1
|
Abd Razak NH, Idris J, Hassan NH, Zaini F, Muhamad N, Daud MF. Unveiling the Role of Schwann Cell Plasticity in the Pathogenesis of Diabetic Peripheral Neuropathy. Int J Mol Sci 2024; 25:10785. [PMID: 39409114 PMCID: PMC11476695 DOI: 10.3390/ijms251910785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 10/20/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent complication of diabetes that affects a significant proportion of diabetic patients worldwide. Although the pathogenesis of DPN involves axonal atrophy and demyelination, the exact mechanisms remain elusive. Current research has predominantly focused on neuronal damage, overlooking the potential contributions of Schwann cells, which are the predominant glial cells in the peripheral nervous system. Schwann cells play a critical role in neurodevelopment, neurophysiology, and nerve regeneration. This review highlights the emerging understanding of the involvement of Schwann cells in DPN pathogenesis. This review explores the potential role of Schwann cell plasticity as an underlying cellular and molecular mechanism in the development of DPN. Understanding the interplay between Schwann cell plasticity and diabetes could reveal novel strategies for the treatment and management of DPN.
Collapse
Affiliation(s)
- Nurul Husna Abd Razak
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Jalilah Idris
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Nur Hidayah Hassan
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Fazlin Zaini
- Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL), No. 3, Jalan Greentown, Ipoh 30450, Perak, Malaysia; (F.Z.); (N.M.)
| | - Noorzaid Muhamad
- Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL), No. 3, Jalan Greentown, Ipoh 30450, Perak, Malaysia; (F.Z.); (N.M.)
| | - Muhammad Fauzi Daud
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| |
Collapse
|
2
|
Stoian A, Muntean C, Babă DF, Manea A, Dénes L, Simon-Szabó Z, Kosovski IB, Nemes-Nagy E, Gliga FI, Stoian M. Update on Biomarkers of Chronic Inflammatory Processes Underlying Diabetic Neuropathy. Int J Mol Sci 2024; 25:10395. [PMID: 39408723 PMCID: PMC11476795 DOI: 10.3390/ijms251910395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
There is an increasing prevalence of diabetes mellitus (DM), particularly type 2 DM (T2DM), and its associated complications. T2DM is linked to insulin resistance, chronic inflammation, and oxidative stress, which can lead to both macrovascular and microvascular complications, including peripheral diabetic neuropathy (PDN). Inflammatory processes play a key role in the development and progression of T2DM and its complications, with specific markers like C-reactive protein (CRP), interleukins (ILs), and tumor necrosis factor (TNF)-α being associated with increased risk. Other key inflammatory markers such as nuclear factor kappa B (NF-κB) are activated under hyperglycemic and oxidative stress conditions and contribute to the aggravation of PDN by regulating inflammatory gene expression and enhancing endothelial dysfunction. Other important roles in the inflammatory processes are played by Toll-like receptors (TLRs), caveolin 1 (CAV1), and monocyte chemoattractant protein 1 (MCP1). There is a relationship between vitamin D deficiency and PDN, highlighting the critical role of vitamin D in regulating inflammation and immune responses. The involvement of macrophages in PDN is also suspected, emphasizing their role in chronic inflammation and nerve damage in diabetic patients. Vitamin D supplementation has been found to reduce neuropathy severity, decrease inflammatory markers, and improve glycemic control. These findings suggest that addressing vitamin D deficiency could offer therapeutic benefits for PDN. These molecular pathways are critical in understanding the pathogenesis of DM complications and may offer potential biomarkers or therapeutic targets including anti-inflammatory treatments, vitamin D supplementation, macrophage phenotype modulation, and lifestyle modifications, aimed at reducing inflammation and preventing PDN. Ongoing and more extensive clinical trials with the aim of investigating anti-inflammatory agents, TNF-α inhibitors, and antioxidants are needed to advance deeper into the understanding and treatment of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Adina Stoian
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.S.); (F.I.G.)
| | - Carmen Muntean
- Department of Pediatrics 1, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Dragoș-Florin Babă
- Emergency Institute for Cardiovascular Diseases and Transplantation, 540142 Targu Mures, Romania;
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Andrei Manea
- Department of Radiology, Mureș County Emergency Hospital, 540136 Targu Mures, Romania;
| | - Lóránd Dénes
- Department of Anatomy and Embryology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Zsuzsánna Simon-Szabó
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.S.); (F.I.G.)
| | - Irina Bianca Kosovski
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.S.); (F.I.G.)
| | - Enikő Nemes-Nagy
- Department of Chemistry and Medical Biochemistry, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Florina Ioana Gliga
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.S.); (F.I.G.)
| | - Mircea Stoian
- Department of Anesthesiology and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
3
|
Arabi A, Nasrallah D, Mohsen S, Abugharbieh L, Al-Hashimi D, AlMass S, Albasti S, Al-Ajmi SA, Zughaier SM. The interplay between vitamin D status, subclinical inflammation, and prediabetes. Heliyon 2024; 10:e35764. [PMID: 39170232 PMCID: PMC11337041 DOI: 10.1016/j.heliyon.2024.e35764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Vitamin D's role extends beyond classical calcium and phosphate homeostasis to encompass a pivotal influence on immune modulation and metabolic health. The mechanisms by which vitamin D exerts these effects involve its conversion to hormonally active calcitriol, which binds intracellular vitamin D receptors, initiating various downstream cascades. In this review, we tease out the evidence showing the relationship between vitamin D deficiency and prediabetes within the context of subclinical inflammation, with a special focus on the novel monocyte-to-HDL ratio (MHR), a novel inflammatory marker reflecting subclinical inflammation. This was based on a thorough literature review using reputable databases covering the period from 1980 to 2024. In light of this, we discuss calcitriol's anti-inflammatory effects and consequently link vitamin D deficiency to both overt and subclinical inflammation. Additionally, the utility of several biomarkers, notably MHR, in investigating this association is also discussed. We further reviewed the role of vitamin D deficiency in precipitating prediabetes and type 2 diabetes mellitus (T2DM) via insulin resistance, decreased insulin synthesis and secretion, and subclinical inflammation. Taken together, this mini review highlights that vitamin D deficiency is significantly associated with subclinical inflammation, playing a critical role in the development of prediabetes and the progression to T2DM. Addressing vitamin D deficiency through appropriate interventions may serve as a preventative measure against the development of prediabetes and T2DM.
Collapse
Affiliation(s)
| | | | - Sara Mohsen
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Lana Abugharbieh
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Dana Al-Hashimi
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Shaikha AlMass
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Shahd Albasti
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Saeed A. Al-Ajmi
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Susu M. Zughaier
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
4
|
Chong ZZ, Menkes DL, Souayah N. Targeting neuroinflammation in distal symmetrical polyneuropathy in diabetes. Drug Discov Today 2024; 29:104087. [PMID: 38969091 DOI: 10.1016/j.drudis.2024.104087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Diabetic distal symmetric polyneuropathy is the most common type of peripheral neuropathy complication of diabetes mellitus. Neuroinflammation is emerging as an important contributor to diabetes-induced neuropathy. Long-term hyperglycemia results in increased production of advanced glycation end products (AGEs). AGEs interact with their receptors to activate intracellular signaling, leading to the release of various inflammatory cytokines. Increased release of inflammatory cytokines is associated with diabetes, diabetic neuropathy, and neuropathic pain. Thus, anti-inflammatory intervention is a potential therapy for diabetic distal symmetric polyneuropathy. Further characterization of inflammatory mechanisms might identify novel therapeutic targets to mitigate diabetic neuropathy.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, Rutgers University, New Jersey Medical School, Newark, NJ 07103, USA.
| | - Daniel L Menkes
- Department of Neurology, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Nizar Souayah
- Department of Neurology, Rutgers University, New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
5
|
Strand N, Anderson MA, Attanti S, Gill B, Wie C, Dawodu A, Pagan-Rosado R, Harbell MW, Maloney JA. Diabetic Neuropathy: Pathophysiology Review. Curr Pain Headache Rep 2024; 28:481-487. [PMID: 38558164 DOI: 10.1007/s11916-024-01243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW Diabetic neuropathy is a debilitating complication of diabetes mellitus that affects millions of individuals worldwide. It is characterized by nerve damage resulting from prolonged exposure to high blood glucose levels. Diabetic neuropathy may cause a range of symptoms, including pain, numbness, muscle weakness, autonomic dysfunction, and foot ulcers, potentially causing significant impairment to the quality of life for those affected. This review article aims to provide a comprehensive overview of the pathophysiology of diabetic neuropathy. The etiology of diabetic neuropathy will be discussed, including risk factors, predisposing conditions, and an overview of the complex interplay between hyperglycemia, metabolic dysregulation, and nerve damage. Additionally, we will explore the molecular mechanisms and pathways of diabetic neuropathy, including the impact of hyperglycemia on nerve function, abnormalities in glucose metabolism, the role of advanced glycation end products (AGEs), and inflammatory and immune-mediated processes. We will provide an overview of the various nerve fibers affected by diabetic neuropathy and explore the common symptoms and complications associated with diabetic neuropathy in the pain medicine field. RECENT FINDINGS This review highlights advances in understanding the pathophysiology of diabetic neuropathy as well as reviews potential novel therapeutic strategies and promising areas for future research. In conclusion, this review article aims to shed light on the pathophysiology of diabetic neuropathy, its far-reaching consequences, and the evolving strategies for prevention and management. In understanding the mechanisms of diabetic neuropathy and the ongoing research in this area, healthcare professionals can better serve patients with diabetes, ultimately improving well-being and reducing complications.
Collapse
Affiliation(s)
- Natalie Strand
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA.
| | | | | | - Benjamin Gill
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Christopher Wie
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Azizat Dawodu
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | | | - Monica W Harbell
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Jillian A Maloney
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
6
|
Mohamed AA, Elmotaleb Hussein MA, Nabil Hanna I, Japer Nashwan AJ, Saleh M, Abdel Wahed WY, Mohamed Mansour AM, Ezz Al Arab MR, Fawzy N, Sakr Y, Shalby H, AlHussain E, Kamal Darwish M, El-Osaily H, Naguib M, Mohamed AA, Farouk Mohamed W, Hafez W. The potential impact and diagnostic value of inflammatory markers on diabetic foot progression in type II diabetes mellitus: A case-control study. Med Clin (Barc) 2024; 162:e33-e39. [PMID: 38458959 DOI: 10.1016/j.medcli.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/19/2023] [Accepted: 01/25/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND The wound-healing process in diabetic foot is affected by pro and anti-inflammatory markers, and any disruption in the inflammatory reaction interferes with tissue homeostasis, leading to chronic non-wound healing. AIM This study aimed to determine the diagnostic value and effect of CRP, IL-6, TNF, and HbA1c on initiation the and progression of diabetic foot ulcers. METHOD ELISA was used to quantify IL-6, TNF, CRP, and HbA1c in 205 patients with diabetes, and 105 were diabetic foot free. The prevalence and progression of diabetic foot were also evaluated. The area under the curve (AUC) was calculated using the receiver operating characteristic (ROC) curve to analyze the predictive values. Forward stepwise logistic regression analysis was used to compute the odds ratio (OR) and the corresponding 95% confidence intervals (CIs). RESULTS CRP, IL-6, and FBS were found to be significant predictors of diabetic foot (OR=1.717, 95% CI=1.250-2.358, P=0.001; OR=1.434, 95% CI=1.142-1.802, P=0.002; and OR=1.040, 95% CI=1.002-1.080, P=0.037), respectively. The AUCs for CRP, IL-6, and HbA1c in predicting diabetic foot were 0.839, 0.728, and 0.834, respectively, demonstrating a good predictive value for each diagnostic marker. CONCLUSION The current study demonstrated that IL-6, CRP, and HbA1c may be useful biomarkers to indicate diabetic foot progression. Furthermore, our findings showed a substantial relationship between CRP and HbA1c in individuals with diabetic foot conditions.
Collapse
Affiliation(s)
- Amal Ahmed Mohamed
- Biochemistry Department, National Hepatology and Tropical Medicine Research Institute, Gothi, Egypt
| | | | - Ihab Nabil Hanna
- Surgical Department, National Institute of Diabetes and Endocrinology, Egypt
| | | | - Mohamed Saleh
- Gastroentrology Department, National Hepatology and Tropical Medicine Research Institute, Egypt
| | | | | | | | - Naglaa Fawzy
- Clinical and Chemical Pathology Department, National Institute of Diabetes and Endocrinology, Egypt
| | - Yasser Sakr
- Clinical and Chemical Pathology Department, National Institute of Diabetes and Endocrinology, Egypt
| | - Hassan Shalby
- Internal Medicine Department, Faculty of Medicine, Misr University for Science and Technology, Egypt
| | - Eman AlHussain
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Egypt
| | - Marwa Kamal Darwish
- Chemistry Department (Biochemistry Branch), Faculty of Science, Suez University, Suez 43518, Egypt
| | - Heba El-Osaily
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, Egypt
| | - Mervat Naguib
- Internal Medicine Department, Faculty of Medicine, Cairo University, Egypt
| | - Ahmed Ali Mohamed
- Intensive Care Unit, Theodor Bilharz Research Institute, Giza, Egypt
| | | | - Wael Hafez
- Internal Medicine Department, National Research Centre, Elbohoos Street, Dokki, Giza, Egypt
| |
Collapse
|
7
|
Waibel FWA, Uçkay I, Soldevila-Boixader L, Sydler C, Gariani K. Current knowledge of morbidities and direct costs related to diabetic foot disorders: a literature review. Front Endocrinol (Lausanne) 2024; 14:1323315. [PMID: 38298183 PMCID: PMC10829909 DOI: 10.3389/fendo.2023.1323315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024] Open
Abstract
Diabetes is a chronic disease associated with numerous complications including diabetic foot disorders, which are associated with significant morbidity and mortality as well as high costs. The costs associated with diabetic foot disorders comprise those linked to care (direct) and loss of productivity and poor quality of life (indirect). Due to the constant increase in diabetes prevalence, it is expected that diabetic foot disorder will require more resources, both in terms of caregivers and economically. We reviewed findings on management, morbidity, mortality, and costs related to diabetic foot disorder.
