1
|
Cilvik SN, Boehmer B, Wesolowski SR, Brown LD, Rozance PJ. Chronic late gestation fetal hyperglucagonaemia results in lower insulin secretion, pancreatic mass, islet area and beta- and α-cell proliferation. J Physiol 2024; 602:6329-6345. [PMID: 39383208 PMCID: PMC11576258 DOI: 10.1113/jp286974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024] Open
Abstract
Fetal glucagon concentrations are elevated in the presence of a compromised intrauterine environment, as in cases of placental insufficiency and perinatal acidaemia. Our objective was to investigate the impact of late gestation fetal hyperglucagonaemia on in vivo insulin secretion and pancreatic islet structure. Chronically catheterized late gestation fetal sheep received an intravenous infusion of glucagon at low (5 ng/kg/min; GCG-5) or high (50 ng/kg/min; GCG-50) concentrations or a vehicle control (CON) for 8-10 days. Glucose-stimulated fetal insulin secretion (GSIS) was measured following 3 h (acute response) and 8-10 days (chronic response) of experimental infusions. Insulin, glucose and amino acid concentrations were measured longitudinally. The pancreas was collected at the study end for histology and gene expression analysis. Acute exposure (3 h) to GCG-50 induced a 3-fold increase in basal insulin concentrations with greater GSIS. Meanwhile, chronic exposure to both GCG-5 and GCG-50 decreased basal insulin concentrations 2-fold by day 8-10. Chronic GCG-50 also blunted GSIS at the study end. Fetal amino acid concentrations were decreased within 24 h of GCG-5 and GCG-50, while there were no differences in fetal glucose. Histologically, GCG-5 and GCG-50 had lower β- and α-cell proliferation, as well as lower α-cell mass and pancreas weight, while GCG-50 had lower islet area. This study demonstrates that chronic glucagon elevation in late gestation fetuses impairs β-cell proliferation and insulin secretion, which has the potential to contribute to later-life diabetes risk. We speculate that the action of glucagon in lower circulating fetal amino acid concentrations may have a suppressive effect on insulin secretion. KEY POINTS: We have previously demonstrated in a chronically catheterized fetal sheep model that experimentally elevated glucagon in the fetus impairs placental function, reduces fetal protein accretion and lowers fetal weight. In the present study, we further characterized the effects of elevated fetal glucagon on fetal physiology with a focus on pancreatic development and β-cell function. We show that experimentally elevated fetal glucagon results in lower β- and α-cell proliferation, as well as decreased insulin secretion after 8-10 days of glucagon infusion. These results have important implications for β-cell reserve and later-life predisposition to diabetes.
Collapse
Affiliation(s)
- Sarah N Cilvik
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brit Boehmer
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laura D Brown
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Wang H, Yin W, Ma S, Wang P, Zhang L, Chen X, Zhu P. Antenatal depression moderated the association between gestational diabetes mellitus and fetal hyperinsulinism. Am J Obstet Gynecol MFM 2023; 5:101183. [PMID: 37827375 DOI: 10.1016/j.ajogmf.2023.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Gestational diabetes mellitus and antenatal depression are common comorbidities. However, the combined effects of antenatal depression and diabetes mellitus during pregnancy on fetal β-cell function are unknown. OBJECTIVE This study aimed to test whether the association of maternal gestational diabetes mellitus and glucose metabolism with cord blood C-peptide levels varies with antenatal depression. STUDY DESIGN Data on mother-child pairs (N=5734) from the Maternal and Infant Health Cohort Study in Hefei were analyzed. Gestational diabetes mellitus was diagnosed using the 75-g oral glucose tolerance test at 24 to 28 weeks of gestation. Antenatal depression was measured using the Edinburgh Postnatal Depression Scale during midpregnancy and late pregnancy. Cord blood samples were collected at delivery and tested for C-peptide levels. RESULTS A total of 1054 mothers (18.38%) were diagnosed with gestational diabetes mellitus. Gestational diabetes mellitus was associated with a 5.57 (95% confidence interval, 3.65-7.50) percentile higher cord blood C-peptide level. This association varied with depression severity: the differences in cord blood C-peptide percentile for gestational diabetes mellitus vs no gestational diabetes mellitus were 5.12 (95% confidence interval, 2.81-9.75) for nonantenatal depression, 7.36 (95% confidence interval, 2.85-13.38) for moderate antenatal depression, and 10.06 (95% confidence interval, 4.69-14.8) for severe antenatal depression in midpregnancy. Similar associations stratified by antenatal depression in late pregnancy were observed. Antenatal depression was significantly positively correlated with fetal hyperinsulinism in participants with gestational diabetes mellitus but not in participants without gestational diabetes mellitus. CONCLUSION Antenatal depression, which is related to maternal hyperglycemia, can aggravate the risk of fetal hyperinsulinism in early life.
Collapse
Affiliation(s)
- Haixia Wang
- Department of Maternal, Child, and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu)
| | - Wanjun Yin
- Department of Maternal, Child, and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu)
| | - Shuangshuang Ma
- Department of Maternal, Child, and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu)
| | - Peng Wang
- Department of Maternal, Child, and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu)
| | - Lei Zhang
- Department of Maternal, Child, and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu)
| | - Xianxia Chen
- Department of Obstetrics and Gynecology, Anhui Maternal and Child Health Hospital, Hefei, China (Dr Chen).
| | - Peng Zhu
- Department of Maternal, Child, and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu).
| |
Collapse
|
3
|
White MR, Yates DT. Dousing the flame: reviewing the mechanisms of inflammatory programming during stress-induced intrauterine growth restriction and the potential for ω-3 polyunsaturated fatty acid intervention. Front Physiol 2023; 14:1250134. [PMID: 37727657 PMCID: PMC10505810 DOI: 10.3389/fphys.2023.1250134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Intrauterine growth restriction (IUGR) arises when maternal stressors coincide with peak placental development, leading to placental insufficiency. When the expanding nutrient demands of the growing fetus subsequently exceed the capacity of the stunted placenta, fetal hypoxemia and hypoglycemia result. Poor fetal nutrient status stimulates greater release of inflammatory cytokines and catecholamines, which in turn lead to thrifty growth and metabolic programming that benefits fetal survival but is maladaptive after birth. Specifically, some IUGR fetal tissues develop enriched expression of inflammatory cytokine receptors and other signaling cascade components, which increases inflammatory sensitivity even when circulating inflammatory cytokines are no longer elevated after birth. Recent evidence indicates that greater inflammatory tone contributes to deficits in skeletal muscle growth and metabolism that are characteristic of IUGR offspring. These deficits underlie the metabolic dysfunction that markedly increases risk for metabolic diseases in IUGR-born individuals. The same programming mechanisms yield reduced metabolic efficiency, poor body composition, and inferior carcass quality in IUGR-born livestock. The ω-3 polyunsaturated fatty acids (PUFA) are diet-derived nutraceuticals with anti-inflammatory effects that have been used to improve conditions of chronic systemic inflammation, including intrauterine stress. In this review, we highlight the role of sustained systemic inflammation in the development of IUGR pathologies. We then discuss the potential for ω-3 PUFA supplementation to improve inflammation-mediated growth and metabolic deficits in IUGR offspring, along with potential barriers that must be considered when developing a supplementation strategy.
Collapse
Affiliation(s)
| | - Dustin T. Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
4
|
Nema J, Joshi N, Sundrani D, Joshi S. Influence of maternal one carbon metabolites on placental programming and long term health. Placenta 2022; 125:20-28. [DOI: 10.1016/j.placenta.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/12/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
|
5
|
Whole-slide imaging and a Fiji-based image analysis workflow of immunohistochemistry staining of pancreatic islets. MethodsX 2022; 9:101856. [PMID: 36204475 PMCID: PMC9531276 DOI: 10.1016/j.mex.2022.101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Quantification of cell populations in tissue sections is frequently examined in studies of human disease. However, traditional manual imaging of sections stained with immunohistochemistry is laborious, time-consuming, and often assesses fields of view rather than the whole tissue section. The analysis is usually manual or utilises expensive proprietary image analysis platforms. Whole-slide imaging allows rapid automated visualisation of entire tissue sections. This approach increases the quantum of data generated per slide, decreases user time compared to manual microscopy, and reduces selection bias. However, such large data sets mean that manual image analysis is no longer practicable, requiring an automated process. In the case of diabetes, the contribution of various pancreatic endocrine cell populations is often investigated in preclinical and clinical samples. We developed a two-part method to measure pancreatic endocrine cell mass, firstly describing imaging using an automated slide-scanner, and secondly, the analysis of the resulting large image data sets using the open-source software, Fiji, which is freely available to all researchers and has cross-platform compatibility. This protocol is highly versatile and may be applied either in full or in part to analysis of IHC images created using other imaging platforms and/or the analysis of other tissues and cell markers.
Collapse
|
6
|
Hicks ZM, Yates DT. Going Up Inflame: Reviewing the Underexplored Role of Inflammatory Programming in Stress-Induced Intrauterine Growth Restricted Livestock. FRONTIERS IN ANIMAL SCIENCE 2021; 2. [PMID: 34825243 PMCID: PMC8612632 DOI: 10.3389/fanim.2021.761421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The impact of intrauterine growth restriction (IUGR) on health in humans is well-recognized. It is the second leading cause of perinatal mortality worldwide, and it is associated with deficits in metabolism and muscle growth that increase lifelong risk for hypertension, obesity, hyperlipidemia, and type 2 diabetes. Comparatively, the barrier that IUGR imposes on livestock production is less recognized by the industry. Meat animals born with low birthweight due to IUGR are beset with greater early death loss, inefficient growth, and reduced carcass merit. These animals exhibit poor feed-to-gain ratios, less lean mass, and greater fat deposition, which increase production costs and decrease value. Ultimately, this reduces the amount of meat produced by each animal and threatens the economic sustainability of livestock industries. Intrauterine growth restriction is most commonly the result of fetal programming responses to placental insufficiency, but the exact mechanisms by which this occurs are not well-understood. In uncompromised pregnancies, inflammatory cytokines are produced at modest rates by placental and fetal tissues and play an important role in fetal development. However, unfavorable intrauterine conditions can cause cytokine activity to be excessive during critical windows of fetal development. Our recent evidence indicates that this impacts developmental programming of muscle growth and metabolism and contributes to the IUGR phenotype. In this review, we outline the role of inflammatory cytokine activity in the development of normal and IUGR phenotypes. We also highlight the contributions of sheep and other animal models in identifying mechanisms for IUGR pathologies.
