1
|
Tura A, Göbl C, El-Tanani M, Rizzo M. In-silico modelling of insulin secretion and pancreatic beta-cell function for clinical applications: is it worth the effort? FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2024; 5:1452400. [PMID: 39559404 PMCID: PMC11570995 DOI: 10.3389/fcdhc.2024.1452400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/29/2024] [Indexed: 11/20/2024]
Affiliation(s)
- Andrea Tura
- CNR Institute of Neuroscience, Padova, Italy
| | - Christian Göbl
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Manfredi Rizzo
- School of Medicine, Mohammed Bin Rashid University, Dubai, United Arab Emirates
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
2
|
Weir GC, Bonner-Weir S. Induction of remission in diabetes by lowering blood glucose. Front Endocrinol (Lausanne) 2023; 14:1213954. [PMID: 37409234 PMCID: PMC10318898 DOI: 10.3389/fendo.2023.1213954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023] Open
Abstract
As diabetes continues to grow as major health problem, there has been great progress in understanding the important role of pancreatic beta-cells in its pathogenesis. Diabetes develops when the normal interplay between insulin secretion and the insulin sensitivity of target tissues is disrupted. With type 2 diabetes (T2D), glucose levels start to rise when beta-cells are unable to meet the demands of insulin resistance. For type 1 diabetes (T1D) glucose levels rise as beta-cells are killed off by autoimmunity. In both cases the increased glucose levels have a toxic effect on beta-cells. This process, called glucose toxicity, has a major inhibitory effect on insulin secretion. This beta-cell dysfunction can be reversed by therapies that reduce glucose levels. Thus, it is becoming increasingly apparent that an opportunity exists to produce a complete or partial remission for T2D, both of which will provide health benefit.
Collapse
Affiliation(s)
- Gordon C. Weir
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
3
|
Panten U, Brüning D, Rustenbeck I. Regulation of insulin secretion in mouse islets: metabolic amplification by alpha-ketoisocaproate coincides with rapid and sustained increase in acetyl-CoA content. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:353-364. [PMID: 36355207 PMCID: PMC9832085 DOI: 10.1007/s00210-022-02290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/05/2022] [Indexed: 11/12/2022]
Abstract
Glucose and alpha-ketoisocaproate, the keto acid analogue of leucine, stimulate insulin secretion in the absence of other exogenous fuels. Their mitochondrial metabolism in the beta-cell raises the cytosolic ATP/ADP ratio, thereby providing the triggering signal for the exocytosis of the insulin granules. However, additional amplifying signals are required for the full extent of insulin secretion stimulated by these fuels. While it is generally recognized that the amplifying signals are also derived from the mitochondrial metabolism, their exact nature is still unclear. The current study tests the hypothesis that the supply of cytosolic acetyl-CoA is a signal in the amplifying pathway. The contents of acetyl-CoA and acetyl-CoA plus CoA-SH were measured in isolated mouse islets. Insulin secretion was recorded in isolated perifused islets. In islets, the ATP-sensitive K+ channels of which were pharmacologically closed and which were preincubated without exogenous fuel, 10 mmol/L alpha-ketoisocaproate enhanced the acetyl-CoA content after 5 and 20 min incubations and decreased the acetyl-CoA plus CoA-SH within 5 min, but not after 20 min. In islets not exposed to drugs, the preincubation with 3 mmol/L glucose, a non-triggering concentration, elevated the acetyl-CoA content. This content was further increased after 5 min and 20 min incubations with 30 mmol/L glucose, concurrent with a strong increase in insulin secretion. Alpha-ketoisocaproate and glucose increase the supply of acetyl-CoA in the beta-cell cytosol during both phases of insulin secretion. Most likely, this increase provides a signal for the metabolic amplification.
