1
|
Vasishta S, Ammankallu S, Poojary G, Gomes SM, Ganesh K, Umakanth S, Adiga P, Upadhya D, Prasad TSK, Joshi MB. High glucose induces DNA methyltransferase 1 dependent epigenetic reprogramming of the endothelial exosome proteome in type 2 diabetes. Int J Biochem Cell Biol 2024; 176:106664. [PMID: 39303850 DOI: 10.1016/j.biocel.2024.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
In response to hyperglycemia, endothelial cells (ECs) release exosomes with altered protein content and contribute to paracrine signalling, subsequently leading to vascular dysfunction in type 2 diabetes (T2D). High glucose reprograms DNA methylation patterns in various cell/tissue types, including ECs, resulting in pathologically relevant changes in cellular and extracellular proteome. However, DNA methylation-based proteome reprogramming in endothelial exosomes and associated pathological implications in T2D are not known. Hence, in the present study, we used Human umbilical vein endothelial cells (HUVECs), High Fat Diet (HFD) induced diabetic mice (C57BL/6) and clinical models to understand epigenetic basis of exosome proteome regulation in T2D pathogenesis . Exosomes were isolated by size exclusion chromatography and subjected to tandem mass tag (TMT) labelled quantitative proteomics and bioinformatics analysis. Immunoblotting was performed to validate exosome protein signature in clinically characterized individuals with T2D. We observed ECs cultured in high glucose and aortic ECs from HFD mouse expressed elevated DNA methyltransferase1 (DNMT1) levels. Quantitative proteomics of exosomes isolated from ECs treated with high glucose and overexpressing DNMT1 showed significant alterations in both protein levels and post translational modifications which were aligned to T2D associated vascular functions. Based on ontology and gene-function-disease interaction analysis, differentially expressed exosome proteins such as Thrombospondin1, Pentraxin3 and Cystatin C related to vascular complications were significantly increased in HUVECs treated with high glucose and HFD animals and T2D individuals with higher levels of glycated hemoglobin. These proteins were reduced upon treatment with 5-Aza-2'-deoxycytidine. Our study shows epigenetic regulation of exosome proteome in T2D associated vascular complications.
Collapse
Affiliation(s)
- Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shruthi Ammankallu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575020, India
| | - Ganesha Poojary
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sarah Michael Gomes
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kailash Ganesh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | | - Prashanth Adiga
- Department of Reproductive Medicine and Surgery (MARC), Kasturba Hospital, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
2
|
M JN, Bharadwaj D. The complex web of obesity: from genetics to precision medicine. Expert Rev Endocrinol Metab 2024; 19:403-418. [PMID: 38869356 DOI: 10.1080/17446651.2024.2365785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
INTRODUCTION Obesity is a growing public health concern affecting both children and adults. Since it involves both genetic and environmental components, the management of obesity requires both, an understanding of the underlying genetics and changes in lifestyle. The knowledge of obesity genetics will enable the possibility of precision medicine in anti-obesity medications. AREAS COVERED Here, we explore health complications and the prevalence of obesity. We discuss disruptions in energy balance as a symptom of obesity, examining evolutionary theories, its multi-factorial origins, and heritability. Additionally, we discuss monogenic and polygenic obesity, the converging biological pathways, potential pharmacogenomics applications, and existing anti-obesity medications - specifically focussing on the leptin-melanocortin and incretin pathways. Comparisons between childhood and adult obesity genetics are made, along with insights into structural variants, epigenetic changes, and environmental influences on epigenetic signatures. EXPERT OPINION With recent advancements in anti-obesity drugs, genetic studies pinpoint new targets and allow for repurposing existing drugs. This creates opportunities for genotype-informed treatment options. Also, lifestyle interventions can help in the prevention and treatment of obesity by altering the epigenetic signatures. The comparison of genetic architecture in adults and children revealed a significant overlap. However, more robust studies with diverse ethnic representation is required in childhood obesity.
Collapse
Affiliation(s)
- Janaki Nair M
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Dwaipayan Bharadwaj
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Lieberman-Cribbin W, Domingo-Relloso A, Glabonjat RA, Schilling K, Cole SA, O'Leary M, Best LG, Zhang Y, Fretts AM, Umans JG, Goessler W, Navas-Acien A, Tellez-Plaza M, Kupsco A. An epigenome-wide study of selenium status and DNA methylation in the Strong Heart Study. ENVIRONMENT INTERNATIONAL 2024; 191:108955. [PMID: 39154409 DOI: 10.1016/j.envint.2024.108955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/19/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Selenium (Se) is an essential nutrient linked to adverse health endpoints at low and high levels. The mechanisms behind these relationships remain unclear and there is a need to further understand the epigenetic impacts of Se and their relationship to disease. We investigated the association between urinary Se levels and DNA methylation (DNAm) in the Strong Heart Study (SHS), a prospective study of cardiovascular disease (CVD) among American Indians adults. METHODS Selenium concentrations were measured in urine (collected in 1989-1991) using inductively coupled plasma mass spectrometry among 1,357 participants free of CVD and diabetes. DNAm in whole blood was measured cross-sectionally using the Illumina MethylationEPIC BeadChip (850 K) Array. We used epigenome-wide robust linear regressions and elastic net to identify differentially methylated cytosine-guanine dinucleotide (CpG) sites associated with urinary Se levels. RESULTS The mean (standard deviation) urinary Se concentration was 51.8 (25.1) μg/g creatinine. Across 788,368 CpG sites, five differentially methylated positions (DMP) (hypermethylated: cg00163554, cg18212762, cg11270656, and hypomethylated: cg25194720, cg00886293) were significantly associated with Se in linear regressions after accounting for multiple comparisons (false discovery rate p-value: 0.10). The top hypermethylated DMP (cg00163554) was annotated to the Disco Interacting Protein 2 Homolog C (DIP2C) gene, which relates to transcription factor binding. Elastic net models selected 425 hypo- and hyper-methylated DMPs associated with urinary Se, including three sites (cg00163554 [DIP2C], cg18212762 [MAP4K2], cg11270656 [GPIHBP1]) identified in linear regressions. CONCLUSIONS Urinary Se was associated with minimal changes in DNAm in adults from American Indian communities across the Southwest and the Great Plains in the United States, suggesting that other mechanisms may be driving health impacts. Future analyses should explore other mechanistic biomarkers in human populations, determine these relationships prospectively, and investigate the potential role of differentially methylated sites with disease endpoints.
Collapse
Affiliation(s)
- Wil Lieberman-Cribbin
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA; Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Kathrin Schilling
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Marcia O'Leary
- Missouri Breaks Industries Research, Cheyenne River Sioux Tribe, Eagle Butte, SD 57625, USA
| | - Lyle G Best
- Missouri Breaks Industries Research, Cheyenne River Sioux Tribe, Eagle Butte, SD 57625, USA
| | - Ying Zhang
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Amanda M Fretts
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, USA; Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC, USA
| | | | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
4
|
Younesian S, Mohammadi MH, Younesian O, Momeny M, Ghaffari SH, Bashash D. DNA methylation in human diseases. Heliyon 2024; 10:e32366. [PMID: 38933971 PMCID: PMC11200359 DOI: 10.1016/j.heliyon.2024.e32366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Aberrant epigenetic modifications, particularly DNA methylation, play a critical role in the pathogenesis and progression of human diseases. The current review aims to reveal the role of aberrant DNA methylation in the pathogenesis and progression of diseases and to discuss the original data obtained from international research laboratories on this topic. In the review, we mainly summarize the studies exploring the role of aberrant DNA methylation as diagnostic and prognostic biomarkers in a broad range of human diseases, including monogenic epigenetics, autoimmunity, metabolic disorders, hematologic neoplasms, and solid tumors. The last section provides a general overview of the possibility of the DNA methylation machinery from the perspective of pharmaceutic approaches. In conclusion, the study of DNA methylation machinery is a phenomenal intersection that each of its ways can reveal the mysteries of various diseases, introduce new diagnostic and prognostic biomarkers, and propose a new patient-tailored therapeutic approach for diseases.
Collapse
Affiliation(s)
- Samareh Younesian
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1971653313 Iran
| | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1971653313 Iran
| | - Ommolbanin Younesian
- School of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, 46841-61167 Iran
| | - Majid Momeny
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, 77030 TX, USA
| | - Seyed H. Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, 1411713135 Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1971653313 Iran
| |
Collapse
|
5
|
Singh S, Kriti M, K.S. A, Sarma DK, Verma V, Nagpal R, Mohania D, Tiwari R, Kumar M. Deciphering the complex interplay of risk factors in type 2 diabetes mellitus: A comprehensive review. Metabol Open 2024; 22:100287. [PMID: 38818227 PMCID: PMC11137529 DOI: 10.1016/j.metop.2024.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024] Open
Abstract
The complex and multidimensional landscape of type 2 diabetes mellitus (T2D) is a major global concern. Despite several years of extensive research, the precise underlying causes of T2D remain elusive, but evidence suggests that it is influenced by a myriad of interconnected risk factors such as epigenetics, genetics, gut microbiome, environmental factors, organelle stress, and dietary habits. The number of factors influencing the pathogenesis is increasing day by day which worsens the scenario; meanwhile, the interconnections shoot up the frame. By gaining deeper insights into the contributing factors, we may pave the way for the development of personalized medicine, which could unlock more precise and impactful treatment pathways for individuals with T2D. This review summarizes the state of knowledge about T2D pathogenesis, focusing on the interplay between various risk factors and their implications for future therapeutic strategies. Understanding these factors could lead to tailored treatments targeting specific risk factors and inform prevention efforts on a population level, ultimately improving outcomes for individuals with T2D and reducing its burden globally.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Mona Kriti
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Anamika K.S.
- Christ Deemed to Be University Bangalore, Karnataka, India
| | - Devojit Kumar Sarma
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, College of Health & Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Dheeraj Mohania
- Dr. R. P. Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Rajnarayan Tiwari
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Manoj Kumar
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| |
Collapse
|
6
|
Nadiger N, Veed JK, Chinya Nataraj P, Mukhopadhyay A. DNA methylation and type 2 diabetes: a systematic review. Clin Epigenetics 2024; 16:67. [PMID: 38755631 PMCID: PMC11100087 DOI: 10.1186/s13148-024-01670-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE DNA methylation influences gene expression and function in the pathophysiology of type 2 diabetes mellitus (T2DM). Mapping of T2DM-associated DNA methylation could aid early detection and/or therapeutic treatment options for diabetics. DESIGN A systematic literature search for associations between T2DM and DNA methylation was performed. Prospero registration ID: CRD42020140436. METHODS PubMed and ScienceDirect databases were searched (till October 19, 2023). Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and New Castle Ottawa scale were used for reporting the selection and quality of the studies, respectively. RESULT Thirty-two articles were selected. Four of 130 differentially methylated genes in blood, adipose, liver or pancreatic islets (TXNIP, ABCG1, PPARGC1A, PTPRN2) were reported in > 1 study. TXNIP was hypomethylated in diabetic blood across ethnicities. Gene enrichment analysis of the differentially methylated genes highlighted relevant disease pathways (T2DM, type 1 diabetes and adipocytokine signaling). Three prospective studies reported association of methylation in IGFBP2, MSI2, FTO, TXNIP, SREBF1, PHOSPHO1, SOCS3 and ABCG1 in blood at baseline with incident T2DM/hyperglycemia. Sex-specific differential methylation was reported only for HOOK2 in visceral adipose tissue (female diabetics: hypermethylated, male diabetics: hypomethylated). Gene expression was inversely associated with methylation status in 8 studies, in genes including ABCG1 (blood), S100A4 (adipose tissue), PER2 (pancreatic islets), PDGFA (liver) and PPARGC1A (skeletal muscle). CONCLUSION This review summarizes available evidence for using DNA methylation patterns to unravel T2DM pathophysiology. Further validation studies in diverse populations will set the stage for utilizing this knowledge for identifying early diagnostic markers and novel druggable pathways.