Collapse
Affiliation(s)
- Zena M Hicks
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Dustin T Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
7
|
Affiliation(s)
- Bernard Thébaud
- Ottawa Hospital Research Institute & CHEO Research Institute, Pediatrics, Ottawa, Ontario, Canada;
| |
Collapse
|
8
|
Simoncini S, Coppola H, Rocca A, Bachmann I, Guillot E, Zippo L, Dignat-George F, Sabatier F, Bedel R, Wilson A, Rosenblatt-Velin N, Armengaud JB, Menétrey S, Peyter AC, Simeoni U, Yzydorczyk C. Endothelial Colony-Forming Cells Dysfunctions Are Associated with Arterial Hypertension in a Rat Model of Intrauterine Growth Restriction. Int J Mol Sci 2021; 22:10159. [PMID: 34576323 PMCID: PMC8465555 DOI: 10.3390/ijms221810159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
Infants born after intrauterine growth restriction (IUGR) are at risk of developing arterial hypertension at adulthood. The endothelium plays a major role in the pathogenesis of hypertension. Endothelial colony-forming cells (ECFCs), critical circulating components of the endothelium, are involved in vasculo-and angiogenesis and in endothelium repair. We previously described impaired functionality of ECFCs in cord blood of low-birth-weight newborns. However, whether early ECFC alterations persist thereafter and could be associated with hypertension in individuals born after IUGR remains unknown. A rat model of IUGR was induced by a maternal low-protein diet during gestation versus a control (CTRL) diet. In six-month-old offspring, only IUGR males have increased systolic blood pressure (tail-cuff plethysmography) and microvascular rarefaction (immunofluorescence). ECFCs isolated from bone marrow of IUGR versus CTRL males displayed a decreased proportion of CD31+ versus CD146+ staining on CD45- cells, CD34 expression (flow cytometry, immunofluorescence), reduced proliferation (BrdU incorporation), and an impaired capacity to form capillary-like structures (Matrigel test), associated with an impaired angiogenic profile (immunofluorescence). These dysfunctions were associated with oxidative stress (increased superoxide anion levels (fluorescent dye), decreased superoxide dismutase protein expression, increased DNA damage (immunofluorescence), and stress-induced premature senescence (SIPS; increased beta-galactosidase activity, increased p16INK4a, and decreased sirtuin-1 protein expression). This study demonstrated an impaired functionality of ECFCs at adulthood associated with arterial hypertension in individuals born after IUGR.
Collapse
Affiliation(s)
- Stephanie Simoncini
- Aix Marseille Univ, Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAe), Center from Cardiovascular and Nutrition research (C2VN), UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France; (S.S.); (F.D.-G.); (F.S.)
| | - Hanna Coppola
- Department Woman-Mother-Child, Division of pediatrics, DOHaD Laboratory, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (A.R.); (I.B.); (E.G.); (L.Z.); (J.-B.A.); (U.S.)
| | - Angela Rocca
- Department Woman-Mother-Child, Division of pediatrics, DOHaD Laboratory, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (A.R.); (I.B.); (E.G.); (L.Z.); (J.-B.A.); (U.S.)
| | - Isaline Bachmann
- Department Woman-Mother-Child, Division of pediatrics, DOHaD Laboratory, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (A.R.); (I.B.); (E.G.); (L.Z.); (J.-B.A.); (U.S.)
| | - Estelle Guillot
- Department Woman-Mother-Child, Division of pediatrics, DOHaD Laboratory, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (A.R.); (I.B.); (E.G.); (L.Z.); (J.-B.A.); (U.S.)
| | - Leila Zippo
- Department Woman-Mother-Child, Division of pediatrics, DOHaD Laboratory, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (A.R.); (I.B.); (E.G.); (L.Z.); (J.-B.A.); (U.S.)
| | - Françoise Dignat-George
- Aix Marseille Univ, Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAe), Center from Cardiovascular and Nutrition research (C2VN), UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France; (S.S.); (F.D.-G.); (F.S.)
| | - Florence Sabatier
- Aix Marseille Univ, Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAe), Center from Cardiovascular and Nutrition research (C2VN), UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France; (S.S.); (F.D.-G.); (F.S.)
| | - Romain Bedel
- Flow Cytometry Facility, Department of Formation and Research, University of Lausanne, 1011 Lausanne, Switzerland; (R.B.); (A.W.)
| | - Anne Wilson
- Flow Cytometry Facility, Department of Formation and Research, University of Lausanne, 1011 Lausanne, Switzerland; (R.B.); (A.W.)
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
| | - Nathalie Rosenblatt-Velin
- Department Heart-Vessels, Division of Angiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland;
| | - Jean-Baptiste Armengaud
- Department Woman-Mother-Child, Division of pediatrics, DOHaD Laboratory, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (A.R.); (I.B.); (E.G.); (L.Z.); (J.-B.A.); (U.S.)
| | - Steeve Menétrey
- Department Woman-Mother-Child, Neonatal Research Laboratory, Clinic of Neonatology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (S.M.); (A.-C.P.)
| | - Anne-Christine Peyter
- Department Woman-Mother-Child, Neonatal Research Laboratory, Clinic of Neonatology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (S.M.); (A.-C.P.)
| | - Umberto Simeoni
- Department Woman-Mother-Child, Division of pediatrics, DOHaD Laboratory, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (A.R.); (I.B.); (E.G.); (L.Z.); (J.-B.A.); (U.S.)
| | - Catherine Yzydorczyk
- Department Woman-Mother-Child, Division of pediatrics, DOHaD Laboratory, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (A.R.); (I.B.); (E.G.); (L.Z.); (J.-B.A.); (U.S.)
| |
Collapse
|
9
|
Abstract
Almost 2 billion adults in the world are overweight, and more than half of them are classified as obese, while nearly one-third of children globally experience poor growth and development. Given the vast amount of knowledge that has been gleaned from decades of research on growth and development, a number of questions remain as to why the world is now in the midst of a global epidemic of obesity accompanied by the "double burden of malnutrition," where overweight coexists with underweight and micronutrient deficiencies. This challenge to the human condition can be attributed to nutritional and environmental exposures during pregnancy that may program a fetus to have a higher risk of chronic diseases in adulthood. To explore this concept, frequently called the developmental origins of health and disease (DOHaD), this review considers a host of factors and physiological mechanisms that drive a fetus or child toward a higher risk of obesity, fatty liver disease, hypertension, and/or type 2 diabetes (T2D). To that end, this review explores the epidemiology of DOHaD with discussions focused on adaptations to human energetics, placental development, dysmetabolism, and key environmental exposures that act to promote chronic diseases in adulthood. These areas are complementary and additive in understanding how providing the best conditions for optimal growth can create the best possible conditions for lifelong health. Moreover, understanding both physiological as well as epigenetic and molecular mechanisms for DOHaD is vital to most fully address the global issues of obesity and other chronic diseases.
Collapse
Affiliation(s)
- Daniel J Hoffman
- Department of Nutritional Sciences, Program in International Nutrition, and Center for Childhood Nutrition Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Theresa L Powell
- Department of Pediatrics and Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Daniel B Hardy
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
10
|
Boehmer BH, Wesolowski SR, Brown LD, Rozance PJ. Chronic Fetal Leucine Infusion Does Not Potentiate Glucose-Stimulated Insulin Secretion or Affect Pancreatic Islet Development in Late-Gestation Growth-Restricted Fetal Sheep. J Nutr 2020; 151:312-319. [PMID: 33326574 PMCID: PMC7850025 DOI: 10.1093/jn/nxaa357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/28/2020] [Accepted: 10/15/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Growth-restricted fetuses have attenuated glucose-stimulated insulin secretion (GSIS), smaller pancreatic islets, less pancreatic β-cells, and less pancreatic vascularization compared with normally growing fetuses. Infusion of leucine into normal late-gestation fetal sheep potentiates GSIS, as well as increases pancreatic islet size, the proportion of the pancreas and islet comprising β-cells, and pancreatic and islet vascularity. In addition, leucine stimulates hepatocyte growth factor (HGF ) mRNA expression in islet endothelial cells isolated from normal fetal sheep. OBJECTIVE We hypothesized that a 9-d leucine infusion would potentiate GSIS and increase pancreatic islet size, β-cells, and vascularity in intrauterine fetal growth restriction (IUGR) fetal sheep. We also hypothesized that leucine would stimulate HGF mRNA in islet endothelial cells isolated from IUGR fetal sheep. METHODS Late-gestation Columbia-Rambouillet IUGR fetal sheep (singleton or twin) underwent surgeries to place vascular sampling and infusion catheters. Fetuses were randomly allocated to receive a 9-d leucine infusion to achieve a 50-100% increase in leucine concentrations or a control saline infusion. GSIS was measured and pancreas tissue was processed for histologic analysis. Pancreatic islet endothelial cells were isolated from IUGR fetal sheep and incubated with supplemental leucine. Data were analyzed by mixed-models ANOVA; Student, Mann-Whitney, or a paired t test; or a test of equality of proportions. RESULTS Chronic leucine infusion in IUGR fetuses did not affect GSIS, islet size, the proportion of the pancreas comprising β-cells, or pancreatic or pancreatic islet vascularity. In isolated islet endothelial cells from IUGR fetuses, HGF mRNA expression was not affected by supplemental leucine. CONCLUSIONS IUGR fetal sheep islets are not responsive to a 9-d leucine infusion with respect to insulin secretion or any histologic features measured. This is in contrast to the response in normally growing fetuses. These results are important when considering nutritional strategies to prevent the adverse islet and β-cell consequences in IUGR fetuses.
