1
|
Patil M, Casari I, Thapa D, Warne LN, Dallerba E, Massi M, Carlessi R, Falasca M. Preclinical pharmacokinetics, pharmacodynamics, and toxicity of novel small-molecule GPR119 agonists to treat type-2 diabetes and obesity. Biomed Pharmacother 2024; 177:117077. [PMID: 38968799 DOI: 10.1016/j.biopha.2024.117077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024] Open
Abstract
The escalating global prevalence of type-2 diabetes (T2D) and obesity necessitates the development of novel oral medications. Agonism at G-protein coupled receptor-119 (GPR119) has been recognized for modulation of metabolic homeostasis in T2D, obesity, and fatty liver disease. However, off-target effects have impeded the advancement of synthetic GPR119 agonist drug candidates. Non-systemic, gut-restricted GPR119 agonism is suggested as an alternative strategy that may locally stimulate intestinal enteroendocrine cells (EEC) for incretin secretion, without the need for systemic drug availability, consequently alleviating conventional class-related side effects. Herein, we report the preclinical acute safety, efficacy, and pharmacokinetics (PK) of novel GPR119 agonist compounds ps297 and ps318 that potentially target gut EEC for incretin secretion. In a proof-of-efficacy study, both compounds demonstrated glucagon-like peptide-1 (GLP-1) secretion capability during glucose and mixed-meal tolerance tests in healthy mice. Furthermore, co-administration of sitagliptin with investigational compounds in diabetic db/db mice resulted in synergism, with GLP-1 concentrations rising by three-fold. Both ps297 and ps318 exhibited low gut permeability assessed in the in-vitro Caco-2 cell model. A single oral dose PK study conducted on healthy mice demonstrated poor systemic bioavailability of both agents. PK measures (mean ± SD) for compound ps297 (Cmax 23 ± 19 ng/mL, Tmax range 0.5 - 1 h, AUC0-24 h 19.6 ± 21 h*ng/mL) and ps318 (Cmax 75 ± 22 ng/mL, Tmax range 0.25 - 0.5 h, AUC0-24 h 35 ± 23 h*ng/mL) suggest poor oral absorption. Additionally, examinations of drug excretion patterns in mice revealed that around 25 % (ps297) and 4 % (ps318) of the drugs were excreted through faeces as an unchanged form, while negligible drug concentrations (<0.005 %) were excreted in the urine. These acute PK/PD assessments suggest the gut is a primary site of action for both agents. Toxicity assessments conducted in the zebrafish and healthy mice models confirmed the safety and tolerability of both compounds. Future chronic in-vivo studies in relevant disease models will be essential to confirm the long-term safety and efficacy of these novel compounds.
Collapse
Affiliation(s)
- Mohan Patil
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Dinesh Thapa
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Leon N Warne
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia; College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Elena Dallerba
- School of Molecular and Life Sciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Rodrigo Carlessi
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Marco Falasca
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy.
| |
Collapse
|
2
|
Kleiman D, Arad Y, Azulai S, Baker A, Bergel M, Elad A, Haran A, Hefetz L, Israeli H, Littor M, Permyakova A, Samuel I, Tam J, Ben-Haroush Schyr R, Ben-Zvi D. Inhibition of somatostatin enhances the long-term metabolic outcomes of sleeve gastrectomy in mice. Mol Metab 2024; 86:101979. [PMID: 38945296 PMCID: PMC11278880 DOI: 10.1016/j.molmet.2024.101979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024] Open
Abstract
OBJECTIVE Bariatric surgery is an effective treatment to obesity, leading to weight loss and improvement in glycemia, that is characterized by hypersecretion of gastrointestinal hormones. However, weight regain and relapse of hyperglycemia are not uncommon. We set to identify mechanisms that can enhance gastrointestinal hormonal secretion following surgery to sustain weight loss. METHODS We investigated the effect of somatostatin (Sst) inhibition on the outcomes of bariatric surgery using a mouse model of sleeve gastrectomy (SG). RESULTS Sst knockout (sst-ko) mice fed with a calorie-rich diet gained weight normally and had a mild favorable metabolic phenotype compared to heterozygous sibling controls, including elevated plasma levels of GLP-1. Mathematical modeling of the feedback inhibition between Sst and GLP-1 showed that Sst exerts its maximal effect on GLP-1 under conditions of high hormonal stimulation, such as following SG. Obese sst-ko mice that underwent SG had higher levels of GLP-1 compared with heterozygous SG-operated controls. The SG-sst-ko mice regained less weight than controls and maintained lower glycemia months after surgery. Obese wild-type mice that underwent SG and were treated daily with a Sst receptor inhibitor for two months had higher GLP-1 levels, regained less weight, and improved metabolic profile compared to saline-treated SG-operated controls, and compared to inhibitor or saline-treated sham-operated obese mice. CONCLUSIONS Our results suggest that inhibition of Sst signaling enhances the long-term favorable metabolic outcomes of bariatric surgery.
Collapse
Affiliation(s)
- Doron Kleiman
- Dept. of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; The Center for Computational Medicine, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yhara Arad
- Dept. of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; Dept. of Military Medicine and Tzameret, Faculty of Medicine, Heberew University of Jerusalem and Medical Corps, Israel Defence Forces, Jerusalem, Israel
| | - Shira Azulai
- Dept. of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aaron Baker
- Dept. of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Bergel
- Dept. of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit Elad
- Dept. of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; The Center for Computational Medicine, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arnon Haran
- Dept. of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liron Hefetz
- Dept. of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; Dept. of Military Medicine and Tzameret, Faculty of Medicine, Heberew University of Jerusalem and Medical Corps, Israel Defence Forces, Jerusalem, Israel
| | - Hadar Israeli
- Dept. of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mika Littor
- Dept. of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; The Center for Computational Medicine, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; Dept. of Military Medicine and Tzameret, Faculty of Medicine, Heberew University of Jerusalem and Medical Corps, Israel Defence Forces, Jerusalem, Israel
| | - Anna Permyakova
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itia Samuel
- Dept. of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; The Center for Computational Medicine, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Ben-Haroush Schyr
- Dept. of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; The Center for Computational Medicine, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Danny Ben-Zvi
- Dept. of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; The Center for Computational Medicine, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
3
|
Ren W, Chen J, Wang W, Li Q, Yin X, Zhuang G, Zhou H, Zeng W. Sympathetic nerve-enteroendocrine L cell communication modulates GLP-1 release, brain glucose utilization, and cognitive function. Neuron 2024; 112:972-990.e8. [PMID: 38242116 DOI: 10.1016/j.neuron.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/26/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
Glucose homeostasis is controlled by brain-gut communications. Yet our understanding of the neuron-gut interface in the glucoregulatory system remains incomplete. Here, we find that sympathetic nerves elevate postprandial blood glucose but restrict brain glucose utilization by repressing the release of glucagon-like peptide-1 (GLP-1) from enteroendocrine L cells. Sympathetic nerves are in close apposition with the L cells. Importantly, sympathetic denervation or intestinal deletion of the adrenergic receptor α2 (Adra2a) augments postprandial GLP-1 secretion, leading to reduced blood glucose levels and increased brain glucose uptake. Conversely, sympathetic activation shows the opposite effects. At the cellular level, adrenergic signaling suppresses calcium flux to limit GLP-1 secretion upon sugar ingestion. Consequently, abrogation of adrenergic signal results in a significant improvement in learning and memory ability. Together, our results reveal a sympathetic nerve-enteroendocrine unit in constraining GLP-1 secretion, thus providing a therapeutic nexus of mobilizing endogenous GLP-1 for glucose management and cognitive improvement.
Collapse
Affiliation(s)
- Wenran Ren
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Jianhui Chen
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Wenjing Wang
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qingqing Li
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Xia Yin
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Guanglei Zhuang
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hong Zhou
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China.
| |
Collapse
|
4
|
Patil M, Casari I, Warne LN, Falasca M. G protein-coupled receptors driven intestinal glucagon-like peptide-1 reprogramming for obesity: Hope or hype? Biomed Pharmacother 2024; 172:116245. [PMID: 38340396 DOI: 10.1016/j.biopha.2024.116245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
'Globesity' is a foremost challenge to the healthcare system. The limited efficacy and adverse effects of available oral pharmacotherapies pose a significant obstacle in the fight against obesity. The biology of the leading incretin hormone glucagon-like-peptide-1 (GLP-1) has been highly captivated during the last decade owing to its multisystemic pleiotropic clinical outcomes beyond inherent glucoregulatory action. That fostered a pharmaceutical interest in synthetic GLP-1 analogues to tackle type-2 diabetes (T2D), obesity and related complications. Besides, mechanistic insights on metabolic surgeries allude to an incretin-based hormonal combination strategy for weight loss that emerged as a forerunner for the discovery of injectable 'unimolecular poly-incretin-agonist' therapies. Physiologically, intestinal enteroendocrine L-cells (EECs) are the prominent endogenous source of GLP-1 peptide. Despite comprehending the potential of various G protein-coupled receptors (GPCRs) to stimulate endogenous GLP-1 secretion, decades of translational GPCR research have failed to yield regulatory-approved endogenous GLP-1 secretagogue oral therapy. Lately, a dual/poly-GPCR agonism strategy has emerged as an alternative approach to the traditional mono-GPCR concept. This review aims to gain a comprehensive understanding by revisiting the pharmacology of a few potential GPCR-based complementary avenues that have drawn attention to the design of orally active poly-GPCR agonist therapy. The merits, challenges and recent developments that may aid future poly-GPCR drug discovery are critically discussed. Subsequently, we project the mechanism-based therapeutic potential and limitations of oral poly-GPCR agonism strategy to augment intestinal GLP-1 for weight loss. We further extend our discussion to compare the poly-GPCR agonism approach over invasive surgical and injectable GLP-1-based regimens currently in clinical practice for obesity.
Collapse
Affiliation(s)
- Mohan Patil
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Leon N Warne
- Little Green Pharma, West Perth, Western Australia 6872, Australia
| | - Marco Falasca
- University of Parma, Department of Medicine and Surgery, Via Volturno 39, 43125 Parma, Italy.
| |
Collapse
|
5
|
Homeida AM, Homeida MA, Al-Suhaimi EA. Circadian hormone secretion of enteroendocrine cells: implication on pregnancy status. Front Endocrinol (Lausanne) 2023; 14:1106382. [PMID: 37234809 PMCID: PMC10206244 DOI: 10.3389/fendo.2023.1106382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
The timing of food intake is a key cue for circadian rhythms in humans and animals. In response to food intake, gut hormones called incretin are produced by intestinal enteroendocrine cells in a circadian rhythm that stimulates insulin secretion and regulates body weight and energy expenditure. Pregnancy is associated with the expansion of β cells, the risk of gestational diabetes mellitus, and excessive weight gain. The timing of food intake is a good way to address metabolic complications during pregnancy. The current review focuses on the circadian rhythms and biological actions of enteroendocrine hormones and their associations with pregnancy status, specifically topics like food intake and gut circadian rhythms, the circadian secretion of enteroendocrine peptides, and the effects of these factors during pregnancy.