Collapse
Affiliation(s)
- Nikhil Nadiger
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
- Division of Nutrition, St. John's Research Institute, St. John's Medical College, St Johns National Academy of Health Sciences, Sarjapura Road, Koramangala, Bangalore, 560034, India
| | - Jyothisha Kana Veed
- Division of Nutrition, St. John's Research Institute, St. John's Medical College, St Johns National Academy of Health Sciences, Sarjapura Road, Koramangala, Bangalore, 560034, India
| | - Priyanka Chinya Nataraj
- Division of Nutrition, St. John's Research Institute, St. John's Medical College, St Johns National Academy of Health Sciences, Sarjapura Road, Koramangala, Bangalore, 560034, India
- Vedantu, Bangalore, India
| | - Arpita Mukhopadhyay
- Division of Nutrition, St. John's Research Institute, St. John's Medical College, St Johns National Academy of Health Sciences, Sarjapura Road, Koramangala, Bangalore, 560034, India.
| |
Collapse
|
7
|
Vernì F. Vitamin B6 and diabetes and its role in counteracting advanced glycation end products. VITAMINS AND HORMONES 2024; 125:401-438. [PMID: 38997171 DOI: 10.1016/bs.vh.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Naturally occurring forms of vitamin B6 include six interconvertible water-soluble compounds: pyridoxine (PN), pyridoxal (PL), pyridoxamine (PM), and their respective monophosphorylated derivatives (PNP, PLP, and PMP). PLP is the catalytically active form which works as a cofactor in approximately 200 reactions that regulate the metabolism of glucose, lipids, amino acids, DNA, and neurotransmitters. Most of vitamers can counteract the formation of reactive oxygen species and the advanced glycation end-products (AGEs) which are toxic compounds that accumulate in diabetic patients due to prolonged hyperglycemia. Vitamin B6 levels have been inversely associate with diabetes, while vitamin B6 supplementation reduces diabetes onset and its vascular complications. The mechanisms at the basis of the relation between vitamin B6 and diabetes onset are still not completely clarified. In contrast more evidence indicates that vitamin B6 can protect from diabetes complications through its role as scavenger of AGEs. It has been demonstrated that in diabetes AGEs can destroy the functionality of macromolecules such as protein, lipids, and DNA, thus producing tissue damage that result in vascular diseases. AGEs can be in part also responsible for the increased cancer risk associated with diabetes. In this chapter the relationship between vitamin B6, diabetes and AGEs will be discussed by showing the acquired knowledge and questions that are still open.
Collapse
Affiliation(s)
- F Vernì
- Department of Biology and Biotechnology "Charles Darwin" Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
8
|
Yu G, Tam HCH, Huang C, Shi M, Lim CKP, Chan JCN, Ma RCW. Lessons and Applications of Omics Research in Diabetes Epidemiology. Curr Diab Rep 2024; 24:27-44. [PMID: 38294727 PMCID: PMC10874344 DOI: 10.1007/s11892-024-01533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
PURPOSE OF REVIEW Recent advances in genomic technology and molecular techniques have greatly facilitated the identification of disease biomarkers, advanced understanding of pathogenesis of different common diseases, and heralded the dawn of precision medicine. Much of these advances in the area of diabetes have been made possible through deep phenotyping of epidemiological cohorts, and analysis of the different omics data in relation to detailed clinical information. In this review, we aim to provide an overview on how omics research could be incorporated into the design of current and future epidemiological studies. RECENT FINDINGS We provide an up-to-date review of the current understanding in the area of genetic, epigenetic, proteomic and metabolomic markers for diabetes and related outcomes, including polygenic risk scores. We have drawn on key examples from the literature, as well as our own experience of conducting omics research using the Hong Kong Diabetes Register and Hong Kong Diabetes Biobank, as well as other cohorts, to illustrate the potential of omics research in diabetes. Recent studies highlight the opportunity, as well as potential benefit, to incorporate molecular profiling in the design and set-up of diabetes epidemiology studies, which can also advance understanding on the heterogeneity of diabetes. Learnings from these examples should facilitate other researchers to consider incorporating research on omics technologies into their work to advance the field and our understanding of diabetes and its related co-morbidities. Insights from these studies would be important for future development of precision medicine in diabetes.
Collapse
Affiliation(s)
- Gechang Yu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
| | - Henry C H Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
| | - Chuiguo Huang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
| | - Mai Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
| | - Cadmon K P Lim
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China.
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China.
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China.
| |
Collapse
|
9
|
Dong H, Sun Y, Nie L, Cui A, Zhao P, Leung WK, Wang Q. Metabolic memory: mechanisms and diseases. Signal Transduct Target Ther 2024; 9:38. [PMID: 38413567 PMCID: PMC10899265 DOI: 10.1038/s41392-024-01755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Metabolic diseases and their complications impose health and economic burdens worldwide. Evidence from past experimental studies and clinical trials suggests our body may have the ability to remember the past metabolic environment, such as hyperglycemia or hyperlipidemia, thus leading to chronic inflammatory disorders and other diseases even after the elimination of these metabolic environments. The long-term effects of that aberrant metabolism on the body have been summarized as metabolic memory and are found to assume a crucial role in states of health and disease. Multiple molecular mechanisms collectively participate in metabolic memory management, resulting in different cellular alterations as well as tissue and organ dysfunctions, culminating in disease progression and even affecting offspring. The elucidation and expansion of the concept of metabolic memory provides more comprehensive insight into pathogenic mechanisms underlying metabolic diseases and complications and promises to be a new target in disease detection and management. Here, we retrace the history of relevant research on metabolic memory and summarize its salient characteristics. We provide a detailed discussion of the mechanisms by which metabolic memory may be involved in disease development at molecular, cellular, and organ levels, with emphasis on the impact of epigenetic modulations. Finally, we present some of the pivotal findings arguing in favor of targeting metabolic memory to develop therapeutic strategies for metabolic diseases and provide the latest reflections on the consequences of metabolic memory as well as their implications for human health and diseases.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aimin Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Park SH, Choi HK, Park JH, Hwang JT. Current insights into genome-based personalized nutrition technology: a patent review. Front Nutr 2024; 11:1346144. [PMID: 38318472 PMCID: PMC10838982 DOI: 10.3389/fnut.2024.1346144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Unlike general nutritional ranges that meet the nutritional needs essential for maintaining the life of an entire population, personalized nutrition is characterised by maintaining health through providing customized nutrition according to individuals' lifestyles or genetic characteristics. The development of technology and services for personalized nutrition is increasing, owing to the acquisition of knowledge about the differences in nutritional requirements according to the diversity of individuals and an increase in health interest. Regarding genetics, technology is being developed to distinguish the various characteristics of individuals and provide customized nutrition. Therefore, to understand the current state of personalized nutrition technology, understanding genomics is necessary to acquire information on nutrition research based on genomics. We reviewed patents related to personalized nutrition-targeting genomics and examined their mechanisms of action. Using the patent database, we searched 694 patents on nutritional genomics and extracted 561 highly relevant valid data points. Furthermore, an in-depth review was conducted by selecting core patents related to genome-based personalized nutrition technology. A marked increase was observed in personalized nutrition technologies using methods such as genetic scoring and disease-specific dietary recommendations.
Collapse
Affiliation(s)
| | | | - Jae Ho Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Jin-Taek Hwang
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| |
Collapse
|
11
|
Priyadarshini A, Madan R, Das S. Genetics and epigenetics of diabetes and its complications in India. Hum Genet 2024; 143:1-17. [PMID: 37999799 DOI: 10.1007/s00439-023-02616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Diabetes mellitus (DM) has become a significant health concern with an increasing rate of morbidity and mortality worldwide. India ranks second in the number of diabetes cases in the world. The increasing burden of DM can be explained by genetic predisposition of Indians to type 2 diabetes mellitus (T2DM) coupled with rapid urbanization and socio-economic development in the last 3 decades leading to drastic changes in lifestyle. Environment and lifestyle changes contribute to T2DM development by altering epigenetic processes such as DNA methylation, histone post-translational modifications, and long non-coding RNAs, all of which regulate chromatin structure and gene expression. Although the genetic predisposition of Indians to T2DM is well established, how environmental and genetic factors interact and lead to T2DM is not well understood. In this review, we discuss the prevalence of diabetes and its complications across different states in India and how various risk factors contribute to its pathogenesis. The review also highlights the role of genetic predisposition among the Indian population and epigenetic factors involved in the etiology of diabetes. Lastly, we review current treatments and emphasize the knowledge gap with respect to genetic and epigenetic factors in the Indian context. Further understanding of the genetic and epigenetic determinants will help in risk prediction and prevention as well as therapeutic interventions, which will improve the clinical management of diabetes and associated macro- and micro-vascular complications.
Collapse
Affiliation(s)
- Ankita Priyadarshini
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India
| | - Riya Madan
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India
| | - Sadhan Das
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India.
| |
Collapse
|
12
|
Larsen JK, Kruse R, Sahebekhtiari N, Moreno-Justicia R, Gomez Jorba G, Petersen MH, de Almeida ME, Ørtenblad N, Deshmukh AS, Højlund K. High-throughput proteomics uncovers exercise training and type 2 diabetes-induced changes in human white adipose tissue. SCIENCE ADVANCES 2023; 9:eadi7548. [PMID: 38019916 PMCID: PMC10686561 DOI: 10.1126/sciadv.adi7548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
White adipose tissue (WAT) is important for metabolic homeostasis. We established the differential proteomic signatures of WAT in glucose-tolerant lean and obese individuals and patients with type 2 diabetes (T2D) and the response to 8 weeks of high-intensity interval training (HIIT). Using a high-throughput and reproducible mass spectrometry-based proteomics pipeline, we identified 3773 proteins and found that most regulated proteins displayed progression in markers of dysfunctional WAT from lean to obese to T2D individuals and were highly associated with clinical measures such as insulin sensitivity and HbA1c. We propose that these distinct markers could serve as potential clinical biomarkers. HIIT induced only minor changes in the WAT proteome. This included an increase in WAT ferritin levels independent of obesity and T2D, and WAT ferritin levels were strongly correlated with individual insulin sensitivity. Together, we report a proteomic signature of WAT related to obesity and T2D and highlight an unrecognized role of human WAT iron metabolism in exercise training adaptations.