Collapse
Affiliation(s)
- Felix W. A. Waibel
- Orthopaedic Surgery, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Ilker Uçkay
- Infectiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Laura Soldevila-Boixader
- Infectious Diseases, Internal Medicine Department, Consorci Sanitari Integral-CSI, Sant Joan Despí Hospital, Barcelona, Spain
| | - Christina Sydler
- Orthopaedic Surgery, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition, and Therapeutic Education, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
8
|
Baldimtsi E, Whiss PA, Wahlberg J. Systemic biomarkers of microvascular alterations in type 1 diabetes associated neuropathy and nephropathy - A prospective long-term follow-up study. J Diabetes Complications 2023; 37:108635. [PMID: 37989066 DOI: 10.1016/j.jdiacomp.2023.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
INTRODUCTION This study aimed to investigate circulating biomarkers associated with the risk of developing diabetic peripheral neuropathy (DPN) and nephropathy in type 1 diabetes (T1D). MATERIALS AND METHODS Patients with childhood-onset T1D (n = 49, age 38.3 ± 3.8 yrs.) followed prospectively were evaluated after 30 years of diabetes duration. DPN was defined as an abnormality in nerve conduction tests. Matrix metalloproteinase-9 (MMP-9) and its tissue inhibitor TIMP-1, neutrophil gelatinase-associated lipocalin-2 (NGAL), soluble P-selectin (sP-selectin), estimated GFR (eGFR), micro/macroalbuminuria and routine biochemistry were assessed. For comparison, control subjects were included (n = 30, age 37.9 ± 5.5 yrs.). RESULTS In all, twenty-five patients (51 %) were diagnosed with DPN, and nine patients (18 %) had nephropathy (five microalbuminuria and four macroalbuminuria). Patients with DPN had higher levels of TIMP-1 (p = 0.036) and sP-selectin (p = 0.005) than controls. Patients with DPN also displayed higher levels of TIMP-1 compared to patients without DPN (p = 0.035). Patients with macroalbuminuria had kidney disease stage 3 with lower eGFR, higher levels of TIMP-1 (p = 0.038), and NGAL (p = 0.002). In all patients, we found only weak negative correlations between eGFR and TIMP-1 (rho = -0.304, p = 0.040) and NGAL (rho = -0.277, p = 0.062, ns), respectively. MMP-9 was higher in patients with microalbuminuria (p = 0.021) compared with normoalbuminuric patients. CONCLUSIONS Our findings indicate that TIMP-1 and MMP-9, as well as sP-selectin and NGAL, are involved in microvascular complications in T1D. Monitoring and targeting these biomarkers may be a potential strategy for treating diabetic nephropathy and neuropathy.
Collapse
Affiliation(s)
- Evangelia Baldimtsi
- Department of Acute Internal Medicine and Geriatrics in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
| | - Per A Whiss
- Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry and Pharmacology, Linköping University, Linköping, Sweden
| | - Jeanette Wahlberg
- Department of Medicine, Örebro University Hospital, Örebro, Sweden; Faculty of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
9
|
Li X, Chen H. Characteristics of glucolipid metabolism and complications in novel cluster-based diabetes subgroups: a retrospective study. Lipids Health Dis 2023; 22:200. [PMID: 37990237 PMCID: PMC10662503 DOI: 10.1186/s12944-023-01953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Glucolipid metabolism plays an important role in the occurrence and development of diabetes mellitus. However, there is limited research on the characteristics of glucolipid metabolism and complications in different subgroups of newly diagnosed diabetes. This study aimed to investigate the characteristics of glucolipid metabolism and complications in novel cluster-based diabetes subgroups and explore the contributions of different glucolipid metabolism indicators to the occurrence of complications and pancreatic function. METHODS This retrospective study included 547 newly diagnosed type 2 diabetes patients. Age, body mass index (BMI), glycated hemoglobin (HbA1C), homeostasis model assessment-2 beta-cell function (HOMA2-β), and homeostasis model assessment-2 insulin resistance (HOMA2-IR) were used as clustering variables. The participants were divided into 4 groups by k-means cluster analysis. The characteristics of glucolipid indicators and complications in each subgroup were analyzed. Regression analyses were used to evaluate the impact of glucolipid metabolism indicators on complications and pancreatic function. RESULTS Total cholesterol (TC), triglycerides (TG), triglyceride glucose index (TyG), HbA1C, fasting plasma glucose (FPG), and 2-h postprandial plasma glucose (2hPG) were higher in the severe insulin-resistant diabetes (SIRD) and severe insulin-deficient diabetes (SIDD) groups. Fasting insulin (FINS), fasting C-peptide (FCP), 2-h postprandial insulin (2hINS), 2-h postprandial C-peptide (2hCP), and the monocyte-to-high-density lipoprotein cholesterol ratio (MHR) were higher in mild obesity-related diabetes (MOD) and SIRD. 2hCP, FCP, and FINS were positively correlated with HOMA2-β, while FPG, TyG, HbA1C, and TG were negatively correlated with HOMA2-β. FINS, FPG, FCP, and HbA1C were positively correlated with HOMA2-IR, while high-density lipoprotein (HDL) was negatively correlated with HOMA2-IR. FINS (odds ratio (OR),1.043;95% confidence interval (CI) 1.006 ~ 1.081), FCP (OR,2.881;95%CI 2.041 ~ 4.066), and TyG (OR,1.649;95%CI 1.292 ~ 2.104) contributed to increase the risk of nonalcoholic fatty liver disease (NAFLD); 2hINS (OR,1.015;95%CI 1.008 ~ 1.022) contributed to increase the risk of atherosclerotic cardiovascular disease (ASCVD); FCP (OR,1.297;95%CI 1.027 ~ 1.637) significantly increased the risk of chronic kidney disease (CKD). CONCLUSIONS There were differences in the characteristics of glucolipid metabolism as well as complications among different subgroups of newly diagnosed type 2 diabetes. 2hCP, FCP, FINS, FPG, TyG, HbA1C, HDL and TG influenced the function of insulin. FINS, TyG, 2hINS, and FCP were associated with ASCVD, NAFLD, and CKD in newly diagnosed T2DM patients.
Collapse
Affiliation(s)
- Xinrong Li
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu Province, China
| | - Hui Chen
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
10
|
Aktas G. Association between the Prognostic Nutritional Index and Chronic Microvascular Complications in Patients with Type 2 Diabetes Mellitus. J Clin Med 2023; 12:5952. [PMID: 37762893 PMCID: PMC10531521 DOI: 10.3390/jcm12185952] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The prognostic nutritional index (PNI) is associated with inflammatory conditions. Since type 2 diabetes mellitus (T2DM) and its microvascular complications produce a significant inflammatory burden, we aimed to compare the PNI levels of the subjects with T2DM to those of healthy individuals. Furthermore, we aimed to compare the PNI levels of the diabetic subjects, with and without microvascular complications. The study cohort consisted of T2DM patients and healthy volunteers. The general characteristics, laboratory data, and PNI of the T2DM and control groups were compared. We further compared the PNI levels of the diabetic patients, with and without diabetic microvascular complications. The PNI levels of the T2DM patients and the control group were 51.6 (30.1-73.8)% and 64.8 (49.4-76)%, respectively (p < 0.001). Subgroup analyses revealed that the PNI was lower in the diabetic subjects with diabetic microvascular complications than in the diabetic patients without microvascular complications (p < 0.001), in patients with diabetic nephropathy compared to those without nephropathy (p < 0.001), in patients with diabetic retinopathy compared to those without retinopathy (p < 0.001), and in patients with diabetic neuropathy compared to those without neuropathy (p < 0.001). In conclusion, we assert that assessing the PNI may yield additional diagnostic value in regards to the timely determination of diabetic microvascular complications.
Collapse
Affiliation(s)
- Gulali Aktas
- Department of Internal Medicine, Abant Izzet Baysal University Hospital, 14280 Bolu, Turkey
| |
Collapse
|
11
|
Mylavarapu RV, Kanumuri VV, de Rivero Vaccari JP, Misra A, McMillan DW, Ganzer PD. Importance of timing optimization for closed-loop applications of vagus nerve stimulation. Bioelectron Med 2023; 9:8. [PMID: 37101239 PMCID: PMC10134677 DOI: 10.1186/s42234-023-00110-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
In recent decades, vagus nerve stimulation (VNS) therapy has become widely used for clinical applications including epilepsy, depression, and enhancing the effects of rehabilitation. However, several questions remain regarding optimization of this therapy to maximize clinical outcomes. Although stimulation parameters such as pulse width, amplitude, and frequency are well studied, the timing of stimulation delivery both acutely (with respect to disease events) and chronically (over the timeline of a disease's progression) has generally received less attention. Leveraging such information would provide a framework for the implementation of next generation closed-loop VNS therapies. In this mini-review, we summarize a number of VNS therapies and discuss (1) general timing considerations for these applications and (2) open questions that could lead to further therapy optimization.
Collapse
Affiliation(s)
| | - Vivek V Kanumuri
- Department of Otolaryngology, University of Miami, Miami, FL, USA
| | - Juan Pablo de Rivero Vaccari
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
| | - Amrit Misra
- Newton Wellesley Neurology Associates, Newton, MA, USA
| | - David W McMillan
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
| | - Patrick D Ganzer
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA.
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA.
| |
Collapse
|
12
|
Herder C, Zhang S, Wolf K, Maalmi H, Bönhof GJ, Rathmann W, Schwettmann L, Thorand B, Roden M, Schneider A, Ziegler D, Peters A. Environmental risk factors of incident distal sensorimotor polyneuropathy: Results from the prospective population-based KORA F4/FF4 study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159878. [PMID: 36328258 DOI: 10.1016/j.scitotenv.2022.159878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Distal sensorimotor polyneuropathy (DSPN) is a common condition in older populations with high prevalence of obesity and type 2 diabetes. We hypothesised that the risk of DSPN is increased by multiple ubiquitous environmental risk factors, particularly in people with obesity. This study was based on 423 individuals aged 62-81 years without DSPN who participated in the population-based Cooperative Health Research in the Region of Augsburg (KORA) F4 survey (2006-2008) in Southern Germany. During 6.5 years of follow-up, 188 participants developed clinical DSPN as assessed by the Michigan Neuropathy Screening Instrument. Environmental exposures, including air temperature, surrounding greenness (assessed with the normalized difference vegetation index [NDVI]), long-term road traffic noise and air pollution, were assessed at participants' residences. The cumulative risk index (CRI) evaluated the joint effects of co-occurring exposures on DSPN risk based on effect estimates from multi-exposure Poisson regression models. The models were adjusted for age, sex, height, waist circumference, smoking, alcohol consumption, physical activity, education and neighbourhood socioeconomic status. In the entire cohort, the co-occurrence of an interquartile range (IQR) decrease in temperature of the warm season and NDVI in a 100-m buffer and of an IQR increase in night-time average traffic noise and in annual average particle number concentration (PNC) was positively associated with incident DSPN (CRI [95 % CI] 1.39 [1.02, 1.91]). Effect estimates for exposure combinations were generally higher in individuals with obesity (CRI 1.34-2.01) than in those without obesity (CRI 0.90-1.33). The four-exposure model showed a twofold increased risk of DSPN among obese (CRI [95 % CI] 2.01 [1.10, 3.67]), but not among non-obese individuals (CRI [95 % CI] 1.18 [0.83, 1.67]). Thus, ubiquitous environmental exposures jointly augment the risk of DSPN in the older population. Lower air temperature in the warm season, less greenness, and higher noise levels and ultrafine particle concentrations identified people with obesity as a particularly vulnerable subgroup.
Collapse
Affiliation(s)
- Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Haifa Maalmi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lars Schwettmann
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Economics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Partner Neuherberg, München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Partner Neuherberg, München-Neuherberg, Germany; Institute for Medical Information Processing Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
13
|
Ang L, Mizokami-Stout K, Eid SA, Elafros M, Callaghan B, Feldman EL, Pop-Busui R. The conundrum of diabetic neuropathies-Past, present, and future. J Diabetes Complications 2022; 36:108334. [PMID: 36306721 PMCID: PMC10202025 DOI: 10.1016/j.jdiacomp.2022.108334] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 10/31/2022]
Abstract
Diabetic neuropathy (DN) remains arguably the most prevalent chronic complication in people with both type 1 and type 2 diabetes, including in youth, despite changes in the current standards of clinical care. Additionally, emerging evidence demonstrates that neuropathy affects a large proportion of people with undiagnosed diabetes and/or prediabetes, as well as those with obesity. Here we summarize the latest epidemiology of DN, recent findings regarding the pathophysiology of the disease, as well as current outcome measures for screening and diagnosis, in research and clinical settings. The authors discuss novel perspectives on the impact of social determinants of health in DN development and management, and the latest evidence on effective therapies, including pharmacological and nonpharmacological therapies for neuropathic pain. Throughout the publication, we identify knowledge gaps and the need for future funding to address these gaps, as well as needs to advocate for a personalized care approach to reduce the burden of DN and optimize quality of life for all affected individuals.
