1
|
Checa-Ros A, Locascio A, Steib N, Okojie OJ, Malte-Weier T, Bermúdez V, D’Marco L. In silico medicine and -omics strategies in nephrology: contributions and relevance to the diagnosis and prevention of chronic kidney disease. Kidney Res Clin Pract 2025; 44:49-57. [PMID: 39034863 PMCID: PMC11838848 DOI: 10.23876/j.krcp.23.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/05/2024] [Accepted: 02/29/2024] [Indexed: 07/23/2024] Open
Abstract
Chronic kidney disease (CKD) has been increasing over the last years, with a rate between 0.49% to 0.87% new cases per year. Currently, the number of affected people is around 850 million worldwide. CKD is a slowly progressive disease that leads to irreversible loss of kidney function, end-stage kidney disease, and premature death. Therefore, CKD is considered a global health problem, and this sets the alarm for necessary efficient prediction, management, and disease prevention. At present, modern computer analysis, such as in silico medicine (ISM), denotes an emergent data science that offers interesting promise in the nephrology field. ISM offers reliable computer predictions to suggest optimal treatments in a case-specific manner. In addition, ISM offers the potential to gain a better understanding of the kidney physiology and/or pathophysiology of many complex diseases, together with a multiscale disease modeling. Similarly, -omics platforms (including genomics, transcriptomics, metabolomics, and proteomics), can generate biological data to obtain information on gene expression and regulation, protein turnover, and biological pathway connections in renal diseases. In this sense, the novel patient-centered approach in CKD research is built upon the combination of ISM analysis of human data, the use of in vitro models, and in vivo validation. Thus, one of the main objectives of CKD research is to manage the disease by the identification of new disease drivers, which could be prevented and monitored. This review explores the wide-ranging application of computational medicine and the application of -omics strategies in evaluating and managing kidney diseases.
Collapse
Affiliation(s)
- Ana Checa-Ros
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
- School of Life & Health Sciences, Aston University, Birmingham, United Kingdom
| | - Antonella Locascio
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Nelia Steib
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Owahabanun-Joshua Okojie
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Totte Malte-Weier
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Luis D’Marco
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|
2
|
Kundu G, Ghasemi M, Yim S, Rohil A, Xin C, Ren L, Srivastava S, Akinfolarin A, Kumar S, Srivastava GP, Sabbisetti VS, Murugaiyan G, Ajay AK. STAT3 Protein-Protein Interaction Analysis Finds P300 as a Regulator of STAT3 and Histone 3 Lysine 27 Acetylation in Pericytes. Biomedicines 2024; 12:2102. [PMID: 39335615 PMCID: PMC11428717 DOI: 10.3390/biomedicines12092102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) is a member of the cytoplasmic inducible transcription factors and plays an important role in mediating signals from cytokines, chemokines, and growth factors. We and others have found that STAT3 directly regulates pro-fibrotic signaling in the kidney. The STAT3 protein-protein interaction plays an important role in activating its transcriptional activity. It is necessary to identify these interactions to investigate their function in kidney disease. Here, we investigated the protein-protein interaction among three species to find crucial interactions that can be targeted to alleviate kidney disease. METHOD In this study, we examined common protein-protein interactions leading to the activation or downregulation of STAT3 among three different species: humans (Homo sapiens), mice (Mus musculus), and rabbits (Oryctolagus cuniculus). Further, we chose to investigate the P300 and STAT3 interaction and performed studies of the activation of STAT3 using IL-6 and inhibition of the P300 by its specific inhibitor A-485 in pericytes. Next, we performed immunoprecipitation to confirm whether A-485 inhibits the binding of P300 to STAT3. RESULTS Using the STRING application from ExPASy, we found that six proteins, including PIAS3, JAK1, JAK2, EGFR, SRC, and EP300, showed highly confident interactions with STAT3 in humans, mice, and rabbits. We also found that IL-6 treatment increased the acetylation of STAT3 and increased histone 3 lysine acetylation (H3K27ac). Furthermore, we found that the disruption of STAT3 and P300 interaction by the P300 inhibitor A-485 decreased STAT3 acetylation and H3K27ac. Finally, we confirmed that the P300 inhibitor A-485 inhibited the binding of STAT3 with P300, which inhibited its transcriptional activity by reducing the expression of Ccnd1 (Cyclin D1). CONCLUSIONS Targeting the P300 protein interaction with STAT3 may alleviate STAT3-mediated fibrotic signaling in humans and other species.
Collapse
Affiliation(s)
- Gautam Kundu
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- US Military HIV Research Program (MHRP), Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Maryam Ghasemi
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Seungbin Yim
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ayanna Rohil
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Cuiyan Xin
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Leo Ren
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | | - Akinwande Akinfolarin
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Subodh Kumar
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gyan P. Srivastava
- Department of Electrical Engineering & Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Venkata S. Sabbisetti
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amrendra K. Ajay
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Center for Polycystic Kidney Disease, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Dai Q, Huang S, Fang Y, Ding X. Identifying the Potential Diagnostic Gene Biomarkers and Forecasting the Potential Therapeutic Agents for Advanced Diabetic Nephropathy Based on Pyroptosis and Ferroptosis. J Inflamm Res 2024; 17:5763-5779. [PMID: 39224660 PMCID: PMC11368145 DOI: 10.2147/jir.s467388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Background Diabetic nephropathy (DN) is a prevalent complication of diabetes, often leading to end-stage kidney disease (ESKD). Advanced DN progresses to ESKD rapidly, yet effective diagnostic indicators and treatments are lacking. Methods Two DN-related datasets were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using the R packages. Pyroptosis-related genes (PRGs) and ferroptosis-related genes (FRGs) were collected from their respective database. Pyroptosis- and ferroptosis-related differentially expressed genes (PFRDEGs) were identified by overlapping DEGs, PRGs, and FRGs for further analysis, including functional enrichment and immune infiltration. Hub genes were identified using a PPI network via MCODE-plugin in Cytoscape. GeneMANIA was utilized to explore intermolecular interactions among hub genes. Based on these hub genes, a diagnostic model was constructed using the receiver operating characteristic curve and potential therapeutic agents were retrieved. Correlation analysis between hub genes and estimated glomerular filtration rate was performed using Nephroseq v5 database, and expression of hub genes was validated in external GEO database, Nephroseq v5 database and DN mice in vivo. Results Four hub genes (CYBB, LCN2, JUN and ADIPOQ) were identified, and three of the four hub genes (CYBB, LCN2 and ADIPOQ) were found to be potential biomarkers for advanced DN. On this basis, three potential therapeutic agents were screened. More importantly, a series of biological experiments confirmed that CYBB and LCN2 were significantly up-regulated in DN mice. Conclusion This study identifies three hub genes as diagnostic biomarkers and mines three potential therapeutic agents for advanced DN, providing new insights into the role of pyroptosis and ferroptosis in advanced DN and laying the foundation for future research.
Collapse
Affiliation(s)
- Qin Dai
- Department of Nephrology, Xuhui District Central Hospital, Shanghai, People’s Republic of China
- Department of Nephrology, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Siyi Huang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
4
|
van Raalte DH, Bjornstad P, Cherney DZI, de Boer IH, Fioretto P, Gordin D, Persson F, Rosas SE, Rossing P, Schaub JA, Tuttle K, Waikar SS, Heerspink HJL. Combination therapy for kidney disease in people with diabetes mellitus. Nat Rev Nephrol 2024; 20:433-446. [PMID: 38570632 DOI: 10.1038/s41581-024-00827-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Diabetic kidney disease (DKD), defined as co-existing diabetes and chronic kidney disease in the absence of other clear causes of kidney injury, occurs in approximately 20-40% of patients with diabetes mellitus. As the global prevalence of diabetes has increased, DKD has become highly prevalent and a leading cause of kidney failure, accelerated cardiovascular disease, premature mortality and global health care expenditure. Multiple pathophysiological mechanisms contribute to DKD, and single lifestyle or pharmacological interventions have shown limited efficacy at preserving kidney function. For nearly two decades, renin-angiotensin system inhibitors were the only available kidney-protective drugs. However, several new drug classes, including sodium glucose cotransporter-2 inhibitors, a non-steroidal mineralocorticoid antagonist and a selective endothelin receptor antagonist, have now been demonstrated to improve kidney outcomes in people with type 2 diabetes mellitus. In addition, emerging preclinical and clinical evidence of the kidney-protective effects of glucagon-like-peptide-1 receptor agonists has led to the prospective testing of these agents for DKD. Research and clinical efforts are geared towards using therapies with potentially complementary efficacy in combination to safely halt kidney disease progression. As more kidney-protective drugs become available, the outlook for people living with DKD should improve in the next few decades.
Collapse
Affiliation(s)
- Daniël H van Raalte
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, VUMC, Amsterdam, The Netherlands.
- Diabetes Center, Amsterdam University Medical Centers, VUMC, Amsterdam, The Netherlands.
- Research Institute for Cardiovascular Sciences, VU University, Amsterdam, The Netherlands.
| | - Petter Bjornstad
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Ian H de Boer
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Paola Fioretto
- Department of Medicine, University of Padua, Unit of Medical Clinic 3, Padua, Italy
| | - Daniel Gordin
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Sylvia E Rosas
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jennifer A Schaub
- Nephrology Division, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine Tuttle
- Providence Medical Research Center, Providence Inland Northwest Health, Spokane, Washington, USA
- Department of Medicine, University of Washington School of Medicine, Spokane and Seattle, Washington, USA
- Nephrology Division, Kidney Research Institute and Institute of Translational Health Sciences, University of Washington, Spokane and Seattle, Washington, USA
| | - Sushrut S Waikar
- Section of Nephrology, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- The George Institute for Global Health, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Chen Y, Gong Y, Zou J, Li G, Zhang F, Yang Y, Liang Y, Dai W, He L, Lu H. Single-cell transcriptomic analysis reveals transcript enrichment in oxidative phosphorylation, fluid sheer stress, and inflammatory pathways in obesity-related glomerulopathy. Genes Dis 2024; 11:101101. [PMID: 38560497 PMCID: PMC10978546 DOI: 10.1016/j.gendis.2023.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 04/04/2024] Open
Abstract
Obesity-related glomerulopathy (ORG) is an independent risk factor for chronic kidney disease and even progression to end-stage renal disease. Efforts have been undertaken to elucidate the mechanisms underlying the development of ORG and substantial advances have been made in the treatment of ORG, but relatively little is known about cell-specific changes in gene expression. To define the transcriptomic landscape at single-cell resolution, we analyzed kidney samples from four patients with ORG and three obese control subjects without kidney disease using single-cell RNA sequencing. We report for the first time that immune cells, including T cells and B cells, are decreased in ORG patients. Further analysis indicated that SPP1 was significantly up-regulated in T cells and B cells. This gene is related to inflammation and cell proliferation. Analysis of differential gene expression in glomerular cells (endothelial cells, mesangial cells, and podocytes) showed that these cell types were mainly enriched in genes related to oxidative phosphorylation, cell adhesion, thermogenesis, and inflammatory pathways (PI3K-Akt signaling, MAPK signaling). Furthermore, we found that the podocytes of ORG patients were enriched in genes related to the fluid shear stress pathway. Moreover, an evaluation of cell-cell communications revealed that there were interactions between glomerular parietal epithelial cells and other cells in ORG patients, with major interactions between parietal epithelial cells and podocytes. Altogether, our identification of molecular events, cell types, and differentially expressed genes may facilitate the development of new preventive or therapeutic approaches for ORG.
Collapse
Affiliation(s)
- Yinyin Chen
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Yushun Gong
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Jia Zou
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Guoli Li
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Fan Zhang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Yiya Yang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Yumei Liang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Wenni Dai
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Hengcheng Lu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
- Cardiovascular Research Institute of Jiangxi Province, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| |
Collapse
|
6
|
Barsotti GC, Luciano R, Kumar A, Meliambro K, Kakade V, Tokita J, Naik A, Fu J, Peck E, Pell J, Reghuvaran A, Tanvir E, Patel P, Zhang W, Li F, Moeckel G, Perincheri S, Cantley L, Moledina DG, Wilson FP, He JC, Menon MC. Rationale and Design of a Phase 2, Double-blind, Placebo-Controlled, Randomized Trial Evaluating AMP Kinase-Activation by Metformin in Focal Segmental Glomerulosclerosis. Kidney Int Rep 2024; 9:1354-1368. [PMID: 38707807 PMCID: PMC11068976 DOI: 10.1016/j.ekir.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Focal segmental glomerulosclerosis (FSGS), the most common primary glomerular disease leading to end-stage kidney disease (ESKD), is characterized by podocyte injury and depletion, whereas minimal change disease (MCD) has better outcomes despite podocyte injury. Identifying mechanisms capable of preventing podocytopenia during injury could transform FSGS to an "MCD-like" state. Preclinical data have reported conversion of an MCD-like injury to one with podocytopenia and FSGS by inhibition of AMP-kinase (AMPK) in podocytes. Conversely, in FSGS, AMPK-activation using metformin (MF) mitigated podocytopenia and azotemia. Observational studies also support beneficial effects of MF on proteinuria and chronic kidney disease (CKD) outcomes in diabetes. A randomized controlled trial (RCT) to test MF in podocyte injury with FSGS has not yet been conducted. Methods We report the rationale and design of phase 2, double-blind, placebo-controlled RCT evaluating the efficacy and safety of MF as adjunctive therapy in FSGS. By randomizing 30 patients with biopsy-confirmed FSGS to MF or placebo (along with standard immunosuppression), we will study mechanistic biomarkers that correlate with podocyte injury or depletion and evaluate outcomes after 6 months. We specifically integrate novel urine, blood, and tissue markers as surrogates for FSGS progression along with unbiased profiling strategies. Results and Conclusion Our phase 2 trial will provide insight into the potential efficacy and safety of MF as adjunctive therapy in FSGS-a crucial step to developing a larger phase 3 study. The mechanistic assays here will guide the design of other FSGS trials and contribute to understanding AMPK activation as a potential therapeutic target in FSGS. By repurposing an inexpensive agent, our results will have implications for FSGS treatment in resource-poor settings.