Collapse
Affiliation(s)
- Abdelgadir M. Homeida
- Department of Environmental Health Research, Institute of Research and Medical Consultations Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohamed A. Homeida
- UH Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Ebtesam A. Al-Suhaimi
- Department of Environmental Health Research, Institute of Research and Medical Consultations Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
6
|
Medak KD, Weber AJ, Shamshoum H, McKie GL, Hahn MK, Wright DC. Enhancing endogenous levels of GLP1 dampens acute olanzapine induced perturbations in lipid and glucose metabolism. Front Pharmacol 2023; 14:1127634. [PMID: 36937886 PMCID: PMC10014622 DOI: 10.3389/fphar.2023.1127634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Olanzapine is a second-generation antipsychotic (SGA) used in the treatment of schizophrenia and several on- and off-label conditions. While effective in reducing psychoses, acute olanzapine treatment causes rapid hyperglycemia, insulin resistance, and dyslipidemia and these perturbations are linked to an increased risk of developing cardiometabolic disease. Pharmacological agonists of the glucagon-like peptide-1 (GLP1) receptor have been shown to offset weight-gain associated with chronic SGA administration and mitigate the acute metabolic side effects of SGAs. The purpose of this study was to determine if increasing endogenous GLP1 is sufficient to protect against acute olanzapine-induced impairments in glucose and lipid homeostasis. Male C57BL/6J mice were treated with olanzapine, in the absence or presence of an oral glucose tolerance test (OGTT), and a combination of compounds to increase endogenous GLP1. These include the non-nutritive sweetener allulose which acts to induce GLP1 secretion but not other incretins, the DPPiv inhibitor sitagliptin which prevents degradation of active GLP1, and an SSTR5 antagonist which relieves inhibition on GLP1 secretion. We hypothesized that this cocktail of agents would increase circulating GLP1 to supraphysiological concentrations and would protect against olanzapine-induced perturbations in glucose and lipid homeostasis. We found that 'triple treatment' increased both active and total GLP1 and protected against olanzapine-induced perturbations in lipid and glucose metabolism under glucose stimulated conditions and this was paralleled by an attenuation in the olanzapine induced increase in the glucagon:insulin ratio. Our findings provide evidence that pharmacological approaches to increase endogenous GLP1 could be a useful adjunct approach to reduce acute olanzapine-induced perturbations in lipid and glucose metabolism.
Collapse
Affiliation(s)
- Kyle D. Medak
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, ON, Canada
| | - Alyssa J. Weber
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, ON, Canada
| | - Hesham Shamshoum
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, ON, Canada
| | - Greg L. McKie
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, ON, Canada
| | - Margaret K. Hahn
- Centre for Addition and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - David C. Wright
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
- Faculty of Food and Land Systems, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- *Correspondence: David C. Wright,
| |
Collapse
|
7
|
Wang Y, Wu Y, Wang A, Wang A, Alkhalidy H, Helm R, Zhang S, Ma H, Zhang Y, Gilbert E, Xu B, Liu D. An olive-derived elenolic acid stimulates hormone release from L-cells and exerts potent beneficial metabolic effects in obese diabetic mice. Front Nutr 2022; 9:1051452. [PMID: 36386896 PMCID: PMC9664001 DOI: 10.3389/fnut.2022.1051452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023] Open
Abstract
Insulin resistance and progressive decline in functional β-cell mass are two key factors for developing type 2 diabetes (T2D), which is largely driven by overweight and obesity, a significant obstacle for effective metabolic control in many patients with T2D. Thus, agents that simultaneously ameliorate obesity and act on multiple pathophysiological components could be more effective for treating T2D. Here, we report that elenolic acid (EA), a phytochemical, is such a dual-action agent. we show that EA dose-dependently stimulates GLP-1 secretion in mouse clonal L-cells and isolated mouse ileum crypts. In addition, EA induces L-cells to secrete peptide YY (PYY). EA induces a rapid increase in intracellular [Ca2+]i and the production of inositol trisphosphate in L-cells, indicating that EA activates phospholipase C (PLC)-mediated signaling. Consistently, inhibition of (PLC) or Gαq ablates EA-stimulated increase of [Ca2+]i and GLP-1 secretion. In vivo, a single dose of EA acutely stimulates GLP-1 and PYY secretion in mice, accompanied with an improved glucose tolerance and insulin levels. Oral administration of EA at a dose of 50 mg/kg/day for 2 weeks normalized the fasting blood glucose and restored glucose tolerance in high-fat diet-induced obese (DIO) mice to levels that were comparable to chow-fed mice. In addition, EA suppresses appetite, reduces food intake, promotes weight loss, and reverses perturbated metabolic variables in obese mice. These results suggest that EA could be a dual-action agent as an alternative or adjuvant treatment for both T2D and obesity.
Collapse
Affiliation(s)
- Yao Wang
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Yajun Wu
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Aiping Wang
- College of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Aihua Wang
- Department of Biochemistry, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Hana Alkhalidy
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Richard Helm
- Department of Biochemistry, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Elizabeth Gilbert
- School of Animal Sciences, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Bin Xu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Dongmin Liu
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
- Virginia Tech Drug Discovery Center, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
8
|
Guan HP, Xiong Y. Learn from failures and stay hopeful to GPR40, a GPCR target with robust efficacy, for therapy of metabolic disorders. Front Pharmacol 2022; 13:1043828. [PMID: 36386134 PMCID: PMC9640913 DOI: 10.3389/fphar.2022.1043828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
GPR40 is a class A G-protein coupled receptor (GPCR) mainly expressed in pancreas, intestine, and brain. Its endogenous ligand is long-chain fatty acids, which activate GPR40 after meal ingestion to induce secretion of incretins in the gut, including GLP-1, GIP, and PYY, the latter control appetite and glucose metabolism. For its involvement in satiety regulation and metabolic homeostasis, partial and AgoPAM (Positive Allosteric Modulation agonist) GPR40 agonists had been developed for type 2 diabetes (T2D) by many pharmaceutical companies. The proof-of-concept of GPR40 for control of hyperglycemia was achieved by clinical trials of partial GPR40 agonist, TAK-875, demonstrating a robust decrease in HbA1c (-1.12%) after chronic treatment in T2D. The development of TAK-875, however, was terminated due to liver toxicity in 2.7% patients with more than 3-fold increase of ALT in phase II and III clinical trials. Different mechanisms had since been proposed to explain the drug-induced liver injury, including acyl glucuronidation, inhibition of mitochondrial respiration and hepatobiliary transporters, ROS generation, etc. In addition, activation of GPR40 by AgoPAM agonists in pancreas was also linked to β-cell damage in rats. Notwithstanding the multiple safety concerns on the development of small-molecule GPR40 agonists for T2D, some partial and AgoPAM GPR40 agonists are still under clinical development. Here we review the most recent progress of GPR40 agonists development and the possible mechanisms of the side effects in different organs, and discuss the possibility of developing novel strategies that retain the robust efficacy of GPR40 agonists for metabolic disorders while avoid toxicities caused by off-target and on-target mechanisms.
Collapse
|
9
|
Brubaker PL. The Molecular Determinants of Glucagon-like Peptide Secretion by the Intestinal L cell. Endocrinology 2022; 163:6717959. [PMID: 36156130 DOI: 10.1210/endocr/bqac159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/19/2022]
Abstract
The intestinal L cell secretes a diversity of biologically active hormones, most notably the glucagon-like peptides, GLP-1 and GLP-2. The highly successful introduction of GLP-1-based drugs into the clinic for the treatment of patients with type 2 diabetes and obesity, and of a GLP-2 analog for patients with short bowel syndrome, has led to the suggestion that stimulation of the endogenous secretion of these peptides may serve as a novel therapeutic approach in these conditions. Situated in the intestinal epithelium, the L cell demonstrates complex relationships with not only circulating, paracrine, and neural regulators, but also ingested nutrients and other factors in the lumen, most notably the microbiota. The integrated input from these numerous secretagogues results in a variety of temporal patterns in L cell secretion, ranging from minutes to 24 hours. This review combines the findings of traditional, physiological studies with those using newer molecular approaches to describe what is known and what remains to be elucidated after 5 decades of research on the intestinal L cell and its secreted peptides, GLP-1 and GLP-2.
Collapse
Affiliation(s)
- Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
10
|
Samms RJ, Cosgrove R, Snider BM, Furber EC, Droz BA, Briere DA, Dunbar J, Dogra M, Alsina-Fernandez J, Borner T, De Jonghe BC, Hayes MR, Coskun T, Sloop KW, Emmerson PJ, Ai M. GIPR Agonism Inhibits PYY-Induced Nausea-Like Behavior. Diabetes 2022; 71:1410-1423. [PMID: 35499381 PMCID: PMC9233244 DOI: 10.2337/db21-0848] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/29/2022] [Indexed: 12/01/2022]
Abstract
The induction of nausea and emesis is a major barrier to maximizing the weight loss profile of obesity medications, and therefore, identifying mechanisms that improve tolerability could result in added therapeutic benefit. The development of peptide YY (PYY)-based approaches to treat obesity are no exception, as PYY receptor agonism is often accompanied by nausea and vomiting. Here, we sought to determine whether glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) agonism reduces PYY-induced nausea-like behavior in mice. We found that central and peripheral administration of a GIPR agonist reduced conditioned taste avoidance (CTA) without affecting hypophagia mediated by a PYY analog. The receptors for GIP and PYY (Gipr and Npy2r) were found to be expressed by the same neurons in the area postrema (AP), a brainstem nucleus involved in detecting aversive stimuli. Peripheral administration of a GIPR agonist induced neuronal activation (cFos) in the AP. Further, whole-brain cFos analyses indicated that PYY-induced CTA was associated with augmented neuronal activity in the parabrachial nucleus (PBN), a brainstem nucleus that relays aversive/emetic signals to brain regions that control feeding behavior. Importantly, GIPR agonism reduced PYY-mediated neuronal activity in the PBN, providing a potential mechanistic explanation for how GIPR agonist treatment reduces PYY-induced nausea-like behavior. Together, the results of our study indicate a novel mechanism by which GIP-based therapeutics may have benefit in improving the tolerability of weight loss agents.
Collapse
Affiliation(s)
- Ricardo J. Samms
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
- Corresponding authors: Ricardo J. Samms, , and Minrong Ai,
| | - Richard Cosgrove
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
| | - Brandy M. Snider
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
| | - Ellen C. Furber
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
| | - Brian A. Droz
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
| | - Daniel A. Briere
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
| | - James Dunbar
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
| | - Mridula Dogra
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
| | | | - Tito Borner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA
| | - Bart C. De Jonghe
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA
| | - Matthew R. Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA
| | - Tamer Coskun
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
| | - Kyle W. Sloop
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
| | - Paul J. Emmerson
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
| | - Minrong Ai
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
- Corresponding authors: Ricardo J. Samms, , and Minrong Ai,
| |
Collapse
|
11
|
Miedzybrodzka EL, Gribble FM, Reimann F. Targeting the Enteroendocrine System for Treatment of Obesity. Handb Exp Pharmacol 2022; 274:487-513. [PMID: 35419620 DOI: 10.1007/164_2022_583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mimetics of the anorexigenic gut hormone glucagon-like peptide 1 (GLP-1) were originally developed as insulinotropic anti-diabetic drugs but also evoke significant weight loss, leading to their recent approval as obesity therapeutics. Co-activation of receptors for GLP-1 and other gut hormones which reduce food intake - peptide YY (PYY3-36), cholecystokinin (CCK) and glucose-dependent insulinotropic peptide (GIP) - is now being explored clinically to enhance efficacy. An alternative approach involves pharmacologically stimulating endogenous secretion of these hormones from enteroendocrine cells (EECs) to recapitulate the metabolic consequences of bariatric surgery, where highly elevated postprandial levels of GLP-1 and PYY3-36 are thought to contribute to improved glycaemia and weight loss.