Collapse
Affiliation(s)
- Jeppe Kjærgaard Larsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Kruse
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Navid Sahebekhtiari
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Roger Moreno-Justicia
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Gerard Gomez Jorba
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Maria H. Petersen
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
| | - Martin E. de Almeida
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Atul S. Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
13
|
Sultan S, AlMalki S. Analysis of global DNA methylation and epigenetic modifiers (DNMTs and HDACs) in human foetal endothelium exposed to gestational and type 2 diabetes. Epigenetics 2023; 18:2201714. [PMID: 37066707 PMCID: PMC10114969 DOI: 10.1080/15592294.2023.2201714] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
Foetuses exposed to maternal gestational diabetes (GDM) and type 2 diabetes (T2D) have an increased risk of adverse perinatal outcomes. Epigenetic mechanisms, including DNA methylation and histone modifications, may act as mediators of persistent metabolic memory in endothelial cells (ECs) exposed to hyperglycaemia, even after glucose normalization. Therefore, we investigated alterations in global DNA methylation and epigenetic modifier expression (DNMT1, DNMT3a, DNMT3b, HDAC1, and HDAC2) in human umbilical vein ECs (HUVECs) from the umbilical cords of mothers with GDM (n = 8) and T2D (n = 3) compared to that of healthy mothers (n = 6). Global DNA alteration was measured using a 5-methylation cytosine colorimetric assay, followed by quantitative real-time polymerase chain reaction to measure DNA methyltransferase and histone acetylase transcript expression. We revealed that DNA hypermethylation occurs in both GDM- and T2D-HUVECs compared to that in Control-HUVECs. Furthermore, there was a significant increase in HDAC2 mRNA levels in GDM-HUVECs and increase in DNMT3b mRNA levels in T2D-HUVECs. Overall, our results suggest that GDM and T2D are associated with global DNA hypermethylation in foetal endothelial cells under normoglycemic conditions and the aberrant mRNA expression of HDAC2 and DNMT3b could play a role in this dysregulation.
Collapse
Affiliation(s)
- Samar Sultan
- Medical Laboratory Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultanh AlMalki
- Medical Laboratory Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Singh S, Sarma DK, Verma V, Nagpal R, Kumar M. Unveiling the future of metabolic medicine: omics technologies driving personalized solutions for precision treatment of metabolic disorders. Biochem Biophys Res Commun 2023; 682:1-20. [PMID: 37788525 DOI: 10.1016/j.bbrc.2023.09.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Metabolic disorders are increasingly prevalent worldwide, leading to high rates of morbidity and mortality. The variety of metabolic illnesses can be addressed through personalized medicine. The goal of personalized medicine is to give doctors the ability to anticipate the best course of treatment for patients with metabolic problems. By analyzing a patient's metabolomic, proteomic, genetic profile, and clinical data, physicians can identify relevant diagnostic, and predictive biomarkers and develop treatment plans and therapy for acute and chronic metabolic diseases. To achieve this goal, real-time modeling of clinical data and multiple omics is essential to pinpoint underlying biological mechanisms, risk factors, and possibly useful data to promote early diagnosis and prevention of complex diseases. Incorporating cutting-edge technologies like artificial intelligence and machine learning is crucial for consolidating diverse forms of data, examining multiple variables, establishing databases of clinical indicators to aid decision-making, and formulating ethical protocols to address concerns. This review article aims to explore the potential of personalized medicine utilizing omics approaches for the treatment of metabolic disorders. It focuses on the recent advancements in genomics, epigenomics, proteomics, metabolomics, and nutrigenomics, emphasizing their role in revolutionizing personalized medicine.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Manoj Kumar
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India.
| |
Collapse
|
15
|
Besser LM, Chrisphonte S, Kleiman MJ, O’Shea D, Rosenfeld A, Tolea M, Galvin JE. The Healthy Brain Initiative (HBI): A prospective cohort study protocol. PLoS One 2023; 18:e0293634. [PMID: 37889891 PMCID: PMC10610524 DOI: 10.1371/journal.pone.0293634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The Health Brain Initiative (HBI), established by University of Miami's Comprehensive Center for Brain Health (CCBH), follows racially/ethnically diverse older adults without dementia living in South Florida. With dementia prevention and brain health promotion as an overarching goal, HBI will advance scientific knowledge by developing novel assessments and non-invasive biomarkers of Alzheimer's disease and related dementias (ADRD), examining additive effects of sociodemographic, lifestyle, neurological and biobehavioral measures, and employing innovative, methodologically advanced modeling methods to characterize ADRD risk and resilience factors and transition of brain aging. METHODS HBI is a longitudinal, observational cohort study that will follow 500 deeply-phenotyped participants annually to collect, analyze, and store clinical, cognitive, behavioral, functional, genetic, and neuroimaging data and biospecimens. Participants are ≥50 years old; have no, subjective, or mild cognitive impairment; have a study partner; and are eligible to undergo magnetic resonance imaging (MRI). Recruitment is community-based including advertisements, word-of-mouth, community events, and physician referrals. At baseline, following informed consent, participants complete detailed web-based surveys (e.g., demographics, health history, risk and resilience factors), followed by two half-day visits which include neurological exams, cognitive and functional assessments, an overnight sleep study, and biospecimen collection. Structural and functional MRI is completed by all participants and a subset also consent to amyloid PET imaging. Annual follow-up visits repeat the same data and biospecimen collection as baseline, except that MRIs are conducted every other year after baseline. ETHICS AND EXPECTED IMPACT HBI has been approved by the University of Miami Miller School of Medicine Institutional Review Board. Participants provide informed consent at baseline and are re-consented as needed with protocol changes. Data collected by HBI will lead to breakthroughs in developing new diagnostics and therapeutics, creating comprehensive diagnostic evaluations, and providing the evidence base for precision medicine approaches to dementia prevention with individualized treatment plans.
Collapse
Affiliation(s)
- Lilah M. Besser
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - Stephanie Chrisphonte
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - Michael J. Kleiman
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - Deirdre O’Shea
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - Amie Rosenfeld
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - Magdalena Tolea
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - James E. Galvin
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| |
Collapse
|
16
|
Abstract
Obesity is a common complex trait that elevates the risk for various diseases, including type 2 diabetes and cardiovascular disease. A combination of environmental and genetic factors influences the pathogenesis of obesity. Advances in genomic technologies have driven the identification of multiple genetic loci associated with this disease, ranging from studying severe onset cases to investigating common multifactorial polygenic forms. Additionally, findings from epigenetic analyses of modifications to the genome that do not involve changes to the underlying DNA sequence have emerged as key signatures in the development of obesity. Such modifications can mediate the effects of environmental factors, including diet and lifestyle, on gene expression and clinical presentation. This review outlines what is known about the genetic and epigenetic contributors to obesity susceptibility, along with the albeit limited therapeutic options currently available. Furthermore, we delineate the potential mechanisms of actions through which epigenetic changes can mediate environmental influences and the related opportunities they present for future interventions in the management of obesity.
Collapse
Affiliation(s)
- Khanh Trang
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Division of Diabetes and Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
17
|
Besser LM, Chrisphonte S, Kleiman MJ, O'Shea D, Rosenfeld A, Tolea M, Galvin JE. The Healthy Brain Initiative (HBI): A prospective cohort study protocol. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.21.23295908. [PMID: 37808766 PMCID: PMC10557773 DOI: 10.1101/2023.09.21.23295908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Background The Health Brain Initiative (HBI), established by University of Miami's Comprehensive Center for Brain Health (CCBH), follows racially/ethnically diverse older adults without dementia living in South Florida. With dementia prevention and brain health promotion as an overarching goal, HBI will advance scientific knowledge by developing novel assessments and non-invasive biomarkers of Alzheimer's disease and related dementias (ADRD), examining additive effects of sociodemographic, lifestyle, neurological and biobehavioral measures, and employing innovative, methodologically advanced modeling methods to characterize ADRD risk and resilience factors and transition of brain aging. Methods HBI is a longitudinal, observational cohort study that will follow 500 deeply-phenotyped participants annually to collect, analyze, and store clinical, cognitive, behavioral, functional, genetic, and neuroimaging data and biospecimens. Participants are ≥50 years old; have no, subjective, or mild cognitive impairment; have a study partner; and are eligible to undergo magnetic resonance imaging (MRI). Recruitment is community-based including advertisements, word-of-mouth, community events, and physician referrals. At baseline, following informed consent, participants complete detailed web-based surveys (e.g., demographics, health history, risk and resilience factors), followed by two half-day visits which include neurological exams, cognitive and functional assessments, an overnight sleep study, and biospecimen collection. Structural and functional MRI is completed by all participants and a subset also consent to amyloid PET imaging. Annual follow-up visits repeat the same data and biospecimen collection as baseline, except that MRIs are conducted every other year after baseline. Ethics and expected impact HBI has been approved by the University of Miami Miller School of Medicine Institutional Review Board. Participants provide informed consent at baseline and are re-consented as needed with protocol changes. Data collected by HBI will lead to breakthroughs in developing new diagnostics and therapeutics, create comprehensive diagnostic evaluations, and provide the evidence base for precision medicine approaches to dementia prevention with individualized treatment plans.
Collapse
|
18
|
Venkataraghavan S, Pankow JS, Boerwinkle E, Fornage M, Selvin E, Ray D. Epigenome-wide association study of incident type 2 diabetes in Black and White participants from the Atherosclerosis Risk in Communities Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.09.23293896. [PMID: 37609313 PMCID: PMC10441493 DOI: 10.1101/2023.08.09.23293896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
DNA methylation studies of incident type 2 diabetes in US populations are limited, and to our knowledge none included individuals of African descent living in the US. We performed an epigenome-wide association analysis of blood-based methylation levels at CpG sites with incident type 2 diabetes using Cox regression in 2,091 Black and 1,029 White individuals from the Atherosclerosis Risk in Communities study. At an epigenome-wide significance threshold of 10-7, we detected 7 novel diabetes-associated CpG sites in C1orf151 (cg05380846: HR= 0.89, p = 8.4 × 10-12), ZNF2 (cg01585592: HR= 0.88, p = 1.6 × 10-9), JPH3 (cg16696007: HR= 0.87, p = 7.8 × 10-9), GPX6 (cg02793507: HR= 0.85, p = 2.7 × 10-8 and cg00647063: HR= 1.20, p = 2.5 × 10-8), chr17q25 (cg16865890: HR= 0.8, p = 6.9 × 10-8), and chr11p15 (cg13738793: HR= 1.11, p = 7.7 × 10-8). The CpG sites at C1orf151, ZNF2, JPH3 and GPX6, were identified in Black adults, chr17q25 was identified in White adults, and chr11p15 was identified upon meta-analyzing the two groups. The CpG sites at JPH3 and GPX6 were likely associated with incident type 2 diabetes independent of BMI. All the CpG sites, except at JPH3, were likely consequences of elevated glucose at baseline. We additionally replicated known type 2 diabetes-associated CpG sites including cg19693031 at TXNIP, cg00574958 at CPT1A, cg16567056 at PLBC2, cg11024682 at SREBF1, cg08857797 at VPS25, and cg06500161 at ABCG1, 3 of which were replicated in Black adults at the epigenome-wide threshold. We observed modest increase in type 2 diabetes variance explained upon addition of the significantly associated CpG sites to a Cox model that included traditional type 2 diabetes risk factors and fasting glucose (increase from 26.2% to 30.5% in Black adults; increase from 36.9% to 39.4% in White adults). We examined if groups of proximal CpG sites were associated with incident type 2 diabetes using a gene-region specific and a gene-region agnostic differentially methylated region (DMR) analysis. Our DMR analyses revealed several clusters of significant CpG sites, including a DMR consisting of a previously discovered CpG site at ADCY7 and promoter regions of TP63 which were differentially methylated across all race groups. This study illustrates improved discovery of CpG sites/regions by leveraging both individual CpG site and DMR analyses in an unexplored population. Our findings include genes linked to diabetes in experimental studies (e.g., GPX6, JPH3, and TP63), and future gene-specific methylation studies could elucidate the link between genes, environment, and methylation in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Sowmya Venkataraghavan
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - James S. Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of American
| | - Eric Boerwinkle
- The UTHealth School of Public Health, Houston, Texas, United States of America
| | - Myriam Fornage
- Brown Foundation Institute for Molecular Medicine, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Elizabeth Selvin
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Welch Center for Prevention, Epidemiology, & Clinical Research, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Debashree Ray
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
19
|
García-Calzón S, Schrader S, Perfilyev A, Martinell M, Ahlqvist E, Ling C. DNA methylation partially mediates antidiabetic effects of metformin on HbA1c levels in individuals with type 2 diabetes. Diabetes Res Clin Pract 2023:110807. [PMID: 37356726 DOI: 10.1016/j.diabres.2023.110807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
AIMS Despite metformin being used as first-line pharmacological therapy for type 2 diabetes, its underlying mechanisms remain unclear. We aimed to determine whether metformin altered DNA methylation in newly-diagnosed individuals with type 2 diabetes. METHODS AND RESULTS We found that metformin therapy is associated with altered methylation of 26 sites in blood from Scandinavian discovery and replication cohorts (FDR<0.05), using MethylationEPIC arrays. The majority (88%) of these 26 sites were hypermethylated in patients taking metformin for ∼3 months compared to controls, who had diabetes but had not taken any diabetes medication. Two of these blood-based methylation markers mirrored the epigenetic pattern in muscle and adipose tissue (FDR<0.05). Four type 2 diabetes-associated SNPs were annotated to genes with differential methylation between metformin cases and controls, e.g., GRB10, RPTOR, SLC22A18AS and TH2LCRR. Methylation correlated with expression in human islets for two of these genes. Three metformin-associated methylation sites (PKNOX2, WDTC1 and MICB) partially mediate effects of metformin on follow-up HbA1c levels. When combining methylation of these three sites into a score, which was used in a causal mediation analysis, methylation was suggested to mediate up to 32% of metformin's effects on HbA1c. CONCLUSION Metformin-associated alterations in DNA methylation partially mediates metformin's antidiabetic effects on HbA1c in newly-diagnosed individuals with type 2 diabetes.
