1
|
Mirzadeh Z, Faber C. Brain Defense of Glycemia in Health and Diabetes. Diabetes 2024; 73:1952-1966. [PMID: 39401393 PMCID: PMC11579547 DOI: 10.2337/dbi24-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 11/22/2024]
Abstract
The brain coordinates the homeostatic defense of multiple metabolic variables, including blood glucose levels, in the context of ever-changing external and internal environments. The biologically defended level of glycemia (BDLG) is the net result of brain modulation of insulin-dependent mechanisms in cooperation with the islet, and insulin-independent mechanisms through direct innervation and neuroendocrine control of glucose effector tissues. In this article, we highlight evidence from animal and human studies to develop a framework for the brain's core homeostatic functions-sensory/afferent, integration/processing, and motor/efferent-that contribute to the normal BDLG in health and its elevation in diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Zaman Mirzadeh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ
| | - Chelsea Faber
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ
| |
Collapse
|
2
|
Zarpellon PS, Murat C, Leão RM. Reduction in mitochondrial ATP synthesis mimics the effect of low glucose in depolarizing neurons from the subpostremal nucleus of the solitary tract of rats. J Bioenerg Biomembr 2024; 56:483-493. [PMID: 39266925 DOI: 10.1007/s10863-024-10037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024]
Abstract
Neurons of the subpostremal nucleus of the solitary tract (NTS) respond to changes in extracellular glucose with alterations in membrane potential with both depolarization and hyperpolarization. From 5 mM glucose, a rapid shift to 0.5 mM glucose produces a membrane depolarization by an unknown mechanism in most neurons. However, the mechanism involved in this response needs to be known. Here, we investigated if the low glucose-induced depolarization could be mimicked by reducing ATP synthesis and possible mediators of this effect. We showed that applying the mitochondrial uncoupler CCCP (1 µM) reproduced the effects of low glucose depolarizing the membrane, generating an inward current, and decreasing membrane resistance. On the other hand, activation of AMPK did not alter these parameters. To test if low glucose and CCCP could depolarize the membrane by affecting the ionic gradient, we inhibited the electrogenic Na/K pump with 10 µM of ouabain. We observed a similar membrane depolarization but not a decrease in membrane resistance. We conclude that perfusion of neurons of the subpostremal NTS with a low glucose solution depolarizes the membrane by probably reducing intracellular ATP, but not by activating AMPK or decreasing the ionic gradient across the membrane.
Collapse
Affiliation(s)
- Patrik S Zarpellon
- Neurophysiology and Synapse Laboratory, Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cahuê Murat
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Ricardo M Leão
- Neurophysiology and Synapse Laboratory, Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Thorens B. Neuronal glucose sensing mechanisms and circuits in the control of insulin and glucagon secretion. Physiol Rev 2024; 104:1461-1486. [PMID: 38661565 DOI: 10.1152/physrev.00038.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024] Open
Abstract
Glucose homeostasis is mainly under the control of the pancreatic islet hormones insulin and glucagon, which, respectively, stimulate glucose uptake and utilization by liver, fat, and muscle and glucose production by the liver. The balance between the secretions of these hormones is under the control of blood glucose concentrations. Indeed, pancreatic islet β-cells and α-cells can sense variations in glycemia and respond by an appropriate secretory response. However, the secretory activity of these cells is also under multiple additional metabolic, hormonal, and neuronal signals that combine to ensure the perfect control of glycemia over a lifetime. The central nervous system (CNS), which has an almost absolute requirement for glucose as a source of metabolic energy and thus a vital interest in ensuring that glycemic levels never fall below ∼5 mM, is equipped with populations of neurons responsive to changes in glucose concentrations. These neurons control pancreatic islet cell secretion activity in multiple ways: through both branches of the autonomic nervous system, through the hypothalamic-pituitary-adrenal axis, and by secreting vasopressin (AVP) in the blood at the level of the posterior pituitary. Here, we present the autonomic innervation of the pancreatic islets; the mechanisms of neuron activation by a rise or a fall in glucose concentration; how current viral tracing, chemogenetic, and optogenetic techniques allow integration of specific glucose sensing neurons in defined neuronal circuits that control endocrine pancreas function; and, finally, how genetic screens in mice can untangle the diversity of the hypothalamic mechanisms controlling the response to hypoglycemia.
Collapse
Affiliation(s)
- Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Bruce K, Garrido AN, Zhang SY, Lam TKT. Regulation of Energy and Glucose Homeostasis by the Nucleus of the Solitary Tract and the Area Postrema. Endocrinol Metab (Seoul) 2024; 39:559-568. [PMID: 39086274 PMCID: PMC11377841 DOI: 10.3803/enm.2024.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/07/2024] [Indexed: 08/02/2024] Open
Abstract
The central nervous system regulates feeding, weight and glucose homeostasis in rodents and humans, but the site-specific mechanisms remain unclear. The dorsal vagal complex in the brainstem that contains the nucleus of the solitary tract (NTS) and area postrema (AP) emerges as a regulatory center that impacts energy and glucose balance by monitoring hormonal and nutrient changes. However, the specific mechanistic metabolic roles of the NTS and AP remain elusive. This mini-review highlights methods to study their distinct roles and recent findings on their metabolic differences and similarities of growth differentiation factor 15 (GDF15) action and glucose sensing in the NTS and AP. In summary, future research aims to characterize hormonal and glucose sensing mechanisms in the AP and/or NTS carries potential to unveil novel targets that lower weight and glucose levels in obesity and diabetes.
Collapse
Affiliation(s)
- Kyla Bruce
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Ameth N Garrido
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Song-Yang Zhang
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Tony K T Lam
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Medicine, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Center, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Deem JD, Tingley D, Bjerregaard AM, Secher A, Chan O, Uzo C, Richardson NE, Giering E, Doan T, Phan BA, Wu B, Scarlett JM, Morton GJ, Schwartz MW. Identification of Hypothalamic Glucoregulatory Neurons That Sense and Respond to Changes in Glycemia. Diabetes 2023; 72:1207-1213. [PMID: 37347793 PMCID: PMC10450823 DOI: 10.2337/db23-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
To investigate whether glucoregulatory neurons in the hypothalamus can sense and respond to physiological variation in the blood glucose (BG) level, we combined continuous arterial glucose monitoring with continuous measures of the activity of a specific subset of neurons located in the hypothalamic ventromedial nucleus that express pituitary adenylate cyclase activating peptide (VMNPACAP neurons) obtained using fiber photometry. Data were collected in conscious, free-living mice during a 1-h baseline monitoring period and a subsequent 2-h intervention period during which the BG level was raised either by consuming a chow or a high-sucrose meal or by intraperitoneal glucose injection. Cross-correlation analysis revealed that, following a 60- to 90-s delay, interventions that raise the BG level reliably associate with reduced VMNPACAP neuron activity (P < 0.01). In addition, a strong positive correlation between BG and spontaneous VMNPACAP neuron activity was observed under basal conditions but with a much longer (∼25 min) temporal offset, consistent with published evidence that VMNPACAP neuron activation raises the BG level. Together, these findings are suggestive of a closed-loop system whereby VMNPACAP neuron activation increases the BG level; detection of a rising BG level, in turn, feeds back to inhibit these neurons. To our knowledge, these findings constitute the first evidence of a role in glucose homeostasis for glucoregulatory neurocircuits that, like pancreatic β-cells, sense and respond to physiological variation in glycemia. ARTICLE HIGHLIGHTS By combining continuous arterial glucose monitoring with fiber photometry, studies investigated whether neurons in the murine ventromedial nucleus that express pituitary adenylate cyclase activating peptide (VMNPACAP neurons) detect and respond to changes in glycemia in vivo. VMNPACAP neuron activity rapidly decreases (within <2 min) when the blood glucose level is raised by either food consumption or glucose administration. Spontaneous VMNPACAP neuron activity also correlates positively with glycemia, but with a longer temporal offset, consistent with reports that hyperglycemia is induced by experimental activation of these neurons. Like pancreatic β-cells, neurons in the hypothalamic ventromedial nucleus appear to sense and respond to physiological variation in glycemia.
Collapse
Affiliation(s)
- Jennifer D. Deem
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - David Tingley
- Beth Israel-Deaconess Medical Center, Harvard University School of Medicine, Boston, MA
| | | | - Anna Secher
- Data Science Intelligence, Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | - Owen Chan
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Chukwuemeka Uzo
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Nicole E. Richardson
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Elizabeth Giering
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
- Veterans Affairs Puget Sound Health Care System, Seattle, WA
| | - Tammy Doan
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Bao A. Phan
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Brandon Wu
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Jarrad M. Scarlett
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Seattle Children’s Hospital, Seattle, WA
| | - Gregory J. Morton
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Michael W. Schwartz
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
6
|
Carrasco RA, Breen KM. Allostasis in Neuroendocrine Systems Controlling Reproduction. Endocrinology 2023; 164:bqad125. [PMID: 37586095 PMCID: PMC10461221 DOI: 10.1210/endocr/bqad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Allostasis provides a supporting role to the homeostatic control of biological variables in mammalian species. While the concept of homeostasis is related to the control of variables within a set point or range that are essential to life, allostasis refers to systems that facilitate adaptation to challenges that the organism faces and the new requirements for survival. Essential for such adaptation is the role played by the brain in eliciting neural and neuroendocrine responses. Reproductive function is fundamental for the survival of species but is costly in energetic terms and requires a synchrony with an ever-changing environment. Thus, in many species reproductive function is blocked or delayed over immediate challenges. This review will cover the physiological systems and neuroendocrine pathways that supply allostatic control over reproductive neuroendocrine systems. Light, hypoxia, temperature, nutrition, psychosocial, and immune mediators influence the neuroendocrine control of reproductive functions through pathways that are confluent at the paraventricular nucleus; however, understanding of the integrative responses to these stimuli has not been clarified. Likely, the ultimate consequence of these allostatic mechanisms is the modification of kisspeptin and gonadotropin-releasing hormone neuronal activity, thus compromising reproduction function in the short term, while preserving species survivability.