Collapse
Affiliation(s)
- Lynn Ang
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America
| | - Kara Mizokami-Stout
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America; Ann Arbor Veteran Affairs Hospital, Ann Arbor, MI, United States of America
| | - Stephanie A Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Melissa Elafros
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Brian Callaghan
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
14
|
Liu Z, Shao M, Ren J, Qiu Y, Li S, Cao W. Association Between Increased Lipid Profiles and Risk of Diabetic Retinopathy in a Population-Based Case-Control Study. J Inflamm Res 2022; 15:3433-3446. [PMID: 35711238 PMCID: PMC9197172 DOI: 10.2147/jir.s361613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose We aimed to investigate the association between lipid profiles and diabetic retinopathy (DR). Patients and Methods This case-control study, which was conducted between November 2019 and August 2021, comprised 309 patients with DR, 186 patients with diabetes mellitus, and 172 healthy controls. Serum cholesterol (CHOL), triglyceride (TRIG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), small dense LDL-C (SDLDL-C), apolipoprotein A (APOA), APOB, APOE and lipoprotein (a)(LPA) levels were assessed. Patients were divided into two groups according to median age and glycated hemoglobin (HbA1c) level. Linear and logistic regression analyses were performed to assess the association between lipid levels and DR. Results CHOL, TRIG, HDL-C, APOB, APOE, and SDLDL-C levels were significantly higher in the DR group than in the healthy control group, and TRIG levels were lower in the DR group than in the DM group (P < 0.05), especially in the ≤57-year-old and the HbA1c ≤7.2% subgroups. Linear regression analyses showed that CHOL, TRIG, APOA, APOB, APOE, and SDLDL-C levels were associated with HbA1c levels. Multivariable logistic regression analyses indicated that CHOL (odds ratio [OR] = 1.32, 95% confidence interval [CI] = 1.112–1.566), TRIG (OR = 1.269, 95% CI = 1.030–1.563), HDL-C (OR = 43.744, 95% CI = 17.12–111.769), APOB (OR = 7.037, 95% CI = 3.370–14.695), APOE (OR = 1.057, 95% CI = 1.038–1.077), and SDLDL-C (OR = 14.719, 95% CI = 8.304–26.088) levels were risk factors for DR (P < 0.05). Conclusion Increased lipid levels were risk factors for DR, and lipid level control should be strengthened, especially in younger adults or in patients with HbA1c ≤7.2%.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Clinical Laboratory, Eye and Ear Nose Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Mingxi Shao
- Department of Clinical Laboratory, Eye and Ear Nose Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Jun Ren
- Department of Clinical Laboratory, Eye and Ear Nose Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yichao Qiu
- Department of Clinical Laboratory, Eye and Ear Nose Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Shengjie Li
- Department of Clinical Laboratory, Eye and Ear Nose Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye and Ear Nose Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Effect of obesity on the associations of 25-hydroxyvitamin D with prevalent and incident distal sensorimotor polyneuropathy: population-based KORA F4/FF4 study. Int J Obes (Lond) 2022; 46:1366-1374. [PMID: 35474356 PMCID: PMC9239908 DOI: 10.1038/s41366-022-01122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/09/2022]
Abstract
Background/objectives The association between vitamin D and DSPN has been investigated in cross-sectional studies in individuals with diabetes. However, evidence from prospective and population-based studies is still lacking. Also, the potential modifying effect of obesity and glucose tolerance has not been investigated. Therefore, we examined the cross-sectional and prospective associations of serum 25(OH)D with DSPN and assessed possible effect modifications. Subjects/methods The study included individuals aged 62–81 years who participated in the German KORA F4 (2006–2008) and FF4 (2013–2014) studies. DSPN was assessed using the Michigan Neuropathy Screening Instrument. Cross-sectional analyses (n = 1065; 33% of the participants had obesity) assessed the associations of baseline 25(OH)D with prevalent DSPN, while prospective analyses (n = 422) assessed the associations of 25(OH)D with incident DSPN. Results No association was found between 25(OH)D and prevalent DSPN in the total sample after adjustment for age, sex, season of blood sampling, BMI, metabolic variables, lifestyle factors, and comorbidities. However, a decrease by 10 nmol/L in 25(OH)D was associated with prevalent DSPN (RR (95% CI) 1.08 (1.01, 1.16)) in individuals with obesity but not in normal-weight individuals (RR (95% CI) 0.97 (0.92, 1.02), pinteraction = 0.002). No evidence for effect modification by glucose tolerance was found (p > 0.05). In the prospective analysis, 25(OH)D levels in the first and second tertiles were associated with higher risk of DSPN (RR (95% CI) 1.18 (1.02; 1.38) and 1.40 (1.04; 1.90)) compared to the third tertile after adjustment for age, sex, season of blood sampling, and BMI. There was no evidence for effect modification by obesity or glucose tolerance categories. Conclusions Our study did not show consistent evidence for cross-sectional and prospective associations between serum 25(OH)D levels and DSPN in the total study population of older individuals. However, there was evidence for an association between lower serum 25(OH)D levels and higher prevalence of DSPN in individuals with obesity.
Collapse
|
16
|
Ghoreishy SM, Shirzad N, Nakhjavani M, Esteghamati A, Djafarian K, Esmaillzadeh A. Effect of daily consumption of probiotic yoghurt on albumin to creatinine ratio, eGFR and metabolic parameters in patients with type 2 diabetes with microalbuminuria: study protocol for a randomised controlled clinical trial. BMJ Open 2022; 12:e056110. [PMID: 35361646 PMCID: PMC8971794 DOI: 10.1136/bmjopen-2021-056110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION To alleviate clinical symptoms of diabetic nephropathy (DN), several dietary and non-dietary strategies have been suggested. Probiotic-enriched foods, through their effects on modulating microflora, might help these patients control the adverse effects. The current study will be done to examine the effects of probiotic yoghurt consumption on albumin to creatinine ratio, estimated glomerular filtration rate (eGFR) and metabolic parameters in patients with type 2 diabetes with nephropathy. METHODS AND ANALYSIS Sixty patients with DN will be recruited in this study. After block matching for sex, body mass index and age, patients will be randomly assigned to receive 300 g/day probiotic yoghurt containing 106 CFU/g Lactobacillus acidophilus and Bifidobacterium lactis strains or 300 g/day plain yoghurt daily for 8 weeks. Weight, height and waist circumference will be measured at study baseline and after the intervention. Biochemical indicators including glycaemic measures (haemoglobin A1c (HbA1c), fasting blood sugar (FBS)), inflammatory markers (high sensitivity-C reactive protein), lipid profile (total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL)) and finally renal makers (creatinine, albumin to creatinine ratio, eGFR) will be assessed at study baseline and at the end of the trial. DISCUSSION Improving the condition of a person with DN is a serious clinical challenge. The use of probiotic supplements has been considered in these people, but the use of probiotic-enriched foods has received less attention. TRIAL REGISTRATION NUMBER Iranian Registry of Clinical Trials (www.irct.ir) (IRCT20201125049491N1).
Collapse
Affiliation(s)
- Seyed Mojtaba Ghoreishy
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Nooshin Shirzad
- Endocrinology and Metabolism Research Center, Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center, Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center, Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, Tehran University of Medical Sciences, Tehran, Iran
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Khan A, Pasquier J, Ramachandran V, Ponirakis G, Petropoulos IN, Chidiac O, Thomas B, Robay A, Jayyousi A, Al Suwaidi J, Rafii A, Menzies RA, Talal TK, Najafi-Shoushtari SH, Abi Khalil C, Malik RA. Altered Circulating microRNAs in Patients with Diabetic Neuropathy and Corneal Nerve Loss: A Pilot Study. J Clin Med 2022; 11:jcm11061632. [PMID: 35329958 PMCID: PMC8956033 DOI: 10.3390/jcm11061632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023] Open
Abstract
An alteration in circulating miRNAs may have important diagnostic and therapeutic relevance in diabetic neuropathy. Patients with type 2 diabetes mellitus (T2DM) underwent an assessment of neuropathic symptoms using Douleur Neuropathique 4 (DN4), the vibration perception threshold (VPT) using a Neurothesiometer, sudomotor function using the Sudoscan, corneal nerve morphology using corneal confocal microscopy (CCM) and circulating miRNAs using high-throughput miRNA expression profiling. Patients with T2DM, with (n = 9) and without (n = 7) significant corneal nerve loss were comparable in age, gender, diabetes duration, BMI, HbA1c, eGFR, blood pressure, and lipid profile. The VPT was significantly higher (p < 0.05), and electrochemical skin conductance (p < 0.05), corneal nerve fiber density (p = 0.001), corneal nerve branch density (p = 0.013), and corneal nerve fiber length (p < 0.001) were significantly lower in T2DM patients with corneal nerve loss compared to those without corneal nerve loss. Following a q-PCR-based analysis of total plasma microRNAs, we found that miR-92b-3p (p = 0.008) was significantly downregulated, while miR-22-3p (p = 0.0001) was significantly upregulated in T2DM patients with corneal nerve loss. A network analysis revealed that these miRNAs regulate axonal guidance and neuroinflammation genes. These data support the need for more extensive studies to better understand the role of dysregulated miRNAs’ in diabetic neuropathy.
Collapse
Affiliation(s)
- Adnan Khan
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
- Faculty of Health Sciences, Khyber Medical University, Peshawar P.O. Box 25100, Pakistan
| | - Jennifer Pasquier
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Vimal Ramachandran
- MicroRNA Core Laboratory, Research Division, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (V.R.); (S.H.N.-S.)
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Georgios Ponirakis
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
| | - Ioannis N. Petropoulos
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
| | - Omar Chidiac
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Binitha Thomas
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Amal Robay
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Amin Jayyousi
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Jassim Al Suwaidi
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Arash Rafii
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Robert A. Menzies
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Talal K. Talal
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Seyed Hani Najafi-Shoushtari
- MicroRNA Core Laboratory, Research Division, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (V.R.); (S.H.N.-S.)
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Charbel Abi Khalil
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence: (C.A.K.); (R.A.M.); Tel.: +974-4492-8484 (C.A.K.); +974-4492-8256 (R.A.M.)
| | - Rayaz A. Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
- Correspondence: (C.A.K.); (R.A.M.); Tel.: +974-4492-8484 (C.A.K.); +974-4492-8256 (R.A.M.)
| |
Collapse
|
18
|
Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity 2022; 55:31-55. [PMID: 35021057 PMCID: PMC8773457 DOI: 10.1016/j.immuni.2021.12.013] [Citation(s) in RCA: 623] [Impact Index Per Article: 311.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 01/13/2023]
Abstract
Obesity leads to chronic, systemic inflammation and can lead to insulin resistance (IR), β-cell dysfunction, and ultimately type 2 diabetes (T2D). This chronic inflammatory state contributes to long-term complications of diabetes, including non-alcoholic fatty liver disease (NAFLD), retinopathy, cardiovascular disease, and nephropathy, and may underlie the association of type 2 diabetes with other conditions such as Alzheimer's disease, polycystic ovarian syndrome, gout, and rheumatoid arthritis. Here, we review the current understanding of the mechanisms underlying inflammation in obesity, T2D, and related disorders. We discuss how chronic tissue inflammation results in IR, impaired insulin secretion, glucose intolerance, and T2D and review the effect of inflammation on diabetic complications and on the relationship between T2D and other pathologies. In this context, we discuss current therapeutic options for the treatment of metabolic disease, advances in the clinic and the potential of immune-modulatory approaches.
Collapse
Affiliation(s)
- Theresa V. Rohm
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel T. Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, CH-4031 Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Jerrold M. Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marc Y. Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, CH-4031 Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland.,Correspondence:
| |
Collapse
|
19
|
Yorek M. Treatment for Diabetic Peripheral Neuropathy: What have we Learned from Animal Models? Curr Diabetes Rev 2022; 18:e040521193121. [PMID: 33949936 PMCID: PMC8965779 DOI: 10.2174/1573399817666210504101609] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/07/2021] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Animal models have been widely used to investigate the etiology and potential treatments for diabetic peripheral neuropathy. What we have learned from these studies and the extent to which this information has been adapted for the human condition will be the subject of this review article. METHODS A comprehensive search of the PubMed database was performed, and relevant articles on the topic were included in this review. RESULTS Extensive study of diabetic animal models has shown that the etiology of diabetic peripheral neuropathy is complex, with multiple mechanisms affecting neurons, Schwann cells, and the microvasculature, which contribute to the phenotypic nature of this most common complication of diabetes. Moreover, animal studies have demonstrated that the mechanisms related to peripheral neuropathy occurring in type 1 and type 2 diabetes are likely different, with hyperglycemia being the primary factor for neuropathology in type 1 diabetes, which contributes to a lesser extent in type 2 diabetes, whereas insulin resistance, hyperlipidemia, and other factors may have a greater role. Two of the earliest mechanisms described from animal studies as a cause for diabetic peripheral neuropathy were the activation of the aldose reductase pathway and increased non-enzymatic glycation. However, continuing research has identified numerous other potential factors that may contribute to diabetic peripheral neuropathy, including oxidative and inflammatory stress, dysregulation of protein kinase C and hexosamine pathways, and decreased neurotrophic support. In addition, recent studies have demonstrated that peripheral neuropathy-like symptoms are present in animal models, representing pre-diabetes in the absence of hyperglycemia. CONCLUSION This complexity complicates the successful treatment of diabetic peripheral neuropathy, and results in the poor outcome of translating successful treatments from animal studies to human clinical trials.
