1
|
Yang X, Wang X, Yang Z, Lu H. Iron-Mediated Regulation in Adipose Tissue: A Comprehensive Review of Metabolism and Physiological Effects. Curr Obes Rep 2025; 14:4. [PMID: 39753935 DOI: 10.1007/s13679-024-00600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/14/2025]
Abstract
PURPOSE OF REVIEW Review the latest data regarding the intersection of adipose tissue (AT) and iron to meet the needs of AT metabolism and the progression of related diseases. RECENT FINDINGS Iron is involved in fundamental biological metabolic processes and is precisely fine-tuned within the body to maintain cellular, tissue and even systemic iron homeostasis. AT not only serves as an energy storage depot but also represents the largest endocrine organ in the human body, maintaining systemic metabolic homeostasis. It is involved in physiological processes such as energy storage, insulin sensitivity regulation and lipid metabolism. As a unique iron-sensing tissue, AT expresses related regulatory factors, including the classic hepcidin, ferroportin (FPN), iron regulatory protein/iron responsive element (IRP/IRE) and ferritin. Consequently, the interaction between AT and iron is intricately intertwined. Imbalance of iron homeostasis produces the potential risks of steatosis, impaired glucose tolerance and insulin resistance, leading to AT dysfunction diseases, including obesity, type 2 diabetes and metabolic dysfunction-associated steatotic liver disease (MASLD). Despite the role of AT iron has garnered increasing attention in recent years, a comprehensive review that systematically organizes the connection between iron and AT remains lacking. Given the necessity of iron homeostasis, emphasizing its potential impact on AT function and metabolism regulation provides valuable insights into physiological effects such as adipocyte differentiation and thermogenesis. Futhermore, regulators including adipokines, mitochondria and macrophages have been mentioned, along with analyzing the novel perspective of iron as a key mediator influencing the fat-gut crosstalk.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Xianghong Wang
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Zhe Yang
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Hongyun Lu
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.
| |
Collapse
|
2
|
Mastrototaro L, Apostolopoulou M, Hartwig S, Strassburger K, Lipaeva P, Trinks N, Karusheva Y, Gancheva S, Trenkamp S, Lehr S, Al-Hasani H, Szendroedi J, Roden M. The role of exosomes for sustained specific cardiorespiratory and metabolic improvements in males with type 2 diabetes after detraining. EBioMedicine 2024; 110:105471. [PMID: 39626509 DOI: 10.1016/j.ebiom.2024.105471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND High-intensity interval training (HIIT) has been shown to improve cardiorespiratory fitness (V˙O2 max) but may ameliorate insulin sensitivity only in insulin-resistant humans. It is yet unclear whether these benefits persist after detraining and to which extent duration and effectiveness of metabolic improvements differ between individuals without and with prediabetes or type 2 diabetes (T2D). Understanding these differences is relevant for developing targeted exercise training modes for individuals with different stages of dysglycemia. METHODS Men with (20 T2D) and without T2D (12 insulin-sensitive, IS-NDM; 10 insulin-resistant, IR-NDM) underwent hyperinsulinemic-euglycemic clamps, spiroergometry, ectopic lipid quantification and muscle biopsies at baseline, after 12-week HIIT and after 4-week detraining. FINDINGS After detraining, the HIIT-stimulated V˙O2 max declined in T2D and IR-NDM, but remained higher compared to baseline in all groups. The HIIT-induced changes in hepatic insulin sensitivity and ectopic lipid content were sustained after detraining in T2D and IR-NDM, whereas improvements of whole-body insulin sensitivity were abolished in T2D. T2D and IR-NDM showed persistent increases in the number of small extracellular vesicles, which carry among others antioxidant proteins. The ratio of reduced-to-oxidized glutathione further decreased after detraining in all groups, whereas changes in proteins involved in mitochondrial turnover were dependent on insulin sensitivity, with some evidence for upregulation of fusion and mitophagy in T2D and IR-NDM and upregulation of fission in IS-NDM. Levels of different lipolytic proteins were reduced in all participants after detraining. INTERPRETATION HIIT offers sustained improvement of energy metabolism and hepatic insulin sensitivity in insulin-resistant humans, but long-term adherence is required to maintain these benefits. FUNDING Funding bodies that contributed to this study are listed in the Acknowledgements section.
Collapse
Affiliation(s)
- Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Maria Apostolopoulou
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sonja Hartwig
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Polina Lipaeva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University, Düsseldorf, Germany; Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Nina Trinks
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Yanislava Karusheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sandra Trenkamp
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Stefan Lehr
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Szendroedi
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
3
|
Mohammadi S, Ghaderi S, Fatehi F. Iron accumulation/overload and Alzheimer's disease risk factors in the precuneus region: A comprehensive narrative review. Aging Med (Milton) 2024; 7:649-667. [PMID: 39507230 PMCID: PMC11535174 DOI: 10.1002/agm2.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by amyloid plaques, neurofibrillary tangles, and neuronal loss. Early cerebral and body iron dysregulation and accumulation interact with AD pathology, particularly in the precuneus, a crucial functional hub in cognitive functions. Quantitative susceptibility mapping (QSM), a novel post-processing approach, provides insights into tissue iron levels and cerebral oxygen metabolism and reveals abnormal iron accumulation early in AD. Increased iron deposition in the precuneus can lead to oxidative stress, neuroinflammation, and accelerated neurodegeneration. Metabolic disorders (diabetes, non-alcoholic fatty liver disease (NAFLD), and obesity), genetic factors, and small vessel pathology contribute to abnormal iron accumulation in the precuneus. Therefore, in line with the growing body of literature in the precuneus region of patients with AD, QSM as a neuroimaging method could serve as a non-invasive biomarker to track disease progression, complement other imaging modalities, and aid in early AD diagnosis and monitoring.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Neurology DepartmentUniversity Hospitals of Leicester NHS TrustLeicesterUK
| |
Collapse
|
4
|
Zhao K, So HC, Lin Z. scParser: sparse representation learning for scalable single-cell RNA sequencing data analysis. Genome Biol 2024; 25:223. [PMID: 39152499 PMCID: PMC11328435 DOI: 10.1186/s13059-024-03345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
The rapid rise in the availability and scale of scRNA-seq data needs scalable methods for integrative analysis. Though many methods for data integration have been developed, few focus on understanding the heterogeneous effects of biological conditions across different cell populations in integrative analysis. Our proposed scalable approach, scParser, models the heterogeneous effects from biological conditions, which unveils the key mechanisms by which gene expression contributes to phenotypes. Notably, the extended scParser pinpoints biological processes in cell subpopulations that contribute to disease pathogenesis. scParser achieves favorable performance in cell clustering compared to state-of-the-art methods and has a broad and diverse applicability.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Statistics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Cheong So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology and The Chinese University of Hong Kong, Hong Kong SAR, China.
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Margaret K.L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Hong Kong Branch of the Chinese Academy of Sciences Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Zhixiang Lin
- Department of Statistics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
5
|
Larsen JK, Kruse R, Sahebekhtiari N, Moreno-Justicia R, Gomez Jorba G, Petersen MH, de Almeida ME, Ørtenblad N, Deshmukh AS, Højlund K. High-throughput proteomics uncovers exercise training and type 2 diabetes-induced changes in human white adipose tissue. SCIENCE ADVANCES 2023; 9:eadi7548. [PMID: 38019916 PMCID: PMC10686561 DOI: 10.1126/sciadv.adi7548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
White adipose tissue (WAT) is important for metabolic homeostasis. We established the differential proteomic signatures of WAT in glucose-tolerant lean and obese individuals and patients with type 2 diabetes (T2D) and the response to 8 weeks of high-intensity interval training (HIIT). Using a high-throughput and reproducible mass spectrometry-based proteomics pipeline, we identified 3773 proteins and found that most regulated proteins displayed progression in markers of dysfunctional WAT from lean to obese to T2D individuals and were highly associated with clinical measures such as insulin sensitivity and HbA1c. We propose that these distinct markers could serve as potential clinical biomarkers. HIIT induced only minor changes in the WAT proteome. This included an increase in WAT ferritin levels independent of obesity and T2D, and WAT ferritin levels were strongly correlated with individual insulin sensitivity. Together, we report a proteomic signature of WAT related to obesity and T2D and highlight an unrecognized role of human WAT iron metabolism in exercise training adaptations.
