1
|
Zhang JJ, Ni P, Song Y, Gao MJ, Guo XY, Zhao BQ. Effective protective mechanisms of HO-1 in diabetic complications: a narrative review. Cell Death Discov 2024; 10:433. [PMID: 39389941 PMCID: PMC11466965 DOI: 10.1038/s41420-024-02205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder with persistent hyperglycemia caused by a variety of underlying factors. Chronic hyperglycemia can lead to diverse serious consequences and diversified complications, which pose a serious threat to patients. Among the major complications are cardiovascular disease, kidney disease, diabetic foot ulcers, diabetic retinopathy, and neurological disorders. Heme oxygenase 1 (HO-1) is a protective enzyme with antioxidant, anti-inflammatory and anti-apoptotic effects, which has been intensively studied and plays an important role in diabetic complications. By inducing the expression and activity of HO-1, it can enhance the antioxidant, anti-inflammatory, and anti-apoptotic capacity of tissues, and thus reduce the degree of damage in diabetic complications. The present study aims to review the relationship between HO-1 and the pathogenesis of diabetes and its complications. HO-1 is involved in the regulation of macrophage polarization and promotes the M1 state (pro-inflammatory) towards to the M2 state (anti-inflammatory). Induction of HO-1 expression in dendritic cells inhibits them maturation and secretion of pro-inflammatory cytokines and promotes regulatory T cell (Treg cell) responses. The induction of HO-1 can reduce the production of reactive oxygen species, thereby reducing oxidative stress and inflammation. Besides, HO-1 also has an important effect in novel programmed cell death such as pyroptosis and ferroptosis, thereby playing a protective role against diabetes. In conclusion, HO-1 plays a significant role in the occurrence and development of diabetic complications and is closely associated with a variety of complications. HO-1 is anticipated to serve as a novel target for addressing diabetic complications, and it holds promise as a potential therapeutic agent for diabetes and its associated complications. We hope to provide inspiration and ideas for future studies in the mechanism and targets of HO-1 through this review.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Ping Ni
- Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Yi Song
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Man-Jun Gao
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Xi-Ying Guo
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| | - Bao-Qing Zhao
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| |
Collapse
|
2
|
Shen Y, Dong Z, Fan F, Li K, Zhu S, Dai R, Huang J, Xie N, He L, Gong Z, Yang X, Tan J, Liu L, Yu F, Tang Y, You Z, Xi J, Wang Y, Kong W, Zhang Y, Fu Y. Targeting cytokine-like protein FAM3D lowers blood pressure in hypertension. Cell Rep Med 2023:101072. [PMID: 37301198 DOI: 10.1016/j.xcrm.2023.101072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/08/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Current antihypertensive options still incompletely control blood pressure, suggesting the existence of uncovered pathogenic mechanisms. Here, whether cytokine-like protein family with sequence similarity 3, member D (FAM3D) is involved in hypertension etiology is evaluated. A case-control study exhibits that FAM3D is elevated in patients with hypertension, with a positive association with odds of hypertension. FAM3D deficiency significantly ameliorates angiotensin II (AngII)-induced hypertension in mice. Mechanistically, FAM3D directly causes endothelial nitric oxide synthase (eNOS) uncoupling and impairs endothelium-dependent vasorelaxation, whereas 2,4-diamino-6-hydroxypyrimidine to induce eNOS uncoupling abolishes the protective effect of FAM3D deficiency against AngII-induced hypertension. Furthermore, antagonism of formyl peptide receptor 1 (FPR1) and FPR2 or the suppression of oxidative stress blunts FAM3D-induced eNOS uncoupling. Translationally, targeting endothelial FAM3D by adeno-associated virus or intraperitoneal injection of FAM3D-neutralizing antibodies markedly ameliorates AngII- or deoxycorticosterone acetate (DOCA)-salt-induced hypertension. Conclusively, FAM3D causes eNOS uncoupling through FPR1- and FPR2-mediated oxidative stress, thereby exacerbating the development of hypertension. FAM3D may be a potential therapeutic target for hypertension.
Collapse
Affiliation(s)
- Yicong Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Zhigang Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Fangfang Fan
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Cardiology, Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China
| | - Kaiyin Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Cardiology, Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China
| | - Shirong Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Rongbo Dai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Nan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong 518057, China
| | - Li He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Ze Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Xueyuan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jiaai Tan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Limei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yida Tang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zhen You
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianzhong Xi
- Department of Biomedicine, College of Engineering, Peking University, Beijing 100871, China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
| | - Yan Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Cardiology, Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China.
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
| |
Collapse
|
3
|
Vitek L, Hinds TD, Stec DE, Tiribelli C. The physiology of bilirubin: health and disease equilibrium. Trends Mol Med 2023; 29:315-328. [PMID: 36828710 PMCID: PMC10023336 DOI: 10.1016/j.molmed.2023.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/24/2023]
Abstract
Bilirubin has several physiological functions, both beneficial and harmful. In addition to reactive oxygen species-scavenging activities, bilirubin has potent immunosuppressive effects associated with long-term pathophysiological sequelae. It has been recently recognized as a hormone with endocrine actions and interconnected effects on various cellular signaling pathways. Current studies show that bilirubin also decreases adiposity and prevents metabolic and cardiovascular diseases. All in all, the physiological importance of bilirubin is only now coming to light, and strategies for increasing plasma bilirubin levels to combat chronic diseases are starting to be considered. This review discusses the beneficial effects of increasing plasma bilirubin, incorporates emerging areas of bilirubin biology, and provides key concepts to advance the field.
Collapse
Affiliation(s)
- Libor Vitek
- Fourth Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 120 00 Prague, Czech Republic
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, Barnstable Brown Diabetes Center, Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | |
Collapse
|
4
|
Li J, Xin Y, Li J, Meng M, Zhou L, Qiu H, Chen H, Li H. The predictive effect of direct-indirect bilirubin ratio on clinical events in acute coronary syndrome: results from an observational cohort study in north China. BMC Cardiovasc Disord 2022; 22:478. [DOI: 10.1186/s12872-022-02894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/11/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background:
Patients with extremely high-risk ASCVD usually suffered poor prognosis, bilirubin is considered closely related to cardiovascular outcomes. However, there is controversy over the relationship between bilirubin and coronary artery disease. This study aimed to evaluate the predictive value of the DIBIL ratio in patients with extremely high-risk ASCVD.
Methods:
10,260 consecutive patients with extremely high-risk ASCVD were enrolled in this study. All patients were divided into three groups according to their DIBIL ratio. The incidence of MACCEs was recorded, and in a competing risk regression, the incidence of MACCEs and their subgroups were recorded. The direct-indirect bilirubin ratio (DIBIL ratio) was calculated by the direct bilirubin (umol/L)/indirect bilirubin (umol/L) ratio, all laboratory values were obtained from the first fasting blood samples during hospitalization.
Results:
The area under the ROC curve of the DIBIL ratio to predict the occurrence of all-cause death was 0.668, the cut-off value of which is 0.275. Competing risk regression indicated that DIBIL ratio was positively correlated with all-cause death [1.829 (1.405–2.381), p < 0.001], CV death [1.600 (1.103, 2.321), p = 0.013]. The addition of DIBIL ratio to a baseline risk model had an incremental effect on the predictive value for all-cause death [IDI 0.004(0, 0.010), p < 0.001; C-index 0.805(0.783–0.827), p < 0.001].
Conclusion:
The DIBIL ratio was an excellent tool to predict poor prognosis, suggesting that this index may be developed as a biomarker for risk stratification and prognosis in extremely ASCVD patients.
Collapse
|
5
|
Wang L, Cheng CK, Yi M, Lui KO, Huang Y. Targeting endothelial dysfunction and inflammation. J Mol Cell Cardiol 2022; 168:58-67. [PMID: 35460762 DOI: 10.1016/j.yjmcc.2022.04.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022]
Abstract
Vascular endothelium maintains vascular homeostasis through liberating a spectrum of vasoactive molecules, both protective and harmful regulators of vascular tone, structural remodeling, inflammation and atherogenesis. An intricate balance between endothelium-derived relaxing factors (nitric oxide, prostacyclin and endothelium-derived hyperpolarizing factor) and endothelium-derived contracting factors (superoxide anion, endothelin-1 and constrictive prostaglandins) tightly regulates vascular function. Disruption of such balance signifies endothelial dysfunction, a critical contributor in aging and chronic cardiometabolic disorders, such as obesity, diabetes, hypertension, dyslipidemia and atherosclerotic vascular diseases. Among many proposed cellular and molecular mechanisms causing endothelial dysfunction, oxidative stress and inflammation are often the pivotal players and they are naturally considered as useful targets for intervention in patients with cardiovascular and metabolic diseases. In this article, we provide a recent update on the therapeutic values of pharmacological agents, such as cyclooxygenase-2 inhibitors, renin-angiotensin-system inhibitors, bone morphogenic protein 4 inhibitors, peroxisome proliferator-activated receptor δ agonists, and glucagon-like peptide 1-elevating drugs, and the physiological factors, particularly hemodynamic forces, that improve endothelial function by targeting endothelial oxidative stress and inflammation.
Collapse
Affiliation(s)
- Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Chak Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Min Yi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Kathy O Lui
- Department of Chemical Pathology and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Numal R, Selcuk O, Kurbanoglu S, Shah A, Siddiq M, Uslu B. Trends In Electrochemical Nanosensors For The Analysis Of Antioxidants. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Adin CA. Bilirubin as a Therapeutic Molecule: Challenges and Opportunities. Antioxidants (Basel) 2021; 10:1536. [PMID: 34679671 PMCID: PMC8532879 DOI: 10.3390/antiox10101536] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
There is strong evidence that serum free bilirubin concentration has significant effects on morbidity and mortality in the most significant health conditions of our times, including cardiovascular disease, diabetes, and obesity/metabolic syndrome. Supplementation of bilirubin in animal and experimental models has reproduced these protective effects, but several factors have slowed the application bilirubin as a therapeutic agent in human patients. Bilirubin is poorly soluble in water, and is a complex molecule that is difficult to synthesize. Current sources of this molecule are animal-derived, creating concerns regarding the risk of virus or prion transmission. However, recent developments in nanoparticle drug delivery, biosynthetic strategies, and drug synthesis have opened new avenues for applying bilirubin as a pharmaceutical agent. This article reviews the chemistry and physiology of bilirubin, potential clinical applications and summarizes current strategies for safe and efficient drug delivery.