Collapse
Affiliation(s)
- Uwe Panten
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | - Dennis Brüning
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| |
Collapse
|
4
|
Stožer A, Šterk M, Paradiž Leitgeb E, Markovič R, Skelin Klemen M, Ellis CE, Križančić Bombek L, Dolenšek J, MacDonald PE, Gosak M. From Isles of Königsberg to Islets of Langerhans: Examining the Function of the Endocrine Pancreas Through Network Science. Front Endocrinol (Lausanne) 2022; 13:922640. [PMID: 35784543 PMCID: PMC9240343 DOI: 10.3389/fendo.2022.922640] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Islets of Langerhans are multicellular microorgans located in the pancreas that play a central role in whole-body energy homeostasis. Through secretion of insulin and other hormones they regulate postprandial storage and interprandial usage of energy-rich nutrients. In these clusters of hormone-secreting endocrine cells, intricate cell-cell communication is essential for proper function. Electrical coupling between the insulin-secreting beta cells through gap junctions composed of connexin36 is particularly important, as it provides the required, most important, basis for coordinated responses of the beta cell population. The increasing evidence that gap-junctional communication and its modulation are vital to well-regulated secretion of insulin has stimulated immense interest in how subpopulations of heterogeneous beta cells are functionally arranged throughout the islets and how they mediate intercellular signals. In the last decade, several novel techniques have been proposed to assess cooperation between cells in islets, including the prosperous combination of multicellular imaging and network science. In the present contribution, we review recent advances related to the application of complex network approaches to uncover the functional connectivity patterns among cells within the islets. We first provide an accessible introduction to the basic principles of network theory, enumerating the measures characterizing the intercellular interactions and quantifying the functional integration and segregation of a multicellular system. Then we describe methodological approaches to construct functional beta cell networks, point out possible pitfalls, and specify the functional implications of beta cell network examinations. We continue by highlighting the recent findings obtained through advanced multicellular imaging techniques supported by network-based analyses, giving special emphasis to the current developments in both mouse and human islets, as well as outlining challenges offered by the multilayer network formalism in exploring the collective activity of islet cell populations. Finally, we emphasize that the combination of these imaging techniques and network-based analyses does not only represent an innovative concept that can be used to describe and interpret the physiology of islets, but also provides fertile ground for delineating normal from pathological function and for quantifying the changes in islet communication networks associated with the development of diabetes mellitus.
Collapse
Affiliation(s)
- Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Šterk
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rene Markovič
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Institute of Mathematics and Physics, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Cara E. Ellis
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
5
|
Assessing the Effect of Incretin Hormones and Other Insulin Secretagogues on Pancreatic Beta-Cell Function: Review on Mathematical Modelling Approaches. Biomedicines 2022; 10:biomedicines10051060. [PMID: 35625797 PMCID: PMC9138583 DOI: 10.3390/biomedicines10051060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Mathematical modelling in glucose metabolism has proven very useful for different reasons. Several models have allowed deeper understanding of the relevant physiological and pathophysiological aspects and promoted new experimental activity to reach increased knowledge of the biological and physiological systems of interest. Glucose metabolism modelling has also proven useful to identify the parameters with specific physiological meaning in single individuals, this being relevant for clinical applications in terms of precision diagnostics or therapy. Among those model-based physiological parameters, an important role resides in those for the assessment of different functional aspects of the pancreatic beta cell. This study focuses on the mathematical models of incretin hormones and other endogenous substances with known effects on insulin secretion and beta-cell function, mainly amino acids, non-esterified fatty acids, and glucagon. We found that there is a relatively large number of mathematical models for the effects on the beta cells of incretin hormones, both at the cellular/organ level or at the higher, whole-body level. In contrast, very few models were identified for the assessment of the effect of other insulin secretagogues. Given the opportunities offered by mathematical modelling, we believe that novel models in the investigated field are certainly advisable.
