1
|
Zhong J, Ji X, Zhao Y, Jia Y, Song C, Lv J, Chen Y, Zhou Y, Lv X, Yang Z, Zhang Z, Xu Q, Wang W, Chen H, Cui A, Li Y, Meng ZX. Identification of BAF60b as a Chromatin-Remodeling Checkpoint of Diet-Induced Fatty Liver Disease. Diabetes 2024; 73:1615-1630. [PMID: 39046829 PMCID: PMC11417444 DOI: 10.2337/db24-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Overnutrition has gradually become the primary causative factor in nonalcoholic fatty liver disease (NAFLD). However, how nutritional signals are integrated to orchestrate the transcriptional programs important for NAFLD progression remains poorly understood. We identified hepatic BAF60b as a lipid-sensitive subunit of the switch/sucrose nonfermentable chromatin-remodeling complex that is negatively associated with liver steatosis in mice and humans. Hepatic BAF60b deficiency promotes high-fat diet (HFD)-induced liver steatosis in mice, whereas transgenic expression of BAF60b in the liver attenuates HFD-induced obesity and NAFLD, both accompanied by a marked regulation of peroxisome proliferator-activated receptor γ (PPARγ) expression. Mechanistically, through motif analysis of liver assay for transposase-accessible chromatin sequencing and multiple validation experiments, we identified C/EBPβ as the transcription factor that interacts with BAF60b to suppress Pparγ gene expression, thereby controlling hepatic lipid accumulation and NAFLD progression. This work identifies hepatic BAF60b as a negative regulator of liver steatosis through C/EBPβ-dependent chromatin remodeling. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Jing Zhong
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Xiuyu Ji
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yali Zhao
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, China
| | - Yihe Jia
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Churui Song
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghuan Lv
- Department of Pathology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yuying Chen
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Yanping Zhou
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xue Lv
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhuoyin Yang
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zheyu Zhang
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiyao Xu
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weihong Wang
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Haiyan Chen
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Aoyuan Cui
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhuo-Xian Meng
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Liu X, Liu K, Wang Y, Meng X, Wang Q, Tao S, Xu Q, Shen X, Gao X, Hong S, Jin H, Wang JQ, Wang D, Lu L, Meng Z, Wang L. SWI/SNF chromatin remodeling factor BAF60b restrains inflammatory diseases by affecting regulatory T cell migration. Cell Rep 2024; 43:114458. [PMID: 38996070 DOI: 10.1016/j.celrep.2024.114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Regulatory T (Treg) cells play a critical regulatory role in the immune system by suppressing excessive immune responses and maintaining immune balance. The effective migration of Treg cells is crucial for controlling the development and progression of inflammatory diseases. However, the mechanisms responsible for directing Treg cells into the inflammatory tissue remain incompletely elucidated. In this study, we identified BAF60b, a subunit of switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complexes, as a positive regulator of Treg cell migration that inhibits the progression of inflammation in experimental autoimmune encephalomyelitis (EAE) and colitis animal models. Mechanistically, transcriptome and genome-wide chromatin-landscaped analyses demonstrated that BAF60b interacts with the transcription factor RUNX1 to promote the expression of CCR9 on Treg cells, which in turn affects their ability to migrate to inflammatory tissues. Our work provides insights into the essential role of BAF60b in regulating Treg cell migration and its impact on inflammatory diseases.
Collapse
MESH Headings
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Animals
- Cell Movement
- Mice
- Mice, Inbred C57BL
- Inflammation/pathology
- Inflammation/metabolism
- Chromatin Assembly and Disassembly
- Chromosomal Proteins, Non-Histone/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Humans
- Transcription Factors/metabolism
- Core Binding Factor Alpha 2 Subunit/metabolism
- Core Binding Factor Alpha 2 Subunit/genetics
- Colitis/metabolism
- Colitis/pathology
- Colitis/immunology
- Colitis/genetics
Collapse
Affiliation(s)
- Xiaoqian Liu
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China; Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kuai Liu
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China; Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuxi Wang
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyu Meng
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China; Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qianqian Wang
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - Sijue Tao
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - Qianying Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Shen
- Co-Facility Center, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xianzhi Gao
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311100, China; Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shenghui Hong
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - Huihui Jin
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - James Q Wang
- Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China
| | - Di Wang
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Linrong Lu
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou 310009, China
| | - Lie Wang
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311100, China; Zhejiang University School of Medicine, Hangzhou 310058, China; Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
3
|
Hu X, Sun M, Chen Q, Zhao Y, Liang N, Wang S, Yin P, Yang Y, Lam SM, Zhang Q, Tudiyusufu A, Gu Y, Wan X, Chen M, Li H, Zhang X, Shui G, Fu S, Zhang L, Tang P, Wong CCL, Zhang Y, Zhu D. Skeletal muscle-secreted DLPC orchestrates systemic energy homeostasis by enhancing adipose browning. Nat Commun 2023; 14:7916. [PMID: 38036537 PMCID: PMC10689447 DOI: 10.1038/s41467-023-43402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
MyoD is a skeletal muscle-specifically expressed transcription factor and plays a critical role in regulating myogenesis during muscle development and regeneration. However, whether myofibers-expressed MyoD exerts its metabolic function in regulating whole body energy homeostasis in vivo remains largely unknown. Here, we report that genetic deletion of Myod in male mice enhances the oxidative metabolism of muscle and, intriguingly, renders the male mice resistant to high fat diet-induced obesity. By performing lipidomic analysis in muscle-conditioned medium and serum, we identify 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) as a muscle-released lipid that is responsible for MyoD-orchestrated body energy homeostasis in male Myod KO mice. Functionally, the administration of DLPC significantly ameliorates HFD-induced obesity in male mice. Mechanistically, DLPC is found to induce white adipose browning via lipid peroxidation-mediated p38 signaling in male mice. Collectively, our findings not only uncover a novel function of MyoD in controlling systemic energy homeostasis through the muscle-derived lipokine DLPC but also suggest that the DLPC might have clinical potential for treating obesity in humans.
Collapse
Affiliation(s)
- Xiaodi Hu
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Mingwei Sun
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Qian Chen
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yixia Zhao
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Na Liang
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Pengbin Yin
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Yuanping Yang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Sin Man Lam
- LipidALL Technologies Company Limited, Changzhou, 213022, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qianying Zhang
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Alimujiang Tudiyusufu
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yingying Gu
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xin Wan
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Meihong Chen
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Hu Li
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Xiaofei Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Guanghou Shui
- LipidALL Technologies Company Limited, Changzhou, 213022, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Suneng Fu
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Licheng Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Peifu Tang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Yong Zhang
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| | - Dahai Zhu
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| |
Collapse
|
4
|
Sun J, Yan Q, Zhang Z, Xu T, Gong Y, Li W, Mai K, Ai Q. Exploring the role of SWI/SNF complex subunit BAF60c in lipid metabolism and inflammation in fish. iScience 2023; 26:108207. [PMID: 37942006 PMCID: PMC10628743 DOI: 10.1016/j.isci.2023.108207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/26/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Chromatin remodeling plays an important role in regulating gene transcription, in which chromatin remodeling complex is a crucial aspect. Brg1/Brm-associated factor 60c (BAF60c) subunit forms a bridge between chromatin remodeling complexes and transcription factors in mammals; hence, it has received extensive attention. However, the roles of BAF60c in fish remain largely unexplored. In this study, we identified BAF60c-interacting proteins by using HIS-pull-down and LC-MS/MS analysis in fish. Subsequently, the RNA-seq analysis was performed to identify the overall effects of BAF60c. Then, the function of BAF60c was verified through BAF60c knockdown and overexpression experiments. We demonstrated for the first time that BAF60c interacts with glucose-regulated protein 78 (GRP78) and regulates lipid metabolism, endoplasmic reticulum (ER) stress, and inflammation. Knockdown of BAF60c reduces fatty acid biosynthesis, ER stress, and inflammation. In conclusion, the results enriched BAF60c-interacting protein network and explored the function of BAF60c in lipid metabolism and inflammation in fish.
