effects of dietary sugars (i.e. sucrose, glucose, and fructose) at both peripheral and central levels and their interactions will be critically discussed in order to improve our understanding of the effects of sugars on health and diseases. This will contribute to the development of more efficient strategies for the prevention and treatment for obesity and associated co-morbidities. Results This review highlights opposing effects of glucose and fructose on metabolism and eating behaviour. Peripheral glucose and fructose sensing may influence eating behaviour by sweet-tasting mechanisms in the mouth and gut, and by glucose-sensing mechanisms in the gut. Glucose may impact brain reward regions and eating behaviour directly by crossing the blood–brain barrier, and indirectly by peripheral neural input and by oral and intestinal sweet taste/sugar-sensing mechanisms, whereas those promoted by fructose orally ingested seem to rely only on these indirect mechanisms. Conclusions Given the discrepancies between studies regarding the metabolic effects of sugars, more studies using physiological experimental conditions and in animal models closer to humans are needed. Additional studies directly comparing the effects of sucrose, glucose, and fructose should be performed to elucidate possible differences between these sugars on the reward circuitry.
Collapse
|
33
|
Aimé P, Palouzier-Paulignan B, Salem R, Al Koborssy D, Garcia S, Duchamp C, Romestaing C, Julliard AK. Modulation of olfactory sensitivity and glucose-sensing by the feeding state in obese Zucker rats. Front Behav Neurosci 2014; 8:326. [PMID: 25278856 PMCID: PMC4166364 DOI: 10.3389/fnbeh.2014.00326] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/01/2014] [Indexed: 12/13/2022] Open
Abstract
The Zucker fa/fa rat has been widely used as an animal model to study obesity, since it recapitulates most of its behavioral and metabolic dysfunctions, such as hyperphagia, hyperglycemia and insulin resistance. Although it is well established that olfaction is under nutritional and hormonal influences, little is known about the impact of metabolic dysfunctions on olfactory performances and glucose-sensing in the olfactory system of the obese Zucker rat. In the present study, using a behavioral paradigm based on a conditioned olfactory aversion, we have shown that both obese and lean Zucker rats have a better olfactory sensitivity when they are fasted than when they are satiated. Interestingly, the obese Zucker rats displayed a higher olfactory sensitivity than their lean controls. By investigating the molecular mechanisms involved in glucose-sensing in the olfactory system, we demonstrated that sodium-coupled glucose transporters 1 (SGLT1) and insulin dependent glucose transporters 4 (GLUT4) are both expressed in the olfactory bulb (OB). By comparing the expression of GLUT4 and SGLT1 in OB of obese and lean Zucker rats, we found that only SGLT1 is regulated in genotype-dependent manner. Next, we used glucose oxidase biosensors to simultaneously measure in vivo the extracellular fluid glucose concentrations ([Gluc]ECF) in the OB and the cortex. Under metabolic steady state, we have determined that the OB contained twice the amount of glucose found in the cortex. In both regions, the [Gluc]ECF was 2 fold higher in obese rats compared to their lean controls. Under induced dynamic glycemia conditions, insulin injection produced a greater decrease of [Gluc]ECF in the OB than in the cortex. Glucose injection did not affect OB [Gluc]ECF in Zucker fa/fa rats. In conclusion, these results emphasize the importance of glucose for the OB network function and provide strong arguments towards establishing the OB glucose-sensing as a key factor for sensory olfactory processing.
