1
|
Sobel SI, Dubé JJ. Social media for obesity education: a general overview for the novice creator. ADVANCES IN PHYSIOLOGY EDUCATION 2024; 48:114-121. [PMID: 38205520 DOI: 10.1152/advan.00120.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/12/2024]
Abstract
Rates of obesity continue to rise in the United States and across the globe. Obesity is a risk factor for developing insulin resistance, type 2 diabetes, and cardiovascular disease. For clinicians, other health care providers, and educators, providing patients with accurate and meaningful information about obesity, including lifestyle (diet and exercise) interventions and symptom monitoring, is challenging because of infrequent contact, methods of communication, a lack of effective patient education resources, and inefficient patient feedback methods. Evidence suggests that significantly more patients are now getting their health care information online from general medical websites, disease-specific network communities, and social media. Thus, harnessing the power of technologies, including personal computers and smartphones, with attention to social media may equip health care providers with methods to serve their patients better by addressing challenges, improving indirect patient contact, and enhancing health outcomes. This article aims to provide an overview of technology with a focus on social media use in obesity education and outreach. Practical information is provided related to creating content, delivering content, and managing the social media space for the novice creator.NEW & NOTEWORTHY Rates of obesity continue to increase. Health care providers have a limited time to cover the nuances of obesity. Technology and social media are tools that can help health care workers provide obesity education to a large audience. This article provides the foundations for obesity education content generation and delivery for the novice creator.
Collapse
Affiliation(s)
- Sandra I Sobel
- Summon Health, LLC, Pittsburgh, Pennsylvania, United States
| | - John J Dubé
- School of Arts, Science, and Business, Chatham University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
2
|
Liu PY, Lawrence-Sidebottom D, Piotrowska K, Zhang W, Iranmanesh A, Auchus RJ, Veldhuis JD, Van Dongen HPA. Clamping Cortisol and Testosterone Mitigates the Development of Insulin Resistance during Sleep Restriction in Men. J Clin Endocrinol Metab 2021; 106:e3436-e3448. [PMID: 34043794 PMCID: PMC8660069 DOI: 10.1210/clinem/dgab375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 01/04/2023]
Abstract
CONTEXT Sleep loss in men increases cortisol and decreases testosterone, and sleep restriction by 3 to 4 hours/night induces insulin resistance. OBJECTIVE We clamped cortisol and testosterone and determined the effect on insulin resistance. METHODS This was a randomized double-blind, in-laboratory crossover study in which 34 healthy young men underwent 4 nights of sleep restriction of 4 hours/night under 2 treatment conditions in random order: dual hormone clamp (cortisol and testosterone fixed), or matching placebo (cortisol and testosterone not fixed). Fasting blood samples, and an additional 23 samples for a 3-hour oral glucose tolerance test (OGTT), were collected before and after sleep restriction under both treatment conditions. Cytokines and hormones were measured from the fasting samples. Overall insulin sensitivity was determined from the OGTT by combining complementary measures: homeostasis model assessment of insulin resistance of the fasting state; Matsuda index of the absorptive state; and minimal model of both fasting and absorptive states. RESULTS Sleep restriction alone induced hyperinsulinemia, hyperglycemia, and overall insulin resistance (P < 0.001 for each). Clamping cortisol and testosterone alleviated the development of overall insulin resistance (P = 0.046) and hyperinsulinemia (P = 0.014) by 50%. Interleukin-6, high-sensitivity C-reactive protein, peptide YY, and ghrelin did not change, whereas tumor necrosis factor-α and leptin changed in directions that would have mitigated insulin resistance with sleep restriction alone. CONCLUSION Fixing cortisol-testosterone exposure mitigates the development of insulin resistance and hyperinsulinemia, but not hyperglycemia, from sustained sleep restriction in men. The interplay between cortisol and testosterone may be important as a mechanism by which sleep restriction impairs metabolic health.
Collapse
Affiliation(s)
- Peter Y Liu
- Division of Endocrinology, The Lundquist Institute at Harbor UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA
| | - Darian Lawrence-Sidebottom
- Sleep and Performance Research Center, Washington State University, Spokane, WA, USA
- Neuroscience Graduate Program, Washington State University, Pullman, WA, USA
| | - Katarzyna Piotrowska
- Division of Endocrinology, The Lundquist Institute at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Wenyi Zhang
- Division of Endocrinology, The Lundquist Institute at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Ali Iranmanesh
- Endocrinology Service, VA Medical Center, Salem, VA, USA
| | - Richard J Auchus
- Division of Metabolism, Diabetes, and Endocrinology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Johannes D Veldhuis
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, MN, USA
| | - Hans P A Van Dongen
- Sleep and Performance Research Center, Washington State University, Spokane, WA, USA
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| |
Collapse
|
3
|
Moran GW, Thapaliya G. The Gut-Brain Axis and Its Role in Controlling Eating Behavior in Intestinal Inflammation. Nutrients 2021; 13:nu13030981. [PMID: 33803651 PMCID: PMC8003054 DOI: 10.3390/nu13030981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Malnutrition represents a major problem in the clinical management of the inflammatory bowel disease (IBD). Presently, our understanding of the cross-link between eating behavior and intestinal inflammation is still in its infancy. Crohn's disease patients with active disease exhibit strong hedonic desires for food and emotional eating patterns possibly to ameliorate feelings of low mood, anxiety, and depression. Impulsivity traits seen in IBD patients may predispose them to palatable food intake as an immediate reward rather than concerns for future health. The upregulation of enteroendocrine cells (EEC) peptide response to food intake has been described in ileal inflammation, which may lead to alterations in gut-brain signaling with implications for appetite and eating behavior. In summary, a complex interplay of gut peptides, psychological, cognitive factors, disease-related symptoms, and inflammatory burden may ultimately govern eating behavior in intestinal inflammation.
Collapse
Affiliation(s)
- Gordon William Moran
- National Institute of Health Research Nottingham Biomedical Research Centre, University of Nottingham, and Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
- Correspondence:
| | - Gita Thapaliya
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| |
Collapse
|
4
|
Alruwaili H, Dehestani B, le Roux CW. Clinical Impact of Liraglutide as a Treatment of Obesity. Clin Pharmacol 2021; 13:53-60. [PMID: 33732030 PMCID: PMC7958997 DOI: 10.2147/cpaa.s276085] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity is defined as a chronic, complex, relapsing disease characterized by excessive adipose tissue. Obesity impacts an individual's health by increasing complications such as prediabetes, type 2 diabetes mellitus (T2DM), hypertension, dyslipidemia, metabolic syndrome, cardiovascular disease, nonalcoholic fatty liver disease (NAFLD), cancers (eg endometrial), and obstructive sleep apnea (OSA). With the increase of obesity prevalence and its negative influences on individuals' quality of life, there is a great need for therapy with a purpose to produce sustainable weight loss of more than 10% in order to improve or even reverse the progress of obesity related complications. The GLP-1 analogue, liraglutide reduce food consumption, promote weight reduction and improve metabolic functions. The primary mechanism of GLP-1 effect on food intake, metabolism, and weight reduction is mainly due to its actions on peripheral (vagal) and central pathways and activation of hindbrain and hypothalamus. The average weight reduction induced by liraglutide was significant and the weight loss was maintained as long as the patients on therapy. Liraglutide has advantages on weight loss maintenance and promoting cardiovascular disease (CVD) risk reduction, by decreasing systolic blood pressure and glycemic index. In this review, we aim to explain the mechanism of action of Liraglutide, its pharmacokinetic properties, its clinical impact on obesity and its safety and tolerability.
