1
|
Jansen TJP, Tokgöz S, Buitinga M, van Lith SAM, Joosten L, Frielink C, Smeets EMM, Stommel MWJ, van der Kolk MB, de Galan BE, Brom M, Boss M, Gotthardt M. Validation of radiolabelled exendin for beta cell imaging by ex vivo autoradiography and immunohistochemistry of human pancreas. EJNMMI Res 2024; 14:96. [PMID: 39405026 PMCID: PMC11480297 DOI: 10.1186/s13550-024-01159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Estimation of beta cell mass is currently restricted to evaluating pancreatic tissue samples, which provides limited information. A non-invasive imaging technique that reliably quantifies beta cell mass enables monitoring of changes of beta cell mass during the progression of diabetes mellitus and may contribute to monitoring of therapy effectiveness. We assessed the specificity of radiolabelled exendin for beta cell mass quantification in humans. Fourteen adults with pancreas tumours were injected with 111In-labeled exendin-4 prior to pancreatic resection. In resected pancreas tissue, endocrine-exocrine ratios of tracer uptake were determined by digital autoradiography and accumulation of 111In-labeled exendin-4 was compared to insulin and GLP-1 receptor staining. Of four participants, abdominal single photon emission computed tomography/computed tomography (SPECT/CT) images were acquired to quantify pancreatic uptake in vivo RESULTS: Tracer uptake was predominantly present in the endocrine pancreas (endocrine-exocrine ratio: 3.6 [2.8-10.8]. Tracer accumulation showed overlap with insulin-positive regions, which overlapped with GLP-1 receptor positive areas. SPECT imaging showed pancreatic uptake of radiolabelled exendin in three participants. CONCLUSION Radiolabelled exendin specifically accumulates in the islets of Langerhans in human pancreas tissue. The clear overlap between regions positive for insulin and the GLP-1 receptor substantiate the beta cell specificity of the tracer. Radiolabelled exendin is therefore a valuable imaging agent for human beta cell mass quantification and has the potential to be used for a range of applications, including improvement of diabetes treatment by assessment of the effects of current and novel diabetes therapies on the beta cell mass. TRIAL REGISTRATION ClinicalTrials.gov NCT03889496, registered 26,032,019, URL https://clinicaltrials.gov/study/NCT03889496?term=NCT03889496 . CLINICALTRIALS gov NCT04733508, registered 02022021, URL https://clinicaltrials.gov/study/NCT04733508 .
Collapse
Affiliation(s)
- Theodorus J P Jansen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sevilay Tokgöz
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mijke Buitinga
- Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
- Radiology and Nuclear Medicine, Maastricht UMC+, Maastricht, The Netherlands
| | - Sanne A M van Lith
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lieke Joosten
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cathelijne Frielink
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esther M M Smeets
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn W J Stommel
- Department of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Bastiaan E de Galan
- Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Internal Medicine, Maastricht UMC+, Maastricht, The Netherlands
- CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, The Netherlands
| | - Maarten Brom
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marti Boss
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Lithovius V, Lahdenpohja S, Ibrahim H, Saarimäki-Vire J, Uusitalo L, Montaser H, Mikkola K, Yim CB, Keller T, Rajander J, Balboa D, Barsby T, Solin O, Nuutila P, Grönroos TJ, Otonkoski T. Non-invasive quantification of stem cell-derived islet graft size and composition. Diabetologia 2024; 67:1912-1929. [PMID: 38871836 PMCID: PMC11410899 DOI: 10.1007/s00125-024-06194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/16/2024] [Indexed: 06/15/2024]
Abstract
AIMS/HYPOTHESIS Stem cell-derived islets (SC-islets) are being used as cell replacement therapy for insulin-dependent diabetes. Non-invasive long-term monitoring methods for SC-islet grafts, which are needed to detect misguided differentiation in vivo and to optimise their therapeutic effectiveness, are lacking. Positron emission tomography (PET) has been used to monitor transplanted primary islets. We therefore aimed to apply PET as a non-invasive monitoring method for SC-islet grafts. METHODS We implanted different doses of human SC-islets, SC-islets derived using an older protocol or a state-of-the-art protocol and SC-islets genetically rendered hyper- or hypoactive into mouse calf muscle to yield different kinds of grafts. We followed the grafts with PET using two tracers, glucagon-like peptide 1 receptor-binding [18F]F-dibenzocyclooctyne-exendin-4 ([18F]exendin) and the dopamine precursor 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine ([18F]FDOPA), for 5 months, followed by histological assessment of graft size and composition. Additionally, we implanted a kidney subcapsular cohort with different SC-islet doses to assess the connection between C-peptide and stem cell-derived beta cell (SC-beta cell) mass. RESULTS Small but pure and large but impure grafts were derived from SC-islets. PET imaging allowed detection of SC-islet grafts even <1 mm3 in size, [18F]exendin having a better detection rate than [18F]FDOPA (69% vs 44%, <1 mm3; 96% vs 85%, >1 mm3). Graft volume quantified with [18F]exendin (r2=0.91) and [18F]FDOPA (r2=0.86) strongly correlated with actual graft volume. [18F]exendin PET delineated large cystic structures and its uptake correlated with graft SC-beta cell proportion (r2=0.68). The performance of neither tracer was affected by SC-islet graft hyper- or hypoactivity. C-peptide measurements under fasted or glucose-stimulated conditions did not correlate with SC-islet graft volume or SC-beta cell mass, with C-peptide under hypoglycaemia having a weak correlation with SC-beta cell mass (r2=0.52). CONCLUSIONS/INTERPRETATION [18F]exendin and [18F]FDOPA PET enable non-invasive assessment of SC-islet graft size and aspects of graft composition. These methods could be leveraged for optimising SC-islet cell replacement therapy in diabetes.
Collapse
Affiliation(s)
- Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | | | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi Mikkola
- Turku PET Centre, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Cheng-Bin Yim
- Turku PET Centre, University of Turku, Turku, Finland
| | - Thomas Keller
- Turku PET Centre, University of Turku, Turku, Finland
| | - Johan Rajander
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olof Solin
- Turku PET Centre, University of Turku, Turku, Finland
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
- The Wellbeing Services County of Southwest Finland, Turku, Finland
| | - Tove J Grönroos
- Turku PET Centre, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
3
|
Peng J, Tang W, Rawson J, Miao L, Gonzalez N, Yin R, Chen J, Ji M, Li Z, Gao A, Wu AZ, Shively JE, Kandeel F, Li J. One-Step Automatic Radiosynthesis and Evaluation of [ 18F]TM-30089 as GPR44 Radiotracer. Pharmaceuticals (Basel) 2023; 16:1480. [PMID: 37895951 PMCID: PMC10610095 DOI: 10.3390/ph16101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Recently, a G-protein coupled receptor 44 (GPR44) was discovered to play a significant role in the process of inflammation-related diseases, including cancer and diabetes. However, the precise role of GPR44 has yet to be fully elucidated. Currently, there is a strong and urgent need for the development of GPR44 radiotracers as a non-invasive methodology to explore the exact mechanism of GPR44 on inflammation-related diseases and monitor the progress of therapy. TM-30089 is a potent GPR44 antagonist that exhibits a high specificity and selectivity for GPR44. Its structure contains a fluorine nuclide, which could potentially be replaced with 18F. In the present study, we successfully took a highly effective synthesis strategy that pretreated the unprotected carboxylic acid group of the precursor and developed a feasible one-step automatic radiosynthesis strategy for [18F]TM-30089 with a high radiochemical purity and a good radiochemical yield. We further evaluated this radiotracer using mice models implanted with 1.1 B4 cell lines (GPR44-enriched cell lines) and human islets (high GPR44 expression), respectively. The results revealed the persistent and specific uptake of [18F]TM-30089 in GPR44 region, indicating that [18F]TM-30089 is a promising candidate for targeting GPR44. Further evaluation is ongoing.