Collapse
Affiliation(s)
- Brit H Boehmer
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, CO, USA
| | - Stephanie R Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, CO, USA
| | - Laura D Brown
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, CO, USA
| | | |
Collapse
|
11
|
Boehmer BH, Brown LD, Wesolowski SR, Hay WW, Rozance PJ. A Chronic Fetal Leucine Infusion Potentiates Fetal Insulin Secretion and Increases Pancreatic Islet Size, Vascularity, and β Cells in Late-Gestation Sheep. J Nutr 2020; 150:2061-2069. [PMID: 32470982 PMCID: PMC7398779 DOI: 10.1093/jn/nxaa138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/27/2020] [Accepted: 04/22/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Infusion of a complete amino acid mixture into normal late-gestation fetal sheep potentiates glucose-stimulated insulin secretion (GSIS). Leucine acutely stimulates insulin secretion in late-gestation fetal sheep and isolated fetal sheep islets in vitro. OBJECTIVES We hypothesized that a 9-d leucine infusion would potentiate GSIS in fetal sheep. METHODS Columbia-Rambouillet fetal sheep at 126 days of gestation received a 9-d leucine infusion to achieve a 50%-100% increase in leucine concentrations or a control infusion. At the end of the infusion we measured GSIS, pancreatic morphology, and expression of pancreatic mRNAs. Pancreatic islet endothelial cells (ECs) were isolated from fetal sheep and incubated with supplemental leucine or vascular endothelial growth factor A (VEGFA) followed by collection of mRNA. Data measured at multiple time points were compared with a repeated-measures 2-factor ANOVA. Data measured at 1 time point were compared using Student's t test or the Mann-Whitney test. RESULTS Glucose-stimulated insulin concentrations were 80% higher in leucine-infused (LEU) fetuses than in controls (P < 0.05). In the pancreas, LEU fetuses had a higher proportion of islets >5000 μm2 than controls (75% more islets >5000 μm2; P < 0.05) and a larger proportion of the pancreas that stained for β cells (12% greater; P < 0.05). Pancreatic and pancreatic islet vascularity were both 25% greater in LEU fetuses (P < 0.05). Pancreatic VEGFA and hepatocyte growth factor (HGF) mRNA expressions were 38% and 200% greater in LEU fetuses than in controls (P < 0.05), respectively. In isolated islet ECs, HGF mRNA was 20% and 50% higher after incubation in supplemental leucine (P < 0.05) or VEGFA (P < 0.01), respectively. CONCLUSIONS A 9-d leucine infusion potentiates fetal GSIS, demonstrating that glucose and leucine act synergistically to stimulate insulin secretion in fetal sheep. A greater proportion of the pancreas being comprised of β cells and higher pancreatic vascularity contributed to the higher GSIS.
Collapse
Affiliation(s)
- Brit H Boehmer
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Laura D Brown
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - William W Hay
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA,Address correspondence to PJR (e-mail: )
| |
Collapse
|
12
|
Chen F, Li T, Sun Y, Liu Q, Yang T, Chen J, Zhu H, Shi Y, Hu YP, Wang MJ. Generation of insulin-secreting cells from mouse gallbladder stem cells by small molecules in vitro. Stem Cell Res Ther 2019; 10:289. [PMID: 31547878 PMCID: PMC6757438 DOI: 10.1186/s13287-019-1407-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/29/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Background Stem cell-derived pancreatic β-like cells hold great promise for treating diabetes. Gallbladder belongs to the extrahepatic bile duct system and possesses stem-like cells. These stem cells could be expanded in vitro and have the potential of differentiating into hepatocytes, cholangiocytes, or pancreatic cells. As the gallbladder is highly available, gallbladder stem cells provide a new cell source of pancreatic β-like cells. In this study, we aimed to investigate an approach for the generation of pancreatic β-like cells from gallbladder stem cells (GSCs) without genetic modification. Methods A CK19CreERT;Rosa26R-GFP mouse was used to isolate CK19+ cells, which represented EpCAM+ stem cells in the gallbladder. They were cultured in the modified Kubota’s medium for expansion and further analyzed. Then, we developed a strategy to screen a combination of small molecules that can generate insulin-secreting cells from gallbladder stem cells. These cells were identified with markers of pancreatic cells. Finally, they were seeded into the cellulosic sponge and transplanted to the diabetic mice for functional examination in vivo. Results Gallbladder stem cells could be expanded for more than 15 passages. They expressed typical hepatic stem cell markers including CK19, EpCAM, Sox9, and albumin. By screening method, we found that adding Noggin, FR180204, and cyclopamine could efficiently induce gallbladder stem cells differentiating into insulin-secreting cells. These cells expressed Pdx1, Nkx6.1, and insulin but were negative for Gcg. After transplantation with the cellulosic sponge, they could ameliorate hyperglycemia in the diabetic mice. Conclusion This study provides a new approach which can generate insulin-secreting cells from the gallbladder without genetic modification. This offers an option for β cell therapy in treating type 1 diabetes.
Collapse
Affiliation(s)
- Fei Chen
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, China
| | - Tuo Li
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, China.,Department of Endocrinology, Changzheng Hospital, Navy Medical University (Second Military Medical University), 415 Fengyang Road, Shanghai, 200003, China
| | - Yu Sun
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, China
| | - Qinggui Liu
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, China
| | - Tao Yang
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, China
| | - Jiajia Chen
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, China
| | - Haiying Zhu
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, China
| | - Yongquan Shi
- Department of Endocrinology, Changzheng Hospital, Navy Medical University (Second Military Medical University), 415 Fengyang Road, Shanghai, 200003, China.
| | - Yi-Ping Hu
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, China.
| | - Min-Jun Wang
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, China.
| |
Collapse
|
13
|
Jansson L, Carlsson PO. Pancreatic Blood Flow with Special Emphasis on Blood Perfusion of the Islets of Langerhans. Compr Physiol 2019; 9:799-837. [PMID: 30892693 DOI: 10.1002/cphy.c160050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pancreatic islets are more richly vascularized than the exocrine pancreas, and possess a 5- to 10-fold higher basal and stimulated blood flow, which is separately regulated. This is reflected in the vascular anatomy of the pancreas where islets have separate arterioles. There is also an insulo-acinar portal system, where numerous venules connect each islet to the acinar capillaries. Both islets and acini possess strong metabolic regulation of their blood perfusion. Of particular importance, especially in the islets, is adenosine and ATP/ADP. Basal and stimulated blood flow is modified by local endothelial mediators, the nervous system as well as gastrointestinal hormones. Normally the responses to the nervous system, especially the parasympathetic and sympathetic nerves, are fairly similar in endocrine and exocrine parts. The islets seem to be more sensitive to the effects of endothelial mediators, especially nitric oxide, which is a permissive factor to maintain the high basal islet blood flow. The gastrointestinal hormones with pancreatic effects mainly influence the exocrine pancreatic blood flow, whereas islets are less affected. A notable exception is incretin hormones and adipokines, which preferentially affect islet vasculature. Islet hormones can influence both exocrine and endocrine blood vessels, and these complex effects are discussed. Secondary changes in pancreatic and islet blood flow occur during several conditions. To what extent changes in blood perfusion may affect the pathogenesis of pancreatic diseases is discussed. Both type 2 diabetes mellitus and acute pancreatitis are conditions where we think there is evidence that blood flow may contribute to disease manifestations. © 2019 American Physiological Society. Compr Physiol 9:799-837, 2019.
Collapse
Affiliation(s)
- Leif Jansson
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden
| | - Per-Ola Carlsson
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden.,Uppsala University, Department of Medical Sciences, Uppsala, Sweden
| |
Collapse
|
14
|
Sutherland MR, Ng KW, Drenckhahn JD, Wlodek ME, Black MJ. Impact of Intrauterine Growth Restriction on the Capillarization of the Early Postnatal Rat Heart. Anat Rec (Hoboken) 2019; 302:1580-1586. [PMID: 30471197 DOI: 10.1002/ar.24037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 01/15/2023]
Abstract
Capillarization plays a key role in the growth of the developing heart. We therefore hypothesized that impaired heart development following intrauterine growth restriction (IUGR) may arise from inadequate myocardial capillary growth. The aims of the study were to examine the effect of IUGR on the growth and diffusion radius of intramyocardial capillaries in rats at postnatal day 1. Uteroplacental insufficiency was induced in rats in late gestation (E18, term = E22) by bilateral uterine artery and vein ligation (restricted offspring N = 12; six males and six females); offspring from sham-operated dams were used as controls (N = 10; five males and five females). At postnatal day 1, the hearts were immersion-fixed and heart volume, capillary length density, capillary diffusion radius, and total capillary length were stereologically determined. Restricted offspring were significantly smaller at birth, with a concomitant reduction in heart volume and total myocardial capillary length compared to controls. Capillary growth was not impaired relative to heart size, with no significant differences in capillary length density or diffusion radius in the myocardium of restricted and control offspring. There were no sex differences in any of the parameters examined. In conclusion, there was no evidence to indicate that microvascular development is compromised in the heart of IUGR offspring at 1 day after birth. Total myocardial capillary length, however, was significantly reduced in the growth restricted offspring and further longitudinal studies are required to elucidate the long-term impact, particularly following hypertrophic cardiac growth. Anat Rec, 302:1580-1586, 2019. © 2018 American Association for Anatomy.