Collapse
Affiliation(s)
- Rodrigo A Carrasco
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093-0674, USA
| | - Kellie M Breen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093-0674, USA
| |
Collapse
|
7
|
Tapia GP, Agostinelli LJ, Chenausky SD, Padilla JVS, Navarro VI, Alagh A, Si G, Thompson RH, Balivada S, Khan AM. Glycemic Challenge Is Associated with the Rapid Cellular Activation of the Locus Ceruleus and Nucleus of Solitary Tract: Circumscribed Spatial Analysis of Phosphorylated MAP Kinase Immunoreactivity. J Clin Med 2023; 12:2483. [PMID: 37048567 PMCID: PMC10095283 DOI: 10.3390/jcm12072483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/31/2023] Open
Abstract
Rodent studies indicate that impaired glucose utilization or hypoglycemia is associated with the cellular activation of neurons in the medulla (Winslow, 1733) (MY), believed to control feeding behavior and glucose counterregulation. However, such activation has been tracked primarily within hours of the challenge, rather than sooner, and has been poorly mapped within standardized brain atlases. Here, we report that, within 15 min of receiving 2-deoxy-d-glucose (2-DG; 250 mg/kg, i.v.), which can trigger glucoprivic feeding behavior, marked elevations were observed in the numbers of rhombic brain (His, 1893) (RB) neuronal cell profiles immunoreactive for the cellular activation marker(s), phosphorylated p44/42 MAP kinases (phospho-ERK1/2), and that some of these profiles were also catecholaminergic. We mapped their distributions within an open-access rat brain atlas and found that 2-DG-treated rats (compared to their saline-treated controls) displayed greater numbers of phospho-ERK1/2+ neurons in the locus ceruleus (Wenzel and Wenzel, 1812) (LC) and the nucleus of solitary tract (>1840) (NTS). Thus, the 2-DG-activation of certain RB neurons is more rapid than perhaps previously realized, engaging neurons that serve multiple functional systems and which are of varying cellular phenotypes. Mapping these populations within standardized brain atlas maps streamlines their targeting and/or comparable mapping in preclinical rodent models of disease.
Collapse
Affiliation(s)
- Geronimo P. Tapia
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Ph.D. Program in Bioscience, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Lindsay J. Agostinelli
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Sarah D. Chenausky
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- M.S. Program in Biology, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jessica V. Salcido Padilla
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- M.S. Program in Biology, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Vanessa I. Navarro
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Ph.D. Program in Bioscience, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Amy Alagh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Gabriel Si
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Richard H. Thompson
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- School of Information, The University of Texas at Austin, Austin, TX 78701, USA
| | - Sivasai Balivada
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Arshad M. Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
8
|
Baby SM, Zaidi F, Hunsberger GE, Sokal D, Gupta I, Conde SV, Chew D, Rall K, Coatney RW. Acute effects of insulin and insulin-induced hypoglycaemia on carotid body chemoreceptor activity and cardiorespiratory responses in dogs. Exp Physiol 2023; 108:280-295. [PMID: 36459572 PMCID: PMC10103873 DOI: 10.1113/ep090584] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the effects of insulin and insulin-induced hypoglycaemia on carotid body chemoreceptor activity in vivo and how do carotid body chemoreceptor stimulation-mediated cardiorespiratory responses in beagle dogs compare during euglycaemia and insulin-induced hypoglycaemia? What is the main finding and its importance? Intracarotid insulin administration leads to sustained increase in carotid body chemoreceptor activity and respiratory response with significant cardiovascular effects. Insulin-induced hypoglycaemia exacerbated NaCN-mediated carotid body chemoreceptor activity and respiratory response with enhanced cardiovascular reflex response. These findings suggest that insulin-induced hypoglycaemia augments the carotid body chemoreceptors to initiate the adaptive counter-regulatory responses to restore the normoglycaemic condition. ABSTRACT The carotid body chemoreceptors (CBC) play an important role in the adaptive counter-regulatory response to hypoglycaemia by evoking the CBC-mediated sympathetic neuronal system to restore normoglycaemia. Ex vivo studies have shown varied responses of insulin-induced hypoglycaemia on CBC function, and several in vivo studies have indirectly established the role of CBCs in restoring normoglycaemia in both animals and humans. However, a direct effect of insulin and/or insulin-induced hypoglycaemia on CBC activity is not established in animal models. Therefore, the aim of this study was to evaluate in vivo effects of insulin and insulin-induced hypoglycaemia on CBC activity and cardiorespiration in a preclinical large animal model. The carotid sinus nerve (CSN) activity and cardiorespiratory responses to sodium cyanide (NaCN; 25 µg/kg) were compared before (euglycaemic) and after (hypoglycaemic) intracarotid administration of insulin (12.5-100 µU/dogs) in beagle dogs. Insulin administration increased CSN activity and minute ventilation (V ̇ $\dot V$ E ) with significant (P < 0.0001) effects on heart rate and blood pressure. Insulin-mediated effects on CSN and cardiorespiration were sustained and the change inV ̇ $\dot V$ E was driven by tidal volume only. Insulin significantly (P < 0.0001) lowered blood glucose level. NaCN-mediated CSN activity andV ̇ $\dot V$ E were significantly (P < 0.0001) augmented during insulin-induced hypoglycaemia. The augmentedV ̇ $\dot V$ E was primarily driven by respiratory frequency and partially by tidal volume. The cardiovascular reflex response mediated through CBC stimulation was significantly (P < 0.0001) exacerbated during insulin-induced hypoglycaemia. Collectively, these results demonstrate direct effects of insulin and insulin-induced hypoglycaemia on CBC chemosensitivity to potentiate CBC-mediated neuroregulatory pathways to initiate adaptive neuroendocrine and cardiorespiratory counter-regulatory responses to restore normoglycaemia.
Collapse
Affiliation(s)
- Santhosh M. Baby
- Translational Sciences and Treatment DiscoveryGalvani BioelectronicsCollegevillePAUSA
| | - Faisal Zaidi
- Translational Sciences and Treatment DiscoveryGalvani BioelectronicsCollegevillePAUSA
| | | | - David Sokal
- Experimental MedicineSurgical Development and TherapyGalvani BioelectronicsStevenageUK
| | - Isha Gupta
- Experimental MedicineSurgical Development and TherapyGalvani BioelectronicsStevenageUK
| | - Silvia V. Conde
- NOVA Medical SchoolFaculdade de Ciências MédicasUniversidade Nova de LisboaLisboaPortugal
| | - Daniel Chew
- Experimental MedicineSurgical Development and TherapyGalvani BioelectronicsStevenageUK
| | - Kristen Rall
- Translational Sciences and Treatment DiscoveryGalvani BioelectronicsCollegevillePAUSA
| | - Robert W. Coatney
- Translational Sciences and Treatment DiscoveryGalvani BioelectronicsCollegevillePAUSA
| |
Collapse
|
9
|
Joly-Amado A, Soty M, Philippe E, Lacombe A, Castel J, Pillot B, Vily-Petit J, Zitoun C, Mithieux G, Magnan C. Portal Glucose Infusion, Afferent Nerve Fibers, and Glucose and Insulin Tolerance of Insulin-Resistant Rats. J Nutr 2022; 152:1862-1871. [PMID: 35511216 DOI: 10.1093/jn/nxac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/19/2022] [Accepted: 04/26/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The role of hepatoportal glucose sensors is poorly understood in the context of insulin resistance. OBJECTIVES We assessed the effects of glucose infusion in the portal vein on insulin tolerance in 2 rat models of insulin resistance, and the role of capsaicin sensitive nerves in this signal. METHODS Male Wistar rats, 8 weeks old, weighing 250-275 g, were used. Insulin and glucose tolerance were assessed following a 4-hour infusion of either glucose or saline through catheterization in the portal vein in 3 paradigms. In experiment 1, for diet-induced insulin resistance, rats were fed either a control diet (energy content: proteins = 22.5%, carbohydrates = 64.1%, and lipids = 13.4%) or a high-fat diet (energy content: proteins = 15.3%, carbohydrates = 40.3%, and lipids =44.4%) for 4 months. In experiment 2, for centrally induced peripheral insulin resistance, catheters were inserted in the carotid artery to deliver either an emulsion of triglycerides [intralipid (IL)] or saline towards the brain for 24 hours. In experiment 3, for testing the role of capsaicin-sensitive nerves, experiment 2 was repeated following a periportal treatment with capsaicin or vehicle. RESULTS In experiment 1, when compared to rats fed the control diet, rats fed the high-fat diet exhibited decreased insulin and glucose tolerance (P ≤ 0.05) that was restored with a glucose infusion in the portal vein (P ≤ 0.05). In experiment 2, infusion of a triglyceride emulsion towards the brain (IL rats) decreased insulin and glucose tolerance and increased hepatic endogenous production when compared to saline-infused rats (P ≤ 0.05). Glucose infusion in the portal vein in IL rats restored insulin and glucose tolerance, as well as hepatic glucose production, to controls levels (P ≤ 0.05). In experiment 3, portal infusion of glucose did not increase insulin tolerance in IL rats that received a periportal pretreatment with capsaicin. CONCLUSIONS Stimulation of hepatoportal glucose sensors increases insulin tolerance in rat models of insulin resistance and requires the presence of capsaicin-sensitive nerves.