Collapse
Affiliation(s)
- Pascaline Aimé
- Team "Olfaction: From Coding to Memory", Lyon Neuroscience Center, INSERM U1028-CNRS 5292- Université Lyon1 Lyon, France
| | - Brigitte Palouzier-Paulignan
- Team "Olfaction: From Coding to Memory", Lyon Neuroscience Center, INSERM U1028-CNRS 5292- Université Lyon1 Lyon, France
| | - Rita Salem
- Team "Olfaction: From Coding to Memory", Lyon Neuroscience Center, INSERM U1028-CNRS 5292- Université Lyon1 Lyon, France
| | - Dolly Al Koborssy
- Team "Olfaction: From Coding to Memory", Lyon Neuroscience Center, INSERM U1028-CNRS 5292- Université Lyon1 Lyon, France
| | - Samuel Garcia
- Team "Olfaction: From Coding to Memory", Lyon Neuroscience Center, INSERM U1028-CNRS 5292- Université Lyon1 Lyon, France
| | - Claude Duchamp
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés CNRS 5023, Villeurbanne, France
| | - Caroline Romestaing
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés CNRS 5023, Villeurbanne, France
| | - A Karyn Julliard
- Team "Olfaction: From Coding to Memory", Lyon Neuroscience Center, INSERM U1028-CNRS 5292- Université Lyon1 Lyon, France
| |
Collapse
|
34
|
Hypothalamic astroglial connexins are required for brain glucose sensing-induced insulin secretion. J Cereb Blood Flow Metab 2014; 34:339-46. [PMID: 24301293 PMCID: PMC3915215 DOI: 10.1038/jcbfm.2013.206] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 10/12/2013] [Accepted: 10/30/2013] [Indexed: 01/03/2023]
Abstract
Hypothalamic glucose detection participates in maintaining glycemic balance, food intake, and thermogenesis. Although hypothalamic neurons are the executive cells involved in these responses, there is increasing evidence that astrocytes participate in glucose sensing (GS); however, it is unknown whether astroglial networking is required for glucose sensitivity. Astroglial connexins 30 and 43 (Cx30 and Cx43) form hexameric channels, which are apposed in gap junctions, allowing for the intercellular transfer of small molecules such as glucose throughout the astroglial networks. Here, we hypothesized that hypothalamic glucose sensitivity requires these connexins. First, we showed that both Cxs are enriched in the rat hypothalamus, with highly concentrated Cx43 expression around blood vessels of the mediobasal hypothalamus (MBH). Both fasting and high glycemic levels rapidly altered the protein levels of MBH astroglial connexins, suggesting cross talk within the MBH between glycemic status and the connexins' ability to dispatch glucose. Finally, the inhibition of MBH Cx43 (by transient RNA interference) attenuated hypothalamic glucose sensitivity in rats, which was demonstrated by a pronounced decreased insulin secretion in response to a brain glucose challenge. These results illustrate that astroglial connexins contribute to hypothalamic GS.
Collapse
|
35
|
Drougard A, Duparc T, Brenachot X, Carneiro L, Gouazé A, Fournel A, Geurts L, Cadoudal T, Prats AC, Pénicaud L, Vieau D, Lesage J, Leloup C, Benani A, Cani PD, Valet P, Knauf C. Hypothalamic apelin/reactive oxygen species signaling controls hepatic glucose metabolism in the onset of diabetes. Antioxid Redox Signal 2014; 20:557-73. [PMID: 23879244 PMCID: PMC3901354 DOI: 10.1089/ars.2013.5182] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIMS We have previously demonstrated that central apelin is implicated in the control of peripheral glycemia, and its action depends on nutritional (fast versus fed) and physiological (normal versus diabetic) states. An intracerebroventricular (icv) injection of a high dose of apelin, similar to that observed in obese/diabetic mice, increase fasted glycemia, suggesting (i) that apelin contributes to the establishment of a diabetic state, and (ii) the existence of a hypothalamic to liver axis. Using pharmacological, genetic, and nutritional approaches, we aim at unraveling this system of regulation by identifying the hypothalamic molecular actors that trigger the apelin effect on liver glucose metabolism and glycemia. RESULTS We show that icv apelin injection stimulates liver glycogenolysis and gluconeogenesis via an over-activation of the sympathetic nervous system (SNS), leading to fasted hyperglycemia. The effect of central apelin on liver function is dependent of an increased production of hypothalamic reactive oxygen species (ROS). These data are strengthened by experiments using lentiviral vector-mediated over-expression of apelin in hypothalamus of mice that present over-activation of SNS associated to an increase in hepatic glucose production. Finally, we report that mice fed a high-fat diet present major alterations of hypothalamic apelin/ROS signaling, leading to activation of glycogenolysis. INNOVATION/CONCLUSION: These data bring compelling evidence that hypothalamic apelin is one master switch that participates in the onset of diabetes by directly acting on liver function. Our data support the idea that hypothalamic apelin is a new potential therapeutic target to treat diabetes.