Collapse
Affiliation(s)
- Mark Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242 USA
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, 52246 USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242 USA
| |
Collapse
|
20
|
Méndez-Morales S, Pérez-De Marco J, Rodríguez-Cortés O, Flores-Mejía R, Martínez-Venegas M, Sánchez-Vera Y, Tamay-Cach F, Lomeli-Gonzaléz J, Emilio Reyes A, Lehman-Mendoza R, Martínez-Arredondo H, Vazquez-Dávila R, Torres-Roldan J, Correa-Basurto J, Arellano-Mendoza M. Diabetic neuropathy: Molecular approach a treatment opportunity. Vascul Pharmacol 2022; 143:106954. [DOI: 10.1016/j.vph.2022.106954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/15/2022]
|
21
|
Pinto MV, Ng PS, Laughlin RS, Thapa P, Aragon C, Shelly S, Shouman K, Dyck PJ, Dyck PJB. Risk factors for Lumbosacral Radiculoplexus Neuropathy. Muscle Nerve 2021; 65:593-598. [PMID: 34970748 PMCID: PMC9181981 DOI: 10.1002/mus.27484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 11/11/2022]
Abstract
INTRODUCTION/AIMS Recently, our group found an association between diabetes mellitus (DM) and lumbosacral radiculoplexus neuropathy (LRPN) in Olmsted County, Minnesota; we found a higher risk (OR: 7.91) for developing LRPN in diabetic compared to non-diabetic patients. However, the influence of other comorbidities and anthropomorphic variables was not studied. METHODS Demographic and clinical data from 59 LRPN patients and 177 age-sex matched controls were extracted using the Rochester LRPN epidemiological study. Differences between groups were compared by Chi-square/Fisher's exact test or Wilcox sum rank. Univariate and multivariate logistic regression analysis were performed. RESULTS Factors predictive of LRPN on univariate analysis were DM (OR 7.91; CI 4.11-15.21), dementia (OR 6.36; CI 1.13-35.67), stroke (OR 3.81; CI 1.32-11.01), dyslipidemia (OR 2.844; CI 1.53-5.27), comorbid autoimmune disorders (OR 2.72; CI 1.07-6.93), hypertension (OR 2.25; CI 1.2-4.13), obesity (OR 2.05; CI 1.11-3.8), BMI (OR 1.1; CI 1.04-1.15), and weight (OR 1.02; CI 1.009-1.037). On multivariate logistic regression analysis only DM (OR 8.03; CI 3.86-16.7), comorbid autoimmune disorders (OR 4.58; CI 1.45-14.7), stroke (OR 4.13; CI 1.2-14.25) and BMI (OR 1.07; CI 1.01-1.13) were risk factors for LRPN. DISCUSSION DM is the strongest risk factor for the development of LRPN, followed by comorbid auto-immune disorders, stroke and higher BMI. Altered metabolism and immune dysfunction seem to be the most influential factors in the development of LRPN. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marcus V Pinto
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Peng-Soon Ng
- Department of Neurology, National Neuroscience Institute, Singapore
| | | | - Prabin Thapa
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | | | - Shahar Shelly
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Kamal Shouman
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Peter J Dyck
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - P James B Dyck
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
22
|
Anthropometric Measurements, Metabolic Profile and Physical Fitness in a Sample of Spanish Women with Type 2 Diabetes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211955. [PMID: 34831711 PMCID: PMC8623435 DOI: 10.3390/ijerph182211955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 01/10/2023]
Abstract
Background: Exercise training has proven to be effective for treatment of metabolic diseases, such as type 2 diabetes mellitus. The aims of this study were to compare anthropometric measurements, metabolic profile and physical fitness between active and sedentary women with type 2 diabetes, and to analyse relationships between anthropometry and metabolic profile and components of physical fitness (balance, flexibility, strength and endurance). Methods: Cross-sectional research on 28 women with type 2 diabetes. Amount of daily physical activity, BMI, waist circumference, HbA1c, fibrinogen, hs-CRP, tiptoe dynamic balance, static balance, finger floor distance, abdominal, upper and lower limb strength and walking cardiovascular endurance were recorded. Results: Age: 58.5 ± 7.8. Overall, 16 subjects were physically active and 12 were sedentary. Active subjects had lower BMI (p = 0.033) and better cardiovascular endurance (p = 0.025). BMI and waist circumference were not influenced by any physical fitness component. HbA1c, fibrinogen and hs-CRP were related with worse dynamic balance (p = 0.036, 0.006 and 0.031, respectively). Conclusions: Active women had lower BMI and showed a better performance in cardiovascular endurance. Tiptoe dynamic balance impairments were related to worse glycaemic control, hypercoagulation and inflammatory state.
Collapse
|
23
|
Hagen KM, Ousman SS. Aging and the immune response in diabetic peripheral neuropathy. J Neuroimmunol 2021; 355:577574. [PMID: 33894676 DOI: 10.1016/j.jneuroim.2021.577574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/27/2022]
Abstract
A large proportion of older individuals with diabetes go on to develop diabetic peripheral neuropathy (DPN). DPN is associated with an increase in inflammatory cells within the peripheral nerve, activation of nuclear factor kappa-light-chain-enhancer of activated B cells and receptors for advanced glycation end products/advanced glycation end products pathways, aberrant cytokine expression, oxidative stress, ischemia, as well as pro-inflammatory changes in the bone marrow; all processes that may be exacerbated with age. We review the immunological features of DPN and discuss whether age-related changes in relevant immunological areas may contribute to age being a risk factor for DPN.
Collapse
Affiliation(s)
- Kathleen M Hagen
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shalina S Ousman
- Departments of Clinical Neurosciences and Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
24
|
Maalmi H, Wouters K, Savelberg HHCM, van der Velde JHPM, Reulen JPH, Mess W, Schalkwijk CG, Stehouwer CDA, Roden M, Ziegler D, Herder C, Schaper NC. Associations of cells from both innate and adaptive immunity with lower nerve conduction velocity: the Maastricht Study. BMJ Open Diabetes Res Care 2021; 9:9/1/e001698. [PMID: 33431599 PMCID: PMC7802711 DOI: 10.1136/bmjdrc-2020-001698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Distal sensorimotor polyneuropathy (DSPN) is common in people with diabetes but is also found in pre-diabetes. Peripheral nerve myelin damage, which can be assessed by reduced nerve conduction velocity (NCV), is an essential feature of DSPN. Emerging evidence indicates that the development of DSPN may involve the activation of the immune system. However, available studies have mainly investigated circulating immune mediators, whereas the role of immune cells remains unclear. Therefore, we aimed to test whether leukocyte subsets are associated with NCV. RESEARCH DESIGN AND METHODS This cross-sectional study analyzed data from 850 individuals (of whom 252 and 118 had type 2 diabetes and pre-diabetes, respectively) of the Maastricht Study. NCV was measured in the peroneal and tibial motor nerves and the sural sensory nerve and summed to calculate a standardized NCV sum score. Associations between percentages of leukocyte subsets and NCV sum scores were estimated using linear regression models adjusted for demographic, lifestyle, metabolic and clinical covariates. RESULTS After adjustment for covariates, higher percentages of basophils and CD4+ T cells were associated with lower NCV (p=0.014 and p=0.005, respectively). The percentage of CD8+ T cells was positively associated with NCV (p=0.022). These associations were not modified by glucose metabolism status (all pinteraction >0.05). No associations were found for monocytes, eosinophils, neutrophils, lymphocytes, total T cells, Treg cells and B cells. CONCLUSIONS The associations of basophils, CD4+ and CD8+ T cells with NCV suggest that cell types from both innate and adaptive immunity may be implicated in the development of DSPN.
Collapse
Affiliation(s)
- Haifa Maalmi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Kristiaan Wouters
- Department of Internal Medicine, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Hans H C M Savelberg
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Jeroen H P M van der Velde
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Jos P H Reulen
- Department of Clinical Neurophysiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Werner Mess
- Department of Clinical Neurophysiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Nicolaas C Schaper
- Department of Internal Medicine, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| |
Collapse
|
25
|
Spallone V, Ciccacci C, Latini A, Borgiani P. What Is in the Field for Genetics and Epigenetics of Diabetic Neuropathy: The Role of MicroRNAs. J Diabetes Res 2021; 2021:5593608. [PMID: 34660810 PMCID: PMC8514969 DOI: 10.1155/2021/5593608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Despite the high prevalence of diabetic neuropathy, its early start, and its impact on quality of life and mortality, unresolved clinical issues persist in the field regarding its screening implementation, the understanding of its mechanisms, and the search for valid biomarkers, as well as disease-modifying treatment. Genetics may address these needs by providing genetic biomarkers of susceptibility, giving insights into pathogenesis, and shedding light on how to select possible responders to treatment. After a brief summary of recent studies on the genetics of diabetic neuropathy, the current review focused mainly on microRNAs (miRNAs), including the authors' results in this field. It summarized the findings of animal and human studies that associate miRNAs with diabetic neuropathy and explored the possible pathogenetic meanings of these associations, in particular regarding miR-128a, miR-155a, and miR-499a, as well as their application for diabetic neuropathy screening. Moreover, from a genetic perspective, it examined new findings of polymorphisms of miRNA genes in diabetic neuropathy. It considered in more depth the pathogenetic implications for diabetic neuropathy of the polymorphism of MIR499A and the related changes in the downstream action of miR-499a, showing how epigenetic and genetic studies may provide insight into pathogenetic mechanisms like mitochondrial dysfunction. Finally, the concept and the data of genotype-phenotype association for polymorphism of miRNA genes were described. In conclusion, although at a very preliminary stage, the findings linking the genetics and epigenetics of miRNAs might contribute to the identification of exploratory risk biomarkers, a comprehensive definition of susceptibility to specific pathogenetic mechanisms, and the development of mechanism-based treatment of diabetic neuropathy, thus addressing the goals of genetic studies.
Collapse
Affiliation(s)
- V. Spallone
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, Italy
| | - C. Ciccacci
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - A. Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - P. Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
26
|
Herder C, Schneider A, Zhang S, Wolf K, Maalmi H, Huth C, Pickford R, Laxy M, Bönhof GJ, Koenig W, Rathmann W, Roden M, Peters A, Thorand B, Ziegler D. Association of Long-Term Air Pollution with Prevalence and Incidence of Distal Sensorimotor Polyneuropathy: KORA F4/FF4 Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:127013. [PMID: 33356516 PMCID: PMC7757787 DOI: 10.1289/ehp7311] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Air pollution contributes to type 2 diabetes and cardiovascular diseases, but its relevance for other complications of diabetes, in particular distal sensorimotor polyneuropathy (DSPN), is unclear. Recent studies have indicated that DSPN is also increasingly prevalent in obesity. OBJECTIVES We aimed to assess associations of air pollutants with prevalent and incident DSPN in a population-based study of older individuals with high rates of type 2 diabetes and obesity. METHODS Cross-sectional analyses on prevalent DSPN were based on 1,075 individuals 62-81 years of age from the German Cooperative Health Research in the Region of Augsburg (KORA) F4 survey (2006-2008). Analyses on incident DSPN included 424 individuals without DSPN at baseline (KORA F4), of whom 188 had developed DSPN by the KORA FF4 survey (2013-2014). Associations of annual average air pollutant concentrations at participants' residences with prevalent and incident DSPN were estimated using Poisson regression models with a robust error variance adjusting for multiple confounders. RESULTS Higher particle number concentrations (PNCs) were associated with higher prevalence [risk ratio (RR) per interquartile range (IQR) increase=1.10 (95% CI: 1.01, 1.20)] and incidence [1.11 (95% CI: 0.99, 1.24)] of DSPN. In subgroup analyses, particulate (PNC, PM10, PMcoarse, PM2.5, and PM2.5abs) and gaseous (NOx, NO2) pollutants were positively associated with prevalent DSPN in obese participants, whereas corresponding estimates for nonobese participants were close to the null [e.g., for an IQR increase in PNC, RR=1.17 (95% CI: 1.05, 1.31) vs. 1.06 (95% CI: 0.95, 1.19); pinteraction=0.22]. With the exception of PM2.5abs, corresponding associations with incident DSPN were positive in obese participants but null or inverse for nonobese participants, with pinteraction≤0.13 [e.g., for PNC, RR=1.28 (95% CI: 1.08, 1.51) vs. 1.03 (95% CI: 0.90, 1.18); pinteraction=0.03]. DISCUSSION Both particulate and gaseous air pollutants were positively associated with prevalent and incident DSPN in obese individuals. Obesity and air pollution may have synergistic effects on the development of DSPN. https://doi.org/10.1289/EHP7311.