Collapse
Affiliation(s)
- Emily L Miedzybrodzka
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Fiona M Gribble
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Frank Reimann
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
12
|
Lim J, Ferruzzi MG, Hamaker BR. Dietary starch is weight reducing when distally digested in the small intestine. Carbohydr Polym 2021; 273:118599. [PMID: 34560999 DOI: 10.1016/j.carbpol.2021.118599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022]
Abstract
Nowadays, carbohydrate-based foods have a negative consumer connotation and low carb diets have become a popular way to lose weight. Here, we show how digestible starch and flavonoids can be used as a dietary approach to manage food intake and weight gain through elevation of glucagon-like peptide-1 (GLP-1) secretion for gut-brain axis communication. This was achieved by extending the digestion of cooked starch to the distal small intestine using luteolin or quercetin as α-amylase-specific inhibitors with competitive inhibition mechanism. In a mouse model, extended and complete digestion produced a signature blunted glycemic profile that induced elevation of GLP-1 and positive regulation of hypothalamic neuropeptides with significantly reduced food intake and weight gain (p < 0.05). These findings represent a shift in paradigm of dietary carbohydrates from weight increasing to reducing, and have implications for industry and public health related to the design of carbohydrate-based foods/ingredients for managing obesity and diabetes.
Collapse
Affiliation(s)
- Jongbin Lim
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
13
|
Costa A, Ai M, Nunn N, Culotta I, Hunter J, Boudjadja MB, Valencia-Torres L, Aviello G, Hodson DJ, Snider BM, Coskun T, Emmerson PJ, Luckman SM, D'Agostino G. Anorectic and aversive effects of GLP-1 receptor agonism are mediated by brainstem cholecystokinin neurons, and modulated by GIP receptor activation. Mol Metab 2021; 55:101407. [PMID: 34844019 PMCID: PMC8689241 DOI: 10.1016/j.molmet.2021.101407] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
Objective Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective medications to reduce appetite and body weight. These actions are centrally mediated; however, the neuronal substrates involved are poorly understood. Methods We employed a combination of neuroanatomical, genetic, and behavioral approaches in the mouse to investigate the involvement of caudal brainstem cholecystokinin-expressing neurons in the effect of the GLP-1RA exendin-4. We further confirmed key neuroanatomical findings in the non-human primate brain. Results We found that cholecystokinin-expressing neurons in the caudal brainstem are required for the anorectic and body weight-lowering effects of GLP-1RAs and for the induction of GLP-1RA-induced conditioned taste avoidance. We further show that, while cholecystokinin-expressing neurons are not a direct target for glucose-dependent insulinotropic peptide (GIP), GIP receptor activation results in a reduced recruitment of these GLP-1RA-responsive neurons and a selective reduction of conditioned taste avoidance. Conclusions In addition to disclosing a neuronal population required for the full appetite- and body weight-lowering effect of GLP-1RAs, our data also provide a novel framework for understanding and ameliorating GLP-1RA-induced nausea — a major factor for withdrawal from treatment. CCKAP/NTS neurons are required for the full anorectic and body weight-lowering effect of GLP-1 receptor agonists. GLP-1 receptor agonists promote the formation of conditioned taste avoidance by activating CCKAP/NTS neurons. CCKAP/NTS neurons are not activated in response to GIP receptor agonists. GIP receptor agonists reduce GLP-1 receptor agonist-induced neuronal responses in the caudal brainstem. GIP receptor agonists reduce GLP-1 receptor agonist-induced conditioned taste avoidance.
Collapse
Affiliation(s)
- Alessia Costa
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Minrong Ai
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, IN, United States.
| | - Nicolas Nunn
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Isabella Culotta
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jenna Hunter
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Mehdi Boutagouga Boudjadja
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | | | - Gabriella Aviello
- The Rowett Institute, University of Aberdeen, Aberdeen, UK; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - David J Hodson
- Institute of Metabolism and Systems Research University of Birmingham &Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Brandy M Snider
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, IN, United States
| | - Tamer Coskun
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, IN, United States
| | - Paul J Emmerson
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, IN, United States
| | - Simon M Luckman
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Giuseppe D'Agostino
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; The Rowett Institute, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
14
|
Samms RJ, Christe ME, Collins KA, Pirro V, Droz BA, Holland AK, Friedrich JL, Wojnicki S, Konkol DL, Cosgrove R, Furber EPC, Ruan X, O'Farrell LS, Long AM, Dogra M, Willency JA, Lin Y, Ding L, Cheng CC, Cabrera O, Briere DA, Alsina-Fernandez J, Gimeno RE, Moyers JS, Coskun T, Coghlan MP, Sloop KW, Roell WC. GIPR agonism mediates weight-independent insulin sensitization by tirzepatide in obese mice. J Clin Invest 2021; 131:146353. [PMID: 34003802 DOI: 10.1172/jci146353] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/05/2021] [Indexed: 01/01/2023] Open
Abstract
Tirzepatide (LY3298176), a dual GIP and GLP-1 receptor (GLP-1R) agonist, delivered superior glycemic control and weight loss compared with GLP-1R agonism in patients with type 2 diabetes. However, the mechanism by which tirzepatide improves efficacy and how GIP receptor (GIPR) agonism contributes is not fully understood. Here, we show that tirzepatide is an effective insulin sensitizer, improving insulin sensitivity in obese mice to a greater extent than GLP-1R agonism. To determine whether GIPR agonism contributes, we compared the effect of tirzepatide in obese WT and Glp-1r-null mice. In the absence of GLP-1R-induced weight loss, tirzepatide improved insulin sensitivity by enhancing glucose disposal in white adipose tissue (WAT). In support of this, a long-acting GIPR agonist (LAGIPRA) was found to enhance insulin sensitivity by augmenting glucose disposal in WAT. Interestingly, the effect of tirzepatide and LAGIPRA on insulin sensitivity was associated with reduced branched-chain amino acids (BCAAs) and ketoacids in the circulation. Insulin sensitization was associated with upregulation of genes associated with the catabolism of glucose, lipid, and BCAAs in brown adipose tissue. Together, our studies show that tirzepatide improved insulin sensitivity in a weight-dependent and -independent manner. These results highlight how GIPR agonism contributes to the therapeutic profile of dual-receptor agonism, offering mechanistic insights into the clinical efficacy of tirzepatide.
Collapse
|
15
|
Albogami Y, Cusi K, Daniels MJ, Wei YJJ, Winterstein AG. Glucagon-Like Peptide 1 Receptor Agonists and Chronic Lower Respiratory Disease Exacerbations Among Patients With Type 2 Diabetes. Diabetes Care 2021; 44:1344-1352. [PMID: 33875487 PMCID: PMC8247488 DOI: 10.2337/dc20-1794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/01/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Emerging data from animal and human pilot studies suggest potential benefits of glucagon-like peptide 1 receptor agonists (GLP-1RA) on lung function. We aimed to assess the association of GLP-1RA and chronic lower respiratory disease (CLRD) exacerbation in a population with comorbid type 2 diabetes (T2D) and CLRD. RESEARCH DESIGN AND METHODS A new-user active-comparator analysis was conducted with use of a national claims database of beneficiaries with employer-sponsored health insurance spanning 2005-2017. We included adults with T2D and CLRD who initiated GLP-1RA or dipeptidyl peptidase 4 inhibitors (DPP-4I) as an add-on therapy to their antidiabetes regimen. The primary outcome was time to first hospital admission for CLRD. The secondary outcome was a count of any CLRD exacerbation associated with an inpatient or outpatient visit. We estimated incidence rates using inverse probability of treatment weighting for each study group and compared via risk ratios. RESULTS The study sample consisted of 4,150 GLP-1RA and 12,540 DPP-4I new users with comorbid T2D and CLRD. The adjusted incidence rate of first CLRD admission during follow-up was 10.7 and 20.3 per 1,000 person-years for GLP-1RA and DPP-4I users, respectively, resulting in an adjusted hazard ratio of 0.52 (95% CI 0.32-0.85). For the secondary outcome, the adjusted incidence rate ratio was 0.70 (95% CI 0.57-0.87). CONCLUSIONS GLP-1RA users had fewer CLRD exacerbations in comparison with DPP-4I users. Considering both plausible mechanistic pathways and this real-world evidence, potential beneficial effects of GLP-1RA may be considered in selection of an antidiabetes treatment regimen. Randomized clinical trials are warranted to confirm our findings.
Collapse
Affiliation(s)
- Yasser Albogami
- Department of Pharmaceutical Outcomes & Policy, College of Pharmacy, University of Florida, Gainesville, FL .,Center for Drug Evaluation and Safety, University of Florida, Gainesville, FL.,Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL
| | | | - Yu-Jung J Wei
- Department of Pharmaceutical Outcomes & Policy, College of Pharmacy, University of Florida, Gainesville, FL.,Center for Drug Evaluation and Safety, University of Florida, Gainesville, FL
| | - Almut G Winterstein
- Department of Pharmaceutical Outcomes & Policy, College of Pharmacy, University of Florida, Gainesville, FL.,Center for Drug Evaluation and Safety, University of Florida, Gainesville, FL
| |
Collapse
|
16
|
Therapeutic potential of targeting intestinal bitter taste receptors in diabetes associated with dyslipidemia. Pharmacol Res 2021; 170:105693. [PMID: 34048925 DOI: 10.1016/j.phrs.2021.105693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022]
Abstract
Intestinal release of incretin hormones after food intake promotes glucose-dependent insulin secretion and regulates glucose homeostasis. The impaired incretin effects observed in the pathophysiologic abnormality of type 2 diabetes have triggered the pharmacological development of incretin-based therapy through the activation of glucagon-like peptide-1 (GLP-1) receptor, including GLP-1 receptor agonists (GLP-1 RAs) and dipeptidyl peptidase 4 (DPP4) inhibitors. In the light of the mechanisms involved in the stimulation of GLP-1 secretion, it is a fundamental question to explore whether glucose and lipid homeostasis can be manipulated by the digestive system in response to nutrient ingestion and taste perception along the gastrointestinal tract. While glucose is a potent stimulant of GLP-1 secretion, emerging evidence highlights the importance of bitter tastants in the enteroendocrine secretion of gut hormones through activation of bitter taste receptors. This review summarizes bitter chemosensation in the intestines for GLP-1 secretion and metabolic regulation based on recent advances in biological research of bitter taste receptors and preclinical and clinical investigation of bitter medicinal plants, including bitter melon, hops strobile, and berberine-containing herbs (e.g. coptis rhizome and barberry root). Multiple mechanisms of action of relevant bitter phytochemicals are discussed with the consideration of pharmacokinetic studies. Current evidence suggests that specific agonists targeting bitter taste receptors, such as human TAS2R1 and TAS2R38, may provide both metabolic benefits and anti-inflammatory effects with the modulation of the enteroendocrine hormone secretion and bile acid turnover in metabolic syndrome individuals or diabetic patients with dyslipidemia-related comorbidities.