Collapse
Affiliation(s)
- Anne Drougard
- 1 Institut National de la Santé et de la Recherche Médicale (INSERM) , Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu YC, Chung CJ, Shiue HS, Cheng YY, Huang SR, Su CT, Hsueh YM. Genetic polymorphisms of myeloperoxidase and their effect on hypertension. Blood Press 2013; 22:282-9. [DOI: 10.3109/08037051.2012.759331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Berner J. Sodium oxybate intolerance associated with familial serum acylcarnitine elevation. J Clin Sleep Med 2013; 9:71-2. [PMID: 23319908 DOI: 10.5664/jcsm.2346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Our case describes clinical features of two families defined by joint phenotypes: sodium oxybate intolerance and elevated serum acylcarnitines. Oxybate intolerance variably presents as either cervical dystonia or sleep-related eating disorder. Our objective is to identify biological markers which predict a poor response to sodium oxybate as a treatment for disturbed sleep. Familial inheritance pattern, genotype analysis, multiorgan system involvement, and response to treatment suggest the presence of a secondary cause of fatty oxidation defect, i.e., mitochondrial disorder. Our case report supports the possible conclusion that variance in human mitochondrial metabolism may affect sodium oxybate tolerability.
Collapse
Affiliation(s)
- Jon Berner
- Woodinville Psychiatric Associates, Woodinville, WA 98072, USA.
| |
Collapse
|
38
|
Abstract
Hypothalamic detection of nutrients is involved in the control of energy metabolism and is altered in metabolic disorders. Although hypothalamic detection of blood lactate lowers hepatic glucose production and food intake, it is unknown whether it also modulates insulin secretion. To address this, a lactate injection via the right carotid artery (cephalad) was performed in Wistar rats. This triggered a transient increase in insulin secretion. Rats made hyperglycemic for 48h exhibited prolonged insulin secretion in response to a glucose injection via the carotid artery, but lactate injection induced two types of responses: half of the HG rats showed no difference compared to controls and the other half had markedly decreased insulin secretion. Astroglial monocarboxylates transporters MCT1 and MCT4 isoforms transfer lactate from blood to astrocytes and release lactate to the extracellular space, whilst the neuronal MCT2 isoform permits neuronal lactate uptake. We found that astroglial MCT1 and MCT4, and neuronal MCT2 protein levels in the medio-basal hypothalamus (MBH) were not modified by 48h-hyperglycemia. Together, these results indicate that hypothalamic sensing of circulating lactate triggers insulin secretion. Both glucose and lactate sensing are altered in a model of hyperglycemia, without alteration of MBH MCTs protein levels.
Collapse
|
39
|
Gautier-Stein A, Soty M, Chilloux J, Zitoun C, Rajas F, Mithieux G. Glucotoxicity induces glucose-6-phosphatase catalytic unit expression by acting on the interaction of HIF-1α with CREB-binding protein. Diabetes 2012; 61:2451-60. [PMID: 22787137 PMCID: PMC3447892 DOI: 10.2337/db11-0986] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The activation of glucose-6-phosphatase (G6Pase), a key enzyme of endogenous glucose production, is correlated with type 2 diabetes. Type 2 diabetes is characterized by sustained hyperglycemia leading to glucotoxicity. We investigated whether glucotoxicity mechanisms control the expression of the G6Pase catalytic unit (G6pc). We deciphered the transcriptional regulatory mechanisms of the G6pc promoter by glucotoxicity in a hepatoma cell line then in primary hepatocytes and in the liver of diabetic mice. High glucose exposure induced the production of reactive oxygen species (ROS) and, in parallel, induced G6pc promoter activity. In hepatocytes, glucose induced G6pc gene expression and glucose release. The decrease of ROS concentrations by antioxidants eliminated all the glucose-inductive effects. The induction of G6pc promoter activity by glucose was eliminated in the presence of small interfering RNA, targeting either the hypoxia-inducible factor (HIF)-1α or the CREB-binding protein (CBP). Glucose increased the interaction of HIF-1α with CBP and the recruitment of HIF-1 on the G6pc promoter. The same mechanism might occur in hyperglycemic mice. We deciphered a new regulatory mechanism induced by glucotoxicity. This mechanism leading to the induction of HIF-1 transcriptional activity may contribute to the increase of hepatic glucose production during type 2 diabetes.