Collapse
Affiliation(s)
- Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Schneider
- German Center for Diabetes Research, Munich-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Kathrin Wolf
- German Center for Diabetes Research, Munich-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Haifa Maalmi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
| | - Cornelia Huth
- German Center for Diabetes Research, Munich-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Regina Pickford
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Laxy
- German Center for Diabetes Research, Munich-Neuherberg, Germany
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Global Diabetes Research Center, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Department of Sport and Health Science, Technical University of Munich, Munich, Germany
| | - Gidon J. Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
| | - Wolfgang Koenig
- German Heart Center Munich, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research, Munich-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annette Peters
- German Center for Diabetes Research, Munich-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Barbara Thorand
- German Center for Diabetes Research, Munich-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
27
|
Wei W, Li L, Deng L, Wang ZJ, Dong JJ, Lyu XY, Jia T, Wang L, Wang HX, Mao H, Zhao S. Autologous Bone Marrow Mononuclear Cell Transplantation Therapy Improved Symptoms in Patients with Refractory Diabetic Sensorimotor Polyneuropathy via the Mechanisms of Paracrine and Immunomodulation: A Controlled Study. Cell Transplant 2020; 29:963689720949258. [PMID: 32787571 PMCID: PMC7563922 DOI: 10.1177/0963689720949258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We recently reported that transplantation of autologous bone marrow mononuclear
cells (BM-MNCs) may be an effective and promising therapy to treat refractory
diabetic sensorimotor polyneuropathy (DSPN) in patients with type 2 diabetes
mellitus (T2DM). This study was designed to investigate the potential mechanisms
of BM-MNCs therapy, which recruited 60 patients with DSPN, 30 T2DM patients
without complications, and 30 healthy control participants. All clinical
parameters, the levels of inflammatory markers, and growth factors in the three
groups were compared. Patients in DSPN group had higher level of tumor necrosis
factor-α (TNF-α) (DSPN vs control, 412.90 ± 64.58 vs 374.81 ± 63.18 pg/mL,
P < 0.01) and lower level of vascular endothelial growth
factor (VEGF) (DSPN vs control, 140.93 ± 24.78 vs 157.39 ± 25.11 pg/mL,
P < 0.01) than those in control group. DSPN group had
the highest level of soluble intercellular adhesion molecule-1 (sICAM-1) among
three groups (DSPN and DM vs control, 1477.56 ± 228.00 and 1342.17 ± 237.54 vs
1308.00 ± 200.94 ng/mL, P < 0.05). The level of nerve growth
factor in the DSPN group was slightly lower than that in the DM group (DSPN vs
DM, 3509.11 ± 438.39 vs 3734.87 ± 647.50 pg/mL, P < 0.05).
All patients with DSPN received one intramuscular injection of BM-MNCs and
clinical follow-ups after the therapy for 2 days, 1, 4, 12, 24, and 48 weeks.
Neuropathic symptoms of foot pain, numbness, and weakness were significantly
improved within 4 weeks after BM-MNCs injection. Patients with DSPN were divided
into the responder (n = 35) and nonresponder groups
(n = 19) based on the improvement of nerve conduction
velocity at 12 weeks post-transplantation. Compared with nonresponders,
responders were younger (57.3 ± 5.2 vs 62.0 ± 4.8, P <
0.01), had a shorter history of diabetes (7.1 ± 2.7 vs 11.2 ± 5.4 years,
P < 0.01), and had higher numbers of mobilized
CD34+ cells (17.61 ± 2.64 vs 14.79 ± 1.62 ×105/L,
P < 0.01) and BM-MNCs (12.05 ± 2.16 vs 9.84 ± 1.53
×108/L, P < 0.01). The levels of TNF-α and
sICAM-1 decreased just after BM-MNCs injection in both groups and slowly
reverted to baseline levels. The duration of the downtrend of TNF-α and sICAM-1
in the responder group lasted longer than that in the nonresponder group. Serum
level of VEGF in the responder group increased immediately after BM-MNC therapy
and reached the highest point after the injection for 12 weeks. On the other
hand, VEGF levels in the nonresponder group only increased slightly. Binary
logistic regression was performed to evaluate the corresponding prognostic
factors for BM-MNCs treatment. The number of applied CD34+ cells and
the duration of diabetes were the independent predictors of responding to
BM-MNCs therapy. No adverse event associated with the treatment was observed
during follow-up observations. These results indicated that BM-MNCs
transplantation is an effective and promising therapeutic strategy to treat
refractory DSPN. The immune regulation and paracrine function of BM-MNCs may
contribute to the improvement of DSPN.
Collapse
Affiliation(s)
- Wei Wei
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Li
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Deng
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhong-Jing Wang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing-Jian Dong
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao-Yu Lyu
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Jia
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Wang
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong-Xiang Wang
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong Mao
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shi Zhao
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China.,Regenerative Medical Center of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
28
|
Mazruei Arani N, Emam-Djomeh Z, Tavakolipour H, Sharafati-Chaleshtori R, Soleimani A, Asemi Z. The Effects of Probiotic Honey Consumption on Metabolic Status in Patients with Diabetic Nephropathy: a Randomized, Double-Blind, Controlled Trial. Probiotics Antimicrob Proteins 2020; 11:1195-1201. [PMID: 30218286 DOI: 10.1007/s12602-018-9468-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To the best of our knowledge, this study is the first evaluating the effects of probiotic honey intake on glycemic control, lipid profiles, biomarkers of inflammation, and oxidative stress in patients with diabetic nephropathy (DN). This investigation was conducted to evaluate the effects of probiotic honey intake on metabolic status in patients with DN. This randomized, double-blind, controlled clinical trial was performed among 60 patients with DN. Patients were randomly allocated into two groups to receive either 25 g/day probiotic honey containing a viable and heat-resistant probiotic Bacillus coagulans T11 (IBRC-M10791) (108 CFU/g) or 25 g/day control honey (n = 30 each group) for 12 weeks. Fasting blood samples were taken at baseline and 12 weeks after supplementation to quantify glycemic status, lipid concentrations, biomarkers of inflammation, and oxidative stress. After 12 weeks of intervention, patients who received probiotic honey compared with the control honey had significantly decreased serum insulin levels (- 1.2 ± 1.8 vs. - 0.1 ± 1.3 μIU/mL, P = 0.004) and homeostasis model of assessment-estimated insulin resistance (- 0.5 ± 0.6 vs. 0.003 ± 0.4, P = 0.002) and significantly improved quantitative insulin sensitivity check index (+ 0.005 ± 0.009 vs. - 0.0007 ± 0.005, P = 0.004). Additionally, compared with the control honey, probiotic honey intake has resulted in a significant reduction in total-/HDL-cholesterol (- 0.2 ± 0.5 vs. + 0.1 ± 0.1, P = 0.04). Probiotic honey intake significantly reduced serum high-sensitivity C-reactive protein (hs-CRP) (- 1.9 ± 2.4 vs. - 0.2 ± 2.7 mg/L, P = 0.01) and plasma malondialdehyde (MDA) levels (- 0.1 ± 0.6 vs. + 0.6 ± 1.0 μmol/L, P = 0.002) compared with the control honey. Probiotic honey intake had no significant effects on other metabolic profiles compared with the control honey. Overall, findings from the current study demonstrated that probiotic honey consumption for 12 weeks among DN patients had beneficial effects on insulin metabolism, total-/HDL-cholesterol, serum hs-CRP, and plasma MDA levels, but did not affect other metabolic profiles. http://www.irct.ir: IRCT201705035623N115.
Collapse
Affiliation(s)
- Navid Mazruei Arani
- Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Emam-Djomeh
- Department of Food Science, Technology and Engineering Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Hamid Tavakolipour
- Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Reza Sharafati-Chaleshtori
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R., Iran
| | - Alireza Soleimani
- Department of Internal Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| |
Collapse
|
29
|
Zhang SH, Shurin GV, Khosravi H, Kazi R, Kruglov O, Shurin MR, Bunimovich YL. Immunomodulation by Schwann cells in disease. Cancer Immunol Immunother 2020; 69:245-253. [PMID: 31676924 PMCID: PMC11027810 DOI: 10.1007/s00262-019-02424-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Schwann cells are the principal glial cells of the peripheral nervous system which maintain neuronal homeostasis. Schwann cells support peripheral nerve functions and play a critical role in many pathological processes including injury-induced nerve repair, neurodegenerative diseases, infections, neuropathic pain and cancer. Schwann cells are implicated in a wide range of diseases due, in part, to their ability to interact and modulate immune cells. We discuss the accumulating examples of how Schwann cell regulation of the immune system initiates and facilitates the progression of various diseases. Furthermore, we highlight how Schwann cells may orchestrate an immunosuppressive tumor microenvironment by polarizing and modulating the activity of the dendritic cells.
Collapse
Affiliation(s)
- Sophia H Zhang
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hasan Khosravi
- Department of Dermatology, University of Pittsburgh Medical Center, E1157 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Rashek Kazi
- Department of Dermatology, University of Pittsburgh Medical Center, E1157 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Oleg Kruglov
- Department of Dermatology, University of Pittsburgh Medical Center, E1157 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yuri L Bunimovich
- Department of Dermatology, University of Pittsburgh Medical Center, E1157 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
30
|
Zheng YH, Ren CY, Shen Y, Li JB, Chen MW. A Cross-Sectional Study on the Correlation Between Inflammatory Cytokines, Negative Emotions, and Onset of Peripheral Neuropathy in Type 2 Diabetes. Neuropsychiatr Dis Treat 2020; 16:2881-2890. [PMID: 33293813 PMCID: PMC7718991 DOI: 10.2147/ndt.s278439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/09/2020] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE This study explored the changes in the levels of IL-6, IL-17, TNF-α, and TNF-β, whether such changes were associated with anxiety and depression in diabetic peripheral neuropathy (DPN), and what factors associated with the occurrence of DPN. METHODS Forty-four patients diagnosed with DPN comprised the DPN group, including DPN1 (mild diabetic peripheral neuropathy, 29 cases) and DPN2 groups (moderate-severe diabetic peripheral neuropathy, 15 cases). Thirty-seven individuals with type 2 diabetes mellitus constituted the diabetes mellitus with no neuropathy (NDPN) group. Electromyography was applied to confirm DPN, and the Toronto clinical scoring system (TCSS) score was used to assess the severity of DPN. All subjects' emotions were evaluated using the self-rating anxiety scale (SAS) and self-rating depression scale (SDS). Triiodothyronine (T3), tetraiodothyronine (T4), and thyroid-stimulating hormone (TSH) levels were measured using chemiluminescent immunoassay. The relevant biochemical indicators were detected using an automatic biochemical analyzer. The plasma levels of cytokines were detected using quantitative sandwich enzyme-linked immunosorbent assay. RESULTS Patients with DPN had elevated levels of anxiety, IL-6, IL-17, and TNF-α. There were some positive associations between negative emotions and cytokines. The TCSS score positively correlated with IL-17, SAS score, and T3. DPN independently correlated with age, disease duration, fasting plasma glucose (FPG), and IL-17. The combination of IL-17 and TNF-α had higher diagnostic value for DPN than any single cytokine. CONCLUSION Patients with DPN had elevated levels of inflammatory cytokines, which were associated with negative emotion, and IL-17 had independent correlation with DPN.
Collapse
Affiliation(s)
- Ya-Hong Zheng
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Chong-Yang Ren
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu 238000, People's Republic of China
| | - Ying Shen
- Department of Endocrinology, Nanjing Tongren Hospital, Nanjing 211102, People's Republic of China
| | - Jia-Bin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China.,Department of Infectious Diseases, The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu 238000, People's Republic of China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei 230022, People's Republic of China.,Institute of Bacterial Resistance, Anhui Medical University, Hefei 230022, People's Republic of China
| | - Ming-Wei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| |
Collapse
|
31
|
Donath MY, Dinarello CA, Mandrup-Poulsen T. Targeting innate immune mediators in type 1 and type 2 diabetes. Nat Rev Immunol 2019; 19:734-746. [PMID: 31501536 DOI: 10.1038/s41577-019-0213-9] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2019] [Indexed: 02/07/2023]
Abstract
Type 1 and type 2 diabetes are characterized by chronic inflammation; both diseases involve pancreatic islet inflammation, while systemic low-grade inflammation is a feature of obesity and type 2 diabetes. Long-term activation of the innate immune system impairs insulin secretion and action, and inflammation also contributes to macrovascular and microvascular complications of diabetes. However, despite strong preclinical evidence and proof-of-principle clinical trials demonstrating that targeting inflammatory pathways can prevent cardiovascular disease and other complications in patients with diabetes, there are still no approved treatments for diabetes that target innate immune mediators. Here, we review recent advances in our understanding of the inflammatory pathogenesis of type 1 and type 2 diabetes from a translational angle and point out the critical gaps in knowledge that need to be addressed to guide drug development.