Collapse
Affiliation(s)
- Gabriel C. Barsotti
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Randy Luciano
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ashwani Kumar
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kristin Meliambro
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vijayakumar Kakade
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joji Tokita
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Abhijit Naik
- Division of Nephrology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Elizabeth Peck
- Clinical Research Coordinator, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Pell
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anand Reghuvaran
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - E.M. Tanvir
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Prashant Patel
- Investigational Drug Service, Department of Pharmacy Services, Yale New Haven Hospital, Connecticut, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fan Li
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Gilbert Moeckel
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sudhir Perincheri
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lloyd Cantley
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dennis G. Moledina
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - F. Perry Wilson
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - John C. He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madhav C. Menon
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Williquett J, Allamargot C, Sun H. AMPK-SP1-Guided Dynein Expression Represents a New Energy-Responsive Mechanism and Therapeutic Target for Diabetic Nephropathy. KIDNEY360 2024; 5:538-549. [PMID: 38467599 PMCID: PMC11093544 DOI: 10.34067/kid.0000000000000392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
Key Points AMP kinase senses diabetic stresses in podocytes, subsequently upregulates specificity protein 1–mediated dynein expression and promotes podocyte injury. Pharmaceutical restoration of dynein expression by targeting specificity protein 1 represents an innovative therapeutic strategy for diabetic nephropathy. Background Diabetic nephropathy (DN) is a major complication of diabetes. Injury to podocytes, epithelial cells that form the molecular sieve of a kidney, is a preclinical feature of DN. Protein trafficking mediated by dynein, a motor protein complex, is a newly recognized pathophysiology of diabetic podocytopathy and is believed to be derived from the hyperglycemia-induced expression of subunits crucial for the transportation activity of the dynein complex. However, the mechanism underlying this transcriptional signature remains unknown. Methods Through promoter analysis, we identified binding sites for transcription factor specificity protein 1 (SP1) as the most shared motif among hyperglycemia-responsive dynein genes. We demonstrated the essential role of AMP-activated protein kinase (AMPK)–regulated SP1 in the transcription of dynein subunits and dynein-mediated trafficking in diabetic podocytopathy using chromatin immunoprecipitation quantitative PCR and live cell imaging. SP1-dependent dynein-driven pathogenesis of diabetic podocytopathy was demonstrated by pharmaceutical intervention with SP1 in a mouse model of streptozotocin-induced diabetes. Results Hyperglycemic conditions enhance SP1 binding to dynein promoters, promoted dynein expression, and enhanced dynein-mediated mistrafficking in cultured podocytes. These changes can be rescued by chemical inhibition or genetic silencing of SP1. The direct repression of AMPK, an energy sensor, replicates hyperglycemia-induced dynein expression by activating SP1. Mithramycin inhibition of SP1-directed dynein expression in streptozotocin-induced diabetic mice protected them from developing podocytopathy and prevented DN progression. Conclusions Our work implicates AMPK-SP1–regulated dynein expression as an early mechanism that translates energy disturbances in diabetes into podocyte dysfunction. Pharmaceutical restoration of dynein expression by targeting SP1 offers a new therapeutic strategy to prevent DN.
Collapse
Affiliation(s)
- Jillian Williquett
- Division of Nephrology, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa
- Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Chantal Allamargot
- Central Microscopy Research Facility, The University of Iowa, Iowa City, Iowa
| | - Hua Sun
- Division of Nephrology, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa
- Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
8
|
Al Tuhaifi T, Zhong J, Yang HC, Fogo AB. Effects of Dipeptidyl Peptidase-4 Inhibitor and Angiotensin-Converting Enzyme Inhibitor on Experimental Diabetic Kidney Disease. J Transl Med 2024; 104:100305. [PMID: 38109999 PMCID: PMC10922867 DOI: 10.1016/j.labinv.2023.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 11/08/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease in the United States and worldwide. Proteinuria is a major marker of the severity of injury. Dipeptidyl peptidase-4 inhibitor (DPP-4I) increases incretin-related insulin production and is, therefore, used to treat diabetes. We investigated whether DPP4I could have direct effect on kidney independent of its hypoglycemic activity. We, therefore, tested the effects of DPP4I with or without angiotensin-converting enzyme inhibitor (ACEI) on the progression of diabetic nephropathy and albuminuria in a murine model of DKD. eNOS-/-db/db mice were randomized to the following groups at age 10 weeks and treated until sacrifice: baseline (sacrificed at week 10), untreated control, ACEI, DPP4I, and combination of DPP4I and ACEI (Combo, sacrificed at week 18). Systemic parameters and urine albumin-creatinine ratio were assessed at baseline, weeks 14, and 18. Kidney morphology, glomerular filtration rate (GFR), WT-1, a marker for differentiated podocytes, podoplanin, a marker of foot process integrity, glomerular collagen IV, and alpha-smooth muscle actin were assessed at the end of the study. All mice had hyperglycemia and proteinuria at study entry at week 10. Untreated control mice had increased albuminuria, progression of glomerular injury, and reduced GFR at week 18 compared with baseline. DPP4I alone reduced blood glucose and kidney DPP-4 activity but failed to protect against kidney injury compared with untreated control. ACEI alone and combination groups showed significantly reduced albuminuria and glomerular injury, and maintained GFR and WT-1+ cells. Only the combination group had significantly less glomerular collagen IV deposition and more podoplanin preservation than the untreated control. DPP-4I alone does not decrease the progression of kidney injury in the eNOS-/-db/db mouse model, suggesting that targeting only hyperglycemia is not an optimal treatment strategy for DKD. Combined DPP-4I with ACEI added more benefit to reducing the glomerular matrix.
Collapse
Affiliation(s)
- Tareq Al Tuhaifi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Nephrology Clinical Trials Center, Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jianyong Zhong
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hai-Chun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Agnes B Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
9
|
Tserga A, Saulnier-Blache JS, Palamaris K, Pouloudi D, Gakiopoulou H, Zoidakis J, Schanstra JP, Vlahou A, Makridakis M. Complement Cascade Proteins Correlate with Fibrosis and Inflammation in Early-Stage Type 1 Diabetic Kidney Disease in the Ins2Akita Mouse Model. Int J Mol Sci 2024; 25:1387. [PMID: 38338666 PMCID: PMC10855735 DOI: 10.3390/ijms25031387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetic kidney disease (DKD) is characterized by histological changes including fibrosis and inflammation. Evidence supports that DKD is mediated by the innate immune system and more specifically by the complement system. Using Ins2Akita T1D diabetic mice, we studied the connection between the complement cascade, inflammation, and fibrosis in early DKD. Data were extracted from a previously published quantitative-mass-spectrometry-based proteomics analysis of kidney glomeruli of 2 (early DKD) and 4 months (moderately advanced DKD)-old Ins2Akita mice and their controls A Spearman rho correlation analysis of complement- versus inflammation- and fibrosis-related protein expression was performed. A cross-omics validation of the correlation analyses' results was performed using public-domain transcriptomics datasets (Nephroseq). Tissue sections from 43 patients with DKD were analyzed using immunofluorescence. Among the differentially expressed proteins, the complement cascade proteins C3, C4B, and IGHM were significantly increased in both early and later stages of DKD. Inflammation-related proteins were mainly upregulated in early DKD, and fibrotic proteins were induced in moderately advanced stages of DKD. The abundance of complement proteins with fibrosis- and inflammation-related proteins was mostly positively correlated in early stages of DKD. This was confirmed in seven additional human and mouse transcriptomics DKD datasets. Moreover, C3 and IGHM mRNA levels were found to be negatively correlated with the estimated glomerular filtration rate (range for C3 rs = -0.58 to -0.842 and range for IGHM rs = -0.6 to -0.74) in these datasets. Immunohistology of human kidney biopsies revealed that C3, C1q, and IGM proteins were induced in patients with DKD and were correlated with fibrosis and inflammation. Our study shows for the first time the potential activation of the complement cascade associated with inflammation-mediated kidney fibrosis in the Ins2Akita T1D mouse model. Our findings could provide new perspectives for the treatment of early DKD as well as support the use of Ins2Akita T1D in pre-clinical studies.
Collapse
Affiliation(s)
- Aggeliki Tserga
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (J.Z.); (A.V.)
| | - Jean Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France; (J.S.S.-B.); (J.P.S.)
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Kostantinos Palamaris
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 34400 Athens, Greece; (K.P.); (D.P.); (H.G.)
| | - Despoina Pouloudi
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 34400 Athens, Greece; (K.P.); (D.P.); (H.G.)
| | - Harikleia Gakiopoulou
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 34400 Athens, Greece; (K.P.); (D.P.); (H.G.)
| | - Jerome Zoidakis
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (J.Z.); (A.V.)
- Department of Biology, National and Kapodistrian University of Athens, 15701 Zografou, Greece
| | - Joost Peter Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France; (J.S.S.-B.); (J.P.S.)
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (J.Z.); (A.V.)
| | - Manousos Makridakis
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (J.Z.); (A.V.)
| |
Collapse
|
10
|
Ning Y, Zhou X, Wang G, Zhang L, Wang J. Bioinformatics to Identify Biomarkers of Diabetic Nephropathy based on Sphingolipid Metabolism and their Molecular Mechanisms. Curr Diabetes Rev 2024; 21:e070524229720. [PMID: 38712372 DOI: 10.2174/0115733998297749240418071555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Diabetes mellitus (DM) frequently results in Diabetic Nephropathy (DN), which has a significant negative impact on the quality of life of diabetic patients. Sphingolipid metabolism is associated with diabetes, but its relationship with DN is unclear. Therefore, screening biomarkers related to sphingolipid metabolism is crucial for treating DN. METHODS To identify Differentially Expressed Genes (DEGs) in the GSE142153 dataset, we conducted a differential expression analysis (DN samples versus control samples). The intersection genes were obtained by overlapping DEGs and Sphingolipid Metabolism-Related Genes (SMRGs). Furthermore, The Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithms were used to filter biomarkers. We further analyzed the Gene Set Enrichment analysis (GSEA) and the immunoinfiltrational analysis based on biomarkers. RESULTS We identified 2,186 DEGs associated with DN. Then, five SMR-DEGs were obtained. Subsequently, biomarkers associated with sphingolipid metabolism (S1PR1 and SELL) were identified by applying machine learning and expression analysis. In addition, GSEA showed that these biomarkers were correlated with cytokine cytokine receptor interaction'. Significant variations in B cells, DCs, Tems, and Th2 cells between the two groups suggested that these cells might have a role in DN. CONCLUSION Overall, we obtained two sphingolipid metabolism-related biomarkers (S1PR1 and SELL) associated with DN, which laid a theoretical foundation for treating DN.
Collapse
Affiliation(s)
- Yaxian Ning
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| | - Xiaochun Zhou
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| | - Gouqin Wang
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| | - Lili Zhang
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| | - Jianqin Wang
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| |
Collapse
|
11
|
Fang Z, Lee K, He JC. A central role for mesangial cells in the initiation of diabetic nephropathy. Kidney Int 2023; 104:872-874. [PMID: 37863632 DOI: 10.1016/j.kint.2023.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/25/2023] [Indexed: 10/22/2023]
Affiliation(s)
- Zhengying Fang
- Department of Medicine, Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kyung Lee
- Department of Medicine, Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - John Cijiang He
- Department of Medicine, Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, New York, USA.
| |
Collapse
|
12
|
Sanchez-Niño MD, Ceballos MI, Carriazo S, Pintor-Chocano A, Sanz AB, Saleem MA, Ortiz A. Interaction of Fabry Disease and Diabetes Mellitus: Suboptimal Recruitment of Kidney Protective Factors. Int J Mol Sci 2023; 24:15853. [PMID: 37958836 PMCID: PMC10650640 DOI: 10.3390/ijms242115853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Fabry disease is a lysosomal disease characterized by globotriaosylceramide (Gb3) accumulation. It may coexist with diabetes mellitus and both cause potentially lethal kidney end-organ damage. However, there is little information on their interaction with kidney disease. We have addressed the interaction between Fabry disease and diabetes in data mining of human kidney transcriptomics databases and in Fabry (Gla-/-) and wild type mice with or without streptozotocin-induced diabetes. Data mining was consistent with differential expression of genes encoding enzymes from the Gb3 metabolic pathway in human diabetic kidney disease, including upregulation of UGCG, the gene encoding the upstream and rate-limiting enzyme glucosyl ceramide synthase. Diabetic Fabry mice displayed the most severe kidney infiltration by F4/80+ macrophages, and a lower kidney expression of kidney protective genes (Pgc1α and Tfeb) than diabetic wild type mice, without a further increase in kidney fibrosis. Moreover, only diabetic Fabry mice developed kidney insufficiency and these mice with kidney insufficiency had a high expression of Ugcg. In conclusion, we found evidence of interaction between diabetes and Fabry disease that may increase the severity of the kidney phenotype through modulation of the Gb3 synthesis pathway and downregulation of kidney protective genes.