Collapse
Affiliation(s)
- Heshma Alruwaili
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | - Babak Dehestani
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Belfast, UK
| |
Collapse
|
5
|
Homayoni Rad A, Vaghef Mehrabany E, Alipoor B, Vaghef Mehrabany L. The Comparison of Food and Supplement as Probiotic Delivery Vehicles. Crit Rev Food Sci Nutr 2017; 56:896-909. [PMID: 25117939 DOI: 10.1080/10408398.2012.733894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Probiotics are live bacteria which have frequently been reported to be beneficial in preventing a wide range of diseases as well as playing a major role in treating the existing ailments. Thus far, a variety of probiotic products have been developed which can be categorized into two groups: probiotic foods and supplements. Both foods and supplements have been able to confer the health benefits claimed for them. However, it is not known which one can be clinically more efficient, and to the best of our knowledge, until now no research has been conducted to investigate this issue. The present review aims to discuss this matter, based on the evidence available in the literature. To do so, articles indexed in PubMed and ScienceDirect between 2000 and 2011 were reviewed. The articles included the clinical trials in which either foods or supplements were used to administer the probiotics to either patients suffering from different diseases or healthy subjects. Although both foods and supplements seem to have been efficient carriers for the beneficial bacteria, to generally promote public health in communities, probiotic foods appear to be preferred to probiotic supplements.
Collapse
Affiliation(s)
- Aziz Homayoni Rad
- a Faculty of Nutrition, Department of Food Science and Technology, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Elnaz Vaghef Mehrabany
- b Faculty of Nutrition, Department of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Beitullah Alipoor
- b Faculty of Nutrition, Department of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Leila Vaghef Mehrabany
- c School of Nutritional Sciences and Dietetics, Department of Clinical Nutrition, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
6
|
Abstract
Common disease states in gastroenterology are more effectively treated in an obese patient when weight loss is incorporated into the treatment plan. Strategies that seek to achieve weight loss improve outcomes in the treatment of hepatitis C, non-alcoholic fatty liver disease, and colorectal cancer, as examples. Pharmacologic therapy is an important adjunctive intervention that improves both short-term and long-term outcomes in the management of obese patients. This article reviews currently available drug therapy with a focus on pharmacotherapy approved long-term weight management in non-diabetic obese individuals since 2012, encouraging the use of these tools in the practice of gastroenterology.
Collapse
Affiliation(s)
- Jeanette N Keith
- Alabama College of Osteopathic Medicine, Dothan, AL, USA; Decatur Morgan Hospital, Department of Medicine, Section of Gastroenterology, Decatur, AL, USA; Decatur Gastroenterology Associates, P.C., 1103 15th Avenue Southeast, Decatur, AL 35601, USA.
| |
Collapse
|
7
|
Soni H. Peptide-based GLP-1/glucagon co-agonists: A double-edged sword to combat diabesity. Med Hypotheses 2016; 95:5-9. [PMID: 27692167 DOI: 10.1016/j.mehy.2016.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/11/2016] [Indexed: 11/25/2022]
Abstract
Diabesity is a new term for obesity-dependent diabetes, which is also associated with cardiovascular and other comorbidities with rising epidemic. Traditional treatments (sulfonylureas and thiazolidinediones) of diabetes are associated with weight gain, except metformin. Newer agents such as glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and Sodium glucose co-transporter 2 inhibitors (SGLT2i) are causing a modest weight reduction, whereas dipeptidyl peptidase-4 inhibitors (DPP-4i) are weight neutral. Oxyntomodulin, a native GLP-1/glucagon receptor agonist produced a superior weight loss and antihyperglycemic effects in obese mice and humans. Recent findings with synthetic dual GLP-1/glucagon receptor agonists have shown a good weight loss and antihyperglycemic profile in diet-induced obese (DIO) mice. Targeting combinations of GLP-1 receptor and glucagon receptor simultaneously with a single peptide may be the better strategy to achieve marked weight loss and considerable glycemic control in diabesity. Cardiovascular safety is very important with new antidiabetic agents due to rosiglitazone controversy. Current on-going clinical trials will clarify the cardiovascular effects of incretin-based therapies in near future. Based on current knowledge and rapid progress in the field, there is a strong possibility that the GLP-1/glucagon receptor co-agonists will likely be the new therapeutic treatment for diabesity for decades to come.
Collapse
Affiliation(s)
- Hitesh Soni
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
8
|
Dhillon J, Running CA, Tucker RM, Mattes RD. Effects of food form on appetite and energy balance. Food Qual Prefer 2016. [DOI: 10.1016/j.foodqual.2015.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Egan ÁM, O’Doherty JV, Vigors S, Sweeney T. Prawn Shell Chitosan Exhibits Anti-Obesogenic Potential through Alterations to Appetite, Affecting Feeding Behaviour and Satiety Signals In Vivo. PLoS One 2016; 11:e0149820. [PMID: 26901760 PMCID: PMC4763109 DOI: 10.1371/journal.pone.0149820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/04/2016] [Indexed: 01/18/2023] Open
Abstract
The crustacean shells-derived polysaccharide chitosan has received much attention for its anti-obesity potential. Dietary supplementation of chitosan has been linked with reductions in feed intake, suggesting a potential link between chitosan and appetite control. Hence the objective of this experiment was to investigate the appetite suppressing potential of prawn shell derived chitosan in a pig model. Pigs (70 ± 0.90 kg, 125 days of age, SD 2.0) were fed either T1) basal diet or T2) basal diet plus 1000 ppm chitosan (n = 20 gilts per group) for 63 days. The parameter categories which were assessed included performance, feeding behaviour, serum leptin concentrations and expression of genes influencing feeding behaviour in the small intestine, hypothalamus and adipose tissue. Pigs offered chitosan visited the feeder less times per day (P<0.001), had lower intake per visit (P<0.001), spent less time eating per day (P<0.001), had a lower eating rate (P<0.01) and had reduced feed intake and final body weight (P< 0.001) compared to animals offered the basal diet. There was a treatment (P<0.05) and time effect (P<0.05) on serum leptin concentrations in animals offered the chitosan diet compared to animals offered the basal diet. Pigs receiving dietary chitosan had an up-regulation in gene expression of growth hormone receptor (P<0.05), Peroxisome proliferator activated receptor gamma (P<0.01), neuromedin B (P<0.05), neuropeptide Y receptor 5 (P<0.05) in hypothalamic nuclei and neuropeptide Y (P<0.05) in the jejunum. Animals consuming chitosan had increased leptin expression in adipose tissue compared to pigs offered the basal diet (P<0.05). In conclusion, these data support the hypothesis that dietary prawn shell chitosan exhibits anti-obesogenic potential through alterations to appetite, and feeding behaviour affecting satiety signals in vivo.