Collapse
|
40
|
Abstract
A growing number of studies have shown that a diet high in long chain SFA and/or obesity cause profound changes to the energy balance centres of the hypothalamus which results in the loss of central leptin and insulin sensitivity. Insensitivity to these important anorexigenic messengers of nutritional status perpetuates the development of both obesity and peripheral insulin insensitivity. A high-fat diet induces changes in the hypothalamus that include an increase in markers of oxidative stress, inflammation, endoplasmic reticulum (ER) stress, autophagy defect and changes in the rate of apoptosis and neuronal regeneration. In addition, a number of mechanisms have recently come to light that are important in the hypothalamic control of energy balance, which could play a role in perpetuating the effect of a high-fat diet on hypothalamic dysfunction. These include: reactive oxygen species as an important second messenger, lipid metabolism, autophagy and neuronal and synaptic plasticity. The importance of nutritional activation of the Toll-like receptor 4 and the inhibitor of NF-κB kinase subunit β/NK-κB and c-Jun amino-terminal kinase 1 inflammatory pathways in linking a high-fat diet to obesity and insulin insensitivity via the hypothalamus is now widely recognised. All of the hypothalamic changes induced by a high-fat diet appear to be causally linked and inhibitors of inflammation, ER stress and autophagy defect can prevent or reverse the development of obesity pointing to potential drug targets in the prevention of obesity and metabolic dysfunction.
Collapse
|
41
|
Abstract
Neurons whose activity is regulated by glucose are found in a number of brain regions. Glucose-excited (GE) neurons increase while glucose-inhibited (GI) neurons decrease their action potential frequency as interstitial brain glucose levels increase. We hypothesize that these neurons evolved to sense and respond to severe energy deficit (e.g., fasting) that threatens the brains glucose supply. During modern times, they are also important for the restoration of blood glucose levels following insulin-induced hypoglycemia. Our data suggest that impaired glucose sensing by hypothalamic glucose sensing neurons may contribute to the syndrome known as hypoglycemia-associated autonomic failure in which the mechanisms which restore euglycemia following hypoglycemia become impaired. On the other hand, increased responses of glucose sensing neurons to glucose deficit may play a role in the development of Type 2 Diabetes Mellitus and obesity. This review will discuss the mechanisms by which glucose sensing neurons sense changes in interstitial glucose and explore the roles of these specialized glucose sensors in glucose and energy homeostasis.
Collapse
Affiliation(s)
- Vanessa H Routh
- Department of Pharmacology & Physiology, New Jersey Medical School (UMDNJ), Newark, NJ 07101, USA.
| |
Collapse
|
42
|
Carneiro L, Allard C, Guissard C, Fioramonti X, Tourrel-Cuzin C, Bailbé D, Barreau C, Offer G, Nédelec E, Salin B, Rigoulet M, Belenguer P, Pénicaud L, Leloup C. Importance of mitochondrial dynamin-related protein 1 in hypothalamic glucose sensitivity in rats. Antioxid Redox Signal 2012; 17:433-44. [PMID: 22229526 DOI: 10.1089/ars.2011.4254] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Hypothalamic mitochondrial reactive oxygen species (mROS)-mediated signaling has been recently shown to be involved in the regulation of energy homeostasis. However, the upstream signals that control this mechanism have not yet been determined. Here, we hypothesize that glucose-induced mitochondrial fission plays a significant role in mROS-dependent hypothalamic glucose sensing. RESULTS Glucose-triggered translocation of the fission protein dynamin-related protein 1 (DRP1) to mitochondria was first investigated in vivo in hypothalamus. Thus, we show that intracarotid glucose injection induces the recruitment of DRP1 to VMH mitochondria in vivo. Then, expression was transiently knocked down by intra-ventromedial hypothalamus (VMH) DRP1 siRNA (siDRP1) injection. 72 h post siRNA injection, brain intracarotid glucose induced insulin secretion, and VMH glucose infusion-induced refeeding decrease were measured, as well as mROS production. The SiDRP1 rats decreased mROS and impaired intracarotid glucose injection-induced insulin secretion. In addition, the VMH glucose infusion-induced refeeding decrease was lost in siDRP1 rats. Finally, mitochondrial function was evaluated by oxygen consumption measurements after DRP1 knock down. Although hypothalamic mitochondrial respiration was not modified in the resting state, substrate-driven respiration was impaired in siDRP1 rats and associated with an alteration of the coupling mechanism. INNOVATION AND CONCLUSION Collectively, our results suggest that glucose-induced DRP1-dependent mitochondrial fission is an upstream regulator for mROS signaling, and consequently, a key mechanism in hypothalamic glucose sensing. Thus, for the first time, we demonstrate the involvement of DRP1 in physiological regulation of brain glucose-induced insulin secretion and food intake inhibition. Such involvement implies DRP1-dependent mROS production.
