1
|
Arve-Butler S, Moorman CD. A comprehensive overview of tolerogenic vaccine adjuvants and their modes of action. Front Immunol 2024; 15:1494499. [PMID: 39759532 PMCID: PMC11695319 DOI: 10.3389/fimmu.2024.1494499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Tolerogenic vaccines represent a therapeutic approach to induce antigen-specific immune tolerance to disease-relevant antigens. As general immunosuppression comes with significant side effects, including heightened risk of infections and reduced anti-tumor immunity, antigen-specific tolerance by vaccination would be game changing in the treatment of immunological conditions such as autoimmunity, anti-drug antibody responses, transplantation rejection, and hypersensitivity. Tolerogenic vaccines induce antigen-specific tolerance by promoting tolerogenic antigen presenting cells, regulatory T cells, and regulatory B cells, or by suppressing or depleting antigen-specific pathogenic T and B cells. The design of tolerogenic vaccines vary greatly, but they all deliver a disease-relevant antigen with or without a tolerogenic adjuvant. Tolerogenic adjuvants are molecules which mediate anti-inflammatory or immunoregulatory effects and enhance vaccine efficacy by modulating the immune environment to favor a tolerogenic immune response to the vaccine antigen. Tolerogenic adjuvants act through several mechanisms, including immunosuppression, modulation of cytokine signaling, vitamin signaling, and modulation of immunological synapse signaling. This review seeks to provide a comprehensive examination of tolerogenic adjuvants currently utilized in tolerogenic vaccines, describing their mechanism of action and examples of their use in human clinical trials and animal models of disease.
Collapse
Affiliation(s)
- Sabine Arve-Butler
- Amgen R&D Postdoctoral Fellows Program, Amgen Inc, South San Francisco, CA, United States
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | | |
Collapse
|
2
|
Knödlseder N, Fábrega MJ, Santos-Moreno J, Manils J, Toloza L, Marín Vilar M, Fernández C, Broadbent K, Maruotti J, Lemenager H, Carolis C, Zouboulis CC, Soler C, Lood R, Brüggemann H, Güell M. Delivery of a sebum modulator by an engineered skin microbe in mice. Nat Biotechnol 2024; 42:1661-1666. [PMID: 38195987 DOI: 10.1038/s41587-023-02072-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/17/2023] [Indexed: 01/11/2024]
Abstract
Microorganisms can be equipped with synthetic genetic programs for the production of targeted therapeutic molecules. Cutibacterium acnes is the most abundant commensal of the human skin, making it an attractive chassis to create skin-delivered therapeutics. Here, we report the engineering of this bacterium to produce and secrete the therapeutic molecule neutrophil gelatinase-associated lipocalin, in vivo, for the modulation of cutaneous sebum production.
Collapse
Affiliation(s)
- Nastassia Knödlseder
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - María-José Fábrega
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier Santos-Moreno
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joan Manils
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Lorena Toloza
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria Marín Vilar
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Cristina Fernández
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Katrina Broadbent
- Protein Technologies Facility, Center of Genomic Regulation, Barcelona, Spain
| | | | | | - Carlo Carolis
- Protein Technologies Facility, Center of Genomic Regulation, Barcelona, Spain
| | - Christos C Zouboulis
- Hochschulklinik für Dermatologie, Venerologie und Allergologie, Immunologisches Zentrum; Städtisches Klinikum Dessau; and Medizinische Hochschule Brandenburg Theodor Fontane und Fakultät für Gesundheitswissenschaften Brandenburg, Dessau-Roßlau, Germany
| | - Concepció Soler
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Rolf Lood
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | | | - Marc Güell
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
3
|
Zhang S, Ma J, Ma Y, Yi J, Wang B, Wang H, Yang Q, Zhang K, Yan X, Sun D, You J. Engineering Probiotics for Diabetes Management: Advances, Challenges, and Future Directions in Translational Microbiology. Int J Nanomedicine 2024; 19:10917-10940. [PMID: 39493275 PMCID: PMC11530765 DOI: 10.2147/ijn.s492651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Background Diabetes Mellitus (DM) is a substantial health concern worldwide, and its incidence is progressively escalating. Conventional pharmacological interventions frequently entail undesirable side effects, and while probiotics offer benefits, they are hindered by constraints such as diminished stability and effectiveness within the gastrointestinal milieu. Given these complications, the advent of bioengineered probiotics is a promising alternative for DM management. Aim of Review The objective of this review is to provide an exhaustive synthesis of the most recent studies on the use of engineered probiotics in the management of DM. This study aimed to clarify the mechanisms through which these probiotics function, evaluate their clinical effectiveness, and enhance public awareness of their prospective advantages in the treatment of DM. Key Scientific Concepts of Review Scholarly critiques have explored diverse methodologies of probiotic engineering, including physical alteration, bioenrichment, and genetic manipulation. These techniques augment the therapeutic potency of probiotics by ameliorating gut microbiota, fortifying the intestinal barrier, modulating metabolic pathways, and regulating immune responses. Such advancements have established engineered probiotics as a credible therapeutic strategy for DM, potentially providing enhanced results compared to conventional treatments.
Collapse
Affiliation(s)
- Shenghao Zhang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Beier Wang
- Department of Hepatobiliary-Pancreatic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, Hong Kong SAR, 999077, People’s Republic of China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People’s Republic of China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, People’s Republic of China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu hospital of Wenzhou Medical University, Yiwu, 322000, People’s Republic of China
| | - Jinfeng You
- Department of Obstetrics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, 324000, People’s Republic of China
| |
Collapse
|
4
|
Roy S, Pokharel P, Piganelli JD. Decoding the immune dance: Unraveling the interplay between beta cells and type 1 diabetes. Mol Metab 2024; 88:101998. [PMID: 39069156 PMCID: PMC11342121 DOI: 10.1016/j.molmet.2024.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterized by the specific destruction of insulin-producing beta cells in the pancreas by the immune system, including CD4 cells which orchestrate the attack and CD8 cells which directly destroy the beta cells, resulting in the loss of glucose homeostasis. SCOPE OF REVIEW This comprehensive document delves into the complex interplay between the immune system and beta cells, aiming to shed light on the mechanisms driving their destruction in T1D. Insights into the genetic predisposition, environmental triggers, and autoimmune responses provide a foundation for understanding the autoimmune attack on beta cells. From the role of viral infections as potential triggers to the inflammatory response of beta cells, an intricate puzzle starts to unfold. This exploration highlights the importance of beta cells in breaking immune tolerance and the factors contributing to their targeted destruction. Furthermore, it examines the potential role of autophagy and the impact of cytokine signaling on beta cell function and survival. MAJOR CONCLUSIONS This review collectively represents current research findings on T1D which offers valuable perspectives on novel therapeutic approaches for preserving beta cell mass, restoring immune tolerance, and ultimately preventing or halting the progression of T1D. By unraveling the complex dynamics between the immune system and beta cells, we inch closer to a comprehensive understanding of T1D pathogenesis, paving the way for more effective treatments and ultimately a cure.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Pravil Pokharel
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jon D Piganelli
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| |
Collapse
|
5
|
Ijaz M, Hasan I, Chaudhry TH, Huang R, Zhang L, Hu Z, Tan Q, Guo B. Bacterial derivatives mediated drug delivery in cancer therapy: a new generation strategy. J Nanobiotechnology 2024; 22:510. [PMID: 39182109 PMCID: PMC11344338 DOI: 10.1186/s12951-024-02786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
Cancer is measured as a major threat to human life and is a leading cause of death. Millions of cancer patients die every year, although a burgeoning number of researchers have been making tremendous efforts to develop cancer medicine to fight against cancer. Owing to the complexity and heterogeneity of cancer, lack of ability to treat deep tumor tissues, and high toxicity to the normal cells, it complicates the therapy of cancer. However, bacterial derivative-mediated drug delivery has raised the interest of researchers in overcoming the restrictions of conventional cancer chemotherapy. In this review, we show various examples of tumor-targeting bacteria and bacterial derivatives for the delivery of anticancer drugs. This review also describes the advantages and limitations of delivering anticancer treatment drugs under regulated conditions employing these tumor-targeting bacteria and their membrane vesicles. This study highlights the substantial potential for clinical translation of bacterial-based drug carriers, improve their ability to work with other treatment modalities, and provide a more powerful, dependable, and distinctive tumor therapy.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Tamoor Hamid Chaudhry
- Antimicrobial Resistance (AMR) Containment & Infection Prevention & Control (IPC) Program, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Rui Huang
- Department of Blood Transfusion, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Lan Zhang
- Department of Blood Transfusion, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Ziwei Hu
- Institute of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, China.
| | - Qingqin Tan
- Department of Blood Transfusion, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Dwyer AJ, Shaheen ZR, Fife BT. Antigen-specific T cell responses in autoimmune diabetes. Front Immunol 2024; 15:1440045. [PMID: 39211046 PMCID: PMC11358097 DOI: 10.3389/fimmu.2024.1440045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Autoimmune diabetes is a disease characterized by the selective destruction of insulin-secreting β-cells of the endocrine pancreas by islet-reactive T cells. Autoimmune disease requires a complex interplay between host genetic factors and environmental triggers that promote the activation of such antigen-specific T lymphocyte responses. Given the critical involvement of self-reactive T lymphocyte in diabetes pathogenesis, understanding how these T lymphocyte populations contribute to disease is essential to develop targeted therapeutics. To this end, several key antigenic T lymphocyte epitopes have been identified and studied to understand their contributions to disease with the aim of developing effective treatment approaches for translation to the clinical setting. In this review, we discuss the role of pathogenic islet-specific T lymphocyte responses in autoimmune diabetes, the mechanisms and cell types governing autoantigen presentation, and therapeutic strategies targeting such T lymphocyte responses for the amelioration of disease.
Collapse
Affiliation(s)
- Alexander J. Dwyer
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Zachary R. Shaheen
- Center for Immunology, Department of Pediatrics, Pediatric Rheumatology, Allergy, & Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
7
|
Lai HC, Chen PH, Tang CH, Chen LW. IL-10 Enhances the Inhibitory Effect of Adipose-Derived Stromal Cells on Insulin Resistance/Liver Gluconeogenesis by Treg Cell Induction. Int J Mol Sci 2024; 25:8088. [PMID: 39125659 PMCID: PMC11311376 DOI: 10.3390/ijms25158088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The modulation of cellular phenotypes within adipose tissue provides a potential means for therapeutic intervention for diabetes. Endogenous interleukin-10 (IL-10) protects against diet-induced insulin resistance. We examined the effects and mechanisms of action of IL-10-treated adipose-derived stromal cells on diabetes-induced insulin resistance and liver gluconeogenesis. We harvested stromal vascular fractions (SVFs) from the adipose tissue of diabetic (Leprdb/db) mice and treated them with IL-10 in vitro. SVFs treated with 10 or 100 ng of IL-10 were injected into the inguinal adipose tissue of Leprdb/db mice. IL-10 treatment suppressed the mRNA expression of IL-6, IL-33, CCL2, TNF-α, and IL-1β. Additionally, it suppressed the protein expression of IL-6, pmTOR, pJNK, and pNF-κB but enhanced Foxp3 mRNA expression in SVFs from diabetic mice. Meanwhile, IL-10 treatment repressed CCL2 and PDGFRα expression in adipose tissue macrophages (ATMs) and IL-6 expression in non-ATMs but increased the Foxp3 and IL-10 mRNA expression of ATMs from diabetic mice. Injection of IL-10-treated SVFs decreased the IL-6, IL-33, CCL2, IL-1β, and CCL2 but enhanced the Foxp3 and IL-10 mRNA expression of adipose tissue from Leprdb/db mice. Furthermore, injection of IL-10-treated SVFs increased CD4+ regulatory T cells (Tregs) in SVFs and adipose IL-10 levels and suppressed plasma adiponectin levels and DPP4 activity in diabetic mice. Injection of IL-10-treated SVFs decreased hepatic G6PC and PCK1 mRNA expression and increased Akt activation, STAT3 phosphorylation in the liver, and glucose tolerance in diabetic mice. Our data suggest that IL-10 treatment decreases inflammation in adipose SVFs of diabetic mice. Injection of IL-10-treated SVFs into the adipose tissue decreased diabetes-induced gluconeogenesis gene expression, DPP4 activity, and insulin resistance by enhancing Treg cells in diabetic mice. These data suggest that IL-10-treated adipose stromal vascular cells could be a promising therapeutic strategy for diabetes mellitus.