Collapse
Affiliation(s)
- Áine M. Egan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Stafford Vigors
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
10
|
Sestan-Pesa M, Horvath TL. Metabolism and Mental Illness. Trends Mol Med 2016; 22:174-183. [PMID: 26776095 DOI: 10.1016/j.molmed.2015.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 01/23/2023]
Abstract
Over the past century, overwhelming evidence has emerged pointing to the hypothalamus of the central nervous system (CNS) as a crucial regulator of systemic control of metabolism, including appetite and feeding behavior. Appetite (or hunger) is a fundamental driver of survival, involving complex behaviors governed by various parts of the brain, including the cerebral cortex. Here, we provide an overview of basic metabolic principles affecting the CNS and discuss their relevance to physiological and pathological conditions of higher brain functions. These novel perspectives may well provide new insights into future research strategies to facilitate the development of novel therapies for treating mental illness.
Collapse
Affiliation(s)
- Matija Sestan-Pesa
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
11
|
Latoch E, Muszynska-Roslan K, Panas A, Panasiuk A, Sawicka-Zukowska M, Zelazowska-Rutkowska B, Zabrocka E, Krawczuk-Rybak M. Adipokines and Insulin Resistance in Young Adult Survivors of Childhood Cancer. Int J Endocrinol 2016; 2016:6349134. [PMID: 27212946 PMCID: PMC4860245 DOI: 10.1155/2016/6349134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/29/2016] [Indexed: 11/18/2022] Open
Abstract
We examined the association between adipokines (leptin, adiponectin, and resistin), radiotherapy, measurement of body fat, and insulin resistance among young adult survivors of childhood cancer (CCS). Materials and Methods. Seventy-six survivors were included (mean age 24.1 ± 3.5 years). Insulin resistance (IR) was calculated using the homeostasis model assessment (HOMA-IR). The serum levels of adipokines were assayed by immunoassays. Fat mass was evaluated by DXA. Results. Mean adiponectin level and mean body FAT were higher in the examined females than in males (10009 ± 6367 ng/mL versus 6433 ± 4136 ng/mL, p < 0.01; 35.98 ± 9.61% versus 22.7 ± 7.46%, p < 0.001). Among CCS, one of 75 patients met the criteria of insulin resistance, and in 14 patients there was impaired fasting glucose. The multiple regression model for females showed that leptin/adiponectin ratio (LA ratio) significantly affected HOMA-IR (increase of 0.024 per each unit of LA ratio; p < 0.05). Radiotherapy had no effect on serum adipokines and IR. Conclusion. The observed results support the hypothesis that adiponectin might be associated with insulin resistance and it can not be ruled out that changes in the mean level of adiponectin per FAT mass or leptin/adiponectin ratio may precede the occurrence of insulin resistance in the future.
Collapse
Affiliation(s)
- Eryk Latoch
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, 15-274 Bialystok, Poland
- *Eryk Latoch:
| | - Katarzyna Muszynska-Roslan
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Agata Panas
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Anna Panasiuk
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, 15-274 Bialystok, Poland
| | | | - Beata Zelazowska-Rutkowska
- Department of Pediatric Laboratory Diagnostics, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Ewa Zabrocka
- Student's Scientific Society by the Department of Pediatric Oncology and Hematology, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Maryna Krawczuk-Rybak
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, 15-274 Bialystok, Poland
| |
Collapse
|
12
|
ten Kulve JS, Veltman DJ, van Bloemendaal L, Barkhof F, Deacon CF, Holst JJ, Konrad RJ, Sloan JH, Drent ML, Diamant M, IJzerman RG. Endogenous GLP-1 mediates postprandial reductions in activation in central reward and satiety areas in patients with type 2 diabetes. Diabetologia 2015; 58:2688-98. [PMID: 26385462 PMCID: PMC4630252 DOI: 10.1007/s00125-015-3754-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/20/2015] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS The central nervous system (CNS) is a major player in the regulation of food intake. The gut hormone glucagon-like peptide-1 (GLP-1) has been proposed to have an important role in this regulation by relaying information about nutritional status to the CNS. We hypothesised that endogenous GLP-1 has effects on CNS reward and satiety circuits. METHODS This was a randomised, crossover, placebo-controlled intervention study, performed in a university medical centre in the Netherlands. We included patients with type 2 diabetes and healthy lean control subjects. Individuals were eligible if they were 40-65 years. Inclusion criteria for the healthy lean individuals included a BMI <25 kg/m(2) and normoglycaemia. Inclusion criteria for the patients with type 2 diabetes included BMI >26 kg/m(2), HbA1c levels between 42 and 69 mmol/mol (6.0-8.5%) and treatment for diabetes with only oral glucose-lowering agents. We assessed CNS activation, defined as blood oxygen level dependent (BOLD) signal, in response to food pictures in obese patients with type 2 diabetes (n = 20) and healthy lean individuals (n = 20) using functional magnetic resonance imaging (fMRI). fMRI was performed in the fasted state and after meal intake on two occasions, once during infusion of the GLP-1 receptor antagonist exendin 9-39, which was administered to block actions of endogenous GLP-1, and on the other occasion during saline (placebo) infusion. Participants were blinded for the type of infusion. The order of infusion was determined by block randomisation. The primary outcome was the difference in BOLD signal, i.e. in CNS activation, in predefined regions in the CNS in response to viewing food pictures. RESULTS All patients were included in the analyses. Patients with type 2 diabetes showed increased CNS activation in CNS areas involved in the regulation of feeding (insula, amygdala and orbitofrontal cortex) in response to food pictures compared with lean individuals (p ≤ 0.04). Meal intake reduced activation in the insula in response to food pictures in both groups (p ≤ 0.05), but this was more pronounced in patients with type 2 diabetes. Blocking actions of endogenous GLP-1 significantly prevented meal-induced reductions in bilateral insula activation in response to food pictures in patients with type 2 diabetes (p ≤ 0.03). CONCLUSIONS/INTERPRETATION Our findings support the hypothesis that endogenous GLP-1 is involved in postprandial satiating effects in the CNS of obese patients with type 2 diabetes. TRIAL REGISTRATION ClinicalTrials.gov NCT 01363609. Funding The study was funded in part by a grant from Novo Nordisk.
Collapse
Affiliation(s)
- Jennifer S ten Kulve
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.
| | - Dick J Veltman
- Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands
| | - Liselotte van Bloemendaal
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Carolyn F Deacon
- The NNF Center for Basic Metabolic Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- The NNF Center for Basic Metabolic Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - John H Sloan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Madeleine L Drent
- Department of Internal Medicine/Endocrine Section, VU University Medical Center, Amsterdam, the Netherlands
- Department of Clinical Neuropsychology, VU University, Amsterdam, the Netherlands
| | - Michaela Diamant
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Richard G IJzerman
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
13
|
Gut satiety hormones and hyperemesis gravidarum. Arch Gynecol Obstet 2015; 292:1225-30. [DOI: 10.1007/s00404-015-3751-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
|
14
|
Kilian TM, Klöting N, Bergmann R, Els-Heindl S, Babilon S, Clément-Ziza M, Zhang Y, Beck-Sickinger AG, Chollet C. Rational design of dual peptides targeting ghrelin and Y2 receptors to regulate food intake and body weight. J Med Chem 2015; 58:4180-93. [PMID: 25905598 DOI: 10.1021/jm501702q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ghrelin and Y2 receptors play a central role in appetite regulation inducing opposite effects. The Y2 receptor induces satiety, while the ghrelin receptor promotes hunger and weight gain. However, the food regulating system is tightly controlled by interconnected pathways where redundancies can lead to poor efficacy and drug tolerance when addressing a single molecule. We developed a multitarget strategy to synthesize dual peptides simultaneously inhibiting the ghrelin receptor and stimulating the Y2 receptor. Dual peptides showed dual activity in vitro, and one compound induced a slight diminution of food intake in a rodent model of obesity. In addition, stability studies in rats revealed different behaviors between the dual peptide and its corresponding monomers. The Y2 receptor agonist was unstable in blood, while the dual peptide showed an intermediate stability compared to that of the highly stable ghrelin receptor inverse agonist.
