1
|
Guo J, Yang Y, Xu N, Li X, Yang Y, Feng W, Ye Y, Xu X, Cui J, Liu M, Huang Y. Pancreatic β-Cell TRAPδ Deficiency Reduces Insulin Production but Improves Insulin Sensitivity. Diabetes 2024; 73:1848-1861. [PMID: 39167635 DOI: 10.2337/db23-0984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
The translocon-associated protein-δ (TRAPδ) plays a role in insulin biosynthesis within pancreatic β-cells. However, its pathophysiological significance in maintaining islet β-cell function and glucose homeostasis remains unclear. In this study, we generated a mouse model featuring pancreatic β-cell-specific deletion of TRAPδ (TRAPδ βKO). Our findings revealed that TRAPδ βKO resulted in decreased circulating insulin levels in mice fed either a normal chow diet or a high-fat diet. Multiple independent experiments established that although TRAPδ deletion reduced insulin content in the islets, it had no discernible effect on insulin gene expression, the insulin to proinsulin ratio, or the expression and glycosylation of the prohormone enzymes involved in proinsulin processing. These data suggest that TRAPδ does not play a pivotal role in the transcription of the insulin gene or proinsulin processing. However, untranslocated preproinsulin levels were significantly increased when islets were treated with a proteasomal inhibitor, suggesting that TRAPδ deficiency may hinder preproinsulin translocation, resulting in a rapid degradation of untranslocated preproinsulin that accounts for the decreased insulin production. Remarkably, despite the moderate decrease in circulating insulin levels in TRAPδ βKO mice, their glucose levels remained unaffected, indicating the presence of compensatory mechanisms that help maintain glucose homeostasis. Insulin tolerance tests further revealed improved insulin sensitivity, accompanied by upregulation of phosphorylated AKT in the peripheral tissues of TRAPδ βKO mice. Collectively, these data highlight the important role of TRAPδ in insulin biosynthesis and β-cell function. The moderate reduction in circulating insulin appears to promote insulin sensitivity in insulin target tissues. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Jiyun Guo
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yanshu Yang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ning Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wenli Feng
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuanyuan Ye
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaoxi Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jingqiu Cui
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yumeng Huang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
2
|
Abdisa KB, Szerdahelyi E, Molnár MA, Friedrich L, Lakner Z, Koris A, Toth A, Nath A. Metabolic Syndrome and Biotherapeutic Activity of Dairy (Cow and Buffalo) Milk Proteins and Peptides: Fast Food-Induced Obesity Perspective-A Narrative Review. Biomolecules 2024; 14:478. [PMID: 38672494 PMCID: PMC11048494 DOI: 10.3390/biom14040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic syndrome (MS) is defined by the outcome of interconnected metabolic factors that directly increase the prevalence of obesity and other metabolic diseases. Currently, obesity is considered one of the most relevant topics of discussion because an epidemic heave of the incidence of obesity in both developing and underdeveloped countries has been reached. According to the World Obesity Atlas 2023 report, 38% of the world population are presently either obese or overweight. One of the causes of obesity is an imbalance of energy intake and energy expenditure, where nutritional imbalance due to consumption of high-calorie fast foods play a pivotal role. The dynamic interactions among different risk factors of obesity are highly complex; however, the underpinnings of hyperglycemia and dyslipidemia for obesity incidence are recognized. Fast foods, primarily composed of soluble carbohydrates, non-nutritive artificial sweeteners, saturated fats, and complexes of macronutrients (protein-carbohydrate, starch-lipid, starch-lipid-protein) provide high metabolic calories. Several experimental studies have pointed out that dairy proteins and peptides may modulate the activities of risk factors of obesity. To justify the results precisely, peptides from dairy milk proteins were synthesized under in vitro conditions and their contributions to biomarkers of obesity were assessed. Comprehensive information about the impact of proteins and peptides from dairy milks on fast food-induced obesity is presented in this narrative review article.
Collapse
Affiliation(s)
- Kenbon Beyene Abdisa
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; (K.B.A.)
| | - Emőke Szerdahelyi
- Department of Nutrition, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, HU-1118 Budapest, Hungary;
| | - Máté András Molnár
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; (K.B.A.)
| | - László Friedrich
- Department of Refrigeration and Livestock Product Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45, HU-1118 Budapest, Hungary
| | - Zoltán Lakner
- Department of Agricultural Business and Economics, Institute of Agricultural and Food Economics, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, HU-1118 Budapest, Hungary
| | - András Koris
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; (K.B.A.)
| | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Móricz Zsigmond út 22, HU-4032 Debrecen, Hungary
| | - Arijit Nath
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; (K.B.A.)
| |
Collapse
|
3
|
Tsilingiris D, Kokkinos A. Advances in obesity pharmacotherapy; learning from metabolic surgery and beyond. Metabolism 2024; 151:155741. [PMID: 37995806 DOI: 10.1016/j.metabol.2023.155741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Currently, metabolic surgery (MS) constitutes the most effective means for durable weight loss of clinically meaningful magnitude, type 2 diabetes remission and resolution of non-alcoholic steatohepatitis, as well as other obesity-related comorbidities. Accumulating evidence on the mechanisms through which MS exerts its actions has highlighted the altered secretion of hormonally active peptides of intestinal origin with biological actions crucial to energy metabolism as key drivers of MS clinical effects. The initial success of glucagon-like peptide-1 (GLP-1) receptor agonists regarding weight loss and metabolic amelioration have been followed by the development of unimolecular dual and triple polyagonists, additionally exploiting the effects of glucagon and/or glucose-dependent insulinotropic polypeptide (GIP) which achieves a magnitude of weight loss approximating that of common MS operations. Through the implementation of such therapies, the feasibility of a "medical bypass", namely the replication of the clinical effects of MS through non-surgical interventions may be foreseeable in the near future. Apart from weight loss, this approach ought to be put to the test also regarding other clinical outcomes, such as liver steatosis and steatohepatitis, cardiovascular disease, and overall prognosis, on which MS has a robustly demonstrated impact. Besides, a medical bypass as an alternative, salvage, or combination strategy to MS may promote precision medicine in obesity therapeutics.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Alexander Kokkinos
- 1st Department of Propaedeutic Internal Medicine, Athens University Medical School, Laiko Hospital, Athens, Greece.
| |
Collapse
|
4
|
Rafaqat S, Hafeez R, Mairaj R, Saleem A, Rafaqat S. Pancreatic biomarkers: role in diabetes mellitus. JOURNAL OF PANCREATOLOGY 2023; 6:169-177. [DOI: 10.1097/jp9.0000000000000137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Diabetes mellitus refers to a group of diseases that cause high blood sugar levels. The most common type is type 2 diabetes, which is caused by insulin resistance and inadequate insulin production. However, diabetes can also result from conditions affecting the exocrine pancreas. Both type 1 and type 2 diabetes patients may experience changes in their pancreatic exocrine function, leading to reduced levels of fecal elastase-1 in many cases. This review article focuses on the role of specific pancreatic biomarkers in diabetes mellitus, including cholecystokinin, trypsin, chymotrypsin, carboxypeptidase, amylase, lipase, secretin, elastase-1, and retinol-binding protein 4 about recent advances and discoveries, significant gaps in the literature, current debates, and potential directions for future research related to these biomarkers about diabetes mellitus. This review article discusses various biomarkers related to pancreatic exocrine and endocrine function and their implications in diabetes. It suggests that gut cholecystokinin may play a role in lowering glucose synthesis through a neural network and resistance to it could contribute to hyperglycemia in diabetic patients. It also discusses the use of various markers such as serum trypsin concentration, amylase and lipase levels, pancreatic elastase levels, and fasting secretin levels to assess pancreatic exocrine function. Additionally, the article explores the role of carboxypeptidase E in the endocrine and neurological systems and its association with disorders. Moreover, it also highlights the involvement of retinol-binding protein 4 in the development of type 2 diabetes and insulin resistance.
Collapse
Affiliation(s)
- Sana Rafaqat
- Department of Biotechnology (Molecular Human Genetics), Lahore College for Women University, Lahore 54000, Pakistan
| | - Ramsha Hafeez
- Department of Zoology (Fisheries and Aquaculture), Lahore College for Women University, Lahore 54000, Pakistan
| | - Rida Mairaj
- Department of Zoology (Fisheries and Nanotechnology), Lahore College for Women University, Lahore 54000, Pakistan
| | - Abeerah Saleem
- Department of Zoology (Molecular Physiology), Lahore College for Women University, 54000, Lahore, Pakistan
| | - Saira Rafaqat
- Department of Zoology (Molecular Physiology), Lahore College for Women University, 54000, Lahore, Pakistan
| |
Collapse
|
5
|
Kuo HCN, LaRussa Z, Xu FM, West K, Consitt L, Davidson WS, Liu M, Coschigano KT, Shi H, Lo CC. Apolipoprotein A4 Elevates Sympathetic Activity and Thermogenesis in Male Mice. Nutrients 2023; 15:2486. [PMID: 37299447 PMCID: PMC10255745 DOI: 10.3390/nu15112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Long-chain fatty acids induce apolipoprotein A4 (APOA4) production in the small intestine and activate brown adipose tissue (BAT) thermogenesis. The increase in BAT thermogenesis enhances triglyceride clearance and insulin sensitivity. Acute administration of recombinant APOA4 protein elevates BAT thermogenesis in chow-fed mice. However, the physiological role of continuous infusion of recombinant APOA4 protein in regulating sympathetic activity, thermogenesis, and lipid and glucose metabolism in low-fat-diet (LFD)-fed mice remained elusive. The hypothesis of this study was that continuous infusion of mouse APOA4 protein would increase sympathetic activity and thermogenesis in BAT and subcutaneous inguinal white adipose tissue (IWAT), attenuate plasma lipid levels, and improve glucose tolerance. To test this hypothesis, sympathetic activity, BAT temperature, energy expenditure, body weight, fat mass, caloric intake, glucose tolerance, and levels of BAT and IWAT thermogenic and lipolytic proteins, plasma lipids, and markers of fatty acid oxidation in the liver in mice with APOA4 or saline treatment were measured. Plasma APOA4 levels were elevated, BAT temperature and thermogenesis were upregulated, and plasma triglyceride (TG) levels were reduced, while body weight, fat mass, caloric intake, energy expenditure, and plasma cholesterol and leptin levels were comparable between APOA4- and saline-treated mice. Additionally, APOA4 infusion stimulated sympathetic activity in BAT and liver but not in IWAT. APOA4-treated mice had greater fatty acid oxidation but less TG content in the liver than saline-treated mice had. Plasma insulin in APOA4-treated mice was lower than that in saline-treated mice after a glucose challenge. In conclusion, continuous infusion of mouse APOA4 protein stimulated sympathetic activity in BAT and the liver, elevated BAT thermogenesis and hepatic fatty acid oxidation, and consequently attenuated levels of plasma and hepatic TG and plasma insulin without altering caloric intake, body weight gain and fat mass.
Collapse
Affiliation(s)
- Hsuan-Chih N. Kuo
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine and Diabetes Institute, Ohio University, Athens, OH 45701, USA; (H.-C.N.K.); (Z.L.); (K.W.); (L.C.); (K.T.C.)
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Zachary LaRussa
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine and Diabetes Institute, Ohio University, Athens, OH 45701, USA; (H.-C.N.K.); (Z.L.); (K.W.); (L.C.); (K.T.C.)