Collapse
Affiliation(s)
- Sonia García-Calzón
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, 205 02 Malmö, Sweden; Department of Food Sciences and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.
| | - Silja Schrader
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, 205 02 Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, 205 02 Malmö, Sweden
| | - Mats Martinell
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Emma Ahlqvist
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, 205 02 Malmö, Sweden
| |
Collapse
|
20
|
Srisuporn P, Navasumrit P, Ngaotepprutaram T, Chaisatra K, Hunsonti P, Ruchirawat M. Arsenic exposure alters the expression of genes related to metabolic diseases in differentiated adipocytes and in newborns and children. Int J Hyg Environ Health 2023; 250:114124. [PMID: 36989998 DOI: 10.1016/j.ijheh.2023.114124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/11/2022] [Accepted: 01/26/2023] [Indexed: 03/29/2023]
Abstract
The mechanisms underlying the association between prenatal arsenic exposure and the development of metabolic diseases remain unclear. Aberrant adipogenesis and adipokine production are associated with increased risk for the development of metabolic diseases in susceptible populations. Generation of mature adipocytes is tightly regulated by the expression of genes encoding: peroxisome proliferator-activated receptor γ (PPARG), fatty acid-binding protein (FABP4), and glucose transporter-4 (SLC2A4), and adipokines such as leptin (LEP) and adiponectin (ADIPOQ). This study aimed to investigate the expression of these genes, which are associated with the pathogenesis of metabolic diseases in newborns and children exposed to arsenic in utero. A high arsenic exposed group showed significantly decreased PPARG and FABP4 expression in cord blood samples from newborns and in saliva samples from children. By contrast, the expression of the SLC2A4 and ADIPOQ mRNA was significantly decreased in high-arsenic exposed children. Furthermore, the levels of toenail arsenic were negatively correlated with the salivary mRNA expression levels of PPARG (r = -0.412, p < 0.01), aP2 (r = -0.329, p < 0.05), and SLC2A4 (r = -0.528, p < 0.01). In vitro studies utilizing umbilical cord derived mesenchymal stem cells (UC-MSCs) as a surrogate for fetal MSCs showed that arsenite treatment (0.5 μM and 1 μM) significantly impaired adipogenic differentiation in a concentration dependent manner. Such impairment may be related to a significant decrease in the expression of: PPARγ, FABP4, and SLC2A4 observed at 1 μM arsenite. Arsenite treatment also promoted inflammation through a significant increase in the mRNA expression levels of the pro-inflammatory adipokine, LEP, and the inflammatory cytokines: CXCL6, IL-1β, and CXCL8. Collectively, our results suggests that such alterations may be a consequence of the effects of arsenic exposure on fetal MSCs eventually leading to impaired adipogenic differentiation and the promotion of inflammation, both of which contribute to the development of metabolic diseases later in life.
Collapse
|
21
|
Mannar V, Boro H, Patel D, Agstam S, Dalvi M, Bundela V. Epigenetics of the Pathogenesis and Complications of Type 2 Diabetes Mellitus. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:46-53. [PMID: 37313245 PMCID: PMC10258626 DOI: 10.17925/ee.2023.19.1.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/23/2023] [Indexed: 06/15/2023]
Abstract
Epigenetics of type 2 diabetes mellitus (T2DM) has widened our knowledge of various aspects of the disease. The aim of this review is to summarize the important epigenetic changes implicated in the disease risks, pathogenesis, complications and the evolution of therapeutics in our current understanding of T2DM. Studies published in the past 15 years, from 2007 to 2022, from three primary platforms namely PubMed, Google Scholar and Science Direct were included. Studies were searched using the primary term 'type 2 diabetes and epigenetics' with additional terms such as 'risks', 'pathogenesis', 'complications of diabetes' and 'therapeutics'. Epigenetics plays an important role in the transmission of T2DM from one generation to another. Epigenetic changes are also implicated in the two basic pathogenic components of T2DM, namely insulin resistance and impaired insulin secretion. Hyperglycaemia-i nduced permanent epigenetic modifications of the expression of DNA are responsible for the phenomenon of metabolic memory. Epigenetics influences the development of micro-and macrovascular complications of T2DM. They can also be used as biomarkers in the prediction of these complications. Epigenetics has expanded our understanding of the action of existing drugs such as metformin, and has led to the development of newer targets to prevent vascular complications. Epigenetic changes are involved in almost all aspects of T2DM, from risks, pathogenesis and complications, to the development of newer therapeutic targets.
Collapse
Affiliation(s)
- Velmurugan Mannar
- Department of Medicine, Aarupadai Veedu Medical College, Puducherry, India
| | - Hiya Boro
- Department of Endocrinology and Metabolism, Aadhar Health Institute, Hisar, India
| | - Deepika Patel
- Department of Endocrinology, Mediheal Hospital, Nairobi, Kenya
| | - Sourabh Agstam
- Department of Cardiology, VMMC and Safdarjung Hospital, New Delhi, India
| | - Mazhar Dalvi
- Department of Endocrinology, Mediclinic Al Noor Hospital, Abu Dhabi, United Arab Emirates
| | - Vikash Bundela
- Department of Gastroenterology, Aadhar Health Institute, Hisar, India
| |
Collapse
|
22
|
Kaimala S, Ansari SA, Emerald BS. DNA methylation in the pathogenesis of type 2 diabetes. VITAMINS AND HORMONES 2023; 122:147-169. [PMID: 36863792 DOI: 10.1016/bs.vh.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Type 2 diabetes (T2D) is a metabolic disease characterized by the development of β-cell dysfunction with hepatic, muscular and adipose tissue insulin resistance. Although the molecular mechanisms leading to its development are not entirely known, investigations of its causes reveal a multifactorial contribution to its development and progression in most cases. In addition, regulatory interactions mediated by epigenetic modifications such as DNA methylation, histone tail modifications and regulatory RNAs have been found to play a significant role in the etiology of T2D. In this chapter, we discuss the role of DNA methylation and its dynamics in the development of the pathological features of T2D.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
23
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li F, Yuan LQ, Li ZH. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther 2023; 8:98. [PMID: 36864020 PMCID: PMC9981733 DOI: 10.1038/s41392-023-01333-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Epigenetics regulates gene expression and has been confirmed to play a critical role in a variety of metabolic diseases, such as diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), osteoporosis, gout, hyperthyroidism, hypothyroidism and others. The term 'epigenetics' was firstly proposed in 1942 and with the development of technologies, the exploration of epigenetics has made great progresses. There are four main epigenetic mechanisms, including DNA methylation, histone modification, chromatin remodelling, and noncoding RNA (ncRNA), which exert different effects on metabolic diseases. Genetic and non-genetic factors, including ageing, diet, and exercise, interact with epigenetics and jointly affect the formation of a phenotype. Understanding epigenetics could be applied to diagnosing and treating metabolic diseases in the clinic, including epigenetic biomarkers, epigenetic drugs, and epigenetic editing. In this review, we introduce the brief history of epigenetics as well as the milestone events since the proposal of the term 'epigenetics'. Moreover, we summarise the research methods of epigenetics and introduce four main general mechanisms of epigenetic modulation. Furthermore, we summarise epigenetic mechanisms in metabolic diseases and introduce the interaction between epigenetics and genetic or non-genetic factors. Finally, we introduce the clinical trials and applications of epigenetics in metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
24
|
Bacos K, Perfilyev A, Karagiannopoulos A, Cowan E, Ofori JK, Bertonnier-Brouty L, Rönn T, Lindqvist A, Luan C, Ruhrmann S, Ngara M, Nilsson Å, Gheibi S, Lyons CL, Lagerstedt JO, Barghouth M, Esguerra JL, Volkov P, Fex M, Mulder H, Wierup N, Krus U, Artner I, Eliasson L, Prasad RB, Cataldo LR, Ling C. Type 2 diabetes candidate genes, including PAX5, cause impaired insulin secretion in human pancreatic islets. J Clin Invest 2023; 133:163612. [PMID: 36656641 PMCID: PMC9927941 DOI: 10.1172/jci163612] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic β cells. To identify candidate genes contributing to T2D pathophysiology, we studied human pancreatic islets from approximately 300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified expression changes in islets may predispose to diabetes, as expression of these genes associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human β cells, based on single-cell RNA-Seq data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D SNPs. Mouse KO strains demonstrated that the identified T2D-associated candidate genes regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing β cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we have identified molecular alterations in human pancreatic islets that contribute to β cell dysfunction in T2D pathophysiology.
Collapse
Affiliation(s)
- Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | | | - Alexandros Karagiannopoulos
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Elaine Cowan
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Jones K. Ofori
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Ludivine Bertonnier-Brouty
- Endocrine Cell Differentiation, Department of Laboratory Medicine, Lund Stem Cell Center, Malmö, Scania, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Andreas Lindqvist
- Neuroendocrine Cell Biology, Department of Experimental Medical Science
| | - Cheng Luan
- Unit of Islet Pathophysiology, Department of Clinical Sciences
| | - Sabrina Ruhrmann
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Mtakai Ngara
- Neuroendocrine Cell Biology, Department of Experimental Medical Science
| | - Åsa Nilsson
- Human Tissue Lab, Department of Clinical Sciences
| | - Sevda Gheibi
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Claire L. Lyons
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Jens O. Lagerstedt
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | | | - Jonathan L.S. Esguerra
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Petr Volkov
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Malin Fex
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Hindrik Mulder
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Nils Wierup
- Neuroendocrine Cell Biology, Department of Experimental Medical Science
| | - Ulrika Krus
- Human Tissue Lab, Department of Clinical Sciences
| | - Isabella Artner
- Endocrine Cell Differentiation, Department of Laboratory Medicine, Lund Stem Cell Center, Malmö, Scania, Sweden
| | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Rashmi B. Prasad
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden.,Institute of Molecular Medicine (FIMM), Helsinki University, Helsinki, Finland
| | - Luis Rodrigo Cataldo
- Molecular Metabolism Unit, Department of Clinical Sciences, and,The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| |
Collapse
|
25
|
Hao J, Liu Y. Epigenetics of methylation modifications in diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2023; 14:1119765. [PMID: 37008904 PMCID: PMC10050754 DOI: 10.3389/fendo.2023.1119765] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
Type 2 diabetes is one of the most common metabolic diseases with complications including diabetic cardiomyopathy and atherosclerotic cardiovascular disease. Recently, a growing body of research has revealed that the complex interplay between epigenetic changes and the environmental factors may significantly contribute to the pathogenesis of cardiovascular complications secondary to diabetes. Methylation modifications, including DNA methylation and histone methylation among others, are important in developing diabetic cardiomyopathy. Here we summarized the literatures of studies focusing on the role of DNA methylation, and histone modifications in microvascular complications of diabetes and discussed the mechanism underlying these disorders, to provide the guidance for future research toward an integrated pathophysiology and novel therapeutic strategies to treat or prevent this frequent pathological condition.