Collapse
Affiliation(s)
- Jie Sun
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
| | - Qiuxin Yan
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
| | - Zhihao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
| | - Ting Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
| | - Ye Gong
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
| | - Weijia Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People’s Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People’s Republic of China
| |
Collapse
|
5
|
Jin L, Han S, Lv X, Li X, Zhang Z, Kuang H, Chen Z, Lv CA, Peng W, Yang Z, Yang M, Mi L, Liu T, Ma S, Qiu X, Wang Q, Pan X, Shan P, Feng Y, Li J, Wang F, Xie L, Zhao X, Fu JF, Lin JD, Meng ZX. The muscle-enriched myokine Musclin impairs beige fat thermogenesis and systemic energy homeostasis via Tfr1/PKA signaling in male mice. Nat Commun 2023; 14:4257. [PMID: 37468484 PMCID: PMC10356794 DOI: 10.1038/s41467-023-39710-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Skeletal muscle and thermogenic adipose tissue are both critical for the maintenance of body temperature in mammals. However, whether these two tissues are interconnected to modulate thermogenesis and metabolic homeostasis in response to thermal stress remains inconclusive. Here, we report that human and mouse obesity is associated with elevated Musclin levels in both muscle and circulation. Intriguingly, muscle expression of Musclin is markedly increased or decreased when the male mice are housed in thermoneutral or chronic cool conditions, respectively. Beige fat is then identified as the primary site of Musclin action. Muscle-transgenic or AAV-mediated overexpression of Musclin attenuates beige fat thermogenesis, thereby exacerbating diet-induced obesity and metabolic disorders in male mice. Conversely, Musclin inactivation by muscle-specific ablation or neutralizing antibody treatment promotes beige fat thermogenesis and improves metabolic homeostasis in male mice. Mechanistically, Musclin binds to transferrin receptor 1 (Tfr1) and antagonizes Tfr1-mediated cAMP/PKA-dependent thermogenic induction in beige adipocytes. This work defines the temperature-sensitive myokine Musclin as a negative regulator of adipose thermogenesis that exacerbates the deterioration of metabolic health in obese male mice and thus provides a framework for the therapeutic targeting of this endocrine pathway.
Collapse
Affiliation(s)
- Lu Jin
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuang Han
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Geriatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Xue Lv
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Xiaofei Li
- Department of Sport Medicine, The Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical University, Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Ziyin Zhang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Henry Kuang
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Zhimin Chen
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Cheng-An Lv
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Peng
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhuoying Yang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Miqi Yang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Lin Mi
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Tongyu Liu
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Shengshan Ma
- Department of Sport Medicine, The Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical University, Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Xinyuan Qiu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, China
| | - Qintao Wang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Xiaowen Pan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengfei Shan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Li
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Liwei Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xuyun Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Fen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Geriatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China.
| |
Collapse
|
6
|
He B, Zhang Z, Huang Z, Duan X, Wang Y, Cao J, Li L, He K, Nice EC, He W, Gao W, Shen Z. Protein persulfidation: Rewiring the hydrogen sulfide signaling in cell stress response. Biochem Pharmacol 2023; 209:115444. [PMID: 36736962 DOI: 10.1016/j.bcp.2023.115444] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The past few decades have witnessed significant progress in the discovery of hydrogen sulfide (H2S) as a ubiquitous gaseous signaling molecule in mammalian physiology, akin to nitric oxide and carbon monoxide. As the third gasotransmitter, H2S is now known to exert a wide range of physiological and cytoprotective functions in the biological systems. However, endogenous H2S concentrations are usually low, and its potential biologic mechanisms responsible have not yet been fully clarified. Recently, a growing body of evidence has demonstrated that protein persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH) elicited by H2S, is a fundamental mechanism of H2S-mediated signaling pathways. Persulfidation, as a biological switch for protein function, plays an important role in the maintenance of cell homeostasis in response to various internal and external stress stimuli and is also implicated in numerous diseases, such as cardiovascular and neurodegenerative diseases and cancer. In this review, the biological significance of protein persulfidation by H2S in cell stress response is reviewed providing a framework for understanding the multifaceted roles of H2S. A mechanism-guided perspective can help open novel avenues for the exploitation of therapeutics based on H2S-induced persulfidation in the context of diseases.
Collapse
Affiliation(s)
- Bo He
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhe Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhao Huang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xirui Duan
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiangjun Cao
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Kai He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing 400038, China.
| | - Wei Gao
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China.
| |
Collapse
|
7
|
Dalamaga M, Liu J. A chromatin remodeling checkpoint of diet-induced macrophage activation in adipose tissue. Metabol Open 2022; 15:100204. [PMID: 35990770 PMCID: PMC9386063 DOI: 10.1016/j.metop.2022.100204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 12/25/2022] Open
Abstract
The interplay between the environment and the immune cells is linked to metabolic homeostasis under physiologic and pathophysiologic conditions. Diabetes mellitus type 2 (T2D) is considered an immune-related inflammatory disorder, in which the adipose tissue macrophages (ATMs) are key players orchestrating metabolic chronic meta-inflammation and contributing to the pathogenesis of metabolic disease. However, the molecular regulators that integrate the environmental signals to control ATM activation and adipose inflammation during obesity and T2D remain unclear. Epigenetic mechanisms constitute important parameters in metabolic homeostasis, obesity and T2D via the integration of the environmental factors to the transcriptional regulation of gene programs. In a very recent study published in Diabetes by Kong et al., BAF60a has been identified as a key chromatin remodeling checkpoint factor that associates obesity-associated stress signals with meta-inflammation and systemic homeostasis. Furthermore, this work uncovers Atf3 as an important downstream effector in BAF60a-mediated chromatin remodeling and transcriptional reprogramming of macrophage activation in adipose tissue. The findings of this research may contribute to the development of new therapeutic approaches for obesity-induced metabolic inflammation and associated metabolic disorders.
Collapse
Affiliation(s)
- Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527, Athens, Greece
| | - Junli Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai Diabetes Institute, Shanghai, China
| |
Collapse
|
8
|
Morales-Martinez M, Lichtenstein A, Vega MI. Function of Deptor and its roles in hematological malignancies. Aging (Albany NY) 2021; 13:1528-1564. [PMID: 33412518 PMCID: PMC7834987 DOI: 10.18632/aging.202462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Deptor is a protein that interacts with mTOR and that belongs to the mTORC1 and mTORC2 complexes. Deptor is capable of inhibiting the kinase activity of mTOR. It is well known that the mTOR pathway is involved in various signaling pathways that are involved with various biological processes such as cell growth, apoptosis, autophagy, and the ER stress response. Therefore, Deptor, being a natural inhibitor of mTOR, has become very important in its study. Because of this, it is important to research its role regarding the development and progression of human malignancies, especially in hematologic malignancies. Due to its variation in expression in cancer, it has been suggested that Deptor can act as an oncogene or tumor suppressor depending on the cellular or tissue context. This review discusses recent advances in its transcriptional and post-transcriptional regulation of Deptor. As well as the advances regarding the activities of Deptor in hematological malignancies, its possible role as a biomarker, and its possible clinical relevance in these malignancies.
Collapse
Affiliation(s)
- Mario Morales-Martinez
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México
| | - Alan Lichtenstein
- Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90024, USA
| | - Mario I Vega
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México.,Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90024, USA
| |
Collapse
|
9
|
Deaver JW, López SM, Ryan PJ, Nghiem PP, Riechman SE, Fluckey JD. Regulation of cellular anabolism by mTOR: or how I learned to stop worrying and love translation. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:195-201. [PMID: 35782997 PMCID: PMC9219308 DOI: 10.1016/j.smhs.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- J. William Deaver
- Department of Health and Kinesiology, 107 Gilchrist Building, 2929 Research Parkway, Texas A&M University, College Station, TX, USA
| | - Sara Mata López
- Department of Veterinary Integrative Biosciences, 402 Raymond Stotzer Pkwy Building 2, Texas A&M University, College Station, TX, USA
| | - Patrick J. Ryan
- Department of Health and Kinesiology, 107 Gilchrist Building, 2929 Research Parkway, Texas A&M University, College Station, TX, USA
| | - Peter P. Nghiem
- Department of Veterinary Integrative Biosciences, 402 Raymond Stotzer Pkwy Building 2, Texas A&M University, College Station, TX, USA
| | - Steven E. Riechman
- Department of Health and Kinesiology, 107 Gilchrist Building, 2929 Research Parkway, Texas A&M University, College Station, TX, USA
| | - James D. Fluckey
- Department of Health and Kinesiology, 107 Gilchrist Building, 2929 Research Parkway, Texas A&M University, College Station, TX, USA
- Corresponding author. Department of Health and Kinesiology, 107 Gilchrist Building, Room 313, 2929 Research Parkway, Texas A&M University, College Station, TX, 77843-4243, USA.
