1
|
Jiang L, Tang H, Lin T, Jiang Y, Li Y, Gao W, Deng J, Huang Z, Chen C, Shi J, Zhou T, Lai Y. Epithelium-derived kallistatin promotes CD4 + T-cell chemotaxis to T H2-type inflammation in chronic rhinosinusitis. J Allergy Clin Immunol 2024; 154:120-130. [PMID: 38403085 DOI: 10.1016/j.jaci.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/23/2023] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND The function of kallistatin in airway inflammation, particularly chronic rhinosinusitis with nasal polyps (CRSwNP), has not been elucidated. OBJECTIVE We sought to investigate the role of kallistatin in airway inflammation. METHODS Kallistatin and proinflammatory cytokine expression levels were detected in nasal polyps. For the in vivo studies, we constructed the kallistatin-overexpressing transgenic mice to elucidate the role of kallistatin in airway inflammation. Furthermore, the levels of plasma IgE and proinflammatory cytokines in the airways were evaluated in the kallistatin-/- rat in vivo model under a type 2 inflammatory background. Finally, the Notch signaling pathway was explored to understand the role of kallistatin in CRSwNP. RESULTS We showed that the expression of kallistatin was significantly higher in nasal polyps than in the normal nasal mucosa and correlated with IL-4 expression. We also discovered that the nasal mucosa of kallistatin-overexpressing transgenic mice expressed higher levels of IL-4 expression, associating to TH2-type inflammation. Interestingly, we observed lower IL-4 levels in the nasal mucosa and lower total plasma IgE of the kallistatin-/- group treated with house dust mite allergen compared with the wild-type house dust mite group. Finally, we observed a significant increase in the expression of Jagged2 in the nasal epithelium cells transduced with adenovirus-kallistatin. This heightened expression correlated with increased secretion of IL-4, attributed to the augmented population of CD4+CD45+Notch1+ T cells. These findings collectively may contribute to the induction of TH2-type inflammation. CONCLUSIONS Kallistatin was demonstrated to be involved in the CRSwNP pathogenesis by enhancing the TH2 inflammation, which was found to be associated with more expression of IL-4, potentially facilitated through Jagged2-Notch1 signaling in CD4+ T cells.
Collapse
Affiliation(s)
- Lijie Jiang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Otorhinolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haocheng Tang
- Department of Otorhinolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tengjiao Lin
- Department of Radiation Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifeng Jiang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanmei Li
- Basic and Clinical Medicine Teaching Laboratory, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Wenxiang Gao
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaoqi Huang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuxin Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianbo Shi
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Ti Zhou
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; China Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China.
| | - Yinyan Lai
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Sandforth L, Brachs S, Reinke J, Willmes D, Sancar G, Seigner J, Juarez-Lopez D, Sandforth A, McBride JD, Ma JX, Haufe S, Jordan J, Birkenfeld AL. Role of human Kallistatin in glucose and energy homeostasis in mice. Mol Metab 2024; 82:101905. [PMID: 38431218 PMCID: PMC10937158 DOI: 10.1016/j.molmet.2024.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE Kallistatin (KST), also known as SERPIN A4, is a circulating, broadly acting human plasma protein with pleiotropic properties. Clinical studies in humans revealed reduced KST levels in obesity. The exact role of KST in glucose and energy homeostasis in the setting of insulin resistance and type 2 diabetes is currently unknown. METHODS Kallistatin mRNA expression in human subcutaneous white adipose tissue (sWAT) of 47 people with overweight to obesity of the clinical trial "Comparison of Low Fat and Low Carbohydrate Diets With Respect to Weight Loss and Metabolic Effects (B-SMART)" was measured. Moreover, we studied transgenic mice systemically overexpressing human KST (hKST-TG) and wild type littermate control mice (WT) under normal chow (NCD) and high-fat diet (HFD) conditions. RESULTS In sWAT of people with overweight to obesity, KST mRNA increased after diet-induced weight loss. On NCD, we did not observe differences between hKST-TG and WT mice. Under HFD conditions, body weight, body fat and liver fat content did not differ between genotypes. Yet, during intraperitoneal glucose tolerance tests (ipGTT) insulin excursions and HOMA-IR were lower in hKST-TG (4.42 ± 0.87 AU, WT vs. 2.20 ± 0.27 AU, hKST-TG, p < 0.05). Hyperinsulinemic euglycemic clamp studies with tracer-labeled glucose infusion confirmed improved insulin sensitivity by higher glucose infusion rates in hKST-TG mice (31.5 ± 1.78 mg/kg/min, hKST-TG vs. 18.1 ± 1.67 mg/kg/min, WT, p < 0.05). Improved insulin sensitivity was driven by reduced hepatic insulin resistance (clamp hepatic glucose output: 7.7 ± 1.9 mg/kg/min, hKST-TG vs 12.2 ± 0.8 mg/kg/min, WT, p < 0.05), providing evidence for direct insulin sensitizing effects of KST for the first time. Insulin sensitivity was differentially affected in skeletal muscle and adipose tissue. Mechanistically, we observed reduced Wnt signaling in the liver but not in skeletal muscle, which may explain the effect. CONCLUSIONS KST expression increases after weight loss in sWAT from people with obesity. Furthermore, human KST ameliorates diet-induced hepatic insulin resistance in mice, while differentially affecting skeletal muscle and adipose tissue insulin sensitivity. Thus, KST may be an interesting, yet challenging, therapeutic target for patients with obesity and insulin resistance.
Collapse
Affiliation(s)
- Leontine Sandforth
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Julia Reinke
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany
| | - Diana Willmes
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany
| | - Gencer Sancar
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Judith Seigner
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - David Juarez-Lopez
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Arvid Sandforth
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jeffrey D McBride
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Sven Haufe
- Department of Rehabilitation and Sports Medicine, Hannover Medical School (MHH), Hannover, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas L Birkenfeld
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany; Department of Diabetes, Life Sciences & Medicine, Cardiovascular Medicine & Life Sciences, King's College London, UK.
| |
Collapse
|
3
|
Long Y, Zhao Z, Xie W, Shi J, Yang F, Zhu D, Jiang P, Tang Q, Ti Z, Jiang B, Yang X, Gao G, Qi W. Kallistatin leads to cognition impairment via downregulating glutamine synthetase. Pharmacol Res 2024; 202:107145. [PMID: 38492829 DOI: 10.1016/j.phrs.2024.107145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
In many neurodegenerative disorders, such as Alzheimer's disease (AD), glutamate-mediated neuronal excitotoxicity is considered the basis for cognitive impairment. The mRNA and protein expression of SERPINA4(Kallistatin) are higher in patients with AD. However, whether Kallistatin plays a regulatory role in glutamate-glutamine cycle homeostasis remains unclear. In this study, we identified impaired cognitive function in Kallistatin transgenic (KAL-TG) mice. Baseline glutamate levels were elevated and miniature excitatory postsynaptic current (mEPSC) frequency was increased in the hippocampus, suggesting the impairment of glutamate homeostasis in KAL-TG mice. Mechanistically, we demonstrated that Kallistatin promoted lysine acetylation and ubiquitination of glutamine synthetase (GS) and facilitated its degradation via the proteasome pathway, thereby downregulating GS. Fenofibrate improved cognitive memory in KAL-TG mice by downregulating serum Kallistatin. Collectively, our study findings provide insights the mechanism by which Kallistatin regulates cognitive impairment, and suggest the potential of fenofibrate to prevente and treat of AD patients with high levels of Kallistatin.
Collapse
Affiliation(s)
- Yanlan Long
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhen Zhao
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wanting Xie
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinhui Shi
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fengyu Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dan Zhu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ping Jiang
- Department of Clinical Medical Laboratory, Guangzhou First People Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qilong Tang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhou Ti
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Xia Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Guoquan Gao
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; China Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China.
| | - Weiwei Qi
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products (Sun Yat-sen University), Guangzhou, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, China.
| |
Collapse
|
4
|
Fang Z, Shen G, Wang Y, Hong F, Tang X, Zeng Y, Zhang T, Liu H, Li Y, Wang J, Zhang J, Gao A, Qi W, Yang X, Zhou T, Gao G. Elevated Kallistatin promotes the occurrence and progression of non-alcoholic fatty liver disease. Signal Transduct Target Ther 2024; 9:66. [PMID: 38472195 PMCID: PMC10933339 DOI: 10.1038/s41392-024-01781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and the development of non-alcoholic steatohepatitis (NASH) might cause irreversible hepatic damage. Hyperlipidemia (HLP) is the leading risk factor for NAFLD. This study aims to illuminate the causative contributor and potential mechanism of Kallistatin (KAL) mediating HLP to NAFLD. 221 healthy control and 253 HLP subjects, 62 healthy control and 44 NAFLD subjects were enrolled. The plasma KAL was significantly elevated in HLP subjects, especially in hypertriglyceridemia (HTG) subjects, and positively correlated with liver injury. Further, KAL levels of NAFLD patients were significantly up-regulated. KAL transgenic mice induced hepatic steatosis, inflammation, and fibrosis with time and accelerated inflammation development in high-fat diet (HFD) mice. In contrast, KAL knockout ameliorated steatosis and inflammation in high-fructose diet (HFruD) and methionine and choline-deficient (MCD) diet-induced NAFLD rats. Mechanistically, KAL induced hepatic steatosis and NASH by down-regulating adipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) by LRP6/Gɑs/PKA/GSK3β pathway through down-regulating peroxisome proliferator-activated receptor γ (PPARγ) and up-regulating kruppel-like factor four (KLF4), respectively. CGI-58 is bound to NF-κB p65 in the cytoplasm, and diminishing CGI-58 facilitated p65 nuclear translocation and TNFα induction. Meanwhile, hepatic CGI-58-overexpress reverses NASH in KAL transgenic mice. Further, free fatty acids up-regulated KAL against thyroid hormone in hepatocytes. Moreover, Fenofibrate, one triglyceride-lowering drug, could reverse hepatic steatosis by down-regulating KAL. These results demonstrate that elevated KAL plays a crucial role in the development of HLP to NAFLD and may be served as a potential preventive and therapeutic target.