Collapse
Affiliation(s)
- Lionel Carneiro
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chaleek N, Kermani M, Eliassi A, Haghparast A. Effects of orexin and glucose microinjected into the hypothalamic paraventricular nucleus on gastric acid secretion in conscious rats. Neurogastroenterol Motil 2012; 24:e94-102. [PMID: 22004243 DOI: 10.1111/j.1365-2982.2011.01789.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Orexin-A is a novel peptide that appears to play a role in regulation of gastric acid secretion. However, little is known about sites of its action. In addition, evidences suggest that some of orexin-A neurons respond to glucose. In this study, we address the hypothesis which demonstrates that orexin-A and glucose act in the hypothalamic paraventricular nucleus (PVN) to increase gastric acid secretion and juice volume in pyloric-ligated conscious rats. METHODS Male Wistar rats were implanted with guide canula directed to the PVN. Orexin-A (3-10 μg), glucose (350-750 ng) SB334867 (6-20 μg) were microinjected. The effect of pretreatment with an orexin-1 receptor antagonist, SB334867, on orexin-A and D-glucose induced acid secretion was assessed. Gastric acid secretion was measured using the pylorus-ligation method, and the amount of gastric acid was determined by titration with 0.01 N NaOH to a pH of 7.0. KEY RESULTS Intraparaventricular injection of orexin-A or D-glucose stimulated gastric acid secretion in a dose-dependent manner. The PVN injections of orexin-A receptor antagonist, SB334867, were associated with gastric acid secretion decrease and inhibited effects of PVN-injected orexin-A. Orexin-stimulated gastric acid secretion was decreased (~40%) after PVN lesions. Glucose-stimulated gastric acid secretion was also suppressed by intraperitoneal (IP) injection of SB334867. In addition, it was observed that co-injection of orexin-A and glucose at ineffective doses increased gastric secretion significantly. CONCLUSIONS & INFERENCES We suggest that orexin-A and glucose effects on the PVN stimulate gastric acid secretion. This stimulatory effect is probably mediated by orexin-1 receptors.
Collapse
Affiliation(s)
- N Chaleek
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
44
|
Abstract
Over the last decades, substantial progress has been made in defining the molecular events and relevant tissues controlling insulin action and the potential defects that lead to insulin resistance and later on Type 2 diabetes mellitus (T2DM). Mitochondrial dysfunction has been postulated as a common mechanism implicated in the development of insulin resistance and T2DM aetiology. Since then there has been growing interest in this area of research and many studies have addressed whether mitochondrial function/dysfunction is implicated in the progression of T2DM or if it is just a consequence. Mitochondria are adjusted to the specific needs of the tissue and to the environmental interactions or pathophysiological state that it encounters. This review offers a current state of the subject in a tissue specific approach. We will focus our attention on skeletal muscle, liver, and white adipose tissue as the main insulin sensitive organs. Hypothalamic mitochondrial function will be also discussed.
Collapse
Affiliation(s)
- Pablo M Garcia-Roves
- Diabetes and Obesity Laboratory, Institute for Biomedical Research August Pi i Sunyer (IDIBAPS) and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain.
