1
|
Abstract
Ubiquitously expressed throughout the body, ATP-sensitive potassium (KATP) channels couple cellular metabolism to electrical activity in multiple tissues; their unique assembly as four Kir6 pore-forming subunits and four sulfonylurea receptor (SUR) subunits has resulted in a large armory of selective channel opener and inhibitor drugs. The spectrum of monogenic pathologies that result from gain- or loss-of-function mutations in these channels, and the potential for therapeutic correction of these pathologies, is now clear. However, while available drugs can be effective treatments for specific pathologies, cross-reactivity with the other Kir6 or SUR subfamily members can result in drug-induced versions of each pathology and may limit therapeutic usefulness. This review discusses the background to KATP channel physiology, pathology, and pharmacology and considers the potential for more specific or effective therapeutic agents.
Collapse
Affiliation(s)
- Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
2
|
Ikle JM, Tryon RC, Singareddy SS, York NW, Remedi MS, Nichols CG. Genome-edited zebrafish model of ABCC8 loss-of-function disease. Islets 2022; 14:200-209. [PMID: 36458573 PMCID: PMC9721409 DOI: 10.1080/19382014.2022.2149206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 12/03/2022] Open
Abstract
ATP-sensitive potassium channel (KATP)gain- (GOF) and loss-of-function (LOF) mutations underlie human neonatal diabetes mellitus (NDM) and hyperinsulinism (HI), respectively. While transgenic mice expressing incomplete KATP LOF do reiterate mild hyperinsulinism, KATP knockout animals do not exhibit persistent hyperinsulinism. We have shown that islet excitability and glucose homeostasis are regulated by identical KATP channels in zebrafish. SUR1 truncation mutation (K499X) was introduced into the abcc8 gene to explore the possibility of using zebrafish for modeling human HI. Patch-clamp analysis confirmed the complete absence of channel activity in β-cells from K499X (SUR1-/-) fish. No difference in random blood glucose was detected in heterozygous SUR1+/- fish nor in homozygous SUR1-/- fish, mimicking findings in SUR1 knockout mice. Mutant fish did, however, demonstrate impaired glucose tolerance, similar to partial LOF mouse models. In paralleling features of mammalian diabetes and hyperinsulinism resulting from equivalent LOF mutations, these gene-edited animals provide valid zebrafish models of KATP -dependent pancreatic diseases.
Collapse
Affiliation(s)
- Jennifer M. Ikle
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Robert C. Tryon
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Soma S. Singareddy
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Nathaniel W. York
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Maria S. Remedi
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Yan Z, Fortunato M, Shyr ZA, Clark AL, Fuess M, Nichols CG, Remedi MS. Genetic Reduction of Glucose Metabolism Preserves Functional β-Cell Mass in KATP-Induced Neonatal Diabetes. Diabetes 2022; 71:1233-1245. [PMID: 35294000 PMCID: PMC9163553 DOI: 10.2337/db21-0992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022]
Abstract
β-Cell failure and loss of β-cell mass are key events in diabetes progression. Although insulin hypersecretion in early stages has been implicated in β-cell exhaustion/failure, loss of β-cell mass still occurs in KATP gain-of-function (GOF) mouse models of human neonatal diabetes in the absence of insulin secretion. Thus, we hypothesize that hyperglycemia-induced increased β-cell metabolism is responsible for β-cell failure and that reducing glucose metabolism will prevent loss of β-cell mass. To test this, KATP-GOF mice were crossed with mice carrying β-cell-specific glucokinase haploinsufficiency (GCK+/-), to genetically reduce glucose metabolism. As expected, both KATP-GOF and KATP-GOF/GCK+/- mice showed lack of glucose-stimulated insulin secretion. However, KATP-GOF/GCK+/- mice demonstrated markedly reduced blood glucose, delayed diabetes progression, and improved glucose tolerance compared with KATP-GOF mice. In addition, decreased plasma insulin and content, increased proinsulin, and augmented plasma glucagon observed in KATP-GOF mice were normalized to control levels in KATP-GOF/GCK+/- mice. Strikingly, KATP-GOF/GCK+/- mice demonstrated preserved β-cell mass and identity compared with the marked decrease in β-cell identity and increased dedifferentiation observed in KATP-GOF mice. Moreover KATP-GOF/GCK+/- mice demonstrated restoration of body weight and liver and brown/white adipose tissue mass and function and normalization of physical activity and metabolic efficiency compared with KATP-GOF mice. These results demonstrate that decreasing β-cell glucose signaling can prevent glucotoxicity-induced loss of insulin content and β-cell failure independently of compensatory insulin hypersecretion and β-cell exhaustion.
Collapse
Affiliation(s)
- Zihan Yan
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Manuela Fortunato
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Zeenat A. Shyr
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Amy L. Clark
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Matt Fuess
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Colin G. Nichols
- Deparment of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
| | - Maria S. Remedi
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Deparment of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
- Corresponding author: Maria S. Remedi,
| |
Collapse
|
4
|
Shyr ZA, Wang Z, York NW, Nichols CG, Remedi MS. The role of membrane excitability in pancreatic β-cell glucotoxicity. Sci Rep 2019; 9:6952. [PMID: 31061431 PMCID: PMC6502887 DOI: 10.1038/s41598-019-43452-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/11/2019] [Indexed: 01/09/2023] Open
Abstract
Persistent hyperglycemia is causally associated with pancreatic β-cell dysfunction and loss of pancreatic insulin. Glucose normally enhances β-cell excitability through inhibition of KATP channels, opening of voltage-dependent calcium channels, increased [Ca2+]i, which triggers insulin secretion. Glucose-dependent excitability is lost in islets from KATP-knockout (KATP-KO) mice, in which β-cells are permanently hyperexcited, [Ca2+]i, is chronically elevated and insulin is constantly secreted. Mouse models of human neonatal diabetes in which KATP gain-of-function mutations are expressed in β-cells (KATP-GOF) also lose the link between glucose metabolism and excitation-induced insulin secretion, but in this case KATP-GOF β-cells are chronically underexcited, with permanently low [Ca2+]i and lack of glucose-dependent insulin secretion. We used KATP-GOF and KATP-KO islets to examine the role of altered-excitability in glucotoxicity. Wild-type islets showed rapid loss of insulin content when chronically incubated in high-glucose, an effect that was reversed by subsequently switching to low glucose media. In contrast, hyperexcitable KATP-KO islets lost insulin content in both low- and high-glucose, while underexcitable KATP-GOF islets maintained insulin content in both conditions. Loss of insulin content in chronic excitability was replicated by pharmacological inhibition of KATP by glibenclamide, The effects of hyperexcitable and underexcitable islets on glucotoxicity observed in in vivo animal models are directly opposite to the effects observed in vitro: we clearly demonstrate here that in vitro, hyperexcitability is detrimental to islets whereas underexcitability is protective.