Collapse
Affiliation(s)
- Christopher A Adin
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
8
|
Li Y, Ma K, Han Z, Chi M, Sai X, Zhu P, Ding Z, Song L, Liu C. Immunomodulatory Effects of Heme Oxygenase-1 in Kidney Disease. Front Med (Lausanne) 2021; 8:708453. [PMID: 34504854 PMCID: PMC8421649 DOI: 10.3389/fmed.2021.708453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/31/2021] [Indexed: 01/23/2023] Open
Abstract
Kidney disease is a general term for heterogeneous damage that affects the function and the structure of the kidneys. The rising incidence of kidney diseases represents a considerable burden on the healthcare system, so the development of new drugs and the identification of novel therapeutic targets are urgently needed. The pathophysiology of kidney diseases is complex and involves multiple processes, including inflammation, autophagy, cell-cycle progression, and oxidative stress. Heme oxygenase-1 (HO-1), an enzyme involved in the process of heme degradation, has attracted widespread attention in recent years due to its cytoprotective properties. As an enzyme with known anti-oxidative functions, HO-1 plays an indispensable role in the regulation of oxidative stress and is involved in the pathogenesis of several kidney diseases. Moreover, current studies have revealed that HO-1 can affect cell proliferation, cell maturation, and other metabolic processes, thereby altering the function of immune cells. Many strategies, such as the administration of HO-1-overexpressing macrophages, use of phytochemicals, and carbon monoxide-based therapies, have been developed to target HO-1 in a variety of nephropathological animal models, indicating that HO-1 is a promising protein for the treatment of kidney diseases. Here, we briefly review the effects of HO-1 induction on specific immune cell populations with the aim of exploring the potential therapeutic roles of HO-1 and designing HO-1-based therapeutic strategies for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yunlong Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Zhongyu Han
- School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyalatu Sai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhaolun Ding
- Department of Emergency Surgery, Shannxi Provincial People's Hospital, Xi'an, China
| | - Linjiang Song
- School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
McClung JA, Levy L, Garcia V, Stec DE, Peterson SJ, Abraham NG. Heme-oxygenase and lipid mediators in obesity and associated cardiometabolic diseases: Therapeutic implications. Pharmacol Ther 2021; 231:107975. [PMID: 34499923 DOI: 10.1016/j.pharmthera.2021.107975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity-mediated metabolic syndrome remains the leading cause of death worldwide. Among many potential targets for pharmacological intervention, a promising strategy involves the heme oxygenase (HO) system, specifically its inducible form, HO-1. This review collects and updates much of the current knowledge relevant to pharmacology and clinical medicine concerning HO-1 in metabolic diseases and its effect on lipid metabolism. HO-1 has pleotropic effects that collectively reduce inflammation, while increasing vasodilation and insulin and leptin sensitivity. Recent reports indicate that HO-1 with its antioxidants via the effect of bilirubin increases formation of biologically active lipid metabolites such as epoxyeicosatrienoic acid (EET), omega-3 and other polyunsaturated fatty acids (PUFAs). Similarly, HO-1and bilirubin are potential therapeutic targets in the treatment of fat-induced liver diseases. HO-1-mediated upregulation of EET is capable not only of reversing endothelial dysfunction and hypertension, but also of reversing cardiac remodeling, a hallmark of the metabolic syndrome. This process involves browning of white fat tissue (i.e. formation of healthy adipocytes) and reduced lipotoxicity, which otherwise will be toxic to the heart. More importantly, this review examines the activity of EET in biological systems and a series of pathways that explain its mechanism of action and discusses how these might be exploited for potential therapeutic use. We also discuss the link between cardiac ectopic fat deposition and cardiac function in humans, which is similar to that described in obese mice and is regulated by HO-1-EET-PGC1α signaling, a potent negative regulator of the inflammatory adipokine NOV.
Collapse
Affiliation(s)
- John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Lior Levy
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, United States of America; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, United States of America
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America.
| |
Collapse
|
10
|
Han J, Li C, Dai Z, Duan J, Cai W, Wang Y, Zhang Y. Yinzhihuang Oral Liquid Ameliorates Hyperbilirubinemia Induced by δ-Aminolevulinic Acid and Novobiocin in Neonatal Rats. Chem Biodivers 2021; 18:e2100222. [PMID: 34085382 DOI: 10.1002/cbdv.202100222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/03/2021] [Indexed: 11/07/2022]
Abstract
Yinzhihuang oral liquid (YZH) is a traditional Chinese medicine that has been widely used in Asia to prevent and treat neonatal hyperbilirubinemia, but the published preclinical studies on its anti-hyperbilirubinemia effect are conducted in adult animals, partly due to the lack of preclinical neonatal hyperbilirubinemia animal models. In the present study, we tested six reagents to induce hyperbilirubinemia in neonatal rats, and established two appropriate neonatal hyperbilirubinemia rat models by subcutaneous injection of δ-Aminolevulinic acid (ALA, 200 mg/kg) or novobiocin (NOVO, 200 mg/kg). Oral treatment of YZH (80, 160 and 320 mg/kg) significantly decreased serum conjugated bilirubin levels in ALA-treated neonatal rats and serum unconjugated bilirubin levels in NOVO-treated neonatal rats, respectively. Additionally, pre-treatment of YZH also prevented the increase of serum bilirubin levels in both ALA- and NOVO-treated rats. Mechanistically, YZH significantly up-regulated the mRNA expression of genes involved in hepatic bilirubin disposition (organic anion-transporting polypeptide 1b2, Oatp1b2; multidrug resistance-associated protein 2, Mrp2) and bilirubin conjugation (UDP-glucuronosyltransferase 1a1, Ugt1a1). Additionally, YZH up-regulated the mRNA expression of cytochrome P450 1A1 (Cyp1a1), the target gene of aryl hydrocarbon receptor (AhR), and increased the nuclear protein levels of AhR in livers of neonatal rats. YZH and its two active ingredients, namely baicalin (BCL) and 4'-hydroxyacetophenone (4-HT), up-regulated the mRNA expression of AhR target genes (CYP1A1 and UGT1A1) and increased nuclear protein levels of AhR in HepG2 cells. In conclusion, the present study provides two neonatal hyperbilirubinemia animal models and evaluates the anti-hyperbilirubinemia effect and mechanisms of YZH in neonatal animals.
Collapse
MESH Headings
- Administration, Oral
- Aminolevulinic Acid/toxicity
- Animals
- Animals, Newborn
- Bilirubin/blood
- Cytochrome P-450 CYP1A1/genetics
- Cytochrome P-450 CYP1A1/metabolism
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Hep G2 Cells
- Humans
- Hyperbilirubinemia/chemically induced
- Hyperbilirubinemia/drug therapy
- Hyperbilirubinemia/pathology
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Medicine, Chinese Traditional
- Multidrug Resistance-Associated Protein 2
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Novobiocin/toxicity
- RNA Interference
- RNA, Small Interfering/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Aryl Hydrocarbon/antagonists & inhibitors
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Jing Han
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Caiyu Li
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Zhi Dai
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Guanlan High-tech Industrial Park, Longhua District, Shenzhen, 518110, P. R. China
| | - Juanhui Duan
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Guanlan High-tech Industrial Park, Longhua District, Shenzhen, 518110, P. R. China
| | - Wen Cai
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Yong Wang
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Guanlan High-tech Industrial Park, Longhua District, Shenzhen, 518110, P. R. China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| |
Collapse
|
11
|
Nicotine Improves Survivability, Hypotension, and Impaired Adenosinergic Renal Vasodilations in Endotoxic Rats: Role of α7-nAChRs/HO-1 Pathway. Shock 2021; 53:503-513. [PMID: 31135706 DOI: 10.1097/shk.0000000000001384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nicotinic/cholinergic antiinflammatory pathway protects against acute kidney injury and other end-organ damages induced by endotoxemia. In this study, we tested the hypothesis that functional α7-nAChRs/heme oxygenase-1 (HO-1) pathway is imperative for the nicotine counteraction of hemodynamic and renovascular dysfunction caused by acute endotoxemia in rats. Renal vasodilations were induced by cumulative bolus injections of acetylcholine (ACh, 0.01 nmol-7.29 nmol) or ethylcarboxamidoadenosine (NECA, adenosine receptor agonist, 1.6 nmol-100 nmol) in isolated phenylephrine-preconstricted perfused kidneys. The data showed that 6-h treatment with lipopolysaccharide (LPS, 5 mg/kg i.p.) decreased systolic blood pressure and renal vasodilations caused by NECA but not Ach. The endotoxic insult also increased the mortality rate and elevated serum urea and creatinine. These LPS effects were sex-unrelated, except hypotension, and enhanced mortality which were more evident in male rodents, and abrogated after co-administration of nicotine (0.5, 1 mg/kg and 2 mg/kg) in a dose-dependent fashion. The advantageous effects of nicotine on NECA vasodilations, survivability, and kidney biomarkers in endotoxic male rats disappeared upon concurrent exposure to methyllycaconitine citrate (α7-nAChR blocker) or zinc protoporphyrin (HO-1 inhibitor) and were reproduced after treatment with bilirubin, but not hemin (HO-1 inducer) or tricarbonyldichlororuthenium (II) dimer (carbon monoxide-releasing molecule). Together, current biochemical and pharmacological evidence suggests key roles for α7-nAChRs and the bilirubin byproduct of the HO-1 signaling in the nicotine counteraction of renal dysfunction and reduced adenosinergic renal vasodilator capacity in endotoxic rats.
Collapse
|
12
|
Pethő D, Hendrik Z, Nagy A, Beke L, Patsalos A, Nagy L, Póliska S, Méhes G, Tóth C, Potor L, Eaton JW, Jacob HS, Balla G, Balla J, Gáll T. Heme cytotoxicity is the consequence of endoplasmic reticulum stress in atherosclerotic plaque progression. Sci Rep 2021; 11:10435. [PMID: 34001932 PMCID: PMC8129109 DOI: 10.1038/s41598-021-89713-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023] Open
Abstract
Hemorrhage and hemolysis with subsequent heme release are implicated in many pathologies. Endothelial cells (ECs) encounter large amount of free heme after hemolysis and are at risk of damage from exogenous heme. Here we show that hemorrhage aggravates endoplasmic reticulum (ER) stress in human carotid artery plaques compared to healthy controls or atheromas without hemorrhage as demonstrated by RNA sequencing and immunohistochemistry. In EC cultures, heme also induces ER stress. In contrast, if cultured ECs are pulsed with heme arginate, cells become resistant to heme-induced ER (HIER) stress that is associated with heme oxygenase-1 (HO-1) and ferritin induction. Knocking down HO-1, HO-2, biliverdin reductase, and ferritin show that HO-1 is the ultimate cytoprotectant in acute HIER stress. Carbon monoxide-releasing molecules (CORMs) but not bilirubin protects cultured ECs from HIER stress via HO-1 induction, at least in part. Knocking down HO-1 aggravates heme-induced cell death that cannot be counterbalanced with any known cell death inhibitors. We conclude that endothelium and perhaps other cell types can be protected from HIER stress by induction of HO-1, and heme-induced cell death occurs via HIER stress that is potentially involved in the pathogenesis of diverse pathologies with hemolysis and hemorrhage including atherosclerosis.
Collapse
|
13
|
Grunenwald A, Roumenina LT, Frimat M. Heme Oxygenase 1: A Defensive Mediator in Kidney Diseases. Int J Mol Sci 2021; 22:2009. [PMID: 33670516 PMCID: PMC7923026 DOI: 10.3390/ijms22042009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
The incidence of kidney disease is rising, constituting a significant burden on the healthcare system and making identification of new therapeutic targets increasingly urgent. The heme oxygenase (HO) system performs an important function in the regulation of oxidative stress and inflammation and, via these mechanisms, is thought to play a role in the prevention of non-specific injuries following acute renal failure or resulting from chronic kidney disease. The expression of HO-1 is strongly inducible by a wide range of stimuli in the kidney, consequent to the kidney's filtration role which means HO-1 is exposed to a wide range of endogenous and exogenous molecules, and it has been shown to be protective in a variety of nephropathological animal models. Interestingly, the positive effect of HO-1 occurs in both hemolysis- and rhabdomyolysis-dominated diseases, where the kidney is extensively exposed to heme (a major HO-1 inducer), as well as in non-heme-dependent diseases such as hypertension, diabetic nephropathy or progression to end-stage renal disease. This highlights the complexity of HO-1's functions, which is also illustrated by the fact that, despite the abundance of preclinical data, no drug targeting HO-1 has so far been translated into clinical use. The objective of this review is to assess current knowledge relating HO-1's role in the kidney and its potential interest as a nephroprotection agent. The potential therapeutic openings will be presented, in particular through the identification of clinical trials targeting this enzyme or its products.