Collapse
|
6
|
Cordiner RLM, Mari A, Tura A, Pearson ER. The Impact of Low-dose Gliclazide on the Incretin Effect and Indices of Beta-cell Function. J Clin Endocrinol Metab 2021; 106:2036-2046. [PMID: 33693776 PMCID: PMC8692237 DOI: 10.1210/clinem/dgab151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/02/2022]
Abstract
AIMS/HYPOTHESIS Studies in permanent neonatal diabetes suggest that sulphonylureas lower blood glucose without causing hypoglycemia, in part by augmenting the incretin effect. This mechanism has not previously been attributed to sulphonylureas in patients with type 2 diabetes (T2DM). We therefore aimed to evaluate the impact of low-dose gliclazide on beta-cell function and incretin action in patients with T2DM. METHODS Paired oral glucose tolerance tests and isoglycemic infusions were performed to evaluate the difference in the classical incretin effect in the presence and absence of low-dose gliclazide in 16 subjects with T2DM (hemoglobin A1c < 64 mmol/mol, 8.0%) treated with diet or metformin monotherapy. Beta-cell function modeling was undertaken to describe the relationship between insulin secretion and glucose concentration. RESULTS A single dose of 20 mg gliclazide reduced mean glucose during the oral glucose tolerance test from 12.01 ± 0.56 to 10.82 ± 0.5mmol/l [P = 0.0006; mean ± standard error of the mean (SEM)]. The classical incretin effect was augmented by 20 mg gliclazide, from 35.5% (lower quartile 27.3, upper quartile 61.2) to 54.99% (34.8, 72.8; P = 0.049). Gliclazide increased beta-cell glucose sensitivity by 46% [control 22.61 ± 3.94, gliclazide 33.11 ± 7.83 (P = 0.01)] as well as late-phase incretin potentiation [control 0.92 ± 0.05, gliclazide 1.285 ± 0.14 (P = 0.038)]. CONCLUSIONS/INTERPRETATION Low-dose gliclazide reduces plasma glucose in response to oral glucose load, with concomitant augmentation of the classical incretin effect. Beta-cell modeling shows that low plasma concentrations of gliclazide potentiate late-phase insulin secretion and increase glucose sensitivity by 50%. Further studies are merited to explore whether low-dose gliclazide, by enhancing incretin action, could effectively lower blood glucose without risk of hypoglycemia.
Collapse
Affiliation(s)
- Ruth L M Cordiner
- Division of Population Health and Genomics, School of Medicine, University of Dundee, UK
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Andrea Tura
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Ewan R Pearson
- Division of Population Health and Genomics, School of Medicine, University of Dundee, UK
- Correspondence: Professor Ewan Pearson, Head of Division, Population Health & Genomics, School of Medicine, University of Dundee, DD1 9SY, UK.
| |
Collapse
|
7
|
Rustenbeck I, Schulze T, Morsi M, Alshafei M, Panten U. What Is the Metabolic Amplification of Insulin Secretion and Is It (Still) Relevant? Metabolites 2021; 11:metabo11060355. [PMID: 34199454 PMCID: PMC8229681 DOI: 10.3390/metabo11060355] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
The pancreatic beta-cell transduces the availability of nutrients into the secretion of insulin. While this process is extensively modified by hormones and neurotransmitters, it is the availability of nutrients, above all glucose, which sets the process of insulin synthesis and secretion in motion. The central role of the mitochondria in this process was identified decades ago, but how changes in mitochondrial activity are coupled to the exocytosis of insulin granules is still incompletely understood. The identification of ATP-sensitive K+-channels provided the link between the level of adenine nucleotides and the electrical activity of the beta cell, but the depolarization-induced Ca2+-influx into the beta cells, although necessary for stimulated secretion, is not sufficient to generate the secretion pattern as produced by glucose and other nutrient secretagogues. The metabolic amplification of insulin secretion is thus the sequence of events that enables the secretory response to a nutrient secretagogue to exceed the secretory response to a purely depolarizing stimulus and is thus of prime importance. Since the cataplerotic export of mitochondrial metabolites is involved in this signaling, an orienting overview on the topic of nutrient secretagogues beyond glucose is included. Their judicious use may help to define better the nature of the signals and their mechanism of action.
Collapse
Affiliation(s)
- Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (T.S.); (M.M.); (M.A.); (U.P.)
- Correspondence: ; Tel.: +49-(0)53-139-156-70
| | - Torben Schulze
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (T.S.); (M.M.); (M.A.); (U.P.)
| | - Mai Morsi
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (T.S.); (M.M.); (M.A.); (U.P.)