Collapse
Affiliation(s)
- Zeenat A Shyr
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri, 63110, USA
| | - Zhiyu Wang
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri, 63110, USA.,Endocrine Consultants Northwest, Franciscan Medical Group, 1628 South Mildred St. Suite 104, Tacoma, WA, 98465, USA
| | - Nathaniel W York
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri, 63110, USA
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri, 63110, USA.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri, 63110, USA
| | - Maria S Remedi
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri, 63110, USA. .,Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri, 63110, USA. .,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri, 63110, USA.
| |
Collapse
|
5
|
Emfinger CH, Yan Z, Welscher A, Hung P, McAllister W, Hruz PW, Nichols CG, Remedi MS. Contribution of systemic inflammation to permanence of K ATP-induced neonatal diabetes in mice. Am J Physiol Endocrinol Metab 2018; 315:E1121-E1132. [PMID: 30226997 PMCID: PMC6336961 DOI: 10.1152/ajpendo.00137.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gain-of-function (GOF) mutations in the ATP-sensitive potassium (KATP) channels cause neonatal diabetes. Despite the well-established genetic root of the disease, pathways modulating disease severity and treatment effectiveness remain poorly understood. Patient phenotypes can vary from severe diabetes to remission, even in individuals with the same mutation and within the same family, suggesting that subtle modifiers can influence disease outcome. We have tested the underlying mechanism of transient vs. permanent neonatal diabetes in KATP-GOF mice treated for 14 days with glibenclamide. Some KATP-GOF mice show remission of diabetes and enhanced insulin sensitivity long after diabetes treatment has ended, while others maintain severe insulin-resistance. However, insulin sensitivity is not different between the two groups before or during diabetes induction, suggesting that improved sensitivity is a consequence, rather than the cause of, remission, implicating other factors modulating glucose early in diabetes progression. Leptin, glucagon, insulin, and glucagon-like peptide-1 are not different between remitters and nonremitters. However, liver glucose production is significantly reduced before transgene induction in remitter, relative to nonremitter and nontreated, mice. Surprisingly, while subsequent remitter animals exhibited normal serum cytokines, nonremitter mice showed increased cytokines, which paralleled the divergence in blood glucose. Together, these results suggest that systemic inflammation may play a role in the remitting versus non-remitting outcome. Supporting this conclusion, treatment with the anti-inflammatory meloxicam significantly increased the fraction of remitting animals. Beyond neonatal diabetes, the potential for inflammation and glucose production to exacerbate other forms of diabetes from a compensated state to a glucotoxic state should be considered.
Collapse
Affiliation(s)
- Christopher H Emfinger
- Department of Medicine, Washington University in St. Louis , St. Louis, Missouri
- Department of Cell Biology and Physiology, Washington University in St. Louis , St. Louis, Missouri
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis , St. Louis, Missouri
| | - Zihan Yan
- Department of Medicine, Washington University in St. Louis , St. Louis, Missouri
| | - Alecia Welscher
- Department of Medicine, Washington University in St. Louis , St. Louis, Missouri
| | - Peter Hung
- Department of Cell Biology and Physiology, Washington University in St. Louis , St. Louis, Missouri
| | - William McAllister
- Department of Medicine, Washington University in St. Louis , St. Louis, Missouri
| | - Paul W Hruz
- Department of Pediatrics, Washington University in St. Louis , St. Louis, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University in St. Louis , St. Louis, Missouri
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis , St. Louis, Missouri
| | - Maria S Remedi
- Department of Medicine, Washington University in St. Louis , St. Louis, Missouri
- Department of Cell Biology and Physiology, Washington University in St. Louis , St. Louis, Missouri
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis , St. Louis, Missouri
| |
Collapse
|
6
|
Yan Z, Shyr ZA, Fortunato M, Welscher A, Alisio M, Martino M, Finck BN, Conway H, Remedi MS. High-fat-diet-induced remission of diabetes in a subset of K ATP -GOF insulin-secretory-deficient mice. Diabetes Obes Metab 2018; 20:2574-2584. [PMID: 29896801 PMCID: PMC6407888 DOI: 10.1111/dom.13423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/04/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023]
Abstract
AIMS To examine the effects of a high-fat-diet (HFD) on monogenic neonatal diabetes, without the confounding effects of compensatory hyperinsulinaemia. METHODS Mice expressing KATP channel gain-of-function (KATP -GOF) mutations, which models human neonatal diabetes, were fed an HFD. RESULTS Surprisingly, KATP -GOF mice exhibited resistance to HFD-induced obesity, accompanied by markedly divergent blood glucose control, with some KATP -GOF mice showing persistent diabetes (KATP -GOF-non-remitter [NR] mice) and others showing remission of diabetes (KATP -GOF-remitter [R] mice). Compared with the severely diabetic and insulin-resistant KATP -GOF-NR mice, HFD-fed KATP -GOF-R mice had lower blood glucose, improved insulin sensitivity, and increased circulating plasma insulin and glucagon-like peptide-1 concentrations. Strikingly, while HFD-fed KATP -GOF-NR mice showed increased food intake and decreased physical activity, reduced whole body fat mass and increased plasma lipids, KATP -GOF-R mice showed similar features to those of control littermates. Importantly, KATP -GOF-R mice had restored insulin content and β-cell mass compared with the marked loss observed in both HFD-fed KATP -GOF-NR and chow-fed KATP -GOF mice. CONCLUSION Together, our results suggest that restriction of dietary carbohydrates and caloric replacement by fat can induce metabolic changes that are beneficial in reducing glucotoxicity and secondary consequences of diabetes in a mouse model of insulin-secretory deficiency.