Collapse
Affiliation(s)
- Maria D. Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain; (M.I.C.); (S.C.); (A.P.-C.); (A.B.S.)
- RICORS2040, 28040 Madrid, Spain
- Department of Pharmacology, School of Medicine, Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Maria I. Ceballos
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain; (M.I.C.); (S.C.); (A.P.-C.); (A.B.S.)
- RICORS2040, 28040 Madrid, Spain
| | - Sol Carriazo
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain; (M.I.C.); (S.C.); (A.P.-C.); (A.B.S.)
- RICORS2040, 28040 Madrid, Spain
| | - Aranzazu Pintor-Chocano
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain; (M.I.C.); (S.C.); (A.P.-C.); (A.B.S.)
- RICORS2040, 28040 Madrid, Spain
| | - Ana B. Sanz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain; (M.I.C.); (S.C.); (A.P.-C.); (A.B.S.)
- RICORS2040, 28040 Madrid, Spain
| | - Moin A. Saleem
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK;
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain; (M.I.C.); (S.C.); (A.P.-C.); (A.B.S.)
- RICORS2040, 28040 Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Autonoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
13
|
Elzinga SE, Eid SA, McGregor BA, Jang DG, Hinder LM, Dauch JR, Hayes JM, Zhang H, Guo K, Pennathur S, Kretzler M, Brosius FC, Koubek EJ, Feldman EL, Hur J. Transcriptomic analysis of diabetic kidney disease and neuropathy in mouse models of type 1 and type 2 diabetes. Dis Model Mech 2023; 16:dmm050080. [PMID: 37791586 PMCID: PMC10565109 DOI: 10.1242/dmm.050080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/26/2023] [Indexed: 10/05/2023] Open
Abstract
Diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN) are common complications of type 1 (T1D) and type 2 (T2D) diabetes. However, the mechanisms underlying pathogenesis of these complications are unclear. In this study, we optimized a streptozotocin-induced db/+ murine model of T1D and compared it to our established db/db T2D mouse model of the same C57BLKS/J background. Glomeruli and sciatic nerve transcriptomic data from T1D and T2D mice were analyzed by self-organizing map and differential gene expression analysis. Consistent with prior literature, pathways related to immune function and inflammation were dysregulated in both complications in T1D and T2D mice. Gene-level analysis identified a high degree of concordance in shared differentially expressed genes (DEGs) in both complications and across diabetes type when using mice from the same cohort and genetic background. As we have previously shown a low concordance of shared DEGs in DPN when using mice from different cohorts and genetic backgrounds, this suggests that genetic background may influence diabetic complications. Collectively, these findings support the role of inflammation and indicate that genetic background is important in complications of both T1D and T2D.
Collapse
Affiliation(s)
- Sarah E. Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephanie A. Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brett A. McGregor
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Dae-Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongyu Zhang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frank C. Brosius
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| |
Collapse
|
14
|
Li F, Ma Z, Cai Y, Zhou J, Liu R. Optimizing diabetic kidney disease animal models: Insights from a meta-analytic approach. Animal Model Exp Med 2023; 6:433-451. [PMID: 37723622 PMCID: PMC10614131 DOI: 10.1002/ame2.12350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/12/2023] [Indexed: 09/20/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent complication of diabetes, often leading to end-stage renal disease. Animal models have been widely used to study the pathogenesis of DKD and evaluate potential therapies. However, current animal models often fail to fully capture the pathological characteristics of renal injury observed in clinical patients with DKD. Additionally, modeling DKD is often a time-consuming, costly, and labor-intensive process. The current review aims to summarize modeling strategies in the establishment of DKD animal models by utilizing meta-analysis related methods and to aid in the optimization of these models for future research. A total of 1215 articles were retrieved with the keywords of "diabetic kidney disease" and "animal experiment" in the past 10 years. Following screening, 84 articles were selected for inclusion in the meta-analysis. Review manager 5.4.1 was employed to analyze the changes in blood glucose, glycosylated hemoglobin, total cholesterol, triglyceride, serum creatinine, blood urea nitrogen, and urinary albumin excretion rate in each model. Renal lesions shown in different models that were not suitable to be included in the meta-analysis were also extensively discussed. The above analysis suggested that combining various stimuli or introducing additional renal injuries to current models would be a promising avenue to overcome existing challenges and limitations. In conclusion, our review article provides an in-depth analysis of the limitations in current DKD animal models and proposes strategies for improving the accuracy and reliability of these models that will inspire future research efforts in the DKD research field.
Collapse
Affiliation(s)
- Fanghong Li
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Zhi Ma
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Yajie Cai
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Jingwei Zhou
- Department of Nephrology, Dongzhimen HospitalThe First Affiliated Hospital of Beijing University of Chinese MedicineBeijingChina
| | - Runping Liu
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
15
|
Zhang S, Li X, Liu S, Zhang W, Li M, Qiao C. Research progress on the role of ET-1 in diabetic kidney disease. J Cell Physiol 2023; 238:1183-1192. [PMID: 37063089 DOI: 10.1002/jcp.31023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Diabetic kidney disease (DKD) is one of the common complications of diabetes mellitus, which usually progresses to end-stage renal disease and causes great damage to the health of patients. Endothelin-1 (ET-1), a molecule closely associated with the progression of DKD, has increased expression in response to high glucose stimulation and is involved in hemodynamic changes, inflammation, glomerular and tubular dysfunction in the kidney, causing an increase in proteinuria and a decrease in glomerular filtration function, ultimately leading to glomerulosclerosis and renal failure. This paper aims to review the molecular level changes, regulatory mechanisms, and mechanisms of action of ET-1 under DKD, clinical trials of ET-1 receptor antagonists in recent years and current problems, to provide basic information and new research directions and ideas for the treatment of DKD and ET-1-related research.
Collapse
Affiliation(s)
- Shenghao Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaodan Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Siyu Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wanting Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Meinuo Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chen Qiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Liu Z, Nan P, Gong Y, Tian L, Zheng Y, Wu Z. Endoplasmic reticulum stress-triggered ferroptosis via the XBP1-Hrd1-Nrf2 pathway induces EMT progression in diabetic nephropathy. Biomed Pharmacother 2023; 164:114897. [PMID: 37224754 DOI: 10.1016/j.biopha.2023.114897] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetic nephropathy (DN) is characterized by tubulointerstitial fibrosis caused by epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells. Although ferroptosis promotes DN development, the specific pathological process that is affected by ferroptosis in DN remains unclear. Herein, EMT-related changes, including increased α-smooth muscle actin (α-SMA) and Vimentin expression and decreased E-cadherin expression, were observed in the renal tissues of streptozotocin-induced DN mice and high glucose-cultured human renal proximal tubular (HK-2) cells. Treatment with ferrostatin-1 (Fer-1) ameliorated these changes and rescued renal pathological injury in diabetic mice. Interestingly, endoplasmic reticulum stress (ERS) was activated during EMT progression in DN. Inhibiting ERS improved the expression of EMT-associated indicators and further rescued the characteristic changes in ferroptosis caused by high glucose, including reactive oxygen species (ROS) accumulation, iron overload, increased lipid peroxidation product generation, and reduced mitochondrial cristae. Moreover, overexpression of XBP1 increased Hrd1 expression and inhibited NFE2-related factor 2 (Nrf2) expression, which could enhance cell susceptibility to ferroptosis. Co-immunoprecipitation (Co-IP) and ubiquitylation assays indicated that Hrd1 interacted with and ubiquitinated Nrf2 under high-glucose conditions. Collectively, our results demonstrated that ERS triggers ferroptosis-related EMT progression through the XBP1-Hrd1-Nrf2 pathway, which provides new insights into potential mechanisms for delaying EMT progression in DN.
Collapse
Affiliation(s)
- Zijun Liu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China.
| | - Ping Nan
- Department of Obster & Gynecol, Shengli Oilfield Center Hospital, Dongying, Shandong 257000, China.
| | - Yihui Gong
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China.
| | - Ling Tian
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China.
| | - Yin Zheng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China.
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China.
| |
Collapse
|
17
|
Zhao T, Cheng F, Zhan D, Li J, Zheng C, Lu Y, Qin W, Liu Z. The Glomerulus Multiomics Analysis Provides Deeper Insights into Diabetic Nephropathy. J Proteome Res 2023. [PMID: 37191251 DOI: 10.1021/acs.jproteome.2c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Although diabetic nephropathy (DN) is the leading cause of the end-stage renal disease, the exact regulation mechanisms remain unknown. In this study, we integrated the transcriptomics and proteomics profiles of glomeruli isolated from 50 biopsy-proven DN patients and 25 controls to investigate the latest findings about DN pathogenesis. First, 1152 genes exhibited differential expression at the mRNA or protein level, and 364 showed significant association. These strong correlated genes were divided into four different functional modules. Moreover, a regulatory network of the transcription factors (TFs)-target genes (TGs) was constructed, with 30 TFs upregulated at the protein levels and 265 downstream TGs differentially expressed at the mRNA levels. These TFs are the integration centers of several signal transduction pathways and have tremendous therapeutic potential for regulating the aberrant production of TGs and the pathological process of DN. Furthermore, 29 new DN-specific splice-junction peptides were discovered with high confidence; these peptides may play novel functions in the pathological course of DN. So, our in-depth integrative transcriptomics-proteomics analysis provided deeper insights into the pathogenesis of DN and opened the potential avenue for finding new therapeutic interventions. MS raw files were deposited into the proteomeXchange with the dataset identifier PXD040617.
Collapse
Affiliation(s)
- Tingting Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Fang Cheng
- Department of Bioinformatics, Beijing Pineal Diagnostics Co., Ltd., Beijing 102206, China
| | - Dongdong Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jin'e Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Yinghui Lu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Weisong Qin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| |
Collapse
|
18
|
Subash-Babu P, Abdulaziz AlSedairy S, Abdulaziz Binobead M, Alshatwi AA. Luteolin-7-O-rutinoside Protects RIN-5F Cells from High-Glucose-Induced Toxicity, Improves Glucose Homeostasis in L6 Myotubes, and Prevents Onset of Type 2 Diabetes. Metabolites 2023; 13:metabo13020269. [PMID: 36837888 PMCID: PMC9965038 DOI: 10.3390/metabo13020269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Luteolin-7-O-rutinoside (lut-7-O-rutin), a flavonoid commonly present in Mentha longifolia L. and Olea europaea L. leaves has been used as a flavoring agent with some biological activity. The present study is the first attempt to analyze the protective effect of lut-7-O-rutin on high-glucose-induced toxicity to RIN-5F cells in vitro. We found that lut-7-O-rutin improved insulin secretion in both normal and high-glucose conditions in a dose-dependent manner, without toxicity observed. In addition, 20 µmol of lut-7-O-rutin improves insulin sensitization and glucose uptake significantly (p ≤ 0.01) in L6 myotubes cultured in a high-glucose medium. Lut-7-O-rutin has shown a significant (p ≤ 0.05) effect on glucose uptake in L6 myotubes compared to the reference drug, rosiglitazone (20 µmol). Gene expression analysis confirmed significantly lowered CYP1A, TNF-α, and NF-κb expressions in RIN-5F cells, and increased mitochondrial thermogenesis-related LPL, Ucp-1 and PPARγC1A mRNA expressions in L6 myotubes after 24 h of lut-7-O-rutin treatment. The levels of signaling proteins associated with intracellular glucose uptakes, such as cAMP, ChREBP-1, and AMPK, were significantly increased in L6 myotubes. In addition, the levels of the conversion rate of glucose to lactate and fatty acids were raised in insulin-stimulated conditions; the rate of glycerol conversion was found to be higher at the basal level in L6 myotubes. In conclusion, lut-7-O-rutin protects RIN-5F cells from high-glucose-induced toxicity, stimulates insulin secretion, and promotes glucose absorption and homeostasis via molecular mechanisms.
Collapse
|
19
|
Sun H, Weidner J, Allamargot C, Piper RC, Misurac J, Nester C. Dynein-Mediated Trafficking: A New Mechanism of Diabetic Podocytopathy. KIDNEY360 2023; 4:162-176. [PMID: 36821608 PMCID: PMC10103215 DOI: 10.34067/kid.0006852022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Key Points The expression of dynein is increased in human and rodent models of diabetic nephropathy (DN), eliciting a new dynein-driven pathogenesis. Uncontrolled dynein impairs the molecular sieve of kidney by remodeling the postendocytic triage and homeostasis of nephrin. The delineation of the dynein-driven pathogenesis promises a broad spectrum of new therapeutic targets for human DN. Background Diabetic nephropathy (DN) is characterized by increased endocytosis and degradation of nephrin, a protein that comprises the molecular sieve of the glomerular filtration barrier. While nephrin internalization has been found activated in diabetes-stressed podocytes, the postinternalization trafficking steps that lead to the eventual depletion of nephrin and the development of DN are unclear. Our work on an inherited podocytopathy uncovered that dysregulated dynein could compromise nephrin trafficking, leading us to test whether and how dynein mediates the pathogenesis of DN. Methods We analyzed the transcription of dynein components in public DN databases, using the Nephroseq platform. We verified altered dynein transcription in diabetic podocytopathy by quantitative PCR. Dynein-mediated trafficking and degradation of nephrin was investigated using an in vitro nephrin trafficking model and was demonstrated in a mouse model with streptozotocin (STZ)-induced DN and in human kidney biopsy sections. Results Our transcription analysis revealed increased expression of dynein in human DN and diabetic mouse kidney, correlated significantly with the severity of hyperglycemia and DN. In diabetic podocytopathy, we observed that dynein-mediated postendocytic sorting of nephrin was upregulated, resulting in accelerated nephrin degradation and disrupted nephrin recycling. In hyperglycemia-stressed podocytes, Dynll1 , one of the most upregulated dynein components, is required for the recruitment of dynein complex that mediates the postendocytic sorting of nephrin. This was corroborated by observing enhanced Dynll1-nephrin colocalization in podocytes of diabetic patients, as well as dynein-mediated trafficking and degradation of nephrin in STZ-induced diabetic mice with hyperglycemia. Knockdown of Dynll1 attenuated lysosomal degradation of nephrin and promoted its recycling, suggesting the essential role of Dynll1 in dynein-mediated mistrafficking. Conclusions Our studies show that hyperglycemia stimulates dynein-mediated trafficking of nephrin to lysosomes by inducing its expression. The decoding of dynein-driven pathogenesis of diabetic podocytopathy offers a spectrum of new dynein-related therapeutic targets for DN.