- Department of Pharmacology, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mohammed Alshafei
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (T.S.); (M.M.); (M.A.); (U.P.)
| | - Uwe Panten
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (T.S.); (M.M.); (M.A.); (U.P.)
| |
Collapse
|
8
|
Henquin JC. Glucose-induced insulin secretion in isolated human islets: Does it truly reflect β-cell function in vivo? Mol Metab 2021; 48:101212. [PMID: 33737253 PMCID: PMC8065218 DOI: 10.1016/j.molmet.2021.101212] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetes always involves variable degrees of β-cell demise and malfunction leading to insufficient insulin secretion. Besides clinical investigations, many research projects used rodent islets to study various facets of β-cell pathophysiology. Their important contributions laid the foundations of steadily increasing numbers of experimental studies resorting to isolated human islets. SCOPE OF REVIEW This review, based on an analysis of data published over 60 years of clinical investigations and results of more recent studies in isolated islets, addresses a question of translational nature. Does the information obtained in vitro with human islets fit with our knowledge of insulin secretion in man? The aims are not to discuss specificities of pathways controlling secretion but to compare qualitative and quantitative features of glucose-induced insulin secretion in isolated human islets and in living human subjects. MAJOR CONCLUSIONS Much of the information gathered in vitro can reliably be translated to the in vivo situation. There is a fairly good, though not complete, qualitative and quantitative coherence between insulin secretion rates measured in vivo and in vitro during stimulation with physiological glucose concentrations, but the concordance fades out under extreme conditions. Perplexing discrepancies also exist between insulin secretion in subjects with Type 2 diabetes and their islets studied in vitro, in particular concerning the kinetics. Future projects should ascertain that the experimental conditions are close to physiological and do not alter the function of normal and diabetic islets.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium.
| |
Collapse
|
9
|
Ferrannini E. A Journey in Diabetes: From Clinical Physiology to Novel Therapeutics: The 2020 Banting Medal for Scientific Achievement Lecture. Diabetes 2021; 70:338-346. [PMID: 33472943 PMCID: PMC7881861 DOI: 10.2337/dbi20-0028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Insulin resistance and β-cell dysfunction are the core pathophysiological mechanisms of all hyperglycemic syndromes. Advances in in vivo investigative techniques have made it possible to quantify insulin resistance in multiple sites (skeletal and myocardial muscle, subcutaneous and visceral fat depots, liver, kidney, vascular tissues, brain and intestine), to clarify its consequences for tissue substrate selection, and to establish its relation to tissue perfusion. Physiological modeling of β-cell function has provided a uniform tool to measure β-cell glucose sensitivity and potentiation in response to a variety of secretory stimuli, thereby allowing us to establish feedbacks with insulin resistance, to delineate the biphasic time course of conversion to diabetes, to gauge incretin effects, and to identify primary insulin hypersecretion. As insulin resistance also characterizes several of the comorbidities of diabetes (e.g., obesity, hypertension, dyslipidemia), with shared genetic and acquired influences, the concept is put forward that diabetes is a systemic disease from the outset, actually from the prediabetic stage. In fact, early multifactorial therapy, particularly with newer antihyperglycemic agents, has shown that the burden of micro- and macrovascular complications can be favorably modified despite the rising pressure imposed by protracted obesity.
Collapse
Affiliation(s)
- Ele Ferrannini
- National Research Council (CNR) Institute of Clinical Physiology, Pisa, Italy
| |
Collapse
|
10
|
Grespan E, Giorgino T, Natali A, Ferrannini E, Mari A. Different mechanisms of GIP and GLP-1 action explain their different therapeutic efficacy in type 2 diabetes. Metabolism 2021; 114:154415. [PMID: 33137379 DOI: 10.1016/j.metabol.2020.154415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/08/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS The reduced action of incretin hormones in type 2 diabetes (T2D) is mainly attributed to GIP insensitivity, but efficacy estimates of GIP and GLP-1 differ among studies, and the negligible effects of pharmacological GIP doses remain unexplained. We aimed to characterize incretin action in vivo in subjects with normal glucose tolerance (NGT) or T2D and provide an explanation for the different insulinotropic activity of GIP and GLP-1 in T2D subjects. METHODS We used in vivo data from ten studies employing hormone infusion or an oral glucose test (OGTT). To homogeneously interpret and compare the results of the studies we performed the analysis using a mathematical model of the β-cell incorporating the effects of incretins on the triggering and amplifying pathways. The effect on the amplifying pathway was quantified by a time-dependent factor that is greater than one when insulin secretion (ISR) is amplified by incretins. To validate the model results for GIP in NGT subjects, we performed an extensive literature search of the available data. RESULTS a) the stimulatory effects of GIP and GLP-1 differ markedly: ISR potentiation increases linearly with GLP-1 over the whole dose range, while with GIP infusion it reaches a plateau at ~100 pmol/L GIP, with ISR potentiation of ~2 fold; b) ISR potentiation in T2D is reduced by ~50% for GIP and by ~40% for GLP-1; c) the literature search of GIP in NGT subjects confirmed the saturative effect on insulin secretion. CONCLUSION We show that incretin potentiation of ISR is reduced in T2D, but not abolished, and that the lack of effects of pharmacological GIP doses is due to saturation of the GIP effect more than insensitivity to GIP in T2D.