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Flora Mengyang Xu
- Department of Biology, Miami University, Oxford, OH 45056, USA; (F.M.X.); (H.S.)
| | - Kathryn West
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine and Diabetes Institute, Ohio University, Athens, OH 45701, USA; (H.-C.N.K.); (Z.L.); (K.W.); (L.C.); (K.T.C.)
| | - Leslie Consitt
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine and Diabetes Institute, Ohio University, Athens, OH 45701, USA; (H.-C.N.K.); (Z.L.); (K.W.); (L.C.); (K.T.C.)
| | - William Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA; (W.S.D.); (M.L.)
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA; (W.S.D.); (M.L.)
| | - Karen T. Coschigano
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine and Diabetes Institute, Ohio University, Athens, OH 45701, USA; (H.-C.N.K.); (Z.L.); (K.W.); (L.C.); (K.T.C.)
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH 45056, USA; (F.M.X.); (H.S.)
| | - Chunmin C. Lo
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine and Diabetes Institute, Ohio University, Athens, OH 45701, USA; (H.-C.N.K.); (Z.L.); (K.W.); (L.C.); (K.T.C.)
| |
Collapse
|
6
|
Terra MF, García-Arévalo M, Avelino TM, Degaki KY, de Carvalho M, Torres FR, Saito A, Figueira ACM. Obesity-Linked PPARγ Ser273 Phosphorylation Promotes Beneficial Effects on the Liver, despite Reduced Insulin Sensitivity in Mice. Biomolecules 2023; 13:biom13040632. [PMID: 37189379 DOI: 10.3390/biom13040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Since the removal of thiazolidinediones (TZDs) from the market, researchers have been exploring alternative anti-diabetic drugs that target PPARγ without causing adverse effects while promoting insulin sensitization by blocking serine 273 phosphorylation (Ser273 or S273). Nonetheless, the underlying mechanisms of the relationship between insulin resistance and S273 phosphorylation are still largely unknown, except for the involvement of growth differentiation factor (GDF3) regulation in the process. To further investigate potential pathways, we generated a whole organism knockin mouse line with a single S273A mutation (KI) that blocks the occurrence of its phosphorylation. Our observations of KI mice on different diets and feeding schedules revealed that they were hyperglycemic, hypoinsulinemic, presented more body fat at weaning, and presented an altered plasma and hepatic lipid profile, distinctive liver morphology and gene expression. These results suggest that total blockage of S273 phosphorylation may have unforeseen effects that, in addition to promoting insulin sensitivity, could lead to metabolic disturbances, particularly in the liver. Therefore, our findings demonstrate both the beneficial and detrimental effects of PPAR S273 phosphorylation and suggest selective modulation of this post translational modification is a viable strategy to treat type 2 diabetes.
Collapse
|
7
|
Chan JY, Bensellam M, Lin RCY, Liang C, Lee K, Jonas JC, Laybutt DR. Transcriptome analysis of islets from diabetes-resistant and diabetes-prone obese mice reveals novel gene regulatory networks involved in beta-cell compensation and failure. FASEB J 2021; 35:e21608. [PMID: 33977593 DOI: 10.1096/fj.202100009r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 01/02/2023]
Abstract
The mechanisms underpinning beta-cell compensation for obesity-associated insulin resistance and beta-cell failure in type 2 diabetes remain poorly understood. We used a large-scale strategy to determine the time-dependent transcriptomic changes in islets of diabetes-prone db/db and diabetes-resistant ob/ob mice at 6 and 16 weeks of age. Differentially expressed genes were subjected to cluster, gene ontology, pathway and gene set enrichment analyses. A distinctive gene expression pattern was observed in 16 week db/db islets in comparison to the other groups with alterations in transcriptional regulators of islet cell identity, upregulation of glucose/lipid metabolism, and various stress response genes, and downregulation of specific amino acid transport and metabolism genes. In contrast, ob/ob islets displayed a coordinated downregulation of metabolic and stress response genes at 6 weeks of age, suggestive of a preemptive reconfiguration in these islets to lower the threshold of metabolic activation in response to increased insulin demand thereby preserving beta-cell function and preventing cellular stress. In addition, amino acid transport and metabolism genes were upregulated in ob/ob islets, suggesting an important role of glutamate metabolism in beta-cell compensation. Gene set enrichment analysis of differentially expressed genes identified the enrichment of binding motifs for transcription factors, FOXO4, NFATC1, and MAZ. siRNA-mediated knockdown of these genes in MIN6 cells altered cell death, insulin secretion, and stress gene expression. In conclusion, these data revealed novel gene regulatory networks involved in beta-cell compensation and failure. Preemptive metabolic reconfiguration in diabetes-resistant islets may dampen metabolic activation and cellular stress during obesity.
Collapse
Affiliation(s)
- Jeng Yie Chan
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mohammed Bensellam
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,Pôle D'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ruby C Y Lin
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Cassandra Liang
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Kailun Lee
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jean-Christophe Jonas
- Pôle D'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - D Ross Laybutt
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
8
|
Gong P, Bailbé D, Bianchi L, Pommier G, Liu J, Tolu S, Stathopoulou MG, Portha B, Grandjean V, Movassat J. Paternal High-Protein Diet Programs Offspring Insulin Sensitivity in a Sex-Specific Manner. Biomolecules 2021; 11:biom11050751. [PMID: 34069853 PMCID: PMC8157381 DOI: 10.3390/biom11050751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
The impact of maternal nutrition on offspring is well documented. However, the implication of pre-conceptional paternal nutrition on the metabolic health of the progeny remains underexplored. Here, we investigated the impact of paternal high-protein diet (HPD, 43.2% protein) consumption on the endocrine pancreas and the metabolic phenotype of offspring. Male Wistar rats were given HPD or standard diet (SD, 18.9% protein) for two months. The progenies (F1) were studied at fetal stage and in adulthood. Body weight, glycemia, glucose tolerance (GT), glucose-induced insulin secretion in vivo (GIIS) and whole-body insulin sensitivity were assessed in male and female F1 offspring. Insulin sensitivity, GT and GIIS were similar between F1 females from HPD (HPD/F1) and SD fathers (SD/F1). Conversely, male HPD/F1 exhibited increased insulin sensitivity (p < 0.05) and decreased GIIS (p < 0.05) compared to male SD/F1. The improvement of insulin sensitivity in HPD/F1 was sustained even after 2 months of high-fat feeding. In male HPD/F1, the β cell mass was preserved and the β cell plasticity, following metabolic challenge, was enhanced compared to SD/F1. In conclusion, we provide the first evidence of a sex-specific impact of paternal HPD on the insulin sensitivity and GIIS of their descendants, demonstrating that changes in paternal nutrition alter the metabolic status of their progeny in adulthood.
Collapse
Affiliation(s)
- Pengfei Gong
- Université de Paris, BFA, UMR 8251, CNRS, Team “Biologie et Pathologie du Pancréas Endocrine”, 75013 Paris, France; (P.G.); (D.B.); (L.B.); (G.P.); (S.T.); (B.P.)
| | - Danielle Bailbé
- Université de Paris, BFA, UMR 8251, CNRS, Team “Biologie et Pathologie du Pancréas Endocrine”, 75013 Paris, France; (P.G.); (D.B.); (L.B.); (G.P.); (S.T.); (B.P.)
| | - Lola Bianchi
- Université de Paris, BFA, UMR 8251, CNRS, Team “Biologie et Pathologie du Pancréas Endocrine”, 75013 Paris, France; (P.G.); (D.B.); (L.B.); (G.P.); (S.T.); (B.P.)
| | - Gaëlle Pommier
- Université de Paris, BFA, UMR 8251, CNRS, Team “Biologie et Pathologie du Pancréas Endocrine”, 75013 Paris, France; (P.G.); (D.B.); (L.B.); (G.P.); (S.T.); (B.P.)
| | - Junjun Liu
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, Jinan 250000, China;
| | - Stefania Tolu
- Université de Paris, BFA, UMR 8251, CNRS, Team “Biologie et Pathologie du Pancréas Endocrine”, 75013 Paris, France; (P.G.); (D.B.); (L.B.); (G.P.); (S.T.); (B.P.)
| | - Maria G. Stathopoulou
- Université Côte d’Azur, Inserm, C3M, Team Control of Gene Expression (10), 06103 Nice, France; (M.G.S.); (V.G.)
| | - Bernard Portha
- Université de Paris, BFA, UMR 8251, CNRS, Team “Biologie et Pathologie du Pancréas Endocrine”, 75013 Paris, France; (P.G.); (D.B.); (L.B.); (G.P.); (S.T.); (B.P.)
| | - Valérie Grandjean
- Université Côte d’Azur, Inserm, C3M, Team Control of Gene Expression (10), 06103 Nice, France; (M.G.S.); (V.G.)
| | - Jamileh Movassat
- Université de Paris, BFA, UMR 8251, CNRS, Team “Biologie et Pathologie du Pancréas Endocrine”, 75013 Paris, France; (P.G.); (D.B.); (L.B.); (G.P.); (S.T.); (B.P.)
- Correspondence: ; Tel.: +33-1-57-27-77-82; Fax: +33-1-57-27-77-91
| |
Collapse
|
9
|
Chung KM, Singh J, Lawres L, Dorans KJ, Garcia C, Burkhardt DB, Robbins R, Bhutkar A, Cardone R, Zhao X, Babic A, Vayrynen SA, Dias Costa A, Nowak JA, Chang DT, Dunne RF, Hezel AF, Koong AC, Wilhelm JJ, Bellin MD, Nylander V, Gloyn AL, McCarthy MI, Kibbey RG, Krishnaswamy S, Wolpin BM, Jacks T, Fuchs CS, Muzumdar MD. Endocrine-Exocrine Signaling Drives Obesity-Associated Pancreatic Ductal Adenocarcinoma. Cell 2020; 181:832-847.e18. [PMID: 32304665 PMCID: PMC7266008 DOI: 10.1016/j.cell.2020.03.062] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/13/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022]
Abstract
Obesity is a major modifiable risk factor for pancreatic ductal adenocarcinoma (PDAC), yet how and when obesity contributes to PDAC progression is not well understood. Leveraging an autochthonous mouse model, we demonstrate a causal and reversible role for obesity in early PDAC progression, showing that obesity markedly enhances tumorigenesis, while genetic or dietary induction of weight loss intercepts cancer development. Molecular analyses of human and murine samples define microenvironmental consequences of obesity that foster tumorigenesis rather than new driver gene mutations, including significant pancreatic islet cell adaptation in obesity-associated tumors. Specifically, we identify aberrant beta cell expression of the peptide hormone cholecystokinin (Cck) in response to obesity and show that islet Cck promotes oncogenic Kras-driven pancreatic ductal tumorigenesis. Our studies argue that PDAC progression is driven by local obesity-associated changes in the tumor microenvironment and implicate endocrine-exocrine signaling beyond insulin in PDAC development.