Collapse
Affiliation(s)
- Tom-Marten Kilian
- †Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Nora Klöting
- ‡Integrated Research and Treatment Center Adiposity Diseases (IFB), Core Unit "Animal Models", Universität Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| | - Ralf Bergmann
- §Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany
| | - Sylvia Els-Heindl
- †Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Stefanie Babilon
- †Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Mathieu Clément-Ziza
- ∥CECAD - Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Yixin Zhang
- ⊥B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
| | - Annette G Beck-Sickinger
- †Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Constance Chollet
- †Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany.,⊥B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
| |
Collapse
|
15
|
Jiang C, Kuang L, Merkel MP, Yue F, Cano-Vega MA, Narayanan N, Kuang S, Deng M. Biodegradable Polymeric Microsphere-Based Drug Delivery for Inductive Browning of Fat. Front Endocrinol (Lausanne) 2015; 6:169. [PMID: 26617571 PMCID: PMC4639710 DOI: 10.3389/fendo.2015.00169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/23/2015] [Indexed: 12/17/2022] Open
Abstract
Brown and beige adipocytes are potent therapeutic agents to increase energy expenditure and reduce risks of obesity and its affiliated metabolic symptoms. One strategy to increase beige adipocyte content is through inhibition of the evolutionarily conserved Notch signaling pathway. However, systemic delivery of Notch inhibitors is associated with off-target effects and multiple dosages of application further faces technical and translational challenges. Here, we report the development of a biodegradable polymeric microsphere-based drug delivery system for sustained, local release of a Notch inhibitor, DBZ. The microsphere-based delivery system was fabricated and optimized using an emulsion/solvent evaporation technique to encapsulate DBZ into poly(lactide-co-glycolide) (PLGA), a commonly used biodegradable polymer for controlled drug release. Release studies revealed the ability of PLGA microspheres to release DBZ in a sustained manner. Co-culture of white adipocytes with and without DBZ-loaded PLGA microspheres demonstrated that the released DBZ retained its bioactivity, and effectively inhibited Notch and promoted browning of white adipocytes. Injection of these DBZ-loaded PLGA microspheres into mouse inguinal white adipose tissue depots resulted in browning in vivo. Our results provide the encouraging proof-of-principle evidence for the application of biodegradable polymers as a controlled release platform for delivery of browning factors, and pave the way for development of new translational therapeutic strategies for treatment of obesity.
Collapse
Affiliation(s)
- Chunhui Jiang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Liangju Kuang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Madeline P. Merkel
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
- College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Mario Alberto Cano-Vega
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Naagarajan Narayanan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, USA
- *Correspondence: Shihuan Kuang, ; Meng Deng,
| | - Meng Deng
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- *Correspondence: Shihuan Kuang, ; Meng Deng,
| |
Collapse
|
16
|
Wędrychowicz A, Zając A, Pilecki M, Kościelniak B, Tomasik PJ. Peptides from adipose tissue in mental disorders. World J Psychiatry 2014; 4:103-111. [PMID: 25540725 PMCID: PMC4274582 DOI: 10.5498/wjp.v4.i4.103] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/14/2014] [Accepted: 12/10/2014] [Indexed: 02/05/2023] Open
Abstract
Adipose tissue is a dynamic endocrine organ that is essential to regulation of metabolism in humans. A new approach to mental disorders led to research on involvement of adipokines in the etiology of mental disorders and mood states and their impact on the health status of psychiatric patients, as well as the effects of treatment for mental health disorders on plasma levels of adipokines. There is evidence that disturbances in adipokine secretion are important in the pathogenesis, clinical presentation and outcome of mental disorders. Admittedly leptin and adiponectin are involved in pathophysiology of depression. A lot of disturbances in secretion and plasma levels of adipokines are observed in eating disorders with a significant impact on the symptoms and course of a disease. It is still a question whether observed dysregulation of adipokines secretion are primary or secondary. Moreover findings in this area are somewhat inconsistent, owing to differences in patient age, sex, socioeconomic status, smoking habits, level of physical activity, eating pathology, general health or medication. This was the rationale for our detailed investigation into the role of the endocrine functions of adipose tissue in mental disorders. It seems that we are continually at the beginning of understanding of the relation between adipose tissue and mental disorders.
Collapse
|
17
|
|
18
|
Adam CL, Williams PA, Dalby MJ, Garden K, Thomson LM, Richardson AJ, Gratz SW, Ross AW. Different types of soluble fermentable dietary fibre decrease food intake, body weight gain and adiposity in young adult male rats. Nutr Metab (Lond) 2014; 11:36. [PMID: 25152765 PMCID: PMC4141268 DOI: 10.1186/1743-7075-11-36] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dietary fibre-induced satiety offers a physiological approach to body weight regulation, yet there is lack of scientific evidence. This experiment quantified food intake, body weight and body composition responses to three different soluble fermentable dietary fibres in an animal model and explored underlying mechanisms of satiety signalling and hindgut fermentation. METHODS Young adult male rats were fed ad libitum purified control diet (CONT) containing 5% w/w cellulose (insoluble fibre), or diet containing 10% w/w cellulose (CELL), fructo-oligosaccharide (FOS), oat beta-glucan (GLUC) or apple pectin (PECT) (4 weeks; n = 10/group). Food intake, body weight, and body composition (MRI) were recorded, final blood samples analysed for gut satiety hormones, hindgut contents for fermentation products (including short-chain fatty acids, SCFA) and intestinal tissues for SCFA receptor gene expression. RESULTS GLUC, FOS and PECT groups had, respectively, 10% (P < 0.05), 17% (P < 0.001) and 19% (P < 0.001) lower food intake and 37% (P < 0.01), 37% (P < 0.01) and 45% (P < 0.001) lower body weight gain than CONT during the four-week experiment. At the end they had 26% (P < 0.05), 35% (P < 0.01) and 42% (P < 0.001) less total body fat, respectively, while plasma total glucagon-like peptide-1 (GLP-1) was 2.2-, 3.2- and 2.6-fold higher (P < 0.001) and peptide tyrosine tyrosine (PYY) was 2.3-, 3.1- and 3.0-fold higher (P < 0.001). There were no differences in these parameters between CONT and CELL. Compared with CONT and CELL, caecal concentrations of fermentation products increased 1.4- to 2.2-fold in GLUC, FOS and PECT (P < 0.05) and colonic concentrations increased 1.9- to 2.5-fold in GLUC and FOS (P < 0.05), with no consistent changes in SCFA receptor gene expression detected. CONCLUSIONS This provides animal model evidence that sustained intake of three different soluble dietary fibres decreases food intake, weight gain and adiposity, increases circulating satiety hormones GLP-1 and PYY, and increases hindgut fermentation. The presence of soluble fermentable fibre appears to be more important than its source. The results suggest that dietary fibre-induced satiety is worthy of further investigation towards natural body weight regulation in humans.