Collapse
Affiliation(s)
- Jing Hao
- Department of Emergency, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Liu
- Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yao Liu,
| |
Collapse
|
26
|
Jiang C, Hu Y, Wang S, Chen C. Emerging trends in DNA and RNA methylation modifications in type 2 diabetes mellitus: a bibliometric and visual analysis from 1992 to 2022. Front Endocrinol (Lausanne) 2023; 14:1145067. [PMID: 37201099 PMCID: PMC10187586 DOI: 10.3389/fendo.2023.1145067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/30/2023] [Indexed: 05/20/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a pathological metabolic disorder induced by the interaction of genetic and environmental factors. Epigenetic modifications, especially DNA and RNA methylation, might be the bridge between hereditary and environmental factors. This study aimed to comprehensively analyze the status and prospective trends of the association between T2DM and DNA/RNA methylation modifications by using bibliometric software. Methods All the publications in the Web of Science database for the research of T2DM with DNA and RNA methylation modifications were obtained from the earliest mention to December 2022. CiteSpace software was used to analyze countries, institutions, journals/cited-references, authors/cited-authors, and keywords. Results of the comprehensive visualization and bibliometric analysis were displayed relative to the research hotspots and knowledge structure. Results A total of 1,233 publications related to DNA and RNA methylation modifications and T2DM were collected. The number of publications per year and the overall trend consistently and significantly increased during the investigation period. Based on the highest publication counts, the most influential country was the USA, while Lund University was the most productive institution. DIABETES was considered the most popular journal. The most frequent keywords identified in the field of methylation and T2DM were mainly involved in developmental origin, insulin resistance, and metabolism. The study suggested that the study of methylation modifications had an increasingly significant role in understanding the progression of T2DM. Conclusion CiteSpace visualization software was utilized to investigate the status and trends of DNA and RNA methylation modifications in the pathology of T2DM over the past 30 years. Findings from the study provide a guiding perspective for researchers regarding future research directions in this field.
Collapse
Affiliation(s)
- Cai Jiang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yue Hu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Sinuo Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Cong Chen
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Cong Chen,
| |
Collapse
|
27
|
Chu DT, Thi YVN, Chew NW. Histone modifications in fat metabolism and obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:135-152. [PMID: 37019590 DOI: 10.1016/bs.pmbts.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The World Health Organization (WHO) has identified the obesity epidemic as one of the leading causes of overall morbidity and mortality. Obesity affects individual health, and quality of life and has negative long-term economic implications on society and the entire country. In recent years, studies on histone modifications in fat metabolism and obesity have received great attention. Processes such as methylation, histone modification, chromatin remodeling, and microRNA expression are mechanisms in epigenetic regulation. These processes play a particularly important role in cell development and differentiation through gene regulation. In this chapter, we discuss the types of histone modifications in adipose tissue under different conditions, the role of histone modifications in adipose tissue development, and the relationship between histone modifications and biosynthesis in the body. In addition, the chapter provides detailed information on histone modifications in obesity, the relationship between histone modifications and food consumption status, and the role of histone modifications in overweight and obesity.
Collapse
|
28
|
Chu DT, Bui NL, Vu Thi H, Nguyen Thi YV. Role of DNA methylation in diabetes and obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:153-170. [PMID: 37019591 DOI: 10.1016/bs.pmbts.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Due to the fact that the upward trend of several metabolic disorders such as diabetes and obesity, in individuals especially monozygotic twins, who are under the same effects from the environment, are not similar, the role of epigenetic elements like DNA methylation needs taking into account. In this chapter, emerging scientific evidence supporting the strong relationship between changes in DNA methylation and those diseases' development was summarized. Changing in the expression level of diabetes/obesity-related genes through being silenced by methylation can be the underlying mechanism of this phenomenon. Genes with abnormal methylation status are potential biomarkers for early prediction and diagnosis. Moreover, methylation-based molecular targets should be investigated as a new treatment for both T2D and obesity.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| | - Nhat-Le Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Hue Vu Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Yen-Vy Nguyen Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
29
|
Li S, Wang Y, Li Z, Long C, Zhou Q, Chen Q. The links between adipose tissue DNA methylation, obesity, and insulin resistance: A protocol for systematic review. Medicine (Baltimore) 2022; 101:e31261. [PMID: 36451420 PMCID: PMC9704914 DOI: 10.1097/md.0000000000031261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND RATIONALE Obesity is a metabolic condition brought on by the interplay of hereditary and environmental factors, making it one of the most common diseases in the world. Insulin resistance (IR) and obesity have a close connection and can both be advantageous. One of the main methods of epigenetic regulation is DNA methylation modification. Studies have demonstrated over the past few years that DNA methylation is crucial to the emergence of obesity and DNA methylation can lead to IR. Adipose tissue participates in the physiopathological processes of obesity and IR and functions as an endocrine organ controlling the body's balanced metabolism, thus, adipose tissue-associated gene DNA methylation affects the development of obesity and IR by influencing the function of adipose tissue. Hence, an explanation of current research on DNA methylation, IR, and obesity, following the most recent developments, exploring changes in DNA methylation in different types of adipose tissue in insulin-resistant patients and obese patients may enable the identification of novel targets in clinical obesity prevention and treatment. METHOD AND ANALYSIS The following electronic bibliographic databases will be searched from inception for peer-reviewed original research published: MEDLINE (through PubMed), Scopus, and EMBASE. Cochrane Library, Cochrane Clinical Trials Registry, the National Institutes for Health Clinical Trials Registry, and the WHO International Clinical Trials Registry Platform from inception to December 31, 2021 will be conducted. Systematic reviews will adhere to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines. The development of search strategies will make use of medical issue phrases and keywords associated with DNA methylation, Adipose tissue DNA methylation, obesity, and IR. Identified citations will be independently reviewed by two authors to determine eligibility at the title and abstract level, and then at the full text and data extraction phases. Disagreements and conflicts will be resolved through discussion with a third author. Two authors will extract the necessary data from the included studies independently, and The Cochrane Risk of Bias Assessment Tool will be used to assess the bias of randomized controlled studies, and the Newcastle-Ottawa scale for nonrandomized controlled studies. If the interventions and outcomes evaluated are sufficiently homogeneous, results from subgroups of studies will be pooled together in a meta-analysis.
Collapse
Affiliation(s)
- Suwen Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yan Wang
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zinan Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Cong Long
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qian Zhou
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
- * Correspondence: Qiu Chen Department of Endocrinology, Hospital of Chengdu University of Traditional Chines-e Medicine, Chengdu 610072, China ()
| |
Collapse
|
30
|
Wu Y, Zou H. Research Progress on Mitochondrial Dysfunction in Diabetic Retinopathy. Antioxidants (Basel) 2022; 11:2250. [PMID: 36421435 PMCID: PMC9686704 DOI: 10.3390/antiox11112250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 09/07/2023] Open
Abstract
Diabetic Retinopathy (DR) is one of the most important microvascular complications of diabetes mellitus, which can lead to blindness in severe cases. Mitochondria are energy-producing organelles in eukaryotic cells, which participate in metabolism and signal transduction, and regulate cell growth, differentiation, aging, and death. Metabolic changes of retinal cells and epigenetic changes of mitochondria-related genes under high glucose can lead to mitochondrial dysfunction and induce mitochondrial pathway apoptosis. In addition, mitophagy and mitochondrial dynamics also change adaptively. These mechanisms may be related to the occurrence and progression of DR, and also provide valuable clues for the prevention and treatment of DR. This article reviews the mechanism of DR induced by mitochondrial dysfunction, and the prospects for related treatment.
Collapse
Affiliation(s)
- Yiwei Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
31
|
Abstract
Data generated over nearly two decades clearly demonstrate the importance of epigenetic modifications and mechanisms in the pathogenesis of type 2 diabetes. However, the role of pharmacoepigenetics in type 2 diabetes is less well established. The field of pharmacoepigenetics covers epigenetic biomarkers that predict response to therapy, therapy-induced epigenetic alterations as well as epigenetic therapies including inhibitors of epigenetic enzymes. Not all individuals with type 2 diabetes respond to glucose-lowering therapies in the same way, and there is therefore a need for clinically useful biomarkers that discriminate responders from non-responders. Blood-based epigenetic biomarkers may be useful for this purpose. There is also a need for a better understanding of whether existing glucose-lowering therapies exert their function partly through therapy-induced epigenetic alterations. Finally, epigenetic enzymes may be drug targets for type 2 diabetes. Here, I discuss whether pharmacoepigenetics is clinically relevant for type 2 diabetes based on studies addressing this topic.
Collapse
Affiliation(s)
- Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.
| |
Collapse
|
32
|
de Souza MLM, Borçoi AR, Dutra BAB, Dos Santos Vieira T, Mendes SO, Nascimento IAA, Quaioto BR, Olinda AS, Cunha ER, Freitas FV, Pinheiro JA, Dos Santos JG, Sorroche BP, Arantes LMRB, Sartório CL, da Silva AMA. Lifestyle and NR3C1 exon 1F gene methylation is associated with changes in glucose levels and insulin resistance. Life Sci 2022; 309:120940. [PMID: 36108769 DOI: 10.1016/j.lfs.2022.120940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 10/31/2022]
Abstract
AIMS the present study aimed to investigate how glucose and insulin levels may be associated with changes in NR3C1 gene methylation levels in adults. MAIN METHODS 375 volunteers users of the Brazilian Public Unified Health System (SUS) were recruited to assess socioeconomic status, lifestyle, anthropometric data, blood glucose and serum cortisol levels, insulin resistance, and NR3C1 gene methylation assessment. Factors associated with glucose levels and insulin resistance were investigated using multivariate analysis GLzM at 5 % significance (p < 0.05). KEY FINDINGS our results verified that glucose levels and insulin resistance were directly related to NR3C1 gene methylation and age, while not being overweight and obese and no tobacco consumption were indirectly related to glucose levels and insulin resistance. SIGNIFICANCE habits and lifestyle may influence NR3C1 gene regulation, revealing the complexity of environmental impacts on NR3C1 methylation. Furthermore, associated risk factors must be taken into account in epigenetic studies as they directly interfere with blood glucose levels and insulin resistance.