Collapse
Affiliation(s)
- Jeppe Kjærgaard Larsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Kruse
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Navid Sahebekhtiari
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Roger Moreno-Justicia
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Gerard Gomez Jorba
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Maria H. Petersen
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
| | - Martin E. de Almeida
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Atul S. Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
6
|
Sabaratnam R, Hansen DR, Svenningsen P. White adipose tissue mitochondrial bioenergetics in metabolic diseases. Rev Endocr Metab Disord 2023; 24:1121-1133. [PMID: 37558853 DOI: 10.1007/s11154-023-09827-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/11/2023]
Abstract
White adipose tissue (WAT) is an important endocrine organ that regulates systemic energy metabolism. In metabolically unhealthy obesity, adipocytes become dysfunctional through hypertrophic mechanisms associated with a reduced endocrine function, reduced mitochondrial function, but increased inflammation, fibrosis, and extracellular remodelling. A pathologic WAT remodelling promotes systemic lipotoxicity characterized by fat accumulation in tissues such as muscle and liver, leading to systemic insulin resistance and type 2 diabetes. Several lines of evidence from human and animal studies suggest a link between unhealthy obesity and adipocyte mitochondrial dysfunction, and interventions that improve mitochondrial function may reduce the risk of obesity-associated diseases. This review discusses the importance of mitochondrial function and metabolism in human adipocyte biology and intercellular communication mechanisms within WAT. Moreover, a selected interventional approach for better adipocyte mitochondrial metabolism in humans is reviewed. A greater understanding of mitochondrial bioenergetics in WAT might provide novel therapeutic opportunities to prevent or restore dysfunctional adipose tissue in obesity-associated diseases.
Collapse
Affiliation(s)
- Rugivan Sabaratnam
- Department of Clinical Research, University of Southern Denmark, Odense C, DK-5000, Denmark.
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, DK-5000, Denmark.
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J. B. Winsløws Vej 21,3, Odense C, DK-5000, Denmark.
| | - Didde Riisager Hansen
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, DK-5000, Denmark
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J. B. Winsløws Vej 21,3, Odense C, DK-5000, Denmark
| | - Per Svenningsen
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J. B. Winsløws Vej 21,3, Odense C, DK-5000, Denmark.
| |
Collapse
|
7
|
Suarez-Ortegón MF, Ordoñez-Betancourth JE, Ortega-Ávila JG, Yibby Forero A, Fernández-Real JM. Excess adiposity and iron-deficient status in Colombian women of reproductive age. Obesity (Silver Spring) 2023; 31:3025-3042. [PMID: 37814827 DOI: 10.1002/oby.23871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE Information about excess adiposity markers different from BMI and iron status is limited and more so about the shape of these associations. This study evaluated the relationship between three adiposity markers and iron-deficient status in reproductive-age women. METHODS Cross-sectional analysis in 6357 non-pregnant women from the Colombian nutritional health survey (ENSIN) 2010. Exposures were the following: waist circumference (WC), waist-to-height ratio (W-HtR), BMI, and WC > 80 cm, W-HtR > 0.5, and BMI ≥ 25 and ≥30. Outcomes were the following: iron deficiency (ID) as serum ferritin <15 μg/L, ID as ferritin <30 μg/L, anemia, and continuous values of ferritin and hemoglobin. Logistic and linear regressions adjusted for sociodemographic/inflammation covariates were conducted. RESULTS All the adiposity markers, continuous or categorical, were inversely and significantly associated with both ID thresholds in fully adjusted models (p < 0.05). W-HtR reported stronger effect estimates for ID (odds ratios < 0.5) and for prediction of log-ferritin levels (fully adjusted β-coefficient [95% CI] 0.61 [0.39-0.82], p < 0.01) and was also inversely associated with anemia (p < 0.05). In cubic splines analyses, W-HtR, WC, and BMI were linearly associated with ID from values closer to international thresholds of general or central obesity, and the patterns of WC and BMI tended toward flatness. A significant decline in the likelihood of anemia was steeper by increasing W-HtR than by increasing BMI. After exclusion of women with C reactive protein > 5 mg/L or adjustment for C reactive protein, adiposity markers remained significantly related to ferritin levels and W-HtR with anemia. CONCLUSIONS Women with higher adiposity were less likely to have an iron-deficient status. W-HtR was the strongest and most consistently associated marker. Inflammation would not be involved in the associations found.
Collapse
Affiliation(s)
- Milton Fabián Suarez-Ortegón
- Departamento de Alimentación y Nutrición, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana Seccional Cali, Cali, Colombia
| | | | - José Guillermo Ortega-Ávila
- Departamento de Ciencias Básicas, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana Seccional Cali, Cali, Colombia
| | | | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi) and Hospital Trueta, Girona, Spain
- CIBERobn Fisiopatología de la Obesidad y Nutrición, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Girona, Spain
| |
Collapse
|
8
|
Oliveras-Cañellas N, Latorre J, Santos-González E, Lluch A, Ortega F, Mayneris-Perxachs J, Fernández-Real JM, Moreno-Navarrete JM. Inflammatory response to bacterial lipopolysaccharide drives iron accumulation in human adipocytes. Biomed Pharmacother 2023; 166:115428. [PMID: 37677967 DOI: 10.1016/j.biopha.2023.115428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
The association among increased inflammation, disrupted iron homeostasis, and adipose tissue dysfunction in obesity has been widely recognized. However, the specific impact of inflammation on iron homeostasis during human adipogenesis and in adipocytes remains poorly understood. In this study, we investigated the effects of bacterial lipopolysaccharide (LPS) on iron homeostasis during human adipocyte differentiation, in fully differentiated adipocytes, and in human adipose tissue. We found that LPS-induced inflammation hindered adipogenesis and led to a gene expression profile indicative of intracellular iron accumulation. This was accompanied by increased expression of iron importers (TFRC and SLC11A2), markers of intracellular iron accumulation (FTH, CYBA, FTL, and LCN2), and decreased expression of iron exporter-related genes (SLC40A1), concomitant with elevated intracellular iron levels. Mechanistically, RNA-seq analysis and gene knockdown experiments revealed the significant involvement of iron importers SLC39A14, SLC39A8, and STEAP4 in LPS-induced intracellular iron accumulation in human adipocytes. Notably, markers of LPS signaling pathway-related inflammation were also associated with a gene expression pattern indicative of intracellular iron accumulation in human adipose tissue, corroborating the link between LPS-induced inflammation and iron accumulation at the tissue level. In conclusion, our findings demonstrate that induction of adipocyte inflammation disrupts iron homeostasis, resulting in adipocyte iron overload.
Collapse
Affiliation(s)
- Núria Oliveras-Cañellas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Elena Santos-González
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Aina Lluch
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain; Department of Medicine, Universitat de Girona, Girona, Spain.