Collapse
Affiliation(s)
- Jiangling Peng
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Wei Tang
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Jeffrey Rawson
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Lynn Miao
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Nelson Gonzalez
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Runkai Yin
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Jiaqi Chen
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Melinda Ji
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Zhixuan Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Anna Gao
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Andy Z. Wu
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - John E. Shively
- Department of Immunology & Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Junfeng Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Yagihashi S. Contribution of animal models to diabetes research: Its history, significance, and translation to humans. J Diabetes Investig 2023; 14:1015-1037. [PMID: 37401013 PMCID: PMC10445217 DOI: 10.1111/jdi.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023] Open
Abstract
Diabetes mellitus is still expanding globally and is epidemic in developing countries. The combat of this plague has caused enormous economic and social burdens related to a lowered quality of life in people with diabetes. Despite recent significant improvements of life expectancy in patients with diabetes, there is still a need for efforts to elucidate the complexities and mechanisms of the disease processes to overcome this difficult disorder. To this end, the use of appropriate animal models in diabetes studies is invaluable for translation to humans and for the development of effective treatment. In this review, a variety of animal models of diabetes with spontaneous onset in particular will be introduced and discussed for their implication in diabetes research.
Collapse
Affiliation(s)
- Soroku Yagihashi
- Department of Exploratory Medicine for Nature, Life and HumansToho University School of MedicineChibaJapan
- Department of PathologyHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
5
|
Yin R, Huang KX, Huang LA, Ji M, Zhao H, Li K, Gao A, Chen J, Li Z, Liu T, Shively JE, Kandeel F, Li J. Indole-Based and Cyclopentenylindole-Based Analogues Containing Fluorine Group as Potential 18F-Labeled Positron Emission Tomography (PET) G-Protein Coupled Receptor 44 (GPR44) Tracers. Pharmaceuticals (Basel) 2023; 16:1203. [PMID: 37765011 PMCID: PMC10534865 DOI: 10.3390/ph16091203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, growing evidence of the relationship between G-protein coupled receptor 44 (GPR44) and the inflammation-cancer system has garnered tremendous interest, while the exact role of GPR44 has not been fully elucidated. Currently, there is a strong and urgent need for the development of non-invasive in vivo GPR44 positron emission tomography (PET) radiotracers that can be used to aid the exploration of the relationship between inflammation and tumor biologic behavior. Accordingly, the choosing and radiolabeling of existing GPR44 antagonists containing a fluorine group could serve as a viable method to accelerate PET tracers development for in vivo imaging to this purpose. The present study aims to evaluate published (2000-present) indole-based and cyclopentenyl-indole-based analogues of the GPR44 antagonist to guide the development of fluorine-18 labeled PET tracers that can accurately detect inflammatory processes. The selected analogues contained a crucial fluorine nuclide and were characterized for various properties including binding affinity, selectivity, and pharmacokinetic and metabolic profile. Overall, 26 compounds with favorable to strong binding properties were identified. This review highlights the potential of GPR44 analogues for the development of PET tracers to study inflammation and cancer development and ultimately guide the development of targeted clinical therapies.
Collapse
Affiliation(s)
- Runkai Yin
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Kelly X. Huang
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Lina A. Huang
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Melinda Ji
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Hanyi Zhao
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Kathy Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Anna Gao
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Jiaqi Chen
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Zhixuan Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Tianxiong Liu
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - John E. Shively
- Department of Immunology & Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Junfeng Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Effects of Arachidonic Acid and Its Metabolites on Functional Beta-Cell Mass. Metabolites 2022; 12:metabo12040342. [PMID: 35448529 PMCID: PMC9031745 DOI: 10.3390/metabo12040342] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 01/26/2023] Open
Abstract
Arachidonic acid (AA) is a polyunsaturated 20-carbon fatty acid present in phospholipids in the plasma membrane. The three primary pathways by which AA is metabolized are mediated by cyclooxygenase (COX) enzymes, lipoxygenase (LOX) enzymes, and cytochrome P450 (CYP) enzymes. These three pathways produce eicosanoids, lipid signaling molecules that play roles in biological processes such as inflammation, pain, and immune function. Eicosanoids have been demonstrated to play a role in inflammatory, renal, and cardiovascular diseases as well type 1 and type 2 diabetes. Alterations in AA release or AA concentrations have been shown to affect insulin secretion from the pancreatic beta cell, leading to interest in the role of AA and its metabolites in the regulation of beta-cell function and maintenance of beta-cell mass. In this review, we discuss the metabolism of AA by COX, LOX, and CYP, the roles of these enzymes and their metabolites in beta-cell mass and function, and the possibility of targeting these pathways as novel therapies for treating diabetes.
Collapse
|
7
|
Zeng N, Wang Y, Cheng Y, Huang Z, Song B. Imaging evaluation of the pancreas in diabetic patients. Abdom Radiol (NY) 2022; 47:715-726. [PMID: 34786594 DOI: 10.1007/s00261-021-03340-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023]
Abstract
Diabetes mellitus (DM) is becoming a global epidemic and its diagnosis and monitoring are based on laboratory testing which sometimes have limitations. The pancreas plays a key role in metabolism and is involved in the pathogenesis of DM. It has long been known through cadaver biopsies that pancreas volume is decreased in patients with DM. With the development of different imaging modalities over the last two decades, many studies have attempted to determine whether there other changes occurred in the pancreas of diabetic patients. This review summarizes current knowledge about the use of different imaging approaches (such as CT, MR, and US) and radiomics for exploring pancreatic changes in diabetic patients. Imaging studies are expected to produce reliable information regarding DM, and radiomics could provide increasingly valuable information to identify some undetectable features and help diagnose and predict the occurrence of diabetes through pancreas imaging.
Collapse
Affiliation(s)
- Ni Zeng
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yi Wang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yue Cheng
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Zixing Huang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Cheung P, Eriksson O. The Current State of Beta-Cell-Mass PET Imaging for Diabetes Research and Therapies. Biomedicines 2021; 9:1824. [PMID: 34944640 PMCID: PMC8698817 DOI: 10.3390/biomedicines9121824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Diabetes is a chronic metabolic disease affecting over 400 million people worldwide and one of the leading causes of death, especially in developing nations. The disease is characterized by chronic hyperglycemia, caused by defects in the insulin secretion or action pathway. Current diagnostic methods measure metabolic byproducts of the disease such as glucose level, glycated hemoglobin (HbA1c), insulin or C-peptide levels, which are indicators of the beta-cell function. However, they inaccurately reflect the disease progression and provide poor longitudinal information. Beta-cell mass has been suggested as an alternative approach to study disease progression in correlation to beta-cell function, as it behaves differently in the diabetes physiopathology. Study of the beta-cell mass, however, requires highly invasive and potentially harmful procedures such as pancreatic biopsies, making diagnosis and monitoring of the disease tedious. Nuclear medical imaging techniques using radiation emitting tracers have been suggested as strong non-invasive tools for beta-cell mass. A highly sensitive and high-resolution technique, such as positron emission tomography, provides an ideal solution for the visualization of beta-cell mass, which is particularly essential for better characterization of a disease such as diabetes, and for estimating treatment effects towards regeneration of the beta-cell mass. Development of novel, validated biomarkers that are aimed at beta-cell mass imaging are thus highly necessary and would contribute to invaluable breakthroughs in the field of diabetes research and therapies. This review aims to describe the various biomarkers and radioactive probes currently available for positron emission tomography imaging of beta-cell mass, as well as highlight the need for precise quantification and visualization of the beta-cell mass for designing new therapy strategies and monitoring changes in the beta-cell mass during the progression of diabetes.
Collapse
Affiliation(s)
- Pierre Cheung
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, SE-75183 Uppsala, Sweden;
| | | |
Collapse
|
9
|
SIRT3 protects bovine mammary epithelial cells from heat stress damage by activating the AMPK signaling pathway. Cell Death Discov 2021; 7:304. [PMID: 34675216 PMCID: PMC8531291 DOI: 10.1038/s41420-021-00695-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/26/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
With global warming, heat stress has become an important challenge for the global dairy industry. Sirtuin 3 (SIRT3), an important mitochondrial NAD+dependent decarboxylase and a major regulator of cellular energy metabolism and antioxidant defense, is integral to maintaining normal mitochondrial function. The aim of this study was to assess the protective effect of SIRT3 on damage to bovine mammary epithelial cells (BMECs) induced by heat stress and to explore its potential mechanism. Our results indicate that SIRT3 is significantly downregulated in heat-stressed mammary tissue and high-temperature-treated BMECs. SIRT3 knockdown significantly increased the expression of HSP70, Bax, and cleaved-caspase 3 and inhibited the production of antioxidases, thus promoting ROS production and cell apoptosis in BMECs. In addition, SIRT3 knockdown can aggravate mitochondrial damage by mediating the expression of genes related to mitochondrial fission and fusion, including dynamin-related protein 1, mitochondrial fission 1 protein, and mitochondrial fusion proteins 1and 2. In addition, SIRT3 knockdown substantially decreased AMPK phosphorylation in BMECs. In contrast, SIRT3 overexpression in high-temperature treatment had the opposite effect to SIRT3 knockdown in BMECs. SIRT3 overexpression reduced mitochondrial damage and weakened the oxidative stress response of BMECs induced by heat stress and promoted the phosphorylation of AMPK. Taken together, our results indicate that SIRT3 can protect BMECs from heat stress damage through the AMPK signaling pathway. Therefore, the reduction of oxidative stress by SIRT3 may be the primary molecular mechanism underlying resistance to heat stress in summer cows.