Collapse
|
17
|
Yang M, Reimann F, Gribble FM. Chemosensing in enteroendocrine cells: mechanisms and therapeutic opportunities. Curr Opin Endocrinol Diabetes Obes 2021; 28:222-231. [PMID: 33449572 DOI: 10.1097/med.0000000000000614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Enteroendocrine cells (EECs) are scattered chemosensory cells in the intestinal epithelium that release hormones with a wide range of actions on intestinal function, food intake and glucose homeostasis. The mechanisms by which gut hormones are secreted postprandially, or altered by antidiabetic agents and surgical interventions are of considerable interest for future therapeutic development. RECENT FINDINGS EECs are electrically excitable and express a repertoire of G-protein coupled receptors that sense nutrient and nonnutrient stimuli, coupled to intracellular Ca2+ and cyclic adenosine monophosphate. Our knowledge of EEC function, previously developed using mouse models, has recently been extended to human cells. Gut hormone release in humans is enhanced by bariatric surgery, as well as by some antidiabetic agents including sodium-coupled glucose transporter inhibitors and metformin. SUMMARY EECs are important potential therapeutic targets. A better understanding of their chemosensory mechanisms will enhance the development of new therapeutic strategies to treat metabolic and gastrointestinal diseases.
Collapse
Affiliation(s)
- Ming Yang
- University of Cambridge, Institute of Metabolic Science and MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, UK
| | | | | |
Collapse
|
18
|
Richards P, Thornberry NA, Pinto S. The gut-brain axis: Identifying new therapeutic approaches for type 2 diabetes, obesity, and related disorders. Mol Metab 2021; 46:101175. [PMID: 33548501 PMCID: PMC8085592 DOI: 10.1016/j.molmet.2021.101175] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The gut-brain axis, which mediates bidirectional communication between the gastrointestinal system and central nervous system (CNS), plays a fundamental role in multiple areas of physiology including regulating appetite, metabolism, and gastrointestinal function. The biology of the gut-brain axis is central to the efficacy of glucagon-like peptide-1 (GLP-1)-based therapies, which are now leading treatments for type 2 diabetes (T2DM) and obesity. This success and research to suggest a much broader role of gut-brain circuits in physiology and disease has led to increasing interest in targeting such circuits to discover new therapeutics. However, our current knowledge of this biology is limited, largely because the scientific tools have not been available to enable a detailed mechanistic understanding of gut-brain communication. SCOPE OF REVIEW In this review, we provide an overview of the current understanding of how sensory information from the gastrointestinal system is communicated to the central nervous system, with an emphasis on circuits involved in regulating feeding and metabolism. We then describe how recent technologies are enabling a better understanding of this system at a molecular level and how this information is leading to novel insights into gut-brain communication. We also discuss current therapeutic approaches that leverage the gut-brain axis to treat diabetes, obesity, and related disorders and describe potential novel approaches that have been enabled by recent advances in the field. MAJOR CONCLUSIONS The gut-brain axis is intimately involved in regulating glucose homeostasis and appetite, and this system plays a key role in mediating the efficacy of therapeutics that have had a major impact on treating T2DM and obesity. Research into the gut-brain axis has historically largely focused on studying individual components in this system, but new technologies are now enabling a better understanding of how signals from these components are orchestrated to regulate metabolism. While this work reveals a complexity of signaling even greater than previously appreciated, new insights are already being leveraged to explore fundamentally new approaches to treating metabolic diseases.
Collapse
Affiliation(s)
- Paul Richards
- Kallyope, Inc., 430 East 29th, Street, New York, NY, 10016, USA.
| | | | - Shirly Pinto
- Kallyope, Inc., 430 East 29th, Street, New York, NY, 10016, USA.
| |
Collapse
|
19
|
Willard FS, Wainscott DB, Showalter AD, Stutsman C, Ma W, Cardona GR, Zink RW, Corkins CM, Chen Q, Yumibe N, Agejas J, Cumming GR, Minguez JM, Jiménez A, Mateo AI, Castaño AM, Briere DA, Sloop KW, Bueno AB. Discovery of an Orally Efficacious Positive Allosteric Modulator of the Glucagon-like Peptide-1 Receptor. J Med Chem 2021; 64:3439-3448. [PMID: 33721487 DOI: 10.1021/acs.jmedchem.1c00029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification of LSN3318839, a positive allosteric modulator of the glucagon-like peptide-1 receptor (GLP-1R), is described. LSN3318839 increases the potency and efficacy of the weak metabolite GLP-1(9-36)NH2 to become a full agonist at the GLP-1R and modestly potentiates the activity of the highly potent full-length ligand, GLP-1(7-36)NH2. LSN3318839 preferentially enhances G protein-coupled signaling by the GLP-1R over β-arrestin recruitment. Ex vivo experiments show that the combination of GLP-1(9-36)NH2 and LSN3318839 produces glucose-dependent insulin secretion similar to that of GLP-1(7-36)NH2. Under nutrient-stimulated conditions that release GLP-1, LSN3318839 demonstrates robust glucose lowering in animal models alone or in treatment combination with sitagliptin. From a therapeutic perspective, the biological properties of LSN3318839 support the concept that GLP-1R potentiation is sufficient for reducing hyperglycemia.
Collapse
Affiliation(s)
- Francis S Willard
- Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - David B Wainscott
- Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Aaron D Showalter
- Diabetes and Complications, Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Cynthia Stutsman
- Diabetes and Complications, Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Wenzhen Ma
- Diabetes and Complications, Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Guemalli R Cardona
- Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Richard W Zink
- Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Christopher M Corkins
- Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Qi Chen
- Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Nathan Yumibe
- Investigative Drug Disposition, Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Javier Agejas
- Discovery Chemistry Research and Technologies, Lilly, S.A., Avda. de la Industria 30, Alcobendas, Madrid 28108, Spain
| | - Graham R Cumming
- Discovery Chemistry Research and Technologies, Lilly, S.A., Avda. de la Industria 30, Alcobendas, Madrid 28108, Spain
| | - José Miguel Minguez
- Discovery Chemistry Research and Technologies, Lilly, S.A., Avda. de la Industria 30, Alcobendas, Madrid 28108, Spain
| | - Alma Jiménez
- Discovery Chemistry Research and Technologies, Lilly, S.A., Avda. de la Industria 30, Alcobendas, Madrid 28108, Spain
| | - Ana I Mateo
- Discovery Chemistry Research and Technologies, Lilly, S.A., Avda. de la Industria 30, Alcobendas, Madrid 28108, Spain
| | - Ana M Castaño
- Discovery Chemistry Research and Technologies, Lilly, S.A., Avda. de la Industria 30, Alcobendas, Madrid 28108, Spain
| | - Daniel A Briere
- Diabetes and Complications, Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Kyle W Sloop
- Diabetes and Complications, Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Ana B Bueno
- Discovery Chemistry Research and Technologies, Lilly, S.A., Avda. de la Industria 30, Alcobendas, Madrid 28108, Spain
| |
Collapse
|
20
|
Ghislain J, Poitout V. Targeting lipid GPCRs to treat type 2 diabetes mellitus - progress and challenges. Nat Rev Endocrinol 2021; 17:162-175. [PMID: 33495605 DOI: 10.1038/s41574-020-00459-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Therapeutic approaches to the treatment of type 2 diabetes mellitus that are designed to increase insulin secretion either directly target β-cells or indirectly target gastrointestinal enteroendocrine cells (EECs), which release hormones that modulate insulin secretion (for example, incretins). Given that β-cells and EECs both express a large array of G protein-coupled receptors (GPCRs) that modulate insulin secretion, considerable research and development efforts have been undertaken to design therapeutic drugs targeting these GPCRs. Among them are GPCRs specific for free fatty acid ligands (lipid GPCRs), including free fatty acid receptor 1 (FFA1, otherwise known as GPR40), FFA2 (GPR43), FFA3 (GPR41) and FFA4 (GPR120), as well as the lipid metabolite binding glucose-dependent insulinotropic receptor (GPR119). These lipid GPCRs have demonstrated important roles in the control of islet and gut hormone secretion. Advances in lipid GPCR pharmacology have led to the identification of a number of synthetic agonists that exert beneficial effects on glucose homeostasis in preclinical studies. Yet, translation of these promising results to the clinic has so far been disappointing. In this Review, we present the physiological roles, pharmacology and clinical studies of these lipid receptors and discuss the challenges associated with their clinical development for the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Julien Ghislain
- Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.
- Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
21
|
Jepsen SL, Albrechtsen NJW, Windeløv JA, Galsgaard KD, Hunt JE, Farb TB, Kissow H, Pedersen J, Deacon CF, Martin RE, Holst JJ. Antagonizing somatostatin receptor subtype 2 and 5 reduces blood glucose in a gut- and GLP-1R-dependent manner. JCI Insight 2021; 6:143228. [PMID: 33434183 PMCID: PMC7934931 DOI: 10.1172/jci.insight.143228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Somatostatin (SS) inhibits glucagon-like peptide-1 (GLP-1) secretion in a paracrine manner. We hypothesized that blocking somatostatin subtype receptor 2 (SSTR2) and 5 (SSTR5) would improve glycemia by enhancing GLP-1 secretion. In the perfused mouse small intestine, the selective SSTR5 antagonist (SSTR5a) stimulated glucose-induced GLP-1 secretion to a larger degree than the SSTR2 antagonist (SSTR2a). In parallel, mice lacking the SSTR5R showed increased glucose-induced GLP-1 secretion. Both antagonists improved glycemia in vivo in a GLP-1 receptor-dependent (GLP-1R-dependent) manner, as the glycemic improvements were absent in mice with impaired GLP-1R signaling and in mice treated with a GLP-1R-specific antagonist. SSTR5a had no direct effect on insulin secretion in the perfused pancreas, whereas SSTR2a increased insulin secretion in a GLP-1R-independent manner. Adding a dipeptidyl peptidase 4 inhibitor (DPP-4i) in vivo resulted in additive effects on glycemia. However, when glucose was administered intraperitoneally, the antagonist was incapable of lowering blood glucose. Oral administration of SSTR5a, but not SSTR2a, lowered blood glucose in diet-induced obese mice. In summary, we demonstrate that selective SSTR antagonists can improve glucose control primarily through the intestinal GLP-1 system in mice.