| |
Collapse
|
45
|
Duparc T, Naslain D, Colom A, Muccioli GG, Massaly N, Delzenne NM, Valet P, Cani PD, Knauf C. Jejunum inflammation in obese and diabetic mice impairs enteric glucose detection and modifies nitric oxide release in the hypothalamus. Antioxid Redox Signal 2011; 14:415-23. [PMID: 20879900 DOI: 10.1089/ars.2010.3330] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intestinal detection of nutrients is a crucial step to inform the whole body of the nutritional status. In this paradigm, peripheral information generated by nutrients is transferred to the brain, which in turn controls physiological functions, including glucose metabolism. Here, we investigated the effect of enteric glucose sensors stimulation on hypothalamic nitric oxide (NO) release in lean or in obese/diabetic (db/db) mice. By using specific NO amperometric probes implanted directly in the hypothalamus of mice, we demonstrated that NO release is stimulated in response to enteric glucose sensors activation in lean but not in db/db mice. Alteration of gut to hypothalamic NO signaling in db/db mice is associated with a drastic increase in inflammatory, oxidative/nitric oxide (iNOS, IL-1β), and endoplasmic reticulum stress (CHOP, ATF4) genes expression in the jejunum. Although we could not exclude the importance of the hypothalamic inflammatory state in obese and diabetic mice, our results provide compelling evidence that enteric glucose sensors could be considered as potential targets for metabolic diseases.
Collapse
Affiliation(s)
- Thibaut Duparc
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Leloup C, Casteilla L, Carrière A, Galinier A, Benani A, Carneiro L, Pénicaud L. Balancing mitochondrial redox signaling: a key point in metabolic regulation. Antioxid Redox Signal 2011; 14:519-30. [PMID: 20977349 DOI: 10.1089/ars.2010.3424] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitochondrial reactive oxygen species (mROS) have emerged as signaling molecules in physiology primarily as a result of studies of uncoupling mechanisms in mitochondrial respiration. The discovery that this mechanism negatively regulates mROS generation in many cell types has drawn the attention of the scientific community to the pathological consequences of excess mROS production. From reports of the energetic fluxes in cells grown under normal conditions, the hypothesis that mROS are an integrated physiological signal of the metabolic status of the cell has emerged. Here, we consider recent studies that support this point of view in two key nutrient sensors of the body, beta cells and the hypothalamus, which are the main coordinators of endocrine and nervous controls of energy metabolism and adipose tissue, which is of paramount importance in controlling body weight and, therefore, the development of obesity and type 2 diabetes. In this context, finely balanced mROS production may be at the core of proper metabolic maintenance, and unbalanced mROS production, which is largely documented, might be an important trigger of metabolic disorders.
Collapse
Affiliation(s)
- Corinne Leloup
- Centre des Sciences du Goût et de l'Alimentation, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6265-Institut National de Recherche Agronomique 1324, Université de Bourgogne, Dijon, France.
| | | | | | | | | | | | | |
Collapse
|
47
|
Jordan SD, Könner AC, Brüning JC. Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis. Cell Mol Life Sci 2010; 67:3255-73. [PMID: 20549539 PMCID: PMC2933848 DOI: 10.1007/s00018-010-0414-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 12/15/2022]
Abstract
The central nervous system (CNS) is capable of gathering information on the body's nutritional state and it implements appropriate behavioral and metabolic responses to changes in fuel availability. This feedback signaling of peripheral tissues ensures the maintenance of energy homeostasis. The hypothalamus is a primary site of convergence and integration for these nutrient-related feedback signals, which include central and peripheral neuronal inputs as well as hormonal signals. Increasing evidence indicates that glucose and lipids are detected by specialized fuel-sensing neurons that are integrated in these hypothalamic neuronal circuits. The purpose of this review is to outline the current understanding of fuel-sensing mechanisms in the hypothalamus, to integrate the recent findings in this field, and to address the potential role of dysregulation in these pathways in the development of obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Sabine D. Jordan
- Department of Mouse Genetics and Metabolism, Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Zülpicher Straße 47, 50674 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - A. Christine Könner
- Department of Mouse Genetics and Metabolism, Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Zülpicher Straße 47, 50674 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- 2nd Department for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Jens C. Brüning