Collapse
Affiliation(s)
- Aurélie Joly-Amado
- Université de Paris, Functional and Adaptive Biology Unit, UMR (Unite Mixte de Recherche) 8251, CNRS (Centre National de la Recherche Scientifique), Paris, France
| | - Maud Soty
- Institut National de la Santé et de la Recherche Médicale, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Erwann Philippe
- Université de Paris, Functional and Adaptive Biology Unit, UMR (Unite Mixte de Recherche) 8251, CNRS (Centre National de la Recherche Scientifique), Paris, France
| | - Amelie Lacombe
- Université de Paris, Functional and Adaptive Biology Unit, UMR (Unite Mixte de Recherche) 8251, CNRS (Centre National de la Recherche Scientifique), Paris, France
| | - Julien Castel
- Université de Paris, Functional and Adaptive Biology Unit, UMR (Unite Mixte de Recherche) 8251, CNRS (Centre National de la Recherche Scientifique), Paris, France
| | - Bruno Pillot
- Institut National de la Santé et de la Recherche Médicale, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Justine Vily-Petit
- Institut National de la Santé et de la Recherche Médicale, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Carine Zitoun
- Institut National de la Santé et de la Recherche Médicale, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Christophe Magnan
- Université de Paris, Functional and Adaptive Biology Unit, UMR (Unite Mixte de Recherche) 8251, CNRS (Centre National de la Recherche Scientifique), Paris, France
| |
Collapse
|
10
|
Cotero V, Graf J, Miwa H, Hirschstein Z, Qanud K, Huerta TS, Tai N, Ding Y, Jimenez-Cowell K, Tomaio JN, Song W, Devarajan A, Tsaava T, Madhavan R, Wallace K, Loghin E, Morton C, Fan Y, Kao TJ, Akhtar K, Damaraju M, Barenboim L, Maietta T, Ashe J, Tracey KJ, Coleman TR, Di Carlo D, Shin D, Zanos S, Chavan SS, Herzog RI, Puleo C. Stimulation of the hepatoportal nerve plexus with focused ultrasound restores glucose homoeostasis in diabetic mice, rats and swine. Nat Biomed Eng 2022; 6:683-705. [PMID: 35361935 PMCID: PMC10127248 DOI: 10.1038/s41551-022-00870-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/18/2022] [Indexed: 12/17/2022]
Abstract
Peripheral neurons that sense glucose relay signals of glucose availability to integrative clusters of neurons in the brain. However, the roles of such signalling pathways in the maintenance of glucose homoeostasis and their contribution to disease are unknown. Here we show that the selective activation of the nerve plexus of the hepatic portal system via peripheral focused ultrasound stimulation (pFUS) improves glucose homoeostasis in mice and rats with insulin-resistant diabetes and in swine subject to hyperinsulinemic-euglycaemic clamps. pFUS modulated the activity of sensory projections to the hypothalamus, altered the concentrations of metabolism-regulating neurotransmitters, and enhanced glucose tolerance and utilization in the three species, whereas physical transection or chemical blocking of the liver-brain nerve pathway abolished the effect of pFUS on glucose tolerance. Longitudinal multi-omic profiling of metabolic tissues from the treated animals confirmed pFUS-induced modifications of key metabolic functions in liver, pancreas, muscle, adipose, kidney and intestinal tissues. Non-invasive ultrasound activation of afferent autonomic nerves may represent a non-pharmacologic therapy for the restoration of glucose homoeostasis in type-2 diabetes and other metabolic diseases.
Collapse
Affiliation(s)
- Victoria Cotero
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - John Graf
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Hiromi Miwa
- University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Khaled Qanud
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Tomás S Huerta
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Yuyan Ding
- Yale School of Medicine, New Haven, CT, USA
| | - Kevin Jimenez-Cowell
- Yale School of Medicine, New Haven, CT, USA
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Weiguo Song
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Alex Devarajan
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Tea Tsaava
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Radhika Madhavan
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Kirk Wallace
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Evelina Loghin
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Christine Morton
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Ying Fan
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Tzu-Jen Kao
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | | | | | | | | | - Jeffrey Ashe
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Kevin J Tracey
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Dino Di Carlo
- University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Stavros Zanos
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | | | - Chris Puleo
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA.
| |
Collapse
|
11
|
Jokiaho AJ, Winchester M, Donovan CM. N-Hydroxyethyl-1-Deoxynojirimycin (Miglitol) Restores the Counterregulatory Response to Hypoglycemia Following Antecedent Hypoglycemia. Diabetes 2022; 71:1063-1072. [PMID: 35179550 DOI: 10.2337/db21-0859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022]
Abstract
Antecedent hypoglycemia suppresses the counterregulatory responses to subsequent hypoglycemic episodes, which can be prevented by normalizing portal-mesenteric vein (PMV) glycemia alone during the antecedent bout. Since the sodium-glucose transporter 3 receptor has been implicated in PMV glucosensing, we hypothesized that PMV infusion of the sodium-glucose cotransporter 3 receptor agonist N-hydroxyethyl-1-deoxynojirimycin (miglitol) would rescue the sympathoadrenal response to subsequent hypoglycemia. Rats underwent hyperinsulinemic-hypoglycemic clamps on 2 consecutive days without miglitol infusion (antecedent hypoglycemia without miglitol [HYPO]) or with miglitol infused upstream in the PMV, perfusing the glucosensors, or adjacent to the liver, bypassing PMV glucosensors, on day 1 or day 2. Control animals underwent day 1 euglycemic clamps, followed by hypoglycemic clamps on day 2. Peak epinephrine (EPI) responses for HYPO on day 2 were significantly blunted when compared with controls. Miglitol infusion on day 1 proved ineffective in restoring the EPI response following antecedent hypoglycemia, but day 2 miglitol infusion restored EPI responses to control levels. As norepinephrine and glucagon demonstrated similar responses, day 2 administration of miglitol effectively restored the counterregulatory response following antecedent hypoglycemia. In subsequent experiments, we demonstrate similar results with reduced miglitol infusion doses, approaching those currently prescribed for type 2 diabetes (correcting for rodent size), as well as the efficacy of oral miglitol administration in restoring the counterregulatory responses following antecedent hypoglycemia.
Collapse
Affiliation(s)
- Anne J Jokiaho
- Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Matthew Winchester
- Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Casey M Donovan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA
| |
Collapse
|
12
|
Thorens B. Neuronal regulation of glucagon secretion and gluconeogenesis. J Diabetes Investig 2022; 13:599-607. [PMID: 34989155 PMCID: PMC9017634 DOI: 10.1111/jdi.13745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/02/2022] [Indexed: 11/29/2022] Open
Abstract
Hypoglycemia almost never develops in healthy individuals because multiple hypoglycemia sensing systems, located in the periphery and in the central nervous system trigger a coordinated counterregulatory hormonal response to restore normoglycemia. This involves not only the secretion of glucagon but also of epinephrine, norepinephrine, cortisol and growth hormone. Increased hepatic glucose production is also stimulated by direct autonomous nervous connections to the liver that stimulate glycogenolysis and gluconeogenesis. This counterregulatory response, however, becomes deregulated in a significant fraction of diabetic patients that receive insulin therapy. This leads to risk of developing hypoglycemic episodes, of increasing severity, which negatively impact the quality of life of the patients. How hypoglycemia is detected by the central nervous system is being actively investigated. Recent studies using novel molecular biological, optogenetic and chemogenetic techniques, allow the characterization of glucose sensing neurons, the mechanisms of hypoglycemia detection, the neuronal circuits in which they are integrated and the physiological responses they control. This review will discuss recent studies aimed at identifying central hypoglycemia sensing neuronal circuits, how neurons are activated by hypoglycemia, and how they restore normoglycemia.
Collapse
Affiliation(s)
- Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
13
|
Honegger M, Lutz TA, Boyle CN. Hypoglycemia attenuates acute amylin-induced reduction of food intake in male rats. Physiol Behav 2021; 237:113435. [PMID: 33933418 DOI: 10.1016/j.physbeh.2021.113435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022]
Abstract
The ability of amylin to inhibit gastric emptying and glucagon secretion in rats is reduced under hypoglycemic conditions. These effects are considered part of a fail-safe mechanism that prevents amylin from further decreasing nutrient supply when blood glucose levels are low. Because these actions and amylin-induced satiation are mediated by the area postrema (AP), it is plausible that these phenomena are based on the co-sensitivity of AP neurons to amylin and glucose. Using hyperinsulinemic glucose clamps in unrestrained and freely-feeding rats, we investigated whether amylin's ability to inhibit food intake is also reduced by hypoglycemia (HYPO). Following an 18 h fast, rats were infused with insulin and glucose for 45 min to clamp blood glucose at baseline levels (between 90 and 100 mg/dL). HYPO (approximately 55 mg/dL) was induced between 45 and 60 min and then maintained for the remainder of the clamp. Rats were injected with amylin (20 µg/kg) or saline and offered normal chow at 85 min. Food intake was measured at 30 and 60 min after amylin. Control hyperinsulinemic/euglycemic (EU) rats were maintained at approximately 150 mg/dL (which is a physiological periprandial glucose level) before and after amylin injection. Terminal experiments tested the effect of amylin to induce the phosphorylation of ERK, a marker of amylin action in the AP, in EU and HYPO conditions. Amylin significantly reduced 30- and 60-min food intake in EU rats, but the effect at 60-min was attenuated in HYPO rats. Interestingly, glucose infusion rate had to be dramatically reduced at meal onset in saline-treated, but not in amylin-treated, EU or HYPO rats; this suggests that meal-related glucose appearance in the blood was inhibited by amylin under both EU and HYPO. Finally, amylin induced a similar pERK response in the AP in EU and HYPO rats. We conclude that amylin's action to decrease eating is blunted in hypoglycemia, and this effect seems to be downstream from amylin-induced pERK in AP neurons. These data allow us to extend the idea of a hypoglycemic brake on amylin's actions to its food intake-reducing effect, but also demonstrate that amylin can buffer meal-induced glucose appearance at EU and HYPO levels.
Collapse
Affiliation(s)
- Miriam Honegger
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), 8057 Zurich, Switzerland; Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Christina N Boyle
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), 8057 Zurich, Switzerland.
| |
Collapse
|
14
|
Garcia SM, Hirschberg PR, Sarkar P, Siegel DM, Teegala SB, Vail GM, Routh VH. Insulin actions on hypothalamic glucose-sensing neurones. J Neuroendocrinol 2021; 33:e12937. [PMID: 33507001 PMCID: PMC10561189 DOI: 10.1111/jne.12937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
Subsequent to the discovery of insulin 100 years ago, great strides have been made in understanding its function, especially in the brain. It is now clear that insulin is a critical regulator of the neuronal circuitry controlling energy balance and glucose homeostasis. This review focuses on the effects of insulin and diabetes on the activity and glucose sensitivity of hypothalamic glucose-sensing neurones. We highlight the role of electrophysiological data in understanding how insulin regulates glucose-sensing neurones. A brief introduction describing the benefits and limitations of the major electrophysiological techniques used to investigate glucose-sensing neurones is provided. The mechanisms by which hypothalamic neurones sense glucose are discussed with an emphasis on those glucose-sensing neurones already shown to be modulated by insulin. Next, the literature pertaining to how insulin alters the activity and glucose sensitivity of these hypothalamic glucose-sensing neurones is described. In addition, the effects of impaired insulin signalling during diabetes and the ramifications of insulin-induced hypoglycaemia on hypothalamic glucose-sensing neurones are covered. To the extent that it is known, we present hypotheses concerning the mechanisms underlying the effects of these insulin-related pathologies. To conclude, electrophysiological data from the hippocampus are evaluated aiming to provide clues regarding how insulin might influence neuronal plasticity in glucose-sensing neurones. Although much has been accomplished subsequent to the discovery of insulin, the work described in our review suggests that the regulation of central glucose sensing by this hormone is both important and understudied.