Collapse
|
10
|
PET Imaging of GPR44 by Antagonist [ 11C]MK-7246 in Pigs. Biomedicines 2021; 9:biomedicines9040434. [PMID: 33923731 PMCID: PMC8073488 DOI: 10.3390/biomedicines9040434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
A validated imaging marker for beta-cell mass would improve understanding of diabetes etiology and enable new strategies in therapy development. We previously identified the membrane-spanning protein GPR44 as highly expressed and specific to the beta cells of the pancreas. The selective GPR44 antagonist MK-7246 was radiolabeled with carbon-11 and the resulting positron-emission tomography (PET) tracer [11C]MK-7246 was evaluated in a pig model and in vitro cell lines. The [11C]MK-7246 compound demonstrated mainly hepatobiliary excretion with a clearly defined pancreas, no spillover from adjacent tissues, and pancreatic binding similar in magnitude to the previously evaluated GPR44 radioligand [11C]AZ12204657. The binding could be blocked by preadministration of nonradioactive MK-7246, indicating a receptor-binding mechanism. [11C]MK-7246 showed strong potential as a PET ligand candidate for visualization of beta-cell mass (BCM) and clinical translation of this methodology is ongoing.
Collapse
|
11
|
Barella LF, Jain S, Kimura T, Pydi SP. Metabolic roles of G protein-coupled receptor signaling in obesity and type 2 diabetes. FEBS J 2021; 288:2622-2644. [PMID: 33682344 DOI: 10.1111/febs.15800] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/31/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
The incidence of obesity and type 2 diabetes (T2D) has been increasing steadily worldwide. It is estimated that by 2045 more than 800 million people will be suffering from diabetes. Despite the advancements in modern medicine, more effective therapies for treating obesity and T2D are needed. G protein-coupled receptors (GPCRs) have emerged as important drug targets for various chronic diseases, including obesity, T2D, and liver diseases. During the past two decades, many laboratories worldwide focused on understanding the role of GPCR signaling in regulating glucose metabolism and energy homeostasis. The information gained from these studies can guide the development of novel therapeutic agents. In this review, we summarize recent studies providing insights into the role of GPCR signaling in peripheral, metabolically important tissues such as pancreas, liver, skeletal muscle, and adipose tissue, focusing primarily on the use of mutant animal models and human data.
Collapse
Affiliation(s)
- Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.,Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Takefumi Kimura
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.,Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| |
Collapse
|
12
|
Sandhu HK, Neuman JC, Schaid MD, Davis SE, Connors KM, Challa R, Guthery E, Fenske RJ, Patibandla C, Breyer RM, Kimple ME. Rat prostaglandin EP3 receptor is highly promiscuous and is the sole prostanoid receptor family member that regulates INS-1 (832/3) cell glucose-stimulated insulin secretion. Pharmacol Res Perspect 2021; 9:e00736. [PMID: 33694300 PMCID: PMC7947324 DOI: 10.1002/prp2.736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic elevations in fatty acid metabolites termed prostaglandins can be found in circulation and in pancreatic islets from mice or humans with diabetes and have been suggested as contributing to the β‐cell dysfunction of the disease. Two‐series prostaglandins bind to a family of G‐protein‐coupled receptors, each with different biochemical and pharmacological properties. Prostaglandin E receptor (EP) subfamily agonists and antagonists have been shown to influence β‐cell insulin secretion, replication, and/or survival. Here, we define EP3 as the sole prostanoid receptor family member expressed in a rat β‐cell‐derived line that regulates glucose‐stimulated insulin secretion. Several other agonists classically understood as selective for other prostanoid receptor family members also reduce glucose‐stimulated insulin secretion, but these effects are only observed at relatively high concentrations, and, using a well‐characterized EP3‐specific antagonist, are mediated solely by cross‐reactivity with rat EP3. Our findings confirm the critical role of EP3 in regulating β‐cell function, but are also of general interest, as many agonists supposedly selective for other prostanoid receptor family members are also full and efficacious agonists of EP3. Therefore, care must be taken when interpreting experimental results from cells or cell lines that also express EP3.
Collapse
Affiliation(s)
- Harpreet K Sandhu
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Joshua C Neuman
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Interdepartmental Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael D Schaid
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Interdepartmental Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah E Davis
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelsey M Connors
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Romith Challa
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Erin Guthery
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Rachel J Fenske
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Interdepartmental Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Chinmai Patibandla
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Richard M Breyer
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michelle E Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Interdepartmental Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
13
|
Huang LA, Huang KX, Tu J, Kandeel F, Li J. Ramatroban-Based Analogues Containing Fluorine Group as Potential 18F-Labeled Positron Emission Tomography (PET) G-Protein Coupled Receptor 44 (GPR44) Tracers. Molecules 2021; 26:1433. [PMID: 33800801 PMCID: PMC7961607 DOI: 10.3390/molecules26051433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
Diabetes remains one of the fastest growing chronic diseases and is a leading source of morbidity and accelerated mortality in the world. Loss of beta cell mass (BCM) and decreased sensitivity to insulin underlie diabetes pathogenesis. Yet, the ability to safely and directly assess BCM in individuals with diabetes does not exist. Measures such as blood glucose provide only a crude indirect picture of beta cell health. PET imaging could, in theory, allow for safe, direct, and precise characterization of BCM. However, identification of beta cell-specific radiolabeled tracers remains elusive. G-protein coupled receptor 44 (GPR44) is a transmembrane protein that was characterized in 2012 as highly beta cell-specific within the insulin-positive islets of Langerhans. Accordingly, radiolabeling of existing GPR44 antagonists could be a viable method to accelerate PET tracer development. The present study aims to evaluate and summarize published analogues of the GPR44 antagonist ramatroban to develop 18F-labeled PET tracers for BCM analysis. The 77 corresponding ramatroban analogues containing a fluorine nuclide were characterized for properties including binding affinity, selectivity, and pharmacokinetic and metabolic profile, and 32 compounds with favorable properties were identified. This review illustrates the potential of GPR44 analogues for the development of PET tracers.
Collapse
Affiliation(s)
| | | | | | | | - Junfeng Li
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (L.A.H.); (K.X.H.); (J.T.); (F.K.)
| |
Collapse
|
14
|
Joosten L, Boss M, Jansen T, Brom M, Buitinga M, Aarntzen E, Eriksson O, Johansson L, de Galan B, Gotthardt M. Molecular Imaging of Diabetes. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
15
|
Eriksson O, Långström B, Antoni G. News ways of understanding the complex biology of diabetes using PET. Nucl Med Biol 2021; 92:65-71. [PMID: 32387114 DOI: 10.1016/j.nucmedbio.2020.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/27/2020] [Accepted: 04/15/2020] [Indexed: 11/22/2022]
Abstract
The understanding of metabolic disease and diabetes on a molecular level has increased significantly due to the recent advances in molecular biology and biotechnology. However, in vitro studies and animal models do not always translate to the human disease, perhaps illustrated by the failure of many drug candidates in the clinical phase. Non-invasive biomedical imaging techniques such as Positron Emission Tomography (PET) offer tools for direct visualization and quantification of molecular processes in humans. Developments in this area potentially enable longitudinal in vivo studies of receptors and processes involved in diabetes guiding drug development and diagnosis in the near future. This mini-review focuses on describing the overall perspective of how PET can be used to increase our understanding and improve treatment of diabetes. The methodological aspects and future developments and challenges are highlighted.