Collapse
Affiliation(s)
- Hua Sun
- Division of Nephrology, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa
- Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Jillian Weidner
- Division of Nephrology, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa
- Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Chantal Allamargot
- Central Microscopy Research Facility, The University of Iowa, Iowa City, Iowa
| | - Robert C. Piper
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Jason Misurac
- Division of Nephrology, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa
- Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Carla Nester
- Division of Nephrology, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa
- Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
20
|
Krishnan S, Manoharan J, Wang H, Gupta D, Fatima S, Yu Y, Mathew A, Li Z, Kohli S, Schwab C, Körner A, Mertens PR, Nawroth P, Shahzad K, Naumann M, Isermann B, Biemann R. CD248 induces a maladaptive unfolded protein response in diabetic kidney disease. Kidney Int 2023; 103:304-319. [PMID: 36309126 DOI: 10.1016/j.kint.2022.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
Dysfunction of mesangial cells plays a major role in the pathogenesis of diabetic kidney disease (DKD), the leading cause of kidney failure. However, the underlying molecular mechanisms are incompletely understood. By unbiased gene expression analysis of glucose-exposed mesangial cells, we identified the transmembrane receptor CD248 as the most upregulated gene, and the maladaptive unfolded protein response (UPR) as one of the most stimulated pathways. Upregulation of CD248 was further confirmed in glucose-stressed mesangial cells in vitro, in kidney glomeruli isolated from diabetic mice (streptozotocin; STZ and db/db models, representing type 1 and type 2 diabetes mellitus, respectively) in vivo, and in glomerular kidney sections from patients with DKD. Time course analysis revealed that glomerular CD248 induction precedes the onset of albuminuria, mesangial matrix expansion and maladaptive UPR activation (hallmarked by transcription factor C/EBP homologous protein (CHOP) induction) but is paralleled by loss of the adaptive UPR regulator spliced X box binding protein (XBP1). Mechanistically, CD248 promoted maladaptive UPR signaling via inhibition of the inositol requiring enzyme 1α (IRE1α)-mediated transcription factor XBP1 splicing in vivo and in vitro. CD248 induced a multiprotein complex comprising heat shock protein 90, BH3 interacting domain death agonist (BID) and IRE1α, in which BID impedes IRE1α-mediated XBP1 splicing and induced CHOP mediated maladaptive UPR signaling. While CD248 knockout ameliorated DKD-associated glomerular dysfunction and reverses maladaptive unfolded protein response signaling, concomitant XBP1 deficiency abolished the protective effect in diabetic CD248 knockout mice, supporting a functional interaction of CD248 and XBP1 in vivo. Hence, CD248 is a novel mesangial cell receptor inducing maladaptive UPR signaling in DKD.
Collapse
Affiliation(s)
- Shruthi Krishnan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Hongjie Wang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Yanfei Yu
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Zhen Li
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Constantin Schwab
- Tissue Bank of the National Center for Tumor Diseases, Heidelberg, Germany
| | - Antje Körner
- Leipzig University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Peter R Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany.
| |
Collapse
|
21
|
Deng T, Du J, Yin Y, Cao B, Wang Z, Zhang Z, Yang M, Han J. Rhein for treating diabetes mellitus: A pharmacological and mechanistic overview. Front Pharmacol 2023; 13:1106260. [PMID: 36699072 PMCID: PMC9868719 DOI: 10.3389/fphar.2022.1106260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023] Open
Abstract
With the extension of life expectancy and changes in lifestyle, the prevalence of diabetes mellitus is increasing worldwide. Rheum palmatum L. a natural botanical medicine, has been used for thousands of years to prevent and treat diabetes mellitus in Eastern countries. Rhein, the main active component of rhubarb, is a 1, 8-dihydroxy anthraquinone derivative. Previous studies have extensively explored the clinical application of rhein. However, a comprehensive review of the antidiabetic effects of rhein has not been conducted. This review summarizes studies published over the past decade on the antidiabetic effects of rhein, covering the biological characteristics of Rheum palmatum L. and the pharmacological effects and pharmacokinetic characteristics of rhein. The review demonstrates that rhein can prevent and treat diabetes mellitus by ameliorating insulin resistance, possess anti-inflammatory and anti-oxidative stress properties, and protect islet cells, thus providing a theoretical basis for the application of rhein as an antidiabetic agent.
Collapse
Affiliation(s)
- Tingting Deng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinxin Du
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Yin
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baorui Cao
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Zhiying Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhongwen Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Meina Yang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China,Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China,*Correspondence: Meina Yang, ; Jinxiang Han,
| | - Jinxiang Han
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China,Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China,*Correspondence: Meina Yang, ; Jinxiang Han,
| |
Collapse
|
22
|
Zhou XJ, Zhong XH, Duan LX. Integration of artificial intelligence and multi-omics in kidney diseases. FUNDAMENTAL RESEARCH 2023; 3:126-148. [PMID: 38933564 PMCID: PMC11197676 DOI: 10.1016/j.fmre.2022.01.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 10/18/2022] Open
Abstract
Kidney disease is a leading cause of death worldwide. Currently, the diagnosis of kidney diseases and the grading of their severity are mainly based on clinical features, which do not reveal the underlying molecular pathways. More recent surge of ∼omics studies has greatly catalyzed disease research. The advent of artificial intelligence (AI) has opened the avenue for the efficient integration and interpretation of big datasets for discovering clinically actionable knowledge. This review discusses how AI and multi-omics can be applied and integrated, to offer opportunities to develop novel diagnostic and therapeutic means in kidney diseases. The combination of new technology and novel analysis pipelines can lead to breakthroughs in expanding our understanding of disease pathogenesis, shedding new light on biomarkers and disease classification, as well as providing possibilities of precise treatment.
Collapse
Affiliation(s)
- Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing 100034, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, China
| | - Xu-Hui Zhong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Li-Xin Duan
- The Big Data Research Center, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| |
Collapse
|
23
|
Li Y, Lin H, Shu S, Sun Y, Lai W, Chen W, Hu Z, Peng H. Integrative transcriptome analysis reveals TEKT2 and PIAS2 involvement in diabetic nephropathy. FASEB J 2022; 36:e22592. [PMID: 36251411 DOI: 10.1096/fj.202200740rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022]
Abstract
Cell heterogeneity has impeded the accurate interpretation of the bulk transcriptome data from patients with diabetic nephropathy (DN). We performed an analysis by integrating bulk and single-cell transcriptome datasets to uncover novel mechanisms leading to DN, especially in the podocytes. Microdissected glomeruli and tubules transcriptome datasets were selected from Gene Expression Omnibus (GEO). Then the consistency between datasets was evaluated. The analysis of the bulk dataset and single-nucleus RNA dataset was integrated to reveal the cell type-specific responses to DN. The candidate genes were validated in kidney tissues from DN patients and diabetic mice. We compared 4 glomerular and 4 tubular datasets and found considerable discrepancies among datasets regarding the deferentially expressed genes (DEGs), involved signaling pathways, and the hallmark enrichment profiles. Deconvolution of the bulk data revealed that the variations in cell-type proportion contributed greatly to this discrepancy. The integrative analysis uncovered that the dysregulation of spermatogenesis-related genes, including TEKT2 and PIAS2, was involved in the development of DN. Importantly, the mRNA level of TEKT2 was negatively correlated with the mRNA levels of NPHS1 (r = -.66, p < .0001) and NPHS2 (r = -.85, p < .0001) in human diabetic glomeruli. Immunostaining confirmed that the expression of TEKT2 and PIAS2 were up-regulated in podocytes of DN patients and diabetic mice. Knocking down TEKT2 resisted high glucose-induced cytoskeletal remodeling and down-regulation of NPHS1 protein in the cultured podocyte. In conclusion, the integrative strategy can help us efficiently use the publicly available transcriptomics resources. Using this approach and combining it with classical research methods, we identified TEKT2 and PIAS2, two spermatogenesis-related genes involved in the pathogenesis of DN. Furthermore, TEKT2 is involved in this pathogenesis by regulating the podocyte cytoskeleton.
Collapse
Affiliation(s)
- Yuanqing Li
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongchun Lin
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuangshuang Shu
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuxiang Sun
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weiyan Lai
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenfang Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaoyong Hu
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Hui Peng
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Pan-Src kinase inhibitor treatment attenuates diabetic kidney injury via inhibition of Fyn kinase-mediated endoplasmic reticulum stress. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1086-1097. [PMID: 35918533 PMCID: PMC9440146 DOI: 10.1038/s12276-022-00810-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/13/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022]
Abstract
Src family kinases (SFKs) have been implicated in the pathogenesis of kidney fibrosis. However, the specific mechanism by which SFKs contribute to the progression of diabetic kidney disease (DKD) remains unclear. Our preliminary transcriptome analysis suggested that SFK expression was increased in diabetic kidneys and that the expression of Fyn (a member of the SFKs), along with genes related to unfolded protein responses from the endoplasmic reticulum (ER) stress signaling pathway, was upregulated in the tubules of human diabetic kidneys. Thus, we examined whether SFK-induced ER stress is associated with DKD progression. Mouse proximal tubular (mProx24) cells were transfected with Fyn or Lyn siRNA and exposed to high glucose and palmitate (HG-Pal). Streptozotocin-induced diabetic rats were treated with KF-1607, a novel pan-Src kinase inhibitor (SKI) with low toxicity. The effect of KF-1607 was compared to that of losartan, a standard treatment for patients with DKD. Among the SFK family members, the Fyn and Lyn kinases were upregulated under diabetic stress. HG-Pal induced p70S6 kinase and JNK/CHOP signaling and promoted tubular injury. Fyn knockdown but not Lyn knockdown inhibited this detrimental signaling pathway. In addition, diabetic rats treated with KF-1607 showed improved kidney function and decreased ER stress, inflammation, and fibrosis compared with those treated with losartan. Collectively, these findings indicate that Fyn kinase is a specific member of the SFKs implicated in ER stress activation leading to proximal tubular injury in the diabetic milieu and that pan-SKI treatment attenuates kidney injury in diabetic rats. These data highlight Fyn kinase as a viable target for the development of therapeutic agents for DKD. Insights into a signaling pathway that promotes diabetic kidney disease could lead to new therapies that protect against this major cause of kidney failure. Past studies have suggested that the various Src family kinase (SFK) signaling proteins play a part in the cell death and scar tissue formation associated with diabetic kidney disease. Hunjoo Ha of Ewha Womans University, Seoul, South Korea, and colleagues have now focused on one particular SFK, Fyn, as a direct driver of the kidney damage seen in mouse models of diabetes. Genetic interventions that selectively inhibit Fyn suppressed this damage, as did treatment with an oral drug that broadly inactivates SFKs. This experimental drug proved as effective as controlling inflammation and oxidative damage in the kidney as an already clinically approved treatment, confirming the significance of SFK signaling in this condition.
Collapse
|
25
|
Hui Z, Chen YM, Gong WK, Lai JB, Yao BB, Zhao ZJ, Lu QK, Ye K, Ji LD, Xu J. Shared and specific biological signalling pathways for diabetic retinopathy, peripheral neuropathy and nephropathy by high-throughput sequencing analysis. Diab Vasc Dis Res 2022; 19:14791641221122918. [PMID: 35989592 PMCID: PMC9397373 DOI: 10.1177/14791641221122918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES We aimed to explore the shared and specific signalling pathways involved in diabetic retinopathy (DR), diabetic peripheral neuropathy (DPN) and diabetic nephropathy (DN). METHODS Differentially expressed mRNAs and lncRNAs were identified by high-throughput sequencing. Subsequently, functional enrichment analysis, protein-protein interaction (PPI) analysis and lncRNAs-mRNAs networks were conducted to determine the pathogenic mechanisms underlying DR, DPN and DN. RESULTS Twenty-six biological pathways were shared among DR, DPN and DN groups compared to the type 2 diabetes mellitus (T2DM) group without complications, and most of the shared pathways and core proteins were involved in immune and inflammatory responses of microvascular damage. Cytokine‒cytokine receptor interactions and chemokine signalling pathway were the most significant and specific pathways for DR, and the lncRNA‒mRNA regulatory networks affected DR by targeting these pathways. Sphingolipid metabolism and neuroactive ligand-receptor pathways were found to be specific for the pathogenesis of DPN. Moreover, multiple amino acid metabolic pathways were involved in the occurrence and progression of DN. CONCLUSIONS Diabetic retinopathy, DPN and DN exhibited commonality and heterogeneity simultaneously. The shared pathologic mechanisms underlying these diabetic complications are involved in diabetic microvascular damage via immune and inflammatory pathways. Our findings predict several biomarkers and therapeutic targets for these diabetic complications.