Collapse
Affiliation(s)
- Sara L Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Johanne A Windeløv
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna E Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas B Farb
- Lilly Research Laboratories, Lilly, Indianapolis, Indiana, USA
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Endocrinology and Nephrology, Hillerød University Hospital, Hillerød, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rainer E Martin
- Medicinal Chemistry, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Xiang G, Liu K, Wang T, Hu X, Wang J, Gao Z, Lei W, Feng Y, Tao TH. In Situ Regulation of Macrophage Polarization to Enhance Osseointegration Under Diabetic Conditions Using Injectable Silk/Sitagliptin Gel Scaffolds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002328. [PMID: 33552858 PMCID: PMC7856907 DOI: 10.1002/advs.202002328] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/13/2020] [Indexed: 05/03/2023]
Abstract
As a chronic inflammatory disease, diabetes mellitus creates a proinflammatory microenvironment around implants, resulting in a high rate of implant loosening or failure in osteological therapies. In this study, macroporous silk gel scaffolds are injected at the bone-implant interface for in situ release of sitagliptin that can regulate macrophage response to create a prohealing microenvironment in diabetes mellitus disease. Notably, it is discovered that sitagliptin induces macrophage polarization to the M2 phenotype and alleviates the impaired behaviors of osteoblasts on titanium (Ti) implants under diabetic conditions in a dose-dependent manner. The silk gel scaffolds loaded with sitagliptin elicite a stronger recruitment of M2 macrophages to the sites of Ti implants and a significant promotion of osteointegration, as compared to oral sitagliptin administration. The results suggest that injectable silk/sitagliptin gel scaffolds can be utilized to modulate the immune responses at the bone-implant interface, thus enhancing bone regeneration required for successful implantation of orthopedic and dental devices in diabetic patients.
Collapse
Affiliation(s)
- Geng Xiang
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
| | - Keyin Liu
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Tianji Wang
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
| | - Xiaofan Hu
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
| | - Jing Wang
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
| | - Zhiheng Gao
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Wei Lei
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
| | - Yafei Feng
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
| | - Tiger H. Tao
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai200031China
- Institute of Brain‐Intelligence TechnologyZhangjiang LaboratoryShanghai200031China
- Shanghai Research Center for Brain Science and Brain‐Inspired IntelligenceShanghai200031China
| |
Collapse
|
23
|
Martchenko A, Martchenko SE, Biancolin AD, Brubaker PL. Circadian Rhythms and the Gastrointestinal Tract: Relationship to Metabolism and Gut Hormones. Endocrinology 2020; 161:5909225. [PMID: 32954405 PMCID: PMC7660274 DOI: 10.1210/endocr/bqaa167] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 02/08/2023]
Abstract
Circadian rhythms are 24-hour biological rhythms within organisms that have developed over evolutionary time due to predefined environmental changes, mainly the light-dark cycle. Interestingly, metabolic tissues, which are largely responsible for establishing diurnal metabolic homeostasis, have been found to express cell-autonomous clocks that are entrained by food intake. Disruption of the circadian system, as seen in individuals who conduct shift work, confers significant risk for the development of metabolic diseases such as type 2 diabetes and obesity. The gastrointestinal (GI) tract is the first point of contact for ingested nutrients and is thus an essential organ system for metabolic control. This review will focus on the circadian function of the GI tract with a particular emphasis on its role in metabolism through regulation of gut hormone release. First, the circadian molecular clock as well as the organization of the mammalian circadian system is introduced. Next, a brief overview of the structure of the gut as well as the circadian regulation of key functions important in establishing metabolic homeostasis is discussed. Particularly, the focus of the review is centered around secretion of gut hormones; however, other functions of the gut such as barrier integrity and intestinal immunity, as well as digestion and absorption, all of which have relevance to metabolic control will be considered. Finally, we provide insight into the effects of circadian disruption on GI function and discuss chronotherapeutic intervention strategies for mitigating associated metabolic dysfunction.
Collapse
Affiliation(s)
| | | | | | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Correspondence: P.L. Brubaker, Rm 3366 Medical Sciences Building, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada. E-mail:
| |
Collapse
|
24
|
Willard FS, Douros JD, Gabe MB, Showalter AD, Wainscott DB, Suter TM, Capozzi ME, van der Velden WJ, Stutsman C, Cardona GR, Urva S, Emmerson PJ, Holst JJ, D’Alessio DA, Coghlan MP, Rosenkilde MM, Campbell JE, Sloop KW. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight 2020; 5:140532. [PMID: 32730231 PMCID: PMC7526454 DOI: 10.1172/jci.insight.140532] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022] Open
Abstract
Tirzepatide (LY3298176) is a dual GIP and GLP-1 receptor agonist under development for the treatment of type 2 diabetes mellitus (T2DM), obesity, and nonalcoholic steatohepatitis. Early phase trials in T2DM indicate that tirzepatide improves clinical outcomes beyond those achieved by a selective GLP-1 receptor agonist. Therefore, we hypothesized that the integrated potency and signaling properties of tirzepatide provide a unique pharmacological profile tailored for improving broad metabolic control. Here, we establish methodology for calculating occupancy of each receptor for clinically efficacious doses of the drug. This analysis reveals a greater degree of engagement of tirzepatide for the GIP receptor than the GLP-1 receptor, corroborating an imbalanced mechanism of action. Pharmacologically, signaling studies demonstrate that tirzepatide mimics the actions of native GIP at the GIP receptor but shows bias at the GLP-1 receptor to favor cAMP generation over β-arrestin recruitment, coincident with a weaker ability to drive GLP-1 receptor internalization compared with GLP-1. Experiments in primary islets reveal β-arrestin1 limits the insulin response to GLP-1, but not GIP or tirzepatide, suggesting that the biased agonism of tirzepatide enhances insulin secretion. Imbalance toward GIP receptor, combined with distinct signaling properties at the GLP-1 receptor, together may account for the promising efficacy of this investigational agent.
Collapse
Affiliation(s)
- Francis S. Willard
- Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jonathan D. Douros
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Maria B.N. Gabe
- Department of Biomedical Sciences and NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - David B. Wainscott
- Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Megan E. Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Wijnand J.C. van der Velden
- Department of Biomedical Sciences and NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Guemalli R. Cardona
- Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Shweta Urva
- PK/PD & Pharmacometrics, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Jens J. Holst
- Department of Biomedical Sciences and NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - David A. D’Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | | | - Mette M. Rosenkilde
- Department of Biomedical Sciences and NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan E. Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | | |
Collapse
|
25
|
Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. Molecular Physiology of Bile Acid Signaling in Health, Disease, and Aging. Physiol Rev 2020; 101:683-731. [PMID: 32790577 DOI: 10.1152/physrev.00049.2019] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades, bile acids (BAs) have become established as important signaling molecules that enable fine-tuned inter-tissue communication from the liver, their site of production, over the intestine, where they are modified by the gut microbiota, to virtually any organ, where they exert their pleiotropic physiological effects. The chemical variety of BAs, to a large extent determined by the gut microbiome, also allows for a complex fine-tuning of adaptive responses in our body. This review provides an overview of the mechanisms by which BA receptors coordinate several aspects of physiology and highlights new therapeutic strategies for diseases underlying pathological BA signaling.
Collapse
Affiliation(s)
- Alessia Perino
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Hadrien Demagny
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Laura Velazquez-Villegas
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Kristina Schoonjans
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| |
Collapse
|
26
|
Campbell JR, Martchenko A, Sweeney ME, Maalouf MF, Psichas A, Gribble FM, Reimann F, Brubaker PL. Essential Role of Syntaxin-Binding Protein-1 in the Regulation of Glucagon-Like Peptide-1 Secretion. Endocrinology 2020; 161:5788420. [PMID: 32141504 PMCID: PMC7124137 DOI: 10.1210/endocr/bqaa039] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
Circadian secretion of the incretin, glucagon-like peptide-1 (GLP-1), correlates with expression of the core clock gene, Bmal1, in the intestinal L-cell. Several SNARE proteins known to be circadian in pancreatic α- and β-cells are also necessary for GLP-1 secretion. However, the role of the accessory SNARE, Syntaxin binding protein-1 (Stxbp1; also known as Munc18-1) in the L-cell is unknown. The aim of this study was to determine whether Stxbp1 is under circadian regulation in the L-cell and its role in the control of GLP-1 secretion. Stxbp1 was highly-enriched in L-cells, and STXBP1 was expressed in a subpopulation of L-cells in mouse and human intestinal sections. Stxbp1 transcripts and protein displayed circadian patterns in mGLUTag L-cells line, while chromatin-immunoprecipitation revealed increased interaction between BMAL1 and Stxbp1 at the peak time-point of the circadian pattern. STXBP1 recruitment to the cytosol and plasma membrane within 30 minutes of L-cell stimulation was also observed at this time-point. Loss of Stxbp1 in vitro and in vivo led to reduced stimulated GLP-1 secretion at the peak time-point of circadian release, and impaired GLP-1 secretion ex vivo. In conclusion, Stxbp1 is a circadian regulated exocytotic protein in the intestinal L-cell that is an essential regulatory component of GLP-1 secretion.
Collapse
Affiliation(s)
| | | | - Maegan E Sweeney
- Departments of Physiology, University of Toronto, Toronto, ON, Canada
| | - Michael F Maalouf
- Departments of Physiology, University of Toronto, Toronto, ON, Canada
| | - Arianna Psichas
- Departments of Medicine, University of Toronto, Toronto, ON, Canada
| | - Fiona M Gribble
- Departments of Medicine, University of Toronto, Toronto, ON, Canada
| | - Frank Reimann
- Departments of Medicine, University of Toronto, Toronto, ON, Canada
| | - Patricia L Brubaker
- Departments of Physiology, University of Toronto, Toronto, ON, Canada
- Wellcome Trust-MRC Institute of Metabolic Science – Metabolic Research Laboratories (IMS-MRL), University of Cambridge, Cambridge, UK
- Correspondence: P.L. Brubaker, Rm. 3366 Medical Sciences Building, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8. E-mail:
| |
Collapse
|
27
|
Marathe CS, Pham H, Marathe JA, Trahair LG, Huynh L, Wu T, Phillips LK, Rayner CK, Nauck MA, Horowitz M, Jones KL. The relationship between plasma GIP and GLP-1 levels in individuals with normal and impaired glucose tolerance. Acta Diabetol 2020; 57:583-587. [PMID: 31848710 DOI: 10.1007/s00592-019-01461-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
AIMS Glucose-dependent insulinotropic polypeptide (GIP) is released primarily from the proximal small intestine and glucagon-like peptide-1 (GLP-1) from the more distal small intestine and colon. Their relative importance to the incretin effect in health has been contentious in the past, although it now appears that GIP has the dominant role. It is uncertain whether there is a relationship between GIP and GLP-1 secretion. We aimed to evaluate the relationship between plasma GIP and GLP-1 responses to a 75-g oral glucose load in individuals with normal (NGT) and impaired glucose tolerance (IGT). METHODS One hundred healthy subjects had measurements of blood glucose, serum insulin, plasma GIP and GLP-1 concentrations for 240 min after a 300 mL drink containing 75 g glucose. RESULTS Fifty had NGT and 41 IGT; 9 had type 2 diabetes and were excluded from analysis. In both groups, there were increases in plasma GIP and GLP-1 following the glucose drink, with no difference in the magnitude of the responses between t = 0-240 min. There was a weak relationship between the iAUC0-240 min for GIP and GLP-1 in the combined (r = 0.23, P = 0.015) and in the IGT (r = 0.34, P = 0.01), but not in the NGT (r = 0.15, P = 0.14) group. CONCLUSIONS There is a weak relationship between oral glucose-induced GIP and GLP-1 secretions in non-diabetic subjects.