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain.
| |
Collapse
|
9
|
Xia Y, Ge G, Xiao H, Wu M, Wang T, Gu C, Yang H, Geng D. REPIN1 regulates iron metabolism and osteoblast apoptosis in osteoporosis. Cell Death Dis 2023; 14:631. [PMID: 37749079 PMCID: PMC10519990 DOI: 10.1038/s41419-023-06160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
Osteoporosis is not well treated due to the difficulty of finding commonalities between the various types of it. Iron homeostasis is a vital component in supporting biochemical functions, and iron overload is recognized as a common risk factor for osteoporosis. In this research, we found that there is indeed evidence of iron accumulation in the bone tissue of patients with osteoporosis and REPIN1, as an origin specific DNA binding protein, may play a key role in this process. We revealed that sh-Repin1 therapy can rescue bone loss in an iron-overload-induced osteoporosis mouse model. Knockdown of Repin1 can inhibit apoptosis and enhance the resistance of osteoblasts to iron overload toxicity. REPIN1 promoted apoptosis by regulating iron metabolism in osteoblasts. Mechanistically, knockdown of Repin1 decreased the expression of Lcn2, which ameliorated the toxic effects of intracellular iron overload. The anti-iron effect of lentivirus sh-Repin1 was partially reversed or replicated by changing LCN2 expression level via si-RNA or plasmid, which indirectly verified the key regulatory role of LCN2 as a downstream target. Furthermore, the levels of BCL2 and BAX, which play a key role in the mitochondrial apoptosis pathway, were affected. In summary, based on the results of clinical specimens, animal models and in vitro experiments, for the first time, we proved the key role of REPIN1 in iron metabolism-related osteoporosis.
Collapse
Affiliation(s)
- Yu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Gaoran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haixiang Xiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mingzhou Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Taicang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Tianhao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chengyong Gu
- Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital (North District), Suzhou, China.
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
10
|
Hilton C, Sabaratnam R, Drakesmith H, Karpe F. Iron, glucose and fat metabolism and obesity: an intertwined relationship. Int J Obes (Lond) 2023; 47:554-563. [PMID: 37029208 PMCID: PMC10299911 DOI: 10.1038/s41366-023-01299-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
A bidirectional relationship exists between adipose tissue metabolism and iron regulation. Total body fat, fat distribution and exercise influence iron status and components of the iron-regulatory pathway, including hepcidin and erythroferrone. Conversely, whole body and tissue iron stores associate with fat mass and distribution and glucose and lipid metabolism in adipose tissue, liver, and muscle. Manipulation of the iron-regulatory proteins erythroferrone and erythropoietin affects glucose and lipid metabolism. Several lines of evidence suggest that iron accumulation and metabolism may play a role in the development of metabolic diseases including obesity, type 2 diabetes, hyperlipidaemia and non-alcoholic fatty liver disease. In this review we summarise the current understanding of the relationship between iron homoeostasis and metabolic disease.
Collapse
Affiliation(s)
- Catriona Hilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
| | - Rugivan Sabaratnam
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Valenti L, Corradini E, Adams LA, Aigner E, Alqahtani S, Arrese M, Bardou-Jacquet E, Bugianesi E, Fernandez-Real JM, Girelli D, Hagström H, Henninger B, Kowdley K, Ligabue G, McClain D, Lainé F, Miyanishi K, Muckenthaler MU, Pagani A, Pedrotti P, Pietrangelo A, Prati D, Ryan JD, Silvestri L, Spearman CW, Stål P, Tsochatzis EA, Vinchi F, Zheng MH, Zoller H. Consensus Statement on the definition and classification of metabolic hyperferritinaemia. Nat Rev Endocrinol 2023; 19:299-310. [PMID: 36805052 PMCID: PMC9936492 DOI: 10.1038/s41574-023-00807-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/19/2023]
Abstract
Hyperferritinaemia is a common laboratory finding that is often associated with metabolic dysfunction and fatty liver. Metabolic hyperferritinaemia reflects alterations in iron metabolism that facilitate iron accumulation in the body and is associated with an increased risk of cardiometabolic and liver diseases. Genetic variants that modulate iron homeostasis and tissue levels of iron are the main determinants of serum levels of ferritin in individuals with metabolic dysfunction, raising the hypothesis that iron accumulation might be implicated in the pathogenesis of insulin resistance and the related organ damage. However, validated criteria for the non-invasive diagnosis of metabolic hyperferritinaemia and the staging of iron overload are still lacking, and there is no clear evidence of a benefit for iron depletion therapy. Here, we provide an overview of the literature on the relationship between hyperferritinaemia and iron accumulation in individuals with metabolic dysfunction, and on the associated clinical outcomes. We propose an updated definition and a provisional staging system for metabolic hyperferritinaemia, which has been agreed on by a multidisciplinary global panel of expert researchers. The goal is to foster studies into the epidemiology, genetics, pathophysiology, clinical relevance and treatment of metabolic hyperferritinaemia, for which we provide suggestions on the main unmet needs, optimal design and clinically relevant outcomes.
Collapse
Affiliation(s)
- Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
- Biological Resource Center and Precision Medicine Lab, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.
- Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.
| | - Elena Corradini
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy.
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy.
| | - Leon A Adams
- Medical School, University of Western Australia, Perth, Australia
| | - Elmar Aigner
- First Department of Medicine, University Clinic Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Saleh Alqahtani
- Royal Clinics and Gastroenterology and Hepatology, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Marco Arrese
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Edouard Bardou-Jacquet
- University of Rennes, UMR1241, CHU Rennes, National Reference Center for Hemochromatosis and iron metabolism disorder, INSERM CIC1414, Rennes, France
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, Turin, Italy
| | - Jose-Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr Josep Trueta University Hospital, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Domenico Girelli
- Section of Internal Medicine, Department of Medicine, University of Verona, Policlinico Giambattista Rossi, Verona, Italy
| | - Hannes Hagström
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin Henninger
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kris Kowdley
- Liver Institute Northwest, Seattle, WA, USA
- Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA
| | - Guido Ligabue
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Division of Radiology, Ospedale di Sassuolo S.p.A, Sassuolo, Modena, Italy
| | - Donald McClain
- Wake Forest School of Medicine, Winston Salem, NC, USA
- Department of Veterans Affairs, Salisbury, NC, USA
| | - Fabrice Lainé
- INSERM CIC1414, Liver Unit, CHU Rennes, Rennes, France
| | - Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Martina U Muckenthaler
- Department of Paediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
- Center for Molecular Translational Iron Research, Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Patrizia Pedrotti
- Laboratorio di RM Cardiaca Cardiologia 4, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Antonello Pietrangelo
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
| | - Daniele Prati
- Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - John D Ryan
- Hepatology Unit, Beaumont Hospital, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - C Wendy Spearman
- Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Per Stål
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| | - Francesca Vinchi
- Iron Research Laboratory, Lindsley F.Kimball Research Institute, New York Blood Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Heinz Zoller
- Department of Medicine I, Medical University of Innsbruck, Innsbruck, Austria
- Doppler Laboratory on Iron and Phosphate Biology, Innsbruck, Austria
| |
Collapse
|
12
|
Hinojosa-Moscoso A, Motger-Albertí A, De la Calle-Vargas E, Martí-Navas M, Biarnés C, Arnoriaga-Rodríguez M, Blasco G, Puig J, Luque-Córdoba D, Priego-Capote F, Moreno-Navarrete JM, Fernández-Real JM. The Longitudinal Changes in Subcutaneous Abdominal Tissue and Visceral Adipose Tissue Volumetries Are Associated with Iron Status. Int J Mol Sci 2023; 24:4750. [PMID: 36902180 PMCID: PMC10002479 DOI: 10.3390/ijms24054750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Excess iron is known to trigger adipose tissue dysfunction and insulin resistance. Circulating markers of iron status have been associated with obesity and adipose tissue in cross-sectional studies. We aimed to evaluate whether iron status is linked to changes in abdominal adipose tissue longitudinally. Subcutaneous abdominal tissue (SAT) and visceral adipose tissue (VAT) and its quotient (pSAT) were assessed using magnetic resonance imaging (MRI), at baseline and after one year of follow-up, in 131 (79 in follow-up) apparently healthy subjects, with and without obesity. Insulin sensitivity (euglycemic- hyperinsulinemic clamp) and markers of iron status were also evaluated. Baseline serum hepcidin (p = 0.005 and p = 0.002) and ferritin (p = 0.02 and p = 0.01)) were associated with an increase in VAT and SAT over one year in all subjects, while serum transferrin (p = 0.01 and p = 0.03) and total iron-binding capacity (p = 0.02 and p = 0.04) were negatively associated. These associations were mainly observed in women and in subjects without obesity, and were independent of insulin sensitivity. After controlling for age and sex, serum hepcidin was significantly associated with changes in subcutaneous abdominal tissue index (iSAT) (β = 0.406, p = 0.007) and visceral adipose tissue index (iVAT) (β = 0.306, p = 0.04), while changes in insulin sensitivity (β = 0.287, p = 0.03) and fasting triglycerides (β = -0.285, p = 0.03) were associated with changes in pSAT. These data indicated that serum hepcidin are associated with longitudinal changes in SAT and VAT, independently of insulin sensitivity. This would be the first prospective study evaluating the redistribution of fat according to iron status and chronic inflammation.