Collapse
Affiliation(s)
- Zhenzhen Fang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Gang Shen
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yina Wang
- Department of VIP Medical Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Fuyan Hong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiumei Tang
- Physical Examination Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yongcheng Zeng
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ting Zhang
- Department of Clinical Laboratory, Guangzhou First People's Hospital, Guangzhou, 510080, China
| | - Huanyi Liu
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yanmei Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jinhong Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jing Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Anton Gao
- Department of Health Sciences, College of Health Solutions, Arizona State University, Tempe, USA
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xia Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Province Key Laboratory of Diabetology, Guangzhou, 510080, China.
| | - Guoquan Gao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Chen B, Zou J, Xie L, Cai Y, Li B, Tan W, Huang J, Li F, Xu H. WNT-inhibitory factor 1-mediated glycolysis protects photoreceptor cells in diabetic retinopathy. J Transl Med 2024; 22:245. [PMID: 38448948 PMCID: PMC10918886 DOI: 10.1186/s12967-024-05046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND In diabetic retinopathy (DR), hypoxia-inducible factor (HIF-1α) induces oxidative stress by upregulating glycolysis. This process leads to neurodegeneration, particularly photoreceptor cell damage, which further contributes to retinal microvascular deterioration. Further, the regulation of Wnt-inhibitory factor 1 (WIF1), a secreted Wnt signaling antagonist, has not been fully characterized in neurodegenerative eye diseases. We aimed to explore the impact of WIF1 on photoreceptor function within the context of DR. METHOD Twelve-week-old C57BL/KsJ-db/db mice were intravitreally injected with WIF1 overexpression lentivirus. After 4 weeks, optical coherence tomography (OCT), transmission electron microscopy (TEM), H&E staining, and electroretinography (ERG) were used to assess the retinal tissue and function. The potential mechanism of action of WIF1 in photoreceptor cells was explored using single-cell RNA sequencing. Under high-glucose conditions, 661 W cells were used as an in vitro DR model. WIF1-mediated signaling pathway components were assessed using quantitative real-time PCR, immunostaining, and western blotting. RESULT Typical diabetic manifestations were observed in db/db mice. Notably, the expression of WIF1 was decreased at the mRNA and protein levels. These pathological manifestations and visual function improved after WIF1 overexpression in db/db mice. TEM demonstrated that WIF1 restored damaged mitochondria, the Golgi apparatus, and photoreceptor outer segments. Moreover, ERG indicated the recovery of a-wave potential amplitude. Single-cell RNA sequencing and in vitro experiments suggested that WIF1 overexpression prevented the expression of glycolytic enzymes and lactate production by inhibiting the canonical Wnt signaling pathway, HIF-1α, and Glut1, thereby reducing retinal and cellular reactive oxygen species levels and maintaining 661 W cell viability. CONCLUSIONS WIF1 exerts an inhibitory effect on the Wnt/β-catenin-HIF-1α-Glut1 glycolytic pathway, thereby alleviating oxidative stress levels and mitigating pathological structural characteristics in retinal photoreceptor cells. This mechanism helps preserve the function of photoreceptor cells in DR and indicates that WIF1 holds promise as a potential therapeutic candidate for DR and other neurodegenerative ocular disorders.
Collapse
Affiliation(s)
- Bolin Chen
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jing Zou
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lihui Xie
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yinjun Cai
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bowen Li
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wei Tan
- Department of Ophthalmology, Xiangtan Central Hospital, Xiangtan, 411199, Hunan, China
| | - Jinhaohao Huang
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fangling Li
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huizhuo Xu
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Luo X, He X, Zhang X, Zhao X, Zhang Y, Shi Y, Hua S. Hepatocellular carcinoma: signaling pathways, targeted therapy, and immunotherapy. MedComm (Beijing) 2024; 5:e474. [PMID: 38318160 PMCID: PMC10838672 DOI: 10.1002/mco2.474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with a high mortality rate. It is regarded as a significant public health issue because of its complicated pathophysiology, high metastasis, and recurrence rates. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Traditional treatment methods such as surgical resection, radiotherapy, chemotherapy, and interventional therapies have limited therapeutic effects for HCC patients with recurrence or metastasis. With the development of molecular biology and immunology, molecular signaling pathways and immune checkpoint were identified as the main mechanism of HCC progression. Targeting these molecules has become a new direction for the treatment of HCC. At present, the combination of targeted drugs and immune checkpoint inhibitors is the first choice for advanced HCC patients. In this review, we mainly focus on the cutting-edge research of signaling pathways and corresponding targeted therapy and immunotherapy in HCC. It is of great significance to comprehensively understand the pathogenesis of HCC, search for potential therapeutic targets, and optimize the treatment strategies of HCC.
Collapse
Affiliation(s)
- Xiaoting Luo
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Xin He
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Xingmei Zhang
- Department of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xiaohui Zhao
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Yuzhe Zhang
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Yusheng Shi
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Shengni Hua
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| |
Collapse
|
7
|
Shen G, Li Y, Zeng Y, Hong F, Zhang J, Wang Y, Zhang C, Xiang W, Wang J, Fang Z, Qi W, Yang X, Gao G, Zhou T. Kallistatin Deficiency Induces the Oxidative Stress-Related Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells: A Novel Protagonist in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2023; 64:15. [PMID: 37682567 PMCID: PMC10500364 DOI: 10.1167/iovs.64.12.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Purpose Retinal pigment epithelium (RPE) dysfunction induced by oxidative stress-related epithelial-mesenchymal transition (EMT) of RPE is the primary underlying mechanism of age-related macular degeneration (AMD). Kallistatin (KAL) is a secreted protein with an antioxidative stress effect. However, the relationship between KAL and EMT in RPE has not been determined. Therefore we aimed to explore the impact and mechanism of KAL in oxidative stress-induced EMT of RPE. Methods Sodium iodate (SI) was injected intraperitoneally to construct the AMD rat model and investigate the changes in RPE morphology and KAL expression. KAL knockout rats and KAL transgenic mice were used to explain the effects of KAL on EMT and oxidative stress. In addition, Snail overexpressed adenovirus and si-RNA transfected ARPE19 cells to verify the involvement of Snail in mediating KAL-suppressed EMT of RPE. Results AMD rats induced by SI expressed less KAL in the retina, and KAL knockout rats showed RPE dysfunction spontaneously where EMT and reactive oxygen species (ROS) production increased in RPE. In contrast, KAL overexpression attenuated EMT and ROS levels in RPE, even in TGF-β treatment. Mechanistically, Snail reversed the beneficial effect of KAL on EMT and ROS reduction. Moreover, KAL ameliorated SI-induced AMD-like pathological changes. Conclusions Our findings demonstrated that KAL inhibits oxidative stress-induced EMT by downregulating the transcription factor Snail. Herein, KAL knockout rats may be an appropriate animal model for observing spontaneous RPE dysfunction for AMD-like retinopathy, and KAL may represent a novel therapeutic target for treating dry AMD.
Collapse
Affiliation(s)
- Gang Shen
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanmei Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yongcheng Zeng
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Fuyan Hong
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yan Wang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Chengwei Zhang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Wei Xiang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jinhong Wang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhenzhen Fang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weiwei Qi
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xia Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Guoquan Gao
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-Sen University, Guangzhou, China
| | - Ti Zhou
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- China Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
8
|
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 2023; 8:129. [PMID: 36932062 PMCID: PMC10023808 DOI: 10.1038/s41392-023-01379-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect 10-14% of global population. Kidney fibrosis, characterized by excessive extracellular matrix deposition leading to scarring, is a hallmark manifestation in different progressive CKD; However, at present no antifibrotic therapies against CKD exist. Kidney fibrosis is identified by tubule atrophy, interstitial chronic inflammation and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Fibrotic niche, where organ fibrosis initiates, is a complex interplay between injured parenchyma (like tubular cells) and multiple non-parenchymal cell lineages (immune and mesenchymal cells) located spatially within scarring areas. Although the mechanisms of kidney fibrosis are complicated due to the kinds of cells involved, with the help of single-cell technology, many key questions have been explored, such as what kind of renal tubules are profibrotic, where myofibroblasts originate, which immune cells are involved, and how cells communicate with each other. In addition, genetics and epigenetics are deeper mechanisms that regulate kidney fibrosis. And the reversible nature of epigenetic changes including DNA methylation, RNA interference, and chromatin remodeling, gives an opportunity to stop or reverse kidney fibrosis by therapeutic strategies. More marketed (e.g., RAS blockage, SGLT2 inhibitors) have been developed to delay CKD progression in recent years. Furthermore, a better understanding of renal fibrosis is also favored to discover biomarkers of fibrotic injury. In the review, we update recent advances in the mechanism of renal fibrosis and summarize novel biomarkers and antifibrotic treatment for CKD.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Zhang Z, Li Y, Chen N, Li H, Chen S, Cui X, Shao H, Wei L, Ma J, Zhang S, Li X, Zhang X. Pertussis toxin-induced inhibition of Wnt/β-catenin signaling in dendritic cells promotes an autoimmune response in experimental autoimmune uveitis. J Neuroinflammation 2023; 20:24. [PMID: 36739434 PMCID: PMC9898909 DOI: 10.1186/s12974-023-02707-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/27/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous reports have indicated that disrupting the Wnt/β-catenin pathway in dendritic cells (DCs) may affect the progression of autoimmune inflammation; however, the factors and timing that regulate Wnt/β-catenin signaling have not been clearly understood. METHODS Experimental autoimmune uveitis (EAU) mice and Vogt-Koyanagi-Harada disease (VKH) patient samples were used to detect the expression of Wnt/β-catenin pathway genes. Western blot, real-time PCR, flow cytometry, and ELISA were performed to examine the expression of components of the Wnt/β-catenin pathway and inflammatory factors. DC-specific β-catenin knockout mice and 6-bromoindirubin-3'-oxime (BIO) administered mice were used to observe the effect of disrupting the Wnt pathway on EAU pathogenesis. RESULTS Wnt/β-catenin signaling was inhibited in DCs during the induction phase of EAU. The inhibition was mediated by pertussis toxin (PTX), which promoted DC maturation, in turn promoting pathogenic T cell proliferation and differentiation. In vivo experiments confirmed that deleting β-catenin in DCs enhanced EAU severity, and pre-injection of PTX advanced EAU onset. Administration of a Wnt activator (BIO) limited the effects of PTX, in turn ameliorating EAU. CONCLUSIONS Our results demonstrate that PTX plays a key role as a virulence factor in initiating autoimmune inflammation via DCs by inhibiting Wnt/β-catenin signaling in EAU, and highlight the potential mechanism by which infection can trigger apparent autoimmunity.
Collapse
Affiliation(s)
- Zhihui Zhang
- grid.412729.b0000 0004 1798 646XTianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yongtao Li
- grid.412729.b0000 0004 1798 646XTianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Nu Chen
- grid.412729.b0000 0004 1798 646XTianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Huan Li
- grid.412729.b0000 0004 1798 646XTianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Shuang Chen
- grid.412729.b0000 0004 1798 646XTianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xuexue Cui
- grid.412729.b0000 0004 1798 646XTianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hui Shao
- grid.266623.50000 0001 2113 1622Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, School of Medicine, Louisville, KY USA
| | - Lai Wei
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianxing Ma
- grid.241167.70000 0001 2185 3318Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC USA
| | - Song Zhang
- grid.216938.70000 0000 9878 7032Institute for Immunology and College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaorong Li
- grid.412729.b0000 0004 1798 646XTianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaomin Zhang
- grid.412729.b0000 0004 1798 646XTianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
10
|
Qu Q, Park K, Zhou K, Wassel D, Farjo R, Criswell T, Ma JX, Zhang Y. Sustained therapeutic effect of an anti-inflammatory peptide encapsulated in nanoparticles on ocular vascular leakage in diabetic retinopathy. Front Cell Dev Biol 2022; 10:1049678. [PMID: 36589744 PMCID: PMC9802579 DOI: 10.3389/fcell.2022.1049678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/21/2022] [Indexed: 12/23/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF), an endogenous Wnt signaling inhibitor in the serine proteinase inhibitors (SERPIN) super family, is present in multiple organs, including the vitreous. Significantly low levels of PEDF in the vitreous are found to associate with pathological retinal vascular leakage and inflammation in diabetic retinopathy (DR). Intravitreal delivery of PEDF represents a promising therapeutic approach for DR. However, PEDF has a short half-life after intravitreal injection, which represents a major hurdle for the long-term treatment. Here we report the prolonged therapeutic effects of a 34-mer peptide of the PEDF N-terminus, encapsulated in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (PEDF34-NP), on DR. PEDF34-NP inhibited hypoxia-induced expression of vascular endothelial growth factor and reduced levels of intercellular adhesion molecule 1 (ICAM-1) in cultured retinal cells. In addition, PEDF34-NP significantly ameliorated ischemia-induced retinal neovascularization in the oxygen-induced retinopathy rat model, and significantly reduced retinal vascular leakage and inflammation in streptozotocin-induced diabetic rats up to 4 weeks after intravitreal injection, as compared to PLGA-NP control. Intravitreal injection of PEDF34-NP did not display any detectable toxicities to retinal structure and function. Our findings suggest that PEDF34-NP can confer sustained therapeutic effects on retinal inflammation and vascular leakage, having considerable potential to provide long-term treatment options for DR.