Collapse
Affiliation(s)
- Eleonora Grespan
- Institute of Neuroscience, National Research Council, Padua 35127, Italy
| | - Toni Giorgino
- Biophysics Institute, National Research Council, Milan 20133, Italy; Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Ele Ferrannini
- Institute of Clinical Physiology, National Research Council, Pisa 56124, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua 35127, Italy.
| |
Collapse
|
11
|
Grubelnik V, Zmazek J, Markovič R, Gosak M, Marhl M. Mitochondrial Dysfunction in Pancreatic Alpha and Beta Cells Associated with Type 2 Diabetes Mellitus. Life (Basel) 2020; 10:E348. [PMID: 33327428 PMCID: PMC7764865 DOI: 10.3390/life10120348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus is a complex multifactorial disease of epidemic proportions. It involves genetic and lifestyle factors that lead to dysregulations in hormone secretion and metabolic homeostasis. Accumulating evidence indicates that altered mitochondrial structure, function, and particularly bioenergetics of cells in different tissues have a central role in the pathogenesis of type 2 diabetes mellitus. In the present study, we explore how mitochondrial dysfunction impairs the coupling between metabolism and exocytosis in the pancreatic alpha and beta cells. We demonstrate that reduced mitochondrial ATP production is linked with the observed defects in insulin and glucagon secretion by utilizing computational modeling approach. Specifically, a 30-40% reduction in alpha cells' mitochondrial function leads to a pathological shift of glucagon secretion, characterized by oversecretion at high glucose concentrations and insufficient secretion in hypoglycemia. In beta cells, the impaired mitochondrial energy metabolism is accompanied by reduced insulin secretion at all glucose levels, but the differences, compared to a normal beta cell, are the most pronounced in hyperglycemia. These findings improve our understanding of metabolic pathways and mitochondrial bioenergetics in the pathology of type 2 diabetes mellitus and might help drive the development of innovative therapies to treat various metabolic diseases.
Collapse
Affiliation(s)
- Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, SI-2000 Maribor, Slovenia; (V.G.); (R.M.)
| | - Jan Zmazek
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia; (J.Z.); (M.G.)
| | - Rene Markovič
- Faculty of Electrical Engineering and Computer Science, University of Maribor, SI-2000 Maribor, Slovenia; (V.G.); (R.M.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia; (J.Z.); (M.G.)
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia; (J.Z.); (M.G.)
- Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia; (J.Z.); (M.G.)
- Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
- Faculty of Education, University of Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|
12
|
Mari A, Tura A, Grespan E, Bizzotto R. Mathematical Modeling for the Physiological and Clinical Investigation of Glucose Homeostasis and Diabetes. Front Physiol 2020; 11:575789. [PMID: 33324238 PMCID: PMC7723974 DOI: 10.3389/fphys.2020.575789] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Mathematical modeling in the field of glucose metabolism has a longstanding tradition. The use of models is motivated by several reasons. Models have been used for calculating parameters of physiological interest from experimental data indirectly, to provide an unambiguous quantitative representation of pathophysiological mechanisms, to determine indices of clinical usefulness from simple experimental tests. With the growing societal impact of type 2 diabetes, which involves the disturbance of the glucose homeostasis system, development and use of models in this area have increased. Following the approaches of physiological and clinical investigation, the focus of the models has spanned from representations of whole body processes to those of cells, i.e., from in vivo to in vitro research. Model-based approaches for linking in vivo to in vitro research have been proposed, as well as multiscale models merging the two areas. The success and impact of models has been variable. Two kinds of models have received remarkable interest: those widely used in clinical applications, e.g., for the assessment of insulin sensitivity and β-cell function and some models representing specific aspects of the glucose homeostasis system, which have become iconic for their efficacy in describing clearly and compactly key physiological processes, such as insulin secretion from the pancreatic β cells. Models are inevitably simplified and approximate representations of a physiological system. Key to their success is an appropriate balance between adherence to reality, comprehensibility, interpretative value and practical usefulness. This has been achieved with a variety of approaches. Although many models concerning the glucose homeostasis system have been proposed, research in this area still needs to address numerous issues and tackle new opportunities. The mathematical representation of the glucose homeostasis processes is only partial, also because some mechanisms are still only partially understood. For in vitro research, mathematical models still need to develop their potential. This review illustrates the problems, approaches and contribution of mathematical modeling to the physiological and clinical investigation of glucose homeostasis and diabetes, focusing on the most relevant and stimulating models.