Collapse
Affiliation(s)
- Megan R Sutherland
- Department of Anatomy and Developmental Biology and the Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ka Wing Ng
- Department of Anatomy and Developmental Biology and the Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jörg D Drenckhahn
- Department of Pediatric Cardiology, Justus Liebig University Giessen, Giessen, Germany
| | - Mary E Wlodek
- Department of Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Mary Jane Black
- Department of Anatomy and Developmental Biology and the Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
15
|
Kelly AC, Bidwell CA, Chen X, Macko AR, Anderson MJ, Limesand SW. Chronic Adrenergic Signaling Causes Abnormal RNA Expression of Proliferative Genes in Fetal Sheep Islets. Endocrinology 2018; 159:3565-3578. [PMID: 30124804 PMCID: PMC6150948 DOI: 10.1210/en.2018-00540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/10/2018] [Indexed: 12/22/2022]
Abstract
Intrauterine growth restriction (IUGR) increases the risk of developing diabetes in later life, which indicates developmental programming of islets. IUGR fetuses with placental insufficiency develop hypoxemia, elevating epinephrine and norepinephrine (NE) concentrations throughout late gestation. To isolate the programming effects of chronically elevated catecholamines, NE was continuously infused into normally grown sheep fetuses for 7 days. High plasma NE concentrations suppress insulin, but after the NE infusion was terminated, persistent hypersecretion of insulin occurred. Our objective was to identify differential gene expression with RNA sequencing (RNAseq) in fetal islets after chronic adrenergic stimulation. After determining the NE-regulated genes, we identified the subset of differentially expressed genes that were common to both islets from NE fetuses and fetuses with IUGR to delineate the adrenergic-induced transcriptional responses. A portion of these genes were investigated in mouse insulinoma (Min6) cells chronically treated with epinephrine to better approximate the β-cell response. In islets from NE fetuses, RNAseq identified 321 differentially expressed genes that were overenriched for metabolic and hormone processes, and the subset of 96 differentially expressed genes common to IUGR islets were overenriched for protein digestion, vitamin metabolism, and cell replication pathways. Thirty-eight of the 96 NE-regulated IUGR genes changed similarly between models with functional enrichment for proliferation. In Min6 cells, chronic epinephrine stimulation slowed proliferation and augmented insulin secretion after treatment. These data establish molecular mechanisms underlying persistent adrenergic stimulation in hyperfunctional fetal islets and identify a subset of genes dysregulated by catecholamines in IUGR islets that may represent programming of β-cell proliferation capacity.
Collapse
Affiliation(s)
- Amy C Kelly
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | | | - Xiaochuan Chen
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Antoni R Macko
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Miranda J Anderson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
- Correspondence: Sean W. Limesand, PhD, School of Animal and Comparative Biomedical Sciences, University of Arizona, 1650 East Limberlost Drive, Tucson, Arizona 85719. E-mail:
| |
Collapse
|
16
|
Rashid CS, Bansal A, Simmons RA. Oxidative Stress, Intrauterine Growth Restriction, and Developmental Programming of Type 2 Diabetes. Physiology (Bethesda) 2018; 33:348-359. [PMID: 30109821 PMCID: PMC6230552 DOI: 10.1152/physiol.00023.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022] Open
Abstract
Intrauterine growth restriction (IUGR) leads to reduced birth weight and the development of metabolic diseases such as Type 2 diabetes in adulthood. Mitochondria dysfunction and oxidative stress are commonly found in key tissues (pancreatic islets, liver, and skeletal muscle) of IUGR individuals. In this review, we explore the role of oxidative stress in IUGR-associated diabetes etiology.
Collapse
Affiliation(s)
- Cetewayo S Rashid
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Amita Bansal
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
17
|
White A, Louey S, Chang EI, Boehmer BH, Goldstrohm D, Jonker SS, Rozance PJ. A 1 week IGF-1 infusion decreases arterial insulin concentrations but increases pancreatic insulin content and islet vascularity in fetal sheep. Physiol Rep 2018; 6:e13840. [PMID: 30175552 PMCID: PMC6119661 DOI: 10.14814/phy2.13840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022] Open
Abstract
Fetal insulin is critical for regulation of growth. Insulin concentrations are partly determined by the amount of β-cells present and their insulin content. Insulin-like growth factor-1 (IGF-1) is a fetal anabolic growth factor which also impacts β-cell mass in models of β-cell injury and diabetes. The extent to which circulating concentrations of IGF-1 impact fetal β-cell mass and pancreatic insulin content is unknown. We hypothesized that an infusion of an IGF-1 analog for 1 week into the late gestation fetal sheep circulation would increase β-cell mass, pancreatic islet size, and pancreatic insulin content. After the 1-week infusion, pancreatic insulin concentrations were 80% higher than control fetuses (P < 0.05), but there were no differences in β-cell area, β-cell mass, or pancreatic vascularity. However, pancreatic islet vascularity was 15% higher in IGF-1 fetuses and pancreatic VEGFA, HGF, IGF1, and IGF2 mRNA expressions were 70-90% higher in IGF-1 fetuses compared to control fetuses (P < 0.05). Plasma oxygen, glucose, and insulin concentrations were 25%, 22%, and 84% lower in IGF-1 fetuses, respectively (P < 0.05). The previously described role for IGF-1 as a β-cell growth factor may be more relevant for local paracrine signaling in the pancreas compared to circulating endocrine signaling.
Collapse
Affiliation(s)
- Alicia White
- Department of PediatricsPerinatal Research CenterUniversity of Colorado Denver School of MedicineAuroraColorado
| | - Samantha Louey
- Center for Developmental HealthKnight Cardiovascular InstituteOregon Health & Science UniversityPortlandOregon
| | - Eileen I Chang
- Department of PediatricsPerinatal Research CenterUniversity of Colorado Denver School of MedicineAuroraColorado
- Center for Developmental HealthKnight Cardiovascular InstituteOregon Health & Science UniversityPortlandOregon
| | - Brit H. Boehmer
- Department of PediatricsPerinatal Research CenterUniversity of Colorado Denver School of MedicineAuroraColorado
| | - David Goldstrohm
- Department of PediatricsPerinatal Research CenterUniversity of Colorado Denver School of MedicineAuroraColorado
| | - Sonnet S. Jonker
- Center for Developmental HealthKnight Cardiovascular InstituteOregon Health & Science UniversityPortlandOregon
| | - Paul J. Rozance
- Department of PediatricsPerinatal Research CenterUniversity of Colorado Denver School of MedicineAuroraColorado
| |
Collapse
|
18
|
Yates DT, Petersen JL, Schmidt TB, Cadaret CN, Barnes TL, Posont RJ, Beede KA. ASAS-SSR Triennnial Reproduction Symposium: Looking Back and Moving Forward-How Reproductive Physiology has Evolved: Fetal origins of impaired muscle growth and metabolic dysfunction: Lessons from the heat-stressed pregnant ewe. J Anim Sci 2018; 96:2987-3002. [PMID: 29701769 PMCID: PMC6095381 DOI: 10.1093/jas/sky164] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is the second leading cause of perinatal mortality and predisposes offspring to metabolic disorders at all stages of life. Muscle-centric fetal adaptations reduce growth and yield metabolic parsimony, beneficial for IUGR fetal survival but detrimental to metabolic health after birth. Epidemiological studies have reported that IUGR-born children experience greater prevalence of insulin resistance and obesity, which progresses to diabetes, hypertension, and other metabolic disorders in adulthood that reduce quality of life. Similar adaptive programming in livestock results in decreased birth weights, reduced and inefficient growth, decreased carcass merit, and substantially greater mortality rates prior to maturation. High rates of glucose consumption and metabolic plasticity make skeletal muscle a primary target for nutrient-sparing adaptations in the IUGR fetus, but at the cost of its contribution to proper glucose homeostasis after birth. Identifying the mechanisms underlying IUGR pathophysiology is a fundamental step in developing treatments and interventions to improve outcomes in IUGR-born humans and livestock. In this review, we outline the current knowledge regarding the adaptive restriction of muscle growth and alteration of glucose metabolism that develops in response to progressively exacerbating intrauterine conditions. In addition, we discuss the evidence implicating developmental changes in β adrenergic and inflammatory systems as key mechanisms for dysregulation of these processes. Lastly, we highlight the utility and importance of sheep models in developing this knowledge.
Collapse
Affiliation(s)
- Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Ty B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Taylor L Barnes
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
19
|
Soo JY, Wiese MD, Berry MJ, McMillen IC, Morrison JL. Intrauterine growth restriction may reduce hepatic drug metabolism in the early neonatal period. Pharmacol Res 2018; 134:68-78. [PMID: 29890254 DOI: 10.1016/j.phrs.2018.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/23/2018] [Accepted: 06/04/2018] [Indexed: 11/26/2022]
Abstract
The effects of intrauterine growth restriction (IUGR) extend well into postnatal life. IUGR is associated with an increased risk of adverse health outcomes, which often leads to greater medication usage. Many medications require hepatic metabolism for activation or clearance, but hepatic function may be altered in IUGR fetuses. Using a sheep model of IUGR, we determined the impact of IUGR on hepatic drug metabolism and drug transporter expression, both important mediators of fetal drug exposure, in late gestation and in neonatal life. In the late gestation fetus, IUGR decreased the gene expression of uptake drug transporter OATPC and increased P-glycoprotein protein expression in the liver, but there was no change in the activity of the drug metabolising enzymes CYP3A4 or CYP2D6. In contrast, at 3 weeks of age, CYP3A4 activity was reduced in the livers of lambs born with low birth weight (LBW), indicating that LBW results in changes to drug metabolising capacity in neonatal life. Together, these results suggest that IUGR may reduce hepatic drug metabolism in fetal and neonatal life through different mechanisms.