Collapse
Affiliation(s)
- Qiang Qu
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Kyoungmin Park
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, United States
| | - Kevin Zhou
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Drew Wassel
- EyeCro LLC., Oklahoma City, OK, United States
| | - Rafal Farjo
- EyeCro LLC., Oklahoma City, OK, United States
| | - Tracy Criswell
- Institure for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jian-xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Yuanyuan Zhang
- Institure for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States,*Correspondence: Yuanyuan Zhang,
| |
Collapse
|
11
|
Xue Z, Yuan J, Chen F, Yao Y, Xing S, Yu X, Li K, Wang C, Bao J, Qu J, Su J, Chen H. Genome-wide association meta-analysis of 88,250 individuals highlights pleiotropic mechanisms of five ocular diseases in UK Biobank. EBioMedicine 2022; 82:104161. [PMID: 35841873 PMCID: PMC9297108 DOI: 10.1016/j.ebiom.2022.104161] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Ocular diseases may exhibit common clinical symptoms and epidemiological comorbidity. However, the extent of pleiotropic mechanisms across ocular diseases remains unclear. We aim to examine shared genetic etiology in age-related macular degeneration (AMD), diabetic retinopathy (DR), glaucoma, retinal detachment (RD), and myopia. METHODS We analyzed genome-wide association analyses for the five ocular diseases in 43,877 cases and 44,373 controls of European ancestry from UK Biobank, estimated their genetic relationships (LDSC, GNOVA, and Genomic SEM), and identified pleiotropic loci (ASSET and METASOFT). FINDINGS The genetic correlation of common SNPs revealed a meaningful genetic structure within these diseases, identifying genetic correlations between AMD, DR, and glaucoma. Cross-trait meta-analysis identified 23 pleiotropic loci associated with at least two ocular diseases and 14 loci unique to individual disorders (non-pleiotropic). We found that the genes associated with these shared genetic loci are involved in neuron differentiation (P = 8.80 × 10-6) and eye development systems (P = 3.86 × 10-5), and single cell RNA sequencing data reveals their heightened gene expression from multipotent progenitors to other differentiated retinal cells during retina developmental process. INTERPRETATION These results highlighted the potential common genetic architectures among these ocular diseases and can deepen the understanding of the molecular mechanisms underlying the related diseases. FUNDING The National Natural Science Foundation of China (61871294), Zhejiang Provincial Natural Science Foundation of China (LR19C060001), and the Scientific Research Foundation for Talents of Wenzhou Medical University (QTJ18023).
Collapse
Affiliation(s)
- Zhengbo Xue
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jian Yuan
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Fukun Chen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yinghao Yao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325105, Zhejiang, China
| | - Shilai Xing
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiangyi Yu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Kai Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325105, Zhejiang, China
| | - Chenxiao Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jinhua Bao
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jia Qu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China
| | - Jianzhong Su
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325105, Zhejiang, China.
| | - Hao Chen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
12
|
Sanabria-de la Torre R, García-Fontana C, González-Salvatierra S, Andújar-Vera F, Martínez-Heredia L, García-Fontana B, Muñoz-Torres M. The Contribution of Wnt Signaling to Vascular Complications in Type 2 Diabetes Mellitus. Int J Mol Sci 2022; 23:6995. [PMID: 35805996 PMCID: PMC9266892 DOI: 10.3390/ijms23136995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Vascular complications are the leading cause of morbidity and mortality among patients with type 2 diabetes mellitus (T2DM). These vascular abnormalities result in a chronic hyperglycemic state, which influences many signaling molecular pathways that initially lead to increased oxidative stress, increased inflammation, and endothelial dysfunction, leading to both microvascular and macrovascular complications. Endothelial dysfunction represents the initial stage in both types of vascular complications; it represents "mandatory damage" in the development of microvascular complications and only "introductory damage" in the development of macrovascular complications. Increasing scientific evidence has revealed an important role of the Wnt pathway in the pathophysiology of the vascular wall. It is well known that the Wnt pathway is altered in patients with T2DM. This review aims to be an update of the current literature related to the Wnt pathway molecules that are altered in patients with T2DM, which may also be the cause of damage to the vasculature. Both microvascular complications (retinopathy, nephropathy, and neuropathy) and macrovascular complications (coronary artery disease, cerebrovascular disease, and peripheral arterial disease) are analyzed. This review aims to concisely concentrate all the evidence to facilitate the view on the vascular involvement of the Wnt pathway and its components by highlighting the importance of exploring possible therapeutic strategy for patients with T2DM who develop vascular pathologies.
Collapse
Affiliation(s)
- Raquel Sanabria-de la Torre
- Department of Medicine, University of Granada, 18016 Granada, Spain; (R.S.-d.l.T.); (S.G.-S.); (L.M.-H.); (M.M.-T.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
| | - Cristina García-Fontana
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sheila González-Salvatierra
- Department of Medicine, University of Granada, 18016 Granada, Spain; (R.S.-d.l.T.); (S.G.-S.); (L.M.-H.); (M.M.-T.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
| | - Francisco Andújar-Vera
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
| | - Luis Martínez-Heredia
- Department of Medicine, University of Granada, 18016 Granada, Spain; (R.S.-d.l.T.); (S.G.-S.); (L.M.-H.); (M.M.-T.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Muñoz-Torres
- Department of Medicine, University of Granada, 18016 Granada, Spain; (R.S.-d.l.T.); (S.G.-S.); (L.M.-H.); (M.M.-T.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
13
|
Wu K, Zhou K, Zhao M, Xiang L, Mei T, Xu W, Shang B, Liu X, Lai Y, Lin M, Luo J, Zhao L. TCF7L2 promotes ER stress signaling in diabetic retinopathy. Exp Eye Res 2022; 221:109142. [PMID: 35691375 DOI: 10.1016/j.exer.2022.109142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 12/01/2022]
Abstract
Diabetic retinopathy (DR) is one of the most common blindness in working-age adults. Transcription factor 7 like 2 (TCF7L2) is a susceptibility gene of DR, however, its roles in the pathogenesis of DR are still largely unknown. In this study, we found that TCF7L2 was mainly located in the cell nucleus of retinal ganglion cell layer (GCL) and inner nuclear layer (INL), while it was not expressed in the cell nucleus of retinal outer nuclear layer (ONL). Expression of TCF7L2 was significantly elevated in the retinas of db/db diabetic mice and oxygen-induced retinopathy (OIR) mice. Also, in Ad-hTCF7L2 treated hiPSCs-derived retinal progenitor cells (RPCs), activating transcription factor 6 (ATF6)-related endoplasmic reticulum (ER) stress signaling was remarkably activated. Moreover, knockdown of TCF7L2 significantly inhibited ATF6-related ER stress signaling. Furthermore, the data of endothelial permeability assay showed that RPCs pretreated with Ad-hTCF7L2 lead to enhanced monolayer permeability of human umbilical vein endothelial cells (HUVECs), and knockdown of TCF7L2 or ATF6 in RPCs could alleviate the monolayer permeability of HUVECs. Thus, our results showed that TCF7L2 could trigger ATF6-related ER stress signaling and promote vein endothelial cell permeability, which will provide important insight into the role of TCF7L2 in the pathogenesis of DR and contribute to designing potential therapies.
Collapse
Affiliation(s)
- Keling Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kesi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Minglei Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lijun Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Tingfang Mei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenchang Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bizhi Shang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xinqi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuhua Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Mingkai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingyi Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
14
|
Frudd K, Sivaprasad S, Raman R, Krishnakumar S, Revathy YR, Turowski P. Diagnostic circulating biomarkers to detect vision-threatening diabetic retinopathy: Potential screening tool of the future? Acta Ophthalmol 2022; 100:e648-e668. [PMID: 34269526 DOI: 10.1111/aos.14954] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
With the increasing prevalence of diabetes in developing and developed countries, the socio-economic burden of diabetic retinopathy (DR), the leading complication of diabetes, is growing. Diabetic retinopathy (DR) is currently one of the leading causes of blindness in working-age adults worldwide. Robust methodologies exist to detect and monitor DR; however, these rely on specialist imaging techniques and qualified practitioners. This makes detecting and monitoring DR expensive and time-consuming, which is particularly problematic in developing countries where many patients will be remote and have little contact with specialist medical centres. Diabetic retinopathy (DR) is largely asymptomatic until late in the pathology. Therefore, early identification and stratification of vision-threatening DR (VTDR) is highly desirable and will ameliorate the global impact of this disease. A simple, reliable and more cost-effective test would greatly assist in decreasing the burden of DR around the world. Here, we evaluate and review data on circulating protein biomarkers, which have been verified in the context of DR. We also discuss the challenges and developments necessary to translate these promising data into clinically useful assays, to detect VTDR, and their potential integration into simple point-of-care testing devices.
Collapse
Affiliation(s)
- Karen Frudd
- Institute of Ophthalmology University College London London UK
| | - Sobha Sivaprasad
- Institute of Ophthalmology University College London London UK
- NIHR Moorfields Biomedical Research Centre Moorfields Eye Hospital London UK
| | - Rajiv Raman
- Vision Research Foundation Sankara Nethralaya Chennai Tamil Nadu India
| | | | | | - Patric Turowski
- Institute of Ophthalmology University College London London UK
| |
Collapse
|
15
|
Liang W, Huang L, Ma X, Dong L, Cheng R, Dehdarani M, Karamichos D, Ma JX. Pathogenic Role of Diabetes-Induced Overexpression of Kallistatin in Corneal Wound Healing Deficiency Through Inhibition of Canonical Wnt Signaling. Diabetes 2022; 71:747-761. [PMID: 35044447 PMCID: PMC8965664 DOI: 10.2337/db21-0740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/27/2021] [Indexed: 01/21/2023]
Abstract
It was reported previously that circulation levels of kallistatin, an endogenous Wnt signaling inhibitor, are increased in patients with diabetes. The current study was conducted to determine the role of kallistatin in delayed wound healing in diabetic corneas. Immunostaining and Western blot analysis showed kallistatin levels were upregulated in corneas from humans and rodents with diabetes. In murine corneal wound healing models, the canonical Wnt signaling was activated in nondiabetic corneas and suppressed in diabetic corneas, correlating with delayed wound healing. Transgenic expression of kallistatin suppressed the activation of Wnt signaling in the cornea and delayed wound healing. Local inhibition of Wnt signaling in the cornea by kallistatin, an LRP6-blocking antibody, or the soluble VLDL receptor ectodomain (an endogenous Wnt signaling inhibitor) delayed wound healing. In contrast, ablation of the VLDL receptor resulted in overactivation of Wnt/β-catenin signaling and accelerated corneal wound healing. Activation of Wnt signaling in the cornea accelerated wound healing. Activation of Wnt signaling promoted human corneal epithelial cell migration and proliferation, which was attenuated by kallistatin. Our findings suggested that diabetes-induced overexpression of kallistatin contributes to delayed corneal wound healing by inhibiting the canonical Wnt signaling. Thus, kallistatin and Wnt/β-catenin signaling in the cornea could be potential therapeutic targets for diabetic corneal complications.