Collapse
Affiliation(s)
- Hsiao-Chi Lai
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (H.-C.L.); (P.-H.C.); (C.-H.T.)
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Pei-Hsuan Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (H.-C.L.); (P.-H.C.); (C.-H.T.)
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chia-Hua Tang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (H.-C.L.); (P.-H.C.); (C.-H.T.)
| | - Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (H.-C.L.); (P.-H.C.); (C.-H.T.)
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
8
|
Singh A, Mazumder A, Das S, Tyagi PK, Chaitanya MVNL. Probiotics in Action: Enhancing Immunity and Combatting Diseases for Optimal Health. JOURNAL OF NATURAL REMEDIES 2024:1153-1167. [DOI: 10.18311/jnr/2024/35894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/22/2024] [Indexed: 01/03/2025]
Abstract
This review offers an in-depth examination of the mechanisms underlying the microbiome's defense against viral infections, with a specific focus on probiotic interventions. Mycotoxins, secondary compounds produced by microfungi, pose significant health risks. Yet, certain strains of Lactic Acid Bacteria (LAB) have exhibited remarkable efficacy in eliminating aflatoxin B1 (AFB1), the most toxic member of the aflatoxin family. Experimental setups demonstrated AFB1 binding to specific LAB strains, persisting even after gastric digestion. Laboratory studies revealed a potential protective mechanism wherein pre-incubation of probiotics with mycotoxins reduced their adhesion to mucus. Animal trials further underscored the benefits of oral probiotic administration, showcasing increased fecal excretion of mycotoxins and mitigation of associated health risks. Cyanobacteria-generated microcystins in drinking water pose a significant threat to human health. Probiotic bacteria, particularly strains like Bifidobacterium longum and Lactobacillus rhamnosus, have demonstrated exceptional efficacy in removing the cyanobacterial peptide toxin microcystin-LR. Optimized conditions resulted in rapid toxin elimination, highlighting the potential of probiotics in water purification. Engineered probiotics represent a cutting-edge approach to tailor microorganisms for specific therapeutic applications, exhibiting promise in treating metabolic disorders, Alzheimer's disease, and type 1 diabetes. Additionally, they serve as innovative diagnostic tools, capable of detecting pathogens and inflammation markers within the body. In the realm of antimicrobial peptide production, probiotics offer a promising platform, with genetically modified strains engineered to produce human β-defensin 2 (HBD2) for treating Crohn's disease, showcasing their potential in targeted theurapetic delivery. Biocontainment strategies have been implemented to prevent unintended environmental impacts.
Collapse
|
9
|
Lokesh MN, Kumar R, Jacob N, Sachdeva N, Rawat A, Yadav J, Dayal D. Supplementation of High-Strength Oral Probiotics Improves Immune Regulation and Preserves Beta Cells among Children with New-Onset Type 1 Diabetes Mellitus: A Randomised, Double-Blind Placebo Control Trial. Indian J Pediatr 2024:10.1007/s12098-024-05074-5. [PMID: 38557820 DOI: 10.1007/s12098-024-05074-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/24/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES To investigate the mechanism of glycemic control in children with type 1 diabetes (T1D) following high-strength probiotics supplementation by assessing immune-regulatory markers. METHODS In this single-centre randomised double-blinded placebo-controlled study, children with new-onset T1D on regular insulin therapy were randomised into probiotic or placebo groups with 30 children each. The probiotics group received oral powder of Vivomixx®, and the placebo group received corn starch for six months. The primary outcome parameters included induced T regulatory cells (i-Tregs) percentage, insulin autoantibodies (IAA), insulinoma associated 2 autoantibodies (IA2), glutamic acid decarboxylase autoantibodies (GAD 65) and plasma interleukin-10 (IL-10) levels. The secondary outcome variables were changes in plasma C-peptide levels and glycemic control parameters. RESULTS Twenty-three children in the placebo group and 27 in the probiotic group completed the study. There was a significant increase in the percentage of iTregs (3.40 in the probiotic vs. 2.46 in the placebo group; p = 0.034). Median glycated hemoglobin (HbA1c) levels significantly decreased from 68 mmol/mol (8.35%) in the placebo group to 60 mmol/mol (7.55%) in the probiotic group (p = 0.017). Median C-peptide levels were significantly higher in probiotics (0.72 ng/ml) vs. placebo group (0.11 ng/ml) (p = 0.036). The plasma IL-10 levels significantly increased in the probiotic group after six months of treatment (p = 0.002). CONCLUSIONS The high-strength probiotics improved the immunoregulatory milieu, thereby preserving the beta-cell function and better glycemic control.
Collapse
Affiliation(s)
- M N Lokesh
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Rakesh Kumar
- Endocrinology and Diabetes Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, 160012, India.
| | - Neenu Jacob
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Amit Rawat
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Jaivinder Yadav
- Endocrinology and Diabetes Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, 160012, India
| | - Devi Dayal
- Endocrinology and Diabetes Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, 160012, India
| |
Collapse
|
10
|
Campos GM, Américo MF, Dos Santos Freitas A, Barroso FAL, da Cruz Ferraz Dutra J, Quaresma LS, Cordeiro BF, Laguna JG, de Jesus LCL, Fontes AM, Birbrair A, Santos TM, Azevedo V. Lactococcus lactis as an Interleukin Delivery System for Prophylaxis and Treatment of Inflammatory and Autoimmune Diseases. Probiotics Antimicrob Proteins 2024; 16:352-366. [PMID: 36746838 PMCID: PMC9902259 DOI: 10.1007/s12602-023-10041-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Target delivery of therapeutic agents with anti-inflammatory properties using probiotics as delivery and recombinant protein expression vehicles is a promising approach for the prevention and treatment of many diseases, such as cancer and intestinal immune disorders. Lactococcus lactis, a Lactic Acid Bacteria (LAB) widely used in the dairy industry, is one of the most important microorganisms with GRAS status for human consumption, for which biotechnological tools have already been developed to express and deliver recombinant biomolecules with anti-inflammatory properties. Cytokines, for example, are immune system communication molecules present at virtually all levels of the immune response. They are essential in cellular and humoral processes, such as hampering inflammation or adjuvating in the adaptive immune response, making them good candidates for therapeutic approaches. This review discusses the advances in the development of new therapies and prophylactic approaches using LAB to deliver/express cytokines for the treatment of inflammatory and autoimmune diseases in the future.
Collapse
Affiliation(s)
- Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andria Dos Santos Freitas
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Joyce da Cruz Ferraz Dutra
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ludmila Silva Quaresma
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara Fernandes Cordeiro
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aparecida Maria Fontes
- Genetics Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tulio Marcos Santos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Uniclon Biotecnologia, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
11
|
Liu J, Yuan S, Bremmer A, Hu Q. Convergence of Nanotechnology and Bacteriotherapy for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309295. [PMID: 38358998 PMCID: PMC11040386 DOI: 10.1002/advs.202309295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Bacteria have distinctive properties that make them ideal for biomedical applications. They can self-propel, sense their surroundings, and be externally detected. Using bacteria as medical therapeutic agents or delivery platforms opens new possibilities for advanced diagnosis and therapies. Nano-drug delivery platforms have numerous advantages over traditional ones, such as high loading capacity, controlled drug release, and adaptable functionalities. Combining bacteria and nanotechnologies to create therapeutic agents or delivery platforms has gained increasing attention in recent years and shows promise for improved diagnosis and treatment of diseases. In this review, design principles of integrating nanoparticles with bacteria, bacteria-derived nano-sized vesicles, and their applications and future in advanced diagnosis and therapeutics are summarized.
Collapse
Affiliation(s)
- Jun Liu
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
- Wisconsin Center for NanoBioSystemsUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
- Carbone Cancer Center, School of Medicine and Public HealthUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
| | - Sichen Yuan
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
- Wisconsin Center for NanoBioSystemsUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
- Carbone Cancer Center, School of Medicine and Public HealthUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
| | - Alexa Bremmer
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
- Wisconsin Center for NanoBioSystemsUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
- Carbone Cancer Center, School of Medicine and Public HealthUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
| |
Collapse
|
12
|
Mahdizade Ari M, Dadgar L, Elahi Z, Ghanavati R, Taheri B. Genetically Engineered Microorganisms and Their Impact on Human Health. Int J Clin Pract 2024; 2024:6638269. [PMID: 38495751 PMCID: PMC10944348 DOI: 10.1155/2024/6638269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The emergence of antibiotic-resistant strains, the decreased effectiveness of conventional therapies, and the side effects have led researchers to seek a safer, more cost-effective, patient-friendly, and effective method that does not develop antibiotic resistance. With progress in synthetic biology and genetic engineering, genetically engineered microorganisms effective in treatment, prophylaxis, drug delivery, and diagnosis have been developed. The present study reviews the types of genetically engineered bacteria and phages, their impacts on diseases, cancer, and metabolic and inflammatory disorders, the biosynthesis of these modified strains, the route of administration, and their effects on the environment. We conclude that genetically engineered microorganisms can be considered promising candidates for adjunctive treatment of diseases and cancers.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | - Behrouz Taheri
- Department of Biotechnology, School of Medicine, Ahvaz Jundishapour University of medical Sciences, Ahvaz, Iran
| |
Collapse
|
13
|
Abstract
Strategies that modulate antigen delivery are being tested to reverse autoimmunity.