Collapse
Affiliation(s)
- O Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; Antaros Medical AB, Mölndal, Sweden
| | - B Långström
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - G Antoni
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
16
|
Murakami T, Fujimoto H, Inagaki N. Non-invasive Beta-cell Imaging: Visualization, Quantification, and Beyond. Front Endocrinol (Lausanne) 2021; 12:714348. [PMID: 34248856 PMCID: PMC8270651 DOI: 10.3389/fendo.2021.714348] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Pancreatic beta (β)-cell dysfunction and reduced mass play a central role in the development and progression of diabetes mellitus. Conventional histological β-cell mass (BCM) analysis is invasive and limited to cross-sectional observations in a restricted sampling area. However, the non-invasive evaluation of BCM remains elusive, and practical in vivo and clinical techniques for β-cell-specific imaging are yet to be established. The lack of such techniques hampers a deeper understanding of the pathophysiological role of BCM in diabetes, the implementation of personalized BCM-based diabetes management, and the development of antidiabetic therapies targeting BCM preservation and restoration. Nuclear medical techniques have recently triggered a major leap in this field. In particular, radioisotope-labeled probes using exendin peptides that include glucagon-like peptide-1 receptor (GLP-1R) agonist and antagonist have been employed in positron emission tomography and single-photon emission computed tomography. These probes have demonstrated high specificity to β cells and provide clear images accurately showing uptake in the pancreas and transplanted islets in preclinical in vivo and clinical studies. One of these probes, 111indium-labeled exendin-4 derivative ([Lys12(111In-BnDTPA-Ahx)]exendin-4), has captured the longitudinal changes in BCM during the development and progression of diabetes and under antidiabetic therapies in various mouse models of type 1 and type 2 diabetes mellitus. GLP-1R-targeted imaging is therefore a promising tool for non-invasive BCM evaluation. This review focuses on recent advances in non-invasive in vivo β-cell imaging for BCM evaluation in the field of diabetes; in particular, the exendin-based GLP-1R-targeted nuclear medicine techniques.
Collapse
Affiliation(s)
- Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency of Health, Safety and Environment, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
- *Correspondence: Nobuya Inagaki,
| |
Collapse
|
17
|
Abadpour S, Tyrberg B, Schive SW, Huldt CW, Gennemark P, Ryberg E, Rydén-Bergsten T, Smith DM, Korsgren O, Skrtic S, Scholz H, Winzell MS. Inhibition of the prostaglandin D 2-GPR44/DP2 axis improves human islet survival and function. Diabetologia 2020; 63:1355-1367. [PMID: 32350565 PMCID: PMC7286861 DOI: 10.1007/s00125-020-05138-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Inflammatory signals and increased prostaglandin synthesis play a role during the development of diabetes. The prostaglandin D2 (PGD2) receptor, GPR44/DP2, is highly expressed in human islets and activation of the pathway results in impaired insulin secretion. The role of GPR44 activation on islet function and survival rate during chronic hyperglycaemic conditions is not known. In this study, we investigate GPR44 inhibition by using a selective GPR44 antagonist (AZ8154) in human islets both in vitro and in vivo in diabetic mice transplanted with human islets. METHODS Human islets were exposed to PGD2 or proinflammatory cytokines in vitro to investigate the effect of GPR44 inhibition on islet survival rate. In addition, the molecular mechanisms of GPR44 inhibition were investigated in human islets exposed to high concentrations of glucose (HG) and to IL-1β. For the in vivo part of the study, human islets were transplanted under the kidney capsule of immunodeficient diabetic mice and treated with 6, 60 or 100 mg/kg per day of a GPR44 antagonist starting from the transplantation day until day 4 (short-term study) or day 17 (long-term study) post transplantation. IVGTT was performed on mice at day 10 and day 15 post transplantation. After termination of the study, metabolic variables, circulating human proinflammatory cytokines, and hepatocyte growth factor (HGF) were analysed in the grafted human islets. RESULTS PGD2 or proinflammatory cytokines induced apoptosis in human islets whereas GPR44 inhibition reversed this effect. GPR44 inhibition antagonised the reduction in glucose-stimulated insulin secretion induced by HG and IL-1β in human islets. This was accompanied by activation of the Akt-glycogen synthase kinase 3β signalling pathway together with phosphorylation and inactivation of forkhead box O-1and upregulation of pancreatic and duodenal homeobox-1 and HGF. Administration of the GPR44 antagonist for up to 17 days to diabetic mice transplanted with a marginal number of human islets resulted in reduced fasting blood glucose and lower glucose excursions during IVGTT. Improved glucose regulation was supported by increased human C-peptide levels compared with the vehicle group at day 4 and throughout the treatment period. GPR44 inhibition reduced plasma levels of TNF-α and growth-regulated oncogene-α/chemokine (C-X-C motif) ligand 1 and increased the levels of HGF in human islets. CONCLUSIONS/INTERPRETATION Inhibition of GPR44 in human islets has the potential to improve islet function and survival rate under inflammatory and hyperglycaemic stress. This may have implications for better survival rate of islets following transplantation.
Collapse
Affiliation(s)
- Shadab Abadpour
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Sognsvannsveien 20, 0027, Oslo, Norway
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Björn Tyrberg
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Peppredsleden 1, 431 83 Mölndal, Gothenburg, Sweden
| | - Simen W Schive
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Sognsvannsveien 20, 0027, Oslo, Norway
| | - Charlotte Wennberg Huldt
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Peppredsleden 1, 431 83 Mölndal, Gothenburg, Sweden
| | - Peter Gennemark
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Peppredsleden 1, 431 83 Mölndal, Gothenburg, Sweden
- Department of Biomedical Engineering, University of Linköping, Linköping, Sweden
| | - Erik Ryberg
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Peppredsleden 1, 431 83 Mölndal, Gothenburg, Sweden
| | - Tina Rydén-Bergsten
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Peppredsleden 1, 431 83 Mölndal, Gothenburg, Sweden
| | - David M Smith
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Peppredsleden 1, 431 83 Mölndal, Gothenburg, Sweden
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, University of Uppsala, Uppsala, Sweden
| | - Stanko Skrtic
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Peppredsleden 1, 431 83 Mölndal, Gothenburg, Sweden
- Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanne Scholz
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Sognsvannsveien 20, 0027, Oslo, Norway.
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Maria Sörhede Winzell
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Peppredsleden 1, 431 83 Mölndal, Gothenburg, Sweden.
| |
Collapse
|
18
|
Nucleic acid-based theranostics in type 1 diabetes. Transl Res 2019; 214:50-61. [PMID: 31491371 DOI: 10.1016/j.trsl.2019.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/01/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022]
Abstract
Application of RNAi interference for type 1 diabetes (T1D) therapy bears tremendous potential. This review will discuss vehicles for oligonucleotide delivery, imaging modalities used for delivery monitoring, therapeutic targets, and different theranostic strategies that can be applied for T1D treatment.
Collapse
|
19
|
Espes D, Manell E, Rydén A, Carlbom L, Weis J, Jensen-Waern M, Jansson L, Eriksson O. Pancreatic perfusion and its response to glucose as measured by simultaneous PET/MRI. Acta Diabetol 2019; 56:1113-1120. [PMID: 31028528 PMCID: PMC6746678 DOI: 10.1007/s00592-019-01353-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 04/19/2019] [Indexed: 10/26/2022]
Abstract
AIMS Perfusion of the pancreas and the islets of Langerhans is sensitive to physiological stimuli and is dysregulated in metabolic disease. Pancreatic perfusion can be assessed by both positron emission tomography (PET) and magnetic resonance imaging (MRI), but the methods have not been directly compared or benchmarked against the gold-standard microsphere technique. METHODS Pigs (n = 4) were examined by [15O]H2O PET and intravoxel incoherent motion (IVIM) MRI technique simultaneously using a hybrid PET/MRI scanner. The pancreatic perfusion was measured both at basal conditions and after intravenous (IV) administration of up to 0.5 g/kg glucose. RESULTS Pancreatic perfusion increased by 35%, 157%, and 29% after IV 0.5 g/kg glucose compared to during basal conditions, as assessed by [15O]H2O PET, IVIM MRI, and microspheres, respectively. There was a correlation between pancreatic perfusion as assessed by [15O]H2O PET and IVIM MRI (r = 0.81, R2 = 0.65, p < 0.01). The absolute quantification of pancreatic perfusion (ml/min/g) by [15O]H2O PET was within a 15% error of margin of the microsphere technique. CONCLUSION Pancreatic perfusion by [15O]H2O PET was in agreement with the microsphere technique assessment. The IVIM MRI method has the potential to replace [15O]H2O PET if the pancreatic perfusion is sufficiently large, but not when absolute quantitation is required.