Collapse
Affiliation(s)
- Clare L Adam
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Patricia A Williams
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Matthew J Dalby
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Karen Garden
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Lynn M Thomson
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Anthony J Richardson
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Silvia W Gratz
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Alexander W Ross
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| |
Collapse
|
19
|
Buhmann H, le Roux CW, Bueter M. The gut-brain axis in obesity. Best Pract Res Clin Gastroenterol 2014; 28:559-71. [PMID: 25194175 DOI: 10.1016/j.bpg.2014.07.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/11/2014] [Accepted: 07/05/2014] [Indexed: 01/31/2023]
Abstract
Currently the only effective treatment for morbid obesity with a proven mortality benefit is surgical intervention. The underlying mechanisms of these surgical techniques are unclear, but alterations in circulating gut hormone levels have been demonstrated to be at least one contributing factor. Gut hormones seem to communicate information from the gastrointestinal tract to the regulatory appetite centres within the central nervous system (CNS) via the so-called 'Gut-Brain-Axis'. Such information may be transferred to the CNS either via vagal or non-vagal afferent nerve signalling or directly via blood circulation. Complex neural networks, distributed throughout the forebrain and brainstem, are in control of feeding and energy homoeostasis. This article aims to review how appetite is potentially regulated by these gastrointestinal hormones. Identification of the underlying mechanisms of appetite and weight control may pave the way to develop better surgical techniques and new therapies in the future.
Collapse
Affiliation(s)
- Helena Buhmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Ireland; Gastrosurgical Laboratory, University of Gothenburg, Sweden
| | - Marco Bueter
- Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland; Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
Abstract
Although the stomach is often perceived as a crude, food-grinding, muscular bag, scientific breakthroughs have shown us that in the case of the stomach there is more than meets the eye. The endocrine function of the stomach is mainly exerted through the actions of ghrelin, an acylated peptide hormone that is the first known and so far most extensively studied endogenous orexigenic substance. The satiety-hunger balance is kept in check by many anorexigenic gut hormones among which is the deacylated form of ghrelin--desacyl ghrelin. The interplay of gut hormones affects the brain directly, as most gut hormones cross the blood-brain barrier and bind to their respective receptors in the central nervous system. Other hormones like obestatin and nesfatin are secreted from the stomach along with ghrelin, yet their physiological function is to be elucidated. The importance of the satiety-hunger balance can be seen in its most typical derangement--obesity. Some studies imply that ghrelin, along with other gut hormones, plays an important part in the pathophysiology of obesity. More importantly, it seems that the mechanisms by which bariatric surgery procedures induce weight loss are primarily based on changing the gut hormone levels, including ghrelin. If proven, ghrelin antagonists could be the renaissance of pharmacological obesity treatment.
Collapse
Affiliation(s)
- Davor Štimac
- Department of Gastroenterology, Clinical Hospital Centre Rijeka, School of Medicine, University of Rijeka, Rijeka, Croatia
| | | | | |
Collapse
|
21
|
Kayser B, Verges S. Hypoxia, energy balance and obesity: from pathophysiological mechanisms to new treatment strategies. Obes Rev 2013; 14:579-92. [PMID: 23551535 DOI: 10.1111/obr.12034] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/22/2013] [Accepted: 03/02/2013] [Indexed: 12/17/2022]
Abstract
High altitude exposure is often accompanied by weight loss. Postulated mechanisms are a reduction of nutritional energy intake, a reduction of intestinal energy uptake from impaired intestinal function and increased energy expenditure. Beyond the field of altitude, there are good reasons for renewed interest in the relationship between hypoxia and energy balance. The increasing prevalence of obesity and associated comorbidities represent a major health concern. Obesity is frequently associated with sleep disorders leading to intermittent systemic hypoxia with deleterious cardiovascular and metabolic consequences. Hypoxic regions may be present within hypertrophic white adipose tissue leading to chronic systemic inflammation. Among the increasing number of people commuting to altitude for work or leisure, obesity is a risk factor for acute mountain sickness. Paradoxically, exposure to intermittent hypoxia might be considered as a means to lose body mass and to improve metabolic risk factors. Daytime exposure to intermittent hypoxia has been used to treat hypertension in former Soviet Union countries and is now being experimented elsewhere. Such intermittent hypoxic exposure at rest or during exercise may lead to improvement in body composition and health status with improved exercise tolerance, metabolism and systemic arterial pressure. Future research should confirm whether hypoxic training could be a new treatment strategy for weight loss and comorbidities in obese subjects and elucidate the underlying mechanisms and signalling pathways.
Collapse
Affiliation(s)
- B Kayser
- Institute of Movement Science and Sports Medicine, Faculty of medicine, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
22
|
Mendieta Zerón H, Domínguez García MV, Camarillo Romero MDS, Flores-Merino MV. Peripheral Pathways in the Food-Intake Control towards the Adipose-Intestinal Missing Link. Int J Endocrinol 2013; 2013:598203. [PMID: 24381591 PMCID: PMC3870110 DOI: 10.1155/2013/598203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 10/16/2013] [Indexed: 02/07/2023] Open
Abstract
In the physiological state a multitude of gut hormones are released into the circulation at the same time depending on the quality and quantity of the diet. These hormones interact with receptors at various points in the "gut-brain axis" to affect short-term and intermediate-term feelings of hunger and satiety. The combined effects of macronutrients on the predominant gut hormone secretion are still poorly understood. Besides, adipokines form an important part of an "adipoinsular axis" dysregulation which may contribute to β -cell failure and hence to type 2 diabetes mellitus (T2DM). Even more, gestational diabetes mellitus (GDM) and T2DM seem to share a genetic basis. In susceptible individuals, chronic exaggerated stimulation of the proximal gut with fat and carbohydrates may induce overproduction of an unknown factor that causes impairment of incretin production and/or action, leading to insufficient or untimely production of insulin, so that glucose intolerance develops. The bypass of the duodenum and jejunum might avoid a putative hormone overproduction in the proximal foregut in diabetic patients that might counteract the action of insulin, while the early presentation of undigested or incompletely digested food to the ileum may anticipate the production of hormones such as GLP1, further improving insulin action.
Collapse
Affiliation(s)
- Hugo Mendieta Zerón
- Medical Sciences Research Center (CICMED), Autonomous University of the State of Mexico (UAEMex), 50170 Toluca, Mexico
- Asociación Científica Latina (ASCILA) and Ciprés Grupo Médico (CGM), Felipe Villanueva sur 1209 Col. Rancho Dolores Z.C., 50170 Toluca, Mexico
- *Hugo Mendieta Zerón:
| | - Ma. Victoria Domínguez García
- Medical Sciences Research Center (CICMED), Autonomous University of the State of Mexico (UAEMex), 50170 Toluca, Mexico
| | | | - Miriam V. Flores-Merino
- Medical Sciences Research Center (CICMED), Autonomous University of the State of Mexico (UAEMex), 50170 Toluca, Mexico
| |
Collapse
|
23
|
Mathur LK, Manohar B, Shankarapillai R, Pandya D. Obesity and periodontitis: A clinical study. J Indian Soc Periodontol 2012; 15:240-4. [PMID: 22110259 PMCID: PMC3200019 DOI: 10.4103/0972-124x.85667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 08/08/2011] [Indexed: 01/18/2023] Open
Abstract
Background: The aim of the study was to evaluate the relationship between obesity and periodontitis. Materials and Methods: A total of 300 subjects aged 20 years and above suffering from generalized periodontitis were recruited from Department of Periodontics, Pacific Dental College and Hospital, Udaipur. Periodontal status of the subjects was recorded. Body mass index and waist circumference were used as measure to assess obesity. Other variables like age, gender, oral hygiene index were also recorded. Results: When evaluation was done for prevalence of periodontal disease according to BMI in obese and non-obese, the prevalence of periodontal disease was significantly (P=0.03) more in obese (88%) than in non-obese (74.4%) individuals. [OR=−20.4 and 95% confidence interval (CI) 1.3-1.3]. Conclusion: The prevalence of periodontal disease is higher among obese subjects. Obesity could be a potential risk factor for periodontal disease in all age groups.