Collapse
Affiliation(s)
- Alejandro Hinojosa-Moscoso
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
| | - Anna Motger-Albertí
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIEROBN), 28029 Madrid, Spain
| | - Elena De la Calle-Vargas
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
| | - Marian Martí-Navas
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
| | - Carles Biarnés
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
| | - María Arnoriaga-Rodríguez
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIEROBN), 28029 Madrid, Spain
| | - Gerard Blasco
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Radiology (IDI), Dr. Josep Trueta University Hospital, 17007 Girona, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Radiology (IDI), Dr. Josep Trueta University Hospital, 17007 Girona, Spain
| | - Diego Luque-Córdoba
- Department of Analytical Chemistry, University of Córdoba, Annex Marie Curie Building, Campus of Rabanales, 14014 Córdoba, Spain
- Consortium for Biomedical Research in Frailty & Healthy Ageing (CIBERFES), Carlos III Institute of Health, 28029 Madrid, Spain
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, University of Córdoba, Annex Marie Curie Building, Campus of Rabanales, 14014 Córdoba, Spain
- Consortium for Biomedical Research in Frailty & Healthy Ageing (CIBERFES), Carlos III Institute of Health, 28029 Madrid, Spain
| | - José María Moreno-Navarrete
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIEROBN), 28029 Madrid, Spain
| | - José Manuel Fernández-Real
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIEROBN), 28029 Madrid, Spain
| |
Collapse
|
13
|
Martín-Saladich Q, Simó R, Aguadé-Bruix S, Simó-Servat O, Aparicio-Gómez C, Hernández C, Ramirez-Serra C, Pizzi MN, Roque A, González Ballester MA, Herance JR. Insights into Insulin Resistance and Calcification in the Myocardium in Type 2 Diabetes: A Coronary Artery Analysis. Int J Mol Sci 2023; 24:ijms24043250. [PMID: 36834662 PMCID: PMC9959651 DOI: 10.3390/ijms24043250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Type 2 diabetes (T2D) is responsible for high incidence of cardiovascular (CV) complications leading to heart failure. Coronary artery region-specific metabolic and structural assessment could provide deeper insight into the extent of the disease and help prevent adverse cardiac events. Therefore, in this study, we aimed at investigating such myocardial dynamics for the first time in insulin-sensitive (mIS) and insulin-resistant (mIR) T2D patients. We targeted global and region-specific variations using insulin sensitivity (IS) and coronary artery calcifications (CACs) as CV risk factor in T2D patients. IS was computed using myocardial segmentation approaches at both baseline and after an hyperglycemic-insulinemic clamp (HEC) on [18F]FDG-PET images using the standardized uptake value (SUV) (ΔSUV = SUVHEC - SUVBASELINE) and calcifications using CT Calcium Scoring. Results suggest that some communicating pathways between response to insulin and calcification are present in the myocardium, whilst differences between coronary arteries were only observed in the mIS cohort. Risk indicators were mostly observed for mIR and highly calcified subjects, which supports previously stated findings that exhibit a distinguished exposure depending on the impairment of response to insulin, while projecting added potential complications due to arterial obstruction. Moreover, a pattern relating calcification and T2D phenotypes was observed suggesting the avoidance of insulin treatment in mIS but its endorsement in mIR subjects. The right coronary artery displayed more ΔSUV, whilst plaque was more present in the circumflex. However, differences between phenotypes, and therefore CV risk, were associated to left descending artery (LAD) translating into higher CACs regarding IR, which could explain why insulin treatment was effective for LAD at the expense of higher likelihood of plaque accumulation. Personalized approaches to assess T2D may lead to more efficient treatments and risk-prevention strategies.
Collapse
Affiliation(s)
- Queralt Martín-Saladich
- Medical Molecular Imaging Research Group, Nuclear Medicine, Radiology and Cardiology Departments, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain
- BCN Medtech, Department of Information and Communication Technologies, Pompeu Fabra University, 08018 Barcelona, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Group, VHIR, Department of Endocrinology, Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Santiago Aguadé-Bruix
- Medical Molecular Imaging Research Group, Nuclear Medicine, Radiology and Cardiology Departments, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Group, VHIR, Department of Endocrinology, Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carolina Aparicio-Gómez
- Medical Molecular Imaging Research Group, Nuclear Medicine, Radiology and Cardiology Departments, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Group, VHIR, Department of Endocrinology, Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Clara Ramirez-Serra
- Clinical Biochemistry Research Group, Vall d’Hebron Research Institute (VHIR), Biochemical Core Facilities, Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain
| | - María Nazarena Pizzi
- Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
- Cardiology Department, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Albert Roque
- Medical Molecular Imaging Research Group, Nuclear Medicine, Radiology and Cardiology Departments, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
- Radiology Department, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Miguel A. González Ballester
- BCN Medtech, Department of Information and Communication Technologies, Pompeu Fabra University, 08018 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Correspondence: (M.A.G.B.); (J.R.H.); Tel.: +34-(93)-542-2000 (ext. 2083) (M.A.G.B.); +34-(93)-489-3000 (ext. 4946) (J.R.H.)
| | - José Raul Herance
- Medical Molecular Imaging Research Group, Nuclear Medicine, Radiology and Cardiology Departments, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (M.A.G.B.); (J.R.H.); Tel.: +34-(93)-542-2000 (ext. 2083) (M.A.G.B.); +34-(93)-489-3000 (ext. 4946) (J.R.H.)