Collapse
Affiliation(s)
- Anne Grunenwald
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (A.G.); (L.T.R.)
| | - Lubka T. Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (A.G.); (L.T.R.)
| | - Marie Frimat
- U1167-RID-AGE, Institut Pasteur de Lille, Inserm, Univ. Lille, F-59000 Lille, France
- Nephrology Department, CHU Lille, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
14
|
Wang X, Han C, Cui Y, Li S, Jin G, Shi W, Bao Y. Florfenicol causes excessive lipid peroxidation and apoptosis induced renal injury in broilers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111282. [PMID: 32949928 DOI: 10.1016/j.ecoenv.2020.111282] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
In order to study the effects and mechanism of florfenicol (FFC) on the kidney function of broilers, 180 1-day-old broilers were randomly divided into 6 groups, 30 in each group. Except for the control group, different doses of FFC were added to drinking water in the other 5 groups (0.15 g/L, 0.3 g/L, 0.6 g/L, 1.2 g/L and 1.8 g/L). After continuous administration for 5 days, renal histopathological changes, serum renal function indicators, renal peroxidation products and antioxidant factors, and apoptotic factors were detected in broilers aged 21 and 42 days. The results showed that compared with the control group, the kidney tissue structure was disordered, the glomerulus was atrophic, the cystic cavity was enlarged, and the epithelial cells of renal tubules were seriously vacuolated in broilers of treatment groups. And with the growth of broilers, the kidney injury of broilers in the low-dose FFC group was relieved. FFC significantly increased the contents of uric acid (UA), blood urea nitrogen (BUN), creatinine (CRE) in serum and malondialdehyde (MDA) in kidney of broilers, but significantly reduced the levels of glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) in kidney. FFC significantly inhibited the mRNA relative transcriptional levels of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase-1 (NQO-1), and increased the mRNA and protein expression levels of p53, Caspase-3 and Caspase-6 in kidney tissue of broilers. It is concluded that FFC has certain nephrotoxicity to broilers, and its effect on kidney is dose-dependent and reversible. FFC causes intense lipid peroxidation in broiler kidney by inhibiting the expression of related factors in the downstream signal pathway of Nrf2. FFC can also up-regulate the expression of pro-apoptotic factors and accelerate the abnormal apoptosis of renal cells, thus seriously affecting the renal function of broilers.
Collapse
Affiliation(s)
- Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Chao Han
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Yuqing Cui
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Shuying Li
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Guozhong Jin
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China; Hebei Provincial Engineering Technology Research Center for Traditional Chinese Veterinary Medicine, Baoding, 071001, China.
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China; Hebei Provincial Engineering Technology Research Center for Traditional Chinese Veterinary Medicine, Baoding, 071001, China.
| |
Collapse
|
15
|
Physiological concentrations of bilirubin control inflammatory response by inhibiting NF-κB and inflammasome activation. Int Immunopharmacol 2020; 84:106520. [PMID: 32325405 DOI: 10.1016/j.intimp.2020.106520] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/28/2020] [Accepted: 04/14/2020] [Indexed: 11/27/2022]
Abstract
Bilirubin, as the final product of heme metabolism, has both toxic and beneficial effects on humans depending on its serum concentration. So far, whether and how physiological concentrations of bilirubin influence inflammation is largely unknown. In the current study, we established inflammatory cell models of murine peritoneal macrophages (PMs) and bone marrow-derived macrophages (BMDMs) by stimulating the cells with either lipopolysaccharide (LPS) alone or with various inflammasome stimuli. In addition, a model of mouse sepsis induced by intraperitoneal injection of LPS was also employed. We found that bilirubin, although used at physiological concentrations, could control inflammation both in vitro and in vivo. In vitro, bilirubin inhibited caspase-1 maturation and IL-1β secretion in NLRP3, AIM2, and NLRC4 inflammasomes. Besides, bilirubin inhibited the secretion of TNF-α and IL-6 in LPS-primed macrophages by reduced phosphorylation of IκB-α and p65, indicating the inhibition of the NF-κB pathway. In vivo, bilirubin significantly inhibited the release of IL-1β and TNF-α, resulting in an increased survival rate of mice with LPS-induced sepsis. Our study demonstrates a protective role of physiological concentrations of bilirubin against inflammation, the mechanisms of which involve the inhibition of the NF-κB signaling pathway as well as control of the activation of inflammasomes. Bilirubin could therefore be considered an endogenous regulatory molecule modulating inflammation. In defined doses, bilirubin could be applied as a potential medication against inflammation and inflammasome-related diseases.
Collapse
|
16
|
Behnammanesh G, Durante GL, Khanna YP, Peyton KJ, Durante W. Canagliflozin inhibits vascular smooth muscle cell proliferation and migration: Role of heme oxygenase-1. Redox Biol 2020; 32:101527. [PMID: 32278282 PMCID: PMC7152682 DOI: 10.1016/j.redox.2020.101527] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Recent cardiovascular outcome trials found that sodium-glucose cotransporter-2 (SGLT2) inhibitors reduce cardiovascular disease and mortality in type 2 diabetic patients; however, the underlying mechanisms are not fully known. Since the proliferation and migration of vascular smooth muscle cells (SMCs) contributes to the development of arterial lesions, we hypothesized that SGLT2 inhibitors may exert their beneficial cardiovascular effects by inhibiting the growth and movement of vascular SMCs. Treatment of rat or human aortic SMCs with clinically relevant concentrations of canagliflozin, but not empagliflozin or dapagliflozin, inhibited cell proliferation and migration. The inhibition of SMC growth by canagliflozin occurred in the absence of cell death, and was associated with the arrest of SMCs in the G0/G1 phase of the cell cycle and diminished DNA synthesis. Canagliflozin also resulted in the induction of heme oxygenase-1 (HO-1) expression, and a rise in HO activity in vascular SMCs, whereas, empagliflozin or dapagliflozin had no effect on HO activity. Canagliflozin also activated the HO-1 promoter and this was abrogated by mutating the antioxidant responsive element or by overexpressing dominant-negative NF-E2-related factor-2 (Nrf2). The induction of HO-1 by canagliflozin relied on reactive oxygen species (ROS) formation and was negated by antioxidants. Finally, silencing HO-1 expression partially rescued the proliferative and migratory response of canagliflozin-treated SMCs, and this was reversed by carbon monoxide and bilirubin. In conclusion, the present study identifies canagliflozin as a novel inhibitor of vascular SMC proliferation and migration. Moreover, it demonstrates that canagliflozin stimulates the expression of HO-1 in vascular SMCs via the ROS-Nrf2 pathway, and that the induction of HO-1 contributes to the cellular actions of canagliflozin. The ability of canagliflozin to exert these pleiotropic effects may contribute to the favorable clinical actions of the drug and suggest an extra potential benefit of canagliflozin relative to other SGLT2 inhibitors.
Collapse
Affiliation(s)
- Ghazaleh Behnammanesh
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Giovanna L Durante
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Yash P Khanna
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Kelly J Peyton
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - William Durante
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
17
|
Nitti M, Furfaro AL, Mann GE. Heme Oxygenase Dependent Bilirubin Generation in Vascular Cells: A Role in Preventing Endothelial Dysfunction in Local Tissue Microenvironment? Front Physiol 2020; 11:23. [PMID: 32082188 PMCID: PMC7000760 DOI: 10.3389/fphys.2020.00023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Among antioxidants in the human body, bilirubin has been recognized over the past 20 years to afford protection against different chronic conditions, including inflammation and cardiovascular disease. Moderate increases in plasma concentration and cellular bilirubin generation from metabolism of heme via heme oxygenase (HMOX) in virtually all tissues can modulate endothelial and vascular function and exert antioxidant and anti-inflammatory roles. This review aims to provide an up-to-date and critical overview of the molecular mechanisms by which bilirubin derived from plasma or from HMOX1 activation in vascular cells affects endothelial function. Understanding the molecular actions of bilirubin may critically improve the management not only of key cardiovascular diseases, but also provide insights into a broad spectrum of pathologies driven by endothelial dysfunction. In this context, therapeutic interventions aimed at mildly increasing serum bilirubin as well as bilirubin generated endogenously by endothelial HMOX1 should be considered.
Collapse
Affiliation(s)
- Mariapaola Nitti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Anna Lisa Furfaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
18
|
Zhang F, Guan W, Fu Z, Zhou L, Guo W, Ma Y, Gong Y, Jiang W, Liang H, Zhou H. Relationship between Serum Indirect Bilirubin Level and Insulin Sensitivity: Results from Two Independent Cohorts of Obese Patients with Impaired Glucose Regulation and Type 2 Diabetes Mellitus in China. Int J Endocrinol 2020; 2020:5681296. [PMID: 32802055 PMCID: PMC7411450 DOI: 10.1155/2020/5681296] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Serum bilirubin is an endogenous antioxidant that has protective effects against obesity-related metabolic diseases. OBJECTIVES This study aimed to evaluate the characteristics of total bilirubin (TBIL), direct bilirubin (DBIL), and indirect bilirubin (IBIL) and their relationships with insulin sensitivity in obese patients with impaired glucose regulation and type 2 diabetes mellitus (IGR/T2DM) in China. Patients and Methods. Cohort 1 comprised obese patients (n = 71) was divided into the IGR/T2DM group (n = 38, obesity with IGR/T2DM) and control group (n = 33, obesity without IGR/T2DM). Insulin sensitivity was evaluated using the hyperinsulinemic-euglycemic clamp technique (HEC) with glucose disposal rate (GDR, M value). Cohort 2 comprised obese patients with IGR/T2DM who underwent metabolic surgery (n = 109) as complementary to cohort 1. Insulin sensitivity was evaluated with the Matsuda Index and homeostatic model assessment of insulin sensitivity (HOMA-IS). RESULTS In cohort 1, TBIL, DBIL, and IBIL were higher within the physiological range in the IGR/T2DM group compared with the control group; IBIL was positively correlated with M value (r = 0.342, p=0.044) in the IGR/T2DM group, and multivariate logistic regression showed that IBIL might be independent protective factors against insulin resistance (odds ratio (OR) = 0.602; 95% confidence interval (CI): 0.413-0.878; p=0.008). In cohort 2, at 1 month after metabolic surgery, serum bilirubin levels (TBIL, DBIL, and IBIL) increased, and the percentage change in IBIL was positively correlated with the change of the Matsuda Index (r = 0.195, p=0.045). CONCLUSIONS The relationships between different types of bilirubin and insulin sensitivity varied. Serum indirect bilirubin might be a protective factor that enhances insulin sensitivity.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Department of Endocrinology, The Third People's Hospital of Changzhou, Changzhou 213001, China
| | - Wei Guan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhenzhen Fu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Li Zhou
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wen Guo
- Department of Health Promotion Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yizhe Ma
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yingyun Gong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wanzi Jiang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hui Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongwen Zhou
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
19
|
Huang Y, Qian C, Zhou J, Xue J. Investigation of expression and influence of CTGF and HO-1 in rats with diabetic retinopathy. Exp Ther Med 2019; 19:2291-2295. [PMID: 32104296 DOI: 10.3892/etm.2019.8395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/12/2018] [Indexed: 01/01/2023] Open
Abstract
The expression and influence mechanism of CTGF and HO-1 in rats with diabetic retinopathy (DR) was investigated. One hundred and thirty male Sprague-Dawley (SD) rats were selected and randomly divided into the control group and DR group, with 65 rats in each group. DR was caused by intraperitoneal injection of streptozotocin in rats in the DR group. There were 55 successful models and 10 failed in the modelling. The successful models were sacrificed at the 2nd, 4th and 6th month, respectively. RT-qPCR technology was used for detection of the expression of CTGF and HO-1 in rat retina in each group, H&E staining for observation of the gradation structure in rat retina and TUNEL method for detection of apoptosis of retinal cells. In the DR group, the retina layers were disordered and a few blood vessels dilated at the 2nd month. In the DR group, the inner membrane of the retina swelled, and the ganglion cells were irregularly arranged at the 4th month. In the DR group, dilatation of the blood vessels was more obvious, the inner membrane edema was more severe, and the arrangement was more irregular at the 6th month. The retinal apoptosis rate of DR rats gradually increased at the 2nd, 4th and 6th month, after which, the CTGF expression gradually increased, but the HO-1 expression gradually decreased in retina in the DR group. However, the mRNA expression of CTGF and HO-1 in the rats at the 2nd, 4th and 6th month in the DR group was higher than that in the control group at the same period. Therefore, CTGF and HO-1 are associated with the occurrence and development of DR in rats and can be considered as targets for the treatment of DR.