Collapse
Affiliation(s)
- Chinmay S Marathe
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Level 5 Adelaide Health and Medical Sciences Building, Cnr North Tce and George St, Adelaide, SA, 5005, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, 5005, Australia
| | - Hung Pham
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Level 5 Adelaide Health and Medical Sciences Building, Cnr North Tce and George St, Adelaide, SA, 5005, Australia
| | - Jessica A Marathe
- Department of Cardiology, Royal Adelaide Hospital, Adelaide, SA, 5005, Australia
| | - Laurence G Trahair
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Level 5 Adelaide Health and Medical Sciences Building, Cnr North Tce and George St, Adelaide, SA, 5005, Australia
| | - Lian Huynh
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Level 5 Adelaide Health and Medical Sciences Building, Cnr North Tce and George St, Adelaide, SA, 5005, Australia
| | - Tongzhi Wu
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Level 5 Adelaide Health and Medical Sciences Building, Cnr North Tce and George St, Adelaide, SA, 5005, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, 5005, Australia
| | - Liza K Phillips
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Level 5 Adelaide Health and Medical Sciences Building, Cnr North Tce and George St, Adelaide, SA, 5005, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, 5005, Australia
| | - Christopher K Rayner
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Level 5 Adelaide Health and Medical Sciences Building, Cnr North Tce and George St, Adelaide, SA, 5005, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5005, Australia
| | - Michael A Nauck
- Diabetes Center Bochum-Hattingen, St. Josef-Hospital, 44791, Bochum, Germany
| | - Michael Horowitz
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Level 5 Adelaide Health and Medical Sciences Building, Cnr North Tce and George St, Adelaide, SA, 5005, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, 5005, Australia
| | - Karen L Jones
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Level 5 Adelaide Health and Medical Sciences Building, Cnr North Tce and George St, Adelaide, SA, 5005, Australia.
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, 5005, Australia.
| |
Collapse
|
28
|
Gimeno RE, Briere DA, Seeley RJ. Leveraging the Gut to Treat Metabolic Disease. Cell Metab 2020; 31:679-698. [PMID: 32187525 PMCID: PMC7184629 DOI: 10.1016/j.cmet.2020.02.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/23/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
25 years ago, the future of treating obesity and diabetes focused on end organs known to be involved in energy balance and glucose regulation, including the brain, muscle, adipose tissue, and pancreas. Today, the most effective therapies are focused around the gut. This includes surgical options, such as vertical sleeve gastrectomy and Roux-en-Y gastric bypass, that can produce sustained weight loss and diabetes remission but also extends to pharmacological treatments that simulate or amplify various signals that come from the gut. The purpose of this Review is to discuss the wealth of approaches currently under development that seek to further leverage the gut as a source of novel therapeutic opportunities with the hope that we can achieve the effects of surgical interventions with less invasive and more scalable solutions.
Collapse
Affiliation(s)
- Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Daniel A Briere
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
29
|
Sha S, Liu X, Zhao R, Qing L, He Q, Sun L, Chen L. Effects of glucagon-like peptide-1 analog liraglutide on the systemic inflammation in high-fat-diet-induced mice. Endocrine 2019; 66:494-502. [PMID: 31542859 DOI: 10.1007/s12020-019-02081-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/03/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Metabolic syndrome is a chronic-metabolic disease caused by a variety of factors, including high peripheral blood insulin levels and insulin resistance. It has been reported that GLP-1 could regulate insulin resistance. It is not known whether and how GLP-1 protects from fat-induced inflammation and immune changes. We investigated if GLP-1 alters the populations of fat-induced inflammation and immune cells and the related mechanism. METHODS We obtained obese C57BL/6J mice by feeding them high-fat food, then treated the obese mice with GLP-1+ high-fat diet (G + Hi), normal chow diet (Nor), or high-fat diet (Hi) (n = 20 for each group) for 8 weeks. The GLP-1 receptor-/- B6 group were fed with HFD for 8 weeks (GLP-1R KO + Hi). In vivo and in vitro experiments were conducted on mice immune cells to investigate the effects of GLP-1 on the changes of the immune components and functions in obesity. RESULTS We found that GLP-1 could efficiently change the CD4+ T subsets and level of cytokines in high-fat-induced mice by GLP-1 receptor. Further, these changes were correlated with a reduction in fat content and serum lipid level. Interestingly, GLP-1 could enhance the function of Tregs in vitro. CONCLUSION Our data showed that GLP-1 has an important role in shaping the CD4+ T population in high-fat-diet-induced mice by GLP-1 receptor, possibly providing a new target for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Sha Sha
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine& health, Jinan, Shandong, China
| | - Xiaoming Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine& health, Jinan, Shandong, China
| | - Ruxing Zhao
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine& health, Jinan, Shandong, China
| | - Li Qing
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine& health, Jinan, Shandong, China
| | - Qin He
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine& health, Jinan, Shandong, China
| | - Lei Sun
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine& health, Jinan, Shandong, China.
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine& health, Jinan, Shandong, China.
| |
Collapse
|
30
|
Huang S, Ma S, Ning M, Yang W, Ye Y, Zhang L, Shen J, Leng Y. TGR5 agonist ameliorates insulin resistance in the skeletal muscles and improves glucose homeostasis in diabetic mice. Metabolism 2019; 99:45-56. [PMID: 31295453 DOI: 10.1016/j.metabol.2019.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE TGR5 plays an important role in many physiological processes. However, the functions of TGR5 in the regulation of the glucose metabolism and insulin sensitivity in the skeletal muscles have not been fully elucidated. We synthesized MN6 as a potent and selective TGR5 agonist. Here, the effect of MN6 on insulin resistance in skeletal muscles was evaluated in diet-induced obese (DIO) mice and C2C12 myotubes, and the underlying mechanisms were explored. METHODS The activation of MN6 on human and mouse TGR5 was evaluated by a cAMP assay in HEK293 cell lines stable expressing hTGR5/CRE or mTGR5/CRE cells. GLP-1 secretion was measured in NCI-H716 cells and CD1 mice. The acute and chronic effects of MN6 on regulating metabolic abnormalities were observed in ob/ob and DIO mice. 2-deoxyglucose uptake was examined in isolated skeletal muscles. Akt phosphorylation, glucose uptake and glycogen synthesis were examined to assess the effects of MN6 on palmitate-induced insulin resistance in C2C12 myotubes. RESULTS MN6 potently activated human and mouse TGR5 with EC50 values of 15.9 and 17.9 nmol/L, respectively, and stimulated GLP-1 secretion in NCI-H716 cells and CD1 mice. A single oral dose of MN6 significantly decreased the blood glucose levels in ob/ob mice. Treatment with MN6 for 15 days reduced the fasting blood glucose and HbA1c levels in ob/ob mice. MN6 improved glucose and insulin tolerance and enhanced the insulin-stimulated glucose uptake of skeletal muscles in DIO mice. The palmitate-induced impairment of insulin-stimulated Akt phosphorylation, glucose uptake and glycogen synthesis in C2C12 myotubes could be prevented by MN6. The effect of MN6 on palmitate-impaired insulin-stimulated Akt phosphorylation was abolished by siRNA-mediated knockdown of TGR5 or by the inhibition of adenylate cyclase or protein kinase A, suggesting that this effect is dependent on the activation of TGR5 and the cAMP/PKA pathway. CONCLUSIONS Our study identified that a TGR5 agonist could ameliorate insulin resistance by the cAMP/PKA pathway in skeletal muscles; this uncovered a new effect of the TGR5 agonist on regulating the glucose metabolism and insulin sensitivity in skeletal muscles and further strengthened its potential value for the treatment of type 2 diabetes.
Collapse
MESH Headings
- Animals
- Cyclopropanes/therapeutic use
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diet, High-Fat
- Glucagon-Like Peptide 1/metabolism
- Glucose/metabolism
- HEK293 Cells
- Homeostasis
- Humans
- Hypoglycemic Agents/pharmacology
- Insulin Resistance
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Obese
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Pyridines/therapeutic use
- Quinoxalines/therapeutic use
- Receptors, G-Protein-Coupled/agonists
Collapse
Affiliation(s)
- Suling Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Shanyao Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Mengmeng Ning
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Wenji Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yangliang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Lina Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| |
Collapse
|
31
|
Ma C, Fan L, Wang J, Hao L, He J. Hippo/Mst1 overexpression induces mitochondrial death in head and neck squamous cell carcinoma via activating β-catenin/Drp1 pathway. Cell Stress Chaperones 2019; 24:807-816. [PMID: 31127452 PMCID: PMC6629754 DOI: 10.1007/s12192-019-01008-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
Mammalian Ste20-like kinase 1 (Mst1) is associated with cell apoptosis. In the current study, we explored the regulatory effects of Mst1 on squamous cell carcinoma of the head and neck (SCCHN) in vitro. SCCHN Cal27 cells and Tu686 cells were transfected with adenovirus-loaded Mst1 to detect the role of Mst1 in cell viability. Then, siRNA against Drp1 was transfected into cells to evaluate the influence of mitochondrial fission in cancer survival. Our data illustrated that Mst1 overexpression promoted SCCHN Cal27 cell and Tu686 cell death via activating mitochondria-related apoptosis. Cells transfected with adenovirus-loaded Mst1 have increased expression of DRP1 and higher DRP1 promoted mitochondrial fission. Active mitochondrial fission mediated mitochondrial damage, as evidenced by increased mitochondrial oxidative stress, decreased mitochondrial energy production, and reduced mitochondrial respiratory complex function. Moreover, Mst1 overexpression triggered mitochondria-dependent cell apoptosis via DRP1-related mitochondrial fission. Further, we found that Mst1 overexpression controlled mitochondrial fission via the β-catenin/DRP1 pathways; inhibition of β-catenin and/or knockdown of DRP1 abolished the pro-apoptotic effects of Mst1 overexpression on SCCHN Cal27 cells and Tu686 cells, leading to the survival of cancer cells in vitro. In sum, our results illustrate that Mst1/β-catenin/DRP1 axis affects SCCHN Cal27 cell and Tu686 cell viability via controlling mitochondrial dynamics balance. This finding identifies Mst1 activation might be an effective therapeutic target for the treatment of SCCHN.