| |
Collapse
|
10
|
Lee Y, Chakraborty S, Muthuchamy M. Roles of sarcoplasmic reticulum Ca 2+ ATPase pump in the impairments of lymphatic contractile activity in a metabolic syndrome rat model. Sci Rep 2020; 10:12320. [PMID: 32704072 PMCID: PMC7378550 DOI: 10.1038/s41598-020-69196-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
The intrinsic lymphatic contractile activity is necessary for proper lymph transport. Mesenteric lymphatic vessels from high-fructose diet-induced metabolic syndrome (MetSyn) rats exhibited impairments in its intrinsic phasic contractile activity; however, the molecular mechanisms responsible for the weaker lymphatic pumping activity in MetSyn conditions are unknown. Several metabolic disease models have shown that dysregulation of sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump is one of the key determinants of the phenotypes seen in various muscle tissues. Hence, we hypothesized that a decrease in SERCA pump expression and/or activity in lymphatic muscle influences the diminished lymphatic vessel contractions in MetSyn animals. Results demonstrated that SERCA inhibitor, thapsigargin, significantly reduced lymphatic phasic contractile frequency and amplitude in control vessels, whereas, the reduced MetSyn lymphatic contractile activity was not further diminished by thapsigargin. While SERCA2a expression was significantly decreased in MetSyn lymphatic vessels, myosin light chain 20, MLC20 phosphorylation was increased in these vessels. Additionally, insulin resistant lymphatic muscle cells exhibited elevated intracellular calcium and decreased SERCA2a expression and activity. The SERCA activator, CDN 1163 partially restored lymphatic contractile activity in MetSyn lymphatic vessel by increasing phasic contractile frequency. Thus, our data provide the first evidence that SERCA2a modulates the lymphatic pumping activity by regulating phasic contractile amplitude and frequency, but not the lymphatic tone. Diminished lymphatic contractile activity in the vessels from the MetSyn animal is associated with the decreased SERCA2a expression and impaired SERCA2 activity in lymphatic muscle.
Collapse
Affiliation(s)
- Yang Lee
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA
| | - Mariappan Muthuchamy
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA.
| |
Collapse
|
11
|
Takematsu E, Spencer A, Auster J, Chen PC, Graham A, Martin P, Baker AB. Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes. PLoS One 2020; 15:e0225267. [PMID: 32084158 PMCID: PMC7034863 DOI: 10.1371/journal.pone.0225267] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases.
Collapse
Affiliation(s)
- Eri Takematsu
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Adrianne Spencer
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Jeff Auster
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Po-Chih Chen
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, United Kingdom
| | - Patricia Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, United Kingdom
| | - Aaron B. Baker
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX
- The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX
- * E-mail:
| |
Collapse
|
12
|
Caron A, Briscoe DM, Richard D, Laplante M. DEPTOR at the Nexus of Cancer, Metabolism, and Immunity. Physiol Rev 2018; 98:1765-1803. [PMID: 29897294 DOI: 10.1152/physrev.00064.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DEP domain-containing mechanistic target of rapamycin (mTOR)-interacting protein (DEPTOR) is an important modulator of mTOR, a kinase at the center of two important protein complexes named mTORC1 and mTORC2. These highly studied complexes play essential roles in regulating growth, metabolism, and immunity in response to mitogens, nutrients, and cytokines. Defects in mTOR signaling have been associated with the development of many diseases, including cancer and diabetes, and approaches aiming at modulating mTOR activity are envisioned as an attractive strategy to improve human health. DEPTOR interaction with mTOR represses its kinase activity and rewires the mTOR signaling pathway. Over the last years, several studies have revealed key roles for DEPTOR in numerous biological and pathological processes. Here, we provide the current state of the knowledge regarding the cellular and physiological functions of DEPTOR by focusing on its impact on the mTOR pathway and its role in promoting health and disease.
Collapse
Affiliation(s)
- Alexandre Caron
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - David M Briscoe
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Denis Richard
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Mathieu Laplante
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| |
Collapse
|
13
|
Rasool S, Geetha T, Broderick TL, Babu JR. High Fat With High Sucrose Diet Leads to Obesity and Induces Myodegeneration. Front Physiol 2018; 9:1054. [PMID: 30258366 PMCID: PMC6143817 DOI: 10.3389/fphys.2018.01054] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle utilizes both free fatty acids (FFAs) and glucose that circulate in the blood stream. When blood glucose levels acutely increase, insulin stimulates muscle glucose uptake, oxidation, and glycogen synthesis. Under these conditions, skeletal muscle preferentially oxidizes glucose while the oxidation of fatty acids (FAs) oxidation is reciprocally decreased. In metabolic disorders associated with insulin resistance, such as diabetes and obesity, both glucose uptake, and utilization muscle are significantly reduced causing FA oxidation to provide the majority of ATP for metabolic processes and contraction. Although the causes of this metabolic inflexibility or disrupted "glucose-fatty acid cycle" are largely unknown, a diet high in fat and sugar (HFS) may be a contributing factor. This metabolic inflexibility observed in models of obesity or with HFS feeding is detrimental because high rates of FA oxidation in skeletal muscle can lead to the buildup of toxic metabolites of fat metabolism and the accumulation of pro-inflammatory cytokines, which further exacerbate the insulin resistance. Further, HFS leads to skeletal muscle atrophy with a decrease in myofibrillar proteins and phenotypically characterized by loss of muscle mass and strength. Overactivation of ubiquitin proteasome pathway, oxidative stress, myonuclear apoptosis, and mitochondrial dysfunction are some of the mechanisms involved in muscle atrophy induced by obesity or in mice fed with HFS. In this review, we will discuss how HFS diet negatively impacts the various physiological and metabolic mechanisms in skeletal muscle.
Collapse
Affiliation(s)
- Suhail Rasool
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| | - Tom L Broderick
- Laboratory of Diabetes and Exercise Metabolism, Department of Physiology, Midwestern University, Glendale, AZ, United States
| | - Jeganathan R Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| |
Collapse
|
14
|
Zhang ZB, Ruan CC, Lin JR, Xu L, Chen XH, Du YN, Fu MX, Kong LR, Zhu DL, Gao PJ. Perivascular Adipose Tissue-Derived PDGF-D Contributes to Aortic Aneurysm Formation During Obesity. Diabetes 2018; 67:1549-1560. [PMID: 29794241 DOI: 10.2337/db18-0098] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/11/2018] [Indexed: 11/13/2022]
Abstract
Obesity increases the risk of vascular diseases, including aortic aneurysm (AA). Perivascular adipose tissue (PVAT) surrounding arteries are altered during obesity. However, the underlying mechanism of adipose tissue, especially PVAT, in the pathogenesis of AA is still unclear. Here we showed that angiotensin II (AngII) infusion increases the incidence of AA in leptin-deficient obese mice (ob/ob) and high-fat diet-induced obese mice with adventitial inflammation. Furthermore, transcriptome analysis revealed that platelet-derived growth factor-D (PDGF-D) was highly expressed in the PVAT of ob/ob mice. Therefore, we hypothesized that PDGF-D mediates adventitial inflammation, which provides a direct link between PVAT dysfunction and AA formation in AngII-infused obese mice. We found that PDGF-D promotes the proliferation, migration, and inflammatory factors expression in cultured adventitial fibroblasts. In addition, the inhibition of PDGF-D function significantly reduced the incidence of AA in AngII-infused obese mice. More importantly, adipocyte-specific PDGF-D transgenic mice are more susceptible to AA formation after AngII infusion accompanied by exaggerated adventitial inflammatory and fibrotic responses. Collectively, our findings reveal a notable role of PDGF-D in the AA formation during obesity, and modulation of this cytokine might be an exploitable treatment strategy for the condition.