Collapse
Affiliation(s)
- Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Andrea Tura
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Eleonora Grespan
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Roberto Bizzotto
- Institute of Neuroscience, National Research Council, Padua, Italy
| |
Collapse
|
13
|
Abstract
Diabetes is a chronic, progressive disease that calls for longitudinal data and analysis. We introduce a longitudinal mathematical model that is capable of representing the metabolic state of an individual at any point in time during their progression from normal glucose tolerance to type 2 diabetes (T2D) over a period of years. As an application of the model, we account for the diversity of pathways typically followed, focusing on two extreme alternatives, one that goes through impaired fasting glucose (IFG) first and one that goes through impaired glucose tolerance (IGT) first. These two pathways are widely recognized to stem from distinct metabolic abnormalities in hepatic glucose production and peripheral glucose uptake, respectively. We confirm this but go beyond to show that IFG and IGT lie on a continuum ranging from high hepatic insulin resistance and low peripheral insulin resistance to low hepatic resistance and high peripheral resistance. We show that IFG generally incurs IGT and IGT generally incurs IFG on the way to T2D, highlighting the difference between innate and acquired defects and the need to assess patients early to determine their underlying primary impairment and appropriately target therapy. We also consider other mechanisms, showing that IFG can result from impaired insulin secretion, that non-insulin-dependent glucose uptake can also mediate or interact with these pathways, and that impaired incretin signaling can accelerate T2D progression. We consider whether hyperinsulinemia can cause insulin resistance in addition to being a response to it and suggest that this is a minor effect.
Collapse
Affiliation(s)
- Joon Ha
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
14
|
Lozano Jiménez YY, Sánchez Mora RM. Canales de calcio como blanco de interés farmacológico. NOVA 2020. [DOI: 10.22490/24629448.3926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Los canales de calcio son proteínas de membrana que constituyen la vía más importante para el ingreso del ion calcio (Ca2+) a la célula. Al abrirse, permiten el ingreso selectivo del ion, iniciando una variedad de procesos como contracción muscular, secreción endocrina y liberación de neurotransmisores, entre otros. Estas proteínas se agrupan en tres categorías de acuerdo con sus propiedades estructurales y funcionales: (i) Canales de Ca2+ operados por interacción receptor-ligando (ROCC), (ii) Canales activados por parámetros físicos (Transient Receptor Potencial, TRP) y (iii) Canales de Calcio dependientes de voltaje (VDCCs), siendo estos últimos los más estudiados debido a su presencia en células excitables. Dada la importancia de Ca2+ en la fisiología celular, los canales de Ca2+ constituyen un punto de acción farmacológica importante para múltiples tratamientos y, por tanto, son objeto de estudio para el desarrollo de nuevos fármacos. El objetivo de esta revisión es explicar la importancia de los canales de Ca2+ desde una proyección farmacológica, a partir de la exploración documental de artículos publicados hasta la fecha teniendo en cuenta temas relacionados con la estructura de los canales Ca2+, sus propiedades biofísicas, localización celular, funcionamiento y su interacción farmacológica.
Collapse
|
15
|
Abstract
Background The prevalence and incidence of type 2 diabetes (T2D), representing >90% of all cases of diabetes, are increasing rapidly worldwide. Identification of individuals at high risk of developing diabetes is of great importance as early interventions might delay or even prevent full-blown disease. T2D is a complex disease caused by multiple genetic loci in interplay with lifestyle and environmental factors. Recently over 400 distinct association signals were published; these explain 18% of the risk of T2D. Scope of review In this review there is a major focus on risk factors and genetic and non-genetic biomarkers for the risk of T2D identified especially in large prospective population-based studies, and studies testing causality of the biomarkers for T2D in Mendelian randomization studies. Another focus is on understanding genome-phenome interplay in the classification of individuals with T2D into subgroups. Major conclusions Several recent large population-based studies and their meta-analyses have identified multiple potential genetic and non-genetic biomarkers for the risk of T2D. Combination of genetic variants and physiologically characterized pathways improves the classification of individuals with T2D into subgroups, and is also paving the way to a precision medicine approach, in T2D.