Collapse
Affiliation(s)
- Zihan Yan
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Zeenat A. Shyr
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Manuela Fortunato
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Alecia Welscher
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Mariana Alisio
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Michael Martino
- Department of Medicine, Division of Geriatrics and Nutritional Science, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Brian N. Finck
- Department of Medicine, Division of Geriatrics and Nutritional Science, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Hannah Conway
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Maria S. Remedi
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| |
Collapse
|
7
|
Yoon JS, Park KJ, Sohn YB, Lee HS, Hwang JS. Successful switching from insulin to sulfonylurea in a 3-month-old infant with diabetes due to p.G53D mutation in KCNJ11. Ann Pediatr Endocrinol Metab 2018; 23:154-157. [PMID: 30286572 PMCID: PMC6177662 DOI: 10.6065/apem.2018.23.3.154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/05/2018] [Indexed: 01/19/2023] Open
Abstract
Permanent neonatal diabetes mellitus is most commonly caused by mutations in the ATP-sensitive potassium channel (KATP) subunits. Prompt initiation of sulfonylurea treatment can improve glycemic control in children with KCNJ11 mutation. In this report, we present a case of permanent neonatal diabetes caused by a mutation in the KCNJ11 gene that was successfully treated via early switching of insulin to sulfonylurea treatment. A 53-day-old female infant presented with diabetic ketoacidosis. Insulin was administered for the ketoacidosis and blood glucose regulation. At 3 months of age, using genomic DNA extracted from peripheral lymphocytes, direct sequencing of KCNJ11 identified a heterozygous mutation of c.158G>A (p.G53D) and confirmed the diagnosis of permanent neonatal diabetes mellitus. Subsequently, treatment with sulfonylurea was initiated, and the insulin dose was gradually tapered. At 4 months of age, insulin therapy was discontinued, and sulfonylurea (glimepiride, 0.75 mg/kg) was administered alone. At 6 months after initiation of administration of sulfonylurea monotherapy, blood glucose control was stable, and no hypoglycemic events or developmental delays were reported. C-peptide levels increased during treatment with sulfonylurea. Early switching to sulfonylurea in infants with permanent diabetes mellitus owing to a KCNJ11 mutation could successfully help regulate glycemic control, which suggests the need for early genetic testing in patients presenting with diabetes before 6 months of age.
Collapse
Affiliation(s)
- Jong Seo Yoon
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| | - Kyu Jung Park
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| | - Young Bae Sohn
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Korea
| | - Hae Sang Lee
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea,Address for correspondence: Hae Sang Lee, MD, PhD Department of Pediatrics, Ajou University School of Medicine, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea Tel: +82-31-219-4427 Fax: +82-31-219-5169 E-mail:
| | - Jin Soon Hwang
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
8
|
Ramu Y, Xu Y, Lu Z. A novel high-affinity inhibitor against the human ATP-sensitive Kir6.2 channel. J Gen Physiol 2018; 150:969-976. [PMID: 29844136 DOI: 10.1085/jgp.201812017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/27/2018] [Indexed: 01/29/2023] Open
Abstract
The adenosine triphosphate (ATP)-sensitive (KATP) channels in pancreatic β cells couple the blood glucose level to insulin secretion. KATP channels in pancreatic β cells comprise the pore-forming Kir6.2 and the modulatory sulfonylurea receptor 1 (SUR1) subunits. Currently, there is no high-affinity and relatively specific inhibitor for the Kir6.2 pore. The importance of developing such inhibitors is twofold. First, in many cases, the lack of such an inhibitor precludes an unambiguous determination of the Kir6.2's role in certain physiological and pathological processes. This problem is exacerbated because Kir6.2 knockout mice do not yield the expected phenotypes of hyperinsulinemia and hypoglycemia, which in part, may reflect developmental adaptation. Second, mutations in Kir6.2 or SUR1 that increase the KATP current cause permanent neonatal diabetes mellitus (PNDM). Many patients who have PNDM have been successfully treated with sulphonylureas, a common class of antidiabetic drugs that bind to SUR1 and indirectly inhibit Kir6.2, thereby promoting insulin secretion. However, some PNDM-causing mutations render KATP channels insensitive to sulphonylureas. Conceptually, because these mutations are located intracellularly, an inhibitor blocking the Kir6.2 pore from the extracellular side might provide another approach to this problem. Here, by screening the venoms from >200 animals against human Kir6.2 coexpressed with SUR1, we discovered a small protein of 54 residues (SpTx-1) that inhibits the KATP channel from the extracellular side. It inhibits the channel with a dissociation constant value of 15 nM in a relatively specific manner and with an apparent one-to-one stoichiometry. SpTx-1 evidently inhibits the channel by primarily targeting Kir6.2 rather than SUR1; it inhibits not only wild-type Kir6.2 coexpressed with SUR1 but also a Kir6.2 mutant expressed without SUR1. Importantly, SpTx-1 suppresses both sulfonylurea-sensitive and -insensitive, PNDM-causing Kir6.2 mutants. Thus, it will be a valuable tool to investigate the channel's physiological and biophysical properties and to test a new strategy for treating sulfonylurea-resistant PNDM.