Collapse
Affiliation(s)
- Daniel Espes
- Department of Medical Cell Biology, Uppsala University, 751 23, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, 751 83, Uppsala, Sweden
| | - Elin Manell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anneli Rydén
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lina Carlbom
- Department of Surgical Sciences, Uppsala University, 751 83, Uppsala, Sweden
| | - Jan Weis
- Department of Medical Physics, Uppsala University Hospital, 751 83, Uppsala, Sweden
| | - Marianne Jensen-Waern
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Leif Jansson
- Department of Medical Cell Biology, Uppsala University, 751 23, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Dag Hammarskjölds väg 14C, 3tr, 751 83, Uppsala, Sweden.
| |
Collapse
|
20
|
Ma C, Fan L, Wang J, Hao L, He J. Hippo/Mst1 overexpression induces mitochondrial death in head and neck squamous cell carcinoma via activating β-catenin/Drp1 pathway. Cell Stress Chaperones 2019; 24:807-816. [PMID: 31127452 PMCID: PMC6629754 DOI: 10.1007/s12192-019-01008-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
Mammalian Ste20-like kinase 1 (Mst1) is associated with cell apoptosis. In the current study, we explored the regulatory effects of Mst1 on squamous cell carcinoma of the head and neck (SCCHN) in vitro. SCCHN Cal27 cells and Tu686 cells were transfected with adenovirus-loaded Mst1 to detect the role of Mst1 in cell viability. Then, siRNA against Drp1 was transfected into cells to evaluate the influence of mitochondrial fission in cancer survival. Our data illustrated that Mst1 overexpression promoted SCCHN Cal27 cell and Tu686 cell death via activating mitochondria-related apoptosis. Cells transfected with adenovirus-loaded Mst1 have increased expression of DRP1 and higher DRP1 promoted mitochondrial fission. Active mitochondrial fission mediated mitochondrial damage, as evidenced by increased mitochondrial oxidative stress, decreased mitochondrial energy production, and reduced mitochondrial respiratory complex function. Moreover, Mst1 overexpression triggered mitochondria-dependent cell apoptosis via DRP1-related mitochondrial fission. Further, we found that Mst1 overexpression controlled mitochondrial fission via the β-catenin/DRP1 pathways; inhibition of β-catenin and/or knockdown of DRP1 abolished the pro-apoptotic effects of Mst1 overexpression on SCCHN Cal27 cells and Tu686 cells, leading to the survival of cancer cells in vitro. In sum, our results illustrate that Mst1/β-catenin/DRP1 axis affects SCCHN Cal27 cell and Tu686 cell viability via controlling mitochondrial dynamics balance. This finding identifies Mst1 activation might be an effective therapeutic target for the treatment of SCCHN.
Collapse
Affiliation(s)
- Chao Ma
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, 061001, China.
| | - Longkun Fan
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, 061001, China
| | - Jingxian Wang
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, 061001, China
| | - Lixia Hao
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, 061001, China
| | - Jinqiu He
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, 061001, China
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Quantitative markers for beta-cell mass (BCM) in human pancreas are currently lacking. Medical imaging using positron emission tomography (PET) markers for beta-cell restricted targets may provide an accurate and non-invasive measurement of BCM, to assist diagnosis and treatment of metabolic disease. GPR44 was recently discovered as a putative marker for beta cells and this review summarizes the developments so far. RECENT FINDINGS Several small molecule binders targeting GPR44 have been radiolabeled for PET imaging and evaluated in vitro and in small and large animal models. 11C-AZ12204657 and 11C-MK-7246 displayed a dose-dependent and GPR44-mediated binding to beta cells both in vitro and in vivo, with negligible uptake in exocrine pancreas. GPR44 represents an attractive target for visualization of BCM. Further progress in radioligand development including clinical testing is expected to clarify the role of GPR44 as a surrogate marker for BCM in humans.
Collapse
Affiliation(s)
- Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Dag Hammarskjölds väg 14C, 3tr, SE-752 37, Uppsala, Sweden.
- Antaros Medical AB, Mölndal, Sweden.
| |
Collapse
|
22
|
Qin R, Lin D, Zhang L, Xiao F, Guo L. Mst1 deletion reduces hyperglycemia-mediated vascular dysfunction via attenuating mitochondrial fission and modulating the JNK signaling pathway. J Cell Physiol 2019; 235:294-303. [PMID: 31206688 DOI: 10.1002/jcp.28969] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/31/2022]
Abstract
Diabetes is a leading cause of microvascular complications, such as nephropathy and retinopathy. Recent studies have proposed that hyperglycemia-induced endothelial cell dysfunction is modulated by mitochondrial stress. Therefore, our experiment was to detect the upstream mediator of mitochondrial stress in hyperglycemia-treated endothelial cells with a focus on macrophage-stimulating 1 (Mst1) and mitochondrial fission. Our data illuminated that hyperglycemia incubation reduced cell viability, as well as increased apoptosis ratio in endothelial cell, and this alteration seemed to be associated with Mst1 upregulation. Inhibition of Mst1 via transfection of Mst1 siRNA into an endothelial cell could sustain cell viability and maintain mitochondrial function. At the molecular levels, endothelial cell death was accompanied with the activation of mitochondrial oxidative stress, mitochondrial apoptosis, and mitochondrial fission. Genetic ablation of Mst1 could reduce mitochondrial oxidative injury, block mitochondrial apoptosis, and repress mitochondrial fission. Besides, we also found Mst1 triggered mitochondrial dysfunction as well as endothelial cell damage through augmenting JNK pathway. Suppression of JNK largely ameliorated the protective actions of Mst1 silencing on hyperglycemia-treated endothelial cells and sustain mitochondrial function. The present study identifies Mst1 as a primary key mediator for hyperglycemia-induced mitochondrial damage and endothelial cell dysfunction. Increased Mst1 impairs mitochondrial function and activates endothelial cell death via opening mitochondrial death pathway through JNK.
Collapse
Affiliation(s)
- Ruijie Qin
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Lin
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lina Zhang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Fei Xiao
- Department of Pathology, The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Lixin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
23
|
Wang Q, Xu J, Li X, Liu Z, Han Y, Xu X, Li X, Tang Y, Liu Y, Yu T, Li X. Sirt3 modulate renal ischemia-reperfusion injury through enhancing mitochondrial fusion and activating the ERK-OPA1 signaling pathway. J Cell Physiol 2019; 234:23495-23506. [PMID: 31173361 DOI: 10.1002/jcp.28918] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
Mitochondrial fusion is linked to heart and liver ischemia-reperfusion (IR) insult. Unfortunately, there is no report to elucidate the detailed influence of mitochondrial fusion in renal IR injury. This study principally investigated the mechanism by which mitochondrial fusion protected kidney against IR injury. Our results indicated that sirtuin 3 (Sirt3) was inhibited after renal IR injury in vivo and in vitro. Overexpression of Sirt3 improved kidney function, modulated oxidative injury, repressed inflammatory damage, and reduced tubular epithelial cell apoptosis. The molecular investigation found that Sirt3 overexpression attenuated IR-induced mitochondrial damage in renal tubular epithelial cells, as evidenced by decreased reactive oxygen species production, increased antioxidants sustained mitochondrial membrane potential, and inactivated mitochondria-initiated death signaling. In addition, our information also illuminated that Sirt3 maintained mitochondrial homeostasis against IR injury by enhancing optic atrophy 1 (OPA1)-triggered fusion of mitochondrion. Inhibition of OPA1-induced fusion repressed Sirt3 overexpression-induced kidney protection, leading to mitochondrial dysfunction. Further, our study illustrated that OPA1-induced fusion could be affected through ERK; inhibition of ERK abolished the regulatory impacts of Sirt3 on OPA1 expression and mitochondrial fusion, leading to mitochondrial damage and tubular epithelial cell apoptosis. Altogether, our results suggest that renal IR injury is closely associated with Sirt3 downregulation and mitochondrial fusion inhibition. Regaining Sirt3 and/or activating mitochondrial fission by modifying the ERK-OPA1 cascade may represent new therapeutic modalities for renal IR injury.