Collapse
Affiliation(s)
| | - Jaffarguriqbal Singh
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Lauren Lawres
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | | | - Cathy Garcia
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Daniel B Burkhardt
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rebecca Robbins
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| | - Arjun Bhutkar
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| | - Rebecca Cardone
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaojian Zhao
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Sara A Vayrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Jonathan A Nowak
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel T Chang
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, CA 94305, USA
| | - Richard F Dunne
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14627, USA
| | - Aram F Hezel
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14627, USA
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joshua J Wilhelm
- Schulze Diabetes Institute and Department of Surgery, University of Minnesota Medical Center, Minneapolis, MN 55454, USA
| | - Melena D Bellin
- Schulze Diabetes Institute and Department of Surgery, University of Minnesota Medical Center, Minneapolis, MN 55454, USA; Department of Pediatrics, University of Minnesota Medical Center, Minneapolis, MN 55454, USA
| | - Vibe Nylander
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Anna L Gloyn
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford OX3 7LE, UK
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford OX3 7LE, UK
| | - Richard G Kibbey
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Smita Krishnaswamy
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charles S Fuchs
- Yale Cancer Center, Smilow Cancer Hospital, New Haven, CT 06511, USA
| | - Mandar Deepak Muzumdar
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Yale Cancer Center, Smilow Cancer Hospital, New Haven, CT 06511, USA.
| |
Collapse
|
10
|
Chen YC, Mains RE, Eipper BA, Hoffman BG, Czyzyk TA, Pintar JE, Verchere CB. PAM haploinsufficiency does not accelerate the development of diet- and human IAPP-induced diabetes in mice. Diabetologia 2020; 63:561-576. [PMID: 31984442 PMCID: PMC7864590 DOI: 10.1007/s00125-019-05060-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Peptide hormones are first synthesised as larger, inactive precursors that are converted to their active forms by endopeptidase cleavage and post-translational modifications, such as amidation. Recent, large-scale genome-wide studies have suggested that two coding variants of the amidating enzyme, peptidylglycine α-amidating monooxygenase (PAM), are associated with impaired insulin secretion and increased type 2 diabetes risk. We aimed to elucidate the role of PAM in modulating beta cell peptide amidation, beta cell function and the development of diabetes. METHODS PAM transcript and protein levels were analysed in mouse islets following induction of endoplasmic reticulum (ER) or cytokine stress, and PAM expression patterns were examined in human islets. To study whether haploinsufficiency of PAM accelerates the development of diabetes, Pam+/- and Pam+/+ mice were fed a low-fat diet (LFD) or high-fat diet (HFD) and glucose homeostasis was assessed. Since aggregates of the PAM substrate human islet amyloid polypeptide (hIAPP) lead to islet inflammation and beta cell failure, we also investigated whether PAM haploinsufficiency accelerated hIAPP-induced diabetes and islet amyloid formation in Pam+/- and Pam+/+ mice with beta cell expression of hIAPP. RESULTS Immunostaining revealed high expression of PAM in alpha, beta and delta cells in human pancreatic islets. Pam mRNA and PAM protein expression were reduced in mouse islets following administration of an HFD, and in isolated islets following induction of ER stress with thapsigargin, or cytokine stress with IL-1β, IFN-γ and TFN-α. Despite Pam+/- only having 50% PAM expression and enzyme activity as compared with Pam+/+ mice, glucose tolerance and body mass composition were comparable in the two models. After 24 weeks of HFD, both Pam+/- and Pam+/+ mice had insulin resistance and impaired glucose tolerance, but no differences in glucose tolerance, insulin sensitivity or plasma insulin levels were observed in PAM haploinsufficient mice. Islet amyloid formation and beta cell function were also similar in Pam+/- and Pam+/+ mice with beta cell expression of hIAPP. CONCLUSIONS/INTERPRETATION Haploinsufficiency of PAM in mice does not accelerate the development of diet-induced obesity or hIAPP transgene-induced diabetes.
Collapse
MESH Headings
- Amidine-Lyases/genetics
- Amidine-Lyases/physiology
- Animals
- Cells, Cultured
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Disease Progression
- Epistasis, Genetic/physiology
- Female
- Genetic Predisposition to Disease
- Haploinsufficiency
- Humans
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Islet Amyloid Polypeptide/genetics
- Islet Amyloid Polypeptide/physiology
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mixed Function Oxygenases/genetics
- Mixed Function Oxygenases/physiology
- Rats
- Rats, Inbred Lew
- Risk Factors
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Surgery, University of British Columbia and BC Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Brad G Hoffman
- Department of Surgery, University of British Columbia and BC Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Traci A Czyzyk
- Division of Cardio-renal and Metabolic Disease, Merck Research Laboratories, San Francisco, CA, USA
| | - John E Pintar
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - C Bruce Verchere
- Department of Surgery, University of British Columbia and BC Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
11
|
Hansson P, Holven KB, Øyri LK, Brekke HK, Gjevestad GO, Rehfeld JF, Raza GS, Herzig KH, Ulven SM. Dairy products influence gut hormone secretion and appetite differently: A randomized controlled crossover trial. J Dairy Sci 2020; 103:1100-1109. [DOI: 10.3168/jds.2019-16863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/30/2019] [Indexed: 12/28/2022]
|
12
|
Mesgari-Abbasi M, Abbasalizad Farhangi M. Serum concentrations of cholecystokinin, peptide YY, ghrelin and high sensitive C-reactive protein in association with metabolic syndrome ingredients in obese individuals. ACTA ENDOCRINOLOGICA-BUCHAREST 2020; 16:37-42. [PMID: 32685036 DOI: 10.4183/aeb.2020.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective Metabolic syndrome (MetS) is a metabolic condition with high prevalence worldwide. This study aims to examine the relationship between serum concentrations of gastrointestinal hormones such as cholecystokinin (CCK), ghrelin, peptide YY (PYY), and high sensitive C-reactive protein (hs-CRP) and the ingredients of MetS in obese population. Subjects and Methods This case-control study included 40 obese subjects (20 with MetS and 20 BMI and age-matched control individuals). The age range of the participants was 20-50 years and the participants' anthropometric characteristics were measured. Serum lipids and the concentrations of oxidized low density lipoprotein (Ox-LDL), insulin, hs-CRP, CCK, PYY, and ghrelin were assessed with commercial ELISA kits. Results Serum levels of hs-CRP, total cholesterol (TC) and triglycerides (TG) in patients with MetS were significantly higher while CCK and insulin concentrations were higher in obese non- MetS group (P <0.05). PYY had a negative association with waist circumference (WC) and high density lipoprotein cholesterol (HDL-C) and ghrelin had a positive association with systolic blood pressure (SBP) and TC in obese control group (P < 0.05). In obese patients with MetS, hs-CRP had a strong positive association with TG. Conclusion The current study revealed the possible role of hs-CRP and several GI- hormones in the pathogenesis of obesity-associated diseases and MetS. Additional works are needed to elucidate the possible underlying mechanisms and clarify several controversies in this issue.
Collapse
Affiliation(s)
- M Mesgari-Abbasi
- Tabriz University of Medical Sciences, Drug Applied Research Center, Department of Community Nutrition, Tabriz, Iran
| | - M Abbasalizad Farhangi
- Tabriz University of Medical Sciences, Nutrition Research Center, Department of Nutrition in Community, Faculty of Nutrition, Tabriz, Iran
| |
Collapse
|
13
|
Parks CA, Pak K, Pinal-Fernandez I, Huang W, Derfoul A, Mammen AL. Trim33 (Tif1γ) is not required for skeletal muscle development or regeneration but suppresses cholecystokinin expression. Sci Rep 2019; 9:18507. [PMID: 31811178 PMCID: PMC6898130 DOI: 10.1038/s41598-019-54651-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/08/2019] [Indexed: 11/09/2022] Open
Abstract
The expression of Trim33 (Tif1γ) increases in skeletal muscles during regeneration and decreases upon maturation. Although Trim33 is required for the normal development of other tissues, its role in skeletal muscle is unknown. The current study aimed to define the role of Trim33 in muscle development and regeneration. We generated mice with muscle-specific conditional knockout of Trim33 by combining floxed Trim33 and Cre recombinase under the Pax7 promoter. Muscle regeneration was induced by injuring mouse muscles with cardiotoxin. We studied the consequences of Trim33 knockdown on viability, body weight, skeletal muscle histology, muscle regeneration, and gene expression. We also studied the effect of Trim33 silencing in satellite cells and the C2C12 mouse muscle cell line. Although Trim33 knockdown mice weighed less than control mice, their skeletal muscles were histologically unremarkable and regenerated normally following injury. Unexpectedly, RNAseq analysis revealed dramatically increased expression of cholecystokinin (CCK) in regenerating muscle from Trim33 knockout mice, satellite cells from Trim33 knockout mice, and C2C12 cells treated with Trim33 siRNA. Trim33 knockdown had no demonstrable effect on muscle differentiation or regeneration. However, Trim33 knockdown induced CCK expression in muscle, suggesting that suppression of CCK expression requires Trim33.
Collapse
Affiliation(s)
- Cassie A Parks
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katherine Pak
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Iago Pinal-Fernandez
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA. .,Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain.
| | - Wilson Huang
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Assia Derfoul
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew L Mammen
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA. .,Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Fazio Coles TE, Fothergill LJ, Hunne B, Nikfarjam M, Testro A, Callaghan B, McQuade RM, Furness JB. Quantitation and chemical coding of enteroendocrine cell populations in the human jejunum. Cell Tissue Res 2019; 379:109-120. [PMID: 31478137 DOI: 10.1007/s00441-019-03099-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/20/2019] [Indexed: 01/12/2023]
Abstract
Recent studies reveal substantial species and regional differences in enteroendocrine cell (EEC) populations, including differences in patterns of hormone coexpression, which limit extrapolation between animal models and human. In this study, jejunal samples, with no histologically identifiable pathology, from patients undergoing Whipple's procedure were investigated for the presence of gastrointestinal hormones using double- and triple-labelling immunohistochemistry and high-resolution confocal microscopy. Ten hormones (5-HT, CCK, secretin, proglucagon-derived peptides, PYY, GIP, somatostatin, neurotensin, ghrelin and motilin) were localised in EEC of the human jejunum. If only single staining is considered, the most numerous EEC were those containing 5-HT, CCK, ghrelin, GIP, motilin, secretin and proglucagon-derived peptides. All hormones had some degree of colocalisation with other hormones. This included a population of EEC in which GIP, CCK and proglucagon-derived peptides are costored, and four 5-HT cell populations, 5-HT/GIP, 5-HT/ghrelin, 5-HT/PYY, and 5-HT/secretin cell groups, and a high degree of overlap between motilin and ghrelin. The presence of 5-HT in many secretin cells is consistent across species, whereas lack of 5-HT and CCK colocalisation distinguishes human from mouse. It seems likely that the different subclasses of 5-HT cells subserve different roles. At a subcellular level, we examined the vesicular localisation of secretin and 5-HT, and found these to be separately stored. We conclude that hormone-containing cells in the human jejunum do not comply with a one-cell, one-hormone classification and that colocalisations of hormones are likely to define subtypes of EEC that have different roles.