Collapse
Affiliation(s)
- Bana Jabri
- Section of Gastroenterology, Hepatology and Nutrition, University of Chicago Department of Medicine, Chicago, IL, USA
- University of Chicago Celiac Disease Center, Chicago, IL, USA
- University of Chicago Committee on Immunology, Chicago, IL, USA
- University of Chicago Department of Pathology, Chicago, IL, USA
| | - Valérie Abadie
- Section of Gastroenterology, Hepatology and Nutrition, University of Chicago Department of Medicine, Chicago, IL, USA
- University of Chicago Celiac Disease Center, Chicago, IL, USA
- University of Chicago Committee on Immunology, Chicago, IL, USA
| |
Collapse
|
14
|
Mathieu C, Wiedeman A, Cerosaletti K, Long SA, Serti E, Cooney L, Vermeiren J, Caluwaerts S, Van Huynegem K, Steidler L, Blomme S, Rottiers P, Nepom GT, Herold KC. A first-in-human, open-label Phase 1b and a randomised, double-blind Phase 2a clinical trial in recent-onset type 1 diabetes with AG019 as monotherapy and in combination with teplizumab. Diabetologia 2024; 67:27-41. [PMID: 37782353 PMCID: PMC10709251 DOI: 10.1007/s00125-023-06014-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 10/03/2023]
Abstract
AIMS/HYPOTHESIS We hypothesised that islet beta cell antigen presentation in the gut along with a tolerising cytokine would lead to antigen-specific tolerance in type 1 diabetes. We evaluated this in a parallel open-label Phase 1b study using oral AG019, food-grade Lactococcus lactis bacteria genetically modified to express human proinsulin and human IL-10, as a monotherapy and in a parallel, randomised, double-blind Phase 2a study using AG019 in combination with teplizumab. METHODS Adults (18-42 years) and adolescents (12-17 years) with type 1 diabetes diagnosed within 150 days were enrolled, with documented evidence of at least one autoantibody and a stimulated peak C-peptide level >0.2 nmol/l. Participants were allocated to interventions using interactive response technology. We treated 42 people aged 12-42 years with recent-onset type 1 diabetes, 24 with Phase 1b monotherapy (open-label) and 18 with Phase 2a combination therapy. In the Phase 2a study, after treatment of the first two open-label participants, all people involved were blinded to group assignment, except for the Data Safety Monitoring Board members and the unblinded statistician. The primary endpoint was safety and tolerability based on the incidence of treatment-emergent adverse events, collected up to 6 months post treatment initiation. The secondary endpoints were pharmacokinetics, based on AG019 detection in blood and faeces, and pharmacodynamic activity. Metabolic and immune endpoints included stimulated C-peptide levels during a mixed meal tolerance test, HbA1c levels, insulin use, and antigen-specific CD4+ and CD8+ T cell responses using an activation-induced marker assay and pooled tetramers, respectively. RESULTS Data from 24 Phase 1b participants and 18 Phase 2a participants were analysed. No serious adverse events were reported and none of the participants discontinued AG019 due to treatment-emergent adverse events. No systemic exposure to AG019 bacteria, proinsulin or human IL-10 was demonstrated. In AG019 monotherapy-treated adults, metabolic variables were stabilised up to 6 months (C-peptide, insulin use) or 12 months (HbA1c) post treatment initiation. In participants treated with AG019/teplizumab combination therapy, all measured metabolic variables stabilised or improved up to 12 months and CD8+ T cells with a partially exhausted phenotype were significantly increased at 6 months. Circulating preproinsulin-specific CD4+ and CD8+ T cells were detected before and after treatment, with a reduction in the frequency of preproinsulin-specific CD8+ T cells after treatment with monotherapy or combination therapy. CONCLUSIONS/INTERPRETATION Oral delivery of AG019 was well tolerated and safe as monotherapy and in combination with teplizumab. AG019 was not shown to interfere with the safety profile of teplizumab and may have additional biological effects, including changes in preproinsulin-specific T cells. These preliminary data support continuing studies with this agent alone and in combination with teplizumab or other systemic immunotherapies in type 1 diabetes. TRIAL REGISTRATION ClinicalTrials.gov NCT03751007, EudraCT 2017-002871-24 FUNDING: This study was funded by Precigen ActoBio.
Collapse
Affiliation(s)
- Chantal Mathieu
- Clinical and Experimental Endocrinology, University Hospital of Leuven, Leuven, Belgium
| | - Alice Wiedeman
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | - Kevan C Herold
- Department of Immunology and Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
15
|
Firdessa Fite R, Bechi Genzano C, Mallone R, Creusot RJ. Epitope-based precision immunotherapy of Type 1 diabetes. Hum Vaccin Immunother 2023; 19:2154098. [PMID: 36656048 PMCID: PMC9980607 DOI: 10.1080/21645515.2022.2154098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Antigen-specific immunotherapies (ASITs) address important clinical needs in treating autoimmune diseases. However, Type 1 diabetes is a heterogeneous disease wherein patient characteristics influence responsiveness to ASITs. Targeting not only disease-relevant T cell populations, but also specific groups of patients using precision medicine is a new goal toward achieving effective treatment. HLA-restricted peptides provide advantages over protein as antigens, however, methods for profiling antigen-specific T cells need to improve in sensitivity, depth, and throughput to facilitate epitope selection. Delivery approaches are highly diverse, illustrating the many ways relevant antigen-presenting cell populations and anatomical locations can be targeted for tolerance induction. The role of persistence of antigen presentation in promoting durable antigen-specific tolerance requires further investigation. Based on the outcome of ASIT trials, the field is moving toward using patient-specific variations to improve efficacy, but challenges still lie on the path to delivering more effective and safer treatment to the T1D patient population.
Collapse
Affiliation(s)
- Rebuma Firdessa Fite
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Camillo Bechi Genzano
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.,Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Hôpitaux Universitaires de Paris Centre-Université de Paris, Paris, France
| | - Remi J Creusot
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
16
|
Guo J, Zhou B, Niu Y, Liu L, Yang L. Engineered probiotics introduced to improve intestinal microecology for the treatment of chronic diseases: present state and perspectives. J Diabetes Metab Disord 2023; 22:1029-1038. [PMID: 37975092 PMCID: PMC10638336 DOI: 10.1007/s40200-023-01279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/05/2023] [Indexed: 11/19/2023]
Abstract
Purpose Correcting intestinal microecological imbalance has become one of the core strategies to treat chronic diseases. Some traditional microecology-based therapies targeting intestine, such as prebiotic therapy, probiotic therapy and fecal microbiota transplantation therapy, have been used in the prevention and treatment of clinical chronic diseases, which still facing low safety and poor controllability problems. The development of synthetic biology technology has promoted the development of intestinal microecology-based therapeutics for chronic diseases, which exhibiting higher robustness and controllability, and become an important part of the next generation of microecological therapy. The purpose of this review is to summarize the application of synthetic biology in intestinal microecology-based therapeutics for chronic diseases. Methods The available literatures were searched to find out experimental studies and relevant review articles on the application of synthetic biology in intestinal microecology-based therapeutics for chronic diseases from year 1990 to 2023. Results Evidence proposed that synthetic biology has been applied in the intestinal microecology-based therapeutics for chronic diseases, covering metabolic diseases (e.g. diabetes, obesity, nonalcoholic fatty liver disease and phenylketonuria), digestive diseases (e.g. inflammatory bowel disease and colorectal cancer), and neurodegenerative diseases (e.g. Alzheimer's disease and Parkinson's disease). Conclusion This review summarizes the application of synthetic biology in intestinal microecology-based therapeutics for major chronic diseases and discusses the opportunities and challenges in the above process, providing clinical possibilities of synthetic biology technology applied in microecological therapies.
Collapse
Affiliation(s)
- Jianquan Guo
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, (Shanxi Medical University), Ministry of Education, Taiyuan, PR China
- School of Public Health, Shanxi Medical University, Taiyuan, 030001 Shanxi PR China
| | - Bangyuan Zhou
- School of Public Health, Shanxi Medical University, Taiyuan, 030001 Shanxi PR China
| | - Yali Niu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001 Shanxi PR China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001 Shanxi PR China
| | - Liyang Yang
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, 030619 Jinzhong, PR China
| |
Collapse
|
17
|
Marsh JW, Kirk C, Ley RE. Toward Microbiome Engineering: Expanding the Repertoire of Genetically Tractable Members of the Human Gut Microbiome. Annu Rev Microbiol 2023; 77:427-449. [PMID: 37339736 DOI: 10.1146/annurev-micro-032421-112304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Genetic manipulation is necessary to interrogate the functions of microbes in their environments, such as the human gut microbiome. Yet, the vast majority of human gut microbiome species are not genetically tractable. Here, we review the hurdles to seizing genetic control of more species. We address the barriers preventing the application of genetic techniques to gut microbes and report on genetic systems currently under development. While methods aimed at genetically transforming many species simultaneously in situ show promise, they are unable to overcome many of the same challenges that exist for individual microbes. Unless a major conceptual breakthrough emerges, the genetic tractability of the microbiome will remain an arduous task. Increasing the list of genetically tractable organisms from the human gut remains one of the highest priorities for microbiome research and will provide the foundation for microbiome engineering.
Collapse
Affiliation(s)
- James W Marsh
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| | - Christian Kirk
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| |
Collapse
|
18
|
Li P, Roos S, Luo H, Ji B, Nielsen J. Metabolic engineering of human gut microbiome: Recent developments and future perspectives. Metab Eng 2023; 79:1-13. [PMID: 37364774 DOI: 10.1016/j.ymben.2023.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
Many studies have demonstrated that the gut microbiota is associated with human health and disease. Manipulation of the gut microbiota, e.g. supplementation of probiotics, has been suggested to be feasible, but subject to limited therapeutic efficacy. To develop efficient microbiota-targeted diagnostic and therapeutic strategies, metabolic engineering has been applied to construct genetically modified probiotics and synthetic microbial consortia. This review mainly discusses commonly adopted strategies for metabolic engineering in the human gut microbiome, including the use of in silico, in vitro, or in vivo approaches for iterative design and construction of engineered probiotics or microbial consortia. Especially, we highlight how genome-scale metabolic models can be applied to advance our understanding of the gut microbiota. Also, we review the recent applications of metabolic engineering in gut microbiome studies as well as discuss important challenges and opportunities.
Collapse
Affiliation(s)
- Peishun Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Stefan Roos
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, SE75007, Uppsala, Sweden
| | - Hao Luo
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Boyang Ji
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark.
| |
Collapse
|
19
|
Dos Santos Haber JF, Barbalho SM, Sgarbi JA, de Argollo Haber RS, de Labio RW, Laurindo LF, Chagas EFB, Payão SLM. The Relationship between Type 1 Diabetes Mellitus, TNF-α, and IL-10 Gene Expression. Biomedicines 2023; 11:biomedicines11041120. [PMID: 37189738 DOI: 10.3390/biomedicines11041120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is one of the major chronic diseases in children worldwide. This study aimed to investigate interleukin-10 (IL-10) gene expression and tumor necrosis factor-alpha (TNF-α) in T1DM. A total of 107 patients were included, 15 were T1DM in ketoacidosis, 30 patients had T1DM and HbA1c ≥ 8%; 32 patients had T1DM and presented HbA1c < 8%; and 30 were controls. The expression of peripheral blood mononuclear cells was performed using the reverse transcriptase-polymerase chain reaction in real time. The cytokines gene expression was higher in patients with T1DM. The IL-10 gene expression increased substantially in patients with ketoacidosis, and there was a positive correlation with HbA1c. A negative correlation was found for IL-10 expression and the age of patients with diabetes, and the time of diagnosis of the disease. There was a positive correlation between TNF-α expression with age. The expression of IL-10 and TNF-α genes showed a significant increase in DM1 patients. Once current T1DM treatment is based on exogenous insulin, there is a need for other therapies, and inflammatory biomarkers could bring new possibilities to the therapeutic approach of the patients.