Collapse
Affiliation(s)
| | - Aline Ribeiro Borçoi
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | | | - Tamires Dos Santos Vieira
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | | | | | - Barbara Risse Quaioto
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Amanda Sgrancio Olinda
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Ester Ribeiro Cunha
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Flávia Vitorino Freitas
- Department of Pharmacy and Nutrition, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Julia Assis Pinheiro
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | | | - Bruna Pereira Sorroche
- Molecular Oncology Research Center, Hospital do Câncer de Barretos, Barretos, São Paulo, Brazil
| | | | - Carmem Luíza Sartório
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | | |
Collapse
|
33
|
Li JH, Florez JC. On the Verge of Precision Medicine in Diabetes. Drugs 2022; 82:1389-1401. [PMID: 36123514 PMCID: PMC9531144 DOI: 10.1007/s40265-022-01774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
The epidemic of type 2 diabetes (T2D) is a significant global public health challenge and a major cause of morbidity and mortality. Despite the recent proliferation of pharmacological agents for the treatment of T2D, current therapies simply treat the symptom, i.e. hyperglycemia, and do not directly address the underlying disease process or modify the disease course. This article summarizes how genomic discovery has contributed to unraveling the heterogeneity in T2D, reviews relevant discoveries in the pharmacogenetics of five commonly prescribed glucose-lowering agents, presents evidence supporting how pharmacogenetics can be leveraged to advance precision medicine, and calls attention to important research gaps to its implementation to guide treatment choices.
Collapse
Affiliation(s)
- Josephine H Li
- Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Simches Research Building, CPZN 5.250, 185 Cambridge St, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jose C Florez
- Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Simches Research Building, CPZN 5.250, 185 Cambridge St, Boston, MA, 02114, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
34
|
Alimohammadi M, Makaremi S, Rahimi A, Asghariazar V, Taghadosi M, Safarzadeh E. DNA methylation changes and inflammaging in aging-associated diseases. Epigenomics 2022; 14:965-986. [PMID: 36043685 DOI: 10.2217/epi-2022-0143] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aging as an inevitable phenomenon is associated with pervasive changes in physiological functions. There is a relationship between aging and the increase of several chronic diseases. Most age-related disorders are accompanied by an underlying chronic inflammatory state, as demonstrated by local infiltration of inflammatory cells and greater levels of proinflammatory cytokines in the bloodstream. Within inflammaging, many epigenetic events, especially DNA methylation, change. During the aging process, due to aberrations of DNA methylation, biological processes are disrupted, leading to the emergence or progression of a variety of human diseases, including cancer, neurodegenerative disorders, cardiovascular disease and diabetes. The focus of this review is on DNA methylation, which is involved in inflammaging-related activities, and how its dysregulation leads to human disorders.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1983969411, Iran
| | - Shima Makaremi
- School of Medicine & Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, 5618985991, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, 5618985991, Iran
| | - Vahid Asghariazar
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, 5618985991, Iran
| | - Mahdi Taghadosi
- Department of Immunology, Kermanshah University of Medical Sciences, Kermanshah, 6714869914, Iran
| | - Elham Safarzadeh
- Department of Microbiology, Parasitology, & Immunology, Ardabil University of Medical Sciences, Ardabil, 5618985991, Iran
| |
Collapse
|
35
|
Christiansen C, Tomlinson M, Eliot M, Nilsson E, Costeira R, Xia Y, Villicaña S, Mompeo O, Wells P, Castillo-Fernandez J, Potier L, Vohl MC, Tchernof A, Moustafa JES, Menni C, Steves CJ, Kelsey K, Ling C, Grundberg E, Small KS, Bell JT. Adipose methylome integrative-omic analyses reveal genetic and dietary metabolic health drivers and insulin resistance classifiers. Genome Med 2022; 14:75. [PMID: 35843982 PMCID: PMC9290282 DOI: 10.1186/s13073-022-01077-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/21/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND There is considerable evidence for the importance of the DNA methylome in metabolic health, for example, a robust methylation signature has been associated with body mass index (BMI). However, visceral fat (VF) mass accumulation is a greater risk factor for metabolic disease than BMI alone. In this study, we dissect the subcutaneous adipose tissue (SAT) methylome signature relevant to metabolic health by focusing on VF as the major risk factor of metabolic disease. We integrate results with genetic, blood methylation, SAT gene expression, blood metabolomic, dietary intake and metabolic phenotype data to assess and quantify genetic and environmental drivers of the identified signals, as well as their potential functional roles. METHODS Epigenome-wide association analyses were carried out to determine visceral fat mass-associated differentially methylated positions (VF-DMPs) in SAT samples from 538 TwinsUK participants. Validation and replication were performed in 333 individuals from 3 independent cohorts. To assess functional impacts of the VF-DMPs, the association between VF and gene expression was determined at the genes annotated to the VF-DMPs and an association analysis was carried out to determine whether methylation at the VF-DMPs is associated with gene expression. Further epigenetic analyses were carried out to compare methylation levels at the VF-DMPs as the response variables and a range of different metabolic health phenotypes including android:gynoid fat ratio (AGR), lipids, blood metabolomic profiles, insulin resistance, T2D and dietary intake variables. The results from all analyses were integrated to identify signals that exhibit altered SAT function and have strong relevance to metabolic health. RESULTS We identified 1181 CpG positions in 788 genes to be differentially methylated with VF (VF-DMPs) with significant enrichment in the insulin signalling pathway. Follow-up cross-omic analysis of VF-DMPs integrating genetics, gene expression, metabolomics, diet, and metabolic traits highlighted VF-DMPs located in 9 genes with strong relevance to metabolic disease mechanisms, with replication of signals in FASN, SREBF1, TAGLN2, PC and CFAP410. PC methylation showed evidence for mediating effects of diet on VF. FASN DNA methylation exhibited putative causal effects on VF that were also strongly associated with insulin resistance and methylation levels in FASN better classified insulin resistance (AUC=0.91) than BMI or VF alone. CONCLUSIONS Our findings help characterise the adiposity-associated methylation signature of SAT, with insights for metabolic disease risk.
Collapse
Affiliation(s)
- Colette Christiansen
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| | - Max Tomlinson
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Medical & Molecular Genetics, King's College London, London, UK
| | - Melissa Eliot
- Department of Epidemiology, Brown University School of Public Health, Providence, R.I., USA
| | - Emma Nilsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Ricardo Costeira
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Yujing Xia
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Sergio Villicaña
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Olatz Mompeo
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Philippa Wells
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | | - Louis Potier
- Diabetology Department, Bichat Hospital, AP-HP, Université de Paris, Paris, France
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, Canada
| | - Andre Tchernof
- Québec Heart and Lung Institute, Université Laval, Québec, QC, Canada
| | | | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Karl Kelsey
- Department of Epidemiology, Brown University School of Public Health, Providence, R.I., USA
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Elin Grundberg
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
36
|
Schrader S, Perfilyev A, Ahlqvist E, Groop L, Vaag A, Martinell M, García-Calzón S, Ling C. Novel Subgroups of Type 2 Diabetes Display Different Epigenetic Patterns That Associate With Future Diabetic Complications. Diabetes Care 2022; 45:1621-1630. [PMID: 35607770 PMCID: PMC9274219 DOI: 10.2337/dc21-2489] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/05/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Type 2 diabetes (T2D) was recently reclassified into severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), and mild age-related diabetes (MARD), which have different risk of complications. We explored whether DNA methylation differs between these subgroups and whether subgroup-unique methylation risk scores (MRSs) predict diabetic complications. RESEARCH DESIGN AND METHODS Genome-wide DNA methylation was analyzed in blood from subjects with newly diagnosed T2D in discovery and replication cohorts. Subgroup-unique MRSs were built, including top subgroup-unique DNA methylation sites. Regression models examined whether MRSs associated with subgroups and future complications. RESULTS We found epigenetic differences between the T2D subgroups. Subgroup-unique MRSs were significantly different in those patients allocated to each respective subgroup compared with the combined group of all other subgroups. These associations were validated in an independent replication cohort, showing that subgroup-unique MRSs associate with individual subgroups (odds ratios 1.6-6.1 per 1-SD increase, P < 0.01). Subgroup-unique MRSs were also associated with future complications. Higher MOD-MRS was associated with lower risk of cardiovascular (hazard ratio [HR] 0.65, P = 0.001) and renal (HR 0.50, P < 0.001) disease, whereas higher SIRD-MRS and MARD-MRS were associated with an increased risk of these complications (HR 1.4-1.9 per 1-SD increase, P < 0.01). Of 95 methylation sites included in subgroup-unique MRSs, 39 were annotated to genes previously linked to diabetes-related traits, including TXNIP and ELOVL2. Methylation in the blood of 18 subgroup-unique sites mirrors epigenetic patterns in tissues relevant for T2D, muscle and adipose tissue. CONCLUSIONS We identified differential epigenetic patterns between T2D subgroups that associated with future diabetic complications. These data support a reclassification of diabetes and the need for precision medicine in T2D subgroups.
Collapse
Affiliation(s)
- Silja Schrader
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Emma Ahlqvist
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Leif Groop
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Allan Vaag
- Type 2 Diabetes Biology Research, Steno Diabetes Center, Copenhagen, Denmark
| | - Mats Martinell
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden.,Academic Primary Care Centre, Uppsala, Sweden
| | - Sonia García-Calzón
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.,Department of Food Science and Physiology, University of Navarra, Pamplona, Spain
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
37
|
Ling C, Bacos K, Rönn T. Epigenetics of type 2 diabetes mellitus and weight change - a tool for precision medicine? Nat Rev Endocrinol 2022; 18:433-448. [PMID: 35513492 DOI: 10.1038/s41574-022-00671-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
Abstract
Pioneering studies performed over the past few decades demonstrate links between epigenetics and type 2 diabetes mellitus (T2DM), the metabolic disorder with the most rapidly increasing prevalence in the world. Importantly, these studies identified epigenetic modifications, including altered DNA methylation, in pancreatic islets, adipose tissue, skeletal muscle and the liver from individuals with T2DM. As non-genetic factors that affect the risk of T2DM, such as obesity, unhealthy diet, physical inactivity, ageing and the intrauterine environment, have been associated with epigenetic modifications in healthy individuals, epigenetics probably also contributes to T2DM development. In addition, genetic factors associated with T2DM and obesity affect the epigenome in human tissues. Notably, causal mediation analyses found DNA methylation to be a potential mediator of genetic associations with metabolic traits and disease. In the past few years, translational studies have identified blood-based epigenetic markers that might be further developed and used for precision medicine to help patients with T2DM receive optimal therapy and to identify patients at risk of complications. This Review focuses on epigenetic mechanisms in the development of T2DM and the regulation of body weight in humans, with a special focus on precision medicine.