Collapse
Affiliation(s)
- Wentao Liang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Li Huang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiang Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Lijie Dong
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Marcus Dehdarani
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX
| | - Jian-xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
16
|
Ma X, Takahashi Y, Wu W, Liang W, Chen J, Chakraborty D, Li Y, Du Y, Benyajati S, Ma JX. ADAM17 mediates ectodomain shedding of the soluble VLDL receptor fragment in the retinal epithelium. J Biol Chem 2021; 297:101185. [PMID: 34509473 PMCID: PMC8487060 DOI: 10.1016/j.jbc.2021.101185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022] Open
Abstract
Very low-density lipoprotein receptor (VLDLR) is a multifunctional transmembrane protein. Beyond the function of the full-length VLDLR in lipid transport, the soluble ectodomain of VLDLR (sVLDLR) confers anti-inflammatory and antiangiogenic roles in ocular tissues through inhibition of canonical Wnt signaling. However, it remains unknown how sVLDLR is shed into the extracellular space. In this study, we present the first evidence that a disintegrin and metalloprotease 17 (ADAM17) is responsible for sVLDLR shedding in human retinal pigment epithelium cells using pharmacological and genetic approaches. Among selected proteinase inhibitors, an ADAM17 inhibitor demonstrated the most potent inhibitory effect on sVLDLR shedding. siRNA-mediated knockdown or CRISPR/Cas9-mediated KO of ADAM17 diminished, whereas plasmid-mediated overexpression of ADAM17 promoted sVLDLR shedding. The amount of shed sVLDLR correlated with an inhibitory effect on the Wnt signaling pathway. Consistent with these in vitro findings, intravitreal injection of an ADAM17 inhibitor reduced sVLDLR levels in the extracellular matrix in the mouse retina. In addition, our results demonstrated that ADAM17 cleaved VLDLR only in cells coexpressing these proteins, suggesting that shedding occurs in a cis manner. Moreover, our study demonstrated that aberrant activation of Wnt signaling was associated with decreased sVLDLR levels, along with downregulation of ADAM17 in ocular tissues of an age-related macular degeneration model. Taken together, our observations reveal the mechanism underlying VLDLR cleavage and identify a potential therapeutic target for the treatment of disorders associated with dysregulation of Wnt signaling.
Collapse
Affiliation(s)
- Xiang Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Yusuke Takahashi
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Wenjing Wu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Wentao Liang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jianglei Chen
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Dibyendu Chakraborty
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Yangxiong Li
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Yanhong Du
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Siribhinya Benyajati
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
17
|
Ye S, Zhang Y, Wang X, Liang X, Wei M, Zong R, Liu Z, Chen Q. Autophagy positively regulates Wnt signaling in mice with diabetic retinopathy. Exp Ther Med 2021; 22:1164. [PMID: 34504609 PMCID: PMC8393590 DOI: 10.3892/etm.2021.10598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes. Aberrant Wnt signaling activation plays a pathological role in DR. However, the underlying mechanisms of aberrant Wnt signaling in DR remain unknown. Autophagy has been reported to be involved in the pathophysiology of DR. The present study aimed therefore to investigate the regulatory effects of autophagy on Wnt signaling in DR. Wnt signaling was activated in the retina of db/db mice combined with an increase in the expression of the autophagic proteins microtubule-associated protein 1A/1B-light chain 3 and beclin-1 and a decrease in the expression of the autophagic protein P62. Inhibition of autophagy by 3-methyladenin decreased Wnt signaling in diabetic retinas, indicating a potential association between Wnt signaling and autophagy. Rapamycin, an autophagy inducer, upregulated Wnt signaling in the retina of normal C57BL/6J mice. In cultured Müller cells, rapamycin induced autophagy and activated Wnt signaling, while chloroquine, an autophagy inhibitor, inhibited autophagy and downregulated Wnt signaling, suggesting that autophagy could regulate Wnt signaling in mice retina and retinal cells. In summary, this study demonstrated that autophagy may positively regulate Wnt signaling in diabetic retinas, indicating a potential mechanism of Wnt signaling upregulation in DR and a possible novel therapeutic target of DR.
Collapse
Affiliation(s)
- Sihao Ye
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Yuhan Zhang
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xin Wang
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xu Liang
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Mingyan Wei
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Rongrong Zong
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Zuguo Liu
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361101, P.R. China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian 361100, P.R. China
| | - Qian Chen
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361101, P.R. China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian 361100, P.R. China
| |
Collapse
|
18
|
Krishna SM, Li J, Wang Y, Moran CS, Trollope A, Huynh P, Jose R, Biros E, Ma J, Golledge J. Kallistatin limits abdominal aortic aneurysm by attenuating generation of reactive oxygen species and apoptosis. Sci Rep 2021; 11:17451. [PMID: 34465809 PMCID: PMC8408144 DOI: 10.1038/s41598-021-97042-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022] Open
Abstract
Inflammation, vascular smooth muscle cell apoptosis and oxidative stress are believed to play important roles in abdominal aortic aneurysm (AAA) pathogenesis. Human kallistatin (KAL; gene SERPINA4) is a serine proteinase inhibitor previously shown to inhibit inflammation, apoptosis and oxidative stress. The aim of this study was to investigate the role of KAL in AAA through studies in experimental mouse models and patients. Serum KAL concentration was negatively associated with the diagnosis and growth of human AAA. Transgenic overexpression of the human KAL gene (KS-Tg) or administration of recombinant human KAL (rhKAL) inhibited AAA in the calcium phosphate (CaPO4) and subcutaneous angiotensin II (AngII) infusion mouse models. Upregulation of KAL in both models resulted in reduction in the severity of aortic elastin degradation, reduced markers of oxidative stress and less vascular smooth muscle apoptosis within the aorta. Administration of rhKAL to vascular smooth muscle cells incubated in the presence of AngII or in human AAA thrombus-conditioned media reduced apoptosis and downregulated markers of oxidative stress. These effects of KAL were associated with upregulation of Sirtuin 1 activity within the aortas of both KS-Tg mice and rodents receiving rhKAL. These results suggest KAL-Sirtuin 1 signalling limits aortic wall remodelling and aneurysm development through reductions in oxidative stress and vascular smooth muscle cell apoptosis. Upregulating KAL may be a novel therapeutic strategy for AAA.
Collapse
Affiliation(s)
- Smriti Murali Krishna
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Jiaze Li
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Yutang Wang
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia.,School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Horsham, VIC, Australia
| | - Corey S Moran
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Alexandra Trollope
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia.,Division of Anatomy, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Pacific Huynh
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Roby Jose
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Erik Biros
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Jianxing Ma
- Department of Physiology, Health Sciences Centre, University of Oklahoma, Oklahoma City, OK, 73104, USA
| | - Jonathan Golledge
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia. .,Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, QLD, Australia.
| |
Collapse
|
19
|
Yang W, Yang Y, Wan S, Xu Y, Li J, Zhang L, Guo W, Zheng Y, Xiang Y, Xing Y. Exploring the Mechanism of the miRNA-145/Paxillin Axis in Cell Metabolism During VEGF-A-Induced Corneal Angiogenesis. Invest Ophthalmol Vis Sci 2021; 62:25. [PMID: 34424263 PMCID: PMC8383931 DOI: 10.1167/iovs.62.10.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Paxillin (PXN) is a key component of focal adhesions and plays an important role in angiogenesis. The aim of the present study was to investigate the effect of PXN in vascular endothelial growth factor A (VEGF-A)–induced angiogenesis in human umbilical vein endothelial cells (HUVECs). Methods HUVECs were transfected with PXN overexpression and PXN interference vectors. Biochemical detection was used to detect adenosine triphosphate and lactic acid production. The morphology of mitochondria was observed under an electron microscope, and flow cytometry was conducted to measure mitochondrial membrane potential. Transwell experiments were used to detect the migration and tube formation ability of each group of cells. The expression of hexokinase (HK)1, HK2, glucose transporter 1 (GLUT1), phosphorylated phosphatidylinositol 3-kinase (PI3K), phosphorylated AKT, and phosphorylated mechanistic target of rapamycin (mTOR) was evaluated by western blot. Results PXN silencing reduced the levels of lactic acid and adenosine triphosphate, downregulated HK1, HK2, and GLUT1, suppressed PI3K/AKT/mTOR signaling activation, and inhibited VEGF-A–induced mitochondria injury in VEGF-A–induced HUVECs. We also determined that miR-145-5p decreased the VEGF-A–induced expression of PXN and inhibited the invasion and angiogenesis of HUVECs. Also, miR-145-5p inhibition blocked the protective effect of PXN interference on VEGF-A–induced HUVEC injury. Furthermore, PXN interference significantly decreased lactic acid and adenosine triphosphate levels, inhibited PI3K/AKT/mTOR activation, and decreased the levels of HK1, HK2, and GLUT1 in VEGF-A-treated mouse corneal. Conclusions The results indicate that PXN silencing inhibited the VEGF-A–induced invasion and angiogenesis of HUVECs via regulation of cell metabolism and mitochondrial damage, suggesting that PXN may be a potential target for antiangiogenic therapies.
Collapse
Affiliation(s)
- Wanju Yang
- Aier Eye Hospital of Wuhan University, Wuhan, China.,Department of Ophthalmology, Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yanning Yang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shanshan Wan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ya Xu
- Department of Ophthalmology, Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- Department of Ophthalmology, Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Lu Zhang
- Department of Ophthalmology, Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Wanruo Guo
- Department of Ophthalmology, Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yijun Zheng
- Aier Eye Hospital of Wuhan University, Wuhan, China.,Department of Ophthalmology, Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xiang
- Department of Ophthalmology, Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yiqiao Xing
- Aier Eye Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Yiu WH, Li Y, Lok SWY, Chan KW, Chan LYY, Leung JCK, Lai KN, Tsu JHL, Chao J, Huang XR, Lan HY, Tang SCW. Protective role of kallistatin in renal fibrosis via modulation of Wnt/β-catenin signaling. Clin Sci (Lond) 2021; 135:429-446. [PMID: 33458750 DOI: 10.1042/cs20201161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/31/2022]
Abstract
Kallistatin is a multiple functional serine protease inhibitor that protects against vascular injury, organ damage and tumor progression. Kallistatin treatment reduces inflammation and fibrosis in the progression of chronic kidney disease (CKD), but the molecular mechanisms underlying this protective process and whether kallistatin plays an endogenous role are incompletely understood. In the present study, we observed that renal kallistatin levels were significantly lower in patients with CKD. It was also positively correlated with estimated glomerular filtration rate (eGFR) and negatively correlated with serum creatinine level. Unilateral ureteral obstruction (UUO) in animals also led to down-regulation of kallistatin protein in the kidney, and depletion of endogenous kallistatin by antibody injection resulted in aggravated renal fibrosis, which was accompanied by enhanced Wnt/β-catenin activation. Conversely, overexpression of kallistatin attenuated renal inflammation, interstitial fibroblast activation and tubular injury in UUO mice. The protective effect of kallistatin was due to the suppression of TGF-β and β-catenin signaling pathways and subsequent inhibition of epithelial-to-mesenchymal transition (EMT) in cultured tubular cells. In addition, kallistatin could inhibit TGF-β-mediated fibroblast activation via modulation of Wnt4/β-catenin signaling pathway. Therefore, endogenous kallistatin protects against renal fibrosis by modulating Wnt/β-catenin-mediated EMT and fibroblast activation. Down-regulation of kallistatin in the progression of renal fibrosis underlies its potential as a valuable clinical biomarker and therapeutic target in CKD.