Collapse
MESH Headings
- Adventitia/drug effects
- Adventitia/immunology
- Adventitia/metabolism
- Adventitia/pathology
- Angiotensin II/administration & dosage
- Angiotensin II/adverse effects
- Animals
- Aorta, Abdominal/diagnostic imaging
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/diagnostic imaging
- Aortic Aneurysm, Abdominal/etiology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Benzimidazoles/pharmacology
- Cells, Cultured
- Diet, High-Fat/adverse effects
- Drug Implants
- Gene Expression Regulation/drug effects
- Inflammation Mediators/metabolism
- Intra-Abdominal Fat/drug effects
- Intra-Abdominal Fat/immunology
- Intra-Abdominal Fat/metabolism
- Intra-Abdominal Fat/pathology
- Lymphokines/agonists
- Lymphokines/antagonists & inhibitors
- Lymphokines/genetics
- Lymphokines/metabolism
- Male
- Mice
- Mice, Mutant Strains
- Mice, Transgenic
- Obesity/etiology
- Obesity/metabolism
- Obesity/pathology
- Obesity/physiopathology
- Organ Specificity
- Platelet-Derived Growth Factor/agonists
- Platelet-Derived Growth Factor/antagonists & inhibitors
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/metabolism
- Quinolines/pharmacology
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Subcutaneous Fat, Abdominal/drug effects
- Subcutaneous Fat, Abdominal/immunology
- Subcutaneous Fat, Abdominal/metabolism
- Subcutaneous Fat, Abdominal/pathology
- Survival Analysis
Collapse
Affiliation(s)
- Ze-Bei Zhang
- The State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Cheng-Chao Ruan
- The State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jing-Rong Lin
- The State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lian Xu
- The State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiao-Hui Chen
- The State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ya-Nan Du
- The State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Meng-Xia Fu
- The State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ling-Ran Kong
- The State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ding-Liang Zhu
- The State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ping-Jin Gao
- The State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Wang RR, Pan R, Zhang W, Fu J, Lin JD, Meng ZX. The SWI/SNF chromatin-remodeling factors BAF60a, b, and c in nutrient signaling and metabolic control. Protein Cell 2018; 9:207-215. [PMID: 28688083 PMCID: PMC5818368 DOI: 10.1007/s13238-017-0442-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/21/2017] [Indexed: 01/29/2023] Open
Abstract
Metabolic syndrome has become a global epidemic that adversely affects human health. Both genetic and environmental factors contribute to the pathogenesis of metabolic disorders; however, the mechanisms that integrate these cues to regulate metabolic physiology and the development of metabolic disorders remain incompletely defined. Emerging evidence suggests that SWI/SNF chromatin-remodeling complexes are critical for directing metabolic reprogramming and adaptation in response to nutritional and other physiological signals. The ATP-dependent SWI/SNF chromatin-remodeling complexes comprise up to 11 subunits, among which the BAF60 subunit serves as a key link between the core complexes and specific transcriptional factors. The BAF60 subunit has three members, BAF60a, b, and c. The distinct tissue distribution patterns and regulatory mechanisms of BAF60 proteins confer each isoform with specialized functions in different metabolic cell types. In this review, we summarize the emerging roles and mechanisms of BAF60 proteins in the regulation of nutrient sensing and energy metabolism under physiological and disease conditions.
Collapse
Affiliation(s)
- Ruo-Ran Wang
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Chronic Disease Research Institute of School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Ran Pan
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Chronic Disease Research Institute of School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Wenjing Zhang
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Chronic Disease Research Institute of School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Junfen Fu
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Chronic Disease Research Institute of School of Public Health, Zhejiang University, Hangzhou, 310058, China.
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
16
|
Meng ZX, Tao W, Sun J, Wang Q, Mi L, Lin JD. Uncoupling Exercise Bioenergetics From Systemic Metabolic Homeostasis by Conditional Inactivation of Baf60 in Skeletal Muscle. Diabetes 2018; 67:85-97. [PMID: 29092888 PMCID: PMC5741141 DOI: 10.2337/db17-0367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022]
Abstract
Impaired skeletal muscle energy metabolism is linked to the pathogenesis of insulin resistance and glucose intolerance in type 2 diabetes. The contractile and metabolic properties of myofibers exhibit a high degree of heterogeneity and plasticity. The regulatory circuitry underpinning skeletal muscle energy metabolism is critically linked to exercise endurance and systemic homeostasis. Recent work has identified the Baf60 subunits of the SWI/SNF chromatin-remodeling complex as powerful regulators of the metabolic gene programs. However, their role in integrating myofiber energy metabolism with exercise endurance and metabolic physiology remains largely unknown. In this study, we conditionally inactivated Baf60a, Baf60c, or both in mature skeletal myocytes to delineate their contribution to muscle bioenergetics and metabolic physiology. Our work revealed functional redundancy between Baf60a and Baf60c in maintaining oxidative and glycolytic metabolism in skeletal myofibers and exercise endurance. Unexpectedly, mice lacking these two factors in skeletal muscle were protected from diet-induced and age-associated metabolic disorders. Transcriptional profiling analysis identified the muscle thermogenic gene program and myokine secretion as key pathways that integrate myofiber metabolism with systemic energy balance. As such, Baf60 deficiency in skeletal muscle illustrates a surprising disconnect between exercise endurance and systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Zhuo-Xian Meng
- Life Sciences Institute, University of Michigan, and Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, and Chronic Disease Research Institute of School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiwei Tao
- Life Sciences Institute, University of Michigan, and Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Jingxia Sun
- Life Sciences Institute, University of Michigan, and Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, and Chronic Disease Research Institute of School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiuyu Wang
- Life Sciences Institute, University of Michigan, and Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Lin Mi
- Life Sciences Institute, University of Michigan, and Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Jiandie D Lin
- Life Sciences Institute, University of Michigan, and Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
17
|
Meng ZX, Gong J, Chen Z, Sun J, Xiao Y, Wang L, Li Y, Liu J, Xu XZS, Lin JD. Glucose Sensing by Skeletal Myocytes Couples Nutrient Signaling to Systemic Homeostasis. Mol Cell 2017; 66:332-344.e4. [PMID: 28475869 PMCID: PMC5489118 DOI: 10.1016/j.molcel.2017.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/07/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022]
Abstract
Skeletal muscle is a major site of postprandial glucose disposal. Inadequate insulin action in skeletal myocytes contributes to hyperglycemia in diabetes. Although glucose is known to stimulate insulin secretion by β cells, whether it directly engages nutrient signaling pathways in skeletal muscle to maintain systemic glucose homeostasis remains largely unexplored. Here we identified the Baf60c-Deptor-AKT pathway as a target of muscle glucose sensing that augments insulin action in skeletal myocytes. Genetic activation of this pathway improved postprandial glucose disposal in mice, whereas its muscle-specific ablation impaired insulin action and led to postprandial glucose intolerance. Mechanistically, glucose triggers KATP channel-dependent calcium signaling, which promotes HDAC5 phosphorylation and nuclear exclusion, leading to Baf60c induction and insulin-independent AKT activation. This pathway is engaged by the anti-diabetic sulfonylurea drugs to exert their full glucose-lowering effects. These findings uncover an unexpected mechanism of glucose sensing in skeletal myocytes that contributes to homeostasis and therapeutic action.
Collapse
Affiliation(s)
- Zhuo-Xian Meng
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Chronic Disease Research Institute of School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jianke Gong
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; College of Life Science and Technology and Collaborative Innovation Center for Brain Science, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhimin Chen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jingxia Sun
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yuanyuan Xiao
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Lin Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yaqiang Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jianfeng Liu
- College of Life Science and Technology and Collaborative Innovation Center for Brain Science, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - X Z Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jiandie D Lin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Kovač J, Šutuš Temovski T, Rozmarič T, Horvat S, Beltram J, Trebušak Podkrajšek K, Battelino T, Kotnik P. DEPTOR promoter genetic variants and insulin resistance in obese children and adolescents. Pediatr Diabetes 2017; 18:152-158. [PMID: 26871578 DOI: 10.1111/pedi.12371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/14/2016] [Accepted: 12/03/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Insulin resistance (IR) is one of the major metabolic complications of obesity in children and adolescents. DEP domain-containing mammalian target of rapamycin interacting protein (DEPTOR) is involved in downstream insulin signaling and DEPTOR's effects are regulated by its level of expression. OBJECTIVES To analyze promoter region of DEPTOR for genetic variants associated with altered IR in obese children and adolescents. SUBJECTS AND METHODS IR was determined in 322 normoglycemic obese subjects [173 females, 149 males; mean age 13.3 ± 3.5 yr, mean BMI-SDS 2.85 ± 0.83, HbA1C 5.2 ± 0.2% (33 ± 2.5 mmol/mol)] using homeostatic model assessment - insulin resistance [HOMA-IR (>2 prepubertal and >3 pubertal)] and whole body insulin sensitivity index [WBISI (<6.5 prepubertal and <4.5 pubertal)]. Genetic variants, determined by high resolution melting analysis, were confirmed by Sanger sequencing, whereas population allele distribution was determined by TaqMan genotyping probes. RESULTS Genetic variant c.-143T>C (rs7840156) was associated with a significant 2-fold decreased risk to present with IR, determined by HOMA-IR [odds ratio (OR) = 0.614, 95% confidence interval (CI) = 0.435-0.867, p = 0.0057) and WBISI (OR = 0.582, 95% CI = 0.414-0.817, p = 0.0018). The CC genotype had lower mean HOMA-IR value (2.47 ± 0.44 vs. 3.04 ± 0.14, p = 0.0177) and higher mean WBISI value (7.00 ± 0.71 vs. 5.27 ± 0.33, p = 0.0235) than TT genotype. Variant c.-143T>C was located in evolutionary highly conserved region in DEPTOR promoter region. CONCLUSION Presented results on association between insulin sensitivity and genetic variants in DEPTOR gene suggest DEPTOR and mammalian target of rapamycin signaling pathway to be potential target for future research and pharmacological interventions.