Collapse
Affiliation(s)
- Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland. .,Department of Biomedicine, University of Basel, Basel, Switzerland.
| | | | | |
Collapse
|
32
|
Eid S, Sas KM, Abcouwer SF, Feldman EL, Gardner TW, Pennathur S, Fort PE. New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia 2019; 62:1539-1549. [PMID: 31346658 PMCID: PMC6679814 DOI: 10.1007/s00125-019-4959-1] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Diabetes adversely affects multiple organs, including the kidney, eye and nerve, leading to diabetic kidney disease, diabetic retinopathy and diabetic neuropathy, respectively. In both type 1 and type 2 diabetes, tissue damage is organ specific and is secondary to a combination of multiple metabolic insults. Hyperglycaemia, dyslipidaemia and hypertension combine with the duration and type of diabetes to define the distinct pathophysiology underlying diabetic kidney disease, diabetic retinopathy and diabetic neuropathy. Only recently have the commonalities and differences in the metabolic basis of these tissue-specific complications, particularly those involving local and systemic lipids, been systematically examined. This review focuses on recent progress made using preclinical models and human-based approaches towards understanding how bioenergetics and metabolomic profiles contribute to diabetic kidney disease, diabetic retinopathy and diabetic neuropathy. This new understanding of the biology of complication-prone tissues highlights the need for organ-specific interventions in the treatment of diabetic complications.
Collapse
Affiliation(s)
- Stephanie Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Kelli M Sas
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas W Gardner
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI, 48105, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
Bhati P, Alam R, Moiz JA, Hussain ME. Subclinical inflammation and endothelial dysfunction are linked to cardiac autonomic neuropathy in type 2 diabetes. J Diabetes Metab Disord 2019; 18:419-428. [PMID: 31890667 DOI: 10.1007/s40200-019-00435-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
Purpose The present study aimed to examine association between inflammatory and endothelial function biomarkers and indices of cardiac autonomic control in T2DM patients. Methods 50 T2DM patients were recruited for this study. For cardiac autonomic function, cardiovascular autonomic reflex tests (CARTs) and heart rate variability (HRV) analysis was performed. Blood samples were collected for evaluating inflammatory and endothelial function biomarkers. Multivariable linear regression analysis adjusted for diabetes duration, glycemic control, waist circumference, hypertension, dyslipidemia, metformin, and statins was performed to examine the association between the biomarkers and cardiac autonomic function parameters. Results Interleukin-6 was inversely related to total power (p = .009) and low frequency power (p = .04). Interleukin-18 and high sensitivity C-reactive protein inversely correlated with measures of cardiac vagal control (p < .05). Both nitric oxide and endothelial nitric oxide synthase were positively linked with cardiac vagal control indices (p < .05) whereas endothelin-1 did not show any independent association with cardiac autonomic function parameters. Conclusions Biomarkers of inflammation and endothelial function are associated with measures of cardiac vagal control and global HRV which suggest that there is some pathophysiological link between subclinical inflammation, endothelial dysfunction and cardiac autonomic dysfunction in T2DM.
Collapse
Affiliation(s)
- Pooja Bhati
- 1Diabetes Research Group, Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| | - Rizwan Alam
- 2Deen Dayal Upadhyay Kaushal Kendra, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| | - Jamal Ali Moiz
- 1Diabetes Research Group, Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| | - M Ejaz Hussain
- 1Diabetes Research Group, Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| |
Collapse
|
34
|
Donath MY, Meier DT, Böni-Schnetzler M. Inflammation in the Pathophysiology and Therapy of Cardiometabolic Disease. Endocr Rev 2019; 40:1080-1091. [PMID: 31127805 PMCID: PMC6624792 DOI: 10.1210/er.2019-00002] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
Abstract
The role of chronic inflammation in the pathogenesis of type 2 diabetes mellitus and associated complications is now well established. Therapeutic interventions counteracting metabolic inflammation improve insulin secretion and action and glucose control and may prevent long-term complications. Thus, a number of anti-inflammatory drugs approved for the treatment of other inflammatory conditions are evaluated in patients with metabolic syndrome. Most advanced are clinical studies with IL-1 antagonists showing improved β-cell function and glycemia and prevention of cardiovascular diseases and heart failure. However, alternative anti-inflammatory treatments, alone or in combinations, may turn out to be more effective, depending on genetic predispositions, duration, and manifestation of the disease. Thus, there is a great need for comprehensive and well-designed clinical studies to implement anti-inflammatory drugs in the treatment of patients with metabolic syndrome and its associated conditions.
Collapse
Affiliation(s)
- Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marianne Böni-Schnetzler
- Clinic of Endocrinology, Diabetes and Metabolism and Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
35
|
Ristikj-Stomnaroska D, Risteska-Nejashmikj V, Papazova M. Role of Inflammation in the Pathogenesis of Diabetic Peripheral Neuropathy. Open Access Maced J Med Sci 2019; 7:2267-2270. [PMID: 31592273 PMCID: PMC6765096 DOI: 10.3889/oamjms.2019.646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) means the presence of symptoms and/or signs of peripheral nerve damage that occur to people with diabetes, excluding all other causes of neuropathy. Chronic hyperglycaemia leads to increased secretion of tumour necrotic factor-alpha (TNF-α), with the development of micro and macroangiopathy, damage to nerve fibres and local demyelination. AIM To determine the role of inflammation in the peripheral nerve damage process concerning people suffering from type II diabetes mellitus. MATERIAL AND METHODS The study included a total of 80 subjects, men and women, divided into two groups: an examined group (n = 50) consisting of subjects with DPN at the age from 30 to 80 years and a control group (n = 30) of healthy subjects aged from 18 to 45. In the investigated group, a neurological examination was performed using the Diabetic Neuropathy Symptoms (DNS) Score and Electroneurography. All the subjects had the blood plasma concentration of TNF-α by ELISA technique. RESULTS The average value of TNF-α in the test group was 8.24 ± 2.899 pg/ml, while the control group was 4.36 ± 2.622 pg/ml (p < 0.0001). The average value of TNF-α was correlated with the achieved DNS score in the investigated group (p = 0.005). Concerning the linear association of the concentration of TNF-α with the peripheral nerve velocity in the investigated group, no statistical significance was detected. CONCLUSION Inflammation can play a role in the pathogenesis of diabetic autonomic neuropathy and cranial neuritis.
Collapse
Affiliation(s)
| | | | - Marija Papazova
- Institute for Anatomy, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| |
Collapse
|
36
|
Bönhof GJ, Herder C, Strom A, Papanas N, Roden M, Ziegler D. Emerging Biomarkers, Tools, and Treatments for Diabetic Polyneuropathy. Endocr Rev 2019; 40:153-192. [PMID: 30256929 DOI: 10.1210/er.2018-00107] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022]
Abstract
Diabetic neuropathy, with its major clinical sequels, notably neuropathic pain, foot ulcers, and autonomic dysfunction, is associated with substantial morbidity, increased risk of mortality, and reduced quality of life. Despite its major clinical impact, diabetic neuropathy remains underdiagnosed and undertreated. Moreover, the evidence supporting a benefit for causal treatment is weak at least in patients with type 2 diabetes, and current pharmacotherapy is largely limited to symptomatic treatment options. Thus, a better understanding of the underlying pathophysiology is mandatory for translation into new diagnostic and treatment approaches. Improved knowledge about pathogenic pathways implicated in the development of diabetic neuropathy could lead to novel diagnostic techniques that have the potential of improving the early detection of neuropathy in diabetes and prediabetes to eventually embark on new treatment strategies. In this review, we first provide an overview on the current clinical aspects and illustrate the pathogenetic concepts of (pre)diabetic neuropathy. We then describe the biomarkers emerging from these concepts and novel diagnostic tools and appraise their utility in the early detection and prediction of predominantly distal sensorimotor polyneuropathy. Finally, we discuss the evidence for and limitations of the current and novel therapy options with particular emphasis on lifestyle modification and pathogenesis-derived treatment approaches. Altogether, recent years have brought forth a multitude of emerging biomarkers reflecting different pathogenic pathways such as oxidative stress and inflammation and diagnostic tools for an early detection and prediction of (pre)diabetic neuropathy. Ultimately, these insights should culminate in improving our therapeutic armamentarium against this common and debilitating or even life-threatening condition.
Collapse
Affiliation(s)
- Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany
| | - Nikolaos Papanas
- Second Department of Internal Medicine, Diabetes Center, Diabetic Foot Clinic, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
37
|
Herder C, Kannenberg JM, Carstensen-Kirberg M, Strom A, Bönhof GJ, Rathmann W, Huth C, Koenig W, Heier M, Krumsiek J, Peters A, Meisinger C, Roden M, Thorand B, Ziegler D. A Systemic Inflammatory Signature Reflecting Cross Talk Between Innate and Adaptive Immunity Is Associated With Incident Polyneuropathy: KORA F4/FF4 Study. Diabetes 2018; 67:2434-2442. [PMID: 30115651 DOI: 10.2337/db18-0060] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 08/06/2018] [Indexed: 11/13/2022]
Abstract
Prospective analyses of biomarkers of inflammation and distal sensorimotor polyneuropathy (DSPN) are scarce and limited to innate immunity. We therefore aimed to assess associations between biomarkers reflecting multiple aspects of immune activation and DSPN. The study was based on 127 case subjects with incident DSPN and 386 noncase subjects from the population-based Cooperative Health Research in the Region of Augsburg (KORA) F4/FF4 cohort (follow-up 6.5 years). Proximity extension assay technology was used to measure serum levels of biomarkers of inflammation. Of 71 biomarkers assessed, 26 were associated with incident DSPN. After adjustment for multiple testing, higher levels of six biomarkers remained related to incident DSPN. Three of these proteins (MCP-3/CCL7, MIG/CXCL9, IP-10/CXCL10) were chemokines, and the other three (DNER, CD40, TNFRSF9) were soluble forms of transmembrane receptors. The chemokines had neurotoxic effects on neuroblastoma cells in vitro. Addition of all six biomarkers improved the C statistic of a clinical risk model from 0.748 to 0.783 (P = 0.011). Pathway analyses indicated that multiple cell types from innate and adaptive immunity are involved in the development of DSPN. We thus identified novel associations between biomarkers of inflammation and incident DSPN pointing to a complex cross talk between innate and adaptive immunity in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia M Kannenberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Maren Carstensen-Kirberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Cornelia Huth
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany
- Department of Internal Medicine II-Cardiology, University of Ulm Medical Center, Ulm, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Krumsiek
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Annette Peters
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christa Meisinger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Epidemiology, Ludwig-Maximilians-Universität München am UNIKA-T Augsburg, Augsburg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
38
|
Sloan G, Shillo P, Selvarajah D, Wu J, Wilkinson ID, Tracey I, Anand P, Tesfaye S. A new look at painful diabetic neuropathy. Diabetes Res Clin Pract 2018; 144:177-191. [PMID: 30201394 DOI: 10.1016/j.diabres.2018.08.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023]
Abstract
The prevalence of diabetes mellitus and its chronic complications continue to increase alarmingly. Consequently, the massive expenditure on diabetic distal symmetrical polyneuropathy (DSPN) and its sequelae, will also likely rise. Up to 50% of patients with diabetes develop DSPN, and about 20% develop neuropathic pain (painful-DSPN). Painful-DSPN can cast a huge burden on sufferers' lives with increased rates of unemployment, mental health disorders and physical co-morbidities. Unfortunately, due to limited understanding of the mechanisms leading to painful-DSPN, current treatments remain inadequate. Recent studies examining the pathophysiology of painful-DSPN have identified maladaptive alterations at the level of both the peripheral and central nervous systems. Additionally, genetic studies have suggested that patients with variants of voltage gated sodium channels may be more at risk of developing neuropathic pain in the presence of a disease trigger such as diabetes. We review the recent advances in genetics, skin biopsy immunohistochemistry and neuro-imaging, which have the potential to further our understanding of the condition, and identify targets for new mechanism based therapies.
Collapse
Affiliation(s)
- Gordon Sloan
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Pallai Shillo
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Dinesh Selvarajah
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Jing Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Iain D Wilkinson
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Irene Tracey
- FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Praveen Anand
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
39
|
Tsantoulas C, Laínez S, Wong S, Mehta I, Vilar B, McNaughton PA. Hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) ion channels drive pain in mouse models of diabetic neuropathy. Sci Transl Med 2018; 9:eaam6072. [PMID: 28954930 DOI: 10.1126/scitranslmed.aam6072] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/22/2017] [Accepted: 09/06/2017] [Indexed: 01/12/2023]
Abstract
Diabetic patients frequently suffer from continuous pain that is poorly treated by currently available analgesics. We used mouse models of type 1 and type 2 diabetes to investigate a possible role for the hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) ion channels as drivers of diabetic pain. Blocking or genetically deleting HCN2 channels in small nociceptive neurons suppressed diabetes-associated mechanical allodynia and prevented neuronal activation of second-order neurons in the spinal cord in mice. In addition, we found that intracellular cyclic adenosine monophosphate (cAMP), a positive HCN2 modulator, is increased in somatosensory neurons in an animal model of painful diabetes. We propose that the increased intracellular cAMP drives diabetes-associated pain by facilitating HCN2 activation and consequently promoting repetitive firing in primary nociceptive nerve fibers. Our results suggest that HCN2 may be an analgesic target in the treatment of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Christoforos Tsantoulas
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Sergio Laínez
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Sara Wong
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Ishita Mehta
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Bruno Vilar
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Peter A McNaughton
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK.