Collapse
Affiliation(s)
- Zhu Hui
- Department of Science and Education, Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Yan-ming Chen
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - Wei-kun Gong
- Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Jing-bo Lai
- Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Bin-bin Yao
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - Zhi-jia Zhao
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - Qin-kang Lu
- Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Ke Ye
- Department of Clinical Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - Lin-dan Ji
- Department of Biochemistry, School of Medicine, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
- Lin-dan Ji, Department of Biochemistry, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| | - Jin Xu
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
- Jin Xu, Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
26
|
Boi R, Ebefors K, Henricsson M, Borén J, Nyström J. Modified lipid metabolism and cytosolic phospholipase A2 activation in mesangial cells under pro-inflammatory conditions. Sci Rep 2022; 12:7322. [PMID: 35513427 PMCID: PMC9072365 DOI: 10.1038/s41598-022-10907-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Diabetic kidney disease is a consequence of hyperglycemia and other complex events driven by early glomerular hemodynamic changes and a progressive expansion of the mesangium. The molecular mechanisms behind the pathophysiological alterations of the mesangium are yet to be elucidated. This study aimed at investigating whether lipid signaling might be the missing link. Stimulation of human mesangial cells with high glucose primed the inflammasome-driven interleukin 1 beta (IL-1β) secretion, which in turn stimulated platelet-derived growth factor (PDGF-BB) release. Finally, PDGF-BB increased IL-1β secretion synergistically. Both IL-1β and PDGF-BB stimulation triggered the formation of phosphorylated sphingoid bases, as shown by lipidomics, and activated cytosolic phospholipase cPLA2, sphingosine kinase 1, cyclooxygenase 2, and autotaxin. This led to the release of arachidonic acid and lysophosphatidylcholine, activating the secretion of vasodilatory prostaglandins and proliferative lysophosphatidic acids. Blocking cPLA2 release of arachidonic acid reduced mesangial cells proliferation and prostaglandin secretion. Validation was performed in silico using the Nephroseq database and a glomerular transcriptomic database. In conclusion, hyperglycemia primes glomerular inflammatory and proliferative stimuli triggering lipid metabolism modifications in human mesangial cells. The upregulation of cPLA2 was critical in this setting. Its inhibition reduced mesangial secretion of prostaglandins and proliferation, making it a potential therapeutical target.
Collapse
Affiliation(s)
- Roberto Boi
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530, Gothenburg, Sweden
| | - Kerstin Ebefors
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530, Gothenburg, Sweden
| | - Marcus Henricsson
- Institute of Medicine, Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Institute of Medicine, Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jenny Nyström
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530, Gothenburg, Sweden.
| |
Collapse
|
27
|
Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci (Lond) 2022; 136:493-520. [PMID: 35415751 PMCID: PMC9008595 DOI: 10.1042/cs20210625] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Albuminuria is the hallmark of both primary and secondary proteinuric glomerulopathies, including focal segmental glomerulosclerosis (FSGS), obesity-related nephropathy, and diabetic nephropathy (DN). Moreover, albuminuria is an important feature of all chronic kidney diseases (CKDs). Podocytes play a key role in maintaining the permselectivity of the glomerular filtration barrier (GFB) and injury of the podocyte, leading to foot process (FP) effacement and podocyte loss, the unifying underlying mechanism of proteinuric glomerulopathies. The metabolic insult of hyperglycemia is of paramount importance in the pathogenesis of DN, while insults leading to podocyte damage are poorly defined in other proteinuric glomerulopathies. However, shared mechanisms of podocyte damage have been identified. Herein, we will review the role of haemodynamic and oxidative stress, inflammation, lipotoxicity, endocannabinoid (EC) hypertone, and both mitochondrial and autophagic dysfunction in the pathogenesis of the podocyte damage, focussing particularly on their role in the pathogenesis of DN. Gaining a better insight into the mechanisms of podocyte injury may provide novel targets for treatment. Moreover, novel strategies for boosting podocyte repair may open the way to podocyte regenerative medicine.
Collapse
|
28
|
Mallela SK, Merscher S, Fornoni A. Implications of Sphingolipid Metabolites in Kidney Diseases. Int J Mol Sci 2022; 23:ijms23084244. [PMID: 35457062 PMCID: PMC9025012 DOI: 10.3390/ijms23084244] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022] Open
Abstract
Sphingolipids, which act as a bioactive signaling molecules, are involved in several cellular processes such as cell survival, proliferation, migration and apoptosis. An imbalance in the levels of sphingolipids can be lethal to cells. Abnormalities in the levels of sphingolipids are associated with several human diseases including kidney diseases. Several studies demonstrate that sphingolipids play an important role in maintaining proper renal function. Sphingolipids can alter the glomerular filtration barrier by affecting the functioning of podocytes, which are key cellular components of the glomerular filtration barrier. This review summarizes the studies in our understanding of the regulation of sphingolipid signaling in kidney diseases, especially in glomerular and tubulointerstitial diseases, and the potential to target sphingolipid pathways in developing therapeutics for the treatment of renal diseases.
Collapse
Affiliation(s)
- Shamroop kumar Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| |
Collapse
|
29
|
Tserga A, Pouloudi D, Saulnier-Blache JS, Stroggilos R, Theochari I, Gakiopoulou H, Mischak H, Zoidakis J, Schanstra JP, Vlahou A, Makridakis M. Proteomic Analysis of Mouse Kidney Tissue Associates Peroxisomal Dysfunction with Early Diabetic Kidney Disease. Biomedicines 2022; 10:biomedicines10020216. [PMID: 35203426 PMCID: PMC8869654 DOI: 10.3390/biomedicines10020216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Background: The absence of efficient inhibitors for diabetic kidney disease (DKD) progression reflects the gaps in our understanding of DKD molecular pathogenesis. Methods: A comprehensive proteomic analysis was performed on the glomeruli and kidney cortex of diabetic mice with the subsequent validation of findings in human biopsies and omics datasets, aiming to better understand the underlying molecular biology of early DKD development and progression. Results: LC–MS/MS was employed to analyze the kidney proteome of 2 DKD models: Ins2Akita (early and late DKD) and db/db mice (late DKD). The abundance of detected proteins was defined. Pathway analysis of differentially expressed proteins in the early and late DKD versus the respective controls predicted dysregulation in DKD hallmarks (peroxisomal lipid metabolism and β-oxidation), supporting the functional relevance of the findings. Comparing the observed protein changes in early and late DKD, the consistent upregulation of 21 and downregulation of 18 proteins was detected. Among these were downregulated peroxisomal and upregulated mitochondrial proteins. Tissue sections from 16 DKD patients were analyzed by IHC confirming our results. Conclusion: Our study shows an extensive differential expression of peroxisomal proteins in the early stages of DKD that persists regardless of the disease severity, providing new perspectives and potential markers of diabetic kidney dysfunction.
Collapse
Affiliation(s)
- Aggeliki Tserga
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
| | - Despoina Pouloudi
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (I.T.); (H.G.)
| | - Jean Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France;
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Rafael Stroggilos
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
| | - Irene Theochari
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (I.T.); (H.G.)
| | - Harikleia Gakiopoulou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (I.T.); (H.G.)
| | | | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
| | - Joost Peter Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France;
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
- Correspondence: (J.P.S.); (A.V.); (M.M.); Tel.: +33-5-31224078 (J.P.S.); +30-210-6597506 (A.V.); +30-210-6597485 (M.M.)
| | - Antonia Vlahou
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
- Correspondence: (J.P.S.); (A.V.); (M.M.); Tel.: +33-5-31224078 (J.P.S.); +30-210-6597506 (A.V.); +30-210-6597485 (M.M.)
| | - Manousos Makridakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
- Correspondence: (J.P.S.); (A.V.); (M.M.); Tel.: +33-5-31224078 (J.P.S.); +30-210-6597506 (A.V.); +30-210-6597485 (M.M.)
| |
Collapse
|
30
|
Casagrande V, Federici M, Menghini R. TIMP3 involvement and potentiality in the diagnosis, prognosis and treatment of diabetic nephropathy. Acta Diabetol 2021; 58:1587-1594. [PMID: 34181080 PMCID: PMC8542557 DOI: 10.1007/s00592-021-01766-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 11/28/2022]
Abstract
Diabetic kidney disease, one of the most severe complications associated with diabetes, is characterized by albuminuria, glomerulosclerosis and progressive loss of renal function. Loss of TIMP3, an Extracellular matrix-bound protein, is a hallmark of diabetic nephropathy in human and mouse models, suggesting its pivotal role in renal diseases associated to diabetes. There is currently no specific therapy for diabetic nephropathy, and the ability to restore high TIMP3 activity specifically in the kidney may represent a potential therapeutic strategy for the amelioration of renal injury under conditions in which its reduction is directly related to the disease. Increasing evidence shows that diabetic nephropathy is also regulated by epigenetic mechanisms, including noncoding RNA. This review recapitulates the pathological, diagnostic and therapeutic potential roles of TIMP3 and the noncoding RNA (microRNA, long noncoding RNA) related to its expression, in the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Viviana Casagrande
- Departments of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Massimo Federici
- Departments of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Center for Atherosclerosis, Department of Medical Sciences, Policlinico Tor Vergata University, Rome, Italy
| | - Rossella Menghini
- Departments of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
31
|
Zhang F, Jiang N, Gao Y, Fan Z, Li Q, Ke G, Li B, Wu Q, Xu R, Liu S. PPBP as a marker of diabetic nephropathy podocyte injury via Bioinformatics Analysis. Biochem Biophys Res Commun 2021; 577:165-172. [PMID: 34555684 DOI: 10.1016/j.bbrc.2021.08.087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 01/15/2023]
Abstract
Diabetic nephropathy (DN) is a type of kidney injuries associated with diabetes mellitus and the prevalence of DN has increased dramatically. However, DN still pose problems in therapy, and prognosis. Identifying new DN biomarkers would be helpful in reducing morbidity and mortality from DN and developing novel preventive approaches. In the study, from GSE36336 dataset with DN glomeruli samples, we screened for 238 differentially expressed genes. Enrichment analysis were performed to find out biological function and diseases of DEGs. Next, depended on protein-protein interaction network, We identified top 10 hub genes (Serpine1, Cxcl10, Cfd, Ppbp, Retn, Socs2, Ccr5, Mmp8, Pf4, Cxcl9) may played potential roles in DN. Meanwhile, transcriptome sequencing on podocyte were performed to reconfirm the reliability of Ppbp. To verify the efficiency of the selected genes as biomarkers, several experiments like qRT-PCR, renal histologic analysis and immunofluorescence were conducted to validate. Our results showed that PPBP have the potential to become a novel biomarker for DN podocyte injury.
Collapse
Affiliation(s)
- Fengxia Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Nan Jiang
- Department of Nephrology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yan Gao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Zuyan Fan
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Quhuan Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Guibao Ke
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Nephrology, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu, China
| | - Bohou Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiong Wu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ruiquan Xu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China; Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Shuangxin Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
32
|
Wang Y, Niu A, Pan Y, Cao S, Terker AS, Wang S, Fan X, Toth CL, Ramirez Solano MA, Michell DL, Contreras D, Allen RM, Zhu W, Sheng Q, Fogo AB, Vickers KC, Zhang MZ, Harris RC. Profile of Podocyte Translatome During Development of Type 2 and Type 1 Diabetic Nephropathy Using Podocyte-Specific TRAP mRNA RNA-seq. Diabetes 2021; 70:2377-2390. [PMID: 34233930 PMCID: PMC8576501 DOI: 10.2337/db21-0110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/29/2021] [Indexed: 12/22/2022]
Abstract
Podocyte injury is important in development of diabetic nephropathy (DN). Although several studies have reported single-cell-based RNA sequencing (RNA-seq) of podocytes in type 1 DN (T1DN), the podocyte translating mRNA profile in type 2 DN (T2DN) has not previously been compared with that of T1DN. We analyzed the podocyte translatome in T2DN in podocin-Cre; Rosa26fsTRAP; eNOS-/-; db/db mice and compared it with that of streptozotocin-induced T1DN in podocin-Cre; Rosa26fsTRAP; eNOS-/- mice using translating ribosome affinity purification (TRAP) and RNA-seq. More than 125 genes were highly enriched in the podocyte ribosome. More podocyte TRAP genes were differentially expressed in T2DN than in T1DN. TGF-β signaling pathway genes were upregulated, while MAPK pathway genes were downregulated only in T2DN, while ATP binding and cAMP-mediated signaling genes were downregulated only in T1DN. Genes regulating actin filament organization and apoptosis increased, while genes regulating VEGFR signaling and glomerular basement membrane components decreased in both type 1 and type 2 diabetic podocytes. A number of diabetes-induced genes not previously linked to podocyte injury were confirmed in both mouse and human DN. On the basis of differences and similarities in the podocyte translatome in T2DN and T1DN, investigators can identify factors underlying the pathophysiology of DN and novel therapeutic targets to treat diabetes-induced podocyte injury.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Gene Expression Profiling
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Organ Specificity/genetics
- Podocytes/metabolism
- Podocytes/pathology
- Protein Biosynthesis/genetics
- Proteome/analysis
- Proteome/genetics
- Proteome/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Seq
- Sequence Analysis, RNA
- Streptozocin
- Transcriptome
Collapse
Affiliation(s)
- Yinqiu Wang
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, TN
| | - Aolei Niu
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, TN
| | - Yu Pan
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, TN
| | - Shirong Cao
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, TN
| | - Andrew S Terker
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, TN
| | - Suwan Wang
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, TN
| | - Xiaofeng Fan
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, TN
| | - Cynthia L Toth
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Marisol A Ramirez Solano
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Danielle L Michell
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Danielle Contreras
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Ryan M Allen
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Wanying Zhu
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Quanhu Sheng
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Agnes B Fogo
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Kasey C Vickers
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, TN
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, TN
- Department of Veterans Affairs, Nashville, TN
| |
Collapse
|
33
|
PP2 Ameliorates Renal Fibrosis by Regulating the NF- κB/COX-2 and PPAR γ/UCP2 Pathway in Diabetic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7394344. [PMID: 34580604 PMCID: PMC8464423 DOI: 10.1155/2021/7394344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022]
Abstract
Renal fibrosis is characterized by glomerulosclerosis and tubulointerstitial fibrosis in diabetic nephropathy (DN). We aimed to evaluate the effects of PP2 on renal fibrosis of DN. GSE33744 and GSE86300 were downloaded from the GEO database. Firstly, 839 DEGs were identified between nondiabetic and diabetic mice renal glomerular samples. COX-2 was selected to assess the effects of PP2 on renal glomerulosclerosis. In db/db mice, PP2 decreased the expression of COX-2, phosphorylated p65, and fibrotic proteins, accompanied with attenuated renal glomerulosclerosis. In cultured glomerular mesangial cells, high glucose- (HG-) induced p65 phosphorylation and COX-2 expression were attenuated by PP2 or NF-κB inhibitor PDTC. PP2, PDTC, or COX-2 inhibitor NS-398 ameliorated abnormal proliferation and expression of fibrotic proteins induced by HG. Secondly, 238 DEGs were identified between nondiabetic and diabetic mice renal cortex samples. UCP2 was selected to assess the effects of PP2 on renal tubulointerstitial fibrosis. In db/db mice, PP2 decreased the expression of PPARγ and UCP2, accompanied with attenuated renal tubulointerstitial fibrosis and EMT. In cultured proximal tubular cells, HG-induced PPARγ and UCP2 expression was inhibited by PP2 or PPARγ antagonist GW9662. PP2, GW9662, or UCP2 shRNA ameliorated HG-induced EMT. These results indicated that PP2 ameliorated renal fibrosis in diabetic mice.