Collapse
Affiliation(s)
- Jesselina Francisco Dos Santos Haber
- School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-160, Brazil
- Postgraduate Program of Health and Aging, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
| | - Sandra Maria Barbalho
- School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-160, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-160, Brazil
| | - Jose Augusto Sgarbi
- Postgraduate Program of Health and Aging, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
- Division of Endocrinology and Metabolism, Department of Medicine, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
| | | | - Roger William de Labio
- Department of Genetics, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
| | - Lucas Fornari Laurindo
- School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-160, Brazil
| | - Eduardo Federighi Baisi Chagas
- Postgraduate Program of Health and Aging, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-160, Brazil
| | - Spencer Luiz Marques Payão
- Postgraduate Program of Health and Aging, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
- Department of Genetics, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
| |
Collapse
|
20
|
Chakaroun RM, Olsson LM, Bäckhed F. The potential of tailoring the gut microbiome to prevent and treat cardiometabolic disease. Nat Rev Cardiol 2023; 20:217-235. [PMID: 36241728 DOI: 10.1038/s41569-022-00771-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 12/12/2022]
Abstract
Despite milestones in preventive measures and treatment, cardiovascular disease (CVD) remains associated with a high burden of morbidity and mortality. The protracted nature of the development and progression of CVD motivates the identification of early and complementary targets that might explain and alleviate any residual risk in treated patients. The gut microbiota has emerged as a sentinel between our inner milieu and outer environment and relays a modified risk associated with these factors to the host. Accordingly, numerous mechanistic studies in animal models support a causal role of the gut microbiome in CVD via specific microbial or shared microbiota-host metabolites and have identified converging mammalian targets for these signals. Similarly, large-scale cohort studies have repeatedly reported perturbations of the gut microbial community in CVD, supporting the translational potential of targeting this ecological niche, but the move from bench to bedside has not been smooth. In this Review, we provide an overview of the current evidence on the interconnectedness of the gut microbiome and CVD against the noisy backdrop of highly prevalent confounders in advanced CVD, such as increased metabolic burden and polypharmacy. We further aim to conceptualize the molecular mechanisms at the centre of these associations and identify actionable gut microbiome-based targets, while contextualizing the current knowledge within the clinical scenario and emphasizing the limitations of the field that need to be overcome.
Collapse
Affiliation(s)
- Rima Mohsen Chakaroun
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Lisa M Olsson
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
21
|
Falode JA, Ajayi OI, Isinkaye TV, Adeoye AO, Ajiboye BO, Brai BIC, ADEOYE, Basiru Olaitan, AJIBOYE, BRAI BIC. Justicia carnea extracts ameliorated hepatocellular damage in streptozotocin-induced type 1 diabetic male rats via decrease in oxidative stress, inflammation and increasing other risk markers. Biomarkers 2023; 28:177-189. [PMID: 36511112 DOI: 10.1080/1354750x.2022.2157487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IntroductionDiabetes mellitus is still a raging disease not fully subdued globally, especially in Africa. Our study aims to evaluate the anti-diabetic potentials of Justicia carnea extracts [crude (JCC), free (JFP) and bound phenol (JBP) fractions], in streptozotocin (STZ)-induced type-1 diabetes in male albino rats.Materials and MethodsAbout thirty (30) animals were induced for type 1 diabetes with STZ; thereafter, treatment began for 14 days, after which the animals were euthanized, blood/serum was collected, the liver was removed and divided into two portions, for biochemical and histopathological analyses. Standard procedures were used to evaluate the liver biomarkers, like alanine transaminase (ALT), fructose-1,6-bisphosphatase, glucose-6- phosphatase, hexokinase activities, albumin, bilirubin, hepatic glucose concentrations; antioxidant status and pro- and anti-inflammatory cytokines were similarly assessed.ResultsThese results revealed that the extracts ameliorated the harmful effects of STZ-induced diabetes in the liver by enhancing the activities of liver-based biomarkers, reducing the concentrations of pro-inflammatory cytokines and increasing the anti-inflammatory cytokine.DiscussionThe results agreed with previous research, and the free phenol fraction showed excellent results compared to othersConclusionThese suggested that J. carnea could serve as an alternative remedy in ameliorating liver complications linked to oxidative damage and inflammation in STZ-induced type-1 diabetes.
Collapse
Affiliation(s)
- John Adeolu Falode
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Oluwaseun Igbekele Ajayi
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Tolulope Victoria Isinkaye
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Akinwunmi Oluwaseun Adeoye
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Basiru Olaitan Ajiboye
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Bartholomew I C Brai
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - ADEOYE
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Basiru Olaitan
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - AJIBOYE
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Bartholomew I. C. BRAI
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
22
|
Asai T, Yoshikawa S, Ikeda Y, Taniguchi K, Sawamura H, Tsuji A, Matsuda S. Encouraging Tactics with Genetically Modified Probiotics to Improve Immunity for the Prevention of Immune-Related Diseases including Cardio-Metabolic Disorders. Biomolecules 2022; 13:biom13010010. [PMID: 36671395 PMCID: PMC9855998 DOI: 10.3390/biom13010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The PI3K/AKT/mTOR signaling pathway may play crucial roles in the pathogenesis of obesity and diabetes mellitus, as well as metabolic syndromes, which could also be risk factors for cardio-metabolic disorders. Consistently, it has been shown that beneficial effects may be convoyed by the modulation of the PI3K/AKT/mTOR pathway against the development of these diseases. Importantly, the PI3K/AKT/mTOR signaling pathway can be modulated by probiotics. Probiotics have a variety of beneficial properties, with the potential of treating specific diseases such as immune-related diseases, which are valuable to human health. In addition, an increasing body of work in the literature emphasized the contribution of genetically modified probiotics. There now seems to be a turning point in the research of probiotics. A better understanding of the interactions between microbiota, lifestyle, and host factors such as genetics and/or epigenetics might lead to a novel therapeutic approach with probiotics for these diseases. This study might provide a theoretical reference for the development of genetically modified probiotics in health products and/or in functional foods for the treatment of cardio-metabolic disorders.
Collapse
|
23
|
He L, Chen R, Zhang B, Zhang S, Khan BA, Zhu D, Wu Z, Xiao C, Chen B, Chen F, Hou K. Fecal microbiota transplantation treatment of autoimmune-mediated type 1 diabetes mellitus. Front Immunol 2022; 13:930872. [PMID: 36032108 PMCID: PMC9414079 DOI: 10.3389/fimmu.2022.930872] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Type 1 diabetes mellitus (T1DM) is an autoimmune-mediated disease characterized by a reduced or absolute lack of insulin secretion and often associated with a range of vascular and neurological complications for which there is a lack of effective treatment other than lifestyle interventions and pharmacological treatments such as insulin injections. Studies have shown that the gut microbiota is involved in mediating the onset and development of many fecal and extrafecal diseases, including autoimmune T1DM. In recent years, many cases of gut microbiota transplantation for diseases of the bowel and beyond have been reported worldwide, and this approach has been shown to be safe and effective. Here, we conducted an experimental treatment study in two adolescent patients diagnosed with autoimmune T1DM for one year. Patients received one to three rounds of normal fecal microbiota transplants (FMT) and were followed for up to 30 weeks. Clinical outcomes were measured, including biochemical indices, medication regimen, and dosage adjustment. Fecal microbiota metagenomic sequencing after transplantation provides a reference for more reasonable and effective microbiota transplantation protocols to treat autoimmune T1DM. Our results suggest that FMT is an effective treatment for autoimmune T1DM. CLINICAL TRIAL REGISTRATION http://www.chictr.org.cn, identifier ChiCTR2100045789.
Collapse
Affiliation(s)
- Lina He
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Rongping Chen
- School of Laboratory Medical and Biotechnology, Southern Medical University, Guangzhou, China
| | - Bangzhou Zhang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Basic Medical Science, Central South University, Changsha, China
| | - Shuo Zhang
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Barkat Ali Khan
- Drug Delivery and Cosmetics Lab, Good Clinical Practice (GCPS), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
| | - Zezhen Wu
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chuanxing Xiao
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Basic Medical Science, Central South University, Changsha, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Baolong Chen
- Center for Research and Development, Xiamen Treatgut Biotechnology Co. Ltd., Xiamen, China
| | - Fengwu Chen
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
24
|
Podojil JR, Genardi S, Chiang MY, Kakade S, Neef T, Murthy T, Boyne MT, Elhofy A, Miller SD. Tolerogenic Immune-Modifying Nanoparticles Encapsulating Multiple Recombinant Pancreatic β Cell Proteins Prevent Onset and Progression of Type 1 Diabetes in Nonobese Diabetic Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:465-475. [PMID: 35725270 PMCID: PMC9339508 DOI: 10.4049/jimmunol.2200208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by T and B cell responses to proteins expressed by insulin-producing pancreatic β cells, inflammatory lesions within islets (insulitis), and β cell loss. We previously showed that Ag-specific tolerance targeting single β cell protein epitopes is effective in preventing T1D induced by transfer of monospecific diabetogenic CD4 and CD8 transgenic T cells to NOD.scid mice. However, tolerance induction to individual diabetogenic proteins, for example, GAD65 (glutamic acid decarboxylase 65) or insulin, has failed to ameliorate T1D both in wild-type NOD mice and in the clinic. Initiation and progression of T1D is likely due to activation of T cells specific for multiple diabetogenic epitopes. To test this hypothesis, recombinant insulin, GAD65, and chromogranin A proteins were encapsulated within poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (COUR CNPs) to assess regulatory T cell induction, inhibition of Ag-specific T cell responses, and blockade of T1D induction/progression in NOD mice. Whereas treatment of NOD mice with CNPs containing a single protein inhibited the corresponding Ag-specific T cell response, inhibition of overt T1D development only occurred when all three diabetogenic proteins were included within the CNPs (CNP-T1D). Blockade of T1D following CNP-T1D tolerization was characterized by regulatory T cell induction and a significant decrease in both peri-insulitis and immune cell infiltration into pancreatic islets. As we have recently published that CNP treatment is both safe and induced Ag-specific tolerance in a phase 1/2a celiac disease clinical trial, Ag-specific tolerance induced by nanoparticles encapsulating multiple diabetogenic proteins is a promising approach to T1D treatment.
Collapse
Affiliation(s)
- Joseph R Podojil
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- COUR Pharmaceutical Development Company, Inc., Northbrook, IL; and
| | - Samantha Genardi
- COUR Pharmaceutical Development Company, Inc., Northbrook, IL; and
| | - Ming-Yi Chiang
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Sandeep Kakade
- COUR Pharmaceutical Development Company, Inc., Northbrook, IL; and
| | - Tobias Neef
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Tushar Murthy
- COUR Pharmaceutical Development Company, Inc., Northbrook, IL; and
| | - Michael T Boyne
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- COUR Pharmaceutical Development Company, Inc., Northbrook, IL; and
| | - Adam Elhofy
- COUR Pharmaceutical Development Company, Inc., Northbrook, IL; and
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL;
- Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
25
|
Izadi M, Sadr Hashemi Nejad A, Moazenchi M, Masoumi S, Rabbani A, Kompani F, Hedayati Asl AA, Abbasi Kakroodi F, Jaroughi N, Mohseni Meybodi MA, Setoodeh A, Abbasi F, Hosseini SE, Moeini Nia F, Salman Yazdi R, Navabi R, Hajizadeh-Saffar E, Baharvand H. Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: a phase I/II randomized placebo-controlled clinical trial. Stem Cell Res Ther 2022; 13:264. [PMID: 35725652 PMCID: PMC9208234 DOI: 10.1186/s13287-022-02941-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 06/04/2022] [Indexed: 01/01/2023] Open
Abstract
Background Type-1 diabetes (T1D) occurs following autoimmune-induced pancreatic beta cells death. Among several treatment modalities, mesenchymal stem cells (MSCs) transplantation is promising for autoimmune disorders due to immunomodulation, regeneration, and migration to damaged tissue upon systemic injection. This study assessed the safety and efficacy of intravenous injection of autologous bone marrow-derived MSCs in newly diagnosed T1D patients. Methods After receiving informed consent, 21 patients who met the study criteria were enrolled and randomly assigned to receive either MSCs or placebo. Each patient in the experimental group received two doses of MSCs and was followed for at least one-year post-transplantation. Results The results have shown that this transplantation is safe and significantly reduces the number of hypoglycemic episodes. MSCs transplantation improved glycated hemoglobin (HbA1c), shifted serum cytokine patterns from pro-inflammatory to anti-inflammatory, increased the number of regulatory T-cells in the peripheral blood, and improved quality of life. Early transplantation of MSCs significantly improved HbA1c and C-peptide levels and shifted pro-inflammatory cytokines to anti-inflammatory cytokines. Also, exercise combined with MSCs transplantation improved glycemic and immunologic indices. Conclusions Taken together, autologous MSC transplantation is safe and effective, and its early transplantation is a promising treatment in newly diagnosed T1D children suffering from hypoglycemic episodes. Trial registration: This clinical trial was registered at the Iranian Registry of Clinical Trials (IRCT) with the identifier IRCT ID: IRCT2016070428786N1 registered on August 20, 2016 (Retrospectively registered) (https://en.irct.ir/trial/23256) and at the U.S. National Institutes of Health (ClinicalTrials.gov) with the related identifier NCT04078308 registered on September 6, 2019 (Retrospectively registered). (https://clinicaltrials.gov/ct2/show/NCT04078308). Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02941-w.