- Department of Mouse Genetics and Metabolism, Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Zülpicher Straße 47, 50674 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- 2nd Department for Internal Medicine, University Hospital Cologne, Cologne, Germany
- Max Planck Institute for the Biology of Aging, Cologne, Germany
| |
Collapse
|
48
|
Xiao L, Aoshima H, Saitoh Y, Miwa N. The effect of squalane-dissolved fullerene-C60 on adipogenesis-accompanied oxidative stress and macrophage activation in a preadipocyte-monocyte co-culture system. Biomaterials 2010; 31:5976-85. [PMID: 20488530 DOI: 10.1016/j.biomaterials.2010.04.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/21/2010] [Indexed: 11/16/2022]
Abstract
Effects of squalane-dissolved fullerene-C60 (Sql-fullerene) on macrophage activation and adipose conversion with oxidative stress were studied using an inflammatory adipose-tissue equivalent (ATE) and OP9 mouse stromal preadipocyte-U937 lymphoma cell co-culture systems. Differentiation of OP9 cells was initiated by insulin-rich serum replacement (SR) as an adipogenic stimulant, and then followed by accumulation of intracellular lipid droplets and reactive oxygen species (ROS), both of which were significantly inhibited by Sql-fullerene. In the OP9-U937 cell co-culture system, U937 cells rapidly differentiated to macrophage-like cells during SR-induced adipogenesis in OP9 cells. The ROS accumulation was in the co-culture more marked than in OP9 cells alone, suggesting that the interaction between adipocytes and monocytes/macrophages promotes inflammatory responses. Sql-fullerene significantly inhibited macrophage activation and low-grade adipogenesis in the OP9-U937 co-culture system. We developed a three-dimensional inflammatory adipose-tissue model "ATE" consisting of, characteristically, U937 cells in the culture-wells, and, in addition, mounted a culture insert containing OP9 cells-populated collagen gel. ATE is enabled with suitable stimulation to represent the pathology of inflammatory disorders, such as macrophage infiltration in adipose tissue. Five-day culturing of ATE in SR medium occurred U937 macrophage migration and intracellular oil-droplet accumulation that were significantly inhibited by Sql-fullerene. Our results suggest that Sql-fullerene might be explored as a potential medicine for the treatment of metabolic syndrome or other obesity-related disorders.
Collapse
Affiliation(s)
- Li Xiao
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima, Japan
| | | | | | | |
Collapse
|
49
|
Lopaschuk GD, Ussher JR, Jaswal JS. Targeting intermediary metabolism in the hypothalamus as a mechanism to regulate appetite. Pharmacol Rev 2010; 62:237-64. [PMID: 20392806 DOI: 10.1124/pr.109.002428] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The central nervous system mediates energy balance (energy intake and energy expenditure) in the body; the hypothalamus has a key role in this process. Recent evidence has demonstrated an important role for hypothalamic malonyl CoA in mediating energy balance. Malonyl CoA is generated by the carboxylation of acetyl CoA by acetyl CoA carboxylase and is then either incorporated into long-chain fatty acids by fatty acid synthase, or converted back to acetyl-CoA by malonyl CoA decarboxylase. Increased hypothalamic malonyl CoA is an indicator of energy surplus, resulting in a decrease in food intake and an increase in energy expenditure. In contrast, a decrease in hypothalamic malonyl CoA signals an energy deficit, resulting in an increased appetite and a decrease in body energy expenditure. A number of hormonal and neural orexigenic and anorexigenic signaling pathways have now been shown to be associated with changes in malonyl CoA levels in the arcuate nucleus (ARC) of the hypothalamus. Despite compelling evidence that malonyl CoA is an important mediator in the hypothalamic ARC control of food intake and regulation of energy balance, the mechanism(s) by which this occurs has not been established. Malonyl CoA inhibits carnitine palmitoyltransferase-1 (CPT-1), and it has been proposed that the substrate of CPT-1, long-chain acyl CoA(s), may act as a mediator(s) of appetite and energy balance. However, recent evidence has challenged the role of long-chain acyl CoA(s) in this process, as well as the involvement of CPT-1 in hypothalamic malonyl CoA signaling. A better understanding of how malonyl CoA regulates energy balance should provide novel approaches to targeting intermediary metabolism in the hypothalamus as a mechanism to control appetite and body weight. Here, we review the data supporting an important role for malonyl CoA in mediating hypothalamic control of energy balance, and recent evidence suggesting that targeting malonyl CoA synthesis or degradation may be a novel approach to favorably modify appetite and weight gain.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- 423 Heritage Medical Research Center, University of Alberta, Edmonton, Canada T6G2S2.
| | | | | |
Collapse
|
50
|
Current literature in diabetes. Diabetes Metab Res Rev 2010; 26:i-xi. [PMID: 20474064 DOI: 10.1002/dmrr.1019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|