Collapse
Affiliation(s)
- Yongjian Huang
- Department of Ophthalmology, The Third People's Hospital of Changzhou, Changzhou, Jiangsu 231001, P.R. China
| | - Chaoxu Qian
- Department of Ophthalmology, The Third People's Hospital of Changzhou, Changzhou, Jiangsu 231001, P.R. China
| | - Jilin Zhou
- Department of Ophthalmology, The Third People's Hospital of Changzhou, Changzhou, Jiangsu 231001, P.R. China
| | - Jinsong Xue
- Department of Ophthalmology, Nanjing Medical University Affiliated Eye Hospital, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
20
|
Li QL, Guo RM, Zhao K, Lin DZ, Ye XM, Chen LH. Effects of haem oxygenase-1 expression on oxidative injury and biological behaviours of rat dermal fibroblasts. J Wound Care 2019; 27:780-789. [PMID: 30398933 DOI: 10.12968/jowc.2018.27.11.780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE This study investigated the effects of high haem oxygenase-1 (HO-1) expression on oxidative injury and the biological behaviours of rat dermal fibroblasts, under high glucose conditions. METHOD Rat dermal fibroblasts were cultured in normal glucose (1.0g/l), high glucose (4.5g/l) or haemin (5μm). A bilirubin kit, real-time polymerase chain reaction (RT-PCR) and Western blotting measured the protease activity, mRNA, and protein levels of HO-1, respectively. An enzyme-linked immunosorbent assay (ELISA) kit measured media levels of 8-hydroxydeoxyguanosine (8-OHdG), reactive oxygen species (ROS) and collagen (hydroxyproline) secretion. Cell proliferation was measured using flow cytometry. Cell apoptosis was measured using Hoechst 33258 staining and flow cytometry. The transwell method and scratch test evaluated cell migration. RESULTS HO-1 expression exhibited a time-dependent change that was lowest in the high glucose (HG) group at 96 hours compared with the normal glucose (NG) group. In the HG group, the 8-OHdG, ROS and cell apoptosis were increased, and collagen secretion, cell proliferation and cell migration (horizontal and vertical) were decreased compared with the NG group at 96 hours. Haemin treatment sustained high HO-1 expression for at least 96 hours, and the cells exhibited decreased 8-OHdG and ROS, increased collagen synthesis, improved proliferation and migration ability, and decreased apoptosis in the NG and haemin (NH) group/HG and haemin (HH) group compared with the NG/HG groups. These cells recovered from oxidative injury and biological behaviours dysfunction. CONCLUSION Haemin induces HO-1 expression in fibroblasts and it may influence the oxidative injury and biological behaviours of fibroblasts. These findings suggest that HO-1 may accelerate the healing of diabetic wounds via alleviation of oxidative injury and improvement of biological behaviours of fibroblasts.
Collapse
Affiliation(s)
- Qing-Ling Li
- Department of VIP Medical Center, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruo-Mi Guo
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kun Zhao
- Department of VIP Medical Center, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Diao-Zhu Lin
- Department of Endocrine Medicine, SunYat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Ming Ye
- Department of VIP Medical Center, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Li-Hong Chen
- Department of VIP Medical Center, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China, Department of Endocrine Medicine, SunYat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
21
|
Heme, Heme Oxygenase, and Endoplasmic Reticulum Stress-A New Insight into the Pathophysiology of Vascular Diseases. Int J Mol Sci 2019; 20:ijms20153675. [PMID: 31357546 PMCID: PMC6695876 DOI: 10.3390/ijms20153675] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalence of vascular disorders continues to rise worldwide. Parallel with that, new pathophysiological pathways have been discovered, providing possible remedies for prevention and therapy in vascular diseases. Growing evidence suggests that endoplasmic reticulum (ER) stress is involved in a number of vasculopathies, including atherosclerosis, vascular brain events, and diabetes. Heme, which is released from hemoglobin or other heme proteins, triggers various pathophysiological consequence, including heme stress as well as ER stress. The potentially toxic free heme is converted by heme oxygenases (HOs) into carbon monoxide (CO), iron, and biliverdin (BV), the latter of which is reduced to bilirubin (BR). Redox-active iron is oxidized and stored by ferritin, an iron sequestering protein which exhibits ferroxidase activity. In recent years, CO, BV, and BR have been shown to control cellular processes such as inflammation, apoptosis, and antioxidant defense. This review covers our current knowledge about how heme induced endoplasmic reticulum stress (HIERS) participates in the pathogenesis of vascular disorders and highlights recent discoveries in the molecular mechanisms of HO-mediated cytoprotection in heme stress and ER stress, as well as crosstalk between ER stress and HO-1. Furthermore, we focus on the translational potential of HIERS and heme oxygenase-1 (HO-1) in atherosclerosis, diabetes mellitus, and brain hemorrhage.
Collapse
|
22
|
Jain V, Ghosh RK, Bandyopadhyay D, Kondapaneni M, Mondal S, Hajra A, Aronow WS, Lavie CJ. Serum Bilirubin and Coronary Artery Disease: Intricate Relationship, Pathophysiology, and Recent Evidence. Curr Probl Cardiol 2019; 46:100431. [PMID: 31350011 DOI: 10.1016/j.cpcardiol.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022]
Abstract
Coronary artery disease (CAD) is a major cause of morbidity, mortality, and healthcare expenditure. A number of environmental and genetic risk factors have been known to contribute to CAD. More recently, a number of studies have supported as well as opposed a possible protective benefit of bilirubin in CAD, since it has anti-inflammatory, antioxidant, and antiaggregatory properties that may reduce atherogenesis. It also shares associations with different forms of CAD, namely stable CAD, unstable angina pectoris, stable angina pectoris, and acute myocardial infarction. Lack of sufficient evidence, however, has failed to elucidate a causal relationship between serum bilirubin level and risk of CAD. Therefore, in this update, we attempted to simplify this intricate relationship between bilirubin and CAD, revisit the pathophysiology of disease, how bilirubin may be protective, and to summarize the findings of the current literature.
Collapse
|
23
|
Zheng JD, He Y, Yu HY, Liu YL, Ge YX, Li XT, Li X, Wang Y, Guo MR, Qu YL, Qin XF, Jiang MS, Wang XH. Unconjugated bilirubin alleviates experimental ulcerative colitis by regulating intestinal barrier function and immune inflammation. World J Gastroenterol 2019; 25:1865-1878. [PMID: 31057300 PMCID: PMC6478610 DOI: 10.3748/wjg.v25.i15.1865] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/05/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Unconjugated bilirubin (UCB) is generally considered toxic but has gained recent prominence for its anti-inflammatory properties. However, the effects of it on the interaction between intestinal flora and organisms and how it influences immune responses remain unresolved.
AIM To investigate the role of UCB in intestinal barrier function and immune inflammation in mice with dextran-sulfate-sodium-induced colitis.
METHODS Acute colitis was induced by 3% (w/v) dextran sulfate sodium salt in drinking water for 6 d followed by untreated water for 2 d. Concurrently, mice with colitis were administered 0.2 mL UCB (400 μmol/L) by intra-gastric gavage for 7 d. Disease activity index (DAI) was monitored daily. Mice were sacrificed at the end of the experiment. The length of the colon and weight of the spleen were recorded. Serum level of D-lactate, intestinal digestive proteases activity, and changes to the gut flora were analyzed. In addition, colonic specimens were analyzed by histology and for expression of inflammatory markers and proteins.
RESULTS Mice treated with UCB had significantly relieved severity of colitis, including lower DAI, longer colon length, and lower spleen weight (colon length: 4.92 ± 0.09 cm vs 3.9 ± 0.15 cm; spleen weight: 0.33 ± 0.04 vs 0.74 ± 0.04, P < 0.001). UCB administration inactivated digestive proteases (chymotrypsin: 18.70 ± 0.69 U/g vs 44.81 ± 8.60 U/g; trypsin: 1.52 ± 0.23 U/g vs 9.05 ± 1.77 U/g, P < 0.01), increased expression of tight junction (0.99 ± 0.05 vs 0.57 ± 0.03, P < 0.001), decreased serum level of D-lactate (31.76 ± 3.37 μmol/L vs 54.25 ± 1.45 μmol/L, P < 0.001), and lowered histopathological score (4 ± 0.57 vs 7 ± 0.57, P < 0.001) and activity of myeloperoxidase (46.79 ± 2.57 U/g vs 110.32 ± 19.19 U/g, P < 0.001). UCB also regulated the intestinal microbiota, inhibited expression of tumor necrosis factor (TNF) α and interleukin 1β (TNF-α: 52.61 ± 7.81 pg/mg vs 105.04 ± 11.92 pg/mg, interleukin 1β: 13.43 ± 1.68 vs 32.41 ± 4.62 pg/mg, P < 0.001), decreased expression of Toll-like receptor 4 (0.61 ± 0.09 vs 1.07 ± 0.03, P < 0.001) and myeloid differentiation primary response gene 88 (0.73 ± 0.08 vs 1.01 ± 0.07, P < 0.05), and increased expression of TNF-receptor-associated factor 6 (0.79 ± 0.02 vs 0.43 ± 0.09 P < 0.05) and inhibitor of kappa B α (0.93 ± 0.07 vs 0.72 ± 0.07, P < 0.05) in the colon.
CONCLUSION UCB can protect intestinal barrier function, regulate normal intestinal homeostasis, and suppress inflammation via the Toll-like receptor 4/ nuclear factor-κB signaling pathway.
Collapse
Affiliation(s)
- Jia-Dong Zheng
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Yan He
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Heng-Yuan Yu
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Yuan-Li Liu
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Yi-Xuan Ge
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Xue-Ting Li
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Xue Li
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Yan Wang
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Meng-Ru Guo
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Yi-Lin Qu
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Xiao-Fa Qin
- Founder, GI Biopharma Inc., Westfield, NJ 07090, United States
| | - Ming-Shan Jiang
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xiu-Hong Wang
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|
24
|
Heme oxygenase-1 induction by hemin prevents oxidative stress-induced acute cholestasis in the rat. Clin Sci (Lond) 2019; 133:117-134. [PMID: 30538149 DOI: 10.1042/cs20180675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022]
Abstract
We previously demonstrated in in vitro and ex vivo models that physiological concentrations of unconjugated bilirubin (BR) prevent oxidative stress (OS)-induced hepatocanalicular dysfunction and cholestasis. Here, we aimed to ascertain, in the whole rat, whether a similar cholestatic OS injury can be counteracted by heme oxygenase-1 (HO-1) induction that consequently elevates endogenous BR levels. This was achieved through the administration of hemin, an inducer of HO-1, the rate-limiting step in BR generation. We found that BR peaked between 6 and 8 h after hemin administration. During this time period, HO-1 induction fully prevented the pro-oxidant tert-butylhydroperoxide (tBuOOH)-induced drop in bile flow, and in the biliary excretion of bile salts and glutathione, the two main driving forces of bile flow; this was associated with preservation of the membrane localization of their respective canalicular transporters, bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2), which are otherwise endocytosed by OS. HO-1 induction counteracted the oxidation of intracellular proteins and membrane lipids induced by tBuOOH, and fully prevented the increase in the oxidized-to-total glutathione (GSHt) ratio, a sensitive parameter of hepatocellular OS. Compensatory elevations of the activity of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) were also prevented. We conclude that in vivo HO-1 induction protects the liver from acute oxidative injury, thus preventing consequent cholestasis. This reveals an important role for the induction of HO-1 and the consequently elevated levels of BR in preserving biliary secretory function under OS conditions, thus representing a novel therapeutic tool to limit the cholestatic injury that bears an oxidative background.