Collapse
|
34
|
Zhao L, Zhang M, Pan F, Li J, Dou R, Wang X, Wang Y, He Y, Wang S, Cai S. In silico analysis of novel dipeptidyl peptidase-IV inhibitory peptides released from Macadamia integrifolia antimicrobial protein 2 (MiAMP2) and the possible pathways involved in diabetes protection. Curr Res Food Sci 2021; 4:603-611. [PMID: 34522898 PMCID: PMC8424447 DOI: 10.1016/j.crfs.2021.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to screen novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from Macadamia integrifolia antimicrobial protein 2 (MiAMP2) and evaluate the potential antidiabetic targets and involved signaling pathways using in silico approaches. In silico digestion of MiAMP2 with pepsin, trypsin and chymotrypsin was performed with ExPASy PeptideCutter and the generated peptides were subjected to BIOPEP-UWM, iDrug, INNOVAGEN and Autodock Vina for further analyses. Six novel peptides EQVR, EQVK, AESE, EEDNK, EECK, and EVEE were predicted to possess good DPP-IV inhibitory potentials, water solubility, and absorption, distribution, metabolism, excretion, and toxicity properties. Molecular dynamic simulation and molecular docking displayed that AESE was the most potent DPP-IV inhibitory peptide and can bind with the active sites of DPP-IV through hydrogen bonding and van der Waals forces. The potential antidiabetic targets of AESE were retrieved from SwissTargetPrediction and GeneCards databases. Protein-protein interaction analysis identified BIRC2, CASP3, MMP7 and BIRC3 to be the hub targets. Moreover, the KEGG pathway enrichment analysis showed that AESE prevented diabetes through the apoptosis and TNF signaling pathways. These results will provide new insights into utilization of MiAMP2 as functional food ingredients for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Mingxin Zhang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Fei Pan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ran Dou
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Xinyi Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Yangyang Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Yumeng He
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Shaoxuan Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Shengbao Cai
- Faculty of Agriculture and Food, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
35
|
Cara-Fuentes G, Smoyer WE. Biomarkers in pediatric glomerulonephritis and nephrotic syndrome. Pediatr Nephrol 2021; 36:2659-2673. [PMID: 33389089 DOI: 10.1007/s00467-020-04867-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/16/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022]
Abstract
Glomerular diseases are often chronic or recurring and thus associated with a tremendous physical, psychological, and economic burden. Their etiologies are often unknown, and their pathogeneses are frequently poorly understood. The diagnoses and management of these diseases are therefore based on clinical features, traditional laboratory markers, and, often, kidney pathology. However, the clinical presentation can be highly variable, the kidney pathology may not establish a definitive diagnosis, and the therapeutic responses and resulting clinical outcomes are often unpredictable. To try to address these challenges, significant research efforts have been made over the last decade to identify potential biomarkers that can help clinicians optimize the diagnosis and prognosis at clinical presentation, as well as help predict long-term outcomes. Unfortunately, these efforts have to date only identified a single biomarker for glomerular disease that has been fully validated and developed for widespread clinical use (anti-PLA2R antibodies to diagnose membranous nephropathy). In this manuscript, we review the definitions and development of biomarkers, as well as the current knowledge on both historical and novel candidate biomarkers of glomerular disease, with an emphasis on those associated with idiopathic nephrotic syndrome.
Collapse
Affiliation(s)
- Gabriel Cara-Fuentes
- Department of Pediatrics, Division of Pediatric Nephrology, University of Colorado, 12700 E 19th Ave, R2 building, Room 7420D, Aurora, CO, 80045, USA.
| | - William E Smoyer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
36
|
Greiten JK, Kliewe F, Schnarre A, Artelt N, Schröder S, Rogge H, Amann K, Daniel C, Lindenmeyer MT, Cohen CD, Endlich K, Endlich N. The role of filamins in mechanically stressed podocytes. FASEB J 2021; 35:e21560. [PMID: 33860543 DOI: 10.1096/fj.202001179rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 11/11/2022]
Abstract
Glomerular hypertension induces mechanical load to podocytes, often resulting in podocyte detachment and the development of glomerulosclerosis. Although it is well known that podocytes are mechanosensitive, the mechanosensors and mechanotransducers are still unknown. Since filamin A, an actin-binding protein, is already described to be a mechanosensor and mechanotransducer, we hypothesized that filamins could be important for the outside-in signaling as well as the actin cytoskeleton of podocytes under mechanical stress. In this study, we demonstrate that filamin A is the main isoform of the filamin family that is expressed in cultured podocytes. Together with filamin B, filamin A was significantly up-regulated during mechanical stretch (3 days, 0.5 Hz, and 5% extension). To study the role of filamin A in cultured podocytes under mechanical stress, filamin A was knocked down (Flna KD) by specific siRNA. Additionally, we established a filamin A knockout podocyte cell line (Flna KO) by CRISPR/Cas9. Knockdown and knockout of filamin A influenced the expression of synaptopodin, a podocyte-specific protein, focal adhesions as well as the morphology of the actin cytoskeleton. Moreover, the cell motility of Flna KO podocytes was significantly increased. Since the knockout of filamin A has had no effect on cell adhesion of podocytes during mechanical stress, we simultaneously knocked down the expression of filamin A and B. Thereby, we observed a significant loss of podocytes during mechanical stress indicating a compensatory mechanism. Analyzing hypertensive mice kidneys as well as biopsies of patients suffering from diabetic nephropathy, we found an up-regulation of filamin A in podocytes in contrast to the control. In summary, filamin A and B mediate matrix-actin cytoskeleton interactions which are essential for the adaptation of cultured podocyte to mechanical stress.
Collapse
Affiliation(s)
- Jonas K Greiten
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Annabel Schnarre
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nadine Artelt
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Sindy Schröder
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Henrik Rogge
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Maja T Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens D Cohen
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
37
|
Eid SA, Hinder LM, Zhang H, Eksi R, Nair V, Eddy S, Eichinger F, Park M, Saha J, Berthier CC, Jagadish HV, Guan Y, Pennathur S, Hur J, Kretzler M, Feldman EL, Brosius FC. Gene expression profiles of diabetic kidney disease and neuropathy in eNOS knockout mice: Predictors of pathology and RAS blockade effects. FASEB J 2021; 35:e21467. [PMID: 33788970 DOI: 10.1096/fj.202002387r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/31/2022]
Abstract
Diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN) are two common diabetic complications. However, their pathogenesis remains elusive and current therapies are only modestly effective. We evaluated genome-wide expression to identify pathways involved in DKD and DPN progression in db/db eNOS-/- mice receiving renin-angiotensin-aldosterone system (RAS)-blocking drugs to mimic the current standard of care for DKD patients. Diabetes and eNOS deletion worsened DKD, which improved with RAS treatment. Diabetes also induced DPN, which was not affected by eNOS deletion or RAS blockade. Given the multiple factors affecting DKD and the graded differences in disease severity across mouse groups, an automatic data analysis method, SOM, or self-organizing map was used to elucidate glomerular transcriptional changes associated with DKD, whereas pairwise bioinformatic analysis was used for DPN. These analyses revealed that enhanced gene expression in several pro-inflammatory networks and reduced expression of development genes correlated with worsening DKD. Although RAS treatment ameliorated the nephropathy phenotype, it did not alter the more abnormal gene expression changes in kidney. Moreover, RAS exacerbated expression of genes related to inflammation and oxidant generation in peripheral nerves. The graded increase in inflammatory gene expression and decrease in development gene expression with DKD progression underline the potentially important role of these pathways in DKD pathogenesis. Since RAS blockers worsened this gene expression pattern in both DKD and DPN, it may partly explain the inadequate therapeutic efficacy of such blockers.
Collapse
Affiliation(s)
- Stephanie A Eid
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lucy M Hinder
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hongyu Zhang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ridvan Eksi
- Department of Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Viji Nair
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sean Eddy
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Felix Eichinger
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Meeyoung Park
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jharna Saha
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Celine C Berthier
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hosagrahar V Jagadish
- Department of Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Frank C Brosius
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
38
|
Randles MJ, Lausecker F, Kong Q, Suleiman H, Reid G, Kolatsi-Joannou M, Davenport B, Tian P, Falcone S, Potter P, Van Agtmael T, Norman JT, Long DA, Humphries MJ, Miner JH, Lennon R. Identification of an Altered Matrix Signature in Kidney Aging and Disease. J Am Soc Nephrol 2021; 32:1713-1732. [PMID: 34049963 PMCID: PMC8425653 DOI: 10.1681/asn.2020101442] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Accumulation of extracellular matrix in organs and tissues is a feature of both aging and disease. In the kidney, glomerulosclerosis and tubulointerstitial fibrosis accompany the decline in function, which current therapies cannot address, leading to organ failure. Although histologic and ultrastructural patterns of excess matrix form the basis of human disease classifications, a comprehensive molecular resolution of abnormal matrix is lacking. METHODS Using mass spectrometry-based proteomics, we resolved matrix composition over age in mouse models of kidney disease. We compared the changes in mice with a global characterization of human kidneymatrix during aging and to existing kidney disease datasets to identify common molecular features. RESULTS Ultrastructural changes in basement membranes are associated with altered cell adhesion and metabolic processes and with distinct matrix proteomes during aging and kidney disease progression in mice. Within the altered matrix, basement membrane components (laminins, type IV collagen, type XVIII collagen) were reduced and interstitial matrix proteins (collagens I, III, VI, and XV; fibrinogens; and nephronectin) were increased, a pattern also seen in human kidney aging. Indeed, this signature of matrix proteins was consistently modulated across all age and disease comparisons, and the increase in interstitial matrix was also observed in human kidney disease datasets. CONCLUSIONS This study provides deep molecular resolution of matrix accumulation in kidney aging and disease, and identifies a common signature of proteins that provides insight into mechanisms of response to kidney injury and repair.
Collapse
Affiliation(s)
- Michael J. Randles
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Qingyang Kong
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Hani Suleiman
- Renal Division, Washington University School of Medicine, Saint Louis, Missouri
| | - Graeme Reid
- Department of Histopathology, Manchester Royal Infirmary, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Programme, Great Ormond Institute of Child Health, University College London, London, United Kingdom
| | - Bernard Davenport
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sara Falcone
- Centre for Cellular and Molecular Physiology, University of Oxford, Oxford, United Kingdom
| | - Paul Potter
- Department Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Tom Van Agtmael
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jill T. Norman
- Department of Renal Medicine, University College London, London, United Kingdom
| | - David A. Long
- Developmental Biology and Cancer Programme, Great Ormond Institute of Child Health, University College London, London, United Kingdom
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jeffrey H. Miner
- Renal Division, Washington University School of Medicine, Saint Louis, Missouri
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
39
|
Yao X, Shen H, Cao F, He H, Li B, Zhang H, Zhang X, Li Z. Bioinformatics Analysis Reveals Crosstalk Among Platelets, Immune Cells, and the Glomerulus That May Play an Important Role in the Development of Diabetic Nephropathy. Front Med (Lausanne) 2021; 8:657918. [PMID: 34249963 PMCID: PMC8264258 DOI: 10.3389/fmed.2021.657918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/28/2021] [Indexed: 01/15/2023] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end stage renal disease (ESRD). Glomerulus damage is one of the primary pathological changes in DN. To reveal the gene expression alteration in the glomerulus involved in DN development, we screened the Gene Expression Omnibus (GEO) database up to December 2020. Eleven gene expression datasets about gene expression of the human DN glomerulus and its control were downloaded for further bioinformatics analysis. By using R language, all expression data were extracted and were further cross-platform normalized by Shambhala. Differentially expressed genes (DEGs) were identified by Student's t-test coupled with false discovery rate (FDR) (P < 0.05) and fold change (FC) ≥1.5. DEGs were further analyzed by the Database for Annotation, Visualization, and Integrated Discovery (DAVID) to enrich the Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. We further constructed a protein-protein interaction (PPI) network of DEGs to identify the core genes. We used digital cytometry software CIBERSORTx to analyze the infiltration of immune cells in DN. A total of 578 genes were identified as DEGs in this study. Thirteen were identified as core genes, in which LYZ, LUM, and THBS2 were seldom linked with DN. Based on the result of GO, KEGG enrichment, and CIBERSORTx immune cells infiltration analysis, we hypothesize that positive feedback may form among the glomerulus, platelets, and immune cells. This vicious cycle may damage the glomerulus persistently even after the initial high glucose damage was removed. Studying the genes and pathway reported in this study may shed light on new knowledge of DN pathogenesis.