Collapse
Affiliation(s)
- Mahmoud Izadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anavasadat Sadr Hashemi Nejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maedeh Moazenchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Safdar Masoumi
- Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rabbani
- Growth and Development Research Center, Children's Medical Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Kompani
- Division of Hematology and Oncology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Hedayati Asl
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Hematology-Oncology and Stem Cell Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abbasi Kakroodi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Jaroughi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Ali Mohseni Meybodi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Aria Setoodeh
- Division of Pediatrics Endocrinology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Abbasi
- Growth and Development Research Center, Children's Medical Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Esmat Hosseini
- Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moeini Nia
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Salman Yazdi
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Roghayeh Navabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Diabetes, Obesity, and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
26
|
Effects of broad-spectrum antibiotics on the colonisation of probiotic yeast Saccharomyces boulardii in the murine gastrointestinal tract. Sci Rep 2022; 12:8862. [PMID: 35614092 PMCID: PMC9133042 DOI: 10.1038/s41598-022-12806-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
Mouse models are commonly used to study the colonisation profiles of microorganisms introduced to the gastrointestinal tract. Three commonly used mouse models include conventional, germ-free, and antibiotic-treated mice. However, colonisation resistance in conventional mice and specialised equipment for germ-free mice are usually limiting factors in their applications. In this study, we sought to establish a robust colonisation model for Saccharomyces boulardii, a probiotic yeast that has caught attention in the field of probiotics and advanced microbiome therapeutics. We characterised the colonisation of S. boulardii in conventional mice and mice treated with a cocktail of broad-spectrum antibiotics, including ampicillin, kanamycin, metronidazole and vancomycin. We found colonisation levels increased up to 10,000-fold in the antibiotic-treated mice compared to nonantibiotic-treated mice. Furthermore, S. boulardii was detected continuously in more than 75% of mice for 10 days after the last administration in antibiotic-treated mice, in contrast to in nonantibiotic-treated mice where S. boulardii was undetectable in less than 2 days. Finally, we demonstrated that this antibiotic cocktail can be used in two commonly used mouse strains, C57BL/6 and ob/ob mice, both achieving ~ 108 CFU/g of S. boulardii in faeces. These findings highlight that the antibiotic cocktail used in this study is an advantageous tool to study S. boulardii based probiotic and advanced microbiome therapeutics.
Collapse
|
27
|
Chen M, Zhang Q, Wei Y, Wan Q, Xu M, Chen X. Anti-CD20 therapy ameliorates β cell function and rebalances Th17/Treg cells in NOD mice. Endocrine 2022; 76:44-52. [PMID: 35067899 DOI: 10.1007/s12020-021-02965-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/12/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE Anti-CD20 therapy delays type 1 diabetes mellitus (T1DM) progression in both nonobese diabetic (NOD) mice and new-onset patients. The mechanism is not completely defined. This study aimed to investigate the effects of anti-CD20 therapy on T helper 17 (Th17) cells and regulatory T cells (Tregs) in NOD mice. The role of B cell depletion in T1DM development was also examined. METHODS NOD mice were randomly divided into two groups. The mice in the experimental group were treated with an anti-CD20 antibody, while the control mice were treated with an isotype-matched control antibody. After treatment, islet morphology and inflammation, Th17 and Treg cell frequencies in the pancreas and spleen, serum cytokine and anti-glutamic acid decarboxylase (GAD) antibody levels, interleukin (IL)-17A levels in the pancreas and spleen, insulin expression in islet cells and islet β cell function were measured. RESULTS Decreased blood glucose and increased insulin secretion were found in the exprimental group compared with the CON group. A lower islet inflammation score was also found in the experimental group. Decreased Th17 cell and IL-17A levels and augmented Treg cell levels were found in the spleen and pancreas after anti-CD20 treatment. The serum levels of B cell activating factor (BAFF), IL-17A, IL-17F, IL-23 and anti-GAD autoantibodies were decreased in the experimental group, while higher serum levels of IL-10 and transforming growth factor (TGF)-β were found. CONCLUSION Anti-CD20 therapy might have some beneficial effects that improve β cell function by relieving islet inflammation through regulation of Th17/Treg cells and the proinflammatory/anti-inflammatory balance.
Collapse
Affiliation(s)
- Min Chen
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan, China
| | - Qianhui Zhang
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan, China
| | - Yanhong Wei
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan, China
| | - Qianqian Wan
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan, China
| | - Min Xu
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan, China
| | - Xiaoqi Chen
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan, China.
| |
Collapse
|
28
|
Zhang T, Gao G, Sakandar HA, Kwok LY, Sun Z. Gut Dysbiosis in Pancreatic Diseases: A Causative Factor and a Novel Therapeutic Target. Front Nutr 2022; 9:814269. [PMID: 35242797 PMCID: PMC8885515 DOI: 10.3389/fnut.2022.814269] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic-related disorders such as pancreatitis, pancreatic cancer, and type 1 diabetes mellitus (T1DM) impose a substantial challenge to human health and wellbeing. Even though our understanding of the initiation and progression of pancreatic diseases has broadened over time, no effective therapeutics is yet available for these disorders. Mounting evidence suggests that gut dysbiosis is closely related to human health and disease, and pancreatic diseases are no exception. Now much effort is under way to explore the correlation and eventually potential causation between the gut microbiome and the course of pancreatic diseases, as well as to develop novel preventive and/or therapeutic strategies of targeted microbiome modulation by probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT) for these multifactorial disorders. Attempts to dissect the intestinal microbial landscape and its metabolic profile might enable deep insight into a holistic picture of these complex conditions. This article aims to review the subtle yet intimate nexus loop between the gut microbiome and pancreatic diseases, with a particular focus on current evidence supporting the feasibility of preventing and controlling pancreatic diseases via microbiome-based therapeutics and therapies.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Guangqi Gao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Hafiz Arbab Sakandar
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
- *Correspondence: Zhihong Sun
| |
Collapse
|
29
|
Yadav M, Chauhan NS. Microbiome therapeutics: exploring the present scenario and challenges. Gastroenterol Rep (Oxf) 2021; 10:goab046. [PMID: 35382166 PMCID: PMC8972995 DOI: 10.1093/gastro/goab046] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/11/2022] Open
Abstract
Human gut-microbiome explorations have enriched our understanding of microbial colonization, maturation, and dysbiosis in health-and-disease subsets. The enormous metabolic potential of gut microbes and their role in the maintenance of human health is emerging, with new avenues to use them as therapeutic agents to overcome human disorders. Microbiome therapeutics are aimed at engineering the gut microbiome using additive, subtractive, or modulatory therapy with an application of native or engineered microbes, antibiotics, bacteriophages, and bacteriocins. This approach could overcome the limitation of conventional therapeutics by providing personalized, harmonized, reliable, and sustainable treatment. Its huge economic potential has been shown in the global therapeutics market. Despite the therapeutic and economical potential, microbiome therapeutics is still in the developing stage and is facing various technical and administrative issues that require research attention. This review aims to address the current knowledge and landscape of microbiome therapeutics, provides an overview of existing health-and-disease applications, and discusses the potential future directions of microbiome modulations.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
30
|
Pagni PP, Chaplin J, Wijaranakula M, Wesley JD, Granger J, Cracraft J, O'Brien C, Perdue N, Kumar V, Li S, Ratliff SS, Roach A, Misquith A, Chan CL, Coppieters K, von Herrath M. Multicomponent Plasmid Protects Mice From Spontaneous Autoimmune Diabetes. Diabetes 2021; 71:db210327. [PMID: 34389610 PMCID: PMC8763876 DOI: 10.2337/db21-0327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/08/2021] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes is an autoimmune disease in which insulin-secreting β-cells are destroyed, leading to a life-long dependency on exogenous insulin. There are no approved disease-modifying therapies available, and future immunotherapies would need to avoid generalized immune suppression. We developed a novel plasmid expressing preproinsulin2 and a combination of immune-modulatory cytokines (transforming growth factor-beta-1, interleukin [IL] 10 and IL-2) capable of near-complete prevention of autoimmune diabetes in non-obese diabetic mice. Efficacy depended on preproinsulin2, suggesting antigen-specific tolerization, and on the cytokine combination encoded. Diabetes suppression was achieved following either intramuscular or subcutaneous injections. Intramuscular plasmid treatment promoted increased peripheral levels of endogenous IL-10 and modulated myeloid cell types without inducing global immunosuppression. To prepare for first-in-human studies, the plasmid was modified to allow for selection without the use of antibiotic resistance; this modification had no impact on efficacy. This pre-clinical study demonstrates that this multi-component, plasmid-based antigen-specific immunotherapy holds potential for inducing self-tolerance in persons at risk of developing type 1 diabetes. Importantly, the study also informs on relevant cytokine and immune cell biomarkers that may facilitate clinical trials. This therapy is currently being tested for safety and tolerability in a phase 1 trial (ClinicalTrials.gov Identifier: NCT04279613).