Collapse
Affiliation(s)
- Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
38
|
Holzapfel C, Waldenberger M, Lorkowski S, Daniel H. Genetics and Epigenetics in Personalized Nutrition: Evidence, Expectations and Experiences. Mol Nutr Food Res 2022; 66:e2200077. [PMID: 35770348 DOI: 10.1002/mnfr.202200077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/17/2022] [Indexed: 11/10/2022]
Abstract
With the presentation of the blueprint of the first human genome in 2001 and the advent of technologies for high-throughput genetic analysis, personalized nutrition (PN) became a new scientific field and the first commercial offerings of genotype-based nutrition advice emerged at the same time. Here, we summarize the state of evidence for the effect of genetic and epigenetic factors in the development of obesity, the metabolic syndrome and resulting illnesses such as non-insulin-dependent diabetes mellitus and cardiovascular diseases. We also critically value the concepts of PN that were built around the new genetic avenue from both the academic and a commercial perspective and their effectiveness in causing sustained changes in diet, lifestyle and for improving health. Despite almost 20 years of research and commercial direct-to-consumer offerings, evidence for the success of gene-based dietary recommendations is still generally lacking. This calls for new concepts of future PN solutions that incorporate more phenotypic measures and provide a panel of instruments (e.g., self- and bio-monitoring tools, feedback systems, algorithms based on artificial intelligence) that increases compliance based on the individual´s physical and social environment and value system. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Christina Holzapfel
- Institute for Nutritional Medicine, Technical University of Munich, School of Medicine, Munich, Germany
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences and Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Friedrich Schiller University, Jena, Germany
| | - Hannelore Daniel
- Professor emeritus, Technical University of Munich, Freising, Germany
| |
Collapse
|
39
|
Black Tea Reduces Diet-Induced Obesity in Mice via Modulation of Gut Microbiota and Gene Expression in Host Tissues. Nutrients 2022; 14:nu14081635. [PMID: 35458198 PMCID: PMC9027533 DOI: 10.3390/nu14081635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/17/2022] Open
Abstract
Black tea was reported to alter the microbiome populations and metabolites in diet-induced obese mice and displays properties that prevent obesity, but the underlying mechanism of the preventative effect of black tea on high-fat diet (HFD) induced obesity has not been elucidated. Epigenetic studies are a useful tool for determining the relationship between obesity and environment. Here, we show that the water extract of black tea (Lapsang souchong, LS) reverses HFD-induced gut dysbiosis, alters the tissue gene expression, changes the level of a major epigenetic modification (DNA methylation), and prevents obesity in HFD feeding mice. The anti-obesity properties of black tea are due to alkaloids, which are the principal active components. Our data indicate that the anti-obesity benefits of black tea are transmitted via fecal transplantation, and the change of tissue gene expression and the preventative effects on HFD-induced obesity in mice of black tea are dependent on the gut microbiota. We further show that black tea could regulate the DNA methylation of imprinted genes in the spermatozoa of high-fat diet mice. Our results show a mechanistic link between black tea, changes in the gut microbiota, epigenetic processes, and tissue gene expression in the modulation of diet-induced metabolic dysfunction.
Collapse
|
40
|
Choi KM, Ryan KK, Yoon JC. Adipose Mitochondrial Complex I Deficiency Modulates Inflammation and Glucose Homeostasis in a Sex-Dependent Manner. Endocrinology 2022; 163:6529386. [PMID: 35171275 PMCID: PMC8900697 DOI: 10.1210/endocr/bqac018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Indexed: 11/19/2022]
Abstract
Mitochondrial dysfunction in adipose tissue has been associated with type 2 diabetes, but it is unclear whether it is a cause or the consequence. Mitochondrial complex I is a major site of reactive oxygen species generation and a therapeutic target. Here we report that genetic deletion of the complex I subunit Ndufs4 specifically in adipose tissue results in an increased propensity to develop diet-induced weight gain, glucose intolerance, and elevated levels of fat inflammatory genes. This outcome is apparent in young males but not in young females, suggesting that females are relatively protected from the adverse consequences of adipose mitochondrial dysfunction for metabolic health. Mutant mice of both sexes exhibit defects in brown adipose tissue thermogenesis. Fibroblast growth factor 21 (FGF21) signaling in adipose tissue is selectively blunted in male mutant mice relative to wild-type littermates, consistent with sex-dependent regulation of its autocrine/paracrine action in adipocytes. Together, these findings support that adipocyte-specific mitochondrial dysfunction is sufficient to induce tissue inflammation and can cause systemic glucose abnormalities in male mice.
Collapse
Affiliation(s)
- Kyung-Mi Choi
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Karen K Ryan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - John C Yoon
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
- Correspondence: John C. Yoon, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
41
|
Chae CW, Choi GE, Jung YH, Lim JR, Cho JH, Yoon JH, Han HJ. High glucose-mediated VPS26a downregulation dysregulates neuronal amyloid precursor protein processing and tau phosphorylation. Br J Pharmacol 2022; 179:3934-3950. [PMID: 35297035 DOI: 10.1111/bph.15836] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE The relationship between hyperglycaemia-induced retromer dysfunction impairing intracellular trafficking and AD remains unclear, although Diabetes mellitus (DM) is considered a risk factor for Alzheimer's disease (AD). Here, we investigated the effects of high glucose on the retromer, and defined the dysregulation of mechanisms of amyloid precursor protein (APP) processing and tau phosphorylation. EXPERIMENTAL APPROACH We used human induced-pluripotent stem cell-derived neuronal differentiated cells and SH-SY5Ys exposed to high glucose to identify the underlying mechanisms. Streptozotocin-induced diabetic mice were used to elucidate whether the retromer contributes to the AD-like pathology. KEY RESULTS We found that vacuolar protein sorting-associated protein 26a (VPS26a) was decreased in the hippocampus of diabetic mice and high glucose-treated human neuronal cells. High glucose downregulated VPS26a through ROS/NF-κB/DNA methyltransferase1-mediated promoter hypermethylation. VPS26a recovery blocked retention of APP and cation-independent mannose-6-phosphate receptor in endosomes and promoted transport to the trans-Golgi, which decreased Aβ levels, and improved Cathepsin D activity, reducing p-tau levels, respectively. Retromer enhancement ameliorated synaptic deficits, astrocyte over-activation, and cognitive impairment in diabetic mice. CONCLUSION AND IMPLICATIONS In conclusion, VPS26a is a promising candidate for the inhibition of DM-associated AD pathogenesis by modulating APP processing and tau phosphorylation.
Collapse
Affiliation(s)
- Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Ji Hyeon Cho
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jee Hyeon Yoon
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
42
|
Cao YN, Li QZ, Liu YX. Discovered Key CpG Sites by Analyzing DNA Methylation and Gene Expression in Breast Cancer Samples. Front Cell Dev Biol 2022; 10:815843. [PMID: 35178391 PMCID: PMC8844453 DOI: 10.3389/fcell.2022.815843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common cancer in the world, and DNA methylation plays a key role in the occurrence and development of breast cancer. However, the effect of DNA methylation in different gene functional regions on gene expression and the effect of gene expression on breast cancer is not completely clear. In our study, we computed and analyzed DNA methylation, gene expression, and clinical data in the TCGA database. Firstly, we calculated the distribution of abnormal DNA methylated probes in 12 regions, found the abnormal DNA methylated probes in down-regulated genes were highly enriched, and the number of hypermethylated probes in the promoter region was 6.5 times than that of hypomethylated probes. Secondly, the correlation coefficients between abnormal DNA methylated values in each functional region of differentially expressed genes and gene expression values were calculated. Then, co-expression analysis of differentially expressed genes was performed, 34 hub genes in cancer-related pathways were obtained, of which 11 genes were regulated by abnormal DNA methylation. Finally, a multivariate Cox regression analysis was performed on 27 probes of 11 genes. Three DNA methylation probes (cg13569051 and cg14399183 of GSN, and cg25274503 of CAV2) related to survival were used to construct a prognostic model, which has a good prognostic ability. Furthermore, we found that the cg25274503 hypermethylation in the promoter region inhibited the expression of the CAV2, and the hypermethylation of cg13569051 and cg14399183 in the 5′UTR region inhibited the expression of GSN. These results may provide possible molecular targets for breast cancer.
Collapse
Affiliation(s)
- Yan-Ni Cao
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China.,The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Yu-Xian Liu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| |
Collapse
|
43
|
Mahmoud AM. An Overview of Epigenetics in Obesity: The Role of Lifestyle and Therapeutic Interventions. Int J Mol Sci 2022; 23:ijms23031341. [PMID: 35163268 PMCID: PMC8836029 DOI: 10.3390/ijms23031341] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity has become a global epidemic that has a negative impact on population health and the economy of nations. Genetic predispositions have been demonstrated to have a substantial role in the unbalanced energy metabolism seen in obesity. However, these genetic variations cannot entirely explain the massive growth in obesity over the last few decades. Accumulating evidence suggests that modern lifestyle characteristics such as the intake of energy-dense foods, adopting sedentary behavior, or exposure to environmental factors such as industrial endocrine disruptors all contribute to the rising obesity epidemic. Recent advances in the study of DNA and its alterations have considerably increased our understanding of the function of epigenetics in regulating energy metabolism and expenditure in obesity and metabolic diseases. These epigenetic modifications influence how DNA is transcribed without altering its sequence. They are dynamic, reflecting the interplay between the body and its surroundings. Notably, these epigenetic changes are reversible, making them appealing targets for therapeutic and corrective interventions. In this review, I discuss how these epigenetic modifications contribute to the disordered energy metabolism in obesity and to what degree lifestyle and weight reduction strategies and pharmacological drugs can restore energy balance by restoring normal epigenetic profiles.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
44
|
Zhou QB, Chen Y, Zhang Y, Li DD, Wang HQ, Jia ZJ, Jin Y, Xu FQ, Zhang Y. Hypermethylation Effects of Yiqihuoxue Decoction in Diabetic Atherosclerosis Using Genome-Wide DNA Methylation Analyses. J Inflamm Res 2022; 15:163-176. [PMID: 35035227 PMCID: PMC8754469 DOI: 10.2147/jir.s335374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose To investigate if a traditional Chinese medicine formulation, called “Yiqihuoxue” (YQHX), could improve diabetic atherosclerosis (DA) and explore potential mechanisms based on DNA methylation. Methods Apolipoprotein E-knockout mice were administered streptozotocin (50 mg/d, i.p.) for 5 days and fed a high-fat diet for 16 weeks. Mice were divided randomly into DA model, rosiglitazone, as well as low-, medium-, and high-dose YQHX groups. Ten healthy C57BL/6J mice were the control group. Serum levels of fasting insulin, blood glucose, homeostasis model-insulin resistance index (HOMA-IR), serum lipids, and inflammatory factors were analyzed after the final treatment. Aorta tissues were collected for staining (hematoxylin and eosin, and Oil red O). Genomic DNA was extracted for methyl-capture sequencing (MC-seq). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) databases were used to analyze differentially methylated genes. Pyrosequencing was used to verify MC-seq data. Results Low-dose and high-dose YQHX could reduce the HOMA-IR (P < 0.05). Low-dose YQHX reduced expression of total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), TNF-α, andI L-6 in serum compared with that in the model group (P < 0.05). Medium-dose YQHX decoction inhibited the expression level of TNF-α (P < 0.05). High-dose YQHX decreased the expression level of IL-6 (P < 0.05). Staining also showed the anti-atherosclerosis effects of YQHX (P < 0.05). MC-seq revealed many abnormally hypermethylated and hypomethylated genes in DA mice compared with those in the control group. KEGG database analysis showed that the hypermethylated genes induced by YQHX treatment were related to pathways in cancer, Hippo signaling, and mitogen activated protein kinase. The network analysis suggested that the hypermethylated genes epidermal growth factor receptor(Egfr) and phosphoinositide-3-kinase regulatory subunit 1(Pik3r1) induced by YQHX treatment had important roles in DA. Pyrosequencing revealed that YQHX treatment increased methylation of AKT1, Nr1h3 and Fabp4 significantly (P < 0.05). Conclusion YQHX decoction had positive treatment effects against DA, because it could regulate aberrant hypomethylation of DNA.