Collapse
Affiliation(s)
- Therese E Fazio Coles
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Linda J Fothergill
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3010, Australia
| | - Billie Hunne
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, 3084, Australia
| | - Adam Testro
- Liver and Intestinal Transplant Unit, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Brid Callaghan
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rachel M McQuade
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3010, Australia
| | - John B Furness
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia. .,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
15
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
16
|
Li Z, Yu R, Yin W, Qin Y, Ma L, Mulholland M, Zhang W. mTOR Signaling in X/A-Like Cells Contributes to Lipid Homeostasis in Mice. Hepatology 2019; 69:860-875. [PMID: 30141265 PMCID: PMC6351211 DOI: 10.1002/hep.30229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/19/2018] [Indexed: 01/02/2023]
Abstract
Gastric mechanistic target of rapamycin (mTOR) signaling is inversely associated with the expression and secretion of ghrelin, a 28-aa peptide hormone produced by gastric X/A-like cells. Ghrelin contributes to obesity and hepatic steatosis. We sought to control global lipid metabolism via the manipulation of gastric mTOR signaling in X/A-like cells. We established a ghrl-cre transgene in which the Cre enzyme is expressed in X/A-like cells under the control of the ghrelin-promoter. mTORflox/flox and tuberous sclerosis 1 (TSC1)flox/flox mice were separately bred with ghrl-cre mice to generate mTOR-ghrl-cre or TSC1-ghrl-cre mice, within which mTOR signaling was suppressed or activated, respectively. Lipid metabolism in liver and adipose depots was analyzed. Under the control of the ghrelin-promoter, the Cre enzyme was exclusively expressed in stomach X/A-like cells in adult animals. Knockout of mTOR in X/A-like cells increased circulating acyl-ghrelin and promoted hepatic lipogenesis with effects on adipose depots. Activation of mTOR signaling by deletion of its upstream inhibitor, TSC1, decreased ghrelin expression and secretion, altering lipid metabolism as evidenced by resistance to high-fat diet-induced obesity and hepatic steatosis. Both ghrelin administration and injection of rapamycin, an inhibitor of mTOR, altered the phenotypes of TSC1-ghrl-cre mice. Conclusion: Gastric mTOR signaling in X/A-like cells contributes to organism lipid homeostasis by regulating hepatic and adipose lipid metabolism. Gastric mTOR signaling may provide an alternative strategy for intervention in lipid disorders.
Collapse
Affiliation(s)
- Ziru Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China,Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA
| | - Ruili Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Wenzhen Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yan Qin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Liangxiao Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Michael Mulholland
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA,Corresponding author. Contact information: Michael W. Mulholland, Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA. Tel: 1-734-936-3236; ; Or. Weizhen Zhang, NCRC 26-241N, 2800 Plymouth Rd, Ann Arbor, MI 48105, United State, Tel: 1-734-615-0360; Fax: 1-734-763-4135;
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China,Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA,Corresponding author. Contact information: Michael W. Mulholland, Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA. Tel: 1-734-936-3236; ; Or. Weizhen Zhang, NCRC 26-241N, 2800 Plymouth Rd, Ann Arbor, MI 48105, United State, Tel: 1-734-615-0360; Fax: 1-734-763-4135;
| |
Collapse
|
17
|
Nesti L, Mengozzi A, Tricò D. Impact of Nutrient Type and Sequence on Glucose Tolerance: Physiological Insights and Therapeutic Implications. Front Endocrinol (Lausanne) 2019; 10:144. [PMID: 30906282 PMCID: PMC6418004 DOI: 10.3389/fendo.2019.00144] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/18/2019] [Indexed: 02/03/2023] Open
Abstract
Pharmacological and dietary interventions targeting postprandial glycemia have proved effective in reducing the risk for type 2 diabetes and its cardiovascular complications. Besides meal composition and size, the timing of macronutrient consumption during a meal has been recently recognized as a key regulator of postprandial glycemia. Emerging evidence suggests that premeal consumption of non-carbohydrate macronutrients (i.e., protein and fat "preloads") can markedly reduce postprandial glycemia by delaying gastric emptying, enhancing glucose-stimulated insulin release, and decreasing insulin clearance. The same improvement in glucose tolerance is achievable by optimal timing of carbohydrate ingestion during a meal (i.e., carbohydrate-last meal patterns), which minimizes the risk of body weight gain when compared with nutrient preloads. The magnitude of the glucose-lowering effect of preload-based nutritional strategies is greater in type 2 diabetes than healthy subjects, being comparable and additive to current glucose-lowering drugs, and appears sustained over time. This dietary approach has also shown promising results in pathological conditions characterized by postprandial hyperglycemia in which available pharmacological options are limited or not cost-effective, such as type 1 diabetes, gestational diabetes, and impaired glucose tolerance. Therefore, preload-based nutritional strategies, either alone or in combination with pharmacological treatments, may offer a simple, effective, safe, and inexpensive tool for the prevention and management of postprandial hyperglycemia. Here, we survey these novel physiological insights and their therapeutic implications for patients with diabetes mellitus and altered glucose tolerance.
Collapse
Affiliation(s)
- Lorenzo Nesti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Sant'Anna School of Advanced Studies, Institute of Life Sciences, Pisa, Italy
- *Correspondence: Domenico Tricò
| |
Collapse
|
18
|
Chawla S, Pund A, B. V, Kulkarni S, Diwekar-Joshi M, Watve M. Inferring causal pathways among three or more variables from steady-state correlations in a homeostatic system. PLoS One 2018; 13:e0204755. [PMID: 30307959 PMCID: PMC6181337 DOI: 10.1371/journal.pone.0204755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/13/2018] [Indexed: 01/21/2023] Open
Abstract
Cross-sectional correlations between two variables have limited implications for causality. We examine here whether it is possible to make causal inferences from steady-state data in a homeostatic system with three or more inter-correlated variables. Every putative pathway between three variables makes a set of differential predictions that can be tested with steady state data. For example, among 3 variables, A, B and C, the coefficient of determination, rAC2 is predicted by the product of rAB2 and rBC2 for some pathways, but not for others. Residuals from a regression line are independent of residuals from another regression for some pathways, but positively or negatively correlated for certain other pathways. Different pathways therefore have different prediction signatures, which can be used to accept or reject plausible pathways using appropriate null hypotheses. The type 2 error reduces with sample size but the nature of this relationship is different for different predictions. We apply these principles to test the classical pathway leading to a hyperinsulinemic normoglycemic insulin-resistant, or pre-diabetic, state using four different sets of epidemiological data. Currently, a set of indices called HOMA-IR and HOMA-β are used to represent insulin resistance and glucose-stimulated insulin response by β cells respectively. Our analysis shows that if we assume the HOMA indices to be faithful indicators, the classical pathway must in turn be rejected. In effect, among the populations sampled, the classical pathway and faithfulness of the HOMA indices cannot be simultaneously true. The principles and example shows that it is possible to infer causal pathways from cross sectional correlational data on three or more correlated variables.
Collapse
Affiliation(s)
- Suraj Chawla
- Biology, Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra, India
| | - Anagha Pund
- Biology, Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra, India
| | - Vibishan B.
- Biology, Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra, India
| | - Shubhankar Kulkarni
- Biology, Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra, India
| | - Manawa Diwekar-Joshi
- Biology, Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra, India
| | - Milind Watve
- Biology, Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
19
|
Plaza A, Merino B, Cano V, Domínguez G, Pérez-Castells J, Fernández-Alfonso MS, Sengenès C, Chowen JA, Ruiz-Gayo M. Cholecystokinin is involved in triglyceride fatty acid uptake by rat adipose tissue. J Endocrinol 2018; 236:137-150. [PMID: 29339381 DOI: 10.1530/joe-17-0580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/16/2018] [Indexed: 11/08/2022]
Abstract
The incorporation of plasma triglyceride (TG) fatty acids to white adipose tissue (WAT) depends on lipoprotein lipase (LPL), which is regulated by angiopoietin-like protein-4 (ANGPTL-4), an unfolding molecular chaperone that converts active LPL dimers into inactive monomers. The production of ANGPTL-4 is promoted by fasting and repressed by feeding. We hypothesized that the postprandial hormone cholecystokinin (CCK) facilitates the storage of dietary TG fatty acids in WAT by regulating the activity of the LPL/ANGPTL-4 axis and that it does so by acting directly on CCK receptors in adipocytes. We report that administration of CCK-8 (a bioactive fragment of CCK) to rats: (i) reduces plasma ANGTPL-4 levels; (ii) represses Angptl-4 expression in WAT and (iii) simultaneously enhances LPL activity in this tissue without inducing Lpl expression. In vivo CCK-8 effects are specifically antagonized by the CCK-2 receptor (CCK-2R) antagonist, L-365,260. Moreover, CCK-8 downregulates Angptl-4 expression in wild-type pre-adipocytes, an effect that is not observed in engineered pre-adipocytes lacking CCK-2R. These effects have functional consequences as CCK-8 was found to promote the uptake of dietary fatty acids by WAT, as demonstrated by means of proton nuclear magnetic resonance (1H-NMR). The efficacy of acute CCK-8 administration was not reduced after chronic CCK-8 treatment. Moreover, the effects of CCK-8 on WAT were not associated to the increase of circulating insulin. Our results show that cholecystokinin promotes lipid storage in WAT by acting on adipocyte CCK-2R, suggesting a pivotal role for CCK in TG homeostasis.
Collapse
Affiliation(s)
- Adrián Plaza
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Beatriz Merino
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Victoria Cano
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Gema Domínguez
- Departamento de Química y BioquímicaFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Javier Pérez-Castells
- Departamento de Química y BioquímicaFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | | | - Coralie Sengenès
- STROMALabUniversité de Toulouse, CNRS ERL5311, EFS, INP-ENVT, Inserm U1031, UPS, Toulouse, France
| | - Julie A Chowen
- Departamento de EndocrinologíaHospital Infantil Universitario Niño Jesús, Instituto de Investigación Sanitaria Princesa, CIBEROBN Instituto Carlos III, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| |
Collapse
|
20
|
Abstract
OBJECTIVES Modulation of cholecystokinin (CCK) receptors has been shown to influence pancreatic endocrine function. METHODS We assessed the impact of the CCKA and CCKB receptor modulators, (pGlu-Gln)-CCK-8 and gastrin-17, respectively, on β-cell secretory function, proliferation and apoptosis and glucose tolerance, and investigating alterations of CCK and gastrin islet expression in diabetes. RESULTS Initially, the presence of CCK and gastrin, and expression of their receptors were evidenced in β-cell lines and mouse islets. (pGlu-Gln)-CCK-8 and gastrin-17 stimulated insulin secretion from BRIN-BD11 and 1.1B4 β-cells, associated with no effect on membrane potential or [Ca]i. Only (pGlu-Gln)-CCK-8 possessed insulin secretory actions in isolated islets. In agreement, (pGlu-Gln)-CCK-8 improved glucose disposal and glucose-induced insulin release in mice. In addition, (pGlu-Gln)-CCK-8 evoked clear satiety effects. Interestingly, islet colocalization of CCK with glucagon was elevated in streptozotocin- and hydrocortisone-induced diabetic mice, whereas gastrin coexpression in α cells was reduced. In contrast, gastrin colocalization within β-cells was higher in diabetic mice, while CCK coexpression with insulin was decreased in insulin-deficient mice. (pGlu-Gln)-CCK-8 and gastrin-17 also augmented human and rodent β-cell proliferation and offered protection against streptozotocin-induced β-cell cytotoxicity. CONCLUSIONS We highlight the direct involvement of CCKA and CCKB receptors in pancreatic β-cell function and survival.