Collapse
Affiliation(s)
- Lalit Kumar Mathur
- Department of Periodontics, Pacific Dental College and Hospital, Debari, Udaipur, Rajasthan, India
| | | | | | | |
Collapse
|
24
|
Suzuki K, Jayasena CN, Bloom SR. Obesity and appetite control. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:824305. [PMID: 22899902 PMCID: PMC3415214 DOI: 10.1155/2012/824305] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/20/2012] [Indexed: 01/01/2023]
Abstract
Obesity is one of the major challenges to human health worldwide; however, there are currently no effective pharmacological interventions for obesity. Recent studies have improved our understanding of energy homeostasis by identifying sophisticated neurohumoral networks which convey signals between the brain and gut in order to control food intake. The hypothalamus is a key region which possesses reciprocal connections between the higher cortical centres such as reward-related limbic pathways, and the brainstem. Furthermore, the hypothalamus integrates a number of peripheral signals which modulate food intake and energy expenditure. Gut hormones, such as peptide YY, pancreatic polypeptide, glucagon-like peptide-1, oxyntomodulin, and ghrelin, are modulated by acute food ingestion. In contrast, adiposity signals such as leptin and insulin are implicated in both short- and long-term energy homeostasis. In this paper, we focus on the role of gut hormones and their related neuronal networks (the gut-brain axis) in appetite control, and their potentials as novel therapies for obesity.
Collapse
Affiliation(s)
- Keisuke Suzuki
- Section of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| | - Channa N. Jayasena
- Section of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| | - Stephen R. Bloom
- Section of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
25
|
Abstract
Obesity is one of the major challenges to human health worldwide; however, there are currently no effective pharmacological interventions for obesity. Recent studies have improved our understanding of energy homeostasis by identifying sophisticated neurohumoral networks which convey signals between the brain and gut in order to control food intake. The hypothalamus is a key region which possesses reciprocal connections between the higher cortical centres such as reward-related limbic pathways, and the brainstem. Furthermore, the hypothalamus integrates a number of peripheral signals which modulate food intake and energy expenditure. Gut hormones, such as peptide YY, pancreatic polypeptide, glucagon-like peptide-1, oxyntomodulin, and ghrelin, are modulated by acute food ingestion. In contrast, adiposity signals such as leptin and insulin are implicated in both short- and long-term energy homeostasis. In this paper, we focus on the role of gut hormones and their related neuronal networks (the gut-brain axis) in appetite control, and their potentials as novel therapies for obesity.
Collapse
|
26
|
Ellis AC, Chandler-Laney P, Casazza K, Goree LL, McGwin G, Gower BA. Circulating ghrelin and GLP-1 are not affected by habitual diet. ACTA ACUST UNITED AC 2012; 176:1-5. [PMID: 22387702 DOI: 10.1016/j.regpep.2012.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/27/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Ghrelin and glucagon-like peptide-1 (GLP-1) are gut hormones known to induce hunger and satiety, respectively. Current knowledge about the effects of different macronutrients on circulating ghrelin and GLP-1 comes mainly from acute test meals, whereas little is known about the effects of chronic dietary intake on gut hormone secretion. This study was designed to examine whether 8-week habituation to diets with different percentages of carbohydrate and fat would affect serum ghrelin, GLP-1, and subjective hunger in a postabsorptive state and in response to a standard liquid mixed meal. METHODS Sixty-one overweight men and women were provided all food for 8 weeks of either a higher-carbohydrate/lower-fat diet (High-CHO/Low-FAT; 55% CHO, 18% PRO, 27% FAT) or a lower-carbohydrate/higher-fat diet (Low-CHO/High-FAT; 43% CHO, 18% PRO, 39% FAT). After overnight fasts at baseline and week 8, participants consumed a standard liquid meal (7 kcals/kg, 58.6% CHO, 17.4% PRO, 24% FAT). Blood was sampled before the meal and at 15, 60, 90, 120, 180, and 240 min to determine total serum ghrelin and active GLP-1. Hunger was assessed by a visual analog scale. Mixed models were used to evaluate whether the temporal patterns of total serum ghrelin and active GLP-1 differed with diet. RESULTS Although both diet groups reported greater hunger after 8 weeks (p=0.03), circulating ghrelin and GLP-1 were not affected by acclimation to different macronutrients. CONCLUSION Habituation to different diets does not appear to influence fasting ghrelin, fasting GLP-1, or responses of these gut hormones to a standard meal.
Collapse
Affiliation(s)
- Amy C Ellis
- Department of Nutrition Sciences at the University of Alabama at Birmingham, Birmingham, AL 35294-3360, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
The overwhelming increase in the prevalence of overweight and obesity in recent years represents one of the greatest threats to the health of the developed world. Among current treatments, however, gastrointestinal (GI) surgery remains the only approach capable of achieving significant weight loss results with long-term sustainability. As the obesity prevalence approaches epidemic proportions, the necessity to unravel the mechanisms regulating appetite control has garnered significant attention. It is well known that physical activity and food intake regulation are the two most important factors involved in body weight control. To regulate food intake, the brain must alter appetite. With this realization has come increased efforts to understand the intricate interplay between gut hormones and the central nervous system, and the role of these peptides in food intake regulation through appetite modulation. This review discusses the central mechanisms involved in body weight regulation and explores a suite of well characterized and intensely investigated anorexigenic and orexigenic gut hormones. Their appetite-regulating capabilities, post-GI surgery physiology and emerging potential as anti-obesity therapeutics are then reviewed.
Collapse
Affiliation(s)
- B Perry
- 1] Institute for Nutrisciences and Health, National Research Council Canada, Charlottetown, Prince Edward Island, Canada [2] Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | | |
Collapse
|
28
|
Abstract
The control of food intake consists of neural and hormonal signals between the gut and central nervous system (CNS). Gut hormones such as CCK, PYY and PP signal to important areas in the CNS involved in appetite regulation to terminate a meal. These hormones can act directly via the circulation and activate their respective receptors in the hypothalamus and brainstem. In addition, gut vagal afferents also exist, providing an alternative pathway through which gut hormones can communicate with higher centres through the brainstem. Animal and human studies have demonstrated that peripheral administration of certain gut hormones reduces food intake and leads to weight loss. Gut hormones are therefore potential targets in the development of novel treatments for obesity and analogue therapies are currently under investigation.