Collapse
Affiliation(s)
- Stephanie M Garcia
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pamela R Hirschberg
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pallabi Sarkar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Dashiel M Siegel
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Suraj B Teegala
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Gwyndolin M Vail
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Vanessa H Routh
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
15
|
Hypothalamic detection of macronutrients via multiple gut-brain pathways. Cell Metab 2021; 33:676-687.e5. [PMID: 33450178 PMCID: PMC7933100 DOI: 10.1016/j.cmet.2020.12.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022]
Abstract
Food intake is tightly regulated by complex and coordinated gut-brain interactions. Nutrients rapidly modulate activity in key populations of hypothalamic neurons that regulate food intake, including hunger-sensitive agouti-related protein (AgRP)-expressing neurons. Because individual macronutrients engage specific receptors in the gut to communicate with the brain, we reasoned that macronutrients may utilize different pathways to reduce activity in AgRP neurons. Here, we revealed that AgRP neuron activity in hungry mice is inhibited by site-specific intestinal detection of different macronutrients. We showed that vagal gut-brain signaling is required for AgRP neuron inhibition by fat. In contrast, spinal gut-brain signaling relays the presence of intestinal glucose. Further, we identified glucose sensors in the intestine and hepatic portal vein that mediate glucose-dependent AgRP neuron inhibition. Therefore, distinct pathways are activated by individual macronutrients to inhibit AgRP neuron activity.
Collapse
|
16
|
The Medullary Targets of Neurally Conveyed Sensory Information from the Rat Hepatic Portal and Superior Mesenteric Veins. eNeuro 2021; 8:ENEURO.0419-20.2021. [PMID: 33495245 PMCID: PMC8114873 DOI: 10.1523/eneuro.0419-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Vagal and spinal sensory endings in the wall of the hepatic portal and superior mesenteric veins (PMV) provide the brain with chemosensory information important for energy balance and other functions. To determine their medullary neuronal targets, we injected the transsynaptic anterograde viral tracer HSV-1 H129-772 (H129) into the PMV wall or left nodose ganglion (LNG) of male rats, followed by immunohistochemistry (IHC) and high-resolution imaging. We also determined the chemical phenotype of H129-infected neurons, and potential vagal and spinal axon terminal appositions in the dorsal motor nucleus of the vagus (DMX) and the nucleus of the solitary tract (NTS). PMV wall injections generated H129-infected neurons in both nodose ganglia and in thoracic dorsal root ganglia (DRGs). In the medulla, cholinergic preganglionic parasympathetic neurons in the DMX were virtually the only targets of chemosensory information from the PMV wall. H129-infected terminal appositions were identified on H129-infected somata and dendrites in the DMX, and on H129-infected DMX dendrites that extend into the NTS. Sensory transmission via vagal and possibly spinal routes from the PMV wall therefore reaches DMX neurons via axo-somatic appositions in the DMX and axo-dendritic appositions in the NTS. However, the dearth of H129-infected NTS neurons indicates that sensory information from the PMV wall terminates on DMX neurons without engaging NTS neurons. These previously underappreciated direct sensory routes into the DMX enable a vago-vagal and possibly spino-vagal reflexes that can directly influence visceral function.
Collapse
|
17
|
Malbert CH, Chauvin A, Horowitz M, Jones KL. Glucose Sensing Mediated by Portal Glucagon-Like Peptide 1 Receptor Is Markedly Impaired in Insulin-Resistant Obese Animals. Diabetes 2021; 70:99-110. [PMID: 33067312 DOI: 10.2337/db20-0361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023]
Abstract
The glucose portal sensor informs the brain of changes in glucose inflow through vagal afferents that require an activated glucagon-like peptide 1 receptor (GLP-1r). The GLP-1 system is known to be impaired in insulin-resistant conditions, and we sought to understand the consequences of GLP-1 resistance on glucose portal signaling. GLP-1-dependent portal glucose signaling was identified, in vivo, using a novel 68Ga-labeled GLP-1r positron-emitting probe that supplied a quantitative in situ tridimensional representation of the portal sensor with specific reference to the receptor density expressed in binding potential units. It also served as a map for single-neuron electrophysiology driven by an image-based abdominal navigation. We determined that in insulin-resistant animals, portal vagal afferents failed to inhibit their spiking activity during glucose infusion, a GLP-1r-dependent function. This reflected a reduction in portal GLP-1r binding potential, particularly between the splenic vein and the entrance of the liver. We propose that insulin resistance, through a reduction in GLP-1r density, leads to functional portal desensitization with a consequent suppression of vagal sensitivity to portal glucose.
Collapse
Affiliation(s)
| | - Alain Chauvin
- UEPR Unit, Department of Animal Physiology, INRAE, Saint-Gilles, France
| | - Michael Horowitz
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Karen L Jones
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Faber CL, Deem JD, Campos CA, Taborsky GJ, Morton GJ. CNS control of the endocrine pancreas. Diabetologia 2020; 63:2086-2094. [PMID: 32894319 PMCID: PMC7983553 DOI: 10.1007/s00125-020-05204-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022]
Abstract
Increasing evidence suggests that, although pancreatic islets can function autonomously to detect and respond to changes in the circulating glucose level, the brain cooperates with the islet to maintain glycaemic control. Here, we review the role of the central and autonomic nervous systems in the control of the endocrine pancreas, including mechanisms whereby the brain senses circulating blood glucose levels. We also examine whether dysfunction in these systems might contribute to complications of type 1 diabetes and the pathogenesis of type 2 diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Chelsea L Faber
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, 750 Republican St, Box 358062, Seattle, WA, 98109, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer D Deem
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, 750 Republican St, Box 358062, Seattle, WA, 98109, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Carlos A Campos
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, 750 Republican St, Box 358062, Seattle, WA, 98109, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gerald J Taborsky
- Department of Medicine, University of Washington, Seattle, WA, USA
- Veterans Affairs Puget Sound Health Care System, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Gregory J Morton
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, 750 Republican St, Box 358062, Seattle, WA, 98109, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
19
|
Sohn JW, Ho WK. Cellular and systemic mechanisms for glucose sensing and homeostasis. Pflugers Arch 2020; 472:1547-1561. [PMID: 32960363 DOI: 10.1007/s00424-020-02466-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/14/2020] [Accepted: 09/14/2020] [Indexed: 12/25/2022]
Abstract
Glucose is a major source of energy in animals. Maintaining blood glucose levels within a physiological range is important for facilitating glucose uptake by cells, as required for optimal functioning. Glucose homeostasis relies on multiple glucose-sensing cells in the body that constantly monitor blood glucose levels and respond accordingly to adjust its glycemia. These include not only pancreatic β-cells and α-cells that secrete insulin and glucagon, but also central and peripheral neurons regulating pancreatic endocrine function. Different types of cells respond distinctively to changes in blood glucose levels, and the mechanisms involved in glucose sensing are diverse. Notably, recent studies have challenged the currently held views regarding glucose-sensing mechanisms. Furthermore, peripheral and central glucose-sensing cells appear to work in concert to control blood glucose level and maintain glucose and energy homeostasis in organisms. In this review, we summarize the established concepts and recent advances in the understanding of cellular and systemic mechanisms that regulate glucose sensing and its homeostasis.
Collapse
Affiliation(s)
- Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
| | - Won-Kyung Ho
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, South Korea.
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
20
|
Abstract
The conscious perception of the hedonic sensory properties of caloric foods is commonly believed to guide our dietary choices. Current and traditional models implicate the consciously perceived hedonic qualities of food as driving overeating, whereas subliminal signals arising from the gut would curb our uncontrolled desire for calories. Here we review recent animal and human studies that support a markedly different model for food reward. These findings reveal in particular the existence of subcortical body-to-brain neural pathways linking gastrointestinal nutrient sensors to the brain's reward regions. Unexpectedly, consciously perceptible hedonic qualities appear to play a less relevant, and mostly transient, role in food reinforcement. In this model, gut-brain reward pathways bypass cranial taste and aroma sensory receptors and the cortical networks that give rise to flavor perception. They instead reinforce behaviors independently of the cognitive processes that support overt insights into the nature of our dietary decisions.
Collapse
Affiliation(s)
- Ivan E. de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Modern Diet and Physiology Research Center, Yale University, New Haven, Connecticut 06511, USA
| | - Mark Schatzker
- Modern Diet and Physiology Research Center, Yale University, New Haven, Connecticut 06511, USA
| | - Dana M. Small
- Modern Diet and Physiology Research Center, Yale University, New Haven, Connecticut 06511, USA
- Departments of Psychiatry and Psychology, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
21
|
Rogers RC, Burke SJ, Collier JJ, Ritter S, Hermann GE. Evidence that hindbrain astrocytes in the rat detect low glucose with a glucose transporter 2-phospholipase C-calcium release mechanism. Am J Physiol Regul Integr Comp Physiol 2020; 318:R38-R48. [PMID: 31596114 PMCID: PMC6985801 DOI: 10.1152/ajpregu.00133.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Astrocytes generate robust cytoplasmic calcium signals in response to reductions in extracellular glucose. This calcium signal, in turn, drives purinergic gliotransmission, which controls the activity of catecholaminergic (CA) neurons in the hindbrain. These CA neurons are critical to triggering glucose counter-regulatory responses (CRRs) that, ultimately, restore glucose homeostasis via endocrine and behavioral means. Although the astrocyte low-glucose sensor involvement in CRR has been accepted, it is not clear how astrocytes produce an increase in intracellular calcium in response to a decrease in glucose. Our ex vivo calcium imaging studies of hindbrain astrocytes show that the glucose type 2 transporter (GLUT2) is an essential feature of the astrocyte glucosensor mechanism. Coimmunoprecipitation assays reveal that the recombinant GLUT2 binds directly with the recombinant Gq protein subunit that activates phospholipase C (PLC). Additional calcium imaging studies suggest that GLUT2 may be connected to a PLC-endoplasmic reticular-calcium release mechanism, which is amplified by calcium-induced calcium release (CICR). Collectively, these data help outline a potential mechanism used by astrocytes to convert information regarding low-glucose levels into intracellular changes that ultimately regulate the CRR.