Collapse
|
21
|
Weng J, Lou D, Benoit SC, Coschigano N, Woods SC, Tso P, Lo CC. Energy homeostasis in apolipoprotein AIV and cholecystokinin-deficient mice. Am J Physiol Regul Integr Comp Physiol 2017; 313:R535-R548. [PMID: 28768657 DOI: 10.1152/ajpregu.00034.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 11/22/2022]
Abstract
Apolipoprotein AIV (ApoAIV) and cholecystokinin (CCK) are well-known satiating signals that are stimulated by fat consumption. Peripheral ApoAIV and CCK interact to prolong satiating signals. In the present study, we hypothesized that ApoAIV and CCK control energy homeostasis in response to high-fat diet feeding. To test this hypothesis, energy homeostasis in ApoAIV and CCK double knockout (ApoAIV/CCK-KO), ApoAIV knockout (ApoAIV-KO), and CCK knockout (CCK-KO) mice were monitored. When animals were maintained on a low-fat diet, ApoAIV/CCK-KO, ApoAIV-KO, and CCK-KO mice had comparable energy intake and expenditure, body weight, fat mass, fat absorption, and plasma parameters relative to the controls. In contrast, these KO mice exhibited impaired lipid transport to epididymal fat pads in response to intraduodenal infusion of dietary lipids. Furthermore, ApoAIV-KO mice had upregulated levels of CCK receptor 2 (CCK2R) in the small intestine while ApoAIV/CCK-KO mice had upregulated levels of CCK2R in the brown adipose tissue. After 20 wk of a high-fat diet, ApoAIV-KO and CCK-KO mice had comparable body weight and fat mass, as well as lower energy expenditure at some time points. However, ApoAIV/CCK-KO mice exhibited reduced body weight and adiposity relative to wild-type mice, despite having normal food intake. Furthermore, ApoAIV/CCK-KO mice displayed normal fat absorption and locomotor activity, as well as enhanced energy expenditure. These observations suggest that mice lacking ApoAIV and CCK have reduced body weight and adiposity, possibly due to impaired lipid transport and elevated energy expenditure.
Collapse
Affiliation(s)
- Jonathan Weng
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, and Diabetes Institute, Ohio University, Athens, Ohio.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NewYork
| | - Danwen Lou
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio; and
| | - Stephen C Benoit
- Department of Psychiatry, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
| | - Natalie Coschigano
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, and Diabetes Institute, Ohio University, Athens, Ohio
| | - Stephen C Woods
- Department of Psychiatry, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio; and
| | - Chunmin C Lo
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, and Diabetes Institute, Ohio University, Athens, Ohio;
| |
Collapse
|
22
|
Corydalis edulis Maxim. Promotes Insulin Secretion via the Activation of Protein Kinase Cs (PKCs) in Mice and Pancreatic β Cells. Sci Rep 2017; 7:40454. [PMID: 28091547 PMCID: PMC5238372 DOI: 10.1038/srep40454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/30/2016] [Indexed: 12/29/2022] Open
Abstract
Corydalis edulis Maxim., a widely grown plant in China, had been proposed for the treatment for type 2 diabetes mellitus. In this study, we found that C. edulis extract (CE) is protective against diabetes in mice. The treatment of hyperglycemic and hyperlipidemic apolipoprotein E (ApoE)−/− mice with a high dose of CE reduced serum glucose by 28.84% and serum total cholesterol by 17.34% and increased insulin release. We also found that CE significantly enhanced insulin secretion in a glucose-independent manner in hamster pancreatic β cell (HIT-T15). Further investigation revealed that CE stimulated insulin exocytosis by a protein kinase C (PKC)-dependent signaling pathway and that CE selectively activated novel protein kinase Cs (nPKCs) and atypical PKCs (aPKCs) but not conventional PKCs (cPKCs) in HIT-T15 cells. To the best of our knowledge, our study is the first to identify the PKC pathway as a direct target and one of the major mechanisms underlying the antidiabetic effect of CE. Given the good insulinotropic effect of this herbal medicine, CE is a promising agent for the development of new drugs for treating diabetes.
Collapse
|
23
|
Abstract
Studies in mammals and Drosophila have demonstrated the existence and significance of secreted factors involved in communication between distal organs. In this review, primarily focusing on Drosophila, we examine the known interorgan communication factors and their functions, physiological inducers, and integration in regulating physiology. Moreover, we describe how organ-sensing screens in Drosophila can systematically identify novel conserved interorgan communication factors. Finally, we discuss how interorgan communication enabled and evolved as a result of specialization of organs. Together, we anticipate that future studies will establish a model for metazoan interorgan communication network (ICN) and how it is deregulated in disease.
Collapse
Affiliation(s)
- Ilia A Droujinine
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115; ,
- Howard Hughes Medical Institute, Boston, Massachusetts 02115
| |
Collapse
|
24
|
Miller LJ, Desai AJ. Metabolic Actions of the Type 1 Cholecystokinin Receptor: Its Potential as a Therapeutic Target. Trends Endocrinol Metab 2016; 27:609-619. [PMID: 27156041 PMCID: PMC4992613 DOI: 10.1016/j.tem.2016.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 12/13/2022]
Abstract
Cholecystokinin (CCK) regulates appetite and reduces food intake by activating the type 1 CCK receptor (CCK1R). Attempts to develop CCK1R agonists for obesity have yielded active agents that have not reached clinical practice. Here we discuss why, along with new strategies to target CCK1R more effectively. We examine signaling events and the possibility of developing agents that exhibit ligand-directed bias, to dissociate satiety activity from undesirable side effects. Potential allosteric sites of modulation are also discussed, along with desired properties of a positive allosteric modulator (PAM) without intrinsic agonist action as another strategy to treat obesity. These new types of CCK1R-active drugs could be useful as standalone agents or as part of a rational drug combination for management of obesity.
Collapse
Affiliation(s)
- Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, 85259, USA.
| | - Aditya J Desai
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, 85259, USA
| |
Collapse
|
25
|
Gupta A, Al-Aubaidy HA, Mohammed BI. Glucose dependent insulinotropic polypeptide and dipeptidyl peptidase inhibitors: Their roles in management of type 2 diabetes mellitus. Diabetes Metab Syndr 2016; 10:S170-S175. [PMID: 27016884 DOI: 10.1016/j.dsx.2016.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/05/2016] [Indexed: 12/25/2022]
Abstract
This review paper highlights the major advances investigating the roles of glucose dependent insulinotropic polypeptide and its receptors in glucose metabolism and their potential use in management of type 2 diabetes mellitus. It also focusses on the role of dipeptidyl peptidase-4 inhibitors in the treatment of this disease. This study discussed the recent therapeutic development which have occurred in this field, and also covering the evolvement of the potential treatments for diabetes which can be discovered and implemented in the near future to design an effective therapy for diabetes and prediabetes.
Collapse
Affiliation(s)
- Ankit Gupta
- School of Medicine, University of Tasmania, Hobart, Australia
| | | | | |
Collapse
|
26
|
Zhang G, Hasek LY, Lee BH, Hamaker BR. Gut feedback mechanisms and food intake: a physiological approach to slow carbohydrate bioavailability. Food Funct 2016; 6:1072-89. [PMID: 25686469 DOI: 10.1039/c4fo00803k] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycemic carbohydrates in foods are an important macronutrient providing the biological fuel of glucose for a variety of physiological processes. A classification of glycemic carbohydrates into rapidly digestible carbohydrate (RDC) and slowly digestible carbohydrate (SDC) has been used to specify their nutritional quality related to glucose homeostasis that is essential to normal functioning of the brain and critical to life. Although there have been many studies and reviews on slowly digestible starch (SDS) and SDC, the mechanisms of their slow digestion and absorption were mostly investigated from the material side without considering the physiological processes of their in vivo digestion, absorption, and most importantly interactions with other food components and the gastrointestinal tract. In this article, the physiological processes modulating the bioavailability of carbohydrates, specifically the rate and extent of their digestion and absorption as well as the related locations, in a whole food context, will be discussed by focusing on the activities of the gastrointestinal tract including glycolytic enzymes and glucose release, sugar sensing, gut hormones, and neurohormonal negative feedback mechanisms. It is hoped that a deep understanding of these physiological processes will facilitate the development of innovative dietary approaches to achieve desired carbohydrate or glucose bioavailability for improved health.
Collapse
Affiliation(s)
- Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | | | | | | |
Collapse
|
27
|
Milbank E, Martinez MC, Andriantsitohaina R. Extracellular vesicles: Pharmacological modulators of the peripheral and central signals governing obesity. Pharmacol Ther 2015; 157:65-83. [PMID: 26617220 DOI: 10.1016/j.pharmthera.2015.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Obesity and its metabolic resultant dysfunctions such as insulin resistance, hyperglycemia, dyslipidemia and hypertension, grouped as the "metabolic syndrome", are chronic inflammatory disorders that represent one of the most severe epidemic health problems. The imbalance between energy intake and expenditure, leading to an excess of body fat and an increase of cardiovascular and diabetes risks, is regulated by the interaction between central nervous system (CNS) and peripheral signals in order to regulate behavior and finally, the metabolism of peripheral organs. At present, pharmacological treatment of obesity comprises actions in both CNS and peripheral organs. In the last decades, the extracellular vesicles have emerged as participants in many pathophysiological regulation processes. Whether used as biomarkers, targets or even tools, extracellular vesicles provided some promising effects in the treatment of a large variety of diseases. Extracellular vesicles are released by cells from the plasma membrane (microvesicles) or from multivesicular bodies (exosomes) and contain lipids, proteins and nucleic acids, such as DNA, protein coding, and non-coding RNAs. Owing to their composition, extracellular vesicles can (i) activate receptors at the target cell and then, the subsequent intracellular pathway associated to the specific receptor; (ii) transfer molecules to the target cells and thereby change their phenotype and (iii) be used as shuttle of drugs and, thus, to carry specific molecules towards specific cells. Herein, we review the impact of extracellular vesicles in modulating the central and peripheral signals governing obesity.
Collapse
Affiliation(s)
- Edward Milbank
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers, Angers, France
| | - M Carmen Martinez
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers, Angers, France
| | | |
Collapse
|
28
|
Lavine JA, Kibbe CR, Baan M, Sirinvaravong S, Umhoefer HM, Engler KA, Meske LM, Sacotte KA, Erhardt DP, Davis DB. Cholecystokinin expression in the β-cell leads to increased β-cell area in aged mice and protects from streptozotocin-induced diabetes and apoptosis. Am J Physiol Endocrinol Metab 2015; 309:E819-28. [PMID: 26394663 PMCID: PMC4652070 DOI: 10.1152/ajpendo.00159.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022]
Abstract
Cholecystokinin (CCK) is a peptide hormone produced in the gut and brain with beneficial effects on digestion, satiety, and insulin secretion. CCK is also expressed in pancreatic β-cells, but only in models of obesity and insulin resistance. Whole body deletion of CCK in obese mice leads to reduced β-cell mass expansion and increased apoptosis. We hypothesized that islet-derived CCK is important in protection from β-cell apoptosis. To determine the specific role of β-cell-derived CCK in β-cell mass dynamics, we generated a transgenic mouse that expresses CCK in the β-cell in the lean state (MIP-CCK). Although this transgene contains the human growth hormone minigene, we saw no expression of human growth hormone protein in transgenic islets. We examined the ability of MIP-CCK mice to maintain β-cell mass when subjected to apoptotic stress, with advanced age, and after streptozotocin treatment. Aged MIP-CCK mice have increased β-cell area. MIP-CCK mice are resistant to streptozotocin-induced diabetes and exhibit reduced β-cell apoptosis. Directed CCK overexpression in cultured β-cells also protects from cytokine-induced apoptosis. We have identified an important new paracrine/autocrine effect of CCK in protection of β-cells from apoptotic stress. Understanding the role of β-cell CCK adds to the emerging knowledge of classic gut peptides in intraislet signaling. CCK receptor agonists are being investigated as therapeutics for obesity and diabetes. While these agonists clearly have beneficial effects on body weight and insulin sensitivity in peripheral tissues, they may also directly protect β-cells from apoptosis.