Collapse
Affiliation(s)
- Wai Han Yiu
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Ye Li
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Sarah W Y Lok
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kam Wa Chan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Loretta Y Y Chan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Joseph C K Leung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kar Neng Lai
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - James H L Tsu
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Sydney C W Tang
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| |
Collapse
|
21
|
Tao QR, Chu YM, Wei L, Tu C, Han YY. Antiangiogenic therapy in diabetic nephropathy: A double‑edged sword (Review). Mol Med Rep 2021; 23:260. [PMID: 33655322 PMCID: PMC7893700 DOI: 10.3892/mmr.2021.11899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes and the associated complications are becoming a serious global threat and an increasing burden to human health and the healthcare systems. Diabetic nephropathy (DN) is the primary cause of end-stage kidney disease. Abnormal angiogenesis is well established to be implicated in the morphology and pathophysiology of DN. Factors that promote or inhibit angiogenesis serve an important role in DN. In the present review, the current issues associated with the vascular disease in DN are highlighted, and the challenges in the development of treatments are discussed.
Collapse
Affiliation(s)
- Qian-Ru Tao
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Ying-Ming Chu
- Department of Integrated Traditional Chinese Medicine, Peking University First Hospital, Beijing 100034, P.R. China
| | - Lan Wei
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Chao Tu
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Yuan-Yuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
22
|
Cerqueira A, Romero-Gavilán F, García-Arnáez I, Martinez-Ramos C, Ozturan S, Iloro I, Azkargorta M, Elortza F, Izquierdo R, Gurruchaga M, Goñi I, Suay J. Bioactive zinc-doped sol-gel coating modulates protein adsorption patterns and in vitro cell responses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111839. [PMID: 33579477 DOI: 10.1016/j.msec.2020.111839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/07/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
Zinc is an essential element with an important role in stimulating the osteogenesis and mineralization and suppressing osteoclast differentiation. In this study, new bioactive ZnCl2-doped sol-gel materials were designed to be applied as coatings onto titanium. The biomaterials were physicochemically characterized and the cellular responses evaluated in vitro using MC3T3-E1 osteoblasts and RAW264.7 macrophages. The effect of Zn on the adsorption of human serum proteins onto the material surface was evaluated through nLC-MS/MS. The incorporation of Zn did not affect the crosslinking of the sol-gel network. A controlled Zn2+ release was obtained, reaching values below 10 ppm after 21 days. The materials were no cytotoxic and lead to increased gene expression of ALP, TGF-β, and RUNX2 in the osteoblasts. In macrophages, an increase of IL-1β, TGF-β, and IL-4 gene expression was accompanied by a reduced TNF-α liberation. Proteomic results showed changes in the adsorption patterns of proteins associated with immunological, coagulative, and regenerative functions, in a Zn dose-dependent manner. The variations in protein adsorption might lead to the downregulation of the NF-κB pathway, thus explain the observed biological effects of Zn incorporation into biomaterials. Overall, these coatings demonstrated their potential to promote bone tissue regeneration.
Collapse
Affiliation(s)
- A Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - F Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - I García-Arnáez
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - C Martinez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de Valencia, Camino de Vera, s/n, 46022, Valencia, Spain
| | - S Ozturan
- Department of Periodontology, Faculty of Dentristy, Istanbul Medeniyet University, Istanbul, Turkey
| | - I Iloro
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - M Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - F Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - R Izquierdo
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - M Gurruchaga
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - I Goñi
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - J Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| |
Collapse
|
23
|
Muhammad F, Avalos PN, Mursalin MH, Ma JX, Callegan MC, Lee DJ. Kallistatin Attenuates Experimental Autoimmune Uveitis by Inhibiting Activation of T Cells. Front Immunol 2020; 11:975. [PMID: 32508841 PMCID: PMC7253575 DOI: 10.3389/fimmu.2020.00975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022] Open
Abstract
Experimental autoimmune uveoretinitis (EAU) is a mouse model of human autoimmune uveitis. EAU spontaneously resolves and is marked by ocular autoantigen-specific regulatory immunity in the spleen. Kallikrein binding protein (KBP) or kallistatin is a serine proteinase inhibitor that inhibits angiogenesis and inflammation, but its role in autoimmune uveitis has not been explored. We report that T cells activation is inhibited and EAU is attenuated in human KBP (HKBP) mice with no significant difference in the Treg population that we previously identified both before and after recovery from EAU. Moreover, following EAU immunization HKBP mice have potent ocular autoantigen specific regulatory immunity that is functionally suppressive.
Collapse
Affiliation(s)
- Fauziyya Muhammad
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Priscilla N Avalos
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - M H Mursalin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michelle C Callegan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Darren J Lee
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
24
|
Yang Y, He X, Cheng R, Chen Q, Shan C, Chen L, Ma JX. Diabetes-induced upregulation of kallistatin levels exacerbates diabetic nephropathy via RAS activation. FASEB J 2020; 34:8428-8441. [PMID: 32352602 PMCID: PMC7302980 DOI: 10.1096/fj.201903149r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/28/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
Kallistatin is an inhibitor of tissue kallikrein and also inhibits the Wnt pathway. Its role in diabetic nephropathy (DN) is uncertain. Here we reported that serum kallistatin levels were significantly increased in diabetic patients with DN compared to those in diabetic patients without DN and healthy controls, and positively correlated with urinary albumin excretion. In addition, renal kallistatin levels were significantly upregulated in mouse models of type 1 (Akita, OVE26) and type 2 diabetes (db/db). To unveil the effects of kallistatin on DN and its underlying mechanism, we crossed transgenic mice overexpressing kallistatin with OVE26 mice (KS‐tg/OVE). Kallistatin overexpression exacerbated albuminuria, renal fibrosis, inflammation, and oxidative stress in diabetes. Kallikrein activity was inhibited while the renin‐angiotensin system (RAS) upregulated in the kidney of KS‐tg/OVE mice compared to WT/OVE mice, suggesting a disturbed balance between the RAS and kallikrein‐kinin systems. As shown by immunostaining of endothelial makers, renal vascular densities were decreased accompanied by increased HIF‐1α and erythropoietin levels in the kidneys of KS‐tg/OVE mice. Taken together, high levels of kallistatin exacerbate DN at least partly by inducing RAS overactivation and hypoxia. The present study demonstrated a positive correlation between kallistatin levels and DN, suggesting a potential biomarker for prognosis of DN.
Collapse
Affiliation(s)
- Yanhui Yang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xuemin He
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Endocrinology and Metabolism Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Qian Chen
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Chunyan Shan
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
25
|
He Y, Han Y, Xing J, Zhai X, Wang S, Xin S, Zhang J. Kallistatin correlates with inflammation in abdominal aortic aneurysm and suppresses its formation in mice. Cardiovasc Diagn Ther 2020; 10:107-123. [PMID: 32420091 DOI: 10.21037/cdt.2019.12.08] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Kallistatin (KS), encoded by SERPINA4, was suggested to play a protective role in many cardiovascular diseases. However, its role in the pathogenesis of abdominal aortic aneurysm (AAA) remains unclear. The aim of this study was to examine the potential association of KS with AAA pathogenesis. Methods We examined KS (SERPINA4) expression in human AAA by PCR, immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay (ELISA) and analyzed correlations between kallistain and clinical data. We then analyzed the effect of recombinant KS on AAA formation and the Wingless (Wnt) signaling pathway in a mouse AAA model developed by angiotensin II (AngII) infusion to apolipoprotein E-deficient (ApoE-/-) mice. Results In AAA tissue samples, KS was significantly increased compared with samples from the control group (P<0.001, P<0.001, respectively). Clinically, decreased SERPINA4 expression in AAA tissue samples represented an increased rate of iliac artery aneurysm [odds ratio (OR): 0.017; P=0.040]. And decreased plasma KS level represented a high risk for rupture (OR: 0.837; P=0.034). KS inhibited AAA formation and blocked the Wnt signaling pathway in AngII-infused ApoE-/- mice. Conclusions The present study demonstrates that aberrant changes in KS expression occur in AAA. KS plays an important anti-inflammatory role and showed important clinical correlations in AAA. Decreased KS (SERPINA4) level is a risk factor of AAA rupture. Our pre-clinical animal experiments indicate that treatment with recombination KS suppresses AngII-induced aortic aneurysm formation and might be a new target for the drug therapy of AAA.
Collapse
Affiliation(s)
- Yuchen He
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yanshuo Han
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jia Xing
- Department of Histology and Embryology, China Medical University, Shenyang 110122, China
| | - Xiaoyue Zhai
- Department of Histology and Embryology, China Medical University, Shenyang 110122, China
| | - Shiyue Wang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jian Zhang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
26
|
Wang W, Smits R, Hao H, He C. Wnt/β-Catenin Signaling in Liver Cancers. Cancers (Basel) 2019; 11:E926. [PMID: 31269694 PMCID: PMC6679127 DOI: 10.3390/cancers11070926] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is among the leading global healthcare issues associated with high morbidity and mortality. Liver cancer consists of hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), hepatoblastoma (HB), and several other rare tumors. Progression has been witnessed in understanding the interactions between etiological as well as environmental factors and the host in the development of liver cancers. However, the pathogenesis remains poorly understood, hampering the design of rational strategies aiding in preventing liver cancers. Accumulating evidence demonstrates that aberrant activation of the Wnt/β-catenin signaling pathway plays an important role in the initiation and progression of HCC, CCA, and HB. Targeting Wnt/β-catenin signaling potentiates a novel avenue for liver cancer treatment, which may benefit from the development of numerous small-molecule inhibitors and biologic agents in this field. In this review, we discuss the interaction between various etiological factors and components of Wnt/β-catenin signaling early in the precancerous lesion and the acquired mechanisms to further enhance Wnt/β-catenin signaling to promote robust cancer formation at later stages. Additionally, we shed light on current relevant inhibitors tested in liver cancers and provide future perspectives for preclinical and clinical liver cancer studies.