Collapse
Affiliation(s)
- Jia Yin Soo
- Early Origins of Adult Health Research Group, Adelaide, SA, 5001, Australia; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, 5001, Australia
| | - Michael D Wiese
- School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, 5001, Australia
| | - Mary J Berry
- Centre for Translational Physiology, Wellington, New Zealand; Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | | | - Janna L Morrison
- Early Origins of Adult Health Research Group, Adelaide, SA, 5001, Australia; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, 5001, Australia.
| |
Collapse
|
20
|
Năstase L, Cretoiu D, Stoicescu SM. Skeletal Muscle Damage in Intrauterine Growth Restriction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:93-106. [PMID: 30390249 DOI: 10.1007/978-981-13-1435-3_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intrauterine growth restriction (IUGR) represents a rate of fetal growth that is less than average for the population and the growth potential of a specific infant. IUGR produces infants who are small for gestational age (SGA) but also appropriate for gestational age (AGA). It refers to growth less than expected for gestational age and is most often under 10th percentiles for age. It develops during the late second and third trimesters of gestation. The etiology of IUGR is multifactorial. One of the most important factors which leads to IUGR is a decrease of nutrients and oxygen delivered to the fetus by the placenta. The growth of adipose tissue and skeletal muscle is limited by the declined fetal nutrient supply later in gestation. IUGR affects about 24% of babies born in developing countries. Worldwide, IUGR is the second cause of perinatal morbidity and mortality behind the premature birth and a major predisposing factor to metabolic disorders throughout postnatal life, even at adult age. Skeletal muscle represents about 35-40% of the body mass and plays an essential role in metabolic homeostasis, being responsible for 65% of fetal glucose consumption. A reduction in skeletal muscle growth characterizes IUGR fetuses compared to normal weight neonates. The decrease in muscle mass is not compensated after birth and persists until adulthood. This is a review of the literature, a neonatological, clinical point of view on the effects of IUGR on striated muscles. The available studies on this subject are currently the results of experimental research on animals, and information about the human fetus and newborn are scarce.
Collapse
Affiliation(s)
- Leonard Năstase
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. .,Alessandrescu-Rusescu National Institute for the Mother and Child Health, Polizu Maternity, Bucharest, Romania.
| | - Dragos Cretoiu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Alessandrescu-Rusescu National Institute for the Mother and Child Health, Polizu Maternity, Bucharest, Romania
| | - Silvia Maria Stoicescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Alessandrescu-Rusescu National Institute for the Mother and Child Health, Polizu Maternity, Bucharest, Romania
| |
Collapse
|
21
|
Boehmer BH, Limesand SW, Rozance PJ. The impact of IUGR on pancreatic islet development and β-cell function. J Endocrinol 2017; 235:R63-R76. [PMID: 28808079 PMCID: PMC5808569 DOI: 10.1530/joe-17-0076] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022]
Abstract
Placental insufficiency is a primary cause of intrauterine growth restriction (IUGR). IUGR increases the risk of developing type 2 diabetes mellitus (T2DM) throughout life, which indicates that insults from placental insufficiency impair β-cell development during the perinatal period because β-cells have a central role in the regulation of glucose tolerance. The severely IUGR fetal pancreas is characterized by smaller islets, less β-cells, and lower insulin secretion. Because of the important associations among impaired islet growth, β-cell dysfunction, impaired fetal growth, and the propensity for T2DM, significant progress has been made in understanding the pathophysiology of IUGR and programing events in the fetal endocrine pancreas. Animal models of IUGR replicate many of the observations in severe cases of human IUGR and allow us to refine our understanding of the pathophysiology of developmental and functional defects in islet from IUGR fetuses. Almost all models demonstrate a phenotype of progressive loss of β-cell mass and impaired β-cell function. This review will first provide evidence of impaired human islet development and β-cell function associated with IUGR and the impact on glucose homeostasis including the development of glucose intolerance and diabetes in adulthood. We then discuss evidence for the mechanisms regulating β-cell mass and insulin secretion in the IUGR fetus, including the role of hypoxia, catecholamines, nutrients, growth factors, and pancreatic vascularity. We focus on recent evidence from experimental interventions in established models of IUGR to understand better the pathophysiological mechanisms linking placental insufficiency with impaired islet development and β-cell function.
Collapse
Affiliation(s)
- Brit H Boehmer
- Department of PediatricsPerinatal Research Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Paul J Rozance
- Department of PediatricsPerinatal Research Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
22
|
Gurugubelli Krishna R, Vishnu Bhat B. Molecular mechanisms of intrauterine growth restriction. J Matern Fetal Neonatal Med 2017. [PMID: 28651476 DOI: 10.1080/14767058.2017.1347922] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intrauterine growth restriction (IUGR) is a pregnancy specific disease characterized by decreased growth rate of fetus than the normal growth potential at particular gestational age. In the current scenario it is a leading cause of fetal and neonatal morbidity and mortality. In the last decade exhilarating experimental studies from several laboratories have provided fascinating proof for comprehension of molecular basis of IUGR. Atypical expression of enzymes governed by TGFβ causes the placental apoptosis and altered expression of TGFβ due to hyper alimentation causes impairment of lung function. Crosstalk of cAMP with protein kinases plays a prominent role in the regulation of cortisol levels. Increasing levels of NOD1 proteins leads to development of IUGR by increasing the levels of inflammatory mediators. Increase in leptin synthesis in placental trophoblast cells is associated with IUGR. In this review, we emphasize on the regulatory mechanisms of IUGR and its associated diseases. They may help improve the in-utero fetal growth and provide a better therapeutic intervention for prevention and treatment of IUGR.
Collapse
Affiliation(s)
| | - B Vishnu Bhat
- a Department of Neonatology , JIPMER , Pondicherry , India
| |
Collapse
|
23
|
Limesand SW, Rozance PJ. Fetal adaptations in insulin secretion result from high catecholamines during placental insufficiency. J Physiol 2017; 595:5103-5113. [PMID: 28194805 DOI: 10.1113/jp273324] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
Placental insufficiency and intrauterine growth restriction (IUGR) of the fetus affects approximately 8% of all pregnancies and is associated with short- and long-term disturbances in metabolism. In pregnant sheep, experimental models with a small, defective placenta that restricts delivery of nutrients and oxygen to the fetus result in IUGR. Low blood oxygen concentrations increase fetal plasma catecholamine concentrations, which lower fetal insulin concentrations. All of these observations in sheep models with placental insufficiency are consistent with cases of human IUGR. We propose that sustained high catecholamine concentrations observed in the IUGR fetus produce developmental adaptations in pancreatic β-cells that impair fetal insulin secretion. Experimental evidence supporting this hypothesis shows that chronic elevation in circulating catecholamines in IUGR fetuses persistently inhibits insulin concentrations and secretion. Elevated catecholamines also allow for maintenance of a normal fetal basal metabolic rate despite low fetal insulin and glucose concentrations while suppressing fetal growth. Importantly, a compensatory augmentation in insulin secretion occurs following inhibition or cessation of catecholamine signalling in IUGR fetuses. This finding has been replicated in normally grown sheep fetuses following a 7-day noradrenaline (norepinephrine) infusion. Together, these programmed effects will potentially create an imbalance between insulin secretion and insulin-stimulated glucose utilization in the neonate which probably explains the transient hyperinsulinism and hypoglycaemia in some IUGR infants.
Collapse
Affiliation(s)
- Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Paul J Rozance
- Perinatal Research Center, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
24
|
Camacho LE, Chen X, Hay WW, Limesand SW. Enhanced insulin secretion and insulin sensitivity in young lambs with placental insufficiency-induced intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol 2017; 313:R101-R109. [PMID: 28490449 PMCID: PMC5582953 DOI: 10.1152/ajpregu.00068.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 11/22/2022]
Abstract
Intrauterine growth restriction (IUGR) is associated with persistent metabolic complications, but information is limited for IUGR infants. We determined glucose-stimulated insulin secretion (GSIS) and insulin sensitivity in young lambs with placental insufficiency-induced IUGR. Lambs with hyperthermia-induced IUGR (n = 7) were compared with control lambs (n = 8). GSIS was measured at 8 ± 1 days of age, and at 15 ± 1 days, body weight-specific glucose utilization rates were measured with radiolabeled d-glucose during a hyperinsulinemic-euglycemic clamp (HEC). IUGR lambs weighed 23% less (P < 0.05) than controls at birth. Fasting plasma glucose and insulin concentrations were not different between IUGR and controls for either study. First-phase insulin secretion was enhanced 2.3-fold in IUGR lambs compared with controls. However, second-phase insulin concentrations, glucose-potentiated arginine-stimulated insulin secretion, and β-cell mass were not different, indicating that IUGR β-cells have an intrinsic enhancement in acute GSIS. Compared with controls, IUGR lambs had higher body weight-specific glucose utilization rates and greater insulin sensitivity at fasting (1.6-fold) and hyperinsulinemic periods (2.4-fold). Improved insulin sensitivity for glucose utilization was not due to differences in skeletal muscle insulin receptor and glucose transporters 1 and 4 concentrations. Plasma lactate concentrations during HEC were elevated in IUGR lambs compared with controls, but no differences were found for glycogen content or citrate synthase activity in liver and muscle. Greater insulin sensitivity for glucose utilization and enhanced acute GSIS in young lambs are predicted from fetal studies but may promote conditions that exaggerate glucose disposal and lead to episodes of hypoglycemia in IUGR infants.