Collapse
Affiliation(s)
- Chao Ma
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, 061001, China.
| | - Longkun Fan
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, 061001, China
| | - Jingxian Wang
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, 061001, China
| | - Lixia Hao
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, 061001, China
| | - Jinqiu He
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, 061001, China
| |
Collapse
|
32
|
Shang X, Lin K, Zhang Y, Li M, Xu J, Chen K, Zhu P, Yu R. Mst1 deletion reduces septic cardiomyopathy via activating Parkin-related mitophagy. J Cell Physiol 2019; 235:317-327. [PMID: 31215035 DOI: 10.1002/jcp.28971] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022]
Abstract
Cardiomyocyte function and viability are highly modulated by mammalian Ste20-like kinase 1 (Mst1)-Hippo pathway and mitochondria. Mitophagy, a kind of mitochondrial autophagy, is a protective program to attenuate mitochondrial damage. However, the relationship between Mst1 and mitophagy in septic cardiomyopathy has not been explored. In the present study, Mst1 knockout mice were used in a lipopolysaccharide (LPS)-induced septic cardiomyopathy model. Mitophagy activity was measured via immunofluorescence, Western blotting, and enzyme-linked immunosorbent assay. Pathway blocker and small interfering RNA were used to perform the loss-of-function assay. The results demonstrated that Mst1 was rapidly increased in response to LPS stress. Knockout of Mst1 attenuated LPS-mediated inflammation damage, reduced cardiomyocyte death, and improved cardiac function. At the molecular levels, LPS treatment activated mitochondrial damage, such as mitochondrial respiratory dysfunction, mitochondrial potential reduction, mitochondrial ATP depletion, and caspase family activation. Interestingly, in response to mitochondrial damage, Mst1 deletion activated mitophagy which attenuated LPS-mediated mitochondrial damage. However, inhibition of mitophagy via inhibiting parkin mitophagy abolished the protective influences of Mst1 deletion on mitochondrial homeostasis and cardiomyocyte viability. Overall, our results demonstrated that septic cardiomyopathy is linked to Mst1 upregulation which is followed by a drop in the protective mitophagy.
Collapse
Affiliation(s)
- Xiuling Shang
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian, Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Kaiyang Lin
- Department of Cardiology, Fujian Provincial Hospital, Fujian Cardiovascular Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Yingrui Zhang
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian, Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Min Li
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian, Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Jingqing Xu
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian, Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Kaihua Chen
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian, Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Pengli Zhu
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fujian Key Laboratory of Geriatrics, Fujian, Provincial Center for Geriatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Rongguo Yu
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian, Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
33
|
Qin R, Lin D, Zhang L, Xiao F, Guo L. Mst1 deletion reduces hyperglycemia-mediated vascular dysfunction via attenuating mitochondrial fission and modulating the JNK signaling pathway. J Cell Physiol 2019; 235:294-303. [PMID: 31206688 DOI: 10.1002/jcp.28969] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/31/2022]
Abstract
Diabetes is a leading cause of microvascular complications, such as nephropathy and retinopathy. Recent studies have proposed that hyperglycemia-induced endothelial cell dysfunction is modulated by mitochondrial stress. Therefore, our experiment was to detect the upstream mediator of mitochondrial stress in hyperglycemia-treated endothelial cells with a focus on macrophage-stimulating 1 (Mst1) and mitochondrial fission. Our data illuminated that hyperglycemia incubation reduced cell viability, as well as increased apoptosis ratio in endothelial cell, and this alteration seemed to be associated with Mst1 upregulation. Inhibition of Mst1 via transfection of Mst1 siRNA into an endothelial cell could sustain cell viability and maintain mitochondrial function. At the molecular levels, endothelial cell death was accompanied with the activation of mitochondrial oxidative stress, mitochondrial apoptosis, and mitochondrial fission. Genetic ablation of Mst1 could reduce mitochondrial oxidative injury, block mitochondrial apoptosis, and repress mitochondrial fission. Besides, we also found Mst1 triggered mitochondrial dysfunction as well as endothelial cell damage through augmenting JNK pathway. Suppression of JNK largely ameliorated the protective actions of Mst1 silencing on hyperglycemia-treated endothelial cells and sustain mitochondrial function. The present study identifies Mst1 as a primary key mediator for hyperglycemia-induced mitochondrial damage and endothelial cell dysfunction. Increased Mst1 impairs mitochondrial function and activates endothelial cell death via opening mitochondrial death pathway through JNK.
Collapse
Affiliation(s)
- Ruijie Qin
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Lin
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lina Zhang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Fei Xiao
- Department of Pathology, The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Lixin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
34
|
Wang Q, Xu J, Li X, Liu Z, Han Y, Xu X, Li X, Tang Y, Liu Y, Yu T, Li X. Sirt3 modulate renal ischemia-reperfusion injury through enhancing mitochondrial fusion and activating the ERK-OPA1 signaling pathway. J Cell Physiol 2019; 234:23495-23506. [PMID: 31173361 DOI: 10.1002/jcp.28918] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
Mitochondrial fusion is linked to heart and liver ischemia-reperfusion (IR) insult. Unfortunately, there is no report to elucidate the detailed influence of mitochondrial fusion in renal IR injury. This study principally investigated the mechanism by which mitochondrial fusion protected kidney against IR injury. Our results indicated that sirtuin 3 (Sirt3) was inhibited after renal IR injury in vivo and in vitro. Overexpression of Sirt3 improved kidney function, modulated oxidative injury, repressed inflammatory damage, and reduced tubular epithelial cell apoptosis. The molecular investigation found that Sirt3 overexpression attenuated IR-induced mitochondrial damage in renal tubular epithelial cells, as evidenced by decreased reactive oxygen species production, increased antioxidants sustained mitochondrial membrane potential, and inactivated mitochondria-initiated death signaling. In addition, our information also illuminated that Sirt3 maintained mitochondrial homeostasis against IR injury by enhancing optic atrophy 1 (OPA1)-triggered fusion of mitochondrion. Inhibition of OPA1-induced fusion repressed Sirt3 overexpression-induced kidney protection, leading to mitochondrial dysfunction. Further, our study illustrated that OPA1-induced fusion could be affected through ERK; inhibition of ERK abolished the regulatory impacts of Sirt3 on OPA1 expression and mitochondrial fusion, leading to mitochondrial damage and tubular epithelial cell apoptosis. Altogether, our results suggest that renal IR injury is closely associated with Sirt3 downregulation and mitochondrial fusion inhibition. Regaining Sirt3 and/or activating mitochondrial fission by modifying the ERK-OPA1 cascade may represent new therapeutic modalities for renal IR injury.
Collapse
Affiliation(s)
- Qiang Wang
- Urology Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Junnan Xu
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoli Li
- Department of Geriatric Cardiology, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhijia Liu
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yong Han
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoguang Xu
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiubin Li
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuzhe Tang
- Urology Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yubao Liu
- Urology Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Tao Yu
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiang Li
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
35
|
Lu K, Liu X, Guo W. Melatonin attenuates inflammation‐related venous endothelial cells apoptosis through modulating the MST1–MIEF1 pathway. J Cell Physiol 2019; 234:23675-23684. [PMID: 31169304 DOI: 10.1002/jcp.28935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Kai Lu
- Department of Vascular and Endovascular Surgery Medical School of Chinese PLA Beijing China
- Department of Vascular Surgery Da Qing Oil General Hospital Daquing Hei Longjiang China
| | - Xiaoping Liu
- Department of Vascular and Endovascular Surgery Medical School of Chinese PLA Beijing China
- Department of Vascular and Endovascular Surgery 301 General Hospital of PLA Beijing China
| | - Wei Guo
- Department of Vascular and Endovascular Surgery Medical School of Chinese PLA Beijing China
- Department of Vascular and Endovascular Surgery 301 General Hospital of PLA Beijing China
| |
Collapse
|
36
|
Song H, Wang M, Xin T. Mst1 contributes to nasal epithelium inflammation via augmenting oxidative stress and mitochondrial dysfunction in a manner dependent on Nrf2 inhibition. J Cell Physiol 2019; 234:23774-23784. [PMID: 31165471 DOI: 10.1002/jcp.28945] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Nasal epithelium inflammation plays an important role in transmitting and amplifying damage signals for the lower airway. However, the molecular basis of nasal epithelium inflammation damage has not been fully addressed. Mst1 is reported to modulate inflammation via multiple effects. Thus, the aim of our study is to understand the pathological mechanism underlying Mst1-related nasal epithelium inflammation in vitro. Our result indicated that Mst1 expression was rapidly increased in response to tumor necrosis factor-α (TNF-α) treatment in vitro and this effect was a dose-dependent manner. Interestingly, knockdown of Mst1 via transfecting small interfering RNA markedly reversed cell viability in the presence of TNF-α. Further, we found that Mst1 deficiency reduced cellular oxidative stress and attenuated mitochondrial dysfunction, as evidenced by reversed mitochondrial complex-I activity, decreased mitochondrial permeability transition pore opening rate, and stabilized mitochondrial membrane potential. Besides, we found that Nrf2 expression was increased after deletion of Mst1 whereas silencing of Nrf2 abolished the protective effects of Mst1 deletion on nasal epithelium survival and mitochondrial homeostasis. Moreover, Nrf2 overexpression also protected nasal epithelium against TNF-α-induced inflammation damage. Altogether, our data confirm that the Mst1 activation and Nrf2 downregulation seem to be the potential mechanisms responsible for the inflammation-mediated injury in nasal epithelium via mediating mitochondrial damage and cell oxidative stress.
Collapse
Affiliation(s)
- Henge Song
- Department of Respiratory Medicine, Tianjin Dongli Hospital, Tianjin, China
| | - Mengmeng Wang
- Department of Rheumatism and Immunology, Tianjin First Central Hospital, Tianjin, China
| | - Ting Xin
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
37
|
Zhang Y, Wang M, Xu X, Liu Y, Xiao C. Matrine promotes apoptosis in SW480 colorectal cancer cells via elevating MIEF1-related mitochondrial division in a manner dependent on LATS2-Hippo pathway. J Cell Physiol 2019; 234:22731-22741. [PMID: 31119752 DOI: 10.1002/jcp.28838] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022]
Abstract
Matrine, an alkaloid compound isolated from Sophora flavescens Ait, has been shown to exert cancer-killing actions in a variety of tumors; however, its anticancer mechanism in colorectal cancer (CRC) is not clear. The goal of our study was to characterize the anticancer effects and molecular mechanisms of matrine in SW480 CRC cells in vitro. Matrine treatment reduced mitochondrial metabolic function and ATP levels, repressed mitochondrial membrane potential, evoked mitochondrial reactive oxygen species accumulation, and promoted cyt-c-related mitochondrial apoptosis activation. In addition, we found that matrine treatment activated mitochondrial fission through upregulating mitochondrial elongation factor 1 (MIEF1); silencing of MIEF1 prevented matrine-mediated mitochondrial damage and reversed the decrease in SW480 cell viability. Moreover, matrine treatment affected MIEF1 expression via the large tumor suppressor-2 (LATS2)-Hippo axis, and LATS2 deficiency suppressed the anticancer actions exerted by matrine on SW480 cancer cells. In summary, we show for the first time that matrine inhibits SW480 cell survival by activating MIEF1-related mitochondrial division via the LATS2-Hippo pathway. These findings explain the anticancer mechanisms of matrine in CRC and also identify the LATS2-MIEF1 signaling pathway as an effective target for the treatment of CRC.