| |
Collapse
|
14
|
Barbalho SM, Laurindo LF, Tofano RJ, Flato UAP, Mendes CG, de Alvares Goulart R, Briguezi AMGM, Bechara MD. Dysmetabolic Iron Overload Syndrome: Going beyond the Traditional Risk Factors Associated with Metabolic Syndrome. ENDOCRINES 2023; 4:18-37. [DOI: 10.3390/endocrines4010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Dysmetabolic iron overload syndrome (DIOS) corresponds to the increase in iron stores associated with components of metabolic syndrome (MtS) and in the absence of an identifiable cause of iron excess. The objective of this work was to review the main aspects of DIOS. PUBMED and EMBASE were consulted, and PRISMA guidelines were followed. DIOS is usually asymptomatic and can be diagnosed by investigating MtS and steatosis. About 50% of the patients present altered hepatic biochemical tests (increased levels of γ-glutamyl transpeptidase itself or associated with increased levels of alanine aminotransferase). The liver may present parenchymal and mesenchymal iron overload, but the excess of iron is commonly mild. Steatosis or steatohepatitis is observed in half of the patients. Fibrosis is observed in about 15% of patients. Hyperferritinemia may damage the myocardium, liver, and several other tissues, increasing morbidity and mortality. Furthermore, DIOS is closely related to oxidative stress, which is closely associated with several pathological conditions such as inflammatory diseases, hypertension, diabetes, heart failure, and cancer. DIOS is becoming a relevant finding in the general population and can be associated with high morbidity/mortality. For these reasons, investigation of this condition could be an additional requirement for the early prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília, São Paulo 17500-000, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Department of Cardiology, Associação Beneficente Hospital Universitário (ABHU), Rua Dr. Próspero Cecílio Coimbra, 80, Marília, São Paulo 17525-160, Brazil
| | - Uri Adrian Prync Flato
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília, São Paulo 17500-000, Brazil
| | - Claudemir G. Mendes
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Ana Maria Gonçalves Milla Briguezi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| |
Collapse
|
15
|
Hagarty-Waite KA, Totten MS, Pierce M, Armah SM, Erikson KM. Influence of Sex and Strain on Hepatic and Adipose Tissue Trace Element Concentrations and Gene Expression in C57BL/6J and DBA/2J High Fat Diet Models. Int J Mol Sci 2022; 23:ijms232213778. [PMID: 36430257 PMCID: PMC9697485 DOI: 10.3390/ijms232213778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The objective of this study was to determine the influence of sex and strain on the dysregulation of trace element concentration and associative gene expression due to diet induced obesity in adipose tissue and the liver. Male and female C57BL/6J (B6J) and DBA/2J (D2J) were randomly assigned to a normal-fat diet (NFD) containing 10% kcal fat/g or a mineral-matched high-fat diet (HFD) containing 60% kcal fat/g for 16 weeks. Liver and adipose tissue were assessed for copper, iron, manganese, and zinc concentrations and related changes in gene expression. Notable findings include three-way interactions of diet, sex, and strain amongst adipose tissue iron concentrations (p = 0.005), adipose hepcidin expression (p = 0.007), and hepatic iron regulatory protein (IRP) expression (p = 0.012). Cd11c to Cd163 ratio was increased in adipose tissue due to HFD amongst all biological groups except B6J females, for which tissue iron concentrations were reduced due to HFD (p = 0.002). Liver divalent metal transporter 1 (DMT-1) expression was increased due to HFD amongst B6J males (p < 0.005) and females (p < 0.004), which coincides with the reduction in hepatic iron concentrations found in these biological groups (p < 0.001). Sex, strain, and diet affected trace element concentration, the expression of genes that regulate trace element homeostasis, and the expression of macrophages that contribute to tissue iron-handling in adipose tissue. These findings suggest that sex and strain may be key factors that influence the adaptive capacity of iron mismanagement in adipose tissue and its subsequent consequences, such as insulin resistance.
Collapse
Affiliation(s)
| | - Melissa S. Totten
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
- Department of Chemistry and Physics, Salem College, Winston-Salem, NC 27101, USA
| | - Matthew Pierce
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Seth M. Armah
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Keith M. Erikson
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
- Correspondence:
| |
Collapse
|
16
|
Iron metabolism in nonalcoholic fatty liver disease: a promising therapeutic target. LIVER RESEARCH 2022. [DOI: 10.1016/j.livres.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Branisso PPF, de Oliveira CPMS, Filho HML, Lima FR, Santos AS, Mancini MC, de Melo ME, Carrilho FJ, Rocha MDS, Clark P, Branisso HJP, Cercato C. Non-invasive methods for iron overload evaluation in dysmetabolic patients. Ann Hepatol 2022; 27:100707. [PMID: 35477031 DOI: 10.1016/j.aohep.2022.100707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Although hyperferritinemia may reflect the inflammatory status of patients with non-alcoholic fatty liver disease (NAFLD), approximately 33% of hyperferritinemia cases reflect real hepatic iron overload. AIM To evaluate a non-invasive method for assessing mild iron overload in patients with NAFLD using 3T magnetic resonance imaging (MRI) relaxometry, serum hepcidin, and the expression of ferritin subunits. METHODS This cross-sectional study assessed patients with biopsy-proven NAFLD. MRI relaxometry was performed using a 3T scanner in all patients, and the results were compared with iron content determined by liver biopsy. Ferritin, hepcidin, and ferritin subunits were assessed and classified according to ferritin levels and to siderosis identified by liver biopsy. RESULTS A total of 67 patients with NAFLD were included in the study. MRI revealed mild iron overload in all patients (sensitivity, 73.5%; specificity, 70%). For mild (grade 1) siderosis, the transverse relaxation rate (R2*) threshold was 58.9 s-1 and the mean value was 72.5 s-1 (SD, 33.9), while for grades 2/3 it was 88.2 s-1 (SD, 31.9) (p < 0.001). The hepcidin threshold for siderosis was > 30.2 ng/mL (sensitivity, 87%; specificity, 82%). Ferritin H and ferritin L subunits were expressed similarly in patients with NAFLD, regardless of siderosis. There were no significant differences in laboratory test results between the groups, including glucose parameters and liver function tests. CONCLUSIONS MRI relaxometry and serum hepcidin accurately assessed mild iron overload in patients with dysmetabolic iron overload syndrome.
Collapse
Affiliation(s)
- Paula Pessin Fábrega Branisso
- Obesity and metabolic syndrome study group, Hospital das Clínicas de São Paulo, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Brazil.
| | | | - Hilton Muniz Leão Filho
- Radiology department, InRad, Hospital das Clínicas de São Paulo, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | - Fabiana Roberto Lima
- Patology department, Hospital das Clínicas de São Paulo, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | - Aritânia Sousa Santos
- Laboratory of Carbohydrates and Raioimmunoassay (LIM/18), Hospital das Clínicas de São Paulo, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | - Marcio Correa Mancini
- Obesity and metabolic syndrome study group, Hospital das Clínicas de São Paulo, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | - Maria Edna de Melo
- Radiology department, InRad, Hospital das Clínicas de São Paulo, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | - Flair José Carrilho
- Gastroenterology department, Hospital das Clínicas de São Paulo, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | - Manoel de Souza Rocha
- Radiology department, InRad, Hospital das Clínicas de São Paulo, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | - Paul Clark
- Magnepath digital health company, Perth, Australia
| | | | - Cintia Cercato
- Obesity and metabolic syndrome study group, Hospital das Clínicas de São Paulo, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Brazil
| |
Collapse
|
18
|
Pellegrinelli V, Rodriguez-Cuenca S, Rouault C, Figueroa-Juarez E, Schilbert H, Virtue S, Moreno-Navarrete JM, Bidault G, Vázquez-Borrego MC, Dias AR, Pucker B, Dale M, Campbell M, Carobbio S, Lin YH, Vacca M, Aron-Wisnewsky J, Mora S, Masiero MM, Emmanouilidou A, Mukhopadhyay S, Dougan G, den Hoed M, Loos RJF, Fernández-Real JM, Chiarugi D, Clément K, Vidal-Puig A. Dysregulation of macrophage PEPD in obesity determines adipose tissue fibro-inflammation and insulin resistance. Nat Metab 2022; 4:476-494. [PMID: 35478031 PMCID: PMC7617220 DOI: 10.1038/s42255-022-00561-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/18/2022] [Indexed: 02/02/2023]
Abstract
Resulting from impaired collagen turnover, fibrosis is a hallmark of adipose tissue (AT) dysfunction and obesity-associated insulin resistance (IR). Prolidase, also known as peptidase D (PEPD), plays a vital role in collagen turnover by degrading proline-containing dipeptides but its specific functional relevance in AT is unknown. Here we show that in human and mouse obesity, PEPD expression and activity decrease in AT, and PEPD is released into the systemic circulation, which promotes fibrosis and AT IR. Loss of the enzymatic function of PEPD by genetic ablation or pharmacological inhibition causes AT fibrosis in mice. In addition to its intracellular enzymatic role, secreted extracellular PEPD protein enhances macrophage and adipocyte fibro-inflammatory responses via EGFR signalling, thereby promoting AT fibrosis and IR. We further show that decreased prolidase activity is coupled with increased systemic levels of PEPD that act as a pathogenic trigger of AT fibrosis and IR. Thus, PEPD produced by macrophages might serve as a biomarker of AT fibro-inflammation and could represent a therapeutic target for AT fibrosis and obesity-associated IR and type 2 diabetes.