Collapse
|
25
|
Low serum bilirubin levels contribute to the presence and progression of distal symmetrical polyneuropathy in Chinese patients with type 2 diabetes. DIABETES & METABOLISM 2019; 45:47-52. [DOI: 10.1016/j.diabet.2018.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/10/2018] [Accepted: 02/18/2018] [Indexed: 11/22/2022]
|
26
|
Tsai MT, Tarng DC. Beyond a Measure of Liver Function-Bilirubin Acts as a Potential Cardiovascular Protector in Chronic Kidney Disease Patients. Int J Mol Sci 2018; 20:ijms20010117. [PMID: 30597982 PMCID: PMC6337523 DOI: 10.3390/ijms20010117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
Bilirubin is a well-known neurotoxin in newborn infants; however, current evidence has shown that a higher serum bilirubin concentration in physiological ranges is associated with a lower risk for the development and progression of both chronic kidney disease (CKD) and cardiovascular disease (CVD) in adults. The protective mechanisms of bilirubin in CVD, CKD, and associated mortality may be ascribed to its antioxidant and anti-inflammatory properties. Bilirubin further improves insulin sensitivity, reduces low-density lipoprotein cholesterol levels and inhibits platelet activation in at-risk individuals. These effects are expected to maintain normal vascular homeostasis and thus reduce the incidence of CKD and the risks of cardiovascular complications and death. In this review, we highlight the recent advances in the biological actions of bilirubin in the pathogenesis of CVD and CKD progression, and further propose that targeting bilirubin metabolism could be a potential approach to ameliorate morbidity and mortality in CKD patients.
Collapse
Affiliation(s)
- Ming-Tsun Tsai
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11217, Taiwan.
| | - Der-Cherng Tarng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11217, Taiwan.
- Department and Institute of Physiology, National Yang-Ming University, Taipei 11217, Taiwan.
| |
Collapse
|
27
|
Liu M, Li J, Lv X, He Y. Bilirubin and its changes were negatively associated with diabetic kidney disease incidence and progression: A five-year's cohort study based on 5323 Chinese male diabetic patients. J Diabetes Complications 2018; 32:1012-1017. [PMID: 30135034 DOI: 10.1016/j.jdiacomp.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/12/2018] [Accepted: 08/05/2018] [Indexed: 12/19/2022]
Abstract
AIMS This study aimed to evaluate the association between baseline bilirubin (TBiL) and follow-up TBiL changes for diabetic kidney disease (DKD) incidence and progression based on a 5 years' cohort study. METHODS This cohort study was conducted in Beijing between 2009 and 2013. The subjects were consisted of 5342male diabetic patients with baseline retinopathy. Cox proportional risk model was used to calculate hazards ratio (HR). RESULTS The mean age of the 5342 diabetic patients was 78.68 ± 8.40 (65-102 yrs). The total five year incidence was 8.7% (95%CI: 7.9%-9.4%) for DKD and 10.5% (95%CI: 9.7%-11.3%) for eGFR decrease. The HR of baseline TBiL showed a decreasing trend for both DKD incidence and eGFR decrease. The HRs of baseline TBiL (per μmol/L increase) for DKD and eGFR decrease were 0.967(95%CI: 0.946-0.988) and 0.955(95%CI: 0.936-0.975) respectively. For follow-up TBiL changes, after adjusted for related co-variables and baseline TBiL levels (as continuous variable) in the model, the HRs (per μmol/L of follow-up TBiL changes) for DKD and eGFR decrease were 0.973(95%CI: 0.952-0.995) and 0.991(95%CI: 0.974-0.998) respectively. The results were similar when baseline TBiL and follow-up TBiL changes were used as tertiary variable. CONCLUSION Not only baseline TBiL, but also follow-up changes were significantly associated with DKD incidence and progression.
Collapse
Affiliation(s)
- Miao Liu
- Institute of Geriatrics, Beijing Key Laboratory of Aging and Geriatrics, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Jiaqi Li
- The third outpatient department of the General Logistics Department, Beijing 10039, China
| | - Xianyu Lv
- The third outpatient department of the General Logistics Department, Beijing 10039, China
| | - Yao He
- Institute of Geriatrics, Beijing Key Laboratory of Aging and Geriatrics, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
28
|
Jabarpour M, Siavashi V, Asadian S, Babaei H, Jafari SM, Nassiri SM. Hyperbilirubinemia-induced pro-angiogenic activity of infantile endothelial progenitor cells. Microvasc Res 2018; 118:49-56. [DOI: 10.1016/j.mvr.2018.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/04/2018] [Accepted: 02/19/2018] [Indexed: 02/08/2023]
|
29
|
Noninvasive Real-Time Characterization of Renal Clearance Kinetics in Diabetic Mice after Receiving Danshensu Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8267560. [PMID: 29670682 PMCID: PMC5833022 DOI: 10.1155/2018/8267560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/28/2017] [Accepted: 12/31/2017] [Indexed: 12/30/2022]
Abstract
Danshensu (DSS) is an active ingredient extracted from the root of the Danshen that could ameliorate oxidative stress via upregulation of heme oxygenase- (HO-) 1. Little is known about the treatment effects of DSS on kidney function in diabetic mice. Therefore, the primary aim of the present study was to characterize the renal clearance kinetics of IRdye800CW in db/db mice after DSS treatment. The secondary aim was to measure several biomarkers of renal function and oxidative stress (urinary F2-isoprostane, HO-1 in kidney and serum bilirubin). Fourteen db/db diabetic mice were randomly assigned into two groups and received either DSS treatment (DM + DSS) or vehicle treatment (DM). A third group that comprised of db/+ nondiabetic mice (non-DM control) received no DSS treatment and served as the nondiabetic control. At the end of a 3-week intervention period, serum and urinary biomarkers of renal function and oxidative stress were assessed and the renal clearance of IRdye800CW dye in all mice was determined noninvasively using Multispectral Optoacoustic Tomography. The major finding from this study suggested that DSS treatment in db/db mice improved renal clearance. Increased expression of HO-1 after DSS treatment also suggested that DSS might represent a potential therapeutic avenue for clinical intervention in diabetic nephropathy.
Collapse
|
30
|
Gou L, Zhao L, Song W, Wang L, Liu J, Zhang H, Huang Y, Lau CW, Yao X, Tian XY, Wong WT, Luo JY, Huang Y. Inhibition of miR-92a Suppresses Oxidative Stress and Improves Endothelial Function by Upregulating Heme Oxygenase-1 in db/db Mice. Antioxid Redox Signal 2018; 28:358-370. [PMID: 28683566 DOI: 10.1089/ars.2017.7005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS Inhibition of microRNA-92a (miR-92a) is reported to suppress endothelial inflammation and delay atherogenesis. We hypothesize that miR-92a inhibition protects endothelial function through suppressing oxidative stress in diabetic db/db mice. RESULTS In this study, we found elevated expression of miR-92a in aortic endothelium from db/db mice and in renal arteries from diabetic subjects. Endothelial cells (ECs) exposed to advanced glycation end products (AGEs) and oxidized low-density lipoprotein express higher level of miR-92a. Overexpression of miR-92a impairs endothelium-dependent relaxations (EDRs) in C57BL/6 mouse aortas. Overexpression of miR-92a suppresses expression of heme oxygenase-1 (HO-1), a critical cytoprotective enzyme, whereas inhibition of miR-92a increases HO-1 expression in human umbilical vein ECs (HUVECs) and db/db mouse aortas. Importantly, miR-92a inhibition by Ad-anti-miR-92a improved EDRs and reduced reactive oxygen species (ROS) production in db/db mouse aortas. HO-1 inhibition by SnMP or HO-1 knockdown by shHO-1 reversed the suppressive effect of miR-92a inhibition on ROS production induced by AGE treatment in C57BL/6 mouse aortas. In addition, SnMP reversed miR-92a inhibition-induced improvement of EDRs in AGE-treated C57BL/6 mouse aortas and in db/db mouse aortas. INNOVATION Expression of miR-92a is increased in diabetic aortic endothelium and inhibition of miR-92a exerts vasoprotective effect in diabetic mice through HO-1 upregulation in ECs. CONCLUSION MiR-92a expression is elevated in diabetic ECs. MiR-92a overexpression impairs endothelial function and suppresses HO-1 expression in ECs. Inhibition of miR-92a attenuates oxidative stress and improves endothelial function through enhancing HO-1 expression and activity in db/db mouse aortas. Antioxid. Redox Signal. 28, 358-370.
Collapse
Affiliation(s)
- Lingshan Gou
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Lei Zhao
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Wencong Song
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Li Wang
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Jian Liu
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Hongsong Zhang
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Yuhong Huang
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Chi Wai Lau
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Xiaoqiang Yao
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Xiao Yu Tian
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Wing Tak Wong
- 3 School of Life Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Jiang-Yun Luo
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Yu Huang
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| |
Collapse
|
31
|
Rochette L, Zeller M, Cottin Y, Vergely C. Redox Functions of Heme Oxygenase-1 and Biliverdin Reductase in Diabetes. Trends Endocrinol Metab 2018; 29:74-85. [PMID: 29249571 DOI: 10.1016/j.tem.2017.11.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022]
Abstract
In patients with diabetes, the hyperglycemia-driven excess generation of reactive oxygen species (ROS) induces oxidative stress (OS) in a variety of tissues. OS is closely associated with chronic inflammation and has a key role in the pathogenesis of vascular complications. The enzymes that generate ROS and gasotransmitters are redox regulated and are implicated in cellular signaling. As a result of cellular metabolism, cells produce significant amounts of carbon monoxide (CO), mainly from heme degradation catalyzed by heme oxygenases (HOs). These reactions also generate biliverdin, bilirubin (BR), and iron. The conversion of biliverdin to BR is catalyzed by biliverdin reductase-A (BVR-A). In this review, we focus on the importance of the HO-1/CO system and BVR in the pathophysiology and therapy of inflammation associated with diabetes.