Collapse
Affiliation(s)
- Jernej Kovač
- Unit of Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tamara Šutuš Temovski
- Unit of Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tomaž Rozmarič
- Unit of Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Simon Horvat
- National Institute of Chemistry, Ljubljana, Slovenia.,Biotechnical faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Katarina Trebušak Podkrajšek
- Unit of Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Pediatrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Primož Kotnik
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Pediatrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Wu CL, Satomi Y, Walsh K. RNA-seq and metabolomic analyses of Akt1-mediated muscle growth reveals regulation of regenerative pathways and changes in the muscle secretome. BMC Genomics 2017; 18:181. [PMID: 28209124 PMCID: PMC5314613 DOI: 10.1186/s12864-017-3548-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 02/02/2017] [Indexed: 12/20/2022] Open
Abstract
Background Skeletal muscle is a major regulator of systemic metabolism as it serves as the major site for glucose disposal and the main reservoir for amino acids. With aging, cachexia, starvation, and myositis, there is a preferential loss of fast glycolytic muscle fibers. We previously reported a mouse model in which a constitutively-active Akt transgene is induced to express in a subset of muscle groups leading to the hypertrophy of type IIb myofibers with an accompanying increase in strength. This muscle growth protects mice in various cardio-metabolic disease models, but little is known about the underlying cellular and molecular mechanisms by which fast-twitch muscle impacts disease processes and regulates distant tissues. In the present study, poly (A) + tail mRNA-seq and non-targeted metabolomics were performed to characterize the transcriptome and metabolome of the hypertrophic gastrocnemius muscle from Akt1-transgenic mice. Results Combined metabolomics and transcriptomic analyses revealed that Akt1-induced muscle growth mediated a metabolic shift involving reductions in glycolysis and oxidative phosphorylation, but enhanced pentose phosphate pathway activation and increased branch chain amino acid accumulation. Pathway analysis for the 4,027 differentially expressed genes in muscle identified enriched signaling pathways involving growth, cell cycle regulation, and inflammation. Consistent with a regenerative transcriptional signature, the transgenic muscle tissue was found to be comprised of fibers with centralized nuclei that are positive for embryonic myosin heavy chain. Immunohistochemical analysis also revealed the presence of inflammatory cells associated with the regenerating fibers. Signal peptide prediction analysis revealed 240 differentially expressed in muscle transcripts that potentially encode secreted proteins. A number of these secreted factors have signaling properties that are consistent with the myogenic, metabolic and cardiovascular-protective properties that have previously been associated with type IIb muscle growth. Conclusions This study provides the first extensive transcriptomic sequencing/metabolomics analysis for a model of fast-twitch myofiber growth. These data reveal that enhanced Akt signaling promotes the activation of pathways that are important for the production of proteins and nucleic acids. Numerous transcripts potentially encoding muscle secreted proteins were identified, indicating the importance of fast-twitch muscle in inter-tissue communication. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3548-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chia-Ling Wu
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W-611, Boston, MA, 02118, USA
| | - Yoshinori Satomi
- Integrated Technology Research Laboratories, Takeda Pharmaceutical Co. Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Kenneth Walsh
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W-611, Boston, MA, 02118, USA.
| |
Collapse
|
20
|
Catena V, Fanciulli M. Deptor: not only a mTOR inhibitor. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:12. [PMID: 28086984 PMCID: PMC5237168 DOI: 10.1186/s13046-016-0484-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/23/2016] [Indexed: 01/09/2023]
Abstract
Deptor is an important protein that belongs to the mTORC1 and mTORC2 complexes, able to interact with mTOR and to inhibit its kinase activity. As a natural mTOR inhibitor, Deptor is involved in several molecular pathways, such as cell growth, apoptosis, autophagy and ER stress response. For this reason, Deptor seems to play an important role in controlling cellular homeostasis. Despite several recent insights characterizing Deptor functions and regulation, its complete role within cells has not yet been completely clarified. Indeed, quite recently, Deptor has been associated with chromatin, and it has been demonstrated having a role in transcriptional regulation, controlling in such way endoplasmatic reticulum activity. From all these observations it is not surprising that Deptor can behave either as an oncogene or oncosuppressor, depending on the cell- or tissue-contexts. This review highlights recent progresses made in our understanding of the many activities of Deptor, describing its transcriptional and post-transcriptional regulation in different cancer cell types. Moreover, here we discuss the possibility of using compounds able to inhibit Deptor or to disrupt its interaction with mTOR as novel approaches for cancer therapy.
Collapse
Affiliation(s)
- Valeria Catena
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Maurizio Fanciulli
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
21
|
Sinha I, Sakthivel D, Varon DE. Systemic Regulators of Skeletal Muscle Regeneration in Obesity. Front Endocrinol (Lausanne) 2017; 8:29. [PMID: 28261159 PMCID: PMC5311070 DOI: 10.3389/fendo.2017.00029] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/01/2017] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle maintenance is a dynamic process and undergoes constant repair and regeneration. However, skeletal muscle regenerative capacity declines in obesity. In this review, we focus on obesity-associated changes in inflammation, metabolism, and impaired insulin signaling, which are pathologically dysregulated and ultimately result in a loss of muscle mass and function. In addition, we examine the relationships between skeletal muscle, liver, and visceral adipose tissue in an obese state.
Collapse
Affiliation(s)
- Indranil Sinha
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA, USA
- *Correspondence: Indranil Sinha,
| | | | - David E. Varon
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
22
|
Heo JY, Cha HN, Kim KY, Lee E, Kim SJ, Kim YW, Kim JY, Lee IK, Gladyshev VN, Kim HY, Park SY. Methionine sulfoxide reductase B1 deficiency does not increase high-fat diet-induced insulin resistance in mice. Free Radic Res 2016; 51:24-37. [PMID: 27838938 DOI: 10.1080/10715762.2016.1261133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methionine-S-sulfoxide reductase (MsrA) protects against high-fat diet-induced insulin resistance due to its antioxidant effects. To determine whether its counterpart, methionine-R-sulfoxide reductase (MsrB) has similar effects, we compared MsrB1 knockout and wild-type mice using a hyperinsulinemic-euglycemic clamp technique. High-fat feeding for eight weeks increased body weights, fat masses, and plasma levels of glucose, insulin, and triglycerides to similar extents in wild-type and MsrB1 knockout mice. Intraperitoneal glucose tolerance test showed no difference in blood glucose levels between the two genotypes after eight weeks on the high-fat diet. The hyperglycemic-euglycemic clamp study showed that glucose infusion rates and whole body glucose uptakes were decreased to similar extents by the high-fat diet in both wild-type and MsrB1 knockout mice. Hepatic glucose production and glucose uptake of skeletal muscle were unaffected by MsrB1 deficiency. The high-fat diet-induced oxidative stress in skeletal muscle and liver was not aggravated in MsrB1-deficient mice. Interestingly, whereas MsrB1 deficiency reduced JNK protein levels to a great extent in skeletal muscle and liver, it markedly elevated phosphorylation of JNK, suggesting the involvement of MsrB1 in JNK protein activation. However, this JNK phosphorylation based on a p-JNK/JNK level did not positively correlate with insulin resistance in MsrB1-deficient mice. Taken together, our results show that, in contrast to MsrA deficiency, MsrB1 deficiency does not increase high-fat diet-induced insulin resistance in mice.