Collapse
Affiliation(s)
- V Pellegrinelli
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK.
| | - S Rodriguez-Cuenca
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
- Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, P. R. China
| | - C Rouault
- Sorbonne University, INSERM, NutriOmique Research Unit, Paris, France
| | - E Figueroa-Juarez
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - H Schilbert
- Genetics and Genomics of Plants, Centre for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - S Virtue
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - J M Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute (IDIBGI), University Hospital of Girona Dr Josep Trueta, Girona, Spain
- Department of Medicine, University of Girona, Girona, Spain
- CIBERobn Pathophysiology of Obesity and Nutrition, Institut of Salud Carlos III, Madrid, Spain
| | - G Bidault
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - M C Vázquez-Borrego
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
| | - A R Dias
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - B Pucker
- Genetics and Genomics of Plants, Centre for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - M Dale
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - M Campbell
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
- Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, P. R. China
| | - S Carobbio
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
- Centro de Investigacion Principe Felipe, Valencia, Spain
| | - Y H Lin
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - M Vacca
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
- Insterdisciplinary Department of Medicine, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - J Aron-Wisnewsky
- Sorbonne University, INSERM, NutriOmique Research Unit, Paris, France
- Assistance-Publique Hôpitaux de Paris, Nutrition department, Pitié-Salpêtrière hospital, Paris, France
| | - S Mora
- Dept Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain
| | - M M Masiero
- The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - A Emmanouilidou
- The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - S Mukhopadhyay
- MRC Centre for Transplantation Peter Gorer Department of Immunobiology School of Immunology & Microbial Sciences King's College, London, UK
| | - G Dougan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Division of Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, UK
| | - M den Hoed
- The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - R J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - J M Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute (IDIBGI), University Hospital of Girona Dr Josep Trueta, Girona, Spain
- Department of Medicine, University of Girona, Girona, Spain
- CIBERobn Pathophysiology of Obesity and Nutrition, Institut of Salud Carlos III, Madrid, Spain
| | - D Chiarugi
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - K Clément
- Sorbonne University, INSERM, NutriOmique Research Unit, Paris, France
- Assistance-Publique Hôpitaux de Paris, Nutrition department, Pitié-Salpêtrière hospital, Paris, France
| | - A Vidal-Puig
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK.
- Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, P. R. China.
- Centro de Investigacion Principe Felipe, Valencia, Spain.
| |
Collapse
|
19
|
Skovsø S, Panzhinskiy E, Kolic J, Cen HH, Dionne DA, Dai XQ, Sharma RB, Elghazi L, Ellis CE, Faulkner K, Marcil SAM, Overby P, Noursadeghi N, Hutchinson D, Hu X, Li H, Modi H, Wildi JS, Botezelli JD, Noh HL, Suk S, Gablaski B, Bautista A, Kim R, Cras-Méneur C, Flibotte S, Sinha S, Luciani DS, Nislow C, Rideout EJ, Cytrynbaum EN, Kim JK, Bernal-Mizrachi E, Alonso LC, MacDonald PE, Johnson JD. Beta-cell specific Insr deletion promotes insulin hypersecretion and improves glucose tolerance prior to global insulin resistance. Nat Commun 2022; 13:735. [PMID: 35136059 PMCID: PMC8826929 DOI: 10.1038/s41467-022-28039-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 01/05/2022] [Indexed: 01/23/2023] Open
Abstract
Insulin receptor (Insr) protein is present at higher levels in pancreatic β-cells than in most other tissues, but the consequences of β-cell insulin resistance remain enigmatic. Here, we use an Ins1cre knock-in allele to delete Insr specifically in β-cells of both female and male mice. We compare experimental mice to Ins1cre-containing littermate controls at multiple ages and on multiple diets. RNA-seq of purified recombined β-cells reveals transcriptomic consequences of Insr loss, which differ between female and male mice. Action potential and calcium oscillation frequencies are increased in Insr knockout β-cells from female, but not male mice, whereas only male βInsrKO islets have reduced ATP-coupled oxygen consumption rate and reduced expression of genes involved in ATP synthesis. Female βInsrKO and βInsrHET mice exhibit elevated insulin release in ex vivo perifusion experiments, during hyperglycemic clamps, and following i.p. glucose challenge. Deletion of Insr does not alter β-cell area up to 9 months of age, nor does it impair hyperglycemia-induced proliferation. Based on our data, we adapt a mathematical model to include β-cell insulin resistance, which predicts that β-cell Insr knockout improves glucose tolerance depending on the degree of whole-body insulin resistance. Indeed, glucose tolerance is significantly improved in female βInsrKO and βInsrHET mice compared to controls at 9, 21 and 39 weeks, and also in insulin-sensitive 4-week old males. We observe no improved glucose tolerance in older male mice or in high fat diet-fed mice, corroborating the prediction that global insulin resistance obscures the effects of β-cell specific insulin resistance. The propensity for hyperinsulinemia is associated with mildly reduced fasting glucose and increased body weight. We further validate our main in vivo findings using an Ins1-CreERT transgenic line and find that male mice have improved glucose tolerance 4 weeks after tamoxifen-mediated Insr deletion. Collectively, our data show that β-cell insulin resistance in the form of reduced β-cell Insr contributes to hyperinsulinemia in the context of glucose stimulation, thereby improving glucose homeostasis in otherwise insulin sensitive sex, dietary and age contexts.
Collapse
Affiliation(s)
- Søs Skovsø
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Evgeniy Panzhinskiy
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jelena Kolic
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Haoning Howard Cen
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Derek A Dionne
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Xiao-Qing Dai
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Rohit B Sharma
- Division of Endocrinology, Diabetes and Metabolism and the Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Lynda Elghazi
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | - Cara E Ellis
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Katharine Faulkner
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie A M Marcil
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Peter Overby
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Nilou Noursadeghi
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Daria Hutchinson
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Xiaoke Hu
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hong Li
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Honey Modi
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer S Wildi
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - J Diego Botezelli
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hye Lim Noh
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA, USA
- Charles River Laboratories, Shrewsbury, MA, USA
| | - Sujin Suk
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA, USA
| | - Brian Gablaski
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Charles River Laboratories, Shrewsbury, MA, USA
| | - Austin Bautista
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Ryekjang Kim
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Corentin Cras-Méneur
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Stephane Flibotte
- UBC Life Sciences Institute Bioinformatics Facility, University of British Columbia, Vancouver, BC, Canada
| | - Sunita Sinha
- UBC Sequencing and Bioinformatics Consortium, Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Dan S Luciani
- BC Children's Hospital Research Institute, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Corey Nislow
- UBC Sequencing and Bioinformatics Consortium, Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth J Rideout
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Eric N Cytrynbaum
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Jason K Kim
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine and Miami VA Health Care System, Miami, FL, USA
| | - Laura C Alonso
- Division of Endocrinology, Diabetes and Metabolism and the Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Patrick E MacDonald
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - James D Johnson
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Tu J, Li W, Yang S, Yang P, Yan Q, Wang S, Lai K, Bai X, Wu C, Ding W, Cooper‐White J, Diwan A, Yang C, Yang H, Zou J. Single-Cell Transcriptome Profiling Reveals Multicellular Ecosystem of Nucleus Pulposus during Degeneration Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103631. [PMID: 34825784 PMCID: PMC8787427 DOI: 10.1002/advs.202103631] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/22/2021] [Indexed: 05/13/2023]
Abstract
Although degeneration of the nucleus pulposus (NP) is a major contributor to intervertebral disc degeneration (IVDD) and low back pain, the underlying molecular complexity and cellular heterogeneity remain poorly understood. Here, a comprehensive single-cell resolution transcript landscape of human NP is reported. Six novel human NP cells (NPCs) populations are identified by their distinct molecular signatures. The potential functional differences among NPC subpopulations are analyzed. Predictive transcripts, transcriptional factors, and signal pathways with respect to degeneration grades are explored. It is reported that fibroNPCs is the subpopulation for end-stage degeneration. CD90+NPCs are observed to be progenitor cells in degenerative NP tissues. NP-infiltrating immune cells comprise a previously unrecognized diversity of cell types, including granulocytic myeloid-derived suppressor cells (G-MDSCs). Integrin αM (CD11b) and oxidized low density lipoprotein receptor 1 (OLR1) as surface markers of NP-derived G-MDSCs are uncovered. The G-MDSCs are found to be enriched in mildly degenerated (grade II and III) NP tissues compared to severely degenerated (grade IV and V) NP tissues. Their immunosuppressive function and alleviation effects on NPCs' matrix degradation are revealed in vitro. Collectively, this study reveals the NPC-type complexity and phenotypic characteristics in NP, thereby providing new insights and clues for IVDD treatment.