Collapse
Affiliation(s)
- Yajamana Ramu
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yanping Xu
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Zhe Lu
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
9
|
Li X, Xu A, Sheng H, Ting TH, Mao X, Huang X, Jiang M, Cheng J, Liu L. Early transition from insulin to sulfonylureas in neonatal diabetes and follow-up: Experience from China. Pediatr Diabetes 2018; 19:251-258. [PMID: 28791793 DOI: 10.1111/pedi.12560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/22/2017] [Accepted: 06/20/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Sulfonylurea therapy can improve glycemic control and ameliorate neurodevelopmental outcomes in patients suffering from neonatal diabetes mellitus (NDM) with KCNJ11 or ABCC8 mutations. As genetic testing results are often delayed, it remains controversial whether sulfonylurea treatment should be attempted immediately at diagnosis or doctors should await genetic confirmation. OBJECTIVE This study aimed to investigate the effectiveness and safety of sulfonylurea therapy in Chinese NDM patients during infancy before genetic testing results were available. METHODS The medical records of NDM patients with their follow-up details were reviewed and molecular genetic analysis was performed. Sulfonylurea transfer regimens were applied in patients diagnosed after May 2010, and glycemic status and side effects were evaluated in each patient. RESULTS There were 23 NDM patients from 22 unrelated families, 10 had KCNJ11 mutations, 3 harbored ABCC8 mutations, 1 had INS mutations, 4 had chromosome 6q24 abnormalities, 1 had a deletion at chromosome 1p36.23p36.12, and 4 had no genetic abnormality identified. Sixteen NDM infants were treated with glyburide at an average age of 49 days (range 14-120 days) before genetic confirmation. A total of 11 of 16 (69%) were able to successfully switch to glyburide with a more stable glucose profile. The responsive glyburide dose was 0.51 ± 0.16 mg/kg/d (0.3-0.8 mg/kg/d), while the maintenance dose was 0.30 ± 0.07 mg/kg/d (0.2-0.4 mg/kg/d). No serious adverse events were reported. CONCLUSIONS Molecular genetic diagnosis is recommended in all patients with NDM. However, if genetic testing results are delayed, sulfonylurea therapy should be considered before such results are received, even in infants with newly diagnosed NDM.
Collapse
Affiliation(s)
- Xiuzhen Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Aijing Xu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Huiying Sheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Tzer Hwu Ting
- Department of Paediatrics, Faculty of Medicine and Health Sciences, Univeristy Putra Malaysia, Serdang, Malaysia
| | - Xiaojian Mao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xinjiang Huang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Minyan Jiang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jing Cheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
10
|
Rorsman P, Ashcroft FM. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol Rev 2018; 98:117-214. [PMID: 29212789 PMCID: PMC5866358 DOI: 10.1152/physrev.00008.2017] [Citation(s) in RCA: 456] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/30/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity, and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Remedi MS, Thomas M, Nichols CG, Marshall BA. Sulfonylurea challenge test in subjects diagnosed with type 1 diabetes mellitus. Pediatr Diabetes 2017; 18:777-784. [PMID: 28111849 PMCID: PMC5522783 DOI: 10.1111/pedi.12489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/14/2016] [Accepted: 11/22/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Patients with early onset diabetes because of defects in glucose-stimulated insulin secretion (GSIS) may respond better to sulfonylureas than insulin treatment. Such patients include those with monogenic disorders, who can be differentiated from autoimmune type 1 diabetes mellitus (T1DM) by genetic testing. Genetic testing is expensive and unknown defects in GSIS would not be diagnosed. AIMS We propose a sulfonylurea challenge test to identify patients who have been clinically diagnosed with T1DM, but those who maintain a preferentially sulfonylurea-responsive insulin secretion. MATERIALS & METHODS A total of 3 healthy controls, 2 neonatal diabetes mellitus (NDM) subjects, 3 antibody-positive (Ab+T1DM), and 12 antibody-negative (Ab-T1DM) subjects with type 1 diabetes, were given an intravenous bolus of glucose followed by an oral dose of glipizide. RESULTS Healthy controls showed a robust C-peptide increase after both glucose and glipizide, but NDM subjects showed a large increase in C-peptide only following glipizide. As expected, 2 of 3 Ab+T1DM, as well as 11 of 12 Ab-T1DM showed no response to either glucose or glipizide. However, 1 Ab-T1DM and 1 Ab+T1DM showed a small C-peptide response to glucose and a marked positive response to glipizide, suggesting defects in GSIS rather than typical autoimmune diabetes. DISCUSSION These data demonstrate the feasibility of the sulfonylurea challenge test, and suggest that responder individuals may be identified. CONCLUSIONS We propose that this sulfonylurea challenge test should be explored more extensively, as it may prove useful as a clinical and scientific tool.
Collapse
Affiliation(s)
- Maria S. Remedi
- Department of Medicine, Washington University Medical School, St. Louis, MO,Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO,Department of Center for the Investigation of Membrane Excitability Diseases, Washington University Medical School, St. Louis, MO
| | - Mareen Thomas
- Department of Pediatrics, Washington University Medical School, St. Louis, MO
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO,Department of Center for the Investigation of Membrane Excitability Diseases, Washington University Medical School, St. Louis, MO
| | - Bess A. Marshall
- Department of Pediatrics, Washington University Medical School, St. Louis, MO,Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO,Department of Center for the Investigation of Membrane Excitability Diseases, Washington University Medical School, St. Louis, MO,Correspondence should be addressed to: Bess A. Marshall. One Children’s Place, Box 8116, St. Louis, MO, 63110. Phone: (314) 454-6051, Fax: (314) 454-6225.
| |
Collapse
|
12
|
Yamazaki M, Sugie H, Oguma M, Yorifuji T, Tajima T, Yamagata T. Sulfonylurea treatment in an infant with transient neonatal diabetes mellitus caused by an adenosine triphosphate binding cassette subfamily C member 8 gene mutation. Clin Pediatr Endocrinol 2017; 26:165-169. [PMID: 28804207 PMCID: PMC5537212 DOI: 10.1297/cpe.26.165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/21/2017] [Indexed: 12/04/2022] Open
Abstract
Neonatal diabetes mellitus (NDM) is an insulin-requiring monogenic form of diabetes that
generally presents before six months of age. The following two types of NDM are known:
transient NDM (TNDM) and permanent NDM (PNDM). Here we report on an infant with TNDM
caused by a mutation (p.Gly832Cys) of the gene for the ATP binding cassette subfamily C
member 8 (ABCC8). The patient exhibited hyperglycemia (600 mg/dL) at five weeks of age and
insulin treatment was initiated. As genetic analysis identified a missense mutation within
ABCC8, the insulin was replaced by glibenclamide at five months of age.