Collapse
Affiliation(s)
- Luc Rochette
- Research team Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2, EA7460), University of Bourgogne Franche-Comté, UFR des Sciences de Santé, 7 Boulevard Jeanne d'Arc, 21079 Dijon, France.
| | - Marianne Zeller
- Research team Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2, EA7460), University of Bourgogne Franche-Comté, UFR des Sciences de Santé, 7 Boulevard Jeanne d'Arc, 21079 Dijon, France
| | - Yves Cottin
- Research team Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2, EA7460), University of Bourgogne Franche-Comté, UFR des Sciences de Santé, 7 Boulevard Jeanne d'Arc, 21079 Dijon, France; Cardiology Unit, CHU 21000 Dijon, France
| | - Catherine Vergely
- Research team Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2, EA7460), University of Bourgogne Franche-Comté, UFR des Sciences de Santé, 7 Boulevard Jeanne d'Arc, 21079 Dijon, France
| |
Collapse
|
32
|
Mao F, Zhu X, Lu B, Li Y. The Association between Serum Bilirubin Level and Electrochemical Skin Conductance in Chinese Patients with Type 2 Diabetes. Int J Endocrinol 2018; 2018:6253170. [PMID: 29706999 PMCID: PMC5863353 DOI: 10.1155/2018/6253170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/13/2017] [Accepted: 12/25/2017] [Indexed: 01/28/2023] Open
Abstract
Bilirubin is an antioxidant and plays a protective role against cardiovascular and microvascular disease. The aim of this study is to explore the possible protective effect of bilirubin on small nerve function. A total of 265 Chinese patients with type 2 diabetes mellitus (T2DM) were enrolled in the study. Both SUDOSCAN and other traditional diabetic neuropathy examinations including neuropathy symptom score (NSS), the neuropathy disability score (NDS) and Michigan Neuropathy Screening Instrument (MNSI) scores were performed in all patients with T2DM. Blood bilirubin levels were tested in the study. Spearman correlation analysis and multivariate regression analysis were performed to determine the relation between bilirubin level and hands and feet ESC values. Spearman correlation analysis demonstrated a correlation between total bilirubin and ESC levels including hands (r = 0.165, P < 0.05) and feet (r = 0.122, P < 0.05) as well as between UCBil and ESC levels including both hands (r = 0.172, P < 0.05) and feet (r = 0.175, P < 0.05). Multivariate regression linear analyses showed both total bilirubin and UCBil level were independently associated with hands and feet ESC levels. All these results suggested a positive association between bilirubin level and ESC level, indicating a possible protective role of bilirubin in peripheral small nerve dysfunction of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Fei Mao
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoming Zhu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Lu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Jing'an District Center Hospital of Shanghai, Shanghai, China
| |
Collapse
|
33
|
Zhou JA, Jiang M, Yang X, Liu Y, Guo J, Zheng J, Qu Y, Song Y, Li R, Qin X, Wang X. Unconjugated bilirubin ameliorates the inflammation and digestive protease increase in TNBS-induced colitis. Mol Med Rep 2017; 16:1779-1784. [PMID: 28656252 PMCID: PMC5562003 DOI: 10.3892/mmr.2017.6825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
The authors previously demonstrated that unconjugated bilirubin (UCB) may inhibit the activities of various digestive proteases, including trypsin and chymotrypsin. The digestive proteases in the lower gut are important in the pathogenesis of inflammatory bowel diseases. The effects of UCB on the inflammation and levels of digestive proteases in feces of rats with colitis have not yet been revealed. The present study investigated the effect of UCB on the inflammatory status and levels of trypsin and chymotrypsin in the feces of rats with trinitrobenzenesulfonic acid (TNBS)-induced colitis. The data indicated that treatment with TNBS resulted in a marked reduction in weight gain, which was significantly alleviated in UCB-treated rats. Furthermore, UCB treatment alleviated the inflammation induced by TNBS, detected via macroscopic damage and microscopic inflammation scores, and pro-inflammatory markers including myeloperoxidase (MPO), tumor necrosis factor (TNF)-α and interleukin (IL)-1β. Furthermore, rats with colitis demonstrated significant increases in fecal trypsin and chymotrypsin levels, whereas UCB treatment significantly alleviated these increases. A significant positive correlation was additionally revealed among the pro-inflammatory markers (MPO, TNF-α and IL-1β) and fecal digestive proteases (trypsin and chymotrypsin) in colitis. The results of the present study demonstrated that UCB ameliorated the inflammation and digestive protease increase in TNBS-induced colitis.
Collapse
Affiliation(s)
- Jin-An Zhou
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Mingshan Jiang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xinguang Yang
- Department of Biochemistry and Molecular Biology, Daqing Branch of Harbin Medical University, Daqing, Heilongjiang 163319, P.R. China
| | - Yuanli Liu
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Junyu Guo
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jiadong Zheng
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yilin Qu
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yu Song
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Rongyan Li
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xiaofa Qin
- GI Biopharma Inc., Westfield, NJ 07090, USA
| | - Xiuhong Wang
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
34
|
Wang J, Wu X, Li Y, Han X, Hu H, Wang F, Yu C, Li X, Yang K, Yuan J, Yao P, Miao X, Wei S, Wang Y, Chen W, Liang Y, Guo H, Yang H, Wu T, Zhang X, He M. Serum bilirubin concentrations and incident coronary heart disease risk among patients with type 2 diabetes: the Dongfeng-Tongji cohort. Acta Diabetol 2017; 54:257-264. [PMID: 27933515 DOI: 10.1007/s00592-016-0946-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/22/2016] [Indexed: 01/01/2023]
Abstract
AIMS Elevated serum bilirubin levels are associated with decreased coronary heart disease (CHD) risk in cross-sectional studies among diabetic patients, but prospective evidence is limited. We investigated the relationship of serum bilirubin levels with incident CHD risk among type 2 diabetes patients. METHODS In a prospective study of 2918 type 2 diabetes embedded in the Dongfeng-Tongji cohort, serum total bilirubin (TBil), direct bilirubin (DBil), and indirect bilirubin (IBil) were measured at baseline. Cox proportional hazards models were used to examine the association between serum bilirubin levels and CHD risk. RESULTS A total of 440 CHD cases were identified during 12,017 person-years of follow-up. Compared with extreme quartiles, the adjusted hazard ratio and 95% confidence interval of incident CHD were 0.74 (0.56-0.99) with P trend = 0.08 in IBil, while in TBil and DBil, the bilirubin-CHD associations were not significant. Moreover, serum TBil and IBil levels were interacted with drinking status on the risk of incident CHD (P interaction = 0.021 and 0.037, respectively), and the associations were evident in ever drinkers. In drinkers, when serum TBil or IBil concentrations increased 1 μmol/L, the CHD risk both decreased 6% (95% CIs 0.89-0.99 and 0.87-1.00, respectively). CONCLUSIONS Serum IBil levels were marginally related to decreased incident CHD risk among type 2 diabetes. Drinking could potentially enhance the associations of serum TBil and DBil levels with incident CHD risk.
Collapse
Affiliation(s)
- Jing Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
- Department of Preventive Medicine, School of Public Health and Management, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaofen Wu
- Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaru Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Xu Han
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Hua Hu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Fei Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Caizheng Yu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Xiulou Li
- Dongfeng Central Hospital, Dongfeng Motor Corporation and Hubei University of Medicine, Shiyan, Hubei, China
| | - Kun Yang
- Dongfeng Central Hospital, Dongfeng Motor Corporation and Hubei University of Medicine, Shiyan, Hubei, China
| | - Jing Yuan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Ping Yao
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youjie Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Yuan Liang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Handong Yang
- Dongfeng Central Hospital, Dongfeng Motor Corporation and Hubei University of Medicine, Shiyan, Hubei, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China.
| |
Collapse
|
35
|
Karuppannasamy D, Venkatesan R, Thankappan L, Andavar R, Devisundaram S. Inverse Association between Serum Bilirubin Levels and Retinopathy in Patients with Type 2 Diabetes Mellitus. J Clin Diagn Res 2017; 11:NC09-NC12. [PMID: 28384901 DOI: 10.7860/jcdr/2017/24259.9452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/21/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Oxidative stress plays a central role in the pathogenesis of Diabetic Retinopathy (DR) and serum bilirubin has been shown to have antioxidant properties. AIM To investigate the association between serum bilirubin concentration and DR in patients with Type 2 Diabetes Mellitus (DM). MATERIALS AND METHODS This was a hospital based, cross- sectional study where in 86 patients with Type 2 DM and 30 controls were recruited. The study was conducted at a tertiary care centre in Southern India between January 2014 and December 2014. The presence and the severity of DR were determined by fundus examination and grading of colour fundus photographs using the international clinical disease severity scale for DR. Serum total, direct and indirect bilirubin levels were determined in all subjects and the association between bilirubin levels and severity of DR was studied. RESULTS Among the 86 diabetics, 24 had no retinopathy and 62 had DR of varying grades. The mean total bilirubin level among diabetic subjects (0.52±0.17) and controls (0.51±0.19) were found to be similar. The mean total as well as direct bilirubin levels were found to be lower in patients with retinopathy as compared to no retinopathy group (p<0.001). The severity of DR was inversely proportional to the serum bilirubin levels (p=0.010). Serum total bilirubin was found to have a negative association with glycosylated haemoglobin and served as an independent determinant of DR even after adjusting for risk factors known to be associated with DR (p=0.001). CONCLUSION Low serum bilirubin levels are significantly associated with increased risk of DR independent of classic risk factors. Serum bilirubin can serve as a useful biomarker in identifying patients at risk for developing proliferative DR.
Collapse
Affiliation(s)
- Divya Karuppannasamy
- Associate Professor, Department of Ophthalmology, PSG Institute of Medical Sciences and Research , Coimbatore, Tamilnadu, India
| | - Raghuram Venkatesan
- Medical Officer, Department of Ophthalmology, Aravind Eye Hospitals , Theni, Tamilnadu, India
| | - Lekha Thankappan
- Assistant Professor, Department of Ophthalmology, PSG Institute of Medical Sciences and Research , Coimbatore, Tamilnadu, India
| | - Raghuram Andavar
- Consultant Vitreoretinal Surgeon, Department of Ophthalmology, PSG Institute of Medical Sciences and Research , Coimbatore, Tamilnadu, India
| | - Sundar Devisundaram
- Professor, Department of Ophthalmology, PSG Institute of Medical Sciences and Research , Coimbatore, Tamilnadu, India
| |
Collapse
|
36
|
Lenoir O, Gaillard F, Lazareth H, Robin B, Tharaux PL. Hmox1 Deficiency Sensitizes Mice to Peroxynitrite Formation and Diabetic Glomerular Microvascular Injuries. J Diabetes Res 2017; 2017:9603924. [PMID: 29359167 PMCID: PMC5735626 DOI: 10.1155/2017/9603924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/06/2017] [Accepted: 10/08/2017] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Indirect evidence suggests a role for heme oxygenase-1 (HO-1) in limiting diabetic vasculopathy. The goal of this study was to assess the role of HO-1 in the development of microvascular lesions within glomeruli during diabetes mellitus using a mouse model with specific alteration of the Hmox1 gene. APPROACH AND RESULTS The effects of Hmox1 haploinsufficiency were studied as a means of assessing the intrinsic contribution of HO-1 in the development of renal microvascular lesions during diabetes. Renal function and histology were analyzed 10 weeks after diabetes induction with streptozotocin. Diabetic Hmox1+/- mice showed higher levels of albuminuria and blood urea compared to their wild-type diabetic littermates. More severe glomerular microvascular lesions were also observed in the diabetic Hmox1+/- mice. This was associated with a renal increase in the expression of the oxidative stress marker, nitrotyrosine. CONCLUSIONS Genetic Hmox1 partial deficiency is sufficient to sensitize mice to the development of diabetic glomerular microvascular lesions. HO-1 exerts antioxidant effects in the kidney during diabetes mellitus. These have protective effects on the development of glomerular endothelial injury.