Collapse
Affiliation(s)
- Ji Tu
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
- Spine Labs, St. George and Sutherland Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNew South Wales2217Australia
| | - Wentian Li
- Spine Labs, St. George and Sutherland Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNew South Wales2217Australia
| | - Sidong Yang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaBrisbaneQueensland4072Australia
- Department of Spine SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuang05000China
| | - Pengyi Yang
- Charles Perkins CentreThe University of SydneySydneyNSW2006Australia
- School of Life and Environmental SciencesThe University of SydneySydneyNSW2006Australia
- Computational Systems Biology GroupChildren's Medical Research InstituteFaculty of Medicine and HealthThe University of SydneyWestmeadNSW2145Australia
| | - Qi Yan
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Shenyu Wang
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Kaitao Lai
- The ANZAC Research InstituteConcord Repatriation General HospitalSydneyNSW2139Australia
- Concord Clinical SchoolFaculty of Medicine and HealthThe University of SydneySydneyNSW2139Australia
| | - Xupeng Bai
- Cancer Care CentreSt. George and Sutherland Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Cenhao Wu
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Wenyuan Ding
- Department of Spine SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuang05000China
| | - Justin Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaBrisbaneQueensland4072Australia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQueensland4072Australia
| | - Ashish Diwan
- Spine Labs, St. George and Sutherland Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNew South Wales2217Australia
- Spine ServiceDepartment of Orthopaedic SurgerySt. George HospitalKogarahNew South Wales2217Australia
| | - Cao Yang
- Department of Orthopaedic SurgeryWuhan Union HospitalTongji Medical SchoolHuazhong University of Science and TechnologyWuhanHubei430022China
| | - Huilin Yang
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Jun Zou
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| |
Collapse
|
21
|
Hamad M, Mohammed AK, Hachim MY, Mukhopadhy D, Khalique A, Laham A, Dhaiban S, Bajbouj K, Taneera J. Heme Oxygenase-1 (HMOX-1) and inhibitor of differentiation proteins (ID1, ID3) are key response mechanisms against iron-overload in pancreatic β-cells. Mol Cell Endocrinol 2021; 538:111462. [PMID: 34547407 DOI: 10.1016/j.mce.2021.111462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022]
Abstract
Iron overload promotes the generation of reactive oxygen species (ROS). Pancreatic β-cells can counter oxidative stress through multiple anti-oxidant responses. Herein, RNA-sequencing was used to describe the expression profile of iron regulatory genes in human islets with or without diabetes. Functional experiments including siRNA silencing, qPCR, western blotting, cell viability, ELISA and RNA-sequencing were performed as means of identifying the genetic signature of the protective response following iron overload-induced stress in human islets and INS-1. FTH1 and FTL genes were highly expressed in human islets and INS-1 cells, while hepcidin (HAMP) was low. FXN, DMT1 and FTHL1 genes were differentially expressed in diabetic islets compared to control. Silencing of Hamp in INS-1 cells impaired insulin secretion and influenced the expression of β-cell key genes. RNA-sequencing analysis in iron overloaded INS-1 cells identified Id1 and Id3 as the top down-regulated genes, while Hmox1 was the top upregulated. Expression of ID1, ID3 and HMOX1 was validated at the protein level in INS-1 cells and human islets. Differentially expressed genes (DEGs) were enriched for TGF-β, regulating stem cells, ferroptosis, and HIF-1 signaling. Hmox1-silenced cells treated with FAC elevated the expression of Id1 and Id3 expression than untreated cells. Our findings suggest that HMOX1, ID1 and ID3 define the response mechanism against iron-overload-induced stress in β-cells.
Collapse
Affiliation(s)
- Mawieh Hamad
- Department of Medical Lab. Sciences, College of Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Abdul Khader Mohammed
- Sharjah Institute for Medical Research, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Mahmood Y Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Debasmita Mukhopadhy
- Sharjah Institute for Medical Research, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Anila Khalique
- Sharjah Institute for Medical Research, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Amina Laham
- Sharjah Institute for Medical Research, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Sarah Dhaiban
- Sharjah Institute for Medical Research, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Sharjah Institute for Medical Research, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, 27272, Sharjah, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
22
|
Rodríguez-Pérez C, Gómez-Peña C, Pérez-Carrascosa FM, Vrhovnik P, Echeverría R, Salcedo-Bellido I, Mustieles V, Željka F, Arrebola JP. Trace elements concentration in adipose tissue and the risk of incident type 2 diabetes in a prospective adult cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117496. [PMID: 34438482 DOI: 10.1016/j.envpol.2021.117496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/23/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
The aim of this work was to study the associations of adipose tissue trace element concentrations with type 2 diabetes (T2DM) incidence over a 16-year follow-up period in an adult cohort from Southern Spain. 16-year T2DM incidence was gathered from hospital records. Chemical analyses of Cr, V, Zn, Fe, Cu and Se in adipose tissue were performed using inductively coupled plasma mass spectrometry. Multivariable Cox-regression models were used. Complementary cross-sectional analyses with markers of glucose homeostasis at recruitment were performed by multivariable linear regression. Out of 214 participants, 39 developed T2DM during the follow-up. Adipose tissue concentrations of Fe (HR = 1.97, 95% CI: 0.99 to 2.58, p = 0.057), Cr (HR = 1.58, 95% CI: 1.07-2.33, p = 0.022) and Cu (HR = 1.61, 95% CI: 1.01-2.58, p = 0.046) were individually associated with T2DM incidence. When Fe, Cr and Cu were simultaneously entered in a model, only Cr was significantly associated with T2DM incidence (HR = 1.68, 95% CI: 1.02-2.76, p = 0.041). Furthermore, adipose tissue V (β = 0.283, p = 0.004) and Zn (β = 0.217, p = 0.028) concentrations were positively associated with β-pancreatic cell function (HOMA-β), while Se showed an inverse association (β = -0.049, p = 0.027). Although further research is warranted on the potential mechanisms of action, our results suggest that adipose tissue concentrations of certain trace elements (particularly Fe, Cr and Cu) are associated with the risk of incident T2DM, while V and Zn might have a protective effect. These biomarkers might complement prediction algorithms and contribute to identify patients with an increased risk of T2DM.
Collapse
Affiliation(s)
- Celia Rodríguez-Pérez
- Departmento de Nutrición y Bromatología, Universidad de Granada, Campus de Melilla, Spain; I Instituto de Nutrición y Tecnología de los Alimentos 'José Mataix', Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Spain.
| | - Celia Gómez-Peña
- Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Spain; Unidad de Gestión Clínica de Farmacia Hospitalaria, Hospital Universitario San Cecilio, Granada, Spain
| | - Francisco M Pérez-Carrascosa
- Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Spain; Oncology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Petra Vrhovnik
- Slovenian National Building and Civil Engineering Institute (ZAG), Ljubjana, Slovenia
| | - Ruth Echeverría
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, Granada, Spain
| | - Inmaculada Salcedo-Bellido
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Vicente Mustieles
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Fiket Željka
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
| | - Juan Pedro Arrebola
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
23
|
Ma W, Jia L, Xiong Q, Feng Y, Du H. The role of iron homeostasis in adipocyte metabolism. Food Funct 2021; 12:4246-4253. [PMID: 33876811 DOI: 10.1039/d0fo03442h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron plays a vital role in the metabolism of adipose tissue. On the one hand, iron is essential for differentiation, endocrine, energy supply and other physiological functions of adipocytes. Iron homeostasis affects the progression of many chronic metabolic diseases such as obesity, type 2 diabetes mellitus, and non-alcoholic fatty liver disease. In adipose tissue, iron deficiency is associated with obesity, mainly due to inflammation. Nevertheless, excessive iron in adipose tissue leads to decreased insulin sensitivity owing to mitochondrial dysfunction and adipokine changes. On the other hand, iron has an effect on the thermogenesis of adipocytes. Iron deficiency affects the production of beige fat and the direction of the differentiation of brown fat. In this review, we summarize the current understanding of the crosstalk between iron homeostasis and metabolism in adipose tissue.