| |
Collapse
|
40
|
Carbajal-Ramírez A, García-Macedo R, Díaz-García CM, Sanchez-Soto C, Padrón AM, de la Peña JE, Cruz M, Hiriart M. Neuropathy-specific alterations in a Mexican population of diabetic patients. BMC Neurol 2017; 17:161. [PMID: 28841856 PMCID: PMC6389277 DOI: 10.1186/s12883-017-0939-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 08/10/2017] [Indexed: 11/10/2022] Open
Abstract
Background Neuropathy is one of the major complications of type 2 diabetes mellitus. Our first aim was to determine the clinical characteristics of a population of diabetic patients with different types of neuropathy. Our next goal was to characterize the cytokine profile (IL-6 and IL-10), nerve growth factor (NGF) and circulating cell-adhesion molecules in these patients. Finally, we aimed to compare the renal function among the groups of neuropathic patients. Methods In a cross-sectional study, we included 217 diabetic patients classified in three groups: sensory polyneuropathy with hypoesthesia (DShP) or hyperesthesia (DSHP), and motor neuropathy (DMN). Two control groups were included: one of 26 diabetic non-neuropathic patients (DNN), and the other of 375 non-diabetic (ND) healthy subjects. The participants were attending to the Mexican Institute of Social Security. Results The circulating levels of NGF were significantly lower in diabetic patients, compared to healthy subjects. The range of IL-6 and IL-10 levels in neuropathic patients was higher than the control groups; however, several samples yielded null measurements. Neuropathic patients also showed increased circulating levels of the adhesion molecules ICAM, VCAM, and E-Selectin, compared to the ND group. Moreover, neuropathic patients showed reduced glomerular filtration rates compared to healthy subjects (82–103 ml/min per 1.73 m2, data as range from 25th–75th percentiles), especially in the group with DMN (45–76 ml/min per 1.73 m2). Conclusions Some particular alterations in neuropathic patients included -but were not limited to- changes in circulating NGF, cell adhesion molecules, inflammation, and the worsening of the renal function. This study supports the need for further clinical surveillance and interventions considering a neuropathy-related basis. Electronic supplementary material The online version of this article (doi:10.1186/s12883-017-0939-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angélica Carbajal-Ramírez
- Neurology Service "Dr. Bernardo Sepúlveda G". Centro Médico Nacional Siglo XXI, Mexican Institute of Social Security, Mexico City, Mexico
| | - Rebeca García-Macedo
- Medical Research Unit in Biochemistry, UMAE Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Mexican Institute of Social Security, Mexico City, Mexico
| | - Carlos Manlio Díaz-García
- Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México/Circuito Ext. SN, UNAM, CP 04510, Mexico, México City, México
| | - Carmen Sanchez-Soto
- Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México/Circuito Ext. SN, UNAM, CP 04510, Mexico, México City, México
| | - Araceli Méndez Padrón
- Medical Research Unit in Biochemistry, UMAE Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Mexican Institute of Social Security, Mexico City, Mexico
| | - Jorge Escobedo de la Peña
- Research Unit of Clinical Epidemiology Gabriel Mancera, Hospital Regional 1 Carlos MacGregor Sánchez Navarro, Mexican Institute of Social Security, Mexico City, Mexico
| | - Miguel Cruz
- Medical Research Unit in Biochemistry, UMAE Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Mexican Institute of Social Security, Mexico City, Mexico
| | - Marcia Hiriart
- Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México/Circuito Ext. SN, UNAM, CP 04510, Mexico, México City, México.
| |
Collapse
|
41
|
Herder C, Kannenberg JM, Huth C, Carstensen-Kirberg M, Rathmann W, Koenig W, Heier M, Püttgen S, Thorand B, Peters A, Roden M, Meisinger C, Ziegler D. Proinflammatory Cytokines Predict the Incidence and Progression of Distal Sensorimotor Polyneuropathy: KORA F4/FF4 Study. Diabetes Care 2017; 40:569-576. [PMID: 28174259 DOI: 10.2337/dc16-2259] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/05/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Experimental and epidemiological studies have implicated inflammatory processes in the pathogenesis of distal sensorimotor polyneuropathy (DSPN), but prospective studies are lacking. We hypothesized that biomarkers of inflammation predict the development and progression of DSPN in a population-based cohort. RESEARCH DESIGN AND METHODS This study was based on participants aged 62-81 years from the Cooperative Health Research in the Region of Augsburg (KORA) F4/FF4 cohort, with a mean follow-up of 6.5 years. The predictive value of systemic levels of eight biomarkers of inflammation was assessed for incident DSPN in 133 incident case subjects and 397 individuals without incident DSPN, and for DSPN progression in 57 patients with prevalent DSPN at both time points. RESULTS Higher hs-CRP, interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1 receptor antagonist (IL-1RA), and soluble intercellular adhesion molecule (sICAM-1) and lower adiponectin levels were associated with incident DSPN in age- and sex-adjusted analysis; IL-18 and omentin were not. IL-6 (odds ratio 1.31 [95% CI 1.00-1.71]) and TNF-α (odds ratio 1.31 [95% CI 1.03-1.67]) remained associated with incident DSPN after adjusting for known DSPN risk factors. The addition of both cytokines to a clinical risk model improved model fit and reclassification. sICAM-1 and IL-1RA were positively associated with progression of DSPN. CONCLUSIONS Systemic subclinical and vascular inflammation predicted both the onset and progression of DSPN over 6.5 years in an older general population. Thus modulation of inflammatory processes may be relevant to prevent and/or treat diabetic neuropathy.
Collapse
Affiliation(s)
- Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Julia M Kannenberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Cornelia Huth
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Maren Carstensen-Kirberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany
| | - Margit Heier
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sonja Püttgen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christa Meisinger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
42
|
Dimova R, Tankova T, Guergueltcheva V, Tournev I, Chakarova N, Grozeva G, Dakovska L. Risk factors for autonomic and somatic nerve dysfunction in different stages of glucose tolerance. J Diabetes Complications 2017; 31:537-543. [PMID: 27894750 DOI: 10.1016/j.jdiacomp.2016.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 12/30/2022]
Abstract
AIM The present study evaluates autonomic and somatic nerve function in different stages of glucose tolerance and its correlation with different cardio-metabolic parameters. MATERIAL AND METHODS Four hundred seventy-eight subjects, mean age 49.3±13.7years and mean BMI 31.0±6.2kg/m2, divided according to glucose tolerance: 130 with normal glucose tolerance (NGT), 227 with prediabetes (125 with impaired fasting glucose (IFG) and 102 with isolated impaired glucose tolerance (iIGT)), and 121 with newly-diagnosed T2D (NDT2D), were enrolled. Glucose tolerance was studied during OGTT. Antropometric indices, blood pressure, HbA1c, serum lipids, hsCRP and albumin-to-creatinine ratio were assessed. Body composition was estimated by a bioimpedance method (InBody 720, BioSpace). Tissue AGEs accumulation was assessed by skin autofluorescence (AGE-Reader-DiagnOpticsTM). Electroneurography was performed by electromyograph Dantec Keypoint. Cardiovascular autonomic neuropathy (CAN) was assessed by ANX-3.0 method applying standard clinical tests. RESULTS CAN was found in 12.3% of NGT, 19.8% of prediabetes (13.2% of IFG and 20.6% of iIGT), and 32.2% of NDT2D. The prevalence of diabetic sensory polyneuropathy (DSPN) was 5.7% in prediabetes and 28.6% in NDT2D. The panel of age, QTc interval, waist circumference, diastolic blood pressure, and 120-min plasma glucose was related to sympathetic activity (F [5451]=78.50, p<0.001). The panel of age, waist circumference, and QTc interval was related to parasympathetic power (F [3453]=132.26, p<0.001). HbA1c and age were related to sural SNAP (F [2454]=15.12, p<0.001). HbA1c and AGEs were related to sural SNCV (F [2454]=12.18, p<0.001). CONCLUSIONS Our results demonstrate a high prevalence of autonomic and sensory nerve dysfunction in early stages of glucose intolerance. Age, postprandial glycemia, central obesity, diastolic blood pressure and QTc interval outline as predictive markers of CAN; hyperglycemia, glycation and age of DSPN.
Collapse
Affiliation(s)
- Rumyana Dimova
- Department of Diabetology, Clinical Center of Endocrinology, Medical University Sofia, Sofia, 1431, Bulgaria.
| | - Tsvetalina Tankova
- Department of Diabetology, Clinical Center of Endocrinology, Medical University Sofia, Sofia, 1431, Bulgaria
| | | | - Ivailo Tournev
- Department of Neurology, Medical University Sofia, Sofia, 1431, Bulgaria
| | - Nevena Chakarova
- Department of Diabetology, Clinical Center of Endocrinology, Medical University Sofia, Sofia, 1431, Bulgaria
| | - Greta Grozeva
- Department of Diabetology, Clinical Center of Endocrinology, Medical University Sofia, Sofia, 1431, Bulgaria
| | - Lilia Dakovska
- Department of Diabetology, Clinical Center of Endocrinology, Medical University Sofia, Sofia, 1431, Bulgaria
| |
Collapse
|
43
|
Gonçalves NP, Vægter CB, Andersen H, Østergaard L, Calcutt NA, Jensen TS. Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nat Rev Neurol 2017; 13:135-147. [PMID: 28134254 DOI: 10.1038/nrneurol.2016.201] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The prevalence of diabetes worldwide is at pandemic levels, with the number of patients increasing by 5% annually. The most common complication of diabetes is peripheral neuropathy, which has a prevalence as high as 50% and is characterized by damage to neurons, Schwann cells and blood vessels within the nerve. The pathogenic mechanisms of diabetic neuropathy remain poorly understood, impeding the development of targeted therapies to treat nerve degeneration and its most disruptive consequences of sensory loss and neuropathic pain. Involvement of Schwann cells has long been proposed, and new research techniques are beginning to unravel a complex interplay between these cells, axons and microvessels that is compromised during the development of diabetic neuropathy. In this Review, we discuss the evolving concept of Schwannopathy as an integral factor in the pathogenesis of diabetic neuropathy, and how disruption of the interactions between Schwann cells, axons and microvessels contribute to the disease.
Collapse
Affiliation(s)
- Nádia P Gonçalves
- The International Diabetic Neuropathy Consortium (IDNC), Aarhus University, Nørrebrogade, 8000 Aarhus C, Denmark
| | - Christian B Vægter
- Danish Research Institute of Translational Neuroscience DANDRITE, Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Ole Worms Alle 3, 8000 Aarhus C, Denmark
| | - Henning Andersen
- Department of Neurology, Danish Pain Research Center and IDNC, Aarhus University Hospital, Nørrebrogade, 8000 Aarhus C, Denmark
| | - Leif Østergaard
- Department of Neuroradiology and Center for Functionally Integrative Neuroscience, Aarhus University Hospital, Nørrebrogade, 8000 Aarhus C, Denmark
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, Gilman Drive, La Jolla, California 92093, USA
| | - Troels S Jensen
- Department of Neurology, Danish Pain Research Center and IDNC, Aarhus University Hospital, Nørrebrogade, 8000 Aarhus C, Denmark
| |
Collapse
|
44
|
Zhu T, Meng Q, Ji J, Zhang L, Lou X. TLR4 and Caveolin-1 in Monocytes Are Associated With Inflammatory Conditions in Diabetic Neuropathy. Clin Transl Sci 2016; 10:178-184. [PMID: 27981790 PMCID: PMC5421735 DOI: 10.1111/cts.12434] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/04/2016] [Indexed: 12/26/2022] Open
Abstract
The purpose of this study was to investigate the expression of TLR4 and caveolin‐1 in monocytes among healthy volunteers as well as those with type‐2 diabetes mellitus (T2DM) and diabetic peripheral neuropathy (DPN). Nineteen healthy control subjects, 18 patients with T2DM, and 20 patients with DPN were enrolled. Toll‐like receptor (TLR)4, caveolin‐1, MyD88, phosphorylated IκB, and plasma TNF‐α and interleukin (IL)‐6 were measured using real‐time polymerase chain reaction, Western blotting, and enzyme‐linked immunosorbent assay. Compared with the other two groups, the DPN group had higher expression of TLR4, MyD88, phosphorylated IκB, TNF‐α, and IL‐6, but significantly lower levels of caveolin‐1 and total IκB in monocytes. Plasma concentrations of TNF‐α and IL‐6 were positively correlated with TLR4 and negatively correlated with caveolin‐1 in patients with DPN. Plasma concentration of TLR4 was negatively correlated with caveolin‐1 in patients with DPN. Reduced expression of caveolin‐1 in monocytes could aggravate the TLR4‐mediated inflammatory cascade.