Collapse
Affiliation(s)
- Qiang Wang
- Urology Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Junnan Xu
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoli Li
- Department of Geriatric Cardiology, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhijia Liu
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yong Han
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoguang Xu
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiubin Li
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuzhe Tang
- Urology Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yubao Liu
- Urology Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Tao Yu
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiang Li
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
24
|
Lu K, Liu X, Guo W. Melatonin attenuates inflammation‐related venous endothelial cells apoptosis through modulating the MST1–MIEF1 pathway. J Cell Physiol 2019; 234:23675-23684. [PMID: 31169304 DOI: 10.1002/jcp.28935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Kai Lu
- Department of Vascular and Endovascular Surgery Medical School of Chinese PLA Beijing China
- Department of Vascular Surgery Da Qing Oil General Hospital Daquing Hei Longjiang China
| | - Xiaoping Liu
- Department of Vascular and Endovascular Surgery Medical School of Chinese PLA Beijing China
- Department of Vascular and Endovascular Surgery 301 General Hospital of PLA Beijing China
| | - Wei Guo
- Department of Vascular and Endovascular Surgery Medical School of Chinese PLA Beijing China
- Department of Vascular and Endovascular Surgery 301 General Hospital of PLA Beijing China
| |
Collapse
|
25
|
Kang NY, Soetedjo AAP, Amirruddin NS, Chang YT, Eriksson O, Teo AKK. Tools for Bioimaging Pancreatic β Cells in Diabetes. Trends Mol Med 2019; 25:708-722. [PMID: 31178230 DOI: 10.1016/j.molmed.2019.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
When diabetes is diagnosed, the majority of insulin-secreting pancreatic β cells are already dysfunctional or destroyed. This β cell dysfunction/destruction usually takes place over many years, making timely detection and clinical intervention difficult. For this reason, there is immense interest in developing tools to bioimage β cell mass and/or function noninvasively to facilitate early diagnosis of diabetes as well as to assist the development of novel antidiabetic therapies. Recent years have brought significant progress in β cell imaging that is now inching towards clinical applicability. We explore here the need to bioimage human β cells noninvasively in various types of diabetes, and we discuss current and emerging tools for bioimaging β cells. Further developments in this field are expected to facilitate β cell imaging in diabetes.
Collapse
Affiliation(s)
- Nam-Young Kang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 02-02 Helios, 138667, Singapore; New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Chembok-ro (1115-1 Dongnae-dong), Dong-gu, Daegu City 41061, Republic of Korea.
| | | | - Nur Shabrina Amirruddin
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Proteos, 138673, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| | - Young-Tae Chang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 02-02 Helios, 138667, Singapore; Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea; Center for Self-assembly and Complexity, Institute for Basic Science (IBS), 77 Hyogok-dong, Nam-gu, Pohang 37673, Republic of Korea
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala SE-752 36, Sweden
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Proteos, 138673, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore.
| |
Collapse
|
26
|
Song H, Wang M, Xin T. Mst1 contributes to nasal epithelium inflammation via augmenting oxidative stress and mitochondrial dysfunction in a manner dependent on Nrf2 inhibition. J Cell Physiol 2019; 234:23774-23784. [PMID: 31165471 DOI: 10.1002/jcp.28945] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Nasal epithelium inflammation plays an important role in transmitting and amplifying damage signals for the lower airway. However, the molecular basis of nasal epithelium inflammation damage has not been fully addressed. Mst1 is reported to modulate inflammation via multiple effects. Thus, the aim of our study is to understand the pathological mechanism underlying Mst1-related nasal epithelium inflammation in vitro. Our result indicated that Mst1 expression was rapidly increased in response to tumor necrosis factor-α (TNF-α) treatment in vitro and this effect was a dose-dependent manner. Interestingly, knockdown of Mst1 via transfecting small interfering RNA markedly reversed cell viability in the presence of TNF-α. Further, we found that Mst1 deficiency reduced cellular oxidative stress and attenuated mitochondrial dysfunction, as evidenced by reversed mitochondrial complex-I activity, decreased mitochondrial permeability transition pore opening rate, and stabilized mitochondrial membrane potential. Besides, we found that Nrf2 expression was increased after deletion of Mst1 whereas silencing of Nrf2 abolished the protective effects of Mst1 deletion on nasal epithelium survival and mitochondrial homeostasis. Moreover, Nrf2 overexpression also protected nasal epithelium against TNF-α-induced inflammation damage. Altogether, our data confirm that the Mst1 activation and Nrf2 downregulation seem to be the potential mechanisms responsible for the inflammation-mediated injury in nasal epithelium via mediating mitochondrial damage and cell oxidative stress.
Collapse
Affiliation(s)
- Henge Song
- Department of Respiratory Medicine, Tianjin Dongli Hospital, Tianjin, China
| | - Mengmeng Wang
- Department of Rheumatism and Immunology, Tianjin First Central Hospital, Tianjin, China
| | - Ting Xin
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
27
|
Zhang Y, Wang M, Xu X, Liu Y, Xiao C. Matrine promotes apoptosis in SW480 colorectal cancer cells via elevating MIEF1-related mitochondrial division in a manner dependent on LATS2-Hippo pathway. J Cell Physiol 2019; 234:22731-22741. [PMID: 31119752 DOI: 10.1002/jcp.28838] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022]
Abstract
Matrine, an alkaloid compound isolated from Sophora flavescens Ait, has been shown to exert cancer-killing actions in a variety of tumors; however, its anticancer mechanism in colorectal cancer (CRC) is not clear. The goal of our study was to characterize the anticancer effects and molecular mechanisms of matrine in SW480 CRC cells in vitro. Matrine treatment reduced mitochondrial metabolic function and ATP levels, repressed mitochondrial membrane potential, evoked mitochondrial reactive oxygen species accumulation, and promoted cyt-c-related mitochondrial apoptosis activation. In addition, we found that matrine treatment activated mitochondrial fission through upregulating mitochondrial elongation factor 1 (MIEF1); silencing of MIEF1 prevented matrine-mediated mitochondrial damage and reversed the decrease in SW480 cell viability. Moreover, matrine treatment affected MIEF1 expression via the large tumor suppressor-2 (LATS2)-Hippo axis, and LATS2 deficiency suppressed the anticancer actions exerted by matrine on SW480 cancer cells. In summary, we show for the first time that matrine inhibits SW480 cell survival by activating MIEF1-related mitochondrial division via the LATS2-Hippo pathway. These findings explain the anticancer mechanisms of matrine in CRC and also identify the LATS2-MIEF1 signaling pathway as an effective target for the treatment of CRC.
Collapse
Affiliation(s)
- Yawei Zhang
- Department of General Surgery, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Meiping Wang
- Department of General Surgery, Fuzhou General Hospital (Dongfang Hospital), Fuzhou, Fujian, China
| | - Xianfeng Xu
- Department of Critical Care Medicine, Changle People's Hospital, Fuzhou, Fujian, China
| | - Yonghong Liu
- Department of General Surgery, First People's Hospital of Yuhang District, Hangzhou, China
| | - Chunhong Xiao
- Department of General Surgery, Fuzhou General Hospital (Dongfang Hospital), Fuzhou, Fujian, China
| |
Collapse
|
28
|
Synthesis and preclinical evaluation of the CRTH2 antagonist [ 11C]MK-7246 as a novel PET tracer and potential surrogate marker for pancreatic beta-cell mass. Nucl Med Biol 2019; 71:1-10. [PMID: 31082767 DOI: 10.1016/j.nucmedbio.2019.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/08/2019] [Accepted: 04/05/2019] [Indexed: 12/29/2022]
Abstract
INTRODUCTION MK-7246 is a potent and selective antagonist for chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). Within the pancreas CRTH2 is selectively expressed in pancreatic β-cells where it is believed to play a role in insulin release. Reduction in β-cell mass and insufficient insulin secretion in response to elevated blood glucose levels is a hallmark for type 1 and type 2 diabetes. Reported here is the synthesis of [11C]MK-7246 and initial preclinical evaluation towards CRTH2 imaging. The aim is to develop a method to quantify β-cell mass with PET and facilitate non-invasive studies of disease progression in individuals with type 2 diabetes. METHODS The precursor N-desmethyl-O-methyl MK-7246 was synthesized in seven steps and subjected to methylation with [11C]methyl iodide followed by hydrolysis to obtain [11C]MK-7246 labelled in the N-methyl position. Preclinical evaluation included in vitro radiography and immune-staining performed in human pancreatic biopsies. Biodistribution studies were performed in rat by PET-MRI and in pig by PET-CT imaging. Saturable tracer binding was examined in pig by scanning before and after administration of MK-7246 (1 mg/kg). Predicted dosimetry of [11C]MK-7246 in human males was estimated based on the biodistribution in rat. RESULTS [11C]MK-7246 was obtained with activities sufficient for the current investigations (270 ± 120 MBq) and a radiochemical purity of 93 ± 2%. The tracer displayed focal binding in areas with insulin positive islet of Langerhans in human pancreas sections. Baseline uptake in pig was reduced in tissues with known expression of CRTH2 after administration of MK-7246; pancreas (66% reduction) and spleen (88% reduction). [11C]MK-7246 exhibited a safe human predicted dosimetry profile as extrapolated from the rat biodistribution data. CONCLUSIONS Initial preclinical in vitro and in vivo evaluations of [11C]MK-7246 show binding and biodistribution properties suitable for PET imaging of CRTH2. Further studies are warranted to assess its potential in β-cell mass imaging and CRTH2 drug development.