Thereafter, the insulin was successfully withdrawn and his glycemic condition was well
controlled at a dose of 0.0375 mg/kg/d. Since the patient’s blood glucose was under
control and serum C-peptide levels were measurable, glibenclamide was stopped at 1 yr, 10
mo of age. The lack of DM relapsed to date confirms the TNDM diagnosis. In conclusion,
when insulin is replaced with a sulfonylurea-class medication (SU) in NDM patients, serum
C-peptide levels should be closely monitored and fine adjustment of SU dose is
recommended.
Collapse
Affiliation(s)
- Masayo Yamazaki
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Hideo Sugie
- Faculty of Health and Medical Sciences, Tokoha University, Shizuoka, Japan
| | - Makiko Oguma
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan.,Department of Pediatrics, Japan Community Health care Organization Utsunomiya Hospital, Tochigi, Japan
| | - Tohru Yorifuji
- Department of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Toshihiro Tajima
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | | |
Collapse
|
13
|
Gangadhariah MH, Dieckmann BW, Lantier L, Kang L, Wasserman DH, Chiusa M, Caskey CF, Dickerson J, Luo P, Gamboa JL, Capdevila JH, Imig JD, Yu C, Pozzi A, Luther JM. Cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids contribute to insulin sensitivity in mice and in humans. Diabetologia 2017; 60:1066-1075. [PMID: 28352940 PMCID: PMC5921930 DOI: 10.1007/s00125-017-4260-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/28/2017] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Insulin resistance is frequently associated with hypertension and type 2 diabetes. The cytochrome P450 (CYP) arachidonic acid epoxygenases (CYP2C, CYP2J) and their epoxyeicosatrienoic acid (EET) products lower blood pressure and may also improve glucose homeostasis. However, the direct contribution of endogenous EET production on insulin sensitivity has not been previously investigated. In this study, we tested the hypothesis that endogenous CYP2C-derived EETs alter insulin sensitivity by analysing mice lacking CYP2C44, a major EET producing enzyme, and by testing the association of plasma EETs with insulin sensitivity in humans. METHODS We assessed insulin sensitivity in wild-type (WT) and Cyp2c44 -/- mice using hyperinsulinaemic-euglycaemic clamps and isolated skeletal muscle. Insulin secretory function was assessed using hyperglycaemic clamps and isolated islets. Vascular function was tested in isolated perfused mesenteric vessels. Insulin sensitivity and secretion were assessed in humans using frequently sampled intravenous glucose tolerance tests and plasma EETs were measured by mass spectrometry. RESULTS Cyp2c44 -/- mice showed decreased glucose tolerance (639 ± 39.5 vs 808 ± 37.7 mmol/l × min for glucose tolerance tests, p = 0.004) and insulin sensitivity compared with WT controls (hyperinsulinaemic clamp glucose infusion rate average during terminal 30 min 0.22 ± 0.02 vs 0.33 ± 0.01 mmol kg-1 min-1 in WT and Cyp2c44 -/- mice respectively, p = 0.003). Although glucose uptake was diminished in Cyp2c44 -/- mice in vivo (gastrocnemius Rg 16.4 ± 2.0 vs 6.2 ± 1.7 μmol 100 g-1 min-1, p < 0.01) insulin-stimulated glucose uptake was unchanged ex vivo in isolated skeletal muscle. Capillary density was similar but vascular KATP-induced relaxation was impaired in isolated Cyp2c44 -/- vessels (maximal response 39.3 ± 6.5% of control, p < 0.001), suggesting that impaired vascular reactivity produces impaired insulin sensitivity in vivo. Similarly, plasma EETs positively correlated with insulin sensitivity in human participants. CONCLUSIONS/INTERPRETATION CYP2C-derived EETs contribute to insulin sensitivity in mice and in humans. Interventions to increase circulating EETs in humans could provide a novel approach to improve insulin sensitivity and treat hypertension.
Collapse
Affiliation(s)
- Mahesha H Gangadhariah
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Medical Center North B3109, Nashville, TN, 37232-6602, USA
| | - Blake W Dieckmann
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Medical Center North B3109, Nashville, TN, 37232-6602, USA
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Li Kang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Manuel Chiusa
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Medical Center North B3109, Nashville, TN, 37232-6602, USA
| | - Charles F Caskey
- Department of Radiologic Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jaime Dickerson
- Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, FL, USA
| | - Pengcheng Luo
- Huangshi Central Hospital, Hubei Province, People's Republic of China
| | - Jorge L Gamboa
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jorge H Capdevila
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Medical Center North B3109, Nashville, TN, 37232-6602, USA
| | - John D Imig
- Department of Pharmacology and Toxicology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chang Yu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Medical Center North B3109, Nashville, TN, 37232-6602, USA.
- Department of Veterans Affairs, Nashville, TN, USA.
| | - James M Luther
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Medical Center North B3109, Nashville, TN, 37232-6602, USA.
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
14
|
Ashcroft FM, Puljung MC, Vedovato N. Neonatal Diabetes and the K ATP Channel: From Mutation to Therapy. Trends Endocrinol Metab 2017; 28:377-387. [PMID: 28262438 PMCID: PMC5582192 DOI: 10.1016/j.tem.2017.02.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 12/25/2022]
Abstract
Activating mutations in one of the two subunits of the ATP-sensitive potassium (KATP) channel cause neonatal diabetes (ND). This may be either transient or permanent and, in approximately 20% of patients, is associated with neurodevelopmental delay. In most patients, switching from insulin to oral sulfonylurea therapy improves glycemic control and ameliorates some of the neurological disabilities. Here, we review how KATP channel mutations lead to the varied clinical phenotype, how sulfonylureas exert their therapeutic effects, and why their efficacy varies with individual mutations.