Collapse
Affiliation(s)
- T Zhu
- Department of Anesthesiology, Songjiang Center Hospital, NanJing Medical University, Shanghai, China
| | - Q Meng
- Department of Anesthesiology, Songjiang Center Hospital, NanJing Medical University, Shanghai, China.,Department of Anesthesiology, Nanjing Hospital, Nanjing Medical University & Nanjing First Hospital, Nanjing, China
| | - J Ji
- Department of Anesthesiology, Songjiang Center Hospital, NanJing Medical University, Shanghai, China
| | - L Zhang
- Department of Anesthesiology, Songjiang Center Hospital, NanJing Medical University, Shanghai, China
| | - X Lou
- Department of Central Laboratory, Songjiang Hospital, First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
45
|
Herder C, Schamarek I, Nowotny B, Carstensen-Kirberg M, Straßburger K, Nowotny P, Kannenberg JM, Strom A, Püttgen S, Müssig K, Szendroedi J, Roden M, Ziegler D. Inflammatory markers are associated with cardiac autonomic dysfunction in recent-onset type 2 diabetes. Heart 2016; 103:63-70. [PMID: 27481890 DOI: 10.1136/heartjnl-2015-309181] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Cardiovascular autonomic neuropathy is a common but underestimated diabetes-related disorder. Associations between cardiovascular autonomic dysfunction and subclinical inflammation, both risk factors of diabetic comorbidities and mortality, have been proposed in non-diabetic populations, while data for type 1 and type 2 diabetes are conflicting. Our aim was to investigate associations between inflammation-related biomarkers and cardiac autonomic dysfunction in patients with diabetes. METHODS We characterised the associations between seven biomarkers of subclinical inflammation and cardiac autonomic dysfunction based on heart rate variability and cardiovascular autonomic reflex tests (CARTs) in 161 individuals with type 1 and 352 individuals with type 2 diabetes (time since diagnosis of diabetes <1 year). Analyses were adjusted for age, sex, anthropometric, metabolic and lifestyle factors, medication and cardiovascular comorbidities. RESULTS In individuals with type 2 diabetes, higher serum interleukin (IL)-18 was associated with lower vagal activity (p≤0.015 for association with CARTs), whereas higher levels of total and high-molecular-weight adiponectin showed associations with very low frequency power, an indicator of reduced sympathetic activity (p≤0.014). Higher levels of soluble intercellular adhesion molecule-1 were associated with indicators of both lower vagal (p=0.025) and sympathetic (p=0.008) tone, soluble E-selectin with one indicator of lower vagal activity (p=0.047). Serum C-reactive protein and IL-6 were also related to cardiac autonomic dysfunction, but these associations were explained by confounding factors. No consistent associations were found in individuals with type 1 diabetes. CONCLUSIONS Biomarkers of inflammation were differentially associated with diminished cardiac autonomic dysfunction in recent-onset type 2 diabetes.
Collapse
Affiliation(s)
- Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Imke Schamarek
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Bettina Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Maren Carstensen-Kirberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Klaus Straßburger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Julia M Kannenberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Sonja Püttgen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Karsten Müssig
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
46
|
Thakur V, Gonzalez M, Pennington K, Nargis S, Chattopadhyay M. Effect of exercise on neurogenic inflammation in spinal cord of Type 1 diabetic rats. Brain Res 2016; 1642:87-94. [PMID: 27018295 DOI: 10.1016/j.brainres.2016.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/10/2016] [Accepted: 03/09/2016] [Indexed: 11/26/2022]
Abstract
Neuropathy is a long-standing and hard to treat complication of diabetes that interferes almost 25-30% of diabetic patients and impacts the quality of life of the patients. Unforeseen side effects, dependency and addiction made the existing medical treatments comparatively ineffective. A number of studies indicate that moderate physical activity provides health-related advantages. However, existing data do not confirm whether regular physical activity would reduce the amount of inflammation in the nervous system of the subjects with Type 1 diabetes. This study reveals the significance of exercise to alleviate inflammation in the spinal cord of the nervous system and preserve sensory nerve function in animals with Type 1 diabetes after 6 weeks of exercise paradigm. Streptozotocin-diabetic animals were placed in motorized running wheels for sixty minutes per day, for five days a week for 6 weeks starting at one week after diabetes. Emerging evidence suggests that the increases in inflammatory mediators play an important role in the development of sensory neuropathy. This study shows that moderate exercise can reduce the release of a number of proinflammatory cytokines in the dorsal horn (DH) of spinal cord, subsequently delaying the development of neuropathy along with an increase in the anti-inflammatory mediator IL10 in the DH. In general, this study indicates that exercise may provide an alternative to the treatment for sensory neuropathy in Type 1 diabetic subjects via reducing the use of medication and providing an easier way to manage neuropathy.
Collapse
Affiliation(s)
- Vikram Thakur
- Center of Emphasis in Diabetes and Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Mayra Gonzalez
- Center of Emphasis in Diabetes and Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Kristen Pennington
- Center of Emphasis in Diabetes and Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Syeda Nargis
- Center of Emphasis in Diabetes and Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Munmun Chattopadhyay
- Center of Emphasis in Diabetes and Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
47
|
Inoue R, Sumitani M, Yasuda T, Tsuji M, Nakamura M, Shimomura I, Shibata M, Yamada Y. Independent Risk Factors for Positive and Negative Symptoms in Patients with Diabetic Polyneuropathy. J Pain Palliat Care Pharmacother 2016; 30:178-83. [PMID: 27337438 DOI: 10.1080/15360288.2016.1192081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Patients with diabetes occasionally develop diabetic polyneuropathy (DPN), which is characterized by both positive symptoms such as pain and negative symptoms such as numbness/dysesthesia. However, these symptoms have always been collectively analyzed to determine their risk factors. This study aimed to independently analyze the risk factors for neuropathic pain and numbness/dysesthesia in DPN patients. In total, 298 patients with diabetes (age: 61.1 ± 10.4 years; 176 male) were included. The relationships among the incidence of DPN and its clinical parameters were determined using logistic regression models. Then, the statistical model was applied in two groups of DPN patients: those with pain only or both pain and the negative symptoms (pain group; n = 25) and those with the negative symptoms only or both pain and the negative symptoms (numbness/dysesthesia group; n = 60). All logistic regression models were adjusted for the duration of diabetes, glycosylated hemoglobin levels, and age. The depression score was higher for patients with DPN than for those without, although it did not reach an abnormal level. An abnormal Achilles tendon reflex (ATR) and insulin treatment, but not smoking, hypertension, hyperlipidemia, and diabetic retinopathy, were associated with DPN. Furthermore, female sex and an abnormal ATR and insulin treatment were significant clinical features in the pain and numbness/numbness groups, respectively. Overweight and obesity were the common clinical features in both groups. We conclude that the positive and negative symptoms of DPN possibly have independent risk factors, suggesting different underlying mechanisms and the need for separate diagnosis and treatment.
Collapse
|
48
|
Schamarek I, Herder C, Nowotny B, Carstensen-Kirberg M, Straßburger K, Nowotny P, Strom A, Püttgen S, Müssig K, Szendroedi J, Roden M, Ziegler D. Adiponectin, markers of subclinical inflammation and nerve conduction in individuals with recently diagnosed type 1 and type 2 diabetes. Eur J Endocrinol 2016; 174:433-43. [PMID: 26733478 DOI: 10.1530/eje-15-1010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/05/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Subclinical inflammation has been implicated in the development of diabetic sensorimotor polyneuropathy (DSPN), but studies using electrophysiological assessment as outcomes are scarce. Therefore, we aimed to investigate associations of biomarkers reflecting different aspects of subclinical inflammation with motor and sensory nerve conduction velocity (NCV) in individuals with diabetes. DESIGN AND METHODS Motor and sensory NCV was assessed in individuals with recently diagnosed type 2 (n=352) or type 1 diabetes (n=161) from the baseline cohort of the observational German Diabetes Study. NCV sum scores were calculated for median, ulnar and peroneal motor as well as median, ulnar and sural sensory nerves. Associations between inflammation-related biomarkers, DSPN and NCV sum scores were estimated using multiple regression models. RESULTS In type 2 diabetes, high serum interleukin (IL)-6 was associated with the presence of DSPN and reduced motor NCV. Moreover, higher levels of high-molecular weight (HMW) adiponectin, total adiponectin and their ratio were associated with prevalent DSPN and both diminished motor and sensory NCV, whereas no consistent associations were observed for C-reactive protein, IL18, soluble intercellular adhesion molecule-1 and E-selectin. In type 1 diabetes, only HMW and total adiponectin showed positive associations with motor NCV. CONCLUSIONS Our results point to a link between IL6 and both DSPN and slowed motor NCV in recently diagnosed type 2 diabetes. The reverse associations between adiponectin and NCV in type 1 and type 2 diabetes are intriguing, and further studies should explore whether they may reflect differences in the pathogenesis of DSPN in both diabetes types.
Collapse
Affiliation(s)
- Imke Schamarek
- Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bettina Nowotny
- Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maren Carstensen-Kirberg
- Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Straßburger
- Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Nowotny
- Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexander Strom
- Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sonja Püttgen
- Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karsten Müssig
- Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dan Ziegler
- Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, GermanyGerman Center for Diabetes ResearchMünchen-Neuherberg, GermanyInstitute for Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
49
|
Zou SY, Zhao Y, Shen YP, Shi YF, Zhou HJ, Zou JY, Shi BM. Identifying at-risk foot among hospitalized patients with type 2 diabetes: A cross-sectional study in one Chinese tertiary hospital. Chronic Dis Transl Med 2016; 1:210-216. [PMID: 29063009 PMCID: PMC5643747 DOI: 10.1016/j.cdtm.2015.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE To investigate the prevalence of diabetic at-risk foot and its associated factors. METHODS A total of 838 hospitalized patients with type 2 diabetes were screened for at-risk foot. Neural and vascular disorders were evaluated by assessing vibration perception thresholds and ankle brachial indexes (ABIs). After excluding 12 patients with abnormally high ABIs, remaining individuals with neural and/or vascular disorder were identified as at-risk patients and further classified into three subtypes: isolated neural disorder, isolated vascular disorder and mixed disorder. Potential associated factors were examined using Logistic regression models. RESULTS In the final sample of 826 individuals, the prevalence of diabetic at-risk foot was 30.6%. Among all at-risk patients, isolated neural disorders (69.6%) were more common than mixed (16.2%) or isolated vascular disorders (14.2%). Isolated neural and vascular disorders shared specific risk factors, including age per 20-year increment (odds ratio [95% CI], 3.73 [2.59-5.37] and 4.01 [1.98-8.11]), diabetic duration ≥10 years (1.69 [1.13-2.54] and 3.29 [1.49-7.24]) and systolic blood pressure ≥140 mmHg (1.96 [1.31-2.93] and 2.90 [1.38-6.10]) respectively. In addition, isolated neural disorders were associated with a heavy smoking history (95%CI 2.69 [1.15-6.31]), increased high-sensitivity C-reactive protein levels (95%CI 1.30 [1.04-1.62]) and mild obesity (95%CI 0.49 [0.20-1.24]). Isolated vascular disorders were linked with decreased high density lipoprotein (HDL) cholesterol levels (95%CI 3.42 [1.31-8.96]) and increased triglycerides levels (95%CI 2.74 [1.26-5.97]). CONCLUSIONS Diabetic at-risk foot is epidemic among hospitalized patients with type 2 diabetes. Aging, long-term diabetes, hypertension, smoking, inflammatory response and dyslipidemia may be associated with the prevalence of diabetic at-risk foot.
Collapse
Affiliation(s)
- Sheng-Yi Zou
- Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Yuan Zhao
- Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Yue-Ping Shen
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Yao-Fang Shi
- Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Hui-Juan Zhou
- Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Jian-Ying Zou
- Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Bi-Min Shi
- Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| |
Collapse
|
50
|
Román-Pintos LM, Villegas-Rivera G, Rodríguez-Carrizalez AD, Miranda-Díaz AG, Cardona-Muñoz EG. Diabetic Polyneuropathy in Type 2 Diabetes Mellitus: Inflammation, Oxidative Stress, and Mitochondrial Function. J Diabetes Res 2016; 2016:3425617. [PMID: 28058263 PMCID: PMC5183791 DOI: 10.1155/2016/3425617] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023] Open
Abstract
Diabetic polyneuropathy (DPN) is defined as peripheral nerve dysfunction. There are three main alterations involved in the pathologic changes of DPN: inflammation, oxidative stress, and mitochondrial dysfunction. Inflammation induces activation of nuclear factor kappa B, activator protein 1, and mitogen-activated protein kinases. Oxidative stress induced by hyperglycemia is mediated by several identified pathways: polyol, hexosamine, protein kinase C, advanced glycosylation end-products, and glycolysis. In addition, mitochondrial dysfunction accounts for most of the production of reactive oxygen and nitrosative species. These free radicals cause lipid peroxidation, protein modification, and nucleic acid damage, to finally induce axonal degeneration and segmental demyelination. The prevalence of DPN ranges from 2.4% to 78.8% worldwide, depending on the diagnostic method and the population assessed (hospital-based or outpatients). Risk factors include age, male gender, duration of diabetes, uncontrolled glycaemia, height, overweight and obesity, and insulin treatment. Several diagnostic methods have been developed, and composite scores combined with nerve conduction studies are the most reliable to identify early DPN. Treatment should be directed to improve etiologic factors besides reducing symptoms; several approaches have been evaluated to reduce neuropathic impairments and improve nerve conduction, such as oral antidiabetics, statins, and antioxidants (alpha-lipoic acid, ubiquinone, and flavonoids).
Collapse
Affiliation(s)
- Luis Miguel Román-Pintos
- Departamento de Ciencias de la Salud-Enfermedad, Centro Universitario de Tonalá, Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Geannyne Villegas-Rivera
- Departamento de Ciencias de la Salud-Enfermedad, Centro Universitario de Tonalá, Universidad de Guadalajara, Guadalajara, JAL, Mexico
- Unidad de Investigación Médica, Instituto de Investigación Clínica de Occidente, Guadalajara, JAL, Mexico
| | - Adolfo Daniel Rodríguez-Carrizalez
- Instituto de Terapéutica Experimental y Clínica, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Alejandra Guillermina Miranda-Díaz
- Instituto de Terapéutica Experimental y Clínica, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
- *Alejandra Guillermina Miranda-Díaz:
| | - Ernesto Germán Cardona-Muñoz
- Instituto de Terapéutica Experimental y Clínica, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
| |
Collapse
|