Collapse
Affiliation(s)
- Jeremy A Lavine
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Carly R Kibbe
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mieke Baan
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sirinart Sirinvaravong
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Heidi M Umhoefer
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kimberly A Engler
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Louise M Meske
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kaitlyn A Sacotte
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Daniel P Erhardt
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; Geriatric Research Education and Clinical Centers, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
29
|
Ning SL, Zheng WS, Su J, Liang N, Li H, Zhang DL, Liu CH, Dong JH, Zhang ZK, Cui M, Hu QX, Chen CC, Liu CH, Wang C, Pang Q, Chen YX, Yu X, Sun JP. Different downstream signalling of CCK1 receptors regulates distinct functions of CCK in pancreatic beta cells. Br J Pharmacol 2015; 172:5050-67. [PMID: 26248680 DOI: 10.1111/bph.13271] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 07/18/2015] [Accepted: 07/26/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Cholecystokinin (CCK) is secreted by intestinal I cells and regulates important metabolic functions. In pancreatic islets, CCK controls beta cell functions primarily through CCK1 receptors, but the signalling pathways downstream of these receptors in pancreatic beta cells are not well defined. EXPERIMENTAL APPROACH Apoptosis in pancreatic beta cell apoptosis was evaluated using Hoechst-33342 staining, TUNEL assays and Annexin-V-FITC/PI staining. Insulin secretion and second messenger production were monitored using ELISAs. Protein and phospho-protein levels were determined by Western blotting. A glucose tolerance test was carried out to examine the functions of CCK-8s in streptozotocin-induced diabetic mice. KEY RESULTS The sulfated carboxy-terminal octapeptide CCK26-33 amide (CCK-8s) activated CCK1 receptors and induced accumulation of both IP3 and cAMP. Whereas Gq -PLC-IP3 signalling was required for the CCK-8s-induced insulin secretion under low-glucose conditions, Gs -PKA/Epac signalling contributed more strongly to the CCK-8s-mediated insulin secretion in high-glucose conditions. CCK-8s also promoted formation of the CCK1 receptor/β-arrestin-1 complex in pancreatic beta cells. Using β-arrestin-1 knockout mice, we demonstrated that β-arrestin-1 is a key mediator of both CCK-8s-mediated insulin secretion and of its the protective effect against apoptosis in pancreatic beta cells. The anti-apoptotic effects of β-arrestin-1 occurred through cytoplasmic late-phase ERK activation, which activates the 90-kDa ribosomal S6 kinase-phospho-Bcl-2-family protein pathway. CONCLUSIONS AND IMPLICATIONS Knowledge of different CCK1 receptor-activated downstream signalling pathways in the regulation of distinct functions of pancreatic beta cells could be used to identify biased CCK1 receptor ligands for the development of new anti-diabetic drugs.
Collapse
Affiliation(s)
- Shang-lei Ning
- Department of Biochemistry and Molecular Biology and Key Laboratory Experimental Teratology of the Ministry of Education, Jinan, Shandong, China.,Qilu Hospital, Shandong University, Jinan, Shandong, China.,Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Wen-shuai Zheng
- Shandong Provincial School Key laboratory for Protein Science of Chronic degenerative diseases, Jinan, Shandong, China.,Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Jing Su
- Shandong Provincial School Key laboratory for Protein Science of Chronic degenerative diseases, Jinan, Shandong, China.,Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Nan Liang
- Department of Biochemistry and Molecular Biology and Key Laboratory Experimental Teratology of the Ministry of Education, Jinan, Shandong, China.,Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Hui Li
- Shandong Provincial School Key laboratory for Protein Science of Chronic degenerative diseases, Jinan, Shandong, China.,Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Dao-lai Zhang
- Department of Biochemistry and Molecular Biology and Key Laboratory Experimental Teratology of the Ministry of Education, Jinan, Shandong, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic degenerative diseases, Jinan, Shandong, China
| | - Chun-hua Liu
- Shandong Provincial School Key laboratory for Protein Science of Chronic degenerative diseases, Jinan, Shandong, China.,Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Jun-hong Dong
- Department of Biochemistry and Molecular Biology and Key Laboratory Experimental Teratology of the Ministry of Education, Jinan, Shandong, China.,Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Zheng-kui Zhang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Min Cui
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qiao-Xia Hu
- Department of Biochemistry and Molecular Biology and Key Laboratory Experimental Teratology of the Ministry of Education, Jinan, Shandong, China.,Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Chao-chao Chen
- Shandong Provincial School Key laboratory for Protein Science of Chronic degenerative diseases, Jinan, Shandong, China.,Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Chang-hong Liu
- Shandong Provincial Qianfoshan, Shandong University, Jinan, Shandong, China
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qi Pang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yu-xin Chen
- Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiao Yu
- Department of Biochemistry and Molecular Biology and Key Laboratory Experimental Teratology of the Ministry of Education, Jinan, Shandong, China.,Qilu Hospital, Shandong University, Jinan, Shandong, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic degenerative diseases, Jinan, Shandong, China.,Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Jin-peng Sun
- Department of Biochemistry and Molecular Biology and Key Laboratory Experimental Teratology of the Ministry of Education, Jinan, Shandong, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic degenerative diseases, Jinan, Shandong, China.,Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China.,Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
30
|
Elucidating the roles of gut neuropeptides on channel catfish feed intake, glycemia, and hypothalamic NPY and POMC expression. Comp Biochem Physiol A Mol Integr Physiol 2015; 188:168-74. [DOI: 10.1016/j.cbpa.2015.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 11/30/2022]
|
31
|
Irwin N, Pathak V, Flatt PR. A Novel CCK-8/GLP-1 Hybrid Peptide Exhibiting Prominent Insulinotropic, Glucose-Lowering, and Satiety Actions With Significant Therapeutic Potential in High-Fat-Fed Mice. Diabetes 2015; 64:2996-3009. [PMID: 25883113 DOI: 10.2337/db15-0220] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/08/2015] [Indexed: 12/16/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) exert important complementary beneficial metabolic effects. This study assessed the biological actions and therapeutic utility of a novel (pGlu-Gln)-CCK-8/exendin-4 hybrid peptide compared with the stable GLP-1 and CCK mimetics exendin-4 and (pGlu-Gln)-CCK-8, respectively. All peptides significantly enhanced in vitro insulin secretion. Administration of the peptides, except (pGlu-Gln)-CCK-8 alone, in combination with glucose significantly lowered plasma glucose and increased plasma insulin in mice. All treatments elicited appetite-suppressive effects. Twice-daily administration of the novel (pGlu-Gln)-CCK-8/exendin-4 hybrid, (pGlu-Gln)-CCK-8 alone, or (pGlu-Gln)-CCK-8 in combination with exendin-4 for 21 days to high-fat-fed mice significantly decreased energy intake, body weight, and circulating plasma glucose. HbA1c was reduced in the (pGlu-Gln)-CCK-8/exendin-4 hybrid and combined parent peptide treatment groups. Glucose tolerance and insulin sensitivity also were improved by all treatment modalities. Interestingly, locomotor activity was decreased in the hybrid peptide group, and these mice also exhibited reductions in circulating triglyceride and cholesterol levels. Pancreatic islet number and area, as well β-cell area and insulinotropic responsiveness, were dramatically improved by all treatments. These studies highlight the clear potential of dual activation of GLP-1 and CCK1 receptors for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, U.K.
| | - Varun Pathak
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, U.K
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, U.K
| |
Collapse
|
32
|
Lipid transport in cholecystokinin knockout mice. Physiol Behav 2015; 151:198-206. [PMID: 26171590 DOI: 10.1016/j.physbeh.2015.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/22/2015] [Accepted: 07/07/2015] [Indexed: 01/21/2023]
Abstract
Cholecystokinin (CCK) is released in response to lipid feeding and regulates pancreatic digestive enzymes vital to the absorption of nutrients. Our previous reports demonstrated that cholecystokinin knockout (CCK-KO) mice fed for 10 weeks of HFD had reduced body fat mass, but comparable glucose uptake by white adipose tissues and skeletal muscles. We hypothesized that CCK is involved in energy homeostasis and lipid transport from the small intestine to tissues in response to acute treatment with dietary lipids. CCK-KO mice with comparable fat absorption had increased energy expenditure and were resistant to HFD-induced obesity. Using intraduodenal infusion of butter fat and intravenous infusion using Liposyn III, we determined the mechanism of lipid transport from the small intestine to deposition in lymph and adipocytes in CCK-KO mice. CCK-KO mice had delayed secretion of Apo B48-chylomicrons, lipid transport to the lymphatic system, and triglyceride (TG)-derived fatty acid uptake by epididymal fat in response to acute treatment of intraduodenal lipids. In contrast, CCK-KO mice had comparable TG clearance and lipid uptake by white adipocytes in response to TGs in chylomicron-like emulsion. Thus, we concluded that CCK is important for lipid transport and energy expenditure to control body weight in response to dietary lipid feeding.
Collapse
|
33
|
Colley DL, Castonguay TW. Effects of sugar solutions on hypothalamic appetite regulation. Physiol Behav 2014; 139:202-9. [PMID: 25449399 DOI: 10.1016/j.physbeh.2014.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 08/04/2014] [Accepted: 11/07/2014] [Indexed: 11/17/2022]
Abstract
Several hypotheses for the causes of the obesity epidemic in the US have been proposed. One such hypothesis is that dietary intake patterns have significantly shifted to include unprecedented amounts of refined sugar. We set out to determine if different sugars might promote changes in the hypothalamic mechanisms controlling food intake by measuring several hypothalamic peptides subsequent to overnight access to dilute glucose, sucrose, high fructose corn syrup, or fructose solutions. Rats were given access to food, water and a sugar solution for 24h, after which blood and tissues were collected. Fructose access (as opposed to other sugars that were tested) resulted in a doubling of circulating triglycerides. Glucose consumption resulted in upregulation of 7 satiety-related hypothalamic peptides whereas changes in gene expression were mixed for remaining sugars. Also, following multiple verification assays, 6 satiety related peptides were verified as being affected by sugar intake. These data provide evidence that not all sugars are equally effective in affecting the control of intake.
Collapse
Affiliation(s)
- Danielle L Colley
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States
| | - Thomas W Castonguay
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
34
|
Abstract
Over the past 30 years, it has been established that hormones produced by the gut, pancreas, and adipose tissue are key players in the control of body weight. These hormones act through a complex neuroendocrine system, including the hypothalamus, to regulate metabolism and energy homeostasis. In obesity, this homeostatic balance is disrupted, either through alterations in the levels of these hormones or through resistance to their actions. Alterations in gut hormone secretion following gastric bypass surgery are likely to underlie the dramatic and persistent loss of weight following this procedure, as well as the observed amelioration in type 2 diabetes mellitus. Medications based on the gut hormone GLP-1 are currently in clinical use to treat type 2 diabetes mellitus and have been shown to produce weight loss. Further therapies for obesity based on other gut hormones are currently in development.