Collapse
Affiliation(s)
- Leticia E Camacho
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Xiaochuan Chen
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona.,Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China; and
| | - William W Hay
- Perinatal Research Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona;
| |
Collapse
|
25
|
Abstract
Epidemiological evidence links an individual's susceptibility to chronic disease in adult life to events during their intrauterine phase of development. Biologically this should not be unexpected, for organ systems are at their most plastic when progenitor cells are proliferating and differentiating. Influences operating at this time can permanently affect their structure and functional capacity, and the activity of enzyme systems and endocrine axes. It is now appreciated that such effects lay the foundations for a diverse array of diseases that become manifest many years later, often in response to secondary environmental stressors. Fetal development is underpinned by the placenta, the organ that forms the interface between the fetus and its mother. All nutrients and oxygen reaching the fetus must pass through this organ. The placenta also has major endocrine functions, orchestrating maternal adaptations to pregnancy and mobilizing resources for fetal use. In addition, it acts as a selective barrier, creating a protective milieu by minimizing exposure of the fetus to maternal hormones, such as glucocorticoids, xenobiotics, pathogens, and parasites. The placenta shows a remarkable capacity to adapt to adverse environmental cues and lessen their impact on the fetus. However, if placental function is impaired, or its capacity to adapt is exceeded, then fetal development may be compromised. Here, we explore the complex relationships between the placental phenotype and developmental programming of chronic disease in the offspring. Ensuring optimal placentation offers a new approach to the prevention of disorders such as cardiovascular disease, diabetes, and obesity, which are reaching epidemic proportions.
Collapse
Affiliation(s)
- Graham J Burton
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Abigail L Fowden
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Kent L Thornburg
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
26
|
Li EH, Huang QZ, Li GC, Xiang ZY, Zhang X. Effects of miRNA-200b on the development of diabetic retinopathy by targeting VEGFA gene. Biosci Rep 2017; 37:BSR20160572. [PMID: 28122882 PMCID: PMC5484021 DOI: 10.1042/bsr20160572] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/13/2022] Open
Abstract
The present study explored the effect of miR-200b on the development of diabetic retinopathy (DR) by targeting vascular endothelial growth factor A (VEGFA) gene. The study populations consisted of 255 DR patients (case group) and 253 healthy people (control group), while the expressions of miR-200b and VEGFA mRNA were detected by quantitative real-time PCR (qRT-PCR). Bioinformatics software and dual-luciferase reporter assay were used to confirm VEGFA as a target gene of miR-200b Also, a total of 70 Wistar male rats were selected and randomly assigned into blank, normal control (NC), miR-200b mimics, miR-200b inhibitors, miR-200b inhibitors + silencing vascular endothelial growth factor A (siVEGFA), and siVEGFA groups (n=10/group) respectively. Streptozotocin (STZ)-induced rat models of DR were successfully established. VEGFA, transforming growth factor-β1 (TGF-β1), hepatocyte growth factor (HGF), and pigment epithelium-derived factor (PEDF) were detected using qRT-PCR and Western blotting. In comparison with the control group, the case group showed lower expression of miR-200b but higher expression of VEGFA mRNA. VEGFA was confirmed as a target gene of miR-200b Rats in the miR-200b mimics and siVEGFA groups exhibited higher expression of PEDF mRNA and protein but lower expressions of VEGFA, TGF-β1, HGF protein, and mRNA than the NC group. There was no remarkable difference in expressions of PEDF, VEGFA, TGF-β1, HGF protein, and mRNA between the miR-200b inhibitors + siVEGFA and NC groups. In conclusion, the present study demonstrated that miR-200b might alleviate DR development by down-regulating its target gene VEGFA.
Collapse
Affiliation(s)
- En-Hui Li
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Taizhou 317000, P.R. China
| | - Qin-Zhu Huang
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Taizhou 317000, P.R. China
| | - Gao-Chun Li
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Taizhou 317000, P.R. China
| | - Zhen-Yang Xiang
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Taizhou 317000, P.R. China
| | - Xin Zhang
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Taizhou 317000, P.R. China
| |
Collapse
|
27
|
Kelly AC, Bidwell CA, McCarthy FM, Taska DJ, Anderson MJ, Camacho LE, Limesand SW. RNA Sequencing Exposes Adaptive and Immune Responses to Intrauterine Growth Restriction in Fetal Sheep Islets. Endocrinology 2017; 158:743-755. [PMID: 28200173 PMCID: PMC5460795 DOI: 10.1210/en.2016-1901] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/03/2017] [Indexed: 11/19/2022]
Abstract
The risk of type 2 diabetes is increased in children and adults who exhibited fetal growth restriction. Placental insufficiency and intrauterine growth restriction (IUGR) are common obstetrical complications associated with fetal hypoglycemia and hypoxia that reduce the β-cell mass and insulin secretion. In the present study, we have defined the underlying mechanisms of reduced growth and proliferation, impaired metabolism, and defective insulin secretion previously established as complications in islets from IUGR fetuses. In an IUGR sheep model that recapitulates human IUGR, high-throughput RNA sequencing showed the transcriptome of islets isolated from IUGR and control sheep fetuses and identified the transcripts that underlie β-cell dysfunction. Functional analysis expanded mechanisms involved in reduced proliferation and dysregulated metabolism that include specific cell cycle regulators and growth factors and mitochondrial, antioxidant, and exocytotic genes. These data also identified immune responses, wnt signaling, adaptive stress responses, and the proteasome as mechanisms of β-cell dysfunction. The reduction of immune-related gene expression did not reflect a change in macrophage density within IUGR islets. The present study reports the islet transcriptome in fetal sheep and established processes that limit insulin secretion and β-cell growth in fetuses with IUGR, which could explain the susceptibility to premature islet failure in adulthood. Islet dysfunction formed by intrauterine growth restriction increases the risk for diabetes.
Collapse
Affiliation(s)
- Amy C. Kelly
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85719
| | | | - Fiona M. McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85719
| | - David J. Taska
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85719
| | - Miranda J. Anderson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85719
| | - Leticia E. Camacho
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85719
| | - Sean W. Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85719
| |
Collapse
|
28
|
Chen X, Kelly AC, Yates DT, Macko AR, Lynch RM, Limesand SW. Islet adaptations in fetal sheep persist following chronic exposure to high norepinephrine. J Endocrinol 2017; 232:285-295. [PMID: 27888197 PMCID: PMC5173394 DOI: 10.1530/joe-16-0445] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 11/08/2022]
Abstract
Complications in pregnancy elevate fetal norepinephrine (NE) concentrations. Previous studies in NE-infused sheep fetuses revealed that sustained exposure to high NE resulted in lower expression of α2-adrenergic receptors in islets and increased insulin secretion responsiveness after acutely terminating the NE infusion. In this study, we determined if the compensatory increase in insulin secretion after chronic elevation of NE is independent of hyperglycemia in sheep fetuses and whether it is persistent in conjunction with islet desensitization to NE. After an initial assessment of glucose-stimulated insulin secretion (GSIS) at 129 ± 1 days of gestation, fetuses were continuously infused for seven days with NE and maintained at euglycemia with a maternal insulin infusion. Fetal GSIS studies were performed again on days 8 and 12. Adrenergic sensitivity was determined in pancreatic islets collected at day 12. NE infusion increased (P < 0.01) fetal plasma NE concentrations and lowered (P < 0.01) basal insulin concentrations compared to vehicle-infused controls. GSIS was 1.8-fold greater (P < 0.05) in NE-infused fetuses compared to controls at both one and five days after discontinuing the infusion. Glucose-potentiated arginine-induced insulin secretion was also enhanced (P < 0.01) in NE-infused fetuses. Maximum GSIS in islets isolated from NE-infused fetuses was 1.6-fold greater (P < 0.05) than controls, but islet insulin content and intracellular calcium signaling were not different between treatments. The half-maximal inhibitory concentration for NE was 2.6-fold greater (P < 0.05) in NE-infused islets compared to controls. These findings show that chronic NE exposure and not hyperglycemia produce persistent adaptations in pancreatic islets that augment β-cell responsiveness in part through decreased adrenergic sensitivity.
Collapse
Affiliation(s)
- Xiaochuan Chen
- Chongqing Key Laboratory of Forage & HerbivoreCollege of Animal Science and Technology, Southwest University, Chongqing, China
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Amy C Kelly
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Dustin T Yates
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Antoni R Macko
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Ronald M Lynch
- Department of PhysiologyUniversity of Arizona, Tucson, Arizona, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| |
Collapse
|
29
|
Benjamin JS, Culpepper CB, Brown LD, Wesolowski SR, Jonker SS, Davis MA, Limesand SW, Wilkening RB, Hay WW, Rozance PJ. Chronic anemic hypoxemia attenuates glucose-stimulated insulin secretion in fetal sheep. Am J Physiol Regul Integr Comp Physiol 2017; 312:R492-R500. [PMID: 28100476 PMCID: PMC5407078 DOI: 10.1152/ajpregu.00484.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/04/2017] [Accepted: 01/11/2017] [Indexed: 01/15/2023]
Abstract
Fetal insulin secretion is inhibited by acute hypoxemia. The relationship between prolonged hypoxemia and insulin secretion, however, is less well defined. To test the hypothesis that prolonged fetal hypoxemia impairs insulin secretion, studies were performed in sheep fetuses that were bled to anemic conditions for 9 ± 0 days (anemic, n = 19) and compared with control fetuses (n = 15). Arterial hematocrit and oxygen content were 34% and 52% lower, respectively, in anemic vs. control fetuses (P < 0.0001). Plasma glucose concentrations were 21% higher in the anemic group (P < 0.05). Plasma norepinephrine and cortisol concentrations increased 70% in the anemic group (P < 0.05). Glucose-, arginine-, and leucine-stimulated insulin secretion all were lower (P < 0.05) in anemic fetuses. No differences in pancreatic islet size or β-cell mass were found. In vitro, isolated islets from anemic fetuses secreted insulin in response to glucose and leucine as well as control fetal islets. These findings indicate a functional islet defect in anemic fetuses, which likely involves direct effects of low oxygen and/or increased norepinephrine on insulin release. In pregnancies complicated by chronic fetal hypoxemia, increasing fetal oxygen concentrations may improve insulin secretion.