Collapse
Affiliation(s)
- Philippe P Pagni
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Jay Chaplin
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Michael Wijaranakula
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Johnna D Wesley
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Jaimie Granger
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Justen Cracraft
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Conor O'Brien
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Nikole Perdue
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Vijetha Kumar
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Shangjin Li
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | | | - Allie Roach
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Ayesha Misquith
- Discovery Biologics, Global Research Technologies, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Chung-Leung Chan
- Discovery Biologics, Global Research Technologies, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Ken Coppieters
- Project and Alliance Management, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Matthias von Herrath
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Global Chief Medical Office, Novo Nordisk A/S, Søborg, Denmark
| |
Collapse
|
31
|
Chen XY, Du GS, Sun X. Targeting Lymphoid Tissues to Promote Immune Tolerance. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao Yan Chen
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| | - Guang Sheng Du
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| | - Xun Sun
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| |
Collapse
|
32
|
Yang G, Wei J, Liu P, Zhang Q, Tian Y, Hou G, Meng L, Xin Y, Jiang X. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism 2021; 117:154712. [PMID: 33497712 DOI: 10.1016/j.metabol.2021.154712] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/27/2020] [Accepted: 01/20/2021] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes is the fastest-growing metabolic disease in the world. Many clinical studies have found that type 2 diabetes patients have metabolic disorders and chronic inflammatory states accompanied by disturbances in the gut microbiota. The gut microbiota plays an important role in body metabolism and immune regulation, and disturbances in the gut microbiota in conjunction with destruction of the intestinal barrier in type 2 diabetes patients causes damage to multiple organs. Therefore, the gut microbiota may be a new therapeutic target for treating type 2 diabetes and related diseases. In this review, we introduce the characteristics of the gut microbiota in type 2 diabetes and related diseases, as well as highlight the potential molecular mechanisms of their effects on intestinal barrier disruption, metabolic disorders, and chronic inflammation. Finally, we summarize an intestinal microecological therapeutic strategy, with a focus on shaping the intestinal bacteria, to improve the malignant progress of type 2 diabetes and related diseases. AUTHOR SUMMARY: Type 2 diabetes (T2D) is the fastest-growing metabolic disease in the world. Many clinical studies have found that T2D patients have metabolic disorders and chronic inflammatory states, accompanied by disturbances of the gut microbiota and increased intestinal permeability. The number of human gut microbiota is more than 10 times of human cells, and they play an important role in the body's metabolism and immune regulation. The abnormal intestinal metabolites and intestinal barrier disruption caused by the gut microbiota dysbiosis in the T2D facilitate intestinal bacteria and their harmful metabolites entering the circulatory system. The abnormal entering will cause the damage to multiple organs through disturbing insulin sensitivity, glucose metabolism, and immune homeostasis. Therefore, the gut microbiota may be a new therapeutic target for improving T2D and its related diseases. In this review, we introduce the compositional characteristics of the gut microbiota in T2D, and highlight some new molecular mechanisms of their effects on intestinal barrier disruption, metabolic disorders and chronic inflammation in T2D and its related diseases. Finally, we summarize an intestinal microecological therapeutic strategy, with a focus on shaping the intestinal bacteria, to improve the malignant progress of T2D and related diseases.
Collapse
Affiliation(s)
- Ge Yang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Pinyi Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Qihe Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuan Tian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Department of Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Guowen Hou
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
33
|
Volfson-Sedletsky V, Jones A, Hernandez-Escalante J, Dooms H. Emerging Therapeutic Strategies to Restore Regulatory T Cell Control of Islet Autoimmunity in Type 1 Diabetes. Front Immunol 2021; 12:635767. [PMID: 33815387 PMCID: PMC8015774 DOI: 10.3389/fimmu.2021.635767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
Despite many decades of investigation uncovering the autoimmune mechanisms underlying Type 1 Diabetes (T1D), translating these findings into effective therapeutics has proven extremely challenging. T1D is caused by autoreactive T cells that become inappropriately activated and kill the β cells in the pancreas, resulting in insulin insufficiency and hyperglycemia. A large body of evidence supports the idea that the unchecked activation and expansion of autoreactive T cells in T1D is due to defects in immunosuppressive regulatory T cells (Tregs) that are critical for maintaining peripheral tolerance to islet autoantigens. Hence, repairing these Treg deficiencies is a much sought-after strategy to treat the disease. To accomplish this goal in the most precise, effective and safest way possible, restored Treg functions will need to be targeted towards suppressing the autoantigen-specific immune responses only and/or be localized in the pancreas. Here we review the most recent developments in designing Treg therapies that go beyond broad activation or expansion of non-specific polyclonal Treg populations. We focus on two cutting-edge strategies namely ex vivo generation of optimized Tregs for re-introduction in T1D patients vs direct in situ stimulation and restoration of endogenous Treg function.
Collapse
Affiliation(s)
- Victoria Volfson-Sedletsky
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States.,Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Albert Jones
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States.,Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Jaileene Hernandez-Escalante
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States.,Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Hans Dooms
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States.,Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
34
|
Approaching precision medicine by tailoring the microbiota. Mamm Genome 2021; 32:206-222. [PMID: 33646347 DOI: 10.1007/s00335-021-09859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Accumulating evidence has revealed the link between the microbiota and various human diseases. Advances in high-throughput sequencing technologies have identified some consistent disease-associated microbial features, leading to the emerging concept of microbiome-based therapeutics. However, it is also becoming clear that there are considerable variations in the microbiota among patients with the same disease. Variations in the microbial composition and function contribute to substantial differences in metabolic status of the host via production of a myriad of biochemically and functionally different microbial metabolites. Indeed, compelling evidence indicates that individuality of the microbiome may result in individualized responses to microbiome-based therapeutics and other interventions. Mechanistic understanding of the role of the microbiota in diseases and drug metabolism would help us to identify causal relationships and thus guide the development of microbiome-based precision or personalized medicine. In this review, we provide an overview of current efforts to use microbiome-based interventions for the treatment of diseases such as cancer, neurological disorders, and diabetes to approach precision medicine.
Collapse
|
35
|
Continuous stimulation of dual-function peptide PGLP-1-VP inhibits the morbidity and mortality of NOD mice through anti-inflammation and immunoregulation. Sci Rep 2021; 11:3593. [PMID: 33574570 PMCID: PMC7878925 DOI: 10.1038/s41598-021-83201-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Multiple animal and human studies have shown that administration of GLP-1RA can enhance β-cell recovery, reduce insulin dosage, reduce HbA1c content in the blood, reduce the risk of hypoglycemia and reduce inflammation. In the NOD mouse model, peptide VP treatment can prevent and treat type 1 diabetes through immunomodulation. Therefore, we designed a new dual-functional PGLP-1-VP, which is expected to combine the anti-inflammatory effect of PGLP-1 and the immunomodulatory effect of VP peptide. In streptozotocin-induced hyperglycemic mice model, we demonstrated that PGLP-1-VP can act as a GLP-1R agonist to improve hyperglycemia and increase insulin sensitivity. In the NOD mouse model, PGLP-1-VP treatment reduced morbidity, mortality, and pancreatic inflammation, and showed superior effect to PGLP-1 or VP treatment alone, confirming that PGLP-1-VP may act as a dual-function peptide. PGLP-1-VP provided immunomodulatory effect through increasing Th2 cell percentage and balancing the ratio of Th2/Th1 in spleen and PLN, similar to P277 and VP. Additionally, PGLP-1-VP and PGLP-1 act the anti-inflammation by increasing Treg cells and TGF-β1 content like DPP-IV inhibitor. Taken together, our data shows that the dual-functional PGLP-1-VP reduces morbidity and mortality in the NOD model, suggesting a potential role in preventing and treating type 1 diabetes.
Collapse
|
36
|
Liu Y, Li Z, Wu Y, Jing X, Li L, Fang X. Intestinal Bacteria Encapsulated by Biomaterials Enhance Immunotherapy. Front Immunol 2021; 11:620170. [PMID: 33643302 PMCID: PMC7902919 DOI: 10.3389/fimmu.2020.620170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
The human intestine contains thousands of bacterial species essential for optimal health. Aside from their pathogenic effects, these bacteria have been associated with the efficacy of various treatments of diseases. Due to their impact on many human diseases, intestinal bacteria are receiving increasing research attention, and recent studies on intestinal bacteria and their effects on treatments has yielded valuable results. Particularly, intestinal bacteria can affect responses to numerous forms of immunotherapy, especially cancer therapy. With the development of precision medicine, understanding the factors that influence intestinal bacteria and how they can be regulated to enhance immunotherapy effects will improve the application prospects of intestinal bacteria therapy. Further, biomaterials employed for the convenient and efficient delivery of intestinal bacteria to the body have also become a research hotspot. In this review, we discuss the recent findings on the regulatory role of intestinal bacteria in immunotherapy, focusing on immune cells they regulate. We also summarize biomaterials used for their delivery.
Collapse
Affiliation(s)
- Yilun Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongmin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuanyu Wu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiabin Jing
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Lin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
37
|
Callewaert C, Knödlseder N, Karoglan A, Güell M, Paetzold B. Skin microbiome transplantation and manipulation: Current state of the art. Comput Struct Biotechnol J 2021; 19:624-631. [PMID: 33510866 PMCID: PMC7806958 DOI: 10.1016/j.csbj.2021.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/02/2021] [Accepted: 01/02/2021] [Indexed: 12/13/2022] Open
Abstract
Many skin conditions are associated with an imbalance in the skin microbiome. In recent years, the skin microbiome has become a hot topic, for both therapeutic and cosmetic purposes. The possibility of manipulating the human skin microbiome to address skin conditions has opened exciting new paths for therapy. Here we review the skin microbiome manipulation strategies, ranging from skin microbiome transplantation, over skin bacteriotherapy to the use of prebiotics, probiotics and postbiotics. We summarize all efforts undertaken to exchange, manipulate, transplant or selectively apply the skin microbiome to date. Multiple microbial groups have been targeted, since they have been proven to be beneficial for skin health. We focus on the most common skin disorders and their associated skin microbiome dysbiosis and we review the existing scientific data and clinical trials undertaken to combat these skin conditions. The skin microbiome represents a novel platform for therapy. Transplantation of a complete microbiome or application of single strains has demonstrated beneficial therapeutic application.
Collapse
Affiliation(s)
- Chris Callewaert
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, Ghent, Belgium
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nastassia Knödlseder
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ante Karoglan
- Department of Dermatology, University Hospital Magdeburg, University of Magdeburg, Magdeburg, Germany
| | - Marc Güell
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain
| | | |
Collapse
|
38
|
Kang M, Choe D, Kim K, Cho BK, Cho S. Synthetic Biology Approaches in The Development of Engineered Therapeutic Microbes. Int J Mol Sci 2020; 21:ijms21228744. [PMID: 33228099 PMCID: PMC7699352 DOI: 10.3390/ijms21228744] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Since the intimate relationship between microbes and human health has been uncovered, microbes have been in the spotlight as therapeutic targets for several diseases. Microbes contribute to a wide range of diseases, such as gastrointestinal disorders, diabetes and cancer. However, as host-microbiome interactions have not been fully elucidated, treatments such as probiotic administration and fecal transplantations that are used to modulate the microbial community often cause nonspecific results with serious safety concerns. As an alternative, synthetic biology can be used to rewire microbial networks such that the microbes can function as therapeutic agents. Genetic sensors can be transformed to detect biomarkers associated with disease occurrence and progression. Moreover, microbes can be reprogrammed to produce various therapeutic molecules from the host and bacterial proteins, such as cytokines, enzymes and signaling molecules, in response to a disturbed physiological state of the host. These therapeutic treatment systems are composed of several genetic parts, either identified in bacterial endogenous regulation systems or developed through synthetic design. Such genetic components are connected to form complex genetic logic circuits for sophisticated therapy. In this review, we discussed the synthetic biology strategies that can be used to construct engineered therapeutic microbes for improved microbiome-based treatment.
Collapse
Affiliation(s)
- Minjeong Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (M.K.); (D.C.); (K.K.)
| | - Donghui Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (M.K.); (D.C.); (K.K.)
| | - Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (M.K.); (D.C.); (K.K.)
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (M.K.); (D.C.); (K.K.)
- Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea
- Correspondence: (B.-K.C.); (S.C.)
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (M.K.); (D.C.); (K.K.)
- Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Correspondence: (B.-K.C.); (S.C.)
| |
Collapse
|
39
|
Oral delivery of bacteria: Basic principles and biomedical applications. J Control Release 2020; 327:801-833. [DOI: 10.1016/j.jconrel.2020.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/05/2020] [Indexed: 12/18/2022]
|
40
|
Kohl HM, Castillo AR, Ochoa-Repáraz J. The Microbiome as a Therapeutic Target for Multiple Sclerosis: Can Genetically Engineered Probiotics Treat the Disease? Diseases 2020; 8:diseases8030033. [PMID: 32872621 PMCID: PMC7563507 DOI: 10.3390/diseases8030033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
There is an increasing interest in the intestinal microbiota as a critical regulator of the development and function of the immune, nervous, and endocrine systems. Experimental work in animal models has provided the foundation for clinical studies to investigate associations between microbiota composition and function and human disease, including multiple sclerosis (MS). Initial work done using an animal model of brain inflammation, experimental autoimmune encephalomyelitis (EAE), suggests the existence of a microbiota-gut-brain axis connection in the context of MS, and microbiome sequence analyses reveal increases and decreases of microbial taxa in MS intestines. In this review, we discuss the impact of the intestinal microbiota on the immune system and the role of the microbiome-gut-brain axis in the neuroinflammatory disease MS. We also discuss experimental evidence supporting the hypothesis that modulating the intestinal microbiota through genetically modified probiotics may provide immunomodulatory and protective effects as a novel therapeutic approach to treat this devastating disease.
Collapse
|
41
|
Engineering the gut microbiota to treat chronic diseases. Appl Microbiol Biotechnol 2020; 104:7657-7671. [PMID: 32696297 PMCID: PMC7484268 DOI: 10.1007/s00253-020-10771-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 12/21/2022]
Abstract
Gut microbes play vital roles in host health and disease. A number of commensal bacteria have been used as vectors for genetic engineering to create living therapeutics. This review highlights recent advances in engineering gut bacteria for the treatment of chronic diseases such as metabolic diseases, cancer, inflammatory bowel diseases, and autoimmune disorders. KEY POINTS: • Bacterial homing to tumors has been exploited to deliver therapeutics in mice models. • Engineered bacteria show promise in mouse models of metabolic diseases. • Few engineered bacterial treatments have advanced to clinical studies.
Collapse
|
42
|
Cook DP, Cunha JPMCM, Martens PJ, Sassi G, Mancarella F, Ventriglia G, Sebastiani G, Vanherwegen AS, Atkinson MA, Van Huynegem K, Steidler L, Caluwaerts S, Rottiers P, Teyton L, Dotta F, Gysemans C, Mathieu C. Intestinal Delivery of Proinsulin and IL-10 via Lactococcus lactis Combined With Low-Dose Anti-CD3 Restores Tolerance Outside the Window of Acute Type 1 Diabetes Diagnosis. Front Immunol 2020; 11:1103. [PMID: 32582188 PMCID: PMC7295939 DOI: 10.3389/fimmu.2020.01103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/06/2020] [Indexed: 01/07/2023] Open
Abstract
A combination treatment (CT) of proinsulin and IL-10 orally delivered via genetically modified Lactococcus lactis bacteria combined with low-dose anti-CD3 (aCD3) therapy successfully restores glucose homeostasis in newly diagnosed non-obese diabetic (NOD) mice. Tolerance is accompanied by the accumulation of Foxp3+ regulatory T cells (Tregs) in the pancreas. To test the potential of this therapy outside the window of acute diabetes diagnosis, we substituted autoimmune diabetic mice, with disease duration varying between 4 and 53 days, with syngeneic islets at the time of therapy initiation. Untreated islet recipients consistently showed disease recurrence after 8.2 ± 0.7 days, while 32% of aCD3-treated and 48% of CT-treated mice remained normoglycemic until 6 weeks after therapy initiation (P < 0.001 vs. untreated controls for both treatments, P < 0.05 CT vs. aCD3 therapy). However, mice that were diabetic for more than 2 weeks before treatment initiation were less efficient at maintaining normoglycemia than those treated within 2 weeks of diabetes diagnosis, particularly in the aCD3-treated group. The complete elimination of endogenous beta cell mass with alloxan at the time of diabetes diagnosis pointed toward the significance of continuous feeding of the islet antigen proinsulin at the time of aCD3 therapy for treatment success. The CT providing proinsulin protected 69% of mice, compared to 33% when an irrelevant antigen (ovalbumin) was combined with aCD3 therapy, or to 27% with aCD3 therapy alone. Sustained tolerance was accompanied with a reduction of IGRP+CD8+ autoreactive T cells and an increase in insulin-reactive (InsB12-20 or InsB13-2) Foxp3+CD4+ Tregs, with a specific accumulation of Foxp3+ Tregs around the insulin-containing islet grafts after CT with proinsulin. The combination of proinsulin and IL-10 via oral Lactococcus lactis with low-dose aCD3 therapy can restore tolerance to beta cells in autoimmune diabetic mice, also when therapy is started outside the window of acute diabetes diagnosis, providing persistence of insulin-containing islets or prolonged beta cell function.
Collapse
Affiliation(s)
- Dana P Cook
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing, Campus Gasthuisberg O&N 1, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - João Paulo Monteiro Carvalho Mori Cunha
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing, Campus Gasthuisberg O&N 1, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Pieter-Jan Martens
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing, Campus Gasthuisberg O&N 1, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Gabriele Sassi
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing, Campus Gasthuisberg O&N 1, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Francesca Mancarella
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena and Fondazione Umberto Di Mario ONLUS-Toscana Life Science Park, Siena, Italy
| | - Giuliana Ventriglia
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena and Fondazione Umberto Di Mario ONLUS-Toscana Life Science Park, Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena and Fondazione Umberto Di Mario ONLUS-Toscana Life Science Park, Siena, Italy
| | - An-Sofie Vanherwegen
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing, Campus Gasthuisberg O&N 1, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Mark A Atkinson
- Immunology and Laboratory Medicine, Department of Pathology, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | | | | | | | | | - Luc Teyton
- The Teyton Lab, Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, United States
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena and Fondazione Umberto Di Mario ONLUS-Toscana Life Science Park, Siena, Italy
| | - Conny Gysemans
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing, Campus Gasthuisberg O&N 1, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing, Campus Gasthuisberg O&N 1, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
43
|
Zampieri R, Brozzetti A, Pericolini E, Bartoloni E, Gabrielli E, Roselletti E, Lomonosoff G, Meshcheriakova Y, Santi L, Imperatori F, Merlin M, Tinazzi E, Dotta F, Nigi L, Sebastiani G, Pezzotti M, Falorni A, Avesani L. Prevention and treatment of autoimmune diseases with plant virus nanoparticles. SCIENCE ADVANCES 2020; 6:eaaz0295. [PMID: 32494704 PMCID: PMC7202875 DOI: 10.1126/sciadv.aaz0295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/12/2020] [Indexed: 05/15/2023]
Abstract
Plant viruses are natural, self-assembling nanostructures with versatile and genetically programmable shells, making them useful in diverse applications ranging from the development of new materials to diagnostics and therapeutics. Here, we describe the design and synthesis of plant virus nanoparticles displaying peptides associated with two different autoimmune diseases. Using animal models, we show that the recombinant nanoparticles can prevent autoimmune diabetes and ameliorate rheumatoid arthritis. In both cases, this effect is based on a strictly peptide-related mechanism in which the virus nanoparticle acts both as a peptide scaffold and as an adjuvant, showing an overlapping mechanism of action. This successful preclinical testing could pave the way for the development of plant viruses for the clinical treatment of human autoimmune diseases.
Collapse
Affiliation(s)
- Roberta Zampieri
- Department of Biotechnology, University of Verona, Verona, Italy
- Diamante srl, Strada Le Grazie, 15, 37134 Verona, Italy
| | | | - Eva Pericolini
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Bartoloni
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Elena Gabrielli
- Department of Medicine, University of Perugia, Perugia, Italy
| | | | | | | | - Luca Santi
- Department of Agriculture and Forest Sciences, University of La Tuscia, Viterbo, Italy
| | - Francesca Imperatori
- Department of Agriculture and Forest Sciences, University of La Tuscia, Viterbo, Italy
| | - Matilde Merlin
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elisa Tinazzi
- Department of Medicine, University of Verona, Verona, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Umberto Di Mario Foundation ONLUS, Toscana Life Sciences, Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Umberto Di Mario Foundation ONLUS, Toscana Life Sciences, Siena, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alberto Falorni
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
44
|
Nelson AS, Maddaloni M, Abbott JR, Hoffman C, Akgul A, Ohland C, Gharaibeh RZ, Jobin C, Brusko TM, Pascual DW. Oral therapy with colonization factor antigen I prevents development of type 1 diabetes in Non-obese Diabetic mice. Sci Rep 2020; 10:6156. [PMID: 32273533 PMCID: PMC7145799 DOI: 10.1038/s41598-020-62881-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/21/2020] [Indexed: 01/09/2023] Open
Abstract
Antigen (Ag)-specific tolerization prevents type 1 diabetes (T1D) in non-obese diabetic (NOD) mice but proved less effective in humans. Several auto-Ags are fundamental to disease development, suggesting T1D etiology is heterogeneous and may limit the effectiveness of Ag-specific therapies to distinct disease endotypes. Colonization factor antigen I (CFA/I) fimbriae from Escherichia coli can inhibit autoimmune diseases in murine models by inducing bystander tolerance. To test if Ag-independent stimulation of regulatory T cells (Tregs) can prevent T1D onset, groups of NOD mice were orally treated with Lactococcus lactis (LL) expressing CFA/I. LL-CFA/I treatment beginning at 6 weeks of age reduced disease incidence by 50% (p < 0.05) and increased splenic Tregs producing both IL-10 and IFN-γ 8-fold (p < 0.005) compared to LL-vehicle treated controls. To further describe the role of these Tregs in preventing T1D, protective phenotypes were examined at different time-points. LL-CFA/I treatment suppressed splenic TNF-α+CD8+ T cells 6-fold at 11 weeks (p < 0.005) and promoted a distinct microbiome. At 17 weeks, IFN-γ+CD4+ T cells were suppressed 10-fold (p < 0.005), and at 30 weeks, pancreatic Tbet+CD4+ T cells were suppressed (p < 0.05). These results show oral delivery of modified commensal organisms, such as LL-CFA/I, may be harnessed to restrict Th1 cell-mediated immunity and protect against T1D.
Collapse
Affiliation(s)
- Andrew S. Nelson
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States
| | - Massimo Maddaloni
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States
| | - Jeffrey R. Abbott
- 0000 0004 1936 8091grid.15276.37Department of Comparative, Diagnostic, and Population Medicine, University of Florida, Gainesville, FL United States
| | - Carol Hoffman
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States
| | - Ali Akgul
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States
| | - Christina Ohland
- 0000 0004 1936 8091grid.15276.37Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL United States
| | - Raad Z. Gharaibeh
- 0000 0004 1936 8091grid.15276.37Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL United States
| | - Christian Jobin
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States ,0000 0004 1936 8091grid.15276.37Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL United States
| | - Todd M. Brusko
- 0000 0004 1936 8091grid.15276.37Department of Pathology, Immunology, & Laboratory Medicine, University of Florida Diabetes Institute, University of Florida, Gainesville, FL United States
| | - David W. Pascual
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States
| |
Collapse
|
45
|
Carballido JM, Regairaz C, Rauld C, Raad L, Picard D, Kammüller M. The Emerging Jamboree of Transformative Therapies for Autoimmune Diseases. Front Immunol 2020; 11:472. [PMID: 32296421 PMCID: PMC7137386 DOI: 10.3389/fimmu.2020.00472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Standard treatments for autoimmune and autoinflammatory disorders rely mainly on immunosuppression. These are predominantly symptomatic remedies that do not affect the root cause of the disease and are associated with multiple side effects. Immunotherapies are being developed during the last decades as more specific and safer alternatives to small molecules with broad immunosuppressive activity, but they still do not distinguish between disease-causing and protective cell targets and thus, they still have considerable risks of increasing susceptibility to infections and/or malignancy. Antigen-specific approaches inducing immune tolerance represent an emerging trend carrying the potential to be curative without inducing broad immunosuppression. These therapies are based on antigenic epitopes derived from the same proteins that are targeted by the autoreactive T and B cells, and which are administered to patients together with precise instructions to induce regulatory responses capable to restore homeostasis. They are not personalized medicines, and they do not need to be. They are precision therapies exquisitely targeting the disease-causing cells that drive pathology in defined patient populations. Immune tolerance approaches are truly transformative options for people suffering from autoimmune diseases.