Collapse
Affiliation(s)
- Frances M Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT, UK.
| | - Michael C Puljung
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT, UK
| | - Natascia Vedovato
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT, UK
| |
Collapse
|
15
|
Remedi MS, Friedman JB, Nichols CG. Diabetes induced by gain-of-function mutations in the Kir6.1 subunit of the KATP channel. J Gen Physiol 2016; 149:75-84. [PMID: 27956473 PMCID: PMC5217086 DOI: 10.1085/jgp.201611653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
Kir6.2-containing KATP channels are prominent in pancreatic β cells, and gain-of-function mutations in these channels are the most common cause of human neonatal diabetes mellitus. Remedi et al. find that Kir6.1 subunits are also present in pancreatic KATP channels and that gain-of-function mutations can also cause impaired glucose tolerance and insulin secretion. Gain-of-function (GOF) mutations in the pore-forming (Kir6.2) and regulatory (SUR1) subunits of KATP channels have been identified as the most common cause of human neonatal diabetes mellitus. The critical effect of these mutations is confirmed in mice expressing Kir6.2-GOF mutations in pancreatic β cells. A second KATP channel pore-forming subunit, Kir6.1, was originally cloned from the pancreas. Although the prominence of this subunit in the vascular system is well documented, a potential role in pancreatic β cells has not been considered. Here, we show that mice expressing Kir6.1-GOF mutations (Kir6.1[G343D] or Kir6.1[G343D,Q53R]) in pancreatic β cells (under rat-insulin-promoter [Rip] control) develop glucose intolerance and diabetes caused by reduced insulin secretion. We also generated transgenic mice in which a bacterial artificial chromosome (BAC) containing Kir6.1[G343D] is incorporated such that the transgene is only expressed in tissues where Kir6.1 is normally present. Strikingly, BAC-Kir6.1[G343D] mice also show impaired glucose tolerance, as well as reduced glucose- and sulfonylurea-dependent insulin secretion. However, the response to K+ depolarization is intact in Kir6.1-GOF mice compared with control islets. The presence of native Kir6.1 transcripts was demonstrated in both human and wild-type mouse islets using quantitative real-time PCR. Together, these results implicate the incorporation of native Kir6.1 subunits into pancreatic KATP channels and a contributory role for these subunits in the control of insulin secretion.
Collapse
Affiliation(s)
- Maria S Remedi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 .,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110
| | - Jonathan B Friedman
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
16
|
Notary AM, Westacott MJ, Hraha TH, Pozzoli M, Benninger RKP. Decreases in Gap Junction Coupling Recovers Ca2+ and Insulin Secretion in Neonatal Diabetes Mellitus, Dependent on Beta Cell Heterogeneity and Noise. PLoS Comput Biol 2016; 12:e1005116. [PMID: 27681078 PMCID: PMC5040430 DOI: 10.1371/journal.pcbi.1005116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/23/2016] [Indexed: 11/29/2022] Open
Abstract
Diabetes is caused by dysfunction to β-cells in the islets of Langerhans, disrupting insulin secretion and glucose homeostasis. Gap junction-mediated electrical coupling between β-cells in the islet plays a major role in coordinating a pulsatile secretory response at elevated glucose and suppressing insulin secretion at basal glucose. Previously, we demonstrated that a critical number of inexcitable cells can rapidly suppress the overall islet response, as a result of gap junction coupling. This was demonstrated in a murine model of Neonatal Diabetes Mellitus (NDM) involving expression of ATP-insensitive KATP channels, and by a multi-cellular computational model of islet electrical activity. Here we examined the mechanisms by which gap junction coupling contributes to islet dysfunction in NDM. We first verified the computational model against [Ca2+] and insulin secretion measurements in islets expressing ATP-insensitive KATP channels under different levels of gap junction coupling. We then applied this model to predict how different KATP channel mutations found in NDM suppress [Ca2+], and the role of gap junction coupling in this suppression. We further extended the model to account for stochastic noise and insulin secretion dynamics. We found experimentally and in the islet model that reductions in gap junction coupling allow progressively greater glucose-stimulated [Ca2+] and insulin secretion following expression of ATP-insensitive KATP channels. The model demonstrated good correspondence between suppression of [Ca2+] and clinical presentation of different NDM mutations. Significant recoveries in [Ca2+] and insulin secretion were predicted for many mutations upon reductions in gap junction coupling, where stochastic noise played a significant role in the recoveries. These findings provide new understanding how the islet functions as a multicellular system and for the role of gap junction channels in exacerbating the effects of decreased cellular excitability. They further suggest novel therapeutic options for NDM and other monogenic forms of diabetes. Diabetes is a disease reaching a global epidemic, which results from dysfunction to the islets of Langerhans in the pancreas and their ability to secrete the hormone insulin to regulate glucose homeostasis. Islets are multicellular structures that show extensive coupling between heterogeneous cellular units; and central to the causes of diabetes is a dysfunction to these cellular units and their interactions. Understanding the inter-relationship between structure and function is challenging in biological systems, but is crucial to the cause of disease and discovering therapeutic targets. With the goal of further characterizing the islet of Langerhans and its excitable behavior, we examined the role of important channels in the islet where dysfunction is linked to or causes diabetes. Advances in our ability to computationally model perturbations in physiological systems has allowed for the testing of hypothesis quickly, in systems that are not experimentally accessible. Using an experimentally validated model and modeling human mutations, we discover that monogenic forms of diabetes may be remedied by a reduction in electrical coupling between cells; either alone or in conjunction with pharmacological intervention. Knowledge of biological systems in general is also helped by these findings, in that small changes to cellular elements may lead to major disruptions in the overall system. This may then be overcome by allowing the system components to function independently in the presence of dysfunction to individual cells.