Collapse
Affiliation(s)
- Yawei Zhang
- Department of General Surgery, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Meiping Wang
- Department of General Surgery, Fuzhou General Hospital (Dongfang Hospital), Fuzhou, Fujian, China
| | - Xianfeng Xu
- Department of Critical Care Medicine, Changle People's Hospital, Fuzhou, Fujian, China
| | - Yonghong Liu
- Department of General Surgery, First People's Hospital of Yuhang District, Hangzhou, China
| | - Chunhong Xiao
- Department of General Surgery, Fuzhou General Hospital (Dongfang Hospital), Fuzhou, Fujian, China
| |
Collapse
|
38
|
Liu W, Shao PP, Liang GB, Bawiec J, He J, Aster SD, Wu M, Chicchi G, Wang J, Tsao KL, Shang J, Salituro G, Zhou YP, Li C, Akiyama TE, Metzger DE, Murphy BA, Howard AD, Weber AE, Duffy JL. Discovery and Pharmacology of a Novel Somatostatin Subtype 5 (SSTR5) Antagonist: Synergy with DPP-4 Inhibition. ACS Med Chem Lett 2018; 9:1082-1087. [PMID: 30429949 DOI: 10.1021/acsmedchemlett.8b00305] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/12/2018] [Indexed: 01/09/2023] Open
Abstract
We report new SSTR5 antagonists with enhanced potency, subtype selectivity, and minimal off-target activities as compared to previously reported compounds. Starting from the reported SSTR5 antagonist 1, we systematically surveyed changes in the central core and head piece while maintaining the diphenyl tail group constant. From this study the azaspirodecanone 10 emerged as a new highly potent and selective SSTR5 antagonist. Compound 10 lowered glucose excursion by 94% in an oral glucose tolerance test (OGTT) in mice following a 3 mg/kg oral dose. The compound increased both total and active circulating incretin hormone GLP-1 levels in mice at a dose of 10 mg/kg. A synergistic effect was also demonstrated when compound 10 was coadministered with a DPP-4 inhibitor, substantially increasing circulating active GLP-1[7-36] amide and insulin in response to a glucose challenge.
Collapse
Affiliation(s)
- Weiguo Liu
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Gui-Bai Liang
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - John Bawiec
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Jiafang He
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Susan D. Aster
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Margaret Wu
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Garry Chicchi
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - John Wang
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Kwei-Lan Tsao
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Jin Shang
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Gino Salituro
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yun-Ping Zhou
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Cai Li
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Taro E. Akiyama
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Beth Ann Murphy
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Ann E. Weber
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Joseph L. Duffy
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
39
|
Liu W, Hussain Z, Zang Y, Sweis RF, Romero FA, Finke PE, Moningka R, Bao J, Plotkin MA, Shang J, Dingley KH, Salituro G, Murphy BA, Howard AD, Ujjainwalla F, Wood HB, Duffy JL. Optimization of Preclinical Metabolism for Somatostatin Receptor Subtype 5-Selective Antagonists. ACS Med Chem Lett 2018; 9:1088-1093. [PMID: 30429950 DOI: 10.1021/acsmedchemlett.8b00306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/05/2018] [Indexed: 01/26/2023] Open
Abstract
A series of structurally diverse azaspirodecanone and spirooxazolidinone analogues were designed and synthesized as potent and selective somatostatin receptor subtype 5 (SSTR5) antagonists. Four optimized compounds each representing a subseries showed improvement in their metabolic stability and pharmacokinetic profiles compared to those of the original lead compound 1 while maintaining pharmacodynamic efficacy. The optimized cyclopropyl analogue 13 demonstrated efficacy in a mouse oral glucose tolerance test and an improved metabolic profile and pharmacokinetic properties in rhesus monkey studies. In this Communication, we discuss the relationship among structure, in vitro and in vivo activity, metabolic stability, and ultimately the potential of these compounds as therapeutic agents for the treatment of type 2 diabetes. Furthermore, we show how the use of focused libraries significantly expanded the structural class and provided new directions for structure-activity relationship optimization.
Collapse
Affiliation(s)
- Weiguo Liu
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Zahid Hussain
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yi Zang
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Ramzi F. Sweis
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Paul E. Finke
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Remond Moningka
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Jianming Bao
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Jin Shang
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Gino Salituro
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Beth Ann Murphy
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | | | - Harold B. Wood
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Joseph L. Duffy
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
40
|
Sun Y, Jin C, Zhang X, Jia W, Le J, Ye J. Restoration of GLP-1 secretion by Berberine is associated with protection of colon enterocytes from mitochondrial overheating in diet-induced obese mice. Nutr Diabetes 2018; 8:53. [PMID: 30250193 PMCID: PMC6155143 DOI: 10.1038/s41387-018-0061-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/16/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
Objective L-cell dysfunction is reported for GLP-1 reduction in type 2 diabetes. However, the mechanism of dysfunction remains unknown. In this study, we examined mitochondrial function in the mechanistic study in diet-induced obese (DIO) mice. Subjects C57BL/6 mice were fed a high-fat diet (HFD) for 16 weeks to establish the DIO model for GLP-1 reduction. The mice were then treated with berberine (BBR) (100 mg/kg/day) for 8 weeks to test the impact on GLP-1 expression. Mitochondrial activities of the colon enterocytes were compared among three groups of mice (lean, DIO, and DIO + BBR) at the end of treatment. Gut microbiota and short-chain fatty acids (SCFAs) were examined to understand the mitochondrial responses. A cellular model treated with palmitic acid (PA) was used in the mechanism study. Results A reduction in GLP-1 expression was observed in DIO mice with mitochondrial stress responses in the colon enterocytes. The mitochondria exhibited cristae loss, membrane rupture, and mitochondrial swelling, which was observed with an increase in ATP abundance, complex I activity, and deficiency in the activities of complexes II and IV. Those changes were associated with dysbiosis and a reduction in SCFAs in the colon of DIO mice. In the cellular model, an increase in ATP abundance, loss of mitochondrial potential, and elevation of apoptosis were induced by PA. All of the alterations in DIO mice and the cellular model were attenuated by BBR. Conclusion The mitochondrial stress responses were observed in the colon enterocytes of DIO mice for GLP-1 reduction. The stress was prevented by BBR in the restoration of GLP-1 expression, in which BBR may act through direct and indirect mechanisms.
Collapse
Affiliation(s)
- Yongning Sun
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chenxi Jin
- Queen Mary School, Nanchang University, Nanchang City, Jiangxi Province, 330031, China
| | - Xiaoying Zhang
- Central Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital East, Shanghai, 201306, China
| | - Weiping Jia
- Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jiamei Le
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Jianping Ye
- Central Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital East, Shanghai, 201306, China. .,Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. .,Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, LSU, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
41
|
Lu VB, Gribble FM, Reimann F. Free Fatty Acid Receptors in Enteroendocrine Cells. Endocrinology 2018; 159:2826-2835. [PMID: 29688303 DOI: 10.1210/en.2018-00261] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/17/2018] [Indexed: 02/02/2023]
Abstract
Free fatty acid receptors (FFAs) are highly enriched in enteroendocrine cells providing pathways to link dietary fats and microbially generated short-chain fatty acids (SCFAs) to the secretion of a variety of gut hormones. FFA1 and FFA4 are receptors for long-chain fatty acids that have been linked to the elevation of plasma gut hormones after fat ingestion. FFA2 and FFA3 are receptors for SCFA, which are generated at high concentrations by microbial fermentation of dietary fiber and have also been implicated in enhancement of gut hormone secretion. FFAs are candidate drug targets for increasing the secretion of intestinal hormones such as glucagon-like peptide-1 and peptide YY as potential new treatments for type 2 diabetes and obesity. This review will examine aspects of intestinal physiology and pharmacology related to the function of FFAs in enteroendocrine cells.
Collapse
Affiliation(s)
- Van B Lu
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Fiona M Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Frank Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
42
|
Sloop KW, Briere DA, Emmerson PJ, Willard FS. Beyond Glucagon-like Peptide-1: Is G-Protein Coupled Receptor Polypharmacology the Path Forward to Treating Metabolic Diseases? ACS Pharmacol Transl Sci 2018; 1:3-11. [PMID: 32219200 DOI: 10.1021/acsptsci.8b00009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 12/28/2022]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a class B G-protein coupled receptor (GPCR) that has proven to be an effective target for developing medicines that treat type 2 diabetes mellitus (T2DM). GLP-1R agonists improve T2DM by enhancing glucose-stimulated insulin secretion, delaying gastric transit, decreasing glucagon levels, and reducing body weight due to anorexigenic actions. The therapeutic successes of these agents helped inspire the design of new multifunctional molecules that are GLP-1R agonists but also activate receptors linked to pathways that enhance insulin sensitization and/or energy expenditure. Herein, these agents are discussed in the context of polypharmacological approaches that may enable even further improvement in treatment outcomes. Moreover, we revisit classical polypharmaceutical GPCR approaches and how they may be utilized for treatment of T2DM. To determine optimal combination regimens, changes in drug discovery practices are likely needed because compensatory mechanisms appear to underlie progression of T2DM and limit the ability of current therapies to induce disease regression or remission.
Collapse
Affiliation(s)
- Kyle W Sloop
- Diabetes and Complications and Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Daniel A Briere
- Diabetes and Complications and Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Paul J Emmerson
- Diabetes and Complications and Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Francis S Willard
- Diabetes and Complications and Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| |
Collapse
|
43
|
Reich D, Gallucci G, Tong M, de la Monte SM. Therapeutic Advantages of Dual Targeting of PPAR-δ and PPAR-γ in an Experimental Model of Sporadic Alzheimer's Disease. ACTA ACUST UNITED AC 2018; 5. [PMID: 30705969 PMCID: PMC6350901 DOI: 10.13188/2376-922x.1000025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: Alzheimer’s disease (AD) is associated with progressive impairments in brain responsiveness to insulin and insulin-like growth factor (IGF). Although deficiencies in brain insulin and IGF could be ameliorated with trophic factors such as insulin, impairments in receptor expression, binding, and tyrosine kinase activation require alternative strategies. Peroxisome proliferator-activated receptor (PPAR) agonists target genes downstream of insulin/IGF stimulation. Furthermore, their anti-oxidant and anti-inflammatory effects address other pathologies contributing to neurodegeneration. Objectives: The goal of this research was to examine effects of dual delivery of L165, 041 (PPAR-δ) and F-L-Leu (PPAR-γ) agonists for remediating in the early stages of neurodegeneration. Model: Experiments were conducted using frontal lobe slice cultures from an intracerebral Streptozotocin (i.c. STZ) rat model of AD. Results: PPAR-δ+ PPAR-γ agonist treatments increased indices of neuronal and myelin maturation, and mitochondrial proliferation and function, and decreased neuroinflammation, AβPP-Aβ, neurotoxicity, ubiquitin, and nitrosative stress, but failed to restore choline acetyl transferase expression and adversely increased HNE(lipid peroxidation) and acetylcholinesterase, which would have further increased stress and reduced cholinergic function in the STZ brain cultures. Conclusion: PPAR-δ + PPAR-γ agonist treatments have substantial positive early therapeutic targeting effects on AD-associated molecular and biochemical brain pathologies. However, additional or alternative strategies may be needed to optimize disease remediation during the initial phases of treatment.
Collapse
Affiliation(s)
- D Reich
- Brandeis University, Waltham University, USA
| | - G Gallucci
- Department of Medicine, University of Brown University, USA
| | - M Tong
- Department of Medicine, University of Brown University, USA
| | - S M de la Monte
- Department of Medicine, University of Brown University, USA.,Departments of Neurology, University of Brown University, USA
| |
Collapse
|