Collapse
Affiliation(s)
- José M. Carballido
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Camille Regairaz
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Celine Rauld
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Layla Raad
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Damien Picard
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Michael Kammüller
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
46
|
Lu J, Liu J, Li L, Lan Y, Liang Y. Cytokines in type 1 diabetes: mechanisms of action and immunotherapeutic targets. Clin Transl Immunology 2020; 9:e1122. [PMID: 32185024 PMCID: PMC7074462 DOI: 10.1002/cti2.1122] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/31/2020] [Accepted: 03/01/2020] [Indexed: 12/17/2022] Open
Abstract
Cytokines play crucial roles in orchestrating complex multicellular interactions between pancreatic β cells and immune cells in the development of type 1 diabetes (T1D) and are thus potential immunotherapeutic targets for this disorder. Cytokines that can induce regulatory functions-for example, IL-10, TGF-β and IL-33-are thought to restore immune tolerance and prevent β-cell damage. By contrast, cytokines such as IL-6, IL-17, IL-21 and TNF, which promote the differentiation and function of diabetogenic immune cells, are thought to lead to T1D onset and progression. However, targeting these dysregulated cytokine networks does not always result in consistent effects because anti-inflammatory or proinflammatory functions of cytokines, responsible for β-cell destruction, are context dependent. In this review, we summarise the current knowledge on the involvement of well-known cytokines in both the initiation and destruction phases of T1D and discuss advances in recently discovered roles of cytokines. Additionally, we emphasise the complexity and implications of cytokine modulation therapy and discuss the ways in which this strategy has been translated into clinical trials.
Collapse
Affiliation(s)
- Jingli Lu
- Department of Pharmacy The First Affiliated Hospital of Zhengzhou University Zhengzhou China.,Henan Key Laboratory of Precision Clinical Pharmacy Zhengzhou University Zhengzhou China
| | - Jiyun Liu
- Department of Pharmacy The First Affiliated Hospital of Zhengzhou University Zhengzhou China.,Henan Key Laboratory of Precision Clinical Pharmacy Zhengzhou University Zhengzhou China
| | - Lulu Li
- Department of Pharmacy Wuhan No.1 Hospital Wuhan China
| | - Yan Lan
- Department of Pharmacy Huangshi Center Hospital Huangshi China
| | - Yan Liang
- Department of Pharmacy The First Affiliated Hospital of Zhengzhou University Zhengzhou China.,Henan Key Laboratory of Precision Clinical Pharmacy Zhengzhou University Zhengzhou China
| |
Collapse
|
47
|
Zhou Z, Chen X, Sheng H, Shen X, Sun X, Yan Y, Wang J, Yuan Q. Engineering probiotics as living diagnostics and therapeutics for improving human health. Microb Cell Fact 2020; 19:56. [PMID: 32131831 PMCID: PMC7055047 DOI: 10.1186/s12934-020-01318-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
The gut microbiota that inhabit our gastrointestinal tract are well known to play an important role in maintaining human health in many aspects, including facilitating the digestion and absorption of nutrients, protecting against pathogens and regulating immune system. Gut microbiota dysbiosis is associated with a lot of diseases, such as inflammatory bowel disease, allergy, obesity, cardiovascular and neurodegenerative diseases and cancers. With the increasing knowledge of the microbiome, utilization of probiotic bacteria in modulating gut microbiota to prevent and treat a large number of disorders and diseases has gained much interest. In recent years, aided by the continuous development of tools and techniques, engineering probiotic microbes with desired characteristics and functionalities to benefit human health has made significant progress. In this paper, we summarize the recent advances in design and construction of probiotics as living diagnostics and therapeutics for probing and treating a series of diseases including metabolic disorders, inflammation and pathogenic bacteria infections. We also discuss the current challenges and future perspectives in expanding the application of probiotics for disease treatment and detection. We intend to provide insights and ideas for engineering of probiotics to better serve disease therapy and human health.
Collapse
Affiliation(s)
- Zhao Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15# Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Xin Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15# Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Huakang Sheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15# Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15# Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15# Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Yajun Yan
- College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15# Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15# Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
48
|
Reversal of Hyperglycemia and Suppression of Type 1 Diabetes in the NOD Mouse with Apoptotic DNA Immunotherapy™ (ADi™), ADi-100. Biomedicines 2020; 8:biomedicines8030053. [PMID: 32143316 PMCID: PMC7148463 DOI: 10.3390/biomedicines8030053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
The antigen-specific apoptotic DNA immunotherapeutic, ADi-100, is designed to suppress type 1 diabetes and consists of two DNA plasmids encoding genetic sequences of the apoptosis-inducing molecule, BAX, and the secreted form of the autoantigen, glutamic acid decarboxylase 65, that is CpG hyper-methylated to avoid inflammatory signaling (msGAD55). Upon a four-day treatment with ADi-100 of young female non-obese diabetic (NOD) mice, the frequency of various tolerogenic dendritic cell populations increased in draining lymph nodes; these cells lost the capacity to stimulate glutamic acid decarboxylase (GAD)-specific CD4+ T lymphocytes and were associated with the previously demonstrated enhancement of GAD-specific regulatory T cells. The efficacy of two ADi-100 formulations containing different proportions of BAX and msGAD55, 1:4 (10/40 µg) and 1:2 (17/33 µg), was evaluated in mildly hyperglycemic pre-diabetic NOD female mice. Both formulations suppressed the incidence of diabetes by 80% in an antigen-specific manner, while all untreated mice developed diabetes. However, treatment of pre-diabetic mice with significantly higher hyperglycemia, denoting progressive disease, showed that ADi-100 1:2 strongly suppressed diabetes incidence by 80% whereas the ADi-100 1:4 was less effective (50%). As an antigen-specific monotherapy, ADi-100 is highly efficacious in reversing elevated hyperglycemia to prevent diabetes, in which increasing apoptosis-inducing BAX content is a promising immune tolerance feature.
Collapse
|
49
|
Ludvigsson J. Autoantigen Treatment in Type 1 Diabetes: Unsolved Questions on How to Select Autoantigen and Administration Route. Int J Mol Sci 2020; 21:E1598. [PMID: 32111075 PMCID: PMC7084272 DOI: 10.3390/ijms21051598] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Autoantigen treatment has been tried for the prevention of type 1 diabetes (T1D) and to preserve residual beta-cell function in patients with a recent onset of the disease. In experimental animal models, efficacy was good, but was insufficient in human subjects. Besides the possible minor efficacy of peroral insulin in high-risk individuals to prevent T1D, autoantigen prevention trials have failed. Other studies on autoantigen prevention and intervention at diagnosis are ongoing. One problem is to select autoantigen/s; others are dose and route. Oral administration may be improved by using different vehicles. Proinsulin peptide therapy in patients with T1D has shown possible minor efficacy. In patients with newly diagnosed T1D, subcutaneous injection of glutamic acid decarboxylase (GAD) bound to alum hydroxide (GAD-alum) can likely preserve beta-cell function, but the therapeutic effect needs to be improved. Intra-lymphatic administration may be a better alternative than subcutaneous administration, and combination therapy might improve efficacy. This review elucidates some actual problems of autoantigen therapy in the prevention and/or early intervention of type 1 diabetes.
Collapse
Affiliation(s)
- Johnny Ludvigsson
- Crown Princess Victoria Children´s Hospital and Div of Pediatrics, Dept of Biomedical and Clinical Sciences, Lnköping university, SE 58185 Linköping, Sweden
| |
Collapse
|
50
|
Ventriglia G, Mancarella F, Sebastiani G, Cook DP, Mallone R, Mathieu C, Gysemans C, Dotta F. miR-409-3p is reduced in plasma and islet immune infiltrates of NOD diabetic mice and is differentially expressed in people with type 1 diabetes. Diabetologia 2020; 63:124-136. [PMID: 31659408 DOI: 10.1007/s00125-019-05026-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS MicroRNAs (miRNAs) are a novel class of potential biomarkers emerging in many diseases, including type 1 diabetes. Here, we aim to analyse a panel of circulating miRNAs in non-obese diabetic (NOD) mice and individuals with type 1 diabetes. METHODS We adopted standardised methodologies for extracting miRNAs from small sample volumes to evaluate a profiling panel of mature miRNAs in paired plasma and laser-captured microdissected immune-infiltrated islets of recently diabetic and normoglycaemic NOD mice. Moreover, we validated the findings during disease progression and remission after anti-CD3 therapy in NOD mice, as well as in individuals with type 1 diabetes. RESULTS Plasma levels of five miRNAs were downregulated in diabetic vs normoglycaemic mice. Of those, miR-409-3p was also downregulated in situ in the immune islet infiltrates of diabetic mice, suggesting an association with disease pathogenesis. Target-prediction tools linked miR-409-3p to immune- and metabolism-related signalling molecules. In situ miR-409-3p expression correlated with insulitis severity, and CD8+ central memory T cells were found to be enriched in miR-409-3p. Plasma miR-409-3p levels gradually decreased during diabetes development and improved with disease remission after anti-CD3 antibody therapy. Finally, plasma miR-409-3p levels were lower in people recently diagnosed with type 1 diabetes compared with a non-diabetic control group, and levels were inversely correlated with HbA1c levels. CONCLUSIONS/INTERPRETATION We propose that miR-409-3p may represent a new circulating biomarker of islet inflammation and type 1 diabetes severity.
Collapse
Affiliation(s)
- Giuliana Ventriglia
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, V.le Bracci, 16 - 53100, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Sciences, Siena, Italy
- Clinical and Experimental Endocrinology (CEE), Katholieke Universiteit Leuven (KU LEUVEN), Leuven, Belgium
| | - Francesca Mancarella
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, V.le Bracci, 16 - 53100, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Sciences, Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, V.le Bracci, 16 - 53100, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Sciences, Siena, Italy
| | - Dana P Cook
- Clinical and Experimental Endocrinology (CEE), Katholieke Universiteit Leuven (KU LEUVEN), Leuven, Belgium
| | - Roberto Mallone
- Inserm, U1016, CNRS, UMR8104, Paris Descartes University, Sorbonne Paris Cité, Cochin Institute, Paris, France
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology (CEE), Katholieke Universiteit Leuven (KU LEUVEN), Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology (CEE), Katholieke Universiteit Leuven (KU LEUVEN), Leuven, Belgium
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, V.le Bracci, 16 - 53100, Siena, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Sciences, Siena, Italy.
| |
Collapse
|