Collapse
Affiliation(s)
- Qing-Bing Zhou
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Yao Chen
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Yan Zhang
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Dan-Dan Li
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Hong-Qin Wang
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Zi-Jun Jia
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Yu Jin
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, People's Republic of China
| | - Feng-Qin Xu
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Ying Zhang
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| |
Collapse
|
45
|
Kaimala S, Kumar CA, Allouh MZ, Ansari SA, Emerald BS. Epigenetic modifications in pancreas development, diabetes, and therapeutics. Med Res Rev 2022; 42:1343-1371. [PMID: 34984701 PMCID: PMC9306699 DOI: 10.1002/med.21878] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022]
Abstract
A recent International Diabetes Federation report suggests that more than 463 million people between 20 and 79 years have diabetes. Of the 20 million women affected by hyperglycemia during pregnancy, 84% have gestational diabetes. In addition, more than 1.1 million children or adolescents are affected by type 1 diabetes. Factors contributing to the increase in diabetes prevalence are complex and include contributions from genetic, environmental, and epigenetic factors. However, molecular regulatory mechanisms influencing the progression of an individual towards increased susceptibility to metabolic diseases such as diabetes are not fully understood. Recent studies suggest that the pathogenesis of diabetes involves epigenetic changes, resulting in a persistently dysregulated metabolic phenotype. This review summarizes the role of epigenetic mechanisms, mainly DNA methylation and histone modifications, in the development of the pancreas, their contribution to the development of diabetes, and the potential employment of epigenetic modulators in diabetes treatment.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Challagandla Anil Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Mohammed Z Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
46
|
Ali MM, Naquiallah D, Qureshi M, Mirza MI, Hassan C, Masrur M, Bianco FM, Frederick P, Cristoforo GP, Gangemi A, Phillips SA, Mahmoud AM. DNA methylation profile of genes involved in inflammation and autoimmunity correlates with vascular function in morbidly obese adults. Epigenetics 2022; 17:93-109. [PMID: 33487124 PMCID: PMC8812729 DOI: 10.1080/15592294.2021.1876285] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity is a major risk factor for cardiovascular disease. Blood-detected epigenetic profiles may serve as non-invasive clinically relevant biomarkers. Therefore, we investigated DNA methylation of genes involved in inflammation in peripheral blood of obese subjects and lean controls and their correlation with cardiometabolic measurements. We obtained blood and adipose tissue (AT) samples from bariatric patients (n = 24) and control adults (n = 24). AT-isolated arterioles were tested for flow-induced dilation (FID) and production of nitric oxide (NO) and reactive oxygen species (ROS). Brachial artery flow-mediated dilation (FMD) was measured via doppler ultrasound. Promoter methylation of 94 genes involved in inflammation and autoimmunity were analysed in whole-blood DNA in relation to vascular function and cardiometabolic risk factors. 77 genes had ahigher methylated fraction in the controls compare obese subjects and 28 proinflammatory genes were significantly hypomethylated in the obese individuals; on top of these genes are CXCL1, CXCL12, CXCL6, IGF2BP2, HDAC4, IL12A, and IL17RA. Fifteen of these genes had significantly higher mRNA in obese subjects compared to controls; on top of these genes are CXCL6, TLR5, IL6ST, EGR1, IL15RA, and HDAC4. Methylation % inversely correlated with BMI, total fat %, visceral fat%, blood pressure, fasting plasma insulin, serum IL6 and C-reactive protein, arteriolar ROS, and alcohol consumption and positive correlations with lean %, HDL, plasma folate and vitamin B12, arteriolar FID and NO production, and brachial FMD. Our results suggest that vascular dysfunction in obese adults may be attributed to asystemic hypomethylation and over expression of the immune-related genes.
Collapse
Affiliation(s)
- Mohamed M. Ali
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Dina Naquiallah
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Maryam Qureshi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammed Imaduddin Mirza
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Chandra Hassan
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mario Masrur
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Francesco M. Bianco
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Patrice Frederick
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Antonio Gangemi
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Shane A. Phillips
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Abeer M. Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
47
|
Padilla-Martinez F, Wojciechowska G, Szczerbinski L, Kretowski A. Circulating Nucleic Acid-Based Biomarkers of Type 2 Diabetes. Int J Mol Sci 2021; 23:ijms23010295. [PMID: 35008723 PMCID: PMC8745431 DOI: 10.3390/ijms23010295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes (T2D) is a deficiency in how the body regulates glucose. Uncontrolled T2D will result in chronic high blood sugar levels, eventually resulting in T2D complications. These complications, such as kidney, eye, and nerve damage, are even harder to treat. Identifying individuals at high risk of developing T2D and its complications is essential for early prevention and treatment. Numerous studies have been done to identify biomarkers for T2D diagnosis and prognosis. This review focuses on recent T2D biomarker studies based on circulating nucleic acids using different omics technologies: genomics, transcriptomics, and epigenomics. Omics studies have profiled biomarker candidates from blood, urine, and other non-invasive samples. Despite methodological differences, several candidate biomarkers were reported for the risk and diagnosis of T2D, the prognosis of T2D complications, and pharmacodynamics of T2D treatments. Future studies should be done to validate the findings in larger samples and blood-based biomarkers in non-invasive samples to support the realization of precision medicine for T2D.
Collapse
Affiliation(s)
- Felipe Padilla-Martinez
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
| | - Gladys Wojciechowska
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Correspondence:
| | - Lukasz Szczerbinski
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15276 Białystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15276 Białystok, Poland
| |
Collapse
|
48
|
Mirzaeicheshmeh E, Zerrweck C, Centeno-Cruz F, Baca-Peynado P, Martinez-Hernandez A, García-Ortiz H, Contreras-Cubas C, Salas-Martínez MG, Saldaña-Alvarez Y, Mendoza-Caamal EC, Barajas-Olmos F, Orozco L. Alterations of DNA methylation during adipogenesis differentiation of mesenchymal stem cells isolated from adipose tissue of patients with obesity is associated with type 2 diabetes. Adipocyte 2021; 10:493-504. [PMID: 34699309 PMCID: PMC8555535 DOI: 10.1080/21623945.2021.1978157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
Adipogenesis regulation is crucial for mature adipocyte function. In obesity, a major driver of type 2 diabetes (T2D), this process is disrupted and remains poorly characterized. Here we identified altered DNA methylation profiles in diabetic obese patients, during three adipocytes differentiation stages. We isolated mesenchymal cells from visceral adipose tissue of obese patients with and without T2D to analyse DNA methylation profiles at 0, 3, and 18 days of ex vivo differentiation and documented their impact on gene expression. Methylation and gene expression were analysed with EPIC and Clarion S arrays, respectively. Patients with T2D had epigenetic alterations in all the analysed stages, and these were mainly observed in genes important in adipogenesis, insulin resistance, cell death programming, and immune effector processes. Importantly, at 3 days, we found six-fold more methylated CpG alterations than in the other stages. This is the first study to document epigenetic markers that persist through all three adipogenesis stages and their impact on gene expression, which could be a cellular metabolic memory involved in T2D. Our data provided evidence that, throughout the adipogenesis process, alterations occur in methylation that might impact mature adipocyte function, cause tissue malfunction, and potentially, lead to the development of T2D.
Collapse
Affiliation(s)
- Elaheh Mirzaeicheshmeh
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Carlos Zerrweck
- Clínica de Obesidad del Hospital General Tláhuac, SSA, Mexico City, Mexico
- Facultad De Medicina, Alta Especialidad En Cirugía Bariatrica, Unam, Mexico City, Mexico
| | - Federico Centeno-Cruz
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Paulina Baca-Peynado
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Angélica Martinez-Hernandez
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Humberto García-Ortiz
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Cecilia Contreras-Cubas
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | | | - Yolanda Saldaña-Alvarez
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | | | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Lorena Orozco
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| |
Collapse
|
49
|
Hu F, Zhang Y, Qin P, Zhao Y, Liu D, Zhou Q, Tian G, Li Q, Guo C, Wu X, Qie R, Huang S, Han M, Li Y, Zhang M, Hu D. Integrated analysis of probability of type 2 diabetes mellitus with polymorphisms and methylation of KCNQ1 gene: A nested case-control study. J Diabetes 2021; 13:975-986. [PMID: 34260825 DOI: 10.1111/1753-0407.13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To estimate the associations between single-nucleotide polymorphisms (SNPs) and methylation of KCNQ1 gene and type 2 diabetes mellitus (T2DM) risk and the interactions among SNPs, methylation, and environmental factors on T2DM risk. METHODS We genotyped five SNPs and tested methylation at 39 CpG loci of KCNQ1 in 290 T2DM cases and 290 matched controls nested in the Rural Chinese Cohort Study. Conditional logistic regression model was used to estimate the associations between SNPs and KCNQ1 methylation and T2DM risk. Multifactor dimensionality reduction (MDR) analysis was used to estimate the effect of the interactions SNPs-SNPs, SNPs-methylation, methylation-methylation and SNPs, and methylation-environment on T2DM risk. RESULTS Probability of T2DM was decreased with rs2283228 of KCNQ1 (CA vs AA, odds ratio [OR] = 0.65, 95% confidence interval [CI] 0.42-0.99). T2DM probability was significantly increased with rs2237895 combined with hypertriglyceridemia (OReg = 2.76, 95% CI 1.35-5.62), with hypertension (OReg = 2.23, 95% CI 1.25-3.98), and with body mass index (BMI; OReg = 1.93, 95% CI 1.12-3.34). T2DM probability was associated with methylation of CG11 and CG41 (OR = 1.89, 95% CI 1.23-2.89, P = .003). It was significantly associated with the interaction between BMI, hypertriglyceridemia, and CG5 methylation (P = .028 and .028), and the combined effects of CG11 with hypertriglyceridemia and hypertension. On MDR analysis, no significant interaction was observed. CONCLUSION T2DM probability was reduced 35% with rs2283228 polymorphism. It was associated with rs2237895 combined with hypertension, with BMI and with hypertriglyceridemia. The methylation at two CpG loci of KCNQ1 significantly increased T2DM risk by 89%.
Collapse
Affiliation(s)
- Fulan Hu
- Study Team of Shenzhen's Sanming Project, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, China
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Yanyan Zhang
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Pei Qin
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Yang Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dechen Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qionggui Zhou
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Gang Tian
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Quanman Li
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chunmei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ranran Qie
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shengbing Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Minghui Han
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yang Li
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Ming Zhang
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Dongsheng Hu
- Study Team of Shenzhen's Sanming Project, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
50
|
Mastrototaro L, Roden M. Insulin resistance and insulin sensitizing agents. Metabolism 2021; 125:154892. [PMID: 34563556 DOI: 10.1016/j.metabol.2021.154892] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023]
Abstract
Insulin resistance is a common feature of obesity and type 2 diabetes, but novel approaches of diabetes subtyping (clustering) revealed variable degrees of insulin resistance in people with diabetes. Specifically, the severe insulin resistant diabetes (SIRD) subtype not only exhibits metabolic abnormalities, but also bears a higher risk for cardiovascular, renal and hepatic comorbidities. In humans, insulin resistance comprises dysfunctional adipose tissue, lipotoxic insulin signaling followed by glucotoxicity, oxidative stress and low-grade inflammation. Recent studies show that aside from metabolites (free fatty acids, amino acids) and signaling proteins (myokines, adipokines, hepatokines) also exosomes with their cargo (proteins, mRNA and microRNA) contribute to altered crosstalk between skeletal muscle, liver and adipose tissue during the development of insulin resistance. Reduction of fat mass mainly, but not exclusively, explains the success of lifestyle modification and bariatric surgery to improve insulin sensitivity. Moreover, some older antihyperglycemic drugs (metformin, thiazolidinediones), but also novel therapeutic concepts (new peroxisome proliferator-activated receptor agonists, incretin mimetics, sodium glucose cotransporter inhibitors, modulators of energy metabolism) can directly or indirectly reduce insulin resistance. This review summarizes molecular mechanisms underlying insulin resistance including the roles of exosomes and microRNAs, as well as strategies for the management of insulin resistance in humans.
Collapse
Affiliation(s)
- Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|