Collapse
Affiliation(s)
- Richard C. Rogers
- 1Laboratory of Autonomic Neuroscience, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Susan J. Burke
- 2Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - J. Jason Collier
- 3Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Sue Ritter
- 4Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, Washington
| | - Gerlinda E. Hermann
- 1Laboratory of Autonomic Neuroscience, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| |
Collapse
|
22
|
Hirschberg PR, Sarkar P, Teegala SB, Routh VH. Ventromedial hypothalamus glucose-inhibited neurones: A role in glucose and energy homeostasis? J Neuroendocrinol 2020; 32:e12773. [PMID: 31329314 PMCID: PMC7074896 DOI: 10.1111/jne.12773] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 07/14/2019] [Indexed: 12/20/2022]
Abstract
The ventromedial hypothalamus (VMH) plays a complex role in glucose and energy homeostasis. The VMH is necessary for the counter-regulatory response to hypoglycaemia (CRR) that increases hepatic gluconeogenesis to restore euglycaemia. On the other hand, the VMH also restrains hepatic glucose production during euglycaemia and stimulates peripheral glucose uptake. The VMH is also important for the ability of oestrogen to increase energy expenditure. This latter function is mediated by VMH modulation of the lateral/perifornical hypothalamic area (lateral/perifornical hypothalamus) orexin neurones. Activation of VMH AMP-activated protein kinase (AMPK) is necessary for the CRR. By contrast, VMH AMPK inhibition favours decreased basal glucose levels and is required for oestrogen to increase energy expenditure. Specialised VMH glucose-sensing neurones confer the ability to sense and respond to changes in blood glucose levels. Glucose-excited (GE) neurones increase and glucose-inhibited (GI) neurones decrease their activity as glucose levels rise. VMH GI neurones, in particular, appear to be important in the CRR, although a role for GE neurones cannot be discounted. AMPK mediates glucose sensing in VMH GI neurones suggesting that, although activation of these neurones is important for the CRR, it is necessary to silence them to lower basal glucose levels and enable oestrogen to increase energy expenditure. In support of this, we found that oestrogen reduces activation of VMH GI neurones in low glucose by inhibiting AMPK. In this review, we present the evidence underlying the role of the VMH in glucose and energy homeostasis. We then discuss the role of VMH glucose-sensing neurones in mediating these effects, with a strong emphasis on oestrogenic regulation of glucose sensing and how this may affect glucose and energy homeostasis.
Collapse
Affiliation(s)
- Pamela R Hirschberg
- Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pallabi Sarkar
- Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Suraj B Teegala
- Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Vanessa H Routh
- Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
23
|
Ritter S, Li AJ, Wang Q. Hindbrain glucoregulatory mechanisms: Critical role of catecholamine neurons in the ventrolateral medulla. Physiol Behav 2019; 208:112568. [PMID: 31173784 PMCID: PMC7015674 DOI: 10.1016/j.physbeh.2019.112568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/29/2022]
Abstract
Glucose is the required metabolic substrate for the brain. Yet the brain stores very little glucose. Therefore, the brain continuously monitors glucose availability to detect hypoglycemia and to mobilize system-wide responses to protect and restore euglycemia. Catecholamine (CA) neurons in the hindbrain are critical elements of the brain's glucoregulatory mechanisms. They project widely throughout the brain and spinal cord, innervating sites controlling behavioral, endocrine and visceral responses. Hence, CA neurons are capable of triggering a rapid, coordinated and multifaceted response to glucose challenge. This article reviews experimental data that has begun to elucidate the importance of CA neurons for glucoregulation, the functions of specific CA subpopulations in the ventrolateral medulla, and the extended circuitry through which they engage other levels of the nervous system to accomplish their essential glucoregulatory task. Hopefully, this review also suggests the vast amount of work yet to be done in this area and the justification for engaging in that effort.
Collapse
Affiliation(s)
- Sue Ritter
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States of America.
| | - Ai-Jun Li
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States of America
| | - Qing Wang
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States of America
| |
Collapse
|
24
|
Johnson HM, Stanfield E, Campbell GJ, Eberl EE, Cooney GJ, Bell-Anderson KS. Glucose mediates insulin sensitivity via a hepatoportal mechanism in high-fat-fed rats. J Endocrinol 2019; 241:189-199. [PMID: 30939450 DOI: 10.1530/joe-18-0566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/02/2019] [Indexed: 11/08/2022]
Abstract
Poor nutrition plays a fundamental role in the development of insulin resistance, an underlying characteristic of type 2 diabetes. We have previously shown that high-fat diet-induced insulin resistance in rats can be ameliorated by a single glucose meal, but the mechanisms for this observation remain unresolved. To determine if this phenomenon is mediated by gut or hepatoportal factors, male Wistar rats were fed a high-fat diet for 3 weeks before receiving one of five interventions: high-fat meal, glucose gavage, high-glucose meal, systemic glucose infusion or portal glucose infusion. Insulin sensitivity was assessed the following day in conscious animals by a hyperinsulinaemic-euglycaemic clamp. An oral glucose load consistently improved insulin sensitivity in high-fat-fed rats, establishing the reproducibility of this model. A systemic infusion of a glucose load did not affect insulin sensitivity, indicating that the physiological response to oral glucose was not due solely to increased glucose turnover or withdrawal of dietary lipid. A portal infusion of glucose produced the largest improvement in insulin sensitivity, implicating a role for the hepatoportal region rather than the gastrointestinal tract in mediating the effect of glucose to improve lipid-induced insulin resistance. These results further deepen our understanding of the mechanism of glucose-mediated regulation of insulin sensitivity and provide new insight into the role of nutrition in whole body metabolism.
Collapse
Affiliation(s)
- Holly M Johnson
- The University of Sydney, Charles Perkins Centre, School of Life and Environmental Sciences, Sydney, New South Wales, Australia
| | - Erin Stanfield
- The University of Sydney, Charles Perkins Centre, School of Life and Environmental Sciences, Sydney, New South Wales, Australia
| | - Grace J Campbell
- The University of Sydney, Charles Perkins Centre, School of Life and Environmental Sciences, Sydney, New South Wales, Australia
| | - Erica E Eberl
- The University of Sydney, Charles Perkins Centre, School of Life and Environmental Sciences, Sydney, New South Wales, Australia
| | - Gregory J Cooney
- The University of Sydney, Charles Perkins Centre, School of Medical Sciences, Sydney, New South Wales, Australia
| | - Kim S Bell-Anderson
- The University of Sydney, Charles Perkins Centre, School of Life and Environmental Sciences, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Qu T, Han W, Niu J, Tong J, de Araujo IE. On the roles of the Duodenum and the Vagus nerve in learned nutrient preferences. Appetite 2019; 139:145-151. [PMID: 31029689 DOI: 10.1016/j.appet.2019.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND AIM In most species, including humans, food preference is primarily controlled by nutrient value. However, the gut-brain pathways involved in preference learning remain elusive. The aim of the present study, performed in C57BL6/J mice, was to characterize the roles in nutrient preference of two critical elements of gut-brain pathways, i.e. the duodenum and vagal gut innervation. METHODS Adult wild-type C57BL6/J mice from a normal-weight cohort sustained one of the following three procedures: duodenal-jejunal bypass intestinal rerouting (DJB), total subdiaphragmatic vagotomy (SDV), or sham surgery. Mice were assessed in short-term two-bottle preference tests before and after 24 h s exposures to solutions containing one of glutamate, lipids, sodium, or glucose. RESULTS DJB and SDV interfered in preference formation in a nutrient-specific manner: whereas normal preference learning for lipids and glutamate was disrupted by both DJB and SDV, these interventions did not alter the formation of preferences for glucose. Interestingly, sodium preferences were abrogated by DJB but not by SDV. CONCLUSIONS Different macronutrients make use of distinct gut-brain pathways to influence food preferences, thereby mirroring nutrient-specific processes of food digestion. Specifically, whereas both vagal innervation and duodenal sensing appear critical for generating responses to fats and protein, glucose preferences recruit post-duodenal, vagal-independent pathways in pair with the control of glucose homeostasis. Overall, our data suggest that the physiological processes involved in digesting and absorbing fats, amino acids, and glucose overlap with those mediating learned preferences for each of these nutrients.
Collapse
Affiliation(s)
- Taoran Qu
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, China; The John B Pierce Laboratory, New Haven, CT, USA
| | - Wenfei Han
- The John B Pierce Laboratory, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jingjing Niu
- The John B Pierce Laboratory, New Haven, CT, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jenny Tong
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Ivan E de Araujo
- The John B Pierce Laboratory, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Physiology, Yale University School of Arts and Sciences, New Haven, CT, USA.
| |
Collapse
|
26
|
Hypoglycemia-activated Hypothalamic Microglia Impairs Glucose Counterregulatory Responses. Sci Rep 2019; 9:6224. [PMID: 30996341 PMCID: PMC6470310 DOI: 10.1038/s41598-019-42728-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
Glucose is a major fuel for the central nervous system and hypoglycemia is a significant homeostatic stressor, which elicits counterregulatory reactions. Hypothalamic metabolic- and stress-related neurons initiate these actions, however recruitment of glia in control such adaptive circuit remain unknown. Groups of fed- and fasted-, vehicle-injected, and fasted + insulin-injected male mice were compared in this study. Bolus insulin administration to fasted mice resulted in hypoglycemia, which increased hypothalamo-pituitary-adrenal (HPA) axis- and sympathetic activity, increased transcription of neuropeptide Y (Npy) and agouti-related peptide (Agrp) in the hypothalamic arcuate nucleus and activated IBA1+ microglia in the hypothalamus. Activated microglia were found in close apposition to hypoglycemia-responsive NPY neurons. Inhibition of microglia by minocycline increased counterregulatory sympathetic response to hypoglycemia. Fractalkine-CX3CR1 signaling plays a role in control of microglia during hypoglycemia, because density and solidity of IBA1-ir profiles was attenuated in fasted, insulin-treated, CX3CR1 KO mice, which was parallel with exaggerated neuropeptide responses and higher blood glucose levels following insulin administration. Hypoglycemia increased Il-1b expression in the arcuate nucleus, while IL-1a/b knockout mice display improved glycemic control to insulin administration. In conclusion, activated microglia in the arcuate nucleus interferes with central counterregulatory responses to hypoglycemia. These results underscore involvement of microglia in hypothalamic regulation of glucose homeostasis.