Collapse
Affiliation(s)
- Jung-Yoon Heo
- a Department of Physiology , College of Medicine, Yeungnam University , Daegu , Republic of Korea
| | - Hye-Na Cha
- a Department of Physiology , College of Medicine, Yeungnam University , Daegu , Republic of Korea
| | - Ki Young Kim
- b Department of Biochemistry and Molecular Biology, College of Medicine , Yeungnam University , Daegu , Republic of Korea
| | - Eujin Lee
- b Department of Biochemistry and Molecular Biology, College of Medicine , Yeungnam University , Daegu , Republic of Korea
| | - Suk-Jeong Kim
- a Department of Physiology , College of Medicine, Yeungnam University , Daegu , Republic of Korea
| | - Yong-Woon Kim
- a Department of Physiology , College of Medicine, Yeungnam University , Daegu , Republic of Korea
| | - Jong-Yeon Kim
- a Department of Physiology , College of Medicine, Yeungnam University , Daegu , Republic of Korea
| | - In-Kyu Lee
- c Department of Internal Medicine, School of Medicine , Kyungpook National University , Daegu , Republic of Korea
| | - Vadim N Gladyshev
- d Division of Genetics, Department of Medicine Brigham and Women's Hospital , Harvard Medical School , Boston , MA , USA
| | - Hwa-Young Kim
- b Department of Biochemistry and Molecular Biology, College of Medicine , Yeungnam University , Daegu , Republic of Korea
| | - So-Young Park
- a Department of Physiology , College of Medicine, Yeungnam University , Daegu , Republic of Korea
| |
Collapse
|
23
|
Sun R, Wu Y, Hou W, Sun Z, Wang Y, Wei H, Mo W, Yu M. Bromodomain-containing protein 2 induces insulin resistance via the mTOR/Akt signaling pathway and an inflammatory response in adipose tissue. Cell Signal 2016; 30:92-103. [PMID: 27865874 DOI: 10.1016/j.cellsig.2016.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 01/02/2023]
Abstract
Insulin resistance is a major metabolic abnormality in a large majority of patients with type II diabetes. Bromodomain-containing protein 2 (Brd2), a transcriptional co-activator/co-repressor with switch mating type/sucrose non-fermenting (SWI/SNF)-like functions that regulates chromatin, suppresses adipocyte differentiation and regulates pancreatic β-cell biology. However, the effects of Brd2 on insulin resistance remain unknown. Here, overexpression of Brd2 in white adipose tissue of wild-type (WT) mice led to insulin resistance. Brd2 overexpression induced the expression of nuclear Factor-κΒ (NF-κΒ) target genes, mainly involving proinflammatory and chemotactic factors, in adipocytes. Furthermore, it decreased the expression of DEP domain containing mTOR-interacting protein (Deptor) to enhance mechanistic target of rapamycin (mTOR) signaling, thus blocking insulin signaling. Collectively, these results provided evidence for a novel role of Brd2 in chronic inflammation and insulin resistance, suggesting its potential in improving insulin resistance and treating metabolic disorders.
Collapse
Affiliation(s)
- Ruixin Sun
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi Wu
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weihua Hou
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zujun Sun
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuxiong Wang
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huanhuan Wei
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wei Mo
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Min Yu
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
24
|
Functional screening of mammalian mechanosensitive genes using Drosophila RNAi library- Smarcd3/Bap60 is a mechanosensitive pro-inflammatory gene. Sci Rep 2016; 6:36461. [PMID: 27819340 PMCID: PMC5098218 DOI: 10.1038/srep36461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 10/17/2016] [Indexed: 01/08/2023] Open
Abstract
Disturbed blood flow (d-flow) induces atherosclerosis by altering the expression of mechanosensitive genes in the arterial endothelium. Previously, we identified >580 mechanosensitive genes in the mouse arterial endothelium, but their role in endothelial inflammation is incompletely understood. From this set, we obtained 84 Drosophila RNAi lines that silences the target gene under the control of upstream activation sequence (UAS) promoter. These lines were crossed with C564-GAL4 flies expressing GFP under the control of drosomycin promoter, an NF-κB target gene and a marker of pathogen-induced inflammation. Silencing of psmd12 or ERN1 decreased infection-induced drosomycin expression, while Bap60 silencing significantly increased the drosomycin expression. Interestingly, knockdown of Bap60 in adult flies using temperature-inducible Bap60 RNAi (C564ts-GAL4-Bap60-RNAi) enhanced drosomycin expression upon Gram-positive bacterial challenge but the basal drosomycin expression remained unchanged compared to the control. In the mammalian system, smarcd3 (mammalian ortholog of Bap60) expression was reduced in the human- and mouse aortic endothelial cells exposed to oscillatory shear in vitro as well as in the d-flow regions of mouse arterial endothelium in vivo. Moreover, siRNA-mediated knockdown of smarcd3 induced endothelial inflammation. In summary, we developed an in vivo Drosophila RNAi screening method to identify flow-sensitive genes that regulate endothelial inflammation.
Collapse
|
25
|
Caron A, Richard D. Neuronal systems and circuits involved in the control of food intake and adaptive thermogenesis. Ann N Y Acad Sci 2016; 1391:35-53. [PMID: 27768821 DOI: 10.1111/nyas.13263] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022]
Abstract
With the still-growing prevalence of obesity worldwide, major efforts are made to understand the various behavioral, environmental, and genetic factors that promote excess fat gain. Obesity results from an imbalance between energy intake and energy expenditure, which emphasizes the importance of deciphering the mechanisms behind energy balance regulation to understand its physiopathology. The control of energy balance is assured by brain systems/circuits capable of generating adequate ingestive and thermogenic responses to maintain the stability of energy reserves, which implies a proper integration of the homeostatic signals that inform about the status of the energy stores. In this article, we overview the organization and functionality of key neuronal circuits or pathways involved in the control of food intake and energy expenditure. We review the role of the corticolimbic (executive and reward) and autonomic systems that integrate their activities to regulate energy balance. We also describe the mechanisms and pathways whereby homeostatic sensing is achieved in response to variations of homeostatic hormones, such as leptin, insulin, and ghrelin, while putting some emphasis on the prominent importance of the mechanistic target of the rapamycin signaling pathway in coordinating the homeostatic sensing process.
Collapse
Affiliation(s)
- Alexandre Caron
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec and Faculty of Medicine, Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec and Faculty of Medicine, Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
26
|
Omairi S, Matsakas A, Degens H, Kretz O, Hansson KA, Solbrå AV, Bruusgaard JC, Joch B, Sartori R, Giallourou N, Mitchell R, Collins-Hooper H, Foster K, Pasternack A, Ritvos O, Sandri M, Narkar V, Swann JR, Huber TB, Patel K. Enhanced exercise and regenerative capacity in a mouse model that violates size constraints of oxidative muscle fibres. eLife 2016; 5. [PMID: 27494364 PMCID: PMC4975572 DOI: 10.7554/elife.16940] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/19/2016] [Indexed: 12/28/2022] Open
Abstract
A central tenet of skeletal muscle biology is the existence of an inverse relationship between the oxidative fibre capacity and its size. However, robustness of this relationship is unknown. We show that superimposition of Estrogen-related receptor gamma (Errγ) on the myostatin (Mtn) mouse null background (Mtn-/-/ErrγTg/+) results in hypertrophic muscle with a high oxidative capacity thus violating the inverse relationship between fibre size and oxidative capacity. We also examined the canonical view that oxidative muscle phenotype positively correlate with Satellite cell number, the resident stem cells of skeletal muscle. Surprisingly, hypertrophic fibres from Mtn-/-/ErrγTg/+ mouse showed satellite cell deficit which unexpectedly did not affect muscle regeneration. These observations 1) challenge the concept of a constraint between fibre size and oxidative capacity and 2) indicate the important role of the microcirculation in the regenerative capacity of a muscle even when satellite cell numbers are reduced. DOI:http://dx.doi.org/10.7554/eLife.16940.001
Collapse
Affiliation(s)
- Saleh Omairi
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Hans Degens
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom.,Lithuanian Sports University, Kaunas, Lithuania
| | - Oliver Kretz
- Renal Division, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kenth-Arne Hansson
- Centre for Integrative Neuroplasticity, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Andreas Våvang Solbrå
- Centre for Integrative Neuroplasticity, Department of Biosciences, University of Oslo, Oslo, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| | - Jo C Bruusgaard
- Centre for Integrative Neuroplasticity, Department of Biosciences, University of Oslo, Oslo, Norway.,Department of Health Sciences, Kristiania University College, Oslo, Norway
| | - Barbara Joch
- Department of Neuroanatomy, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roberta Sartori
- Venetian Institute of Molecular Medicine, University of Padua, Padua, Italy
| | - Natasa Giallourou
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Robert Mitchell
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Keith Foster
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Arja Pasternack
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Olli Ritvos
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, University of Padua, Padua, Italy
| | - Vihang Narkar
- Institute of Molecular Medicine, University of Health Science Center, Houston, Texas
| | - Jonathan R Swann
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Tobias B Huber
- Renal Division, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Center for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Houston, Texas.,FRIAS, Freiburg Institute for Advanced Studies and Center for Biological System Analysis ZBSA, Freiburg, Germany
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, United Kingdom.,FRIAS, Freiburg Institute for Advanced Studies and Center for Biological System Analysis ZBSA, Freiburg, Germany
| |
Collapse
|
27
|
Caloric Restriction Normalizes Obesity-Induced Alterations on Regulators of Skeletal Muscle Growth Signaling. Lipids 2016; 51:905-12. [PMID: 27289530 DOI: 10.1007/s11745-016-4168-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
Abstract
The objective of this study was to establish the impact of caloric restriction on high fat diet-induced alterations on regulators of skeletal muscle growth. We hypothesized that caloric restriction would reverse the negative effects of high fat diet-induced obesity on REDD1 and mTOR-related signaling. Following an initial 8 week period of HF diet-induced obesity, caloric restriction (CR ~30 %) was employed while mice continued to consume either a low (LF) or high fat (HF) diet for 8 weeks. Western analysis of skeletal muscle showed that CR reduced (p < 0.05) the obesity-related effects on the lipogenic protein, SREBP1. Likewise, CR reduced (p < 0.05) the obesity-related effects on the hyperactivation of mTORC1 and ERK1/2 signaling to levels comparable to the LF mice. CR also reduced (p < 0.05) obesity-induced expression of negative regulators of growth, REDD1 and cleaved caspase 3. These findings have implications for on the reversibility of dysregulated growth signaling in obese skeletal muscle, using short-term caloric restriction.