Collapse
Affiliation(s)
- Joshua S Benjamin
- Perinatal Research Center, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Christine B Culpepper
- Perinatal Research Center, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Laura D Brown
- Perinatal Research Center, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado.,Center for Women's Health Research, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado.,Center for Women's Health Research, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Sonnet S Jonker
- Knight Cardiovascular Institute Center for Developmental Health, Oregon Health & Science University, Portland, Oregon; and
| | - Melissa A Davis
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Randall B Wilkening
- Perinatal Research Center, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - William W Hay
- Perinatal Research Center, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado; .,Center for Women's Health Research, University of Colorado Denver School of Medicine, Aurora, Colorado
| |
Collapse
|
30
|
Rozance PJ, Hay WW. Pancreatic islet hepatocyte growth factor and vascular endothelial growth factor A signaling in growth restricted fetuses. Mol Cell Endocrinol 2016; 435:78-84. [PMID: 26820125 PMCID: PMC4959995 DOI: 10.1016/j.mce.2016.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/16/2016] [Accepted: 01/22/2016] [Indexed: 12/31/2022]
Abstract
Placental insufficiency leads to intrauterine growth restriction (IUGR) and a lifelong risk of developing type 2 diabetes. Impaired islet development in the growth restricted fetus, including decreased β-cell replication, mass, and insulin secretion, is strongly implicated in the pathogenesis of later life type 2 diabetes. Currently, standard medical management of a woman with a pregnancy complicated by placental insufficiency and fetal IUGR is increased fetal surveillance and indicated preterm delivery. This leads to the dual complications of IUGR and preterm birth - both of which may increase the lifelong risk for type 2 diabetes. In order to develop therapeutic interventions in IUGR pregnancies complicated by placental insufficiency and decrease the risk of later development of type 2 diabetes in the offspring, the mechanisms responsible for impaired islet development in these cases must be determined. This review focuses on current investigations testing the hypothesis that decreased nutrient supply to the IUGR fetus inhibits an intra-islet hepatocyte growth factor - vascular endothelial growth factor A (HGF - VEGFA) feed forward signaling pathway and that this is responsible for developmental islet defects.
Collapse
Affiliation(s)
- Paul J Rozance
- Perinatal Research Center, University of Colorado Denver School of Medicine, Department of Pediatrics, USA.
| | - William W Hay
- Perinatal Research Center, University of Colorado Denver School of Medicine, Department of Pediatrics, USA
| |
Collapse
|
31
|
Thornburg KL, Kolahi K, Pierce M, Valent A, Drake R, Louey S. Biological features of placental programming. Placenta 2016; 48 Suppl 1:S47-S53. [PMID: 27817870 DOI: 10.1016/j.placenta.2016.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 01/06/2023]
Abstract
The placenta is a key organ in programming the fetus for later disease. This review outlines nine of many structural and physiological features of the placenta which are associated with adult onset chronic disease. 1) Placental efficiency relates the placental mass to the fetal mass. Ratios at the extremes are related to cardiovascular disease risk later in life. 2) Placental shape predicts a large number of disease outcomes in adults but the regulators of placental shape are not known. 3) Non-human primate studies suggest that at about mid-gestation, the placenta becomes less plastic and less able to compensate for pathological stresses. 4) Recent studies suggest that lipids have an important role in regulating placental metabolism and thus the future health of offspring. 5) Placental inflammation affects nutrient transport to the fetus and programs for later disease. 6) Placental insufficiency leads to inadequate fetal growth and elevated risks for later life disease. 7) Maternal height, fat and muscle mass are important in combination with placental size and shape in predicting adult disease. 8) The placenta makes a host of hormones that influence fetal growth and are related to offspring disease. Unfortunately, our knowledge of placental growth and function lags far behind that of other organs. An investment in understanding placental growth and function will yield enormous benefits to human health because it is a key player in the origins of the most expensive and deadly chronic diseases that humans face.
Collapse
Affiliation(s)
- Kent L Thornburg
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA; Department of Medicine, Oregon Health and Science University, Portland, OR, USA; Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, USA; Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, OR, USA.
| | - Kevin Kolahi
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Melinda Pierce
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Amy Valent
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, USA
| | - Rachel Drake
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Samantha Louey
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA; Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
32
|
Brown LD, Davis M, Wai S, Wesolowski SR, Hay WW, Limesand SW, Rozance PJ. Chronically Increased Amino Acids Improve Insulin Secretion, Pancreatic Vascularity, and Islet Size in Growth-Restricted Fetal Sheep. Endocrinology 2016; 157:3788-3799. [PMID: 27501184 PMCID: PMC5045508 DOI: 10.1210/en.2016-1328] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Placental insufficiency is associated with reduced supply of amino acids to the fetus and leads to intrauterine growth restriction (IUGR). IUGR fetuses are characterized by lower glucose-stimulated insulin secretion, smaller pancreatic islets with less β-cells, and impaired pancreatic vascularity. To test whether supplemental amino acids infused into the IUGR fetus could improve these complications of IUGR we used acute (hours) and chronic (11 d) direct fetal amino acid infusions into a sheep model of placental insufficiency and IUGR near the end of gestation. IUGR fetuses had attenuated acute amino acid-stimulated insulin secretion compared with control fetuses. These results were confirmed in isolated IUGR pancreatic islets. After the chronic fetal amino acid infusion, fetal glucose-stimulated insulin secretion and islet size were restored to control values. These changes were associated with normalization of fetal pancreatic vascularity and higher fetal pancreatic vascular endothelial growth factor A protein concentrations. These results demonstrate that decreased fetal amino acid supply contributes to the pathogenesis of pancreatic islet defects in IUGR. Moreover, the results show that pancreatic islets in IUGR fetuses retain their ability to respond to increased amino acids near the end of gestation after chronic fetal growth restriction.
Collapse
Affiliation(s)
- Laura D Brown
- Perinatal Research Center (L.D.B., S.W., W.W.H., P.J.R.), University of Colorado School of Medicine, Aurora, Colorado 80045; School of Animal and Comparative Biomedical Sciences (M.D., S.W.L.), University of Arizona, Tucson, Arizona 85719; and Center for Women's Health Research (L.D.B., S.R.W., P.J.R.), University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Melissa Davis
- Perinatal Research Center (L.D.B., S.W., W.W.H., P.J.R.), University of Colorado School of Medicine, Aurora, Colorado 80045; School of Animal and Comparative Biomedical Sciences (M.D., S.W.L.), University of Arizona, Tucson, Arizona 85719; and Center for Women's Health Research (L.D.B., S.R.W., P.J.R.), University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Sandra Wai
- Perinatal Research Center (L.D.B., S.W., W.W.H., P.J.R.), University of Colorado School of Medicine, Aurora, Colorado 80045; School of Animal and Comparative Biomedical Sciences (M.D., S.W.L.), University of Arizona, Tucson, Arizona 85719; and Center for Women's Health Research (L.D.B., S.R.W., P.J.R.), University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Stephanie R Wesolowski
- Perinatal Research Center (L.D.B., S.W., W.W.H., P.J.R.), University of Colorado School of Medicine, Aurora, Colorado 80045; School of Animal and Comparative Biomedical Sciences (M.D., S.W.L.), University of Arizona, Tucson, Arizona 85719; and Center for Women's Health Research (L.D.B., S.R.W., P.J.R.), University of Colorado School of Medicine, Aurora, Colorado 80045
| | - William W Hay
- Perinatal Research Center (L.D.B., S.W., W.W.H., P.J.R.), University of Colorado School of Medicine, Aurora, Colorado 80045; School of Animal and Comparative Biomedical Sciences (M.D., S.W.L.), University of Arizona, Tucson, Arizona 85719; and Center for Women's Health Research (L.D.B., S.R.W., P.J.R.), University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Sean W Limesand
- Perinatal Research Center (L.D.B., S.W., W.W.H., P.J.R.), University of Colorado School of Medicine, Aurora, Colorado 80045; School of Animal and Comparative Biomedical Sciences (M.D., S.W.L.), University of Arizona, Tucson, Arizona 85719; and Center for Women's Health Research (L.D.B., S.R.W., P.J.R.), University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Paul J Rozance
- Perinatal Research Center (L.D.B., S.W., W.W.H., P.J.R.), University of Colorado School of Medicine, Aurora, Colorado 80045; School of Animal and Comparative Biomedical Sciences (M.D., S.W.L.), University of Arizona, Tucson, Arizona 85719; and Center for Women's Health Research (L.D.B., S.R.W., P.J.R.), University of Colorado School of Medicine, Aurora, Colorado 80045
| |
Collapse
|
33
|
Hay WW, Brown LD, Rozance PJ, Wesolowski SR, Limesand SW. Challenges in nourishing the intrauterine growth-restricted foetus - Lessons learned from studies in the intrauterine growth-restricted foetal sheep. Acta Paediatr 2016; 105:881-9. [PMID: 27028695 PMCID: PMC5961494 DOI: 10.1111/apa.13413] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/24/2016] [Accepted: 03/29/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Previous attempts to improve growth and development of the intrauterine growth-restricted (IUGR) foetus during pregnancy have not worked or caused harm. Our research identifies tissue-specific mechanisms underlying foetal growth restriction and then tests strategies to improve growth and ameliorate many of the metabolic problems before the infant is born. The goal of our studies is to reduce the impact of foetal growth restriction at critical stages of development on the lifelong complications of IUGR offspring. CONCLUSION Defining specific mechanisms that cause growth restriction in the foetus might identify specific nutrients and hormones that could be given to the mother to improve foetal growth and reduce metabolic complications, using strategies first tested in our IUGR animal model.