Collapse
Affiliation(s)
- Aleena M. Notary
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
| | - Matthew J. Westacott
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
| | - Thomas H. Hraha
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
| | - Marina Pozzoli
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
| | - Richard K. P. Benninger
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
- Barbara Davis Center for Diabetes, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
17
|
Ahn SY, Kim GH, Yoo HW. Successful sulfonylurea treatment in a patient with permanent neonatal diabetes mellitus with a novel KCNJ11 mutation. KOREAN JOURNAL OF PEDIATRICS 2015; 58:309-12. [PMID: 26388896 PMCID: PMC4573445 DOI: 10.3345/kjp.2015.58.8.309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/11/2014] [Accepted: 10/21/2014] [Indexed: 11/27/2022]
Abstract
Permanent neonatal diabetes mellitus refers to diabetes that occurs before the age of 6 months and persists through life. It is a rare disorder affecting one in 0.2-0.5 million live births. Mutations in the gene KCNJ11, encoding the subunit Kir6.2, and ABCC8, encoding SUR1 of the ATP-sensitive potassium (KATP) channel, are the most common causes of permanent neonatal diabetes mellitus. Sulfonylureas close the KATP channel and increase insulin secretion. KCNJ11 and ABCC8 mutations have important therapeutic implications because sulfonylurea therapy can be effective in treating patients with mutations in the potassium channel subunits. The mutation type, the presence of neurological features, and the duration of diabetes are known to be the major factors affecting the treatment outcome after switching to sulfonylurea therapy. More than 30 mutations in the KCNJ11 gene have been identified. Here, we present our experience with a patient carrying a novel p.H186D heterozygous mutation in the KCNJ11 gene who was successfully treated with oral sulfonylurea.
Collapse
Affiliation(s)
- Sung Yeon Ahn
- Department of Pediatrics, Ulsan University Hospital, Ulsan, Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Han-Wook Yoo
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea. ; Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Roche C, Guerrot D, Harouki N, Duflot T, Besnier M, Rémy-Jouet I, Renet S, Dumesnil A, Lejeune A, Morisseau C, Richard V, Bellien J. Impact of soluble epoxide hydrolase inhibition on early kidney damage in hyperglycemic overweight mice. Prostaglandins Other Lipid Mediat 2015; 120:148-54. [PMID: 26022136 DOI: 10.1016/j.prostaglandins.2015.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/02/2015] [Accepted: 04/28/2015] [Indexed: 12/21/2022]
Abstract
This study addressed the hypothesis that inhibition of the EETs degrading enzyme soluble epoxide hydrolase affords renal protection in the early stage of diabetic nephropathy. The renal effects of the sEH inhibitor t-AUCB (10mg/l in drinking water) were compared to those of the sulfonylurea glibenclamide (80mg/l), both administered for 8 weeks in FVB mice subjected to a high-fat diet (HFD, 60% fat) for 16 weeks. Mice on control chow diet (10% fat) and non-treated HFD mice served as controls. Compared with non-treated HFD mice, HFD mice treated with t-AUCB had a decreased EET degradation, as shown by their higher plasma EETs-to-DHETs ratio, and an increased EET production, as shown by the increase in EETs+DHETs levels, which was associated with induction of CYP450 epoxygenase expression. Both agents similarly reduced fasting glycemia but only t-AUCB prevented the increase in the urinary albumine-to-creatinine ratio in HFD mice. Histopathological analysis showed that t-AUCB reduced renal inflammation, which was associated with an increased mRNA expression of the NFκB inhibitor Iκ≡ and related decrease in MCP-1, COX2 and VCAM-1 expressions. Finally, there was a marginally significant increase in reactive oxygen species production in HFD mice, together with an enhanced NOX2 expression. Both agents did not modify these parameters but t-AUCB increased the expression of the antioxidant enzyme superoxide dismutase 1. These results demonstrate that, independently from its glucose-lowering effect, sEH inhibition prevents microalbuminuria and renal inflammation in overweight hyperglycemic mice, suggesting that this pharmacological strategy could be useful in the management of diabetic nephropathy.
Collapse
Affiliation(s)
- Clothilde Roche
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Dominique Guerrot
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France; Department of Nephrology, Rouen University Hospital, Rouen, France
| | - Najah Harouki
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Thomas Duflot
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France; Department of Pharmacology, Rouen University Hospital, Rouen, France
| | - Marie Besnier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Isabelle Rémy-Jouet
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Sylvanie Renet
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Anaïs Dumesnil
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Annie Lejeune
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA, United States
| | - Vincent Richard
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France; Department of Pharmacology, Rouen University Hospital, Rouen, France
| | - Jeremy Bellien
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France; Department of Pharmacology, Rouen University Hospital, Rouen, France.
| |
Collapse
|
19
|
Marshall BA, Green RP, Wambach J, White NH, Remedi MS, Nichols CG. Remission of severe neonatal diabetes with very early sulfonylurea treatment. Diabetes Care 2015; 38:e38-9. [PMID: 25715421 PMCID: PMC4876698 DOI: 10.2337/dc14-2124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Bess A Marshall
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO Department of Cell Biology, Washington University School of Medicine, St. Louis, MO
| | | | - Jennifer Wambach
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Neil H White
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Maria S Remedi
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO
| | - Colin G Nichols
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
20
|
Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nat Commun 2014; 5:4639. [PMID: 25145789 PMCID: PMC4143961 DOI: 10.1038/ncomms5639] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/10/2014] [Indexed: 02/07/2023] Open
Abstract
Diabetes is characterized by hyperglycaemia due to impaired insulin secretion and aberrant glucagon secretion resulting from changes in pancreatic islet cell function and/or mass. The extent to which hyperglycaemia per se underlies these alterations remains poorly understood. Here we show that β-cell-specific expression of a human activating KATP channel mutation in adult mice leads to rapid diabetes and marked alterations in islet morphology, ultrastructure and gene expression. Chronic hyperglycaemia is associated with a dramatic reduction in insulin-positive cells and an increase in glucagon-positive cells in islets, without alterations in cell turnover. Furthermore, some β-cells begin expressing glucagon, whilst retaining many β-cell characteristics. Hyperglycaemia, rather than KATP channel activation, underlies these changes, as they are prevented by insulin therapy and fully reversed by sulphonylureas. Our data suggest that many changes in islet structure and function associated with diabetes are attributable to hyperglycaemia alone and are reversed when blood glucose is normalized.