Collapse
Affiliation(s)
- Rebecca Scott
- Division of Diabetes, Endocrinology, Metabolism, Hammersmith Hospital, Imperial College London, London, United Kingdom.
| | | | | |
Collapse
|
35
|
Li X, Xu M, Wang F, Kohan AB, Haas MK, Yang Q, Lou D, Obici S, Davidson WS, Tso P. Apolipoprotein A-IV reduces hepatic gluconeogenesis through nuclear receptor NR1D1. J Biol Chem 2013; 289:2396-404. [PMID: 24311788 DOI: 10.1074/jbc.m113.511766] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We showed recently that apoA-IV improves glucose homeostasis by enhancing pancreatic insulin secretion in the presence of elevated levels of glucose. Therefore, examined whether apolipoprotein A-IV (apoA-IV) also regulates glucose metabolism through the suppression of hepatic gluconeogenesis. The ability of apoA-IV to lower gluconeogenic gene expression and glucose production was measured in apoA-IV(-/-) and wild-type mice and primary mouse hepatocytes. The transcriptional regulation of Glc-6-Pase and phosphoenolpyruvate carboxykinase (PEPCK) by apoA-IV was determined by luciferase activity assay. Using bacterial two-hybrid library screening, NR1D1 was identified as a putative apoA-IV-binding protein. The colocalization and interaction between apoA-IV and NR1D1 were confirmed by immunofluorescence, in situ proximity ligation assay, and coimmunoprecipitation. Enhanced recruitment of NR1D1 and activity by apoA-IV to Glc-6-Pase promoter was verified with ChIP and a luciferase assay. Down-regulation of apoA-IV on gluconeogenic genes is mediated through NR1D1, as illustrated in cells with NR1D1 knockdown by siRNA. We found that apoA-IV suppresses the expression of PEPCK and Glc-6-Pase in hepatocytes; decreases hepatic glucose production; binds and activates nuclear receptor NR1D1 and stimulates NR1D1 expression; in cells lacking NR1D1, fails to inhibit PEPCK and Glc-6-Pase gene expression; and stimulates higher hepatic glucose production and higher gluconeogenic gene expression in apoA-IV(-/-) mice. We conclude that apoA-IV inhibits hepatic gluconeogenesis by decreasing Glc-6-Pase and PEPCK gene expression through NR1D1. This novel regulatory pathway connects an influx of energy as fat from the gut (and subsequent apoA-IV secretion) with inhibition of hepatic glucose production.
Collapse
Affiliation(s)
- Xiaoming Li
- From the Cincinnati Obesity Research Center, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio 45237 and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Coskun ZM, Sacan O, Karatug A, Turk N, Yanardag R, Bolkent S, Bolkent S. Regulation of oxidative stress and somatostatin, cholecystokinin, apelin gene expressions by ghrelin in stomach of newborn diabetic rats. Acta Histochem 2013; 115:740-7. [PMID: 23566555 DOI: 10.1016/j.acthis.2013.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 02/22/2013] [Accepted: 02/27/2013] [Indexed: 12/16/2022]
Abstract
The aim of the study was to determine whether ghrelin treatment has a protective effect on gene expression and biochemical changes in the stomach of newborn streptozotocin (STZ) induced diabetic rats. In this study, four groups of Wistar rats were used: control, ghrelin control, diabetic and diabetic+ghrelin. The rats were sacrificed after four weeks of treatment for diabetes. The gene expressions of: somatostatin, cholecystokinin, apelin and the altered active caspase-3, active caspase-8, proliferating cell nuclear antigen, were investigated in the pyloric region of the stomach and antioxidant parameters were measured in all the stomach. Although ghrelin treatment to diabetic rats lowered the stomach lipid peroxidation levels, the stomach glutathione levels were increased. Exogenous ghrelin caused an increased activities of stomach catalase, superoxide dismutase, glutathione reductase and glutathione peroxidase in diabetic rats. Numbers of somatostatin, cholecystokinin and proliferating cell nuclear antigen immunoreactive cells decreased in the diabetic+ghrelin group compared to the diabetic group. Apelin mRNA expressions were remarkably less in the diabetic+ghrelin rats than in diabetic rats. The results may indicate that ghrelin treatment has a protective effect to some extent on the diabetic rats. This protection is possibly accomplished through the antioxidant activity of ghrelin observed in type 2 diabetes. Consequently exogenous ghrelin may be a candidate for therapeutic treatment of diabetes.
Collapse
|
37
|
Amisten S, Salehi A, Rorsman P, Jones PM, Persaud SJ. An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans. Pharmacol Ther 2013; 139:359-91. [PMID: 23694765 DOI: 10.1016/j.pharmthera.2013.05.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/17/2022]
Abstract
G-protein coupled receptors (GPCRs) regulate hormone secretion from islets of Langerhans, and recently developed therapies for type-2 diabetes target islet GLP-1 receptors. However, the total number of GPCRs expressed by human islets, as well as their function and interactions with drugs, is poorly understood. In this review we have constructed an atlas of all GPCRs expressed by human islets: the 'islet GPCRome'. We have used this atlas to describe how islet GPCRs interact with their endogenous ligands, regulate islet hormone secretion, and interact with drugs known to target GPCRs, with a focus on drug/receptor interactions that may affect insulin secretion. The islet GPCRome consists of 293 GPCRs, a majority of which have unknown effects on insulin, glucagon and somatostatin secretion. The islet GPCRs are activated by 271 different endogenous ligands, at least 131 of which are present in islet cells. A large signalling redundancy was also found, with 119 ligands activating more than one islet receptor. Islet GPCRs are also the targets of a large number of clinically used drugs, and based on their coupling characteristics and effects on receptor signalling we identified 107 drugs predicted to stimulate and 184 drugs predicted to inhibit insulin secretion. The islet GPCRome highlights knowledge gaps in the current understanding of islet GPCR function, and identifies GPCR/ligand/drug interactions that might affect insulin secretion, which are important for understanding the metabolic side effects of drugs. This approach may aid in the design of new safer therapeutic agents with fewer detrimental effects on islet hormone secretion.
Collapse
Affiliation(s)
- Stefan Amisten
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London School of Medicine, London, UK.
| | | | | | | | | |
Collapse
|
38
|
Irwin N, Hunter K, Montgomery IA, Flatt PR. Comparison of independent and combined metabolic effects of chronic treatment with (pGlu-Gln)-CCK-8 and long-acting GLP-1 and GIP mimetics in high fat-fed mice. Diabetes Obes Metab 2013; 15:650-9. [PMID: 23388064 DOI: 10.1111/dom.12079] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/20/2013] [Accepted: 02/01/2013] [Indexed: 12/25/2022]
Abstract
AIM The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) and cholecystokinin (CCK) are gastrointestinal peptides with important physiological effects. However, rapid enzymatic degradation results in short-lived biological actions. METHODS This study has examined metabolic actions of exendin-4, GIP[mPEG] and a novel CCK-8 analogue, (pGlu-Gln)-CCK-8 as enzymatically stable forms of GLP-1, GIP and CCK, respectively. RESULTS All peptides significantly (p < 0.01-p < 0.001) stimulated insulin secretion from BRIN BD11 cells, and acute in vivo experiments confirmed prominent antihyperglycaemic and insulinotropic responses to GLP-1 or GIP receptor activation in normal mice. Twice daily injection of (pGlu-Gln)-CCK-8 alone and in combination with exendin-4 or GIP[mPEG] in high fat-fed mice significantly decreased accumulated food intake (p < 0.05-p < 0.01), body weight gain (p < 0.05-p < 0.01) and improved (p < 0.05) insulin sensitivity in high fat-fed mice. However, there was no evidence for superior effects compared to (pGlu-Gln)-CCK-8 alone. Combined treatment of (pGlu-Gln)-CCK-8 and exendin-4 resulted in significantly (p < 0.05) lowered circulating glucose levels and improved (p < 0.05) intraperitoneal glucose tolerance. These effects were superior to either treatment regime alone but not associated with altered insulin concentrations. A single injection of (pGlu-Gln)-CCK-8, or combined with exendin-4, significantly (p < 0.05) lowered blood glucose levels 24 h post injection in untreated high fat-fed mice. CONCLUSION This study highlights the potential of (pGlu-Gln)-CCK-8 alone and in combination with incretin hormones for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- N Irwin
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Northern Ireland, UK.
| | | | | | | |
Collapse
|
39
|
Irwin N, Montgomery IA, Flatt PR. Comparison of the metabolic effects of sustained CCK1 receptor activation alone and in combination with upregulated leptin signalling in high-fat-fed mice. Diabetologia 2013; 56:1425-35. [PMID: 23462797 DOI: 10.1007/s00125-013-2878-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/11/2013] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Cholecystokinin (CCK) and leptin are important hormones with effects on energy balance. The present study assessed the biological effects of (pGlu-Gln)-CCK-8 and [D-Leu-4]-OB3, smaller isoforms of CCK and leptin, respectively. METHODS The actions and overall therapeutic use of (pGlu-Gln)-CCK-8 and [D-Leu-4]-OB3, alone and in combination, were evaluated in normal and high-fat-fed mice. RESULTS (pGlu-Gln)-CCK-8 had prominent (p < 0.01 to p < 0.001), acute feeding-suppressive effects, which were significantly augmented (p < 0.05 to p < 0.01) by [D-Leu-4]-OB3. In agreement, the acute dose-dependent glucose-lowering and insulinotropic actions of (pGlu-Gln)-CCK-8 were significantly enhanced by concurrent administration of [D-Leu-4]-OB3. Twice daily injection of (pGlu-Gln)-CCK-8 alone and in combination with [D-Leu-4]-OB3 in high-fat-fed mice for 18 days decreased body weight (p < 0.05 to p < 0.001), energy intake (p < 0.01), circulating triacylglycerol (p < 0.01), non-fasting glucose (p < 0.05 to p < 0.001) and triacylglycerol deposition in liver and adipose tissue (p < 0.001). All treatment regimens improved glucose tolerance (p < 0.05 to p < 0.001) and insulin sensitivity (p < 0.001). Combined treatment with (pGlu-Gln)-CCK-8 and [D-Leu-4]-OB3 resulted in significantly lowered plasma insulin levels, normalisation of circulating LDL-cholesterol and decreased triacylglycerol deposition in muscle. These effects were superior to either treatment regimen alone. There were no changes in overall locomotor activity or respiratory exchange ratio, but treatment with (pGlu-Gln)-CCK-8 significantly reduced (p < 0.001) energy expenditure. CONCLUSIONS/INTERPRETATION These studies highlight the potential of (pGlu-Gln)-CCK-8 alone and in combination with [D-Leu-4]-OB3 in the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- N Irwin
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 2DD Northern Ireland, UK.
| | | | | |
Collapse
|
40
|
Irwin N, Frizelle P, O'Harte FPM, Flatt PR. (pGlu-Gln)-CCK-8[mPEG]: a novel, long-acting, mini-PEGylated cholecystokinin (CCK) agonist that improves metabolic status in dietary-induced diabetes. Biochim Biophys Acta Gen Subj 2013; 1830:4009-16. [PMID: 23583730 DOI: 10.1016/j.bbagen.2013.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/29/2013] [Accepted: 04/02/2013] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cholecystokinin (CCK) is a gastrointestinal hormone that has been proposed as a potential therapeutic option for obesity-diabetes. As such, (pGlu-Gln)-CCK-8 is an N-terminally modified CCK-8 analogue with improved biological effectiveness over the native peptide. METHODS The current study has examined the in vitro stability, biological activity and in vivo therapeutic applicability of a novel second generation mini-PEGylated form of (pGlu-Gln)-CCK-8, (pGlu-Gln)-CCK-8[mPEG]. RESULTS (pGlu-Gln)-CCK-8[mPEG] was completely resistant to enzymatic degradation and in addition displayed similar insulinotropic (p<0.05 to p<0.001) and satiating effects (p<0.01 to p<0.001) as (pGlu-Gln)-CCK-8. This confirmed the capability of (pGlu-Gln)-CCK-8[mPEG] to bind to and activate the CCK receptor. Sub-chronic twice daily injection of (pGlu-Gln)-CCK-8[mPEG] in high fat fed mice for 35days significantly decreased body weight gain (p<0.05), food intake (p<0.01 to p<0.001) and triacylglycerol deposition in liver (p<0.001) and muscle (p<0.001). Furthermore, (pGlu-Gln)-CCK-8[mPEG] markedly improved intraperitoneal glucose tolerance (p<0.05) and insulin sensitivity (p<0.001). Despite this therapeutic profile, once daily injection of (pGlu-Gln)-CCK-8[mPEG] in high fat fed mice for 33days, at the same dose, was not associated with alterations in food intake and body weight. In addition, metabolic responses to exogenous glucose and insulin injection were similar to saline treated controls. CONCLUSION These studies emphasise the therapeutic potential of (pGlu-Gln)-CCK-8[mPEG] and similar molecules. GENERAL SIGNIFICANCE A more detailed analysis of the dose and administration schedule employed for (pGlu-Gln)-CCK-8[mPEG] could provide a novel and effective compound to treat obesity-diabetes.