Collapse
Affiliation(s)
- Wenhui Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam 3015 CN, The Netherlands
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China.
| | - Chaoyong He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
27
|
Wang Z, Liu CH, Huang S, Chen J. Wnt Signaling in vascular eye diseases. Prog Retin Eye Res 2018; 70:110-133. [PMID: 30513356 DOI: 10.1016/j.preteyeres.2018.11.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
The Wnt signaling pathway plays a pivotal role in vascular morphogenesis in various organs including the eye. Wnt ligands and receptors are key regulators of ocular angiogenesis both during the eye development and in vascular eye diseases. Wnt signaling participates in regulating multiple vascular beds in the eye including regression of the hyaloid vessels, and development of structured layers of vasculature in the retina. Loss-of-function mutations in Wnt signaling components cause rare genetic eye diseases in humans such as Norrie disease, and familial exudative vitreoretinopathy (FEVR) with defective ocular vasculature. On the other hand, experimental studies in more prevalent vascular eye diseases, such as wet age-related macular degeneration (AMD), diabetic retinopathy (DR), retinopathy of prematurity (ROP), and corneal neovascularization, suggest that aberrantly increased Wnt signaling is one of the causations for pathological ocular neovascularization, indicating the potential of modulating Wnt signaling to ameliorate pathological angiogenesis in eye diseases. This review recapitulates the key roles of the Wnt signaling pathway during ocular vascular development and in vascular eye diseases, and pharmaceutical approaches targeting the Wnt signaling as potential treatment options.
Collapse
Affiliation(s)
- Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Shuo Huang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States.
| |
Collapse
|
28
|
Ma C, Luo C, Yin H, Zhang Y, Xiong W, Zhang T, Gao T, Wang X, Che D, Fang Z, Li L, Xie J, Huang M, Zhu L, Jiang P, Qi W, Zhou T, Yang Z, Wang W, Ma J, Gao G, Yang X. Kallistatin inhibits lymphangiogenesis and lymphatic metastasis of gastric cancer by downregulating VEGF-C expression and secretion. Gastric Cancer 2018; 21:617-631. [PMID: 29243194 DOI: 10.1007/s10120-017-0787-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tumor-induced lymphangiogenesis and lymphatic metastasis are predominant during the metastasis of many types of cancers. However, the endogenous inhibitors that counterbalance the lymphangiogenesis and lymphatic metastasis of tumors have not been well evaluated. Kallistatin has been recognized as an endogenous angiogenesis inhibitor. METHODS AND RESULTS Our recent study showed for the first time that the lymphatic vessel density (LVD) was reduced in lung and stomach sections from kallistatin-overexpressing transgenic mice. Kallistatin expresses anti-lymphangiogenic activity by inhibiting the proliferation, migration, and tube formation of human lymphatic endothelial cells (hLECs). Therefore, the present study focuses on the relationships of changes in kallistatin expression with the lymphangiogenesis and lymphatic metastasis of gastric cancer and its underlying mechanisms. Our results revealed that the expression of kallistatin in cancer tissues, metastatic lymph nodes, and plasma of gastric cancer patients was significantly downregulated and that the plasma level of kallistatin was negatively associated with the phase of lymph node metastasis. Furthermore, treatment with kallistatin recombinant protein decreased LVD and lymph node metastases in the implanted gastric xenograft tumors of nude mice. Mechanically, kallistatin suppressed the lymphangiogenesis and lymphatic metastasis by downregulating VEGF-C expression and secretion through the LRP6/IKK/IҡB/NF-ҡB signaling pathway in gastric cancer cells. CONCLUSIONS These findings demonstrated that kallistatin functions as an endogenous lymphangiogenesis inhibitor and has an important part in the lymphatic metastasis of gastric cancer.
Collapse
Affiliation(s)
- Caiqi Ma
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chuanghua Luo
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haofan Yin
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenjun Xiong
- Department of Gastrointestinal Surgery, Traditional Chinese Medicine Hospital of Guangdong Province, Guangzhou, China
| | - Ting Zhang
- Department of Clinical Laboratory, Guangzhou First People's Hospital, Guangzhou, China
| | - Tianxiao Gao
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510080, China
| | - Xi Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Di Che
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhenzhen Fang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lei Li
- Reproductive Medicine Center, the Third Hospital Affiliated to Guangzhou Medical University, Guangzhou, China
| | - Jinye Xie
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mao Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liuqing Zhu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ping Jiang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhonghan Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wei Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jianxing Ma
- Department of Physiology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Guoquan Gao
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China. .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,China Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China. .,Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| | - Xia Yang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China. .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-sen University, Guangzhou, 510080, China. .,Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
29
|
Activation of nuclear β-catenin/c-Myc axis promotes oxidative stress injury in streptozotocin-induced diabetic cardiomyopathy. Biochem Biophys Res Commun 2017; 493:1573-1580. [PMID: 28989026 DOI: 10.1016/j.bbrc.2017.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/05/2017] [Indexed: 12/11/2022]
Abstract
Myocardial oxidative stress injury plays a crucial role in the pathogenesis of diabetic cardiomyopathy (DCM). Wnt/β-catenin signaling has been reported to involve in various heart diseases. However, the underlying mechanism associated with β-catenin in DCM remains elusive. This study intended to explore the effect of β-catenin on oxidative damage of DCM by establishing streptozotocin (STZ)-induced diabetic mouse model and hydrogen peroxide (H2O2)-treated myocardial cell model. Cardiac oxidative stress in DCM was detected by measurements of lipid peroxidation and anti-oxidative enzyme activities as well as DHE staining. Nuclear β-catenin activity and oxidative damage degree were measured by western blotting, qPCR, MTT assay and TUNEL staining. Cardiac function and morphology were evaluated by echocardiography and histopathology. Under diabetic oxidative stress or H2O2 stimulation, nuclear β-catenin accumulation upregulated downstream c-Myc and further facilitated DNA damage and p53-mediated apoptosis as well as cell viability reduction, followed by phenotypic changes of cardiac dysfunction, interstitial fibrosis deposition and myocardial atrophy. Conversely, through directly inhibiting nuclear β-catenin/c-Myc axis, not only did siRNA knockdown of β-catenin or c-Myc attenuate cell injury in H2O2-stimulated cardiomyocytes, but also diabetic cardiac-specific β-catenin-knockout mice displayed the same prevention of heart injury as insulin-treated diabetic mice. The present study demonstrated that activated nuclear β-catenin/c-Myc axis was responsible for oxidative cardiac impairment of DCM. Therefore, repressing functional nuclear β-catenin may provide a hopeful therapeutic strategy for DCM.
Collapse
|
30
|
Chen Q, Ma JX. Canonical Wnt signaling in diabetic retinopathy. Vision Res 2017; 139:47-58. [PMID: 28545982 DOI: 10.1016/j.visres.2017.02.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 11/16/2022]
Abstract
Diabetic retinopathy (DR) is a common eye complication of diabetes, and the pathogenic mechanism of DR is still under investigation. The canonical Wnt signaling pathway is an evolutionarily conserved pathway that plays fundamental roles in embryogenesis and adult tissue homeostasis. Wnt signaling regulates expression of multiple genes that control retinal development and eye organogenesis, and dysregulated Wnt signaling plays pathophysiological roles in many ocular diseases, including DR. This review highlights recent progress in studies of Wnt signaling in DR. We discuss Wnt signaling regulation in the retina and dysregulation of Wnt signaling associated with ocular diseases with an emphasis on DR. We also discuss the therapeutic potential of modulating Wnt signaling in DR. Continued studies in this field will advance our current understanding on DR and contribute to the development of new treatments.
Collapse
Affiliation(s)
- Qian Chen
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Jian-Xing Ma
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.
| |
Collapse
|
31
|
Gateva A, Assyov Y, Velikova T, Kamenov Z. Increased kallistatin levels in patients with obesity and prediabetes compared to normal glucose tolerance. Endocr Res 2017; 42:163-168. [PMID: 28406338 DOI: 10.1080/07435800.2017.1286671] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Kallistatin is a member of serine protease inhibitors (SERPIN) family, which has various functions such as regulation of cardiovascular function and blood vessels development. Its levels are elevated in patients with type 1 and type 2 diabetes with chronic diabetic complications. The aim of the present study was to compare serum kallistatin levels between obese subjects with prediabetes and with normal glucose tolerance. METHODS In this study we included 80 subjects at mean age of 50.4 ± 10.6 years, divided into two age and BMI-matched groups - group 1 with obesity without glycemic disturbances (n = 41) and group 2 with obesity and prediabetes (n = 39). Oral glucose tolerance test with measurement of immunoreactive insulin was performed in all participants and levels of kallistatin were measured using ELISA method. RESULTS We found significantly higher levels of kallistatin in patients with prediabetes compared to controls (data are presented as median (min; max) because data were not normally distributed) (6.3 (4.4; 9.0) vs. 5.6 (3.1; 8.7) ng/ml; p = 0.022) and in patients with metabolic syndrome compared to those without (6.0 (4.9; 9.0) vs. 5.5 (3.1; 7.7); p = 0.006), but the levels were similar in patients with and without insulin resistance. CONCLUSIONS The levels of kallistatin are higher in individuals with prediabetes, but are similar in subjects with and without insulin resistance, which indicates that the main factor for its increased levels may be hyperglycemia and not insulin sensitivity state.
Collapse
Affiliation(s)
- Antoaneta Gateva
- a Clinic of Endocrinology, University Hospital "Alexandrovska" , Department of Internal Diseases, Medical University - Sofia , Sofia , Bulgaria
| | - Yavor Assyov
- a Clinic of Endocrinology, University Hospital "Alexandrovska" , Department of Internal Diseases, Medical University - Sofia , Sofia , Bulgaria
| | - Tsvetelina Velikova
- b Laboratory of Clinical Immunology, University Hospital "St. Ivan Rilski" , Department of Clinical Laboratory and Clinical Immunology, Medical University - Sofia , Sofia , Bulgaria
| | - Zdravko Kamenov
- a Clinic of Endocrinology, University Hospital "Alexandrovska" , Department of Internal Diseases, Medical University - Sofia , Sofia , Bulgaria
| |
Collapse
|
32
|
Chao J, Li P, Chao L. Kallistatin suppresses cancer development by multi-factorial actions. Crit Rev Oncol Hematol 2017; 113:71-78. [PMID: 28427524 PMCID: PMC5441310 DOI: 10.1016/j.critrevonc.2017.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 01/07/2023] Open
Abstract
Kallistatin was first identified in human plasma as a tissue kallikrein-binding protein and a serine proteinase inhibitor. Kallistatin via its two structural elements regulates differential signaling cascades, and thus a wide spectrum of biological functions. Kallistatin's active site is essential for: inhibiting tissue kallikrein's activity; stimulating endothelial nitric oxide synthase and sirtuin 1 expression and activation; and modulating the synthesis of the microRNAs, miR-34a, miR-21 and miR-203. Kallistatin's heparin-binding site is crucial for antagonizing the signaling pathways of vascular endothelial growth factor, tumor necrosis factor-α, Wnt, transforming growth factor-β and epidermal growth factor. Circulating kallistatin levels are markedly reduced in patients with prostate and colon cancer. Kallistatin administration attenuates angiogenesis, inflammation, tumor growth and invasion in animal models and cultured cells. Therefore, tumor progression may be substantially suppressed by kallistatin's pleiotropic activities. In this review, we will discuss the role and mechanisms of kallistatin in the regulation of cancer development.