Collapse
Affiliation(s)
- Xinyue Yao
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Hong Shen
- Department of Modern Technology and Education Center, North China University of Science and Technology, Tangshan, China
| | - Fukai Cao
- Department of Jitang College, North China University of Science and Technology, Tangshan, China
| | - Hailan He
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Boyu Li
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Haojun Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Xinduo Zhang
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Zhiguo Li
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
40
|
Srivastava T, Joshi T, Heruth DP, Rezaiekhaligh MH, Garola RE, Zhou J, Boinpelly VC, Ali MF, Alon US, Sharma M, Vanden Heuvel GB, Mahajan P, Priya L, Jiang Y, McCarthy ET, Savin VJ, Sharma R, Sharma M. A mouse model of prenatal exposure to Interleukin-6 to study the developmental origin of health and disease. Sci Rep 2021; 11:13260. [PMID: 34168254 PMCID: PMC8225793 DOI: 10.1038/s41598-021-92751-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic inflammation in pregnant obese women is associated with 1.5- to 2-fold increase in serum Interleukin-6 (IL-6) and newborns with lower kidney/body weight ratio but the role of IL-6 in increased susceptibility to chronic kidney (CKD) in adult progeny is not known. Since IL-6 crosses the placental barrier, we administered recombinant IL-6 (10 pg/g) to pregnant mice starting at mid-gestation yielded newborns with lower body (p < 0.001) and kidney (p < 0.001) weights. Histomorphometry indicated decreased nephrogenic zone width (p = 0.039) with increased numbers of mature glomeruli (p = 0.002) and pre-tubular aggregates (p = 0.041). Accelerated maturation in IL-6 newborns was suggested by early expression of podocyte-specific protein podocin in glomeruli, increased 5-methyl-cytosine (LC–MS analysis for CpG DNA methylation) and altered expression of certain genes of cell-cycle and apoptosis (RT-qPCR array-analysis). Western blotting showed upregulated pJAK2/pSTAT3. Thus, treating dams with IL-6 as a surrogate provides newborns to study effects of maternal systemic inflammation on future susceptibility to CKD in adulthood.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA. .,Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, MO, USA. .,Department of Oral and Craniofacial Sciences, University of Missouri at Kansas City-School of Dentistry, Kansas City, MO, USA.
| | - Trupti Joshi
- Department of Health Management and Informatics and MU Informatics Institute, University of Missouri, Columbia, MO, USA.,Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,MU Data Science and Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Daniel P Heruth
- Children's Mercy Research Institute, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA
| | - Mohammad H Rezaiekhaligh
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Robert E Garola
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA
| | - Jianping Zhou
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, MO, USA.,Kansas City VA Medical Center, Kansas City, MO, USA
| | - Varun C Boinpelly
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, MO, USA.,Kansas City VA Medical Center, Kansas City, MO, USA
| | - Mohammed Farhan Ali
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Uri S Alon
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Madhulika Sharma
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gregory B Vanden Heuvel
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Pramod Mahajan
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA, USA
| | - Lakshmi Priya
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Ellen T McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Virginia J Savin
- Kansas City VA Medical Center, Kansas City, MO, USA.,Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ram Sharma
- Kansas City VA Medical Center, Kansas City, MO, USA
| | - Mukut Sharma
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, MO, USA.,Kansas City VA Medical Center, Kansas City, MO, USA.,Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
41
|
Wan S, Wan S, Jiao X, Cao H, Gu Y, Yan L, Zheng Y, Niu P, Shao F. Advances in understanding the innate immune-associated diabetic kidney disease. FASEB J 2021; 35:e21367. [PMID: 33508160 DOI: 10.1096/fj.202002334r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022]
Abstract
Millions of human deaths occur annually due to chronic kidney disease, caused by diabetic kidney disease (DKD). Despite having effective drugs controlling the hyperglycemia and high blood pressure, the incidence of DKD is increasing, which indicates the need for the development of novel therapies to control DKD. In this article, we discussed the recent advancements in the basic innate immune mechanisms in renal tissues triggered under the diabetes environment, leading to the pathogenesis and progression of DKD. We also summarized the currently available innate immune molecules-targeting therapies tested against DKD in clinical and preclinical settings, and highlighted additional drug targets that could potentially be employed for the treatment of DKD. The improved understanding of the disease pathogenesis may open avenues for the development of novel therapies to rein in DKD, which consequently, can reduce morbidity and mortality in humans in the future.
Collapse
Affiliation(s)
- Shengfeng Wan
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Shengkai Wan
- Department of Operations Management, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Xiaojing Jiao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Huixia Cao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Yue Gu
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Lei Yan
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Yan Zheng
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Peiyuan Niu
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| |
Collapse
|
42
|
Lindenmeyer MT, Alakwaa F, Rose M, Kretzler M. Perspectives in systems nephrology. Cell Tissue Res 2021; 385:475-488. [PMID: 34027630 PMCID: PMC8523456 DOI: 10.1007/s00441-021-03470-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/28/2021] [Indexed: 12/19/2022]
Abstract
Chronic kidney diseases (CKD) are a major health problem affecting approximately 10% of the world’s population and posing increasing challenges to the healthcare system. While CKD encompasses a broad spectrum of pathological processes and diverse etiologies, the classification of kidney disease is currently based on clinical findings or histopathological categorizations. This descriptive classification is agnostic towards the underlying disease mechanisms and has limited progress towards the ability to predict disease prognosis and treatment responses. To gain better insight into the complex and heterogeneous disease pathophysiology of CKD, a systems biology approach can be transformative. Rather than examining one factor or pathway at a time, as in the reductionist approach, with this strategy a broad spectrum of information is integrated, including comprehensive multi-omics data, clinical phenotypic information, and clinicopathological parameters. In recent years, rapid advances in mathematical, statistical, computational, and artificial intelligence methods enable the mapping of diverse big data sets. This holistic approach aims to identify the molecular basis of CKD subtypes as well as individual determinants of disease manifestation in a given patient. The emerging mechanism-based patient stratification and disease classification will lead to improved prognostic and predictive diagnostics and the discovery of novel molecular disease-specific therapies.
Collapse
Affiliation(s)
- Maja T Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Fadhl Alakwaa
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Michael Rose
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
43
|
Cao A, Li J, Asadi M, Basgen JM, Zhu B, Yi Z, Jiang S, Doke T, El Shamy O, Patel N, Cravedi P, Azeloglu EU, Campbell KN, Menon M, Coca S, Zhang W, Wang H, Zen K, Liu Z, Murphy B, He JC, D’Agati VD, Susztak K, Kaufman L. DACH1 protects podocytes from experimental diabetic injury and modulates PTIP-H3K4Me3 activity. J Clin Invest 2021; 131:141279. [PMID: 33998601 PMCID: PMC8121508 DOI: 10.1172/jci141279] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/23/2021] [Indexed: 01/15/2023] Open
Abstract
Dachshund homolog 1 (DACH1), a key cell-fate determinant, regulates transcription by DNA sequence-specific binding. We identified diminished Dach1 expression in a large-scale screen for mutations that convert injury-resistant podocytes into injury-susceptible podocytes. In diabetic kidney disease (DKD) patients, podocyte DACH1 expression levels are diminished, a condition that strongly correlates with poor clinical outcomes. Global Dach1 KO mice manifest renal hypoplasia and die perinatally. Podocyte-specific Dach1 KO mice, however, maintain normal glomerular architecture at baseline, but rapidly exhibit podocyte injury after diabetes onset. Furthermore, podocyte-specific augmentation of DACH1 expression in mice protects from DKD. Combined RNA sequencing and in silico promoter analysis reveal conversely overlapping glomerular transcriptomic signatures between podocyte-specific Dach1 and Pax transactivation-domain interacting protein (Ptip) KO mice, with upregulated genes possessing higher-than-expected numbers of promoter Dach1-binding sites. PTIP, an essential component of the activating histone H3 lysine 4 trimethylation (H3K4Me3) complex, interacts with DACH1 and is recruited by DACH1 to its promoter-binding sites. DACH1-PTIP recruitment represses transcription and reduces promoter H3K4Me3 levels. DACH1 knockdown in podocytes combined with hyperglycemia triggers target gene upregulation and increases promoter H3K4Me3. These findings reveal that in DKD, diminished DACH1 expression enhances podocyte injury vulnerability via epigenetic derepression of its target genes.
Collapse
Affiliation(s)
- Aili Cao
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Li
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Morad Asadi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John M. Basgen
- Life Science Institute, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
| | - Bingbing Zhu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengzi Yi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Song Jiang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Tomohito Doke
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Osama El Shamy
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Niralee Patel
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paolo Cravedi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Evren U. Azeloglu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kirk N. Campbell
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madhav Menon
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Steve Coca
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hao Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Zen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Barbara Murphy
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John C. He
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vivette D. D’Agati
- Department of Pathology, Columbia University Medical Center, New York, New York, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lewis Kaufman
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
44
|
Pontrelli P, Conserva F, Menghini R, Rossini M, Stasi A, Divella C, Casagrande V, Cinefra C, Barozzino M, Simone S, Pesce F, Castellano G, Stallone G, Gallone A, Giorgino F, Federici M, Gesualdo L. Inhibition of Lysine 63 Ubiquitination Prevents the Progression of Renal Fibrosis in Diabetic DBA/2J Mice. Int J Mol Sci 2021; 22:ijms22105194. [PMID: 34068941 PMCID: PMC8157080 DOI: 10.3390/ijms22105194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) is the most frequent cause of end-stage renal disease. Tubulointerstitial accumulation of lysine 63 (K63)-ubiquitinated (Ub) proteins is involved in the progression of DN fibrosis and correlates with urinary miR-27b-3p downregulation. We explored the renoprotective effect of an inhibitor of K63-Ub (NSC697923), alone or in combination with the ACE-inhibitor ramipril, in vitro and in vivo. Proximal tubular epithelial cells and diabetic DBA/2J mice were treated with NSC697923 and/or ramipril. K63-Ub protein accumulation along with α-SMA, collagen I and III, FSP-1, vimentin, p16INK4A expression, SA-α Gal staining, Sirius Red, and PAS staining were measured. Finally, we measured the urinary albumin to creatinine ratio (uACR), and urinary miR-27b-3p expression in mice. NSC697923, both alone and in association with ramipril, in vitro and in vivo inhibited hyperglycemia-induced epithelial to mesenchymal transition by significantly reducing K63-Ub proteins, α-SMA, collagen I, vimentin, FSP-1 expression, and collagen III along with tubulointerstitial and glomerular fibrosis. Treated mice also showed recovery of urinary miR-27b-3p and restored expression of p16INK4A. Moreover, NSC697923 in combination with ramipril demonstrated a trend in the reduction of uACR. In conclusion, we suggest that selective inhibition of K63-Ub, when combined with the conventional treatment with ACE inhibitors, might represent a novel treatment strategy to prevent the progression of fibrosis and proteinuria in diabetic nephropathy and we propose miR-27b-3p as a biomarker of treatment efficacy.
Collapse
Affiliation(s)
- Paola Pontrelli
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (F.C.); (M.R.); (A.S.); (C.D.); (C.C.); (M.B.); (S.S.); (F.P.); (F.G.); (L.G.)
- Correspondence:
| | - Francesca Conserva
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (F.C.); (M.R.); (A.S.); (C.D.); (C.C.); (M.B.); (S.S.); (F.P.); (F.G.); (L.G.)
| | - Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.M.); (V.C.); (M.F.)
| | - Michele Rossini
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (F.C.); (M.R.); (A.S.); (C.D.); (C.C.); (M.B.); (S.S.); (F.P.); (F.G.); (L.G.)
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (F.C.); (M.R.); (A.S.); (C.D.); (C.C.); (M.B.); (S.S.); (F.P.); (F.G.); (L.G.)
| | - Chiara Divella
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (F.C.); (M.R.); (A.S.); (C.D.); (C.C.); (M.B.); (S.S.); (F.P.); (F.G.); (L.G.)
| | - Viviana Casagrande
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.M.); (V.C.); (M.F.)
| | - Claudia Cinefra
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (F.C.); (M.R.); (A.S.); (C.D.); (C.C.); (M.B.); (S.S.); (F.P.); (F.G.); (L.G.)
| | - Mariagrazia Barozzino
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (F.C.); (M.R.); (A.S.); (C.D.); (C.C.); (M.B.); (S.S.); (F.P.); (F.G.); (L.G.)
| | - Simona Simone
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (F.C.); (M.R.); (A.S.); (C.D.); (C.C.); (M.B.); (S.S.); (F.P.); (F.G.); (L.G.)
| | - Francesco Pesce
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (F.C.); (M.R.); (A.S.); (C.D.); (C.C.); (M.B.); (S.S.); (F.P.); (F.G.); (L.G.)
| | - Giuseppe Castellano
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Giovanni Stallone
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Anna Gallone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, 70124 Bari, Italy;
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (F.C.); (M.R.); (A.S.); (C.D.); (C.C.); (M.B.); (S.S.); (F.P.); (F.G.); (L.G.)