Collapse
Affiliation(s)
- K Simpson
- Department of Investigative Medicine, Imperial College London, UK
| | | | | | | |
Collapse
|
29
|
Lakhan SE, Kirchgessner A. Gut microbiota and sirtuins in obesity-related inflammation and bowel dysfunction. J Transl Med 2011; 9:202. [PMID: 22115311 PMCID: PMC3235071 DOI: 10.1186/1479-5876-9-202] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 11/24/2011] [Indexed: 02/07/2023] Open
Abstract
Obesity is a chronic disease characterized by persistent low-grade inflammation with alterations in gut motility. Motor abnormalities suggest that obesity has effects on the enteric nervous system (ENS), which controls virtually all gut functions. Recent studies have revealed that the gut microbiota can affect obesity and increase inflammatory tone by modulating mucosal barrier function. Furthermore, the observation that inflammatory conditions influence the excitability of enteric neurons may add to the gut dysfunction in obesity. In this article, we discuss recent advances in understanding the role of gut microbiota and inflammation in the pathogenesis of obesity and obesity-related gastrointestinal dysfunction. The potential contribution of sirtuins in protecting or regulating the circuitry of the ENS under inflamed states is also considered.
Collapse
Affiliation(s)
- Shaheen E Lakhan
- Global Neuroscience Initiative Foundation, Los Angeles, CA, USA.
| | | |
Collapse
|
30
|
Hainer V. Comparative efficiency and safety of pharmacological approaches to the management of obesity. Diabetes Care 2011; 34 Suppl 2:S349-54. [PMID: 21525481 PMCID: PMC3632205 DOI: 10.2337/dc11-s255] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Vojtech Hainer
- Institute of Endocrinology, Obesity Management Center, Prague, Czech Republic.
| |
Collapse
|
31
|
Abstract
Obesity is a pandemic with many complications that increase the societal disease burden and cost of health care, and decrease longevity and quality of life. Currently, 1 in 3 adults in the United States is obese. Physicians must therefore regularly confront obesity and its consequent diseases, and develop strategies for effective treatment and management. This article summarizes current lifestyle modifications, pharmacological treatment, and surgical options for the management of obesity and discusses the benefits, limitations, and risks of each. As insights are gained into the pathophysiology of a gut-brain neurochemical feedback axis governing satiety and feeding behavior, targets for new pharmacotherapies are being developed. In particular, gut hormone analogs are an attractive antiobesity therapy because they appear to lack the adverse effects historically associated with central nervous system-acting agents.
Collapse
Affiliation(s)
- Syed Sufyan Hussain
- Department of Diabetes, Endocrinology, and Metabolism, Hammersmith Hospital, Imperial College London, London, UK
| | | |
Collapse
|
32
|
Abstract
Many bariatric operations are associated with reduced food tolerance and frequent vomiting, which may cause nutritional deficiencies and influence quality of life. However, the impact of different bariatric procedures on quality of eating and food tolerance has not yet been studied enough. Two hundred and eighteen participants filled a quality of eating questionnaire, at three different time periods after bariatric operation: short-term (3-6 months, n = 63), medium-term (6-12 months, n = 69) and long-term follow-up (over 12 months, n = 86). The participants underwent the following procedures: 99 patients have had Roux-en-Y gastric bypass (RYGB), 49 laparoscopic gastric banding (LAGB), 56 sleeve gastrectomy (SG), and 14 biliopancreatic diversion with duodenal switch (BPD-DS). At short-term period score achieved for all section of the questionnaire was similar for all operations. The total score of the questionnaire at the medium-term group was 20.27 ± 3.57, 14.47 ± 5.92, 22.27 ± 4.66, and 20.91 ± 3.26 (p < 0.001) and the total score for the long-term group of was 21.56 ± 5.16, 15.5 ± 3.75, 20.45 ± 4.9, and 24.2 ± 2.16 (p < 0.001) for RYGB, LAGB, SG, and BPD-DS, respectively. In a linear regression model we found that LAGB patients had a significantly lower total score compared to all other procedures (p < 0.001). Every 1% of %EWL was associated with a total score decrease in 0.045 points (p = 0.009). Impaired quality of eating and food intolerance is common following many types of bariatric procedures. However, the difficulties diminish as time passes after operation and can be affected by the type of procedure. Patients undergoing LAGB have significantly greater limitations and difficulties to ingest variety of foods.
Collapse
|
33
|
Leidy HJ, Campbell WW. The effect of eating frequency on appetite control and food intake: brief synopsis of controlled feeding studies. J Nutr 2011; 141:154-7. [PMID: 21123467 DOI: 10.3945/jn.109.114389] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Increased eating frequency is postulated to increase metabolism, reduce hunger, improve glucose and insulin control, and reduce body weight, making it an enticing dietary strategy for weight loss and/or the maintenance of a healthy body weight. Because past research has primarily focused on the effects of eating frequency on changes in energy expenditure and body weight, limited data exist surrounding the impact of eating frequency on appetite control and energy intake. We provide a brief review of the controlled-feeding studies that primarily targeted the appetitive, hormonal, and food intake responses potentially altered with eating frequency. The 3 meal/d pattern served as the reference for defining increased or reduced eating frequency. In general, increased eating frequency led to lower peaks (P < 0.05) in perceived appetite, satiety, glucose, insulin, ghrelin, and PYY responses compared with reduced eating frequency. However, when examining these responses over the course of the day (i.e. using area under the curve assessments), no differences in any of these outcomes were observed. The rate of gastric emptying also appears to be unaltered with increased eating frequency. Subsequent food intake was examined in several studies with conflicting results. Regarding the effect of reduced eating frequency, several studies indicate significant increases in perceived appetite and reductions in perceived satiety when 1 or 2 meals were eliminated from the daily diet. Taken together, these findings suggest that increased eating frequency (>3 eating occasions/d) has minimal, if any, impact on appetite control and food intake, whereas reduced eating frequency(<3 eating occasions/d) negatively effects appetite control.
Collapse
Affiliation(s)
- Heather J Leidy
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA.
| | | |
Collapse
|
34
|
Abstract
Obesity develops when energy intake exceeds energy expenditure. Although most current obesity therapies are focused on reducing calorific intake, recent data suggest that increasing cellular energy expenditure (bioenergetics) may be an attractive alternative approach. This is especially true for adaptive thermogenesis - the physiological process whereby energy is dissipated in mitochondria of brown fat and skeletal muscle in the form of heat in response to external stimuli. There have been significant recent advances in identifying the factors that control the development and function of these tissues, and in techniques to measure brown fat in human adults. In this article, we integrate these developments in relation to the classical understandings of cellular bioenergetics to explore the potential for developing novel anti-obesity therapies that target cellular energy expenditure.