Collapse
Affiliation(s)
- Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| | - Pengfei Li
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Lee Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
33
|
Transgenic expression of a canonical Wnt inhibitor, kallistatin, is associated with decreased circulating CD19 + B lymphocytes in the peripheral blood. Int J Hematol 2017; 105:748-757. [PMID: 28299632 DOI: 10.1007/s12185-017-2205-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 02/21/2017] [Accepted: 02/28/2017] [Indexed: 12/28/2022]
Abstract
Members of the family of serine proteinase inhibitors, such as kallistatin, have been shown to inhibit canonical Wnt-TCF/LEF-β-catenin signaling via their interactions with the Wnt co-receptor LRP6. Yet the effects of transgenic overexpression of anti-Wnt serpins on hematopoiesis and lymphopoiesis are not well known. We studied the effects of human kallistatin (SERPINA4) on Wnt reporter activity in various cell types throughout the hematopoietic system and associated impacts on circulating white blood cell profiles. Transgenic overexpression of kallistatin suppressed Wnt-TCF/LEF-β-catenin signaling in bone marrow, as demonstrated using a Wnt reporter mouse. Further, kallistatin overexpression and treatment were associated with reduced Wnt-TCF/LEF-β-catenin activity in CD34+ c-kit+ bone marrow cells and CD19+ B lymphocytes, with reduced levels of these populations in bone marrow and peripheral circulation, respectively. The presence of CD3+CD4+, CD3+CD8+, and CD3- NK1.1+ T lymphocytes were not significantly affected. Our data suggest that overexpression of kallistatin interferes with lymphopoiesis, ultimately impacting the level of circulating CD19+ B lymphocytes.
Collapse
|
34
|
Madonna R, Balistreri CR, Geng YJ, De Caterina R. Diabetic microangiopathy: Pathogenetic insights and novel therapeutic approaches. Vascul Pharmacol 2017; 90:1-7. [PMID: 28137665 DOI: 10.1016/j.vph.2017.01.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/26/2017] [Indexed: 12/11/2022]
Abstract
Diabetic microangiopathy, including retinopathy, is characterized by abnormal growth and leakage of small blood vessels, resulting in local edema and functional impairment of the depending tissues. Mechanisms leading to the impairment of microcirculation in diabetes are multiple and still largely unclear. However, a dysregulated vascular regeneration appears to play a key role. In addition, oxidative and hyperosmolar stress, as well as the activation of inflammatory pathways triggered by advanced glycation end-products and toll-like receptors, have been recognized as key underlying events. Here, we review recent knowledge on cellular and molecular pathways of microvascular disease in diabetes. We also highlight how new insights into pathogenic mechanisms of vascular damage in diabetes may indicate new targets for prevention and treatment.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Center of Excellence on Aging (CesiMet), Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy; The Texas Heart Institute, Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Carmela Rita Balistreri
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Yong-Jian Geng
- The Texas Heart Institute, Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Raffaele De Caterina
- Center of Excellence on Aging (CesiMet), Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
35
|
Yiu WH, Wong DWL, Wu HJ, Li RX, Yam I, Chan LYY, Leung JCK, Lan HY, Lai KN, Tang SCW. Kallistatin protects against diabetic nephropathy in db/db mice by suppressing AGE-RAGE-induced oxidative stress. Kidney Int 2017; 89:386-98. [PMID: 26536000 DOI: 10.1038/ki.2015.331] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/05/2015] [Accepted: 09/10/2015] [Indexed: 01/03/2023]
Abstract
Kallistatin is a serine protease inhibitor with anti-inflammatory, anti-angiogenic, and anti-oxidative properties. Since oxidative stress plays a critical role in the pathogenesis of diabetic nephropathy, we studied the effect and mechanisms of action of kallistatin superinduction. Using ultrasound-microbubble-mediated gene transfer, kallistatin overexpression was induced in kidney tubules. In db/db mice, kallistatin overexpression reduced serum creatinine and BUN levels, ameliorated glomerulosclerosis and tubulointerstitial injury, and attenuated renal fibrosis by inhibiting TGF-β signaling. Additionally, downstream PAI-1 and collagens I and IV expression were reduced and kallistatin partially suppressed renal inflammation by inhibiting NF-κB signaling and decreasing tissue kallikrein activity. Kallistatin lowered blood pressure and attenuated oxidative stress as evidenced by suppressed levels of NADPH oxidase 4, and oxidative markers (nitrotyrosine, 8-hydroxydeoxyguanosine, and malondialdehyde) in diabetic renal tissue. Kallistatin also inhibited RAGE expression in the diabetic kidney and AGE-stimulated cultured proximal tubular cells. Reduced AGE-induced reactive oxygen species generation reflected an anti-oxidative mechanism via the AGE-RAGE-reactive oxygen species axis. These results indicate a renoprotective role of kallistatin against diabetic nephropathy by multiple mechanisms including suppression of oxidative stress, anti-fibrotic and anti-inflammatory actions, and blood pressure lowering.
Collapse
|
36
|
Li J, Krishna SM, Golledge J. The Potential Role of Kallistatin in the Development of Abdominal Aortic Aneurysm. Int J Mol Sci 2016; 17:ijms17081312. [PMID: 27529213 PMCID: PMC5000709 DOI: 10.3390/ijms17081312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a vascular condition that causes permanent dilation of the abdominal aorta, which can lead to death due to aortic rupture. The only treatment for AAA is surgical repair, and there is no current drug treatment for AAA. Aortic inflammation, vascular smooth muscle cell apoptosis, angiogenesis, oxidative stress and vascular remodeling are implicated in AAA pathogenesis. Kallistatin is a serine proteinase inhibitor, which has been shown to have a variety of functions, potentially relevant in AAA pathogenesis. Kallistatin has been reported to have inhibitory effects on tumor necrosis factor alpha (TNF-α) signaling induced oxidative stress and apoptosis. Kallistatin also inhibits vascular endothelial growth factor (VEGF) and Wnt canonical signaling, which promote inflammation, angiogenesis, and vascular remodeling in various pre-clinical experimental models. This review explores the potential protective role of kallistatin in AAA pathogenesis.
Collapse
Affiliation(s)
- Jiaze Li
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 4811 Townsville, Australia.
| | - Smriti Murali Krishna
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 4811 Townsville, Australia.
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 4811 Townsville, Australia.
- Department of Vascular and Endovascular Surgery, The Townsville Hospital, 4811 Townsville, Australia.
| |
Collapse
|
37
|
Affiliation(s)
- Julie Chao
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston (J.C., L.C.); and Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City (G.B.).
| | - Grant Bledsoe
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston (J.C., L.C.); and Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City (G.B.)
| | - Lee Chao
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston (J.C., L.C.); and Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City (G.B.)
| |
Collapse
|
38
|
Gao X, Ma K, Lu N, Xu Y, Hong T, Peng X. Elevated LRP6 levels correlate with vascular endothelial growth factor in the vitreous of proliferative diabetic retinopathy. Mol Vis 2015; 21:665-72. [PMID: 26120271 PMCID: PMC4462953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/10/2015] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To measure intravitreal low-density lipoprotein receptor-related protein 6 (LRP6) and vascular endothelial growth factor (VEGF) levels in the eyes of patients with proliferative diabetic retinopathy (PDR) and to observe their correlation with PDR activity. METHODS Fifty-five eyes of 55 patients were enrolled consecutively. Vitreous samples from 30 eyes with PDR and 25 eyes with nondiabetic macular disease were collected. Active PDR was present in 16 patients and quiescent PDR in 14 patients according to retinal neovascularization. LRP6 and VEGF concentrations in samples were determined using enzyme-linked immunosorbent assay (ELISA). RESULTS ELISA revealed significant increases in the vitreous levels of VEGF in eyes affected with PDR compared to the controls (p<0.001). The mean concentrations of LRP6 were also higher in the vitreous samples from patients with PDR compared to the nondiabetic controls: 39.85 ng/ml and 15.48 ng/ml, respectively (p=0.002). In addition, the vitreous levels of LRP6 and VEGF were significantly higher in active PDR than in quiescent PDR (p=0.022 and p=0.015, respectively). Furthermore, a significant positive correlation was found between intravitreal levels of LRP6 and VEGF in patients with PDR (r=0.567, p=0.001). However, comparison of patients with PDR with controls revealed that the plasma levels of LRP6 were not significantly different between the two groups (p=0.636). CONCLUSIONS LRP6 and VEGF levels in the vitreous body from patients with PDR were increased and correlated mutually. LRP6 may be a good diagnostic biomarker and a new therapeutic target for PDR.
Collapse
Affiliation(s)
- Xinxiao Gao
- Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China,Department of Ophthalmology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Kai Ma
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ning Lu
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yongsheng Xu
- Clinical Lab of Tissue&Cell Research Center, Department of Biotech Treatment, Logistics College of Chinese People's Armed Police Force, Tianjin, China
| | - Tingting Hong
- Department of Ophthalmology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Peng
- Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
MicroRNA-184 modulates canonical Wnt signaling through the regulation of frizzled-7 expression in the retina with ischemia-induced neovascularization. FEBS Lett 2015; 589:1143-1149. [PMID: 25796186 DOI: 10.1016/j.febslet.2015.03.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 01/24/2023]
Abstract
Aberrant activation of Wnt signaling contributes to ischemia-induced retinal neovascularization in oxygen-induced retinopathy (OIR), although the underlying mechanism is so far unclear. Here, we show that microRNA-184 (miR-184) is significantly down-regulated in the retina of OIR mice, and miR-184 negatively modulates Wnt signaling both in vivo and in vitro. Furthermore, we show that the Wnt receptor, frizzled-7, is a downstream target of miR-184, and delivery of miR-184 mimic inhibits Wnt signaling in the OIR retina. These results suggest that decreased levels of miR-184 are responsible, at least in part, for the aberrant activation of Wnt signaling in ischemia-induced retinal neovascularization.
Collapse
|
40
|
Abstract
The prevalence of diabetes mellitus and obesity continues to increase globally. Diabetic vascular complications are the main chronic diabetic complications and associated with mortality and disability. Angiogenesis is a key pathological characteristic of diabetic microvascular complications. However, there are two tissue-specific paradoxical changes in the angiogenesis in diabetic microvascular complications: an excessive uncontrolled formation of premature blood vessels in some tissues, such as the retina, and a deficiency in the formation of small blood vessels in peripheral tissues, such as the skin. This review will discuss the paradoxical phenomena of angiogenesis and its underlying mechanism in obesity, diabetes and diabetic complications.