Collapse
|
27
|
De Bernardis Murat C, Leão RM. A voltage-dependent depolarization induced by low external glucose in neurons of the nucleus of the tractus solitarius: interaction with K ATP channels. J Physiol 2019; 597:2515-2532. [PMID: 30927460 DOI: 10.1113/jp277729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Neurons from the brainstem nucleus of the tractus solitarius (NTS) participate in the counter-regulatory mechanisms in response to hypoglycaemia. ATP-sensitive potassium (KATP ) channels are expressed in NTS neurons, and are partially open at rest in normoglycaemic 5 mM glucose. In normoglycaemic conditions, most NTS neurons depolarize in response to low external glucose (0.5 mM), via a voltage-dependent mechanism. Conversely, most NTS neurons incubated in hyperglycaemic 10 mM glucose do not respond to low glucose due to a more positive resting membrane potential caused by the closure of KATP channels following increased intracellular metabolic ATP. Our findings show that in hyperglycaemic conditions, NTS neurons failed to sense rapid changes in external glucose, which could be related to hypoglycaemia-associated autonomic failure. ABSTRACT The nucleus of the tractus solitarius (NTS) is an integrative centre for autonomic counter-regulatory responses to hypoglycaemia. KATP channels link the metabolic status of the neuron to its excitability. Here we investigated the influence of KATP channels on the membrane potential of NTS neurons in normo- and hyperglycaemic external glucose concentrations, and after switching to a hypoglycaemic concentration, using in vitro electrophysiological recordings in brainstem slices. We found that in normoglycaemic (5 mM) glucose, tolbutamide, a KATP channel antagonist, depolarized the membrane of most neurons, and this effect was observed in more hyperpolarized neurons. All neurons hyperpolarized after pharmacological activation of KATP channels. Most NTS neurons depolarized in the presence of low glucose (0.5 mM), and this effect was only seen in hyperpolarized neurons. The effect of glucose was caused by a cationic current with a reversal potential around -50 mV. In the presence of hyperglycaemic glucose (10 mM), neurons were more depolarized, and fewer neurons responded to KATP blockage. Application of 0.5 mM glucose solution to these neurons depolarized the membrane only in more hyperpolarized neurons. We conclude that NTS neurons present with KATP channels open at rest in normoglycaemic conditions, and their membrane potential is affected by extracellular glucose. Moreover, NTS neurons depolarize the membrane in response to the application of a low glucose solution, but this effect is occluded by membrane depolarization triggered by KATP blockage. Our data suggest a homeostatic regulation of the membrane potential by external glucose, and a possible mechanism related to the hypoglycaemia-associated autonomic failure.
Collapse
Affiliation(s)
- Cahuê De Bernardis Murat
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Mauricio Leão
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
28
|
Sclafani A, Ackroff K. Commentary: Sugar Metabolism Regulates Flavor Preferences and Portal Glucose Sensing. Front Integr Neurosci 2019; 13:4. [PMID: 30837848 PMCID: PMC6382677 DOI: 10.3389/fnint.2019.00004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/28/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College of the City University of New York, Brooklyn, NY, United States
| | - Karen Ackroff
- Department of Psychology, Brooklyn College of the City University of New York, Brooklyn, NY, United States
| |
Collapse
|
29
|
Zhang L, Han W, Lin C, Li F, de Araujo IE. Sugar Metabolism Regulates Flavor Preferences and Portal Glucose Sensing. Front Integr Neurosci 2018; 12:57. [PMID: 30519164 PMCID: PMC6258782 DOI: 10.3389/fnint.2018.00057] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/06/2018] [Indexed: 11/23/2022] Open
Abstract
In most species, including humans, food preference is primarily controlled by nutrient value. In particular, glucose-containing sugars exert exquisitely strong effects on food choice via gut-generated signals. However, the identity of the visceral signals underlying glucose’s rewarding effects remains uncertain. In particular, it is unknown whether sugar metabolism mediates the formation of preferences for glucose-containing sugars. Using the mouse as a model organism, we made use of a combination of conditioning schedules, gastrointestinal nutrient administration, and chromatographic/electrochemical methods to assess the behavioral and neural effects of activating the gut with either metabolizable glucose or a non-metabolizable glucose analog. We show that mice display much superior preferences for flavors associated with intra-gastric infusions of glucose compared to flavors associated with intra-gastric infusions of the non-metabolizable glucose analog α-methyl-D-glucopyranoside (“MDG,” an activator of intestinal sodium/glucose co-transporters). These effects were unaffected by surgical bypassing of the duodenum, suggesting glucose-specific post-absorptive sensing mechanisms. Consistently, intra-portal infusions of glucose, but not of MDG, induced significant rises in dopamine (DA) levels within brain reward circuits. Our data reveal that the unmatched rewarding effects of glucose-containing sugars cannot be accounted for by metabolism-independent activation of sodium/glucose cotransporters; rather, they point to glucose metabolism as the physiological mechanism underlying the potent reward value of sugar-sweetened flavored beverages. In particular, no circulating “gut factors” need to be invoked to explain the reward value of ingested glucose. Thus, instead of circulating gut hormones, portal-mesenteric sensing of glucose emerges as the preferential physiological pathway for sugar reward.
Collapse
Affiliation(s)
- Lingli Zhang
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The John B. Pierce Laboratory, Yale University, New Haven, CT, United States
| | - Wenfei Han
- The John B. Pierce Laboratory, Yale University, New Haven, CT, United States.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School & Hospital of Stomatology, Tongji University, Shanghai, China
| | - Chenguanlu Lin
- The John B. Pierce Laboratory, Yale University, New Haven, CT, United States.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School & Hospital of Stomatology, Tongji University, Shanghai, China
| | - Fei Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Developmental and Behavioral Pediatric Department & Child Primary Care Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ivan E de Araujo
- The John B. Pierce Laboratory, Yale University, New Haven, CT, United States.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
30
|
Rogers RC, McDougal DH, Ritter S, Qualls-Creekmore E, Hermann GE. Response of catecholaminergic neurons in the mouse hindbrain to glucoprivic stimuli is astrocyte dependent. Am J Physiol Regul Integr Comp Physiol 2018; 315:R153-R164. [PMID: 29590557 PMCID: PMC6087883 DOI: 10.1152/ajpregu.00368.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hindbrain catecholaminergic (CA) neurons are required for critical autonomic, endocrine, and behavioral counterregulatory responses (CRRs) to hypoglycemia. Recent studies suggest that CRR initiation depends on hindbrain astrocyte glucose sensors (McDougal DH, Hermann GE, Rogers RC. Front Neurosci 7: 249, 2013; Rogers RC, Ritter S, Hermann GE. Am J Physiol Regul Integr Comp Physiol 310: R1102-R1108, 2016). To test the proposition that hindbrain CA responses to glucoprivation are astrocyte dependent, we utilized transgenic mice in which the calcium reporter construct (GCaMP5) was expressed selectively in tyrosine hydroxylase neurons (TH-GCaMP5). We conducted live cell calcium-imaging studies on tissue slices containing the nucleus of the solitary tract (NST) or the ventrolateral medulla, critical CRR initiation sites. Results show that TH-GCaMP5 neurons are robustly activated by a glucoprivic challenge and that this response is dependent on functional astrocytes. Pretreatment of hindbrain slices with fluorocitrate (an astrocytic metabolic suppressor) abolished TH-GCaMP5 neuronal responses to glucoprivation, but not to glutamate. Pharmacologic results suggest that the astrocytic connection with hindbrain CA neurons is purinergic via P2 receptors. Parallel imaging studies on hindbrain slices of NST from wild-type C57BL/6J mice, in which astrocytes and neurons were prelabeled with a calcium reporter dye and an astrocytic vital dye, show that both cell types are activated by glucoprivation but astrocytes responded significantly sooner than neurons. Pretreatment of these hindbrain slices with P2 antagonists abolished neuronal responses to glucoprivation without interruption of astrocyte responses; pretreatment with fluorocitrate eliminated both astrocytic and neuronal responses. These results support earlier work suggesting that the primary detection of glucoprivic signals by the hindbrain is mediated by astrocytes.
Collapse
Affiliation(s)
| | | | - Sue Ritter
- 2Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, Washington
| | | | | |
Collapse
|
31
|
Zhou C, Teegala SB, Khan BA, Gonzalez C, Routh VH. Hypoglycemia: Role of Hypothalamic Glucose-Inhibited (GI) Neurons in Detection and Correction. Front Physiol 2018; 9:192. [PMID: 29593556 PMCID: PMC5854653 DOI: 10.3389/fphys.2018.00192] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/23/2018] [Indexed: 01/08/2023] Open
Abstract
Hypoglycemia is a profound threat to the brain since glucose is its primary fuel. As a result, glucose sensors are widely located in the central nervous system and periphery. In this perspective we will focus on the role of hypothalamic glucose-inhibited (GI) neurons in sensing and correcting hypoglycemia. In particular, we will discuss GI neurons in the ventromedial hypothalamus (VMH) which express neuronal nitric oxide synthase (nNOS) and in the perifornical hypothalamus (PFH) which express orexin. The ability of VMH nNOS-GI neurons to depolarize in low glucose closely parallels the hormonal response to hypoglycemia which stimulates gluconeogenesis. We have found that nitric oxide (NO) production in low glucose is dependent on oxidative status. In this perspective we will discuss the potential relevance of our work showing that enhancing the glutathione antioxidant system prevents hypoglycemia associated autonomic failure (HAAF) in non-diabetic rats whereas VMH overexpression of the thioredoxin antioxidant system restores hypoglycemia counterregulation in rats with type 1 diabetes.We will also address the potential role of the orexin-GI neurons in the arousal response needed for hypoglycemia awareness which leads to behavioral correction (e.g., food intake, glucose administration). The potential relationship between the hypothalamic sensors and the neurocircuitry in the hindbrain and portal mesenteric vein which is critical for hypoglycemia correction will then be discussed.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa H. Routh
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
32
|
Soto-Tinoco E, Guerrero-Vargas NN, Buijs RM. Interaction between the hypothalamus and the immune system. Exp Physiol 2016; 101:1463-1471. [PMID: 27753158 DOI: 10.1113/ep085560] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 10/13/2016] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the topic of this review? Both branches of the autonomic nervous system are involved in the regulation of the inflammatory response. We explore how the hypothalamus may influence this process. What advances does it highlight? We analyse how a lipopolysaccharide signal is transmitted to the brain and which areas participate in the response of the brain to lipopolysaccharide. Recent studies show that the hypothalamus can influence the inflammatory response by modifying the autonomic output. The biological clock, the suprachiasmatic nucleus, is integrated into this circuit, putting a time stamp on the intensity of the inflammatory response. The brain is responsible for maintaining homeostasis of the organism, constantly adjusting its output via hormones and the autonomic nervous system to reach an optimal setting in every compartment of the body. Also, the immune system is under strong control of the brain. Apart from the conventional systemic responses evoked by the brain during inflammation, such as hypothalamic-pituitary-adrenal axis activation and the induction of sickness behaviour, the autonomic nervous system is now recognized to exert regulatory effects on the inflammatory response. Both branches of the autonomic nervous system are proposed to influence the inflammatory process. Here, we focus on those areas of the brain that might be involved in sensing inflammatory stimuli, followed by how that sensing could change the output of the autonomic nervous system in order to regulate the inflammatory response. Finally, we will discuss how the defenses of the body against a lipopolysaccharide challenge are organized by the hypothalamus.