Collapse
Affiliation(s)
- Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
35
|
Leidy HJ, Apolzan JW, Mattes RD, Campbell WW. Food form and portion size affect postprandial appetite sensations and hormonal responses in healthy, nonobese, older adults. Obesity (Silver Spring) 2010; 18:293-9. [PMID: 19629055 PMCID: PMC4297632 DOI: 10.1038/oby.2009.217] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Data are limited concerning the dietary factors that influence appetite control in older adults. This study examined the effects of food form and portion size on appetite in 43 older adults (age: 72 +/- 1 years; BMI: 25.6 +/- 0.3 kg/m(2)). Subjects were assigned to groups based on portion size of the test meal (12.5% (n = 18) vs. 25% (n = 25) of estimated energy need). Subjects randomly consumed, on two separate days, the respective solid or beverage test meal. Appetite sensations and hormonal responses were measured over 4 h. Main effects of food form (P < 0.05) and/or portion size (P < 0.05) were observed for each appetite sensation. Postprandial hunger and desire to eat were greater following beverage vs. solid meal (between 12.5% vs. 25%), whereas fullness was lower after beverage vs. solid meal (P < 0.05). Main effects of food form and/or portion size were observed for glucose, insulin, and ghrelin. Postprandial glucose and insulin concentrations were lower after beverage vs. solid meal (between 12.5% vs. 25%; all comparisons, P < 0.05) whereas beverage meal led to greater 4-h ghrelin vs. solid meal (P = 0.09). No main effects were observed for glucagon-like peptide-1 (GLP-1) or cholecystokinin (CCK). When adjusting for age, food form remained significant for postprandial hunger and fullness; portion size remained significant for postprandial glucose. Greater hunger and reduced satiety with accompanying glucose, insulin, and ghrelin following the beverage vs. solid meals, and to some extent, in smaller vs. larger portions suggest that appetite control is influenced by food form and portion size in older adults. These findings may enhance the development of appropriate dietary strategies that help to regulate energy balance.
Collapse
Affiliation(s)
- Heather J Leidy
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, Kansas, USA.
| | | | | | | |
Collapse
|
36
|
Suzuki K, Simpson KA, Minnion JS, Shillito JC, Bloom SR. The role of gut hormones and the hypothalamus in appetite regulation. Endocr J 2010; 57:359-72. [PMID: 20424341 DOI: 10.1507/endocrj.k10e-077] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The World Health Organisation has estimated that by 2015 approximately 2.3 billion adults will be overweight and more than 700 million obese. Obesity is associated with an increased risk of diabetes, cardiovascular events, stroke and cancer. The hypothalamus is a crucial region for integrating signals from central and peripheral pathways and plays a major role in appetite regulation. In addition, there are reciprocal connections with the brainstem and higher cortical centres. In the arcuate nucleus of the hypothalamus, there are two major neuronal populations which stimulate or inhibit food intake and influence energy homeostasis. Within the brainstem, the dorsal vagal complex plays a role in the interpretation and relaying of peripheral signals. Gut hormones act peripherally to modulate digestion and absorption of nutrients. However, they also act as neurotransmitters within the central nervous system to control food intake. Peptide YY, pancreatic polypeptide, glucagon-like peptide-1 and oxyntomodulin suppress appetite, whilst ghrelin increases appetite through afferent vagal fibres to the caudal brainstem or directly to the hypothalamus. A better understanding of the role of these gut hormones may offer the opportunity to develop successful treatments for obesity. Here we review the current understanding of the role of gut hormones and the hypothalamus on food intake and body weight control.
Collapse
Affiliation(s)
- Keisuke Suzuki
- Section of Investigative Medicine, Imperial College London, London, UK
| | | | | | | | | |
Collapse
|
37
|
Nutrition and its contribution to obesity and diabetes: a life-course approach to disease prevention? Proc Nutr Soc 2008; 68:71-7. [DOI: 10.1017/s0029665108008872] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Whilst previously type 2 diabetes occurred in older adults, its incidence, together with obesity, has increased rapidly in children. An improved understanding of this disease pathway from a developmental view point is critical. It is likely that subtle changes in dietary patterns over an extended period of time contribute to diabetes, although this type of rationale is largely ignored in animal studies aimed at determining the mechanisms involved. Small-animal studies in which large, and often extreme, changes in the diet are imposed at different stages of the life cycle can have substantial effects on fat mass and/or pancreatic functions. These responses are not representative of the much more gradual changes seen in the human population. An increasing number of studies indicate that it is growth rate per se, rather than the type of dietary intervention that determines pancreatic function during development. Epigenetic mechanisms that regulate insulin secretion by the pancreas can be re-set by more extreme changes in dietary supply in early life. The extent to which these changes may contribute to more subtle modulations in glucose homeostasis that can accompany excess fat growth in childhood remains to be established. For human subjects there is much less information as to whether specific dietary components determine disease onset. Indeed, it is highly likely that genotype has a major influence, although recent data relating early diet to physical activity and the FTO gene indicate the difficulty of establishing the relative contribution of diet and changes in body mass to diabetes.
Collapse
|
38
|
Abstract
The prevalence of obesity is steadily rising and has huge health and financial implications for society. Weight gain is due to an imbalance between dietary intake and energy expenditure and research has focused on trying to understand the complex pathways involved in controlling these aspects. This review highlights the key areas of research in the hypothalamic control of appetite. The hypothalamus consists of several nuclei that integrate peripheral signals, such as adiposity and caloric intake, to regulate important pathways within the CNS controlling food intake. The best characterized pathways are the orexigenic neuropeptide Y/Agouti-related protein and the anorexigenic pro-opiomelanocortin/cocaine- and amphetamine-related transcript neurons in the arcuate nucleus of the hypothalamus. These project from the arcuate nucleus to other key hypothalamic nuclei, such as the paraventricular, dorsomedial, ventromedial and lateral hypothalamic nuclei. There are also projections to and from the brainstem, cortical areas and reward pathways, all of which influence food intake. The challenge at present is to understand the complexity of these pathways and try to find ways of modulating them in order to find potential therapeutic targets.
Collapse
Affiliation(s)
- Katherine A Simpson
- a Department of Investigative Medicine, Imperial College, London W12 ONN, UK
| | - Niamh M Martin
- a Department of Investigative Medicine, Imperial College, London W12 ONN, UK
| | - Steve R Bloom
- b Department of Investigative Medicine, Imperial College, London W12 ONN, UK.
| |
Collapse
|
39
|
Gualillo O, Lago F, Dieguez C. Introducing GOAT: a target for obesity and anti-diabetic drugs? Trends Pharmacol Sci 2008; 29:398-401. [PMID: 18606462 DOI: 10.1016/j.tips.2008.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/06/2008] [Accepted: 06/06/2008] [Indexed: 02/07/2023]
Abstract
The acyltransferase that catalyzes ghrelin octanoylation has recently been identified as ghrelin O-acyltransferase (GOAT). GOAT belongs to a family of membrane-bound O-acyltransferases (MBOATs). GOAT covalently links a medium fatty-acid chain, typically octanoate, to the hydroxyl group of the third serine of ghrelin, a potent orexigenic peptide characterized by this unique post-translational modification. The discovery of GOAT raises important questions and reveals several therapeutical possibilities. Indeed, drugs that inhibit GOAT might be able to prevent diet-induced obesity and might be an effective therapy for type-2 diabetes, increasing insulin secretion and enhancing peripheral insulin sensitivity. Furthermore, research on GOAT is providing new insights into the pathophysiology of energy homeostasis and might lead to the identification of further therapeutic targets. Here, we review what is currently known about the regulatory role of GOAT and discuss the potential of this novel approach for treating obesity and type-2 diabetes.
Collapse
Affiliation(s)
- Oreste Gualillo
- Neuroendocrine Interactions in Rheumatology and Inflammatory Disease, University of Santiago Clinical Hospital,15706 Santiago de Compostela, Spain.
| | | | | |
Collapse
|