Collapse
Affiliation(s)
| | - Jian-xing Ma
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
41
|
Wang Z, Cheng R, Lee K, Tyagi P, Ding L, Kompella UB, Chen J, Xu X, Ma JX. Nanoparticle-mediated expression of a Wnt pathway inhibitor ameliorates ocular neovascularization. Arterioscler Thromb Vasc Biol 2015; 35:855-64. [PMID: 25657312 DOI: 10.1161/atvbaha.114.304627] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The deficiency of very low-density lipoprotein receptor resulted in Wnt signaling activation and neovascularization in the retina. The present study sought to determine whether the very low-density lipoprotein receptor extracellular domain (VLN) is responsible for the inhibition of Wnt signaling in ocular tissues. APPROACH AND RESULTS A plasmid expressing the soluble VLN was encapsulated with poly(lactide-co-glycolide acid) to form VLN nanoparticles (VLN-NP). Nanoparticles containing a plasmid expressing the low-density lipoprotein receptor extracellular domain nanoparticle were used as negative control. MTT, modified Boyden chamber, and Matrigel (™) assays were used to evaluate the inhibitory effect of VLN-NP on Wnt3a-stimulated endothelial cell proliferation, migration, and tube formation. Vldlr(-/-) mice, oxygen-induced retinopathy, and alkali burn-induced corneal neovascularization models were used to evaluate the effect of VLN-NP on ocular neovascularization. Wnt reporter mice (BAT-gal), Western blotting, and luciferase assay were used to evaluate Wnt pathway activity. Our results showed that VLN-NP specifically inhibited Wnt3a-induced endothelial cell proliferation, migration, and tube formation. Intravitreal injection of VLN-NP inhibited abnormal neovascularization in Vldlr(-/-), oxygen-induced retinopathy, and alkali burn-induced corneal neovascularization models, compared with low-density lipoprotein receptor extracellular domain nanoparticle. VLN-NP significantly inhibited the phosphorylation of low-density lipoprotein receptor-related protein 6, the accumulation of β-catenin, and the expression of vascular endothelial growth factor in vivo and in vitro. CONCLUSIONS Taken together, these results suggest that the soluble VLN is a negative regulator of the Wnt pathway and has antiangiogenic activities. Nanoparticle-mediated expression of VLN may thus represent a novel therapeutic approach to treat pathological ocular angiogenesis and potentially other vascular diseases affected by Wnt signaling.
Collapse
Affiliation(s)
- Zhongxiao Wang
- From the Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China (Z.W., X.X.); Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City (Z.W., R.C., K.L., L.D., J.-x.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora (P.T., U.B.K.); Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China (L.D.); and Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (J.C.)
| | - Rui Cheng
- From the Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China (Z.W., X.X.); Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City (Z.W., R.C., K.L., L.D., J.-x.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora (P.T., U.B.K.); Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China (L.D.); and Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (J.C.)
| | - Kyungwon Lee
- From the Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China (Z.W., X.X.); Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City (Z.W., R.C., K.L., L.D., J.-x.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora (P.T., U.B.K.); Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China (L.D.); and Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (J.C.)
| | - Puneet Tyagi
- From the Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China (Z.W., X.X.); Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City (Z.W., R.C., K.L., L.D., J.-x.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora (P.T., U.B.K.); Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China (L.D.); and Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (J.C.)
| | - Lexi Ding
- From the Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China (Z.W., X.X.); Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City (Z.W., R.C., K.L., L.D., J.-x.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora (P.T., U.B.K.); Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China (L.D.); and Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (J.C.)
| | - Uday B Kompella
- From the Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China (Z.W., X.X.); Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City (Z.W., R.C., K.L., L.D., J.-x.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora (P.T., U.B.K.); Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China (L.D.); and Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (J.C.)
| | - Jing Chen
- From the Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China (Z.W., X.X.); Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City (Z.W., R.C., K.L., L.D., J.-x.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora (P.T., U.B.K.); Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China (L.D.); and Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (J.C.)
| | - Xun Xu
- From the Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China (Z.W., X.X.); Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City (Z.W., R.C., K.L., L.D., J.-x.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora (P.T., U.B.K.); Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China (L.D.); and Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (J.C.).
| | - Jian-Xing Ma
- From the Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China (Z.W., X.X.); Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City (Z.W., R.C., K.L., L.D., J.-x.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora (P.T., U.B.K.); Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China (L.D.); and Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (J.C.).
| |
Collapse
|
42
|
Familial exudative vitreoretinopathy and related retinopathies. Eye (Lond) 2014; 29:1-14. [PMID: 25323851 DOI: 10.1038/eye.2014.70] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 03/05/2014] [Indexed: 12/24/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a rare inherited disorder of retinal angiogenesis. Cases can be autosomal dominant, autosomal recessive, or X-linked. FEVR patients have an avascular peripheral retina which, depending on the degree of ischaemia, causes the secondary complications of the disease. Expressivity may be asymmetric and is highly variable. Five genes have been identified that when mutated, cause FEVR; NDP (X-linked), FZD4 (autosomal dominant and recessive), LRP5 (autosomal dominant and recessive), TSPAN12 (autosomal dominant and recessive), and ZNF408 (autosomal dominant). Four of these genes have been shown to have a central role in Norrin/Frizzled4 signalling, suggesting a critical role for this pathway in retinal angiogenesis. In addition to the ocular features, LRP5 mutations can cause osteopenia and osteoporosis. All FEVR patients in whom molecular testing is not easily accessible should have dual energy X-ray absorptiometry (DEXA) scans to assess bone mineral density, as treatment can be initiated to reduce the risk of bone fractures.
Collapse
|
43
|
Moran E, Ding L, Wang Z, Cheng R, Chen Q, Moore R, Takahashi Y, Ma JX. Protective and antioxidant effects of PPARα in the ischemic retina. Invest Ophthalmol Vis Sci 2014; 55:4568-76. [PMID: 24825105 DOI: 10.1167/iovs.13-13127] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Previous studies have demonstrated that peroxisome proliferator-activated receptor-alpha (PPARα) agonists have therapeutic effects in diabetic retinopathy, although the mechanism of action remains incompletely understood. The purpose of this study was to evaluate PPARα's protective effects in the ischemic retina, and to delineate its molecular mechanism of action. METHODS For the oxygen-induced retinopathy (OIR) model, wild-type (WT), and PPARα knockout (PPARα(-/-)) mice were exposed to 75% O₂ from postnatal day 7 (P7) to P12 and treated with the PPARα agonist fenofibric acid (Feno-FA) from P12 to P16. At P17, the effects of Feno-FA on retinal glial fibrillary acidic protein (GFAP) expression, apoptotic DNA cleavage, and TUNEL labeling were analyzed. Cultured retinal cells were exposed to CoCl₂ to induce hypoxia, and TUNEL staining and 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein dye were used to measure apoptosis and reactive oxygen species (ROS) generation. Western blotting was used to measure GFAP levels and cell signaling. RESULTS Feno-FA decreased retinal apoptosis and oxidative stress in WT but not PPARα(-/-) OIR mice. Peroxisome proliferator-activated receptor-alpha knockout OIR mice showed increased retinal cell death and glial activation in comparison to WT OIR mice. Feno-FA treatment and PPARα overexpression protected cultured retinal cells from hypoxic cell death and decreased ROS levels. Nuclear hypoxia-inducible factor-α (HIF-1α) and nicotine adenine dinucleotide phosphate oxidase-4 (Nox 4) were increased in OIR retinas and downregulated by Feno-FA in WT but not in PPARα(-/-) mice. CONCLUSIONS Peroxisome proliferator-activated receptor-alpha has a potent antiapoptotic effect in the ischemic retina. This protective effect may be mediated in part through downregulation of HIF-1α/Nox 4 and consequently alleviation of oxidative stress.
Collapse
Affiliation(s)
- Elizabeth Moran
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Lexi Ding
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhongxiao Wang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Qian Chen
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Robert Moore
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Yusuke Takahashi
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Jian-xing Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
44
|
Elevated circulation levels of an antiangiogenic SERPIN in patients with diabetic microvascular complications impair wound healing through suppression of Wnt signaling. J Invest Dermatol 2014; 134:1725-1734. [PMID: 24463424 PMCID: PMC4065799 DOI: 10.1038/jid.2014.40] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/08/2013] [Accepted: 12/24/2013] [Indexed: 11/29/2022]
Abstract
Wound healing, angiogenesis and hair follicle maintenance are often impaired in the skin of diabetic patients, but the pathogenesis has not been well understood. Here, we report that circulation levels of kallistatin, a member of the serine proteinase inhibitor (SERPIN) superfamily with anti-angiogenic activities, were elevated in Type 2 diabetic patients with diabetic vascular complications. To test the hypothesis that elevated kallistatin levels could contribute to a wound healing deficiency via inhibition of Wnt/β-catenin signaling, we generated kallistatin-transgenic (KS-TG) mice. KS-TG mice had reduced cutaneous hair follicle density, microvascular density, and panniculus adiposus layer thickness as well as altered skin microvascular hemodynamics and delayed cutaneous wound healing. Using Wnt reporter mice, our results showed that Wnt/β-catenin signaling is suppressed in dermal endothelium and hair follicles in KS-TG mice. Lithium, a known activator of β-catenin via inhibition of glycogen synthase kinase-3β, reversed the inhibition of Wnt/β-catenin signaling by kallistatin and rescued the wound healing deficiency in KS-TG mice. These observations suggest that elevated circulating anti-angiogenic serpins in diabetic patients may contribute to impaired wound healing through inhibition of Wnt/β-catenin signaling. Activation of Wnt/β-catenin signaling, at a level downstream of Wnt receptors, may ameliorate the wound healing deficiency in diabetic patients.
Collapse
|
45
|
Affiliation(s)
- Ling Zhao
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology and Shiley Eye Center, and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California
| | - Sherrina H. Patel
- Department of Ophthalmology and Shiley Eye Center, and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California
| | - Jacqueline Pei
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology and Shiley Eye Center, and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California
| | - Kang Zhang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology and Shiley Eye Center, and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California
- Veterans Administration Healthcare System, San Diego, California
- Corresponding author: Kang Zhang,
| |
Collapse
|
46
|
Liu X, McBride J, Zhou Y, Liu Z, Ma JX. Regulation of endothelial progenitor cell release by Wnt signaling in bone marrow. Invest Ophthalmol Vis Sci 2013; 54:7386-94. [PMID: 24130179 DOI: 10.1167/iovs.13-13163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Endothelial progenitor cells (EPC) have been shown to participate in ischemia-induced retinal neovascularization (NV). Overactivation of Wnt signaling has a pathogenic role in ischemia-induced retinal NV. The purpose of this study is to determine whether Wnt signaling regulates EPC release. METHODS Oxygen-induced retinopathy (OIR) was used as a model of retinal NV and Wnt pathway activation. The EPC, marked as c-Kit(+)/Tie-2(+) cells in the peripheral blood and bone marrow, were quantified using flow cytometry following immunolabeling. The Wnt signaling activity was evaluated by measuring nonphosphorylated β-catenin levels and X-gal staining in the Wnt reporter mice (Bat-gal mice). RESULTS The c-Kit(+)/Tie-2(+) cells were increased significantly in the peripheral blood and bone marrow of mice with OIR, compared to non-OIR mice. Overexpression of kallistatin, an endogenous inhibitor of the Wnt pathway, in kallistatin transgenic (kallistatin-TG) mice with OIR attenuated the increases of c-Kit(+)/Tie-2(+) cells in the peripheral blood and bone marrow, compared to WT mice with OIR. When the Bat-gal mice were crossed with kallistatin-TG mice, kallistatin overexpression suppressed the OIR-induced increases of X-gal-positive cells in the retinas and bone marrow, suggesting inhibition of Wnt signaling in these tissues. Furthermore, intraperitoneal injection of LiCl, a Wnt signaling activator, increased c-Kit(+)/Tie-2(+) cells in the peripheral blood of normal mice. Consistently, LiCl activated Wnt signaling in the retina and bone marrow cells in Bat-gal mice. CONCLUSIONS The Wnt signaling pathway has an important role in EPC release during retinal NV in OIR.
Collapse
Affiliation(s)
- Xiaochen Liu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | | | | | | | | |
Collapse
|