Collapse
Affiliation(s)
- Eva Soto-Tinoco
- Departamento de Biología Celular y Fisiología, Instlituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Natalí N Guerrero-Vargas
- Departamento de Biología Celular y Fisiología, Instlituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ruud M Buijs
- Departamento de Biología Celular y Fisiología, Instlituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
33
|
Rogers RC, Ritter S, Hermann GE. Hindbrain cytoglucopenia-induced increases in systemic blood glucose levels by 2-deoxyglucose depend on intact astrocytes and adenosine release. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1102-8. [PMID: 27101298 PMCID: PMC4935490 DOI: 10.1152/ajpregu.00493.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/07/2016] [Indexed: 01/16/2023]
Abstract
The hindbrain contains critical neurocircuitry responsible for generating defensive physiological responses to hypoglycemia. This counter-regulatory response (CRR) is evoked by local hindbrain cytoglucopenia that causes an autonomically mediated increase in blood glucose, feeding behavior, and accelerated digestion; that is, actions that restore glucose homeostasis. Recent reports suggest that CRR may be initially triggered by astrocytes in the hindbrain. The present studies in thiobutabarbital-anesthetized rats show that exposure of the fourth ventricle (4V) to 2-deoxyglucose (2DG; 15 μmol) produced a 35% increase in circulating glucose relative to baseline levels. While the 4V application of the astrocytic signal blocker, fluorocitrate (FC; 5 nmol), alone, had no effect on blood glucose levels, 2DG-induced increases in glucose were blocked by 4V FC. The 4V effect of 2DG to increase glycemia was also blocked by the pretreatment with caffeine (nonselective adenosine antagonist) or a potent adenosine A1 antagonist (8-cyclopentyl-1,3-dipropylxanthine; DPCPX) but not the NMDA antagonist (MK-801). These results suggest that CNS detection of glucopenia is mediated by astrocytes and that astrocytic release of adenosine that occurs after hypoglycemia may cause the activation of downstream neural circuits that drive CRR.
Collapse
Affiliation(s)
- Richard C. Rogers
- 1Autonomic Neurosciences Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana; and
| | - Sue Ritter
- 2Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Gerlinda E. Hermann
- 1Autonomic Neurosciences Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana; and
| |
Collapse
|
34
|
Thompson EL, Ray CJ, Holmes AP, Pye RL, Wyatt CN, Coney AM, Kumar P. Adrenaline release evokes hyperpnoea and an increase in ventilatory CO2 sensitivity during hypoglycaemia: a role for the carotid body. J Physiol 2016; 594:4439-52. [PMID: 27027261 DOI: 10.1113/jp272191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/18/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Hypoglycaemia is counteracted by release of hormones and an increase in ventilation and CO2 sensitivity to restore blood glucose levels and prevent a fall in blood pH. The full counter-regulatory response and an appropriate increase in ventilation is dependent on carotid body stimulation. We show that the hypoglycaemia-induced increase in ventilation and CO2 sensitivity is abolished by preventing adrenaline release or blocking its receptors. Physiological levels of adrenaline mimicked the effect of hypoglycaemia on ventilation and CO2 sensitivity. These results suggest that adrenaline, rather than low glucose, is an adequate stimulus for the carotid body-mediated changes in ventilation and CO2 sensitivity during hypoglycaemia to prevent a serious acidosis in poorly controlled diabetes. ABSTRACT Hypoglycaemia in vivo induces a counter-regulatory response that involves the release of hormones to restore blood glucose levels. Concomitantly, hypoglycaemia evokes a carotid body-mediated hyperpnoea that maintains arterial CO2 levels and prevents respiratory acidosis in the face of increased metabolism. It is unclear whether the carotid body is directly stimulated by low glucose or by a counter-regulatory hormone such as adrenaline. Minute ventilation was recorded during infusion of insulin-induced hypoglycaemia (8-17 mIU kg(-1) min(-1) ) in Alfaxan-anaesthetised male Wistar rats. Hypoglycaemia significantly augmented minute ventilation (123 ± 4 to 143 ± 7 ml min(-1) ) and CO2 sensitivity (3.3 ± 0.3 to 4.4 ± 0.4 ml min(-1) mmHg(-1) ). These effects were abolished by either β-adrenoreceptor blockade with propranolol or adrenalectomy. In this hypermetabolic, hypoglycaemic state, propranolol stimulated a rise in P aC O2, suggestive of a ventilation-metabolism mismatch. Infusion of adrenaline (1 μg kg(-1) min(-1) ) increased minute ventilation (145 ± 4 to 173 ± 5 ml min(-1) ) without altering P aC O2 or pH and enhanced ventilatory CO2 sensitivity (3.4 ± 0.4 to 5.1 ± 0.8 ml min(-1) mmHg(-1) ). These effects were attenuated by either resection of the carotid sinus nerve or propranolol. Physiological concentrations of adrenaline increased the CO2 sensitivity of freshly dissociated carotid body type I cells in vitro. These findings suggest that adrenaline release can account for the ventilatory hyperpnoea observed during hypoglycaemia by an augmented carotid body and whole body ventilatory CO2 sensitivity.
Collapse
Affiliation(s)
- Emma L Thompson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Clare J Ray
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.,Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard L Pye
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Christopher N Wyatt
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Andrew M Coney
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.,Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Prem Kumar
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.,Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
35
|
Winnick JJ, Kraft G, Gregory JM, Edgerton DS, Williams P, Hajizadeh IA, Kamal MZ, Smith M, Farmer B, Scott M, Neal D, Donahue EP, Allen E, Cherrington AD. Hepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis. J Clin Invest 2016; 126:2236-48. [PMID: 27140398 DOI: 10.1172/jci79895] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/10/2016] [Indexed: 11/17/2022] Open
Abstract
Liver glycogen is important for the counterregulation of hypoglycemia and is reduced in individuals with type 1 diabetes (T1D). Here, we examined the effect of varying hepatic glycogen content on the counterregulatory response to low blood sugar in dogs. During the first 4 hours of each study, hepatic glycogen was increased by augmenting hepatic glucose uptake using hyperglycemia and a low-dose intraportal fructose infusion. After hepatic glycogen levels were increased, animals underwent a 2-hour control period with no fructose infusion followed by a 2-hour hyperinsulinemic/hypoglycemic clamp. Compared with control treatment, fructose infusion caused a large increase in liver glycogen that markedly elevated the response of epinephrine and glucagon to a given hypoglycemia and increased net hepatic glucose output (NHGO). Moreover, prior denervation of the liver abolished the improved counterregulatory responses that resulted from increased liver glycogen content. When hepatic glycogen content was lowered, glucagon and NHGO responses to insulin-induced hypoglycemia were reduced. We conclude that there is a liver-brain counterregulatory axis that is responsive to liver glycogen content. It remains to be determined whether the risk of iatrogenic hypoglycemia in T1D humans could be lessened by targeting metabolic pathway(s) associated with hepatic glycogen repletion.
Collapse
|
36
|
Circuit organization of sugar reinforcement. Physiol Behav 2016; 164:473-477. [PMID: 27126968 DOI: 10.1016/j.physbeh.2016.04.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/23/2016] [Accepted: 04/23/2016] [Indexed: 12/29/2022]
Abstract
Sugar's potent reinforcing properties arise from the complex interplay between gustatory and nutritive signals. This commentary addresses a unique organizational aspect of the neuronal circuitry that mediates sugar reinforcement in both Drosophila and rodents. Specifically, current evidence supports a general circuit model where separate populations of dopaminergic neurons encode the gustatory and nutritive values of sugar. This arrangement allows animals to prioritize energy seeking over taste quality, and implies that specialized subpopulations of dopamine-containing neurons form a class of evolutionary conserved chemo- and nutrient-sensors.
Collapse
|
37
|
Foster NN, Azam S, Watts AG. Rapid-onset hypoglycemia suppresses Fos expression in discrete parts of the ventromedial nucleus of the hypothalamus. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1177-85. [PMID: 27030665 DOI: 10.1152/ajpregu.00042.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/23/2016] [Indexed: 01/12/2023]
Abstract
The consensus view of the ventromedial nucleus of the hypothalamus (VMH) is that it is a key node in the rodent brain network controlling sympathoadrenal counterregulatory responses to hypoglycemia. To identify the location of hypoglycemia-responsive neurons in the VMH, we performed a high spatial resolution Fos analysis in the VMH of rats made hypoglycemic with intraperitoneal injections of insulin. We examined Fos expression in the four constituent parts of VMH throughout its rostrocaudal extent and determined their relationship to blood glucose concentrations. Hypoglycemia significantly decreased Fos expression only in the dorsomedial and central parts of the VMH, but not its anterior or ventrolateral parts. Moreover, the number of Fos-expressing neurons was significantly and positively correlated in the two responsive regions with terminal blood glucose concentrations. We also measured Fos responses in the paraventricular nucleus of the hypothalamus (PVH) and in several levels of the periaqueductal gray (PAG), which receives strong projections from the VMH. We found the expected and highly significant increase in Fos in the neuroendocrine PVH, which was negatively correlated to terminal blood glucose concentrations, but no significant differences were seen in any part of the PAG. Our results show that there are distinct populations of VMH neurons whose Fos expression is suppressed by hypoglycemia, and their numbers correlate with blood glucose. These findings support a clear division of glycemic control functions within the different parts of the VMH.