Collapse
|
28
|
Yu X, Jin D, Yu A, Sun J, Chen X, Yang Z. p65 down-regulates DEPTOR expression in response to LPS stimulation in hepatocytes. Gene 2016; 589:12-19. [PMID: 27179948 DOI: 10.1016/j.gene.2016.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 01/16/2023]
Abstract
DEPTOR, a novel endogenous inhibitor of mTOR, plays an important role in regulating the inflammatory response in vascular endothelial cells (ECs) and in mouse skeletal muscle. However, the regulatory mechanism of DEPTOR transcription and its effects on liver inflammation are unknown presently. Here we reported the role of DEPTOR in regulating inflammatory response in mouse liver-derived Hepa1-6 cells and in a mouse model with LPS-induced hepatic inflammation. The results revealed that DEPTOR over-expression in Hepa1-6 liver cells increased the mRNA levels of the pro-inflammatory cytokines interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1). Contrasting results were observed in Hepa1-6 cells with DEPTOR interference. Treatment Hepa1-6 cells with rapamycin, a specific inhibitor of mTORC1, increased MCP-1 mRNA, but have no significant effect on IL-6 mRNA. DEPTOR expression was down-regulated in Hepa1-6 cells with the treatment of inflammatory stimuli LPS or the over-expression of p65/NF-κB, a key inflammatory transcription factor. NF-κB antagonist (PDTC) and inhibitor (IκBα) blocked the effect of LPS on DEPTOR expression. The study in vivo showed that DEPTOR mRNA and protein were significantly reduced in a mouse model with LPS-induced hepatic inflammation, which was accompanied by a concurrent activation of the mTOR signaling pathway. Further, the transcriptional regulation of DEPTOR was explored, which revealed that DEPTOR promoter activity was significantly down-regulated by NF-κB. The progressive deletions and mutations demonstrated that the NF-κB binding motif situated at -145/-127 region is an essential component required for the DEPTOR promoter activity. Chromatin immunoprecipitation (ChIP) assays determined that p65 can directly interact with the DEPTOR promoter DNA. Those results indicate DEPTOR regulates liver inflammation at least partially via mTORC1 pathway, and is down-regulated by LPS through p65.
Collapse
Affiliation(s)
- Xiaoling Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dan Jin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - An Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zaiqing Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
29
|
Zhang P, Li L, Bao Z, Huang F. Role of BAF60a/BAF60c in chromatin remodeling and hepatic lipid metabolism. Nutr Metab (Lond) 2016; 13:30. [PMID: 27127533 PMCID: PMC4848843 DOI: 10.1186/s12986-016-0090-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/19/2016] [Indexed: 02/07/2023] Open
Abstract
The switching defective/sucrose non-fermenting (SWI/SNF) complexes play an important role in hepatic lipid metabolism regulating both transcriptional activation and repression. BAF60a is a core subunit of the SWI/SNF chromatin-remodeling complexes that activates the transcription of fatty acid oxidation genes during fasting/glucagon. BAF60c, another subunit of SWI/SNF complexes, is recruited to form the lipoBAF complex that activates lipogenic genes, promoting lipogenesis and increasing the triglyceride level in response to feeding/insulin. Interestingly, hepatocytes located in the periportal and perivenous zones of the liver display a remarkable heterogeneity in the activity of various enzymes, metabolic functions and gene expression. Especially, fatty-acid oxidation was shown to be mostly periportal, whereas lipogenesis was mostly perivenous. Therefore, the present review highlights the role of of SWI/SNF regulating lipid metabolism under nutritional and hormonal control, which may be associated with hepatocyte heterogeneity.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lulu Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhengxi Bao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
30
|
Caron A, Labbé SM, Mouchiroud M, Huard R, Lanfray D, Richard D, Laplante M. DEPTOR in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1322-31. [PMID: 27097662 DOI: 10.1152/ajpregu.00549.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/18/2016] [Indexed: 11/22/2022]
Abstract
We have recently demonstrated that specific overexpression of DEP-domain containing mTOR-interacting protein (DEPTOR) in the mediobasal hypothalamus (MBH) protects mice against high-fat diet-induced obesity, revealing DEPTOR as a significant contributor to energy balance regulation. On the basis of evidence that DEPTOR is expressed in the proopiomelanocortin (POMC) neurons of the MBH, the present study aimed to investigate whether these neurons mediate the metabolic effects of DEPTOR. Here, we report that specific DEPTOR overexpression in POMC neurons does not recapitulate any of the phenotypes observed when the protein was overexpressed in the MBH. Unlike the previous model, mice overexpressing DEPTOR only in POMC neurons 1) did not show differences in feeding behavior, 2) did not exhibit changes in locomotion activity and oxygen consumption, 3) did not show an improvement in systemic glucose metabolism, and 4) were not resistant to high-fat diet-induced obesity. These results support the idea that other neuronal populations are responsible for these phenotypes. Nonetheless, we observed a mild elevation in fasting blood glucose, insulin resistance, and alterations in liver glucose and lipid homeostasis in mice overexpressing DEPTOR in POMC neurons. Taken together, these results show that DEPTOR overexpression in POMC neurons does not affect energy balance regulation but could modulate metabolism through a brain-liver connection.
Collapse
Affiliation(s)
- Alexandre Caron
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Quebec, Canada; and Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Sébastien M Labbé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Quebec, Canada; and Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Mathilde Mouchiroud
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Quebec, Canada; and Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Renaud Huard
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Damien Lanfray
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Quebec, Canada; and Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Quebec, Canada; and Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Mathieu Laplante
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Quebec, Canada; and Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| |
Collapse
|
31
|
Lipopolysaccharide markedly changes glucose metabolism and mitochondrial function in the longissimus muscle of pigs. Animal 2016; 10:1204-12. [PMID: 26863995 DOI: 10.1017/s1751731116000100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Most previous studies on the effects of lipopolysaccharide (LPS) in pigs focused on the body's immune response, and few reports paid attention to body metabolism changes. To better understand the glucose metabolism changes in skeletal muscle following LPS challenge and to clarify the possible mechanism, 12 growing pigs were employed. Animals were treated with either 2 ml of saline or 15 µg/kg BW LPS, and samples were collected 6 h later. The glycolysis status and mitochondrial function in the longissimus dorsi (LD) muscle of pigs were analyzed. The results showed that serum lactate content and NADH content in LD muscle significantly increased compared with the control group. Most glycolysis-related genes expression, as well as hexokinase, pyruvate kinase and lactic dehydrogenase activity, in LD muscle was significantly higher compared with the control group. Mitochondrial complexes I and IV significantly increased, while mitochondrial ATP concentration markedly decreased. Significantly increased calcium content in the mitochondria was observed, and endoplasm reticulum (ER) stress has been demonstrated in the present study. The results showed that LPS treatment markedly changes glucose metabolism and mitochondrial function in the LD muscle of pigs, and increased calcium content induced by ER stress was possibly involved. The results provide new clues for clarifying metabolic diseases in muscle induced by LPS.