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.M.); (V.C.); (M.F.)
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (F.C.); (M.R.); (A.S.); (C.D.); (C.C.); (M.B.); (S.S.); (F.P.); (F.G.); (L.G.)
| |
Collapse
|
45
|
Pan WW, Gardner TW, Harder JL. Integrative Biology of Diabetic Retinal Disease: Lessons from Diabetic Kidney Disease. J Clin Med 2021; 10:1254. [PMID: 33803590 PMCID: PMC8003049 DOI: 10.3390/jcm10061254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/13/2023] Open
Abstract
Diabetic retinal disease (DRD) remains the most common cause of vision loss in adults of working age. Progress on the development of new therapies for DRD has been limited by the complexity of the human eye, which constrains the utility of traditional research techniques, including animal and tissue culture models-a problem shared by those in the field of kidney disease research. By contrast, significant progress in the study of diabetic kidney disease (DKD) has resulted from the successful employment of systems biology approaches. Systems biology is widely used to comprehensively understand complex human diseases through the unbiased integration of genetic, environmental, and phenotypic aspects of the disease with the functional and structural manifestations of the disease. The application of a systems biology approach to DRD may help to clarify the molecular basis of the disease and its progression. Acquiring this type of information might enable the development of personalized treatment approaches, with the goal of discovering new therapies targeted to an individual's specific DRD pathophysiology and phenotype. Furthermore, recent efforts have revealed shared and distinct pathways and molecular targets of DRD and DKD, highlighting the complex pathophysiology of these diseases and raising the possibility of therapeutics beneficial to both organs. The objective of this review is to survey the current understanding of DRD pathophysiology and to demonstrate the investigative approaches currently applied to DKD that could promote a more thorough understanding of the structure, function, and progression of DRD.
Collapse
Affiliation(s)
- Warren W. Pan
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI 48105, USA; (W.W.P.); (T.W.G.)
| | - Thomas W. Gardner
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI 48105, USA; (W.W.P.); (T.W.G.)
- Department of Internal Medicine (Metabolism, Endocrinology and Diabetes), University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jennifer L. Harder
- Department of Internal Medicine (Nephrology), University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
46
|
Zhang L, Wang Z, Liu R, Li Z, Lin J, Wojciechowicz ML, Huang J, Lee K, Ma'ayan A, He JC. Connectivity Mapping Identifies BI-2536 as a Potential Drug to Treat Diabetic Kidney Disease. Diabetes 2021; 70:589-602. [PMID: 33067313 PMCID: PMC7881868 DOI: 10.2337/db20-0580] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
Diabetic kidney disease (DKD) remains the most common cause of kidney failure, and the treatment options are insufficient. Here, we used a connectivity mapping approach to first collect 15 gene expression signatures from 11 DKD-related published independent studies. Then, by querying the Library of Integrated Network-based Cellular Signatures (LINCS) L1000 data set, we identified drugs and other bioactive small molecules that are predicted to reverse these gene signatures in the diabetic kidney. Among the top consensus candidates, we selected a PLK1 inhibitor (BI-2536) for further experimental validation. We found that PLK1 expression was increased in the glomeruli of both human and mouse diabetic kidneys and localized largely in mesangial cells. We also found that BI-2536 inhibited mesangial cell proliferation and extracellular matrix in vitro and ameliorated proteinuria and kidney injury in DKD mice. Further pathway analysis of the genes predicted to be reversed by the PLK1 inhibitor was of members of the TNF-α/NF-κB, JAK/STAT, and TGF-β/Smad3 pathways. In vitro, either BI-2536 treatment or knockdown of PLK1 dampened the NF-κB and Smad3 signal transduction and transcriptional activation. Together, these results suggest that the PLK1 inhibitor BI-2536 should be further investigated as a novel therapy for DKD.
Collapse
Affiliation(s)
- Lu Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zichen Wang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ruijie Liu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zhengzhe Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jennifer Lin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Megan L Wojciechowicz
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jiyi Huang
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, NY
| |
Collapse
|
47
|
Hakroush S, Kopp SB, Tampe D, Gersmann AK, Korsten P, Zeisberg M, Tampe B. Variable Expression of Programmed Cell Death Protein 1-Ligand 1 in Kidneys Independent of Immune Checkpoint Inhibition. Front Immunol 2021; 11:624547. [PMID: 33552089 PMCID: PMC7858644 DOI: 10.3389/fimmu.2020.624547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Context Due to recent advantages in cancer therapy, immune checkpoint inhibitors (ICIs) are new classes of drugs targeting programmed cell death protein 1 (PD-1) or its ligand programmed cell death protein 1-ligand 1 (PD-L1) used in many cancer therapies. Acute interstitial nephritis (AIN) is a potential and deleterious immune-related adverse events (irAE) in the kidney observed in patients receiving ICIs and the most common biopsy-proven diagnosis in patients who develop acute kidney injury (AKI). Based on previous reports, AIN in patients receiving ICIs is associated with tubular positivity for PD-L1, implicating that PD-L1 positivity reflects susceptibility to develop renal complications with these agents. It remains unclear if PD-L1 positivity is acquired specifically during ICI therapy or expressed independently in the kidney. Methods PD-L1 was analyzed in experimental mouse models of ischemia-reperfusion injury (IRI), folic acid-induced nephropathy (FAN), unilateral ureteral obstruction (UUO), and nephrotoxic serum nephritis (NTN) by immunostaining, SDS-PAGE, and subsequent immunoblotting. In addition, we included a total number of 87 human kidney samples (six renal biopsies with AIN related to ICI therapy, 13 nephrectomy control kidneys, and 68 ICI-naïve renal biopsies with various underlying kidney diseases to describe PD-L1 expression. Results We here report distinct PD-L1 expression in renal compartments in multiple murine models of kidney injury and human cases with various underlying kidney diseases, including ICI-related AIN and renal pathologies independent of ICI therapy. PD-L1 is frequently expressed in various renal pathologies independent of ICI therapy and could potentially be a pre-requisit for susceptibility to develop AKI and deleterious immune-related AIN. In addition, we provide evidence that tubular PD-L1 positivity in the kidney is associated with detection of urinary PD-L1+ tubular epithelial cells. Conclusion Our study implicates that PD-L1 is frequently expressed in various renal pathologies independent of ICI therapy and could potentially be a pre-requisit for susceptibility to develop AKI and deleterious immune-related AIN. Because non-invasive detection of PD-L1+ cells in corresponding urine samples correlates with intrarenal PD-L1 positivity, it is attractive to speculate that further non-invasive detection of PD-L1+ cells may identify patients at risk for ICI-related AIN.
Collapse
Affiliation(s)
- Samy Hakroush
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Sarah Birgit Kopp
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Désirée Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Peter Korsten
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany.,Department of Nephrology and Rheumatology, German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
48
|
Kaur H, Advani A. The study of single cells in diabetic kidney disease. J Nephrol 2021; 34:1925-1939. [PMID: 33476038 DOI: 10.1007/s40620-020-00964-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022]
Abstract
In the past few years there has been a rapid expansion of interest in the study of single cells, especially through the new techniques that involve single-cell RNA sequencing (scRNA-seq). Recently, these techniques have provided new insights into kidney health and disease, including insights into diabetic kidney disease (DKD). However, despite the interest and the technological advances, the study of individual cells in DKD is not a new concept. Many clinicians and researchers who work within the DKD space may be familiar with experimental techniques that actually involve the study of individual cells, but may be unfamiliar with newer scRNA-seq technology. Here, with the goal of improving accessibility to the single-cell field, we provide a primer on single-cell studies with a focus on DKD. We situate the technology in its historical context and provide a brief explanation of the common aspects of the different technologies available. Then we review some of the most important recent studies of kidney (patho)biology that have taken advantage of scRNA-seq techniques, before emphasizing the new insights into the molecular pathogenesis of DKD gleaned with these techniques. Finally, we highlight common pitfalls and limitations of scRNA-seq methods and we look toward the future to how single-cell experiments may be incorporated into the study of DKD and how to interpret the findings of these experiments.
Collapse
Affiliation(s)
- Harmandeep Kaur
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada.
| |
Collapse
|
49
|
Eddy S, Mariani LH, Kretzler M. Integrated multi-omics approaches to improve classification of chronic kidney disease. Nat Rev Nephrol 2020; 16:657-668. [PMID: 32424281 DOI: 10.1038/s41581-020-0286-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
Chronic kidney diseases (CKDs) are currently classified according to their clinical features, associated comorbidities and pattern of injury on biopsy. Even within a given classification, considerable variation exists in disease presentation, progression and response to therapy, highlighting heterogeneity in the underlying biological mechanisms. As a result, patients and clinicians experience uncertainty when considering optimal treatment approaches and risk projection. Technological advances now enable large-scale datasets, including DNA and RNA sequence data, proteomics and metabolomics data, to be captured from individuals and groups of patients along the genotype-phenotype continuum of CKD. The ability to combine these high-dimensional datasets, in which the number of variables exceeds the number of clinical outcome observations, using computational approaches such as machine learning, provides an opportunity to re-classify patients into molecularly defined subgroups that better reflect underlying disease mechanisms. Patients with CKD are uniquely poised to benefit from these integrative, multi-omics approaches since the kidney biopsy, blood and urine samples used to generate these different types of molecular data are frequently obtained during routine clinical care. The ultimate goal of developing an integrated molecular classification is to improve diagnostic classification, risk stratification and assignment of molecular, disease-specific therapies to improve the care of patients with CKD.
Collapse
Affiliation(s)
- Sean Eddy
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Laura H Mariani
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
50
|
Eid SA, O’Brien PD, Hinder LM, Hayes JM, Mendelson FE, Zhang H, Zeng L, Kretzler K, Narayanan S, Abcouwer SF, Brosius FC, Pennathur S, Savelieff MG, Feldman EL. Differential Effects of Empagliflozin on Microvascular Complications in Murine Models of Type 1 and Type 2 Diabetes. BIOLOGY 2020; 9:biology9110347. [PMID: 33105667 PMCID: PMC7690408 DOI: 10.3390/biology9110347] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Microvascular complications account for the significant morbidity associated with diabetes. Despite tight glycemic control, disease risk remains especially in type 2 diabetes (T2D) patients and no therapy fully prevents nerve, retinal, or renal damage in type 1 diabetes (T1D) or T2D. Therefore, new antidiabetic drug classes are being evaluated for the treatment of microvascular complications. We investigated the effect of empagliflozin (EMPA), an inhibitor of the sodium/glucose cotransporter 2 (SGLT2), on diabetic neuropathy (DPN), retinopathy (DR), and kidney disease (DKD) in streptozotocin-induced T1D and db/db T2D mouse models. EMPA lowered blood glycemia in T1D and T2D models. However, it did not ameliorate any microvascular complications in the T2D model, which was unexpected, given the protective effect of SGLT2 inhibitors on DKD progression in T2D subjects. Although EMPA did not improve DKD in the T1D model, it had a potential modest effect on DR measures and favorably impacted DPN as well as systemic oxidative stress. These results support the concept that glucose-centric treatments are more effective for DPN in T1D versus T2D. This is the first study that provides an evaluation of EMPA treatment on all microvascular complications in a side-by-side comparison in T1D and T2D models.
Collapse
Affiliation(s)
- Stephanie A. Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.E.); (P.D.O.); (L.M.H.); (J.M.H.); (F.E.M.); (K.K.); (S.N.); (M.G.S.)
| | - Phillipe D. O’Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.E.); (P.D.O.); (L.M.H.); (J.M.H.); (F.E.M.); (K.K.); (S.N.); (M.G.S.)
| | - Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.E.); (P.D.O.); (L.M.H.); (J.M.H.); (F.E.M.); (K.K.); (S.N.); (M.G.S.)
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.E.); (P.D.O.); (L.M.H.); (J.M.H.); (F.E.M.); (K.K.); (S.N.); (M.G.S.)
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.E.); (P.D.O.); (L.M.H.); (J.M.H.); (F.E.M.); (K.K.); (S.N.); (M.G.S.)
| | - Hongyu Zhang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (L.Z.); (F.C.B.III); (S.P.)
| | - Lixia Zeng
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (L.Z.); (F.C.B.III); (S.P.)
| | - Katharina Kretzler
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.E.); (P.D.O.); (L.M.H.); (J.M.H.); (F.E.M.); (K.K.); (S.N.); (M.G.S.)
| | - Samanthi Narayanan
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.E.); (P.D.O.); (L.M.H.); (J.M.H.); (F.E.M.); (K.K.); (S.N.); (M.G.S.)
| | - Steven F. Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Frank C. Brosius
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (L.Z.); (F.C.B.III); (S.P.)
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (L.Z.); (F.C.B.III); (S.P.)
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masha G. Savelieff
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.E.); (P.D.O.); (L.M.H.); (J.M.H.); (F.E.M.); (K.K.); (S.N.); (M.G.S.)
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.E.); (P.D.O.); (L.M.H.); (J.M.H.); (F.E.M.); (K.K.); (S.N.); (M.G.S.)
- Correspondence: ; Tel.: +1-(734)-763-7274
| |
Collapse
|