Collapse
Affiliation(s)
- Nicholas N Foster
- Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California
| | - Sana Azam
- Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California
| | - Alan G Watts
- Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California
| |
Collapse
|
38
|
Kamitakahara A, Xu B, Simerly R. Ventromedial hypothalamic expression of Bdnf is required to establish normal patterns of afferent GABAergic connectivity and responses to hypoglycemia. Mol Metab 2016; 5:91-101. [PMID: 26909317 PMCID: PMC4735662 DOI: 10.1016/j.molmet.2015.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE The ventromedial nucleus of the hypothalamus (VMH) controls energy and glucose homeostasis through direct connections to a distributed network of nuclei in the hypothalamus, midbrain, and hindbrain. Structural changes in VMH circuit morphology have the potential to alter VMH function throughout life, however, molecular signals responsible for specifying its neural connections are not fully defined. The VMH contains a high density of neurons that express brain-derived neurotrophic factor (BDNF), a potent neurodevelopmental effector known to regulate neuronal survival, growth, differentiation, and connectivity in a number of neural systems. In the current study, we examined whether BDNF impacts the afferent and efferent connections of the VMH, as well as energy homeostatic function. METHODS To determine if BDNF is required for VMH circuit formation, a transgenic mouse model was used to conditionally delete Bdnf from steroidogenic factor 1 (SF1) expressing neurons of the VMH prior to the onset of establishing neural connections with other regions. Projections of SF1 expressing neurons were visualized with a genetically targeted fluorescent label and immunofluorescence was used to measure the density of afferents to SF1 neurons in the absence of BDNF. Physiological changes in body weight and circulating blood glucose were also evaluated in the mutant mice. RESULTS Our findings suggest that BDNF is required to establish normal densities of GABAergic afferents onto SF1 neurons located in the ventrolateral part of the VMH. Furthermore, loss of BDNF from VMH SF1 neurons results in impaired physiological responses to insulin-induced hypoglycemia. CONCLUSION The results of this study indicate that BDNF is required for formation and/or maintenance of inhibitory inputs to SF1 neurons, with enduring effects on glycemic control.
Collapse
Affiliation(s)
- Anna Kamitakahara
- Neuroscience Program, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Keck School of Medicine, Los Angeles, CA 90027, USA
| | - Baoji Xu
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Richard Simerly
- Neuroscience Program, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Keck School of Medicine, Los Angeles, CA 90027, USA.
| |
Collapse
|
39
|
Han W, Tellez LA, Niu J, Medina S, Ferreira TL, Zhang X, Su J, Tong J, Schwartz GJ, van den Pol A, de Araujo IE. Striatal Dopamine Links Gastrointestinal Rerouting to Altered Sweet Appetite. Cell Metab 2016; 23:103-12. [PMID: 26698915 PMCID: PMC4715689 DOI: 10.1016/j.cmet.2015.10.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/04/2015] [Accepted: 10/19/2015] [Indexed: 12/01/2022]
Abstract
Reductions in calorie intake contribute significantly to the positive outcome of bariatric surgeries. However, the physiological mechanisms linking the rerouting of the gastrointestinal tract to reductions in sugar cravings remain uncertain. We show that a duodenal-jejunal bypass (DJB) intervention inhibits maladaptive sweet appetite by acting on dopamine-responsive striatal circuitries. DJB disrupted the ability of recurrent sugar exposure to promote sweet appetite in sated animals, thereby revealing a link between recurrent duodenal sugar influx and maladaptive sweet intake. Unlike ingestion of a low-calorie sweetener, ingestion of sugar was associated with significant dopamine effluxes in the dorsal striatum, with glucose infusions into the duodenum inducing greater striatal dopamine release than equivalent jejunal infusions. Consistently, optogenetic activation of dopamine-excitable cells of the dorsal striatum was sufficient to restore maladaptive sweet appetite in sated DJB mice. Our findings point to a causal link between striatal dopamine signaling and the outcomes of bariatric interventions.
Collapse
Affiliation(s)
- Wenfei Han
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai 200072, China; The John B. Pierce Laboratory, New Haven, CT 06519, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Luis A Tellez
- The John B. Pierce Laboratory, New Haven, CT 06519, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Jingjing Niu
- The John B. Pierce Laboratory, New Haven, CT 06519, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA; Division of Endocrinology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sara Medina
- The John B. Pierce Laboratory, New Haven, CT 06519, USA
| | - Tatiana L Ferreira
- The John B. Pierce Laboratory, New Haven, CT 06519, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA; Mathematics, Computing and Cognition Center, Federal University of ABC, Santo André 09210, Brazil
| | - Xiaobing Zhang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Jiansheng Su
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai 200072, China
| | - Jenny Tong
- Division of Endocrinology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Gary J Schwartz
- Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Anthony van den Pol
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Ivan E de Araujo
- The John B. Pierce Laboratory, New Haven, CT 06519, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA; Department of Physiology, Yale University School of Arts and Sciences, New Haven, CT 06511, USA.
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Autoimmune destruction of the β cells is considered the key abnormality in type 1 diabetes mellitus and insulin replacement the primary therapeutic strategy. However, a lack of insulin is accompanied by disturbances in glucagon release, which is excessive postprandially, but insufficient during hypoglycaemia. In addition, replacing insulin alone appears insufficient for adequate glucose control. This review focuses on the growing body of evidence that glucagon abnormalities contribute significantly to the pathophysiology of diabetes and on recent efforts to target the glucagon axis as adjunctive therapy to insulin replacement. RECENT FINDINGS This review discusses recent (since 2013) advances in abnormalities of glucagon regulation and their link to the pathophysiology of diabetes; new mechanisms of glucagon action and regulation; manipulation of glucagon in diabetes treatment; and analytical and systems biology tools to study glucagon regulation. SUMMARY Recent efforts 'resurrected' glucagon as a key hormone in the pathophysiology of diabetes. New studies target its abnormal regulation and action that is key for improving diabetes treatment. The progress is promising, but major questions remain, including unravelling the mechanism of loss of glucagon counterregulation in type 1 diabetes mellitus and how best to manipulate glucagon to achieve more efficient and safer glycaemic control.
Collapse
Affiliation(s)
- Leon S Farhy
- Division of Endocrinology and Metabolism, Department of Medicine and Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | | |
Collapse
|
41
|
Donovan CM, Watts AG. Peripheral and central glucose sensing in hypoglycemic detection. Physiology (Bethesda) 2015; 29:314-24. [PMID: 25180261 DOI: 10.1152/physiol.00069.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Hypoglycemia poses a serious threat to the integrity of the brain, owing to its reliance on blood glucose as a fuel. Protecting against hypoglycemia is an extended network of glucose sensors located within the brain and in the periphery that serve to mediate responses restoring euglycemia, i.e., counterregulatory responses. This review examines the various glucose sensory loci involved in hypoglycemic detection, with a particular emphasis on peripheral glucose sensory loci and their contribution to hypoglycemic counterregulation.
Collapse
Affiliation(s)
- Casey M Donovan
- Department of Biological Sciences, The Center for NeuroMetabolic Interactions, USC Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Alan G Watts
- Department of Biological Sciences, The Center for NeuroMetabolic Interactions, USC Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| |
Collapse
|
42
|
Affiliation(s)
- Owen Chan
- Department of Internal Medicine-Section of Endocrinology, Yale University School of Medicine, New Haven, CT
| | - Robert S Sherwin
- Department of Internal Medicine-Section of Endocrinology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
43
|
Jokiaho AJ, Donovan CM, Watts AG. The rate of fall of blood glucose determines the necessity of forebrain-projecting catecholaminergic neurons for male rat sympathoadrenal responses. Diabetes 2014; 63:2854-65. [PMID: 24740574 PMCID: PMC4113074 DOI: 10.2337/db13-1753] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Different onset rates of insulin-induced hypoglycemia use distinct glucosensors to activate sympathoadrenal counterregulatory responses (CRRs). Glucosensory elements in the portal-mesenteric veins are dispensable with faster rates when brain elements predominate, but are essential for responses to the slower-onset hypoglycemia that is common with insulin therapy. Whether a similar rate-associated divergence exists within more expansive brain networks is unknown. Hindbrain catecholamine neurons distribute glycemia-related information throughout the forebrain. We tested in male rats whether catecholaminergic neurons that project to the medial and ventromedial hypothalamus are required for sympathoadrenal CRRs to rapid- and slow-onset hypoglycemia and whether these neurons are differentially engaged as onset rates change. Using a catecholamine-specific neurotoxin and hyperinsulinemic-hypoglycemic clamps, we found that sympathoadrenal CRRs to slow- but not rapid-onset hypoglycemia require hypothalamus-projecting catecholaminergic neurons, the majority of which originate in the ventrolateral medulla. As determined with Fos, these neurons are differentially activated by the two onset rates. We conclude that 1) catecholaminergic projections to the hypothalamus provide essential information for activating sympathoadrenal CRRs to slow- but not rapid-onset hypoglycemia, 2) hypoglycemia onset rates have a major impact on the hypothalamic mechanisms that enable sympathoadrenal CRRs, and 3) hypoglycemia-related sensory information activates hindbrain catecholaminergic neurons in a rate-dependent manner.
Collapse
Affiliation(s)
- Anne J Jokiaho
- Center for NeuroMetabolic Interactions, The Integrated and Evolutionary Biology Graduate Program, and The Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA
| | - Casey M Donovan
- Center for NeuroMetabolic Interactions, The Integrated and Evolutionary Biology Graduate Program, and The Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA
| | - Alan G Watts
- Center for NeuroMetabolic Interactions, The Integrated and Evolutionary Biology Graduate Program, and The Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA
| |
Collapse
|
44
|
Routh VH, Donovan CM, Ritter S. 2. Hypoglycemia Detection. TRANSLATIONAL ENDOCRINOLOGY & METABOLISM 2012; 3:47-87. [PMID: 24910721 PMCID: PMC4045627 DOI: 10.1210/team.9781936704200.ch2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
45
|
Watts AG, Donovan CM. Sweet talk in the brain: glucosensing, neural networks, and hypoglycemic counterregulation. Front Neuroendocrinol 2010; 31:32-43. [PMID: 19836412 PMCID: PMC2813965 DOI: 10.1016/j.yfrne.2009.10.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 10/13/2009] [Indexed: 11/21/2022]
Abstract
Glucose is the primary fuel for the vast majority of cells, and animals have evolved essential cellular, autonomic, endocrine, and behavioral measures to counteract both hypo- and hyperglycemia. A central component of these counterregulatory mechanisms is the ability of specific sensory elements to detect changes in blood glucose and then use that information to produce appropriate counterregulatory responses. Here we focus on the organization of the neural systems that are engaged by glucosensing mechanisms when blood glucose concentrations fall to levels that pose a physiological threat. We employ a classic sensory-motor integrative schema to describe the peripheral, hindbrain, and hypothalamic components that make up counterregulatory mechanisms in the brain. We propose that models previously developed to describe how the forebrain modulates autonomic reflex loops in the hindbrain offer a reasoned framework for explaining how counterregulatory neural mechanisms in the hypothalamus and hindbrain are structured.
Collapse
Affiliation(s)
- Alan G Watts
- Center for NeuroMetabolic Interactions, USC College, University of Southern California, Los Angeles, CA 90089, USA.
| | | |
Collapse
|