Collapse
Affiliation(s)
- Nigel Irwin
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK.
| | | | | | | |
Collapse
|
41
|
Irwin N, Frizelle P, O'Harte FPM, Flatt PR. Metabolic effects of activation of CCK receptor signaling pathways by twice-daily administration of the enzyme-resistant CCK-8 analog, (pGlu-Gln)-CCK-8, in normal mice. J Endocrinol 2013; 216:53-9. [PMID: 23055535 DOI: 10.1530/joe-12-0353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cholecystokinin (CCK) is a hormone that has important physiological effects on energy balance. This study has used a stable CCK(1) receptor agonist, (pGlu-Gln)-CCK-8, to evaluate the metabolic effects of prolonged administration in normal mice. Twice-daily injection of (pGlu-Gln)-CCK-8 for 28 days resulted in significantly lowered body weights (P<0.05) on days 24 and 28, which was associated with decreased accumulated calorie intake (P<0.01) from day 12 onward. Nonfasting plasma glucose was significantly reduced (P<0.05) on day 28, while plasma insulin concentrations were increased (P<0.05). After 28 days, glucose tolerance and glucose-mediated insulin secretion were not significantly different in (pGlu-Gln)-CCK-8-treated mice. However, following a 15-min refeeding period in 18-h fasted mice, glucose levels were significantly (P<0.05) decreased by (pGlu-Gln)-CCK-8 despite similar food intake and nutrient-induced insulin levels. Insulin sensitivity in (pGlu-Gln)-CCK-8-treated mice was significantly (P<0.01) improved compared with controls. Accumulation of triacylglycerol in liver was reduced (P<0.01) but there were no differences in circulating cholesterol and triacylglycerol concentrations, as well as triacylglycerol content of pancreatic, muscle, and adipose tissue in (pGlu-Gln)-CCK-8 mice. These data highlight the beneficial metabolic effects of prolonged (pGlu-Gln)-CCK-8 administration and confirm a lack of detrimental effects.
Collapse
Affiliation(s)
- Nigel Irwin
- School of Biomedical Sciences, The SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK.
| | | | | | | |
Collapse
|
42
|
Irwin N, Montgomery IA, Moffett RC, Flatt PR. Chemical cholecystokinin receptor activation protects against obesity-diabetes in high fat fed mice and has sustainable beneficial effects in genetic ob/ob mice. Biochem Pharmacol 2013; 85:81-91. [DOI: 10.1016/j.bcp.2012.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 12/17/2022]
|
43
|
Lo CC, Langhans W, Georgievsky M, Arnold M, Caldwell JL, Cheng S, Liu M, Woods SC, Tso P. Apolipoprotein AIV requires cholecystokinin and vagal nerves to suppress food intake. Endocrinology 2012; 153:5857-65. [PMID: 23027805 PMCID: PMC3512075 DOI: 10.1210/en.2012-1427] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Apolipoprotein AIV (apo AIV) and cholecystokinin (CCK) are gastrointestinal satiation signals that are stimulated by fat consumption. Previous studies have demonstrated that peripheral apo AIV cannot cross the blood-brain barrier. In the present study, we hypothesized that peripheral apo AIV uses a CCK-dependent system and intact vagal nerves to relay its satiation signal to the hindbrain. To test this hypothesis, CCK-knockout (CCK-KO) mice and Long-Evan rats that had undergone subdiaphragmatic vagal deafferentation (SDA) were used. Intraperitoneal administration of apo AIV at 100 or 200 μg/kg suppressed food intake of wild-type (WT) mice at 30, 60, and 90 min. In contrast, the same dose did not reduce food intake in the CCK-KO mice. Blockade of the CCK 1 receptor by lorglumide, a CCK 1 receptor antagonist, attenuated apo AIV-induced satiation. Apo AIV at 100 μg/kg reduced food intake in SHAM rats but not in SDA rats. Furthermore, apo AIV elicited an increase in c-Fos-positive cells in the nucleus of the solitary tract (NTS), area postrema, dorsal motor nucleus of the vagus, and adjacent areas of WT mice but elicited only an attenuated increase in these same regions in CCK-KO mice. Apo AIV-induced c-Fos positive cells in the NTS and area postrema of WT mice were reduced by lorglumide. Lastly, apo AIV increased c-Fos positive cells in the NTS of SHAM rats but not in SDA rats. These observations imply that peripheral apo AIV requires an intact CCK system and vagal afferents to activate neurons in the hindbrain to reduce food intake.
Collapse
Affiliation(s)
- Chunmin C Lo
- Departments of Pathology and Laboratory Medicine, Cincinnati, OH 45237-0507, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Comparison of the independent and combined metabolic effects of subchronic modulation of CCK and GIP receptor action in obesity-related diabetes. Int J Obes (Lond) 2012. [DOI: 10.1038/ijo.2012.179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Irwin N, Frizelle P, Montgomery IA, Moffett RC, O'Harte FPM, Flatt PR. Beneficial effects of the novel cholecystokinin agonist (pGlu-Gln)-CCK-8 in mouse models of obesity/diabetes. Diabetologia 2012; 55:2747-2758. [PMID: 22814764 DOI: 10.1007/s00125-012-2654-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/18/2012] [Indexed: 01/03/2023]
Abstract
AIMS/HYPOTHESIS Cholecystokinin (CCK) is a rapidly degraded gastrointestinal peptide that stimulates satiety and insulin secretion. We aimed to investigate the beneficial weight-lowering and metabolic effects of the novel N-terminally modified CCK analogue, (pGlu-Gln)-CCK-8. METHODS The biological actions of (pGlu-Gln)-CCK-8 were comprehensively evaluated in pancreatic clonal BRIN BD11 cells and in vivo in high-fat-fed and ob/ob mice. RESULTS (pGlu-Gln)-CCK-8 was completely resistant to enzymatic degradation and its satiating effects were significantly (p < 0.05 to p < 0.001) more potent than CCK-8. In BRIN-BD11 cells, (pGlu-Gln)-CCK-8 exhibited enhanced (p < 0.01 to p < 0.001) insulinotropic actions compared with CCK-8. When administered acutely to high-fat-fed or ob/ob mice, (pGlu-Gln)-CCK-8 improved glucose homeostasis. Sub-chronic twice daily injections of (pGlu-Gln)-CCK-8 in high-fat-fed mice for 28 days significantly decreased body weight (p < 0.05 to p < 0.001), accumulated food intake (p < 0.05 to p < 0.001), non-fasting glucose (p < 0.05) and triacylglycerol deposition in pancreatic (p < 0.01), adipose (p < 0.05) and liver (p < 0.001) tissue, and improved oral (p < 0.05) and i.p. (p < 0.05) glucose tolerance and insulin sensitivity (p < 0.001). Similar observations were noted in ob/ob mice given twice daily injections of (pGlu-Gln)-CCK-8. In addition, these beneficial effects were not reproduced by simple dietary restriction and were not associated with changes in energy expenditure. There was no evidence for development of tolerance to (pGlu-Gln)-CCK-8, and analysis of histology or blood-borne markers for pancreatic, liver and renal function in mice treated with (pGlu-Gln)-CCK-8 suggested little abnormal pathology. CONCLUSIONS/INTERPRETATION These studies emphasise the potential of (pGlu-Gln)-CCK-8 for the alleviation of obesity and insulin resistance.
Collapse
Affiliation(s)
- N Irwin
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK.
| | - P Frizelle
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
| | - I A Montgomery
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
| | - R C Moffett
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
| | - F P M O'Harte
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
| | - P R Flatt
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
| |
Collapse
|
46
|
Bajzer M, Olivieri M, Haas MK, Pfluger PT, Magrisso IJ, Foster MT, Tschöp MH, Krawczewski-Carhuatanta KA, Cota D, Obici S. Cannabinoid receptor 1 (CB1) antagonism enhances glucose utilisation and activates brown adipose tissue in diet-induced obese mice. Diabetologia 2011; 54:3121-31. [PMID: 21987346 PMCID: PMC8464406 DOI: 10.1007/s00125-011-2302-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 08/10/2011] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS We examined the physiological mechanisms by which cannabinoid receptor 1 (CB1) antagonism improves glucose metabolism and insulin sensitivity independent of its anorectic and weight-reducing effects, as well as the effects of CB1 antagonism on brown adipose tissue (BAT) function. METHODS Three groups of diet-induced obese mice received for 1 month: vehicle; the selective CB1 antagonist SR141716; or vehicle/pair-feeding. After measurements of body composition and energy expenditure, mice underwent euglycaemic-hyperinsulinaemic clamp studies to assess in vivo insulin action. In separate cohorts, we assessed insulin action in weight-reduced mice with diet-induced obesity (DIO), and the effect of CB1 antagonism on BAT thermogenesis. Surgical denervation of interscapular BAT (iBAT) was carried out in order to study the requirement for the sympathetic nervous system in mediating the effects of CB1 antagonism on BAT function. RESULTS Weight loss associated with chronic CB1 antagonism was accompanied by increased energy expenditure, enhanced insulin-stimulated glucose utilisation, and marked activation of BAT thermogenesis. Insulin-dependent glucose uptake was significantly increased in white adipose tissue and BAT, whereas glycogen synthesis was increased in liver, fat and muscle. Despite marked weight loss in the mice, SR141716 treatment did not improve insulin-mediated suppression of hepatic glucose production nor increase skeletal muscle glucose uptake. Denervation of iBAT blunted the effect of SR141716 on iBAT differentiation and insulin-mediated glucose uptake. CONCLUSIONS/INTERPRETATION Chronic CB1 antagonism markedly enhances insulin-mediated glucose utilisation in DIO mice, independent of its anorectic and weight-reducing effects. The potent effect on insulin-stimulated BAT glucose uptake reveals a novel role for CB1 receptors as regulators of glucose metabolism.
Collapse
MESH Headings
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/innervation
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/surgery
- Animals
- Body Composition/drug effects
- Diet, High-Fat
- Energy Metabolism/drug effects
- Gluconeogenesis/drug effects
- Glucose/metabolism
- Glycogen/biosynthesis
- Insulin/metabolism
- Liver/drug effects
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Obese
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Piperidines/administration & dosage
- Pyrazoles/administration & dosage
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Rimonabant
- Thermogenesis/drug effects
- Weight Loss/drug effects
Collapse
Affiliation(s)
- M Bajzer
- Metabolic Diseases Institute, University of Cincinnati, 2140 East Galbraith Road, Building B, Room 332, Cincinnati, OH 45237-1625, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|