Collapse
|
29
|
Horton TM, Allegretti PA, Lee S, Moeller HP, Smith M, Annes JP. Zinc-Chelating Small Molecules Preferentially Accumulate and Function within Pancreatic β Cells. Cell Chem Biol 2019; 26:213-222.e6. [PMID: 30527998 PMCID: PMC6386607 DOI: 10.1016/j.chembiol.2018.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/21/2018] [Accepted: 10/22/2018] [Indexed: 12/27/2022]
Abstract
Diabetes is a hyperglycemic condition characterized by pancreatic β-cell dysfunction and depletion. Whereas methods for monitoring β-cell function in vivo exist, methods to deliver therapeutics to β cells are lacking. We leveraged the rare ability of β cells to concentrate zinc to preferentially trap zinc-binding molecules within β cells, resulting in β-cell-targeted compound delivery. We determined that zinc-rich β cells and islets preferentially accumulated TSQ (6-methoxy-8-p-toluenesulfonamido-quinoline) in a zinc-dependent manner compared with exocrine pancreas. Next, we asked whether appending a zinc-chelating moiety onto a β-cell replication-inducing compound was sufficient to confer preferential β-cell accumulation and activity. Indeed, the hybrid compound preferentially accumulated within rodent and human islets in a zinc-dependent manner and increased the selectivity of replication-promoting activity toward β cells. These data resolve the fundamental question of whether intracellular accumulation of zinc-chelating compounds is influenced by zinc content. Furthermore, application of this principle yielded a proof-of-concept method for β-cell-targeted drug delivery and bioactivity.
Collapse
Affiliation(s)
- Timothy M Horton
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Chemistry, Engineering and Medicine for Human Health (ChEM-H) Research Institute, Stanford, CA 94305, USA
| | - Paul A Allegretti
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Chemistry, Engineering and Medicine for Human Health (ChEM-H) Research Institute, Stanford, CA 94305, USA
| | - Sooyeon Lee
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA
| | - Hannah P Moeller
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Mark Smith
- Chemistry, Engineering and Medicine for Human Health (ChEM-H) Research Institute, Stanford, CA 94305, USA; Medicinal Chemistry Knowledge Center, Stanford CHEM-H, Stanford University, Stanford, CA 94305, USA
| | - Justin P Annes
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Chemistry, Engineering and Medicine for Human Health (ChEM-H) Research Institute, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
30
|
Elksnis A, Martinell M, Eriksson O, Espes D. Heterogeneity of Metabolic Defects in Type 2 Diabetes and Its Relation to Reactive Oxygen Species and Alterations in Beta-Cell Mass. Front Physiol 2019; 10:107. [PMID: 30837889 PMCID: PMC6383038 DOI: 10.3389/fphys.2019.00107] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes (T2D) is a complex and heterogeneous disease which affects millions of people worldwide. The classification of diabetes is at an interesting turning point and there have been several recent reports on sub-classification of T2D based on phenotypical and metabolic characteristics. An important, and perhaps so far underestimated, factor in the pathophysiology of T2D is the role of oxidative stress and reactive oxygen species (ROS). There are multiple pathways for excessive ROS formation in T2D and in addition, beta-cells have an inherent deficit in the capacity to cope with oxidative stress. ROS formation could be causal, but also contribute to a large number of the metabolic defects in T2D, including beta-cell dysfunction and loss. Currently, our knowledge on beta-cell mass is limited to autopsy studies and based on comparisons with healthy controls. The combined evidence suggests that beta-cell mass is unaltered at onset of T2D but that it declines progressively. In order to better understand the pathophysiology of T2D, to identify and evaluate novel treatments, there is a need for in vivo techniques able to quantify beta-cell mass. Positron emission tomography holds great potential for this purpose and can in addition map metabolic defects, including ROS activity, in specific tissue compartments. In this review, we highlight the different phenotypical features of T2D and how metabolic defects impact oxidative stress and ROS formation. In addition, we review the literature on alterations of beta-cell mass in T2D and discuss potential techniques to assess beta-cell mass and metabolic defects in vivo.
Collapse
Affiliation(s)
- Andris Elksnis
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Mats Martinell
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
Campbell-Thompson ML, Filipp SL, Grajo JR, Nambam B, Beegle R, Middlebrooks EH, Gurka MJ, Atkinson MA, Schatz DA, Haller MJ. Relative Pancreas Volume Is Reduced in First-Degree Relatives of Patients With Type 1 Diabetes. Diabetes Care 2019; 42:281-287. [PMID: 30552130 PMCID: PMC6341284 DOI: 10.2337/dc18-1512] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/31/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Pancreas size is reduced in patients at type 1 diabetes onset and in autoantibody (AAB)-positive donors without diabetes. We sought to determine whether pancreas volume (PV) imaging could improve understanding of the loss of pancreas size in first-degree relatives (FDRs) of patients with type 1 diabetes. We also examined relationships among PV, AAB status, and endocrine and exocrine functions. RESEARCH DESIGN AND METHODS We conducted a cross-sectional study that included five groups: AAB- control subjects (no diabetes and no first- or second-degree relatives with type 1 diabetes) (N = 49), AAB- FDRs (N = 61), AAB+ FDRs (N = 67 total: n = 31 with a single positive AAB [AAB+ single] and n = 36 with multiple positive AABs [AAB+ multiple]), and patients with recent-onset type 1 diabetes (<1 year) (N = 52). Fasting subjects underwent 1.5T pancreatic MRI, and PV and relative PV (RPV) (PV-to-BMI ratio) were analyzed between groups and for correlations with HbA1c, C-peptide, glucose, and trypsinogen. RESULTS All FDR groups had significantly lower RPV adjusted for BMI (RPVBMI) than control subjects (all P < 0.05). Patients with type 1 diabetes had lower RPVBMI than AAB- FDR (P < 0.0001) and AAB+ multiple (P ≤ 0.013) subjects. Transformed data indicated that trypsinogen levels were lowest in patients with type 1 diabetes. CONCLUSIONS This study demonstrates, for the first time, all FDRs having significantly smaller RPVBMI compared with AAB- control subjects. Furthermore, RPVBMI was significantly lower in patients with recent-onset type 1 diabetes than in the AAB- FDR and AAB+ multiple groups. As such, RPVBMI may be a novel noninvasive biomarker for predicting progression through stages of type 1 diabetes risk. This study highlights the potential paracrine relationships between the exocrine and endocrine pancreas in progression to type 1 diabetes in subjects at risk.