Collapse
Affiliation(s)
- Olivia Lenoir
- Paris Cardiovascular Centre (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - François Gaillard
- Paris Cardiovascular Centre (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Hélène Lazareth
- Paris Cardiovascular Centre (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Blaise Robin
- Paris Cardiovascular Centre (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Centre (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Nephrology Division, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
37
|
Liu XM, Peyton KJ, Durante W. Ammonia promotes endothelial cell survival via the heme oxygenase-1-mediated release of carbon monoxide. Free Radic Biol Med 2017; 102:37-46. [PMID: 27867098 PMCID: PMC5209302 DOI: 10.1016/j.freeradbiomed.2016.11.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 01/07/2023]
Abstract
Although endothelial cells produce substantial quantities of ammonia during cell metabolism, the physiologic role of this gas in these cells is not known. In this study, we investigated if ammonia regulates the expression of heme oxygenase-1 (HO-1), and if this enzyme influences the biological actions of ammonia on endothelial cells. Exogenously administered ammonia, given as ammonium chloride or ammonium hydroxide, or endogenously generated ammonia stimulated HO-1 protein expression in cultured human and murine endothelial cells. Dietary supplementation of ammonia also induced HO-1 protein expression in murine arteries. The increase in HO-1 protein by ammonia in endothelial cells was first detected 4h after ammonia exposure and was associated with the induction of HO-1 mRNA, enhanced production of reactive oxygen species (ROS), and increased expression and activity of NF-E2-related factor-2 (Nrf2). Ammonia also activated the HO-1 promoter and this was blocked by mutating the antioxidant responsive element or by overexpressing dominant-negative Nrf2. The induction of HO-1 expression by ammonia was dependent on ROS formation and prevented by N-acetylcysteine or rotenone. Finally, prior treatment of endothelial cells with ammonia inhibited tumor necrosis factor-α-stimulated cell death. However, silencing HO-1 expression abrogated the protective action of ammonia and this was reversed by the administration of carbon monoxide but not bilirubin or iron. In conclusion, this study demonstrates that ammonia stimulates the expression of HO-1 in endothelial cells via the ROS-Nrf2 pathway, and that the induction of HO-1 contributes to the cytoprotective action of ammonia by generating carbon monoxide. Moreover, it identifies ammonia as a potentially important signaling gas in the vasculature that promotes endothelial cell survival.
Collapse
Affiliation(s)
- Xiao-Ming Liu
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA
| | - Kelly J Peyton
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA
| | - William Durante
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA.
| |
Collapse
|
38
|
Gupta N, Singh T, Chaudhary R, Garg SK, Sandhu GS, Mittal V, Gupta R, Bodin R, Sule S. Bilirubin in coronary artery disease: Cytotoxic or protective? World J Gastrointest Pharmacol Ther 2016; 7:469-476. [PMID: 27867680 PMCID: PMC5095566 DOI: 10.4292/wjgpt.v7.i4.469] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/07/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023] Open
Abstract
Bilirubin has traditionally been considered a cytotoxic waste product. However, recent studies have shown bilirubin to have anti-oxidant, anti-inflammatory, vasodilatory, anti-apoptotic and anti-proliferative functions. These properties potentially confer bilirubin a new role of protection especially in coronary artery disease (CAD), which is a low grade inflammatory process exacerbated by oxidative stress. In fact, recent literature reports an inverse relationship between serum concentration of bilirubin and the presence of CAD. In this article, we review the current literature exploring the association between levels of bilirubin and risk of CAD. We conclude that current evidence is inconclusive regarding the protective effect of bilirubin on CAD. A causal relationship between low serum bilirubin level and increased risk of CAD is not currently established.
Collapse
|
39
|
Hinds TD, Burns KA, Hosick PA, McBeth L, Nestor-Kalinoski A, Drummond HA, AlAmodi AA, Hankins MW, Vanden Heuvel JP, Stec DE. Biliverdin Reductase A Attenuates Hepatic Steatosis by Inhibition of Glycogen Synthase Kinase (GSK) 3β Phosphorylation of Serine 73 of Peroxisome Proliferator-activated Receptor (PPAR) α. J Biol Chem 2016; 291:25179-25191. [PMID: 27738106 DOI: 10.1074/jbc.m116.731703] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/30/2016] [Indexed: 01/21/2023] Open
Abstract
Non-alcoholic fatty liver disease is the most rapidly growing form of liver disease and if left untreated can result in non-alcoholic steatohepatitis, ultimately resulting in liver cirrhosis and failure. Biliverdin reductase A (BVRA) is a multifunctioning protein primarily responsible for the reduction of biliverdin to bilirubin. Also, BVRA functions as a kinase and transcription factor, regulating several cellular functions. We report here that liver BVRA protects against hepatic steatosis by inhibiting glycogen synthase kinase 3β (GSK3β) by enhancing serine 9 phosphorylation, which inhibits its activity. We show that GSK3β phosphorylates serine 73 (Ser(P)73) of the peroxisome proliferator-activated receptor α (PPARα), which in turn increased ubiquitination and protein turnover, as well as decreased activity. Interestingly, liver-specific BVRA KO mice had increased GSK3β activity and Ser(P)73 of PPARα, which resulted in decreased PPARα protein and activity. Furthermore, the liver-specific BVRA KO mice exhibited increased plasma glucose and insulin levels and decreased glycogen storage, which may be due to the manifestation of hepatic steatosis observed in the mice. These findings reveal a novel BVRA-GSKβ-PPARα axis that regulates hepatic lipid metabolism and may provide unique targets for the treatment of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Terry D Hinds
- the Center for Hypertension and Personalized Medicine, Department of Physiology & Pharmacology,
| | - Katherine A Burns
- the Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, and.,the Department of Environmental Health, Division of Environmental Genetics and Molecular Toxicology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Peter A Hosick
- From the Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi 39216.,the Department of Exercise Science and Physical Education, Montclair State University, Montclair, New Jersey 07043
| | - Lucien McBeth
- the Center for Hypertension and Personalized Medicine, Department of Physiology & Pharmacology
| | - Andrea Nestor-Kalinoski
- Advanced Microscopy & Imaging Center, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo Ohio 43614
| | - Heather A Drummond
- From the Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Abdulhadi A AlAmodi
- From the Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Michael W Hankins
- From the Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - John P Vanden Heuvel
- the Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - David E Stec
- From the Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi 39216,
| |
Collapse
|
40
|
Hinds TD, Adeosun SO, Alamodi AA, Stec DE. Does bilirubin prevent hepatic steatosis through activation of the PPARα nuclear receptor? Med Hypotheses 2016; 95:54-57. [PMID: 27692168 PMCID: PMC5433619 DOI: 10.1016/j.mehy.2016.08.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/05/2016] [Accepted: 08/31/2016] [Indexed: 12/15/2022]
Abstract
Several large population studies have demonstrated a negative correlation between serum bilirubin levels and the development of obesity, hepatic steatosis, and cardiovascular disease. Despite the strong correlative data demonstrating the protective role of bilirubin, the mechanism by which bilirubin can protect against these pathologies remains unknown. Bilirubin has long been known as a powerful antioxidant and also has anti-inflammatory actions, each of which may contribute to the protection afforded by increased levels. We have recently described a novel function of bilirubin as a ligand for the peroxisome proliferator-activated receptor-alpha (PPARα), which we show specifically binds to the nuclear receptor. Bilirubin may function as a selective PPAR modulator (SPPARM) to control lipid accumulation and blood glucose. However, it is not known to what degree bilirubin activation of PPARα is responsible for the protection afforded to reduce hepatic steatosis. We hypothesize that bilirubin, acting as a novel SPPARM, increases hepatic fatty acid metabolism through a PPARα-dependent mechanism which reduces hepatic lipid accumulation and protects against hepatic steatosis and non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Terry D Hinds
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Samuel O Adeosun
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 39216, USA
| | - Abdulhadi A Alamodi
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 39216, USA
| | - David E Stec
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 39216, USA.
| |
Collapse
|
41
|
Bilirubin as an important physiological modulator of oxidative stress and chronic inflammation in metabolic syndrome and diabetes: a new aspect on old molecule. Diabetol Int 2016; 7:338-341. [PMID: 30603284 DOI: 10.1007/s13340-016-0288-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Indexed: 12/19/2022]
|
42
|
Wang J, Li Y, Han X, Hu H, Wang F, Yu C, Li X, Yang K, Yuan J, Yao P, Miao X, Wei S, Wang Y, Chen W, Liang Y, Zhang X, Guo H, Pan A, Yang H, Wu T, He M. Association between serum bilirubin levels and decline in estimated glomerular filtration rate among patients with type 2 diabetes. J Diabetes Complications 2016; 30:1255-60. [PMID: 27288202 DOI: 10.1016/j.jdiacomp.2016.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/09/2016] [Accepted: 05/14/2016] [Indexed: 01/12/2023]
Abstract
AIMS Studies indicate that elevated serum total bilirubin (TBil) levels are associated with lower risk of diabetic kidney disease (DKD). Few studies examined the associations of direct bilirubin (DBil) and indirect bilirubin (IBil) with the development of DKD. METHODS Type 2 diabetes patients (n=2,958) with estimated glomerular filtration (eGFR)≥60mlmin(-1) 1.73m(-2) from the Dongfeng-Tongji cohort were selected and followed up for 5years. Development of DKD was defined as decline in eGFR≥30% during follow-up. Generalize linear model was used to assess the associations of bilirubin levels with DKD development. RESULTS Compared with those in the first tertile of serum TBil, the relative risks (RRs) and 95% confidence intervals (CIs) of incident eGFR decline for tertile 2 to 3 were 0.83 (0.64-1.09) and 0.74 (0.56-0.98), Ptrend=0.04. The counterpart RRs (95% CIs) in IBil were 0.74 (0.57-0.97) and 0.75 (0.57-0.98), Ptrend=0.04. No significant associations were observed in DBil. Moreover, TBil and IBil interacted with smoking, the bilirubin-DKD associations were evident in ever smokers. CONCLUSIONS Our findings suggest that elevation of serum TBil or IBil levels are independent protective factors for development of DKD, particularly in smokers.
Collapse
Affiliation(s)
- Jing Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaru Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xu Han
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hua Hu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Caizheng Yu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiulou Li
- Dongfeng Central Hospital, Dongfeng Motor Corporation and Hubei University of Medicine, Shiyan, Hubei, China
| | - Kun Yang
- Dongfeng Central Hospital, Dongfeng Motor Corporation and Hubei University of Medicine, Shiyan, Hubei, China
| | - Jing Yuan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Yao
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuan Liang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Handong Yang
- Dongfeng Central Hospital, Dongfeng Motor Corporation and Hubei University of Medicine, Shiyan, Hubei, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
43
|
Zhang B, Chen Y, Shen Q, Liu G, Ye J, Sun G, Sun X. Myricitrin Attenuates High Glucose-Induced Apoptosis through Activating Akt-Nrf2 Signaling in H9c2 Cardiomyocytes. Molecules 2016; 21:molecules21070880. [PMID: 27399653 PMCID: PMC6274128 DOI: 10.3390/molecules21070880] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022] Open
Abstract
Hyperglycemia, as well as diabetes mellitus, has been shown to trigger cardiac cell apoptosis. We have previously demonstrated that myricitrin prevents endothelial cell apoptosis. However, whether myricitrin can attenuate H9c2 cell apoptosis remains unknown. In this study, we established an experiment model in H9c2 cells exposed to high glucose. We tested the hypothesis that myricitrin may inhibit high glucose (HG)-induced cardiac cell apoptosis as determined by TUNEL staining. Furthermore, myricitrin promoted antioxidative enzyme production, suppressed high glucose-induced reactive oxygen species (ROS) production and decreased mitochondrial membrane potential (MMP) in H9c2 cells. This agent significantly inhibited apoptotic protein expression, activated Akt and facilitated the transcription of NF-E2-related factor 2 (Nrf2)-mediated protein (heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO-1) expression as determined by Western blotting. Significantly, an Akt inhibitor (LY294002) or HO-1 inhibitor (ZnPP) not only inhibited myricitrin-induced HO-1/NQO-1 upregulation but also alleviated its anti-apoptotic effects. In summary, these observations demonstrate that myricitrin activates Nrf2-mediated anti-oxidant signaling and attenuates H9c2 cell apoptosis induced by high glucose via activation of Akt signaling.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Yaping Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Qiang Shen
- Center of Research and Development on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, China.