Collapse
|
32
|
Mediobasal hypothalamic overexpression of DEPTOR protects against high-fat diet-induced obesity. Mol Metab 2015; 5:102-112. [PMID: 26909318 PMCID: PMC4735664 DOI: 10.1016/j.molmet.2015.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 11/18/2015] [Accepted: 11/25/2015] [Indexed: 01/29/2023] Open
Abstract
Background/Objective The mechanistic target of rapamycin (mTOR) is a serine–threonine kinase that functions into distinct protein complexes (mTORC1 and mTORC2) that regulate energy homeostasis. DEP-domain containing mTOR-interacting protein (DEPTOR) is part of these complexes and is known to dampen mTORC1 function, consequently reducing mTORC1 negative feedbacks and promoting insulin signaling and Akt/PKB activation in several models. Recently, we observed that DEPTOR is expressed in several structures of the brain including the mediobasal hypothalamus (MBH), a region that regulates energy balance. Whether DEPTOR in the MBH plays a functional role in regulating energy balance and hypothalamic insulin signaling has never been tested. Methods We have generated a novel conditional transgenic mouse model based on the Cre-LoxP system allowing targeted overexpression of DEPTOR. Mice overexpressing DEPTOR in the MBH were subjected to a metabolic phenotyping and MBH insulin signaling was evaluated. Results We first report that systemic (brain and periphery) overexpression of DEPTOR prevents high-fat diet-induced obesity, improves glucose metabolism and protects against hepatic steatosis. These phenotypes were associated with a reduction in food intake and feed efficiency and an elevation in oxygen consumption. Strikingly, specific overexpression of DEPTOR in the MBH completely recapitulated these phenotypes. DEPTOR overexpression was associated with an increase in hypothalamic insulin signaling, as illustrated by elevated Akt/PKB activation. Conclusion Altogether, these results support a role for MBH DEPTOR in the regulation of energy balance and metabolism. Systemic (brain and peripheral) overexpression of DEPTOR promotes activity and improves glucose homeostasis. Systemic (brain and peripheral) overexpression of DEPTOR protects againts high-fat diet-induced obesity and metabolic alterations. Deptor is widely expressed in the mouse brain, with a high expression in the mediobasal hypothalamus (MBH), a key region of the brain that regulates energy balance. MBH-specific DEPTOR overexpression improves glucose metabolism and protects mice against obesity. MBH-specific DEPTOR overexpression promotes hypothalamic Akt/PKB signaling.
Collapse
|
33
|
Meng ZX, Wang L, Chang L, Sun J, Bao J, Li Y, Chen YE, Lin JD. A Diet-Sensitive BAF60a-Mediated Pathway Links Hepatic Bile Acid Metabolism to Cholesterol Absorption and Atherosclerosis. Cell Rep 2015; 13:1658-69. [PMID: 26586440 DOI: 10.1016/j.celrep.2015.10.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 09/14/2015] [Accepted: 10/10/2015] [Indexed: 12/27/2022] Open
Abstract
Dietary nutrients interact with gene networks to orchestrate adaptive responses during metabolic stress. Here, we identify Baf60a as a diet-sensitive subunit of the SWI/SNF chromatin-remodeling complexes in the mouse liver that links the consumption of fat- and cholesterol-rich diet to elevated plasma cholesterol levels. Baf60a expression was elevated in the liver following feeding with a western diet. Hepatocyte-specific inactivation of Baf60a reduced bile acid production and cholesterol absorption, and attenuated diet-induced hypercholesterolemia and atherosclerosis in mice. Baf60a stimulates expression of genes involved in bile acid synthesis, modification, and transport through a CAR/Baf60a feedforward regulatory loop. Baf60a is required for the recruitment of the SWI/SNF chromatin-remodeling complexes to facilitate an activating epigenetic switch on target genes. These studies elucidate a regulatory pathway that mediates the hyperlipidemic and atherogenic effects of western diet consumption.
Collapse
Affiliation(s)
- Zhuo-Xian Meng
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Lin Wang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lin Chang
- Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jingxia Sun
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiangyin Bao
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Yaqiang Li
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
34
|
Yang M, Huang CZ. Mitogen-activated protein kinase signaling pathway and invasion and metastasis of gastric cancer. World J Gastroenterol 2015; 21:11673-11679. [PMID: 26556994 PMCID: PMC4631968 DOI: 10.3748/wjg.v21.i41.11673] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/11/2015] [Accepted: 09/15/2015] [Indexed: 02/06/2023] Open
Abstract
The mortality rate of gastric cancer worldwide is as high as 70%, despite the development of novel therapeutic strategies. One reason for the high mortality is the rapid and uninhibited spread of the disease, such that the majority of patients are diagnosed at a stage when efficient therapeutic treatment is not available. Therefore, in-depth research is needed to investigate the mechanism of gastric cancer metastasis and invasion to improve outcomes and provide biomarkers for early diagnosis. The mitogen-activated protein kinase (MAPK) signaling pathway is widely expressed in multicellular organisms, with critical roles in multiple biological processes, such as cell proliferation, death, differentiation, migration, and invasion. The MAPK pathway typically responds to extracellular stimulation. However, the MAPK pathway is often involved in the occurrence and progression of cancer when abnormally regulated. Many studies have researched the relationship between the MAPK signaling pathway and cancer metastasis and invasion, but little is known about the important roles that the MAPK signaling pathway plays in gastric cancer. Based on an analysis of published data, this review aims to summarize the important role that the MAP kinases play in the invasion and metastasis of gastric cancer and attempts to provide potential directions for further research and clinical treatment.
Collapse
|
35
|
Liu T, Fang Y, Liu S, Yu X, Zhang H, Liang M, Ding X. Limb ischemic preconditioning protects against contrast-induced acute kidney injury in rats via phosphorylation of GSK-3β. Free Radic Biol Med 2015; 81:170-82. [PMID: 25451640 DOI: 10.1016/j.freeradbiomed.2014.10.509] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 12/31/2022]
Abstract
Contrast-induced acute kidney injury (CI-AKI) resulting from the use of intravascular iodinated contrast media for diagnostic and interventional cardiovascular procedures is associated with substantial morbidity and mortality. Despite preventative measures intended to mitigate the risk of CI-AKI, there remains a need for a novel and effective therapeutic approach. Limb ischemic preconditioning (LIPC), where short-term ischemia/reperfusion is applied to an arm prior to administration of the contrast agent, has been shown in several trials to preserve renal function in patients at high risk for CI-AKI. However, the underlying mechanism by which this procedure provides renoprotection against contrast media insults is not known. Here, we explored the molecular mechanism(s) of LIPC-induced protection of the kidneys from CI-AKI, particularly the role of phosphorylated glycogen synthase kinase-3β (GSK-3β). We used a novel CI-AKI model consisting of 5/6 nephrectomized (NE) rats at 6 weeks after the ablative surgery. LIPC- or sham-treated rats were administered iohexol (10 ml/kg, 3.5 gI) via the tail vein. The results showed that LIPC protected the kidneys against iohexol-induced injury. This protective effect was accompanied by the attenuation of renal dysfunction, tubular damage, apoptosis, mitochondrial swelling, oxidative stress, and inflammation. Furthermore, LIPC-induced renoprotection was blocked via treatment with inhibitors of PI3K (wortmannin or LY294002), but not ERK (U0126 or PD98059). LIPC also increased the protein expression levels of phospho-Akt, phospho-GSK-3β, and nuclear Nrf2, and decreased the levels of nuclear NF-κB. A specific GSK-3β inhibitor (SB216763) mimicked this effect of LIPC, by inhibiting the opening of the mitochondrial permeability transition pore and reducing the levels of oxidative stress and inflammation via activation of Nrf2 and suppression of NF-κB. The above results demonstrate that LIPC induces protection against CI-AKI, making this procedure a promising strategy for preventing CI-AKI. In particular, this renoprotective effect involves the phosphorylation of GSK-3β.
Collapse
Affiliation(s)
- Tongqiang Liu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Division of Nephrology, the Affiliated Changzhou No. 2 Hospital of Nanjing Medical College, Changzhou 213003, Jiangsu, China
| | - Yi Fang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China
| | - Shaopeng Liu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaofang Yu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China
| | - Hui Zhang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53201, USA
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China.
| |
Collapse
|
36
|
Caron A, Baraboi ED, Laplante M, Richard D. DEP domain-containing mTOR-interacting protein in the rat brain: Distribution of expression and potential implication. J Comp Neurol 2014; 523:93-107. [DOI: 10.1002/cne.23668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Alexandre Caron
- Institut Universitaire de Cardiologie et de Pneumologie de Québec; Université Laval; Quebec Quebec G1V 4G5 Canada
| | - Elena-Dana Baraboi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec; Université Laval; Quebec Quebec G1V 4G5 Canada
| | - Mathieu Laplante
- Institut Universitaire de Cardiologie et de Pneumologie de Québec; Université Laval; Quebec Quebec G1V 4G5 Canada
| | - Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec; Université Laval; Quebec Quebec G1V 4G5 Canada
| |
Collapse
|