Collapse
|
21
|
Wang Z, York NW, Nichols CG, Remedi MS. Pancreatic β cell dedifferentiation in diabetes and redifferentiation following insulin therapy. Cell Metab 2014; 19:872-82. [PMID: 24746806 PMCID: PMC4067979 DOI: 10.1016/j.cmet.2014.03.010] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/06/2014] [Accepted: 02/26/2014] [Indexed: 01/09/2023]
Abstract
Diabetes is characterized by "glucotoxic" loss of pancreatic β cell function and insulin content, but underlying mechanisms remain unclear. A mouse model of insulin-secretory deficiency induced by β cell inexcitability (K(ATP) gain of function) demonstrates development of diabetes and reiterates the features of human neonatal diabetes. In the diabetic state, β cells lose their mature identity and dedifferentiate to neurogenin3-positive and insulin-negative cells. Lineage-tracing experiments show that dedifferentiated cells can subsequently redifferentiate to mature neurogenin3-negative, insulin-positive β cells after lowering of blood glucose by insulin therapy. We demonstrate here that β cell dedifferentiation, rather than apoptosis, is the main mechanism of loss of insulin-positive cells, and redifferentiation accounts for restoration of insulin content and antidiabetic drug responsivity in these animals. These results may help explain gradual decrease in β cell mass in long-standing diabetes and recovery of β cell function and drug responsivity in type 2 diabetic patients following insulin therapy, and they suggest an approach to rescuing "exhausted" β cells in diabetes.
Collapse
Affiliation(s)
- Zhiyu Wang
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Nathaniel W York
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Maria S Remedi
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
22
|
Abstract
Regulation of metabolic fuel homeostasis is a critical function of β-cells, which are located in the islets of Langerhans of the animal pancreas. Impairment of this β-cell function is a hallmark of pancreatic β-cell failure and may lead to development of type 2 diabetes mellitus. β-Cells are essentially "fuel sensors" that monitor and react to elevated nutrient load by releasing insulin. This response involves metabolic activation and generation of metabolic coupling factors (MCFs) that relay the nutrient signal throughout the cell and induce insulin biosynthesis and secretion. Glucose is the most important insulin secretagogue as it is the primary fuel source in food. Glucose metabolism is central to generation of MCFs that lead to insulin release, most notably ATP. In addition, other classes of nutrients are able to augment insulin secretion and these include members of the lipid and amino acid family of nutrients. Therefore, it is important to investigate the interplay between glucose, lipid, and amino acid metabolism, as it is this mixed nutrient sensing that generate the MCFs required for insulin exocytosis. The mechanisms by which these nutrients are metabolized to generate MCFs, and how they impact on β-cell insulin release and function, are discussed in detail in this article.
Collapse
Affiliation(s)
- Kevin Keane
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, Western Australia, Australia
| | - Philip Newsholme
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, Western Australia, Australia.
| |
Collapse
|
23
|
Abstract
ATP-sensitive potassium channels (K(ATP) channels) link cell metabolism to electrical activity by controlling the cell membrane potential. They participate in many physiological processes but have a particularly important role in systemic glucose homeostasis by regulating hormone secretion from pancreatic islet cells. Glucose-induced closure of K(ATP) channels is crucial for insulin secretion. Emerging data suggest that K(ATP) channels also play a key part in glucagon secretion, although precisely how they do so remains controversial. This Review highlights the role of K(ATP) channels in insulin and glucagon secretion. We discuss how K(ATP) channels might contribute not only to the initiation of insulin release but also to the graded stimulation of insulin secretion that occurs with increasing glucose concentrations. The various hypotheses concerning the role of K(ATP) channels in glucagon release are also reviewed. Furthermore, we illustrate how mutations in K(ATP) channel genes can cause hyposecretion or hypersecretion of insulin, as in neonatal diabetes mellitus and congenital hyperinsulinism, and how defective metabolic regulation of the channel may underlie the hypoinsulinaemia and the hyperglucagonaemia that characterize type 2 diabetes mellitus. Finally, we outline how sulphonylureas, which inhibit K(ATP) channels, stimulate insulin secretion in patients with neonatal diabetes mellitus or type 2 diabetes mellitus, and suggest their potential use to target the glucagon secretory defects found in diabetes mellitus.
Collapse
Affiliation(s)
- Frances M Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | | |
Collapse
|
24
|
Abstract
Hyperglycaemia has multiple effects on β-cells, some clearly prosecretory, including hyperplasia and elevated insulin content, but eventually, a 'glucotoxic' effect which leads to pancreatic β-cell dysfunction, reduced β-cell mass and insulin deficiency, is an important part of diabetes pathophysiology. Myriad underlying cellular and molecular processes could lead to such dysfunction. High glucose will stimulate glycolysis and oxidative phosphorylation, which will in turn increase β-cell membrane excitability through K(ATP) channel closure. Chronic hyperexcitability will then lead to persistently elevated [Ca(2+)](i), a key trigger to insulin secretion. Thus, at least a part of the consequence of 'hyperstimulation' by glucose has been suggested to be a result of 'hyperexcitability' and chronically elevated [Ca(2+)](i). This link is lost when the [glucose], K(ATP) -channel activity link is broken, either pharmacologically or genetically. In isolated islets, such studies reveal that hyperexcitability causes a largely reversible chronic loss of insulin content, but in vivo chronic hyperexcitability per se does not lead to β-cell death or loss of insulin content. On the other hand, chronic inexcitability in vivo leads to systemic diabetes and consequential β-cell death, even while [Ca(2+)](i) remains low.
Collapse
Affiliation(s)
- C G Nichols
- Department of Cell Biology and Physiology and Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
25
|
Abstract
Pancreatic β cells secrete insulin, the body's only hormone capable of lowering plasma glucose levels. Impaired or insufficient insulin secretion results in diabetes mellitus. The β cell is electrically excitable; in response to an elevation of glucose, it depolarizes and starts generating action potentials. The electrophysiology of mouse β cells and the cell's role in insulin secretion have been extensively investigated. More recently, similar studies have been performed on human β cells. These studies have revealed numerous and important differences between human and rodent β cells. Here we discuss the properties of human pancreatic β cells: their glucose sensing, the ion channel complement underlying glucose-induced electrical activity that culminates in exocytotic release of insulin, the cellular control of exocytosis, and the modulation of insulin secretion by circulating hormones and locally released neurotransmitters. Finally, we consider the pathophysiology of insulin secretion and the interactions between genetics and environmental factors that may explain the current diabetes epidemic.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Center for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, United Kingdom.
| | | |
Collapse
|