Collapse
Affiliation(s)
- Martha L Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Stephanie L Filipp
- Health Outcomes and Biomedical Informatics, Institute for Child Health Policy, College of Medicine, University of Florida, Gainesville, FL
| | - Joseph R Grajo
- Department of Radiology, College of Medicine, University of Florida, Gainesville, FL
| | - Bimota Nambam
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Richard Beegle
- Department of Radiology, College of Medicine, University of Florida, Gainesville, FL
| | - Erik H Middlebrooks
- Department of Radiology, College of Medicine, University of Florida, Gainesville, FL
| | - Matthew J Gurka
- Health Outcomes and Biomedical Informatics, Institute for Child Health Policy, College of Medicine, University of Florida, Gainesville, FL
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL.,Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Desmond A Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
32
|
Abstract
The clinical onset of type 1 diabetes is characterized by the destruction of the insulin-producing β cells of the pancreas and is caused by autoantigen-induced inflammation (insulitis) of the islets of Langerhans. The current standard of care for type 1 diabetes mellitus patients allows for management of the disease with exogenous insulin, but patients eventually succumb to many chronic complications such as limb amputation, blindness, and kidney failure. New therapeutic approaches now on the horizon are looking beyond glycemic management and are evaluating new strategies from protecting and regenerating endogenous islets to treating the underlying autoimmunity through selective modulation of key immune cell populations. Currently, there are no effective treatments for the autoimmunity that causes the disease, and strategies that aim to delay or prevent the onset of the disease will play an important role in the future of diabetes research. In this review, we summarize many of the key efforts underway that utilize molecular approaches to selectively modulate this disease and look at new therapeutic paradigms that can transform clinical treatment.
Collapse
Affiliation(s)
- Daniel Sheehy
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Sean Quinnell
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Arturo J. Vegas
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
33
|
Wei W, Ehlerding EB, Lan X, Luo QY, Cai W. Molecular imaging of β-cells: diabetes and beyond. Adv Drug Deliv Rev 2019; 139:16-31. [PMID: 31378283 DOI: 10.1016/j.addr.2018.06.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/27/2018] [Accepted: 06/26/2018] [Indexed: 02/09/2023]
Abstract
Since diabetes is becoming a global epidemic, there is a great need to develop early β-cell specific diagnostic techniques for this disorder. There are two types of diabetes (i.e., type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM)). In T1DM, the destruction of pancreatic β-cells leads to reduced insulin production or even absolute insulin deficiency, which consequently results in hyperglycemia. Actually, a central issue in the pathophysiology of all types of diabetes is the relative reduction of β-cell mass (BCM) and/or impairment of the function of individual β-cells. In the past two decades, scientists have been trying to develop imaging techniques for noninvasive measurement of the viability and mass of pancreatic β-cells. Despite intense scientific efforts, only two tracers for positron emission tomography (PET) and one contrast agent for magnetic resonance (MR) imaging are currently under clinical evaluation. β-cell specific imaging probes may also allow us to precisely and specifically visualize transplanted β-cells and to improve transplantation outcomes, as transplantation of pancreatic islets has shown promise in treating T1DM. In addition, some of these probes can be applied to the preoperative detection of hidden insulinomas as well. In the present review, we primarily summarize potential tracers under development for imaging β-cells with a focus on tracers for PET, SPECT, MRI, and optical imaging. We will discuss the advantages and limitations of the various imaging probes and extend an outlook on future developments in the field.
Collapse
|
34
|
Jahan M, Johnström P, Selvaraju RK, Svedberg M, Winzell MS, Bernström J, Kingston L, Schou M, Jia Z, Skrtic S, Johansson L, Korsgren O, Farde L, Halldin C, Eriksson O. The development of a GPR44 targeting radioligand [ 11C]AZ12204657 for in vivo assessment of beta cell mass. EJNMMI Res 2018; 8:113. [PMID: 30588560 PMCID: PMC6306373 DOI: 10.1186/s13550-018-0465-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/05/2018] [Indexed: 12/28/2022] Open
Abstract
Background The G-protein-coupled receptor 44 (GPR44) is a beta cell-restricted target that may serve as a marker for beta cell mass (BCM) given the development of a suitable PET ligand. Methods The binding characteristics of the selected candidate, AZ12204657, at human GPR44 were determined using in vitro ligand binding assays. AZ12204657 was radiolabeled using 11C- or 3H-labeled methyl iodide ([11C/3H]CH3I) in one step, and the conversion of [11C/3H]CH3I to the radiolabeled product [11C/3H]AZ12204657 was quantitative. The specificity of radioligand binding to GPR44 and the selectivity for beta cells were evaluated by in vitro binding studies on pancreatic sections from human and non-human primates as well as on homogenates from endocrine and exocrine pancreatic compartments. Results The radiochemical purity of the resulting radioligand [11C]AZ12204657 was > 98%, with high molar activity (MA), 1351 ± 575 GBq/μmol (n = 18). The radiochemical purity of [3H]AZ12204657 was > 99% with MA of 2 GBq/μmol. Pancreatic binding of [11C/3H]AZ12204657 was co-localized with insulin-positive islets of Langerhans in non-diabetic individuals and individuals with type 2 diabetes (T2D). The binding of [11C]AZ12204657 to GPR44 was > 10 times higher in islet homogenates compared to exocrine homogenates. In human islets of Langerhans GPR44 was co-expressed with insulin, but not glucagon as assessed by co-staining and confocal microscopy. Conclusion We radiolabeled [11C]AZ12204657, a potential PET radioligand for the beta cell-restricted protein GPR44. In vitro evaluation demonstrated that [3H]AZ12204657 and [11C]AZ12204657 selectively target pancreatic beta cells. [11C]AZ12204657 has promising properties as a marker for human BCM.
Collapse
Affiliation(s)
- Mahabuba Jahan
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.
| | - Peter Johnström
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.,PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Ram K Selvaraju
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Marie Svedberg
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Maria Sörhede Winzell
- Bioscience, Cardiovascular Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Jenny Bernström
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Lee Kingston
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Magnus Schou
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.,PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Zhisheng Jia
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Stanko Skrtic
- Innovation Strategies & External Liaison, Pharmaceutical Technology & Development, AstraZeneca, Gothenburg, Sweden
| | - Lars Johansson
- GMED Diabetes, Global Medicines Development, AstraZeneca, Gothenburg, Sweden.,Present address: Antaros Medical, Mölndal, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Division of Immunology, Uppsala University, Uppsala, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.,PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
35
|
Gotthardt M, Eizirik DL, Aanstoot HJ, Korsgren O, Mul D, Martin F, Boss M, Jansen TJP, van Lith SAM, Buitinga M, Eriksson O, Cnop M, Brom M. Detection and quantification of beta cells by PET imaging: why clinical implementation has never been closer. Diabetologia 2018; 61:2516-2519. [PMID: 30284016 PMCID: PMC6223852 DOI: 10.1007/s00125-018-4745-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/14/2018] [Indexed: 01/03/2023]
Abstract
In this issue of Diabetologia, Alavi and Werner ( https://doi.org/10.1007/s00125-018-4676-1 ) criticise the attempts to use positron emission tomography (PET) for in vivo imaging of pancreatic beta cells, which they consider as 'futile'. In support of this strong statement, they point out the limitations of PET imaging, which they believe render beta cell mass impossible to estimate using this method. In our view, the Alavi and Werner presentation of the technical limitations of PET imaging does not reflect the current state of the art, which leads them to questionable conclusions towards the feasibility of beta cell imaging using this approach. Here, we put forward arguments in favour of continuing the development of innovative technologies enabling in vivo imaging of pancreatic beta cells and concisely present the current state of the art regarding putative technical limitations of PET imaging. Indeed, far from being a 'futile' effort, we demonstrate that beta cell imaging is now closer than ever to becoming a long-awaited clinical reality.
Collapse
Affiliation(s)
- Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud university medical centre, PO Box 9101, 6500 HB, Nijmegen, the Netherlands.
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Henk-Jan Aanstoot
- Diabeter, Center for Pediatric and Adolescent Diabetes Care and Research, Rotterdam, the Netherlands
| | - Olle Korsgren
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Dick Mul
- Diabeter, Center for Pediatric and Adolescent Diabetes Care and Research, Rotterdam, the Netherlands
| | | | - Marti Boss
- Department of Radiology and Nuclear Medicine, Radboud university medical centre, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Tom J P Jansen
- Department of Radiology and Nuclear Medicine, Radboud university medical centre, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Sanne A M van Lith
- Department of Radiology and Nuclear Medicine, Radboud university medical centre, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Mijke Buitinga
- Clinical and Experimental Endocrinology, University of Leuven, Leuven, Belgium
| | - Olof Eriksson
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud university medical centre, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| |
Collapse
|