| | - Guiyan Liu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| |
Collapse
|
44
|
Liu XM, Durante ZE, Peyton KJ, Durante W. Heme oxygenase-1-derived bilirubin counteracts HIV protease inhibitor-mediated endothelial cell dysfunction. Free Radic Biol Med 2016; 94:218-29. [PMID: 26968795 PMCID: PMC4844824 DOI: 10.1016/j.freeradbiomed.2016.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/12/2016] [Accepted: 03/07/2016] [Indexed: 12/30/2022]
Abstract
The use of HIV protease inhibitors (PIs) has extended the duration and quality of life for HIV-positive individuals. However there is increasing concern that this antiviral therapy may promote premature cardiovascular disease by impairing endothelial cell (EC) function. In the present study, we investigated the effect of HIV PIs on EC function and determined if the enzyme heme oxygenase (HO-1) influences the biological action of these drugs. We found that three distinct PIs, including ritonavir, atazanavir, and lopinavir, stimulated the expression of HO-1 protein and mRNA. The induction of HO-1 was associated with an increase in NF-E2-related factor-2 (Nrf2) activity and reactive oxygen species (ROS). PIs also stimulated HO-1 promoter activity and this was prevented by mutating the antioxidant responsive element or by overexpressing dominant-negative Nrf2. In addition, the PI-mediated induction of HO-1 was abolished by N-acetyl-l-cysteine and rotenone. Furthermore, PIs blocked EC proliferation and migration and stimulated the expression of intercellular adhesion molecule-1 and the adhesion of monocytes on ECs. Inhibition of HO-1 activity or expression potentiated the anti-proliferative and inflammatory actions of PIs which was reversed by bilirubin but not carbon monoxide. Alternatively, adenovirus-mediated overexpression of HO-1 attenuated the growth-inhibitory and inflammatory effect of PIs. In contrast, blocking HO-1 activity failed to modify the anti-migratory effect of the PIs. Thus, induction of HO-1 via the ROS-Nrf2 pathway in human ECs counteracts the anti-proliferative and inflammatory actions of PIs by generating bilirubin. Therapeutic approaches targeting HO-1 may provide a novel approach in preventing EC dysfunction and vascular disease in HIV-infected patients undergoing antiretroviral therapy.
Collapse
Affiliation(s)
- Xiao-Ming Liu
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Zane E Durante
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Kelly J Peyton
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - William Durante
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA.
| |
Collapse
|
45
|
Mechanisms of echinochrome potency in modulating diabetic complications in liver. Life Sci 2016; 151:41-49. [PMID: 26947587 DOI: 10.1016/j.lfs.2016.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diabetes mellitus is one of the most public metabolic disorders. It is mainly classified into type 1 and type 2. Echinochrome is a pigment from sea urchins that has antioxidant, anti-microbial, anti-inflammatory and chelating abilities. AIMS The present study aimed to investigate the anti-diabetic mechanisms of echinochrome pigment in streptozotocin-induced diabetic rats. MAIN METHODS Thirty six male Wistar albino rats were divided into two main groups, type 1 diabetes and type 2 diabetes groups. Each group was divided into 3 subgroups (6 rats/subgroup); control, diabetic and echinochrome groups. Diabetic model was induced by a single dose of streptozotocin (60mg/kg, i.p) for type 1 diabetes and by a high fat diet for 4weeks before the injection with streptozotocin (30mg/kg, i.p) for type 2 diabetes. Diabetic groups were treated orally with echinochrome extract (1mg/kg body weight in 10% DMSO) daily for 4weeks. KEY FINDINGS Echinochrome groups showed a reduction in the concentrations of glucose, MDA and the activities of arginase, AST, ALT, ALP and GGT. While it caused general increase in the levels of insulin, TB, DB, IB, NO and the activities of G6PD, GST, GPx, SOD and GSH. The histopathological investigation showed partial restoration of pancreatic islet cells and clear improvement in the hepatic architecture. SIGNIFICANCE The suggested mechanism of Ech action in the reduction of diabetic complications in liver involved two pathways; through the hypoglycemic activity and the antioxidant role of Ech.
Collapse
|
46
|
Ikwuobe J, Bellary S, Griffiths HR. Innovative biomarkers for predicting type 2 diabetes mellitus: relevance to dietary management of frailty in older adults. Biogerontology 2016; 17:511-27. [PMID: 26897532 DOI: 10.1007/s10522-016-9634-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 01/18/2016] [Indexed: 01/01/2023]
Abstract
Type 2 diabetes mellitus (T2DM) increases in prevalence in the elderly. There is evidence for significant muscle loss and accelerated cognitive impairment in older adults with T2DM; these comorbidities are critical features of frailty. In the early stages of T2DM, insulin sensitivity can be improved by a "healthy" diet. Management of insulin resistance by diet in people over 65 years of age should be carefully re-evaluated because of the risk for falling due to hypoglycaemia. To date, an optimal dietary programme for older adults with insulin resistance and T2DM has not been described. The use of biomarkers to identify those at risk for T2DM will enable clinicians to offer early dietary advice that will delay onset of disease and of frailty. Here we have used an in silico literature search for putative novel biomarkers of T2DM risk and frailty. We suggest that plasma bilirubin, plasma, urinary DPP4-positive microparticles and plasma pigment epithelium-derived factor merit further investigation as predictive biomarkers for T2DM and frailty risk in older adults. Bilirubin is screened routinely in clinical practice. Measurement of specific microparticle frequency in urine is less invasive than a blood sample so is a good choice for biomonitoring. Future studies should investigate whether early dietary changes, such as increased intake of whey protein and micronutrients that improve muscle function and insulin sensitivity, affect biomarkers and can reduce the longer term complication of frailty in people at risk for T2DM.
Collapse
Affiliation(s)
- John Ikwuobe
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, B4 7ET, UK
| | - Srikanth Bellary
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, B4 7ET, UK
| | - Helen R Griffiths
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
47
|
Gao F, Zhang X, Zhou L, Zhou S, Zheng Y, Yu J, Fan W, Zhu Y, Han X. Type 2 diabetes mitigation in the diabetic Goto-Kakizaki rat by elevated bile acids following a common-bile-duct surgery. Metabolism 2016; 65:78-88. [PMID: 26773931 DOI: 10.1016/j.metabol.2015.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/10/2015] [Accepted: 09/19/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Elevated plasma bile acids after bariatric surgery are thought to explain type 2 diabetes mellitus (T2DM) remission. Bile acids can bind to and activate the nuclear receptor farnesoid-X receptor (FXR) by regulating lipid and glucose metabolism. We performed a surgical procedure (ligation of the common bile duct and external biliary drainage [LBD]) in the diabetic Goto-Kakizaki (GK) rat in order to investigate its effect on bile acids metabolism and T2DM mitigation. MATERIAL/METHODS LBD surgery and sham control surgery were performed on diabetic GK rats. The concentrations of total bile acids and blood glucose were analyzed by an automatic analyzer. Intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (ITT) were used to monitor blood glucose level. Expression of genes involved in bile acid metabolism (FXR, CYP7A, et al.) and glycolipid metabolism (G6Pase, PEPCK, et al) was analyzed using qRT-PCR. The protein levels of pAKT, AKT and pGSK3β were tested by western blot. The morphological alterations of the liver and epididymal fat were monitored by H&E staining. RESULTS LBD increased plasma total bile acids, improved hepatic insulin sensitivity, and eventually mitigated T2DM, whereas food intake and body weight were unaltered. Post-LBD, the levels of total bile acids were elevated from 24.80±7.12 to 61.44±6.40 and the concentration of fast blood glucose was decreased from 204.7±11.06mg/dL to 109.3±5.4mg/dL. IPGTT and ITT showed that LBD operation improved insulin sensitivity in GK rats. Clusters of FXR signaling target genes were altered in the liver, such as FXR, CYP7A, G6Pase and PEPCK. These contributed to sustained bile acid homeostasis, and they ameliorated hepatic endoplasmic reticulum (ER) stress, increased energy expenditure, and reduced gluconeogenesis, resulting in a substantial improvement in hepatic insulin sensitivity. LBD also significantly reduced epididymal fat tissue and decreased the size of adipocytes. CONCLUSION These results demonstrate that the elevated bile acids observed in LBD-operated GK rats link insulin sensitivity improvement to T2DM mitigation, recapitulating the metabolic effects of bariatric surgery. Our investigation establishes a model for a focused study of bile acids in the context of bariatric surgery that may contribute to the identification of therapeutics for T2DM.
Collapse
Affiliation(s)
- Feng Gao
- Department of Orthopedic Surgery, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lanlan Zhou
- Department of rheumatism, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shixiang Zhou
- Department of Orthopedic Surgery, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Zheng
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiani Yu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weimin Fan
- Department of Orthopedic Surgery, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
48
|
Abraham NG, Junge JM, Drummond GS. Translational Significance of Heme Oxygenase in Obesity and Metabolic Syndrome. Trends Pharmacol Sci 2015; 37:17-36. [PMID: 26515032 DOI: 10.1016/j.tips.2015.09.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 01/04/2023]
Abstract
The global epidemic of obesity continues unabated with sequelae of diabetes and metabolic syndrome. This review reflects the dramatic increase in research on the role of increased expression of heme oxygenase (HO)-1/HO-2, biliverdin reductase, and HO activity on vascular disease. The HO system engages with other systems to mitigate the deleterious effects of oxidative stress in obesity and cardiovascular disease (CVD). Recent reports indicate that HO-1/HO-2 protein expression and HO activity have several important roles in hemostasis and reactive oxygen species (ROS)-dependent perturbations associated with metabolic syndrome. HO-1 protects tissue during inflammatory stress in obesity through the degradation of pro-oxidant heme and the production of carbon monoxide (CO) and bilirubin, both of which have anti-inflammatory and anti-apoptotic properties. By contrast, repression of HO-1 is associated with increases of cellular heme and inflammatory conditions including hypertension, stroke, and atherosclerosis. HO-1 is a major focus in the development of potential therapeutic strategies to reverse the clinical complications of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Nader G Abraham
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA; Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, USA.
| | - Joshua M Junge
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA
| | - George S Drummond
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA
| |
Collapse
|
49
|
Moon JS. Role of Bilirubin in Diabetic Vascular Complications: Can Bilirubin Predict More than Just Liver Disease? Diabetes Metab J 2015; 39:384-6. [PMID: 26566495 PMCID: PMC4641967 DOI: 10.4093/dmj.2015.39.5.384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jun Sung Moon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
50
|
Bilirubin exerts pro-angiogenic property through Akt-eNOS-dependent pathway. Hypertens Res 2015; 38:733-40. [PMID: 26134126 DOI: 10.1038/hr.2015.74] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/30/2015] [Accepted: 05/12/2015] [Indexed: 12/19/2022]
Abstract
Low serum bilirubin levels are associated with the risk of cardiovascular diseases including peripheral artery disease. Bilirubin is known to exert its property such as antioxidant effect or the enhancement of flow-mediated vasodilation, however, bilirubin action on angiogenesis remains unclear. To investigate the molecular mechanism of bilirubin on angiogenic effect, we first employed C57BL/6J mice with unilateral hindlimb ischemia surgery and divided the mice into two groups (vehicle-treated group and bilirubin-treated group). The analysis of laser speckle blood flow demonstrated the enhancement of blood flow recovery in response to ischemia of mice with bilirubin treatment. The density of capillaries was significantly higher in ischemic-adductor muscles of bilirubin-treated mice. The phosphorylated levels of endothelial nitric oxide synthase (eNOS) and Akt were increased in ischemic skeletal muscles of mice with bilirubin treatment compared with vehicle treatment. In in vitro experiments by using human aortic endothelial cells, bilirubin augmented eNOS and Akt phosphorylation, cell proliferation, cell migration and tube formation. These bilirubin actions on endothelial cell activation were inhibited by LY294002, a phosphatidylinositol 3-kinase inhibitor. In conclusion, bilirubin promotes angiogenesis through endothelial cells activation via Akt-eNOS-dependent manner.
Collapse
|