Collapse
Affiliation(s)
- Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210, Kuopio, Finland.
| |
Collapse
|
16
|
Ferdaoussi M, Smith N, Lin H, Bautista A, Spigelman AF, Lyon J, Dai X, Manning Fox JE, MacDonald PE. Improved glucose tolerance with DPPIV inhibition requires β-cell SENP1 amplification of glucose-stimulated insulin secretion. Physiol Rep 2020; 8:e14420. [PMID: 32339440 PMCID: PMC7185381 DOI: 10.14814/phy2.14420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/09/2023] Open
Abstract
Pancreatic islet insulin secretion is amplified by both metabolic and receptor-mediated signaling pathways. The incretin-mimetic and DPPIV inhibitor anti-diabetic drugs increase insulin secretion, but in humans this can be variable both in vitro and in vivo. We examined the correlation of GLP-1 induced insulin secretion from human islets with key donor characteristics, glucose-responsiveness, and the ability of glucose to augment exocytosis in β-cells. No clear correlation was observed between several donor or organ processing parameters and the ability of Exendin 4 to enhance insulin secretion. The ability of glucose to facilitate β-cell exocytosis was, however, significantly correlated with responses to Exendin 4. We therefore studied the effect of impaired glucose-dependent amplification of insulin exocytosis on responses to DPPIV inhibition (MK-0626) in vivo using pancreas and β-cell specific sentrin-specific protease-1 (SENP1) mice which exhibit impaired metabolic amplification of insulin exocytosis. Glucose tolerance was improved, and plasma insulin was increased, following either acute or 4 week treatment of wild-type (βSENP1+/+ ) mice with MK-0626. This DPPIV inhibitor was ineffective in βSENP1+/- or βSENP1- / - mice. Finally, we confirm impaired exocytotic responses of β-cells and reduced insulin secretion from islets of βSENP1- / - mice and show that the ability of Exendin 4 to enhance exocytosis is lost in these cells. Thus, an impaired ability of glucose to amplify insulin exocytosis results in a deficient effect of DPPIV inhibition to improve in vivo insulin responses and glucose tolerance.
Collapse
Affiliation(s)
- Mourad Ferdaoussi
- Department of Pharmacology and Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Nancy Smith
- Department of Pharmacology and Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Haopeng Lin
- Department of Pharmacology and Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Austin Bautista
- Department of Pharmacology and Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Aliya F. Spigelman
- Department of Pharmacology and Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - James Lyon
- Department of Pharmacology and Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - XiaoQing Dai
- Department of Pharmacology and Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Jocelyn E. Manning Fox
- Department of Pharmacology and Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
17
|
Borck PC, Leite NDC, Valcanaia AC, Rickli S, Alípio JCDL, Machado M, Vellosa JC, Mathias PCDF, Boschero AC, Grassiolli S. Swimming training reduces glucose‐amplifying pathway and cholinergic responses in islets from lean‐ and MSG‐obese rats. Clin Exp Pharmacol Physiol 2019; 47:286-293. [DOI: 10.1111/1440-1681.13197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Patricia C. Borck
- Department of Structural and Functional Biology Institute of Biology University of Campinas/UNICAMP Campinas Brazil
| | - Nayara de C. Leite
- Department of Structural and Functional Biology Institute of Biology University of Campinas/UNICAMP Campinas Brazil
| | - Ana C. Valcanaia
- Biologica Science and Health Center University of West Parana (UNIOESTE) Cascavel Brazil
| | - Sarah Rickli
- Department of Structural and Functional Biology Institute of Biology University of Campinas/UNICAMP Campinas Brazil
| | | | - Michael Machado
- Department of Nursing University of Ponta Grossa/UEPG Ponta Grossa Brazil
| | - Jose C. Vellosa
- Department of Pharmaceutical Sciences University of Ponta Grossa/UEPG Ponta Grossa Brazil
| | - Paulo C. de F. Mathias
- Department of Biotechnology, Genetics and Cell Biology University of Maringá/UEM Maringa Brazil
| | - Antonio C. Boschero
- Department of Structural and Functional Biology Institute of Biology University of Campinas/UNICAMP Campinas Brazil
- Biologica Science and Health Center University of West Parana (UNIOESTE) Cascavel Brazil
| | - Sabrina Grassiolli