Collapse
Affiliation(s)
- William W. Hay
- Perinatal Research Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Laura D. Brown
- Perinatal Research Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Paul J. Rozance
- Perinatal Research Center, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Sean W. Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
34
|
Macko AR, Yates DT, Chen X, Shelton LA, Kelly AC, Davis MA, Camacho LE, Anderson MJ, Limesand SW. Adrenal Demedullation and Oxygen Supplementation Independently Increase Glucose-Stimulated Insulin Concentrations in Fetal Sheep With Intrauterine Growth Restriction. Endocrinology 2016; 157:2104-15. [PMID: 26937714 PMCID: PMC4870878 DOI: 10.1210/en.2015-1850] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In pregnancies complicated by placental insufficiency and intrauterine growth restriction (IUGR), fetal glucose and oxygen concentrations are reduced, whereas plasma norepinephrine and epinephrine concentrations are elevated throughout the final third of gestation. Here we study the effects of chronic hypoxemia and hypercatecholaminemia on β-cell function in fetal sheep with placental insufficiency-induced IUGR that is produced by maternal hyperthermia. IUGR and control fetuses underwent a sham (intact) or bilateral adrenal demedullation (AD) surgical procedure at 0.65 gestation. As expected, AD-IUGR fetuses had lower norepinephrine concentrations than intact-IUGR fetuses despite being hypoxemic and hypoglycemic. Placental insufficiency reduced fetal weights, but the severity of IUGR was less with AD. Although basal plasma insulin concentrations were lower in intact-IUGR and AD-IUGR fetuses compared with intact-controls, glucose-stimulated insulin concentrations were greater in AD-IUGR fetuses compared with intact-IUGR fetuses. Interestingly, AD-controls had lower glucose- and arginine-stimulated insulin concentrations than intact-controls, but AD-IUGR and AD-control insulin responses were not different. To investigate chronic hypoxemia in the IUGR fetus, arterial oxygen tension was increased to normal levels by increasing the maternal inspired oxygen fraction. Oxygenation of IUGR fetuses enhanced glucose-stimulated insulin concentrations 3.3-fold in intact-IUGR and 1.7-fold in AD-IUGR fetuses but did not lower norepinephrine and epinephrine concentrations. Together these findings show that chronic hypoxemia and hypercatecholaminemia have distinct but complementary roles in the suppression of β-cell responsiveness in IUGR fetuses.
Collapse
Affiliation(s)
- Antoni R Macko
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona 85719
| | - Dustin T Yates
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona 85719
| | - Xiaochuan Chen
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona 85719
| | - Leslie A Shelton
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona 85719
| | - Amy C Kelly
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona 85719
| | - Melissa A Davis
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona 85719
| | - Leticia E Camacho
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona 85719
| | - Miranda J Anderson
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona 85719
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona 85719
| |
Collapse
|
35
|
Mueller CA, Eme J, Burggren WW, Roghair RD, Rundle SD. Challenges and opportunities in developmental integrative physiology. Comp Biochem Physiol A Mol Integr Physiol 2015; 184:113-24. [PMID: 25711780 DOI: 10.1016/j.cbpa.2015.02.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/15/2015] [Accepted: 02/17/2015] [Indexed: 01/20/2023]
Abstract
This review explores challenges and opportunities in developmental physiology outlined by a symposium at the 2014 American Physiological Society Intersociety Meeting: Comparative Approaches to Grand Challenges in Physiology. Across animal taxa, adverse embryonic/fetal environmental conditions can alter morphological and physiological phenotypes in juveniles or adults, and capacities for developmental plasticity are common phenomena. Human neonates with body sizes at the extremes of perinatal growth are at an increased risk of adult disease, particularly hypertension and cardiovascular disease. There are many rewarding areas of current and future research in comparative developmental physiology. We present key mechanisms, models, and experimental designs that can be used across taxa to investigate patterns in, and implications of, the development of animal phenotypes. Intraspecific variation in the timing of developmental events can be increased through developmental plasticity (heterokairy), and could provide the raw material for selection to produce heterochrony--an evolutionary change in the timing of developmental events. Epigenetics and critical windows research recognizes that in ovo or fetal development represent a vulnerable period in the life history of an animal, when the developing organism may be unable to actively mitigate environmental perturbations. 'Critical windows' are periods of susceptibility or vulnerability to environmental or maternal challenges, periods when recovery from challenge is possible, and periods when the phenotype or epigenome has been altered. Developmental plasticity may allow survival in an altered environment, but it also has possible long-term consequences for the animal. "Catch-up growth" in humans after the critical perinatal window has closed elicits adult obesity and exacerbates a programmed hypertensive phenotype (one of many examples of "fetal programing"). Grand challenges for developmental physiology include integrating variation in developmental timing within and across generations, applying multiple stressor dosages and stressor exposure at different developmental timepoints, assessment of epigenetic and parental influences, developing new animal models and techniques, and assessing and implementing these designs and models in human health and development.
Collapse
Affiliation(s)
- C A Mueller
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - J Eme
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - W W Burggren
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA.
| | - R D Roghair
- Stead Family Department of Pediatrics, University of Iowa, 1270 CBRB JPP, Iowa City, IA 52242, USA.
| | - S D Rundle
- Marine Biology and Ecology Research Centre, Plymouth University, 611 Davy Building Drake Circus, Plymouth, Devon PL4 8AA, UK.
| |
Collapse
|
36
|
Steyn LV, Ananthakrishnan K, Anderson MJ, Patek R, Kelly A, Vagner J, Lynch RM, Limesand SW. A Synthetic Heterobivalent Ligand Composed of Glucagon-Like Peptide 1 and Yohimbine Specifically Targets β Cells Within the Pancreas. Mol Imaging Biol 2015; 17:461-70. [PMID: 25604385 DOI: 10.1007/s11307-014-0817-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/11/2014] [Accepted: 12/18/2014] [Indexed: 12/15/2022]
Abstract
PURPOSE β Cell specificity for a heterobivalent ligand composed of glucagon-like peptide-1 (GLP-1) linked to yohimbine (GLP-1/Yhb) was evaluated to determine its utility as a noninvasive imaging agent. PROCEDURES Competition binding assays were performed on βTC3 cells and isolated rat islets. Immunostaining for insulin was used to co-localized intravenously injected Cy5-labeled GLP-1/Yhb in β cells of Sprague-Dawley rats. Rats were intravenously injected with In-111-labeled GLP-1/Yhb to determine clearance rates and tissue biodistribution. Tissue-specific binding was confirmed by competition with pre-administration of unlabeled GLP-1/Yhb and in Streptozotocin-induced diabetic rats. RESULTS In βTC3 cells, high affinity binding of GLP-1/Yhb required interactions with both receptors because monovalent competition or receptor knockdown with RNAi lowered specificity and avidity of the heterobivalent ligand. Binding specificity for isolated islets was 2.6-fold greater than that of acinar tissue or islets pre-incubated with excess unlabeled GLP-1/Yhb. Immunofluorescent localization of Cy5-labeled GLP-1/Yhb was restricted to pancreatic islets. Within 30 min, ~90% of the In-111-labeled GLP-1/Yhb was cleared from blood. Tissue-specific accumulation of radiolabeled ligand was apparent in the pancreas, but not in other tissues within the abdominal imaging field. Pancreas specificity was lost in Streptozotocin-induced diabetic rats. CONCLUSIONS The GLP-1/Yhb exhibits high specificity for β cells, rapid blood clearance rates, and low non-specific uptake by other tissues within the abdominal imaging field. These characteristics of GLP-1/Yhb are desirable for application to β cell imaging in vivo and provide a basis for developing additional multivalent β cell-specific targeting agents to aid in the management of type 1 diabetes.
Collapse
Affiliation(s)
- Leah V Steyn
- School of Animal and Comparative Biomedical Sciences, William J. Parker Agricultural Research Center, The University of Arizona, 4101 N Campbell Ave, Tucson, AZ, 85719, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Davis MA, Macko AR, Steyn LV, Anderson MJ, Limesand SW. Fetal adrenal demedullation lowers circulating norepinephrine and attenuates growth restriction but not reduction of endocrine cell mass in an ovine model of intrauterine growth restriction. Nutrients 2015; 7:500-16. [PMID: 25584967 PMCID: PMC4303851 DOI: 10.3390/nu7010500] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/25/2014] [Indexed: 12/26/2022] Open
Abstract
Placental insufficiency is associated with fetal hypoglycemia, hypoxemia, and elevated plasma norepinephrine (NE) that become increasingly pronounced throughout the third trimester and contribute to intrauterine growth restriction (IUGR). This study evaluated the effect of fetal adrenal demedullation (AD) on growth and pancreatic endocrine cell mass. Placental insufficiency-induced IUGR was created by exposing pregnant ewes to elevated ambient temperatures during mid-gestation. Treatment groups consisted of control and IUGR fetuses with either surgical sham or AD at 98 days gestational age (dGA; term = 147 dGA), a time-point that precedes IUGR. Samples were collected at 134 dGA. IUGR-sham fetuses were hypoxemic, hypoglycemic, and hypoinsulinemic, and values were similar in IUGR-AD fetuses. Plasma NE concentrations were ~5-fold greater in IUGR-sham compared to control-sham, control-AD, and IUGR-AD fetuses. IUGR-sham and IUGR-AD fetuses weighed less than controls. Compared to IUGR-sham fetuses, IUGR-AD fetuses weighed more and asymmetrical organ growth was absent. Pancreatic β-cell mass and α-cell mass were lower in both IUGR-sham and IUGR-AD fetuses compared to controls, however, pancreatic endocrine cell mass relative to fetal mass was lower in IUGR-AD fetuses. These findings indicate that NE, independently of hypoxemia, hypoglycemia and hypoinsulinemia, influence growth and asymmetry of growth but not pancreatic endocrine cell mass in IUGR fetuses.
Collapse
Affiliation(s)
- Melissa A Davis
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Antoni R Macko
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Leah V Steyn
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Miranda J Anderson
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|