- Biologica Science and Health Center University of West Parana (UNIOESTE) Cascavel Brazil
| |
Collapse
|
18
|
Abstract
Controlling the excess and shortage of energy is a fundamental task for living organisms. Diabetes is a representative metabolic disease caused by the malfunction of energy homeostasis. The islets of Langerhans in the pancreas release long-range messengers, hormones, into the blood to regulate the homeostasis of the primary energy fuel, glucose. The hormone and glucose levels in the blood show rhythmic oscillations with a characteristic period of 5-10 min, and the functional roles of the oscillations are not clear. Each islet has [Formula: see text] and [Formula: see text] cells that secrete glucagon and insulin, respectively. These two counter-regulatory hormones appear sufficient to increase and decrease glucose levels. However, pancreatic islets have a third cell type, [Formula: see text] cells, which secrete somatostatin. The three cell populations have a unique spatial organization in islets, and they interact to perturb their hormone secretions. The mini-organs of islets are scattered throughout the exocrine pancreas. Considering that the human pancreas contains approximately a million islets, the coordination of hormone secretion from the multiple sources of islets and cells within the islets should have a significant effect on human physiology. In this review, we introduce the hierarchical organization of tripartite cell networks, and recent biophysical modeling to systematically understand the oscillations and interactions of [Formula: see text], [Formula: see text], and [Formula: see text] cells. Furthermore, we discuss the functional roles and clinical implications of hormonal oscillations and their phase coordination for the diagnosis of type II diabetes.
Collapse
Affiliation(s)
- Taegeun Song
- Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | | |
Collapse
|
19
|
Pedersen MG, Tagliavini A, Henquin JC. Calcium signaling and secretory granule pool dynamics underlie biphasic insulin secretion and its amplification by glucose: experiments and modeling. Am J Physiol Endocrinol Metab 2019; 316:E475-E486. [PMID: 30620637 DOI: 10.1152/ajpendo.00380.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glucose-stimulated insulin secretion from pancreatic β-cells is controlled by a triggering pathway that culminates in calcium influx and regulated exocytosis of secretory granules, and by a less understood amplifying pathway that augments calcium-induced exocytosis. In response to an abrupt increase in glucose concentration, insulin secretion exhibits a first peak followed by a lower sustained second phase. This biphasic secretion pattern is disturbed in diabetes. It has been attributed to depletion and subsequent refilling of a readily releasable pool of granules or to the phasic cytosolic calcium dynamics induced by glucose. Here, we apply mathematical modeling to experimental data from mouse islets to investigate how calcium and granule pool dynamics interact to control dynamic insulin secretion. Experimental calcium traces are used as inputs in three increasingly complex models of pool dynamics, which are fitted to insulin secretory patterns obtained using a set of protocols of glucose and tolbutamide stimulation. New calcium and secretion data for so-called staircase protocols, in which the glucose concentration is progressively increased, are presented. These data can be reproduced without assuming any heterogeneity in the model, in contrast to previous modeling, because of nontrivial calcium dynamics. We find that amplification by glucose can be explained by increased mobilization and priming of granules. Overall, our results indicate that calcium dynamics contribute substantially to shaping insulin secretion kinetics, which implies that better insight into the events creating phasic calcium changes in human β-cells is needed to understand the cellular mechanisms that disturb biphasic insulin secretion in diabetes.
Collapse
Affiliation(s)
- Morten Gram Pedersen
- Department of Information Engineering, University of Padova , Padova , Italy
- Department of Mathematics "Tullio Levi-Civita, " University of Padova , Padova , Italy
- Padova Neuroscience Center, University of Padova , Padova , Italy
| | - Alessia Tagliavini
- Department of Information Engineering, University of Padova , Padova , Italy
| | - Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain , Brussels , Belgium
| |
Collapse
|