Collapse
Affiliation(s)
- Wan Ma
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou, China.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Low-grade chronic adipose tissue (AT) inflammation is now recognized as a pivotal driver of the multi-organ dysfunction associated with obesity-related complications; and adipose tissue macrophages (ATMs) are key to the development of this inflammatory milieu. Along with their role in immunosurveillance, ATMs are central regulators of AT iron homeostasis. Under optimal conditions, ATMs maintain a proper homeostatic balance of iron in adipocytes; however, during obesity, this relationship is altered, and iron is repartitioned into adipocytes as opposed to ATMs. This adipocyte iron overload leads to systemic IR and the mechanism for these effects is still under investigation. Here, we comment on the most recent findings addressing the interplay between adipocyte and ATM iron handling, and metabolic dysfunction.
Collapse
|
25
|
Development of insulin resistance preceded major changes in iron homeostasis in mice fed a high-fat diet. J Nutr Biochem 2020; 84:108441. [PMID: 32629238 PMCID: PMC7115812 DOI: 10.1016/j.jnutbio.2020.108441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 03/10/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) have been associated with dysregulation of iron metabolism. The basis for this association is not completely understood. To attempt to investigate this, we studied temporal associations between onset of insulin resistance (IR) and dysregulated iron homeostasis, in a mouse model of T2DM. Male C57Bl/6 mice (aged 8 weeks) were fed a high-fat diet (HFD; 60% energy from fat) or a control diet (CD; 10% energy from fat) for 4, 8, 12, 16, 20 and 24 weeks. Development of IR was documented, and various metabolic, inflammatory and iron-related parameters were studied in these mice. HFD-feeding induced weight gain, hepato-steatosis and IR in the mice. Onset of IR occurred from 12 weeks onwards. Hepatic iron stores progressively declined from 16 weeks onwards. Accompanying changes included a decrease in hepatic hepcidin (Hamp1) mRNA expression and serum hepcidin levels and an increase in iron content in the epididymal white adipose tissue (eWAT). Iron content in the liver negatively correlated with that in the eWAT. Factors known to regulate hepatic Hamp1 expression (such as serum iron levels, systemic inflammation, and bone marrow-derived erythroid regulators) were not affected by HFD-feeding. In conclusion, the results show that the onset of IR in HFD-fed mice preceded dysregulation of iron homeostasis, evidence of which were found both in the liver and visceral adipose tissue.
Collapse
|
26
|
Blubber proteome response to repeated ACTH administration in a wild marine mammal. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100644. [PMID: 31786479 DOI: 10.1016/j.cbd.2019.100644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/17/2019] [Accepted: 11/02/2019] [Indexed: 12/21/2022]
Abstract
While the response to acute stress is adaptive in nature, repeated or chronic stress can impact an animal's fitness by depleting its energy stores and suppressing immune function and reproduction. This can be especially deleterious for species that rely on energy reserves to fuel key life history stages (e.g. reproduction), already experience physiological extremes (e.g. fasting), and/or have undergone significant population declines, such as many marine mammals. However, identifying chronically stressed individuals is difficult due to the practical challenges to sample collection from large aquatic animals and a paucity of information on downstream consequences of the stress response. We previously simulated repeated stress by ACTH administration in a model marine mammal, the northern elephant seal, and showed that changes in blubber gene expression, but not circulating cortisol levels, could distinguish between single and repeated responses to ACTH. Here, we profiled changes in the proteome of the same blubber cell population and identified a set of differentially expressed proteins that included extracellular matrix components, heat shock and mitochondrial proteins, metabolic enzymes, and metabolite transporters. Differentially expressed proteins and genes shared similar functions that suggest that repeated corticosteroid elevation may affect blubber tissue proteostasis, mitochondrial activity, adipogenesis, and metabolism in marine mammals. For marine mammal species from which blubber biopsies, but not blood can be obtained by remote sampling, measurement of abundance of such proteins may serve as a novel method for identifying chronically stressed animals.
Collapse
|
27
|
Wan N, Li D, Zhou Z, Shao Y, Zheng S, Wang S. Comprehensive RNA-Sequencing Analysis in Peripheral Blood Cells Reveals Differential Expression Signatures with Biomarker Potential for Idiopathic Membranous Nephropathy. DNA Cell Biol 2019; 38:1223-1232. [PMID: 31566423 DOI: 10.1089/dna.2019.4701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To date, the clinical course of idiopathic membranous nephropathy (iMN) remains unclear and lacks direct and effective diagnostic methods. To better understand the host gene expression changes involved in the iMN process and identify the potential signatures for clinical diagnosis, we performed a whole genome-wide transcriptome profile of peripheral blood cells (PBC) from patients with iMN and healthy controls (HCs). A total of 188 differentially expressed genes (DEGs) were detected in patients with iMN versus HCs. Gene ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that these DEGs were mainly correlated with protein targeting, ion homeostasis GO terms, and ribosome and phagosome pathways. The top 10 differentially expressed protein-coding genes with >2-fold changes and high expression levels were validated using quantitative real-time PCR, and showed high consistency with the high-throughput sequencing results. HLA-C, S100A8, and FTH1 genes were selected for further validation and showed the most significant difference between the iMN and HC group, indicating that they could be used as potential clinical diagnostic biomarkers. Our results provide novel potential diagnostic signatures for iMN and have important implications for better understanding the pathogenesis of iMN.
Collapse
Affiliation(s)
- Nan Wan
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Laboratory Medical Center, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Dingchen Li
- Department of Laboratory Medical Center, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Zhe Zhou
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Yong Shao
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Sihan Zheng
- Department of Laboratory Medical Center, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Shengqi Wang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| |
Collapse
|
28
|
Diverse repertoire of human adipocyte subtypes develops from transcriptionally distinct mesenchymal progenitor cells. Proc Natl Acad Sci U S A 2019; 116:17970-17979. [PMID: 31420514 PMCID: PMC6731669 DOI: 10.1073/pnas.1906512116] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Single-cell sequencing technologies have revealed an unexpectedly broad repertoire of cells required to mediate complex functions in multicellular organisms. Despite the multiple roles of adipose tissue in maintaining systemic metabolic homeostasis, adipocytes are thought to be largely homogenous with only 2 major subtypes recognized in humans so far. Here we report the existence and characteristics of 4 distinct human adipocyte subtypes, and of their respective mesenchymal progenitors. The phenotypes of these distinct adipocyte subtypes are differentially associated with key adipose tissue functions, including thermogenesis, lipid storage, and adipokine secretion. The transcriptomic signature of "brite/beige" thermogenic adipocytes reveals mechanisms for iron accumulation and protection from oxidative stress, necessary for mitochondrial biogenesis and respiration upon activation. Importantly, this signature is enriched in human supraclavicular adipose tissue, confirming that these cells comprise thermogenic depots in vivo, and explain previous findings of a rate-limiting role of iron in adipose tissue browning. The mesenchymal progenitors that give rise to beige/brite adipocytes express a unique set of cytokines and transcriptional regulators involved in immune cell modulation of adipose tissue browning. Unexpectedly, we also find adipocyte subtypes specialized for high-level expression of the adipokines adiponectin or leptin, associated with distinct transcription factors previously implicated in adipocyte differentiation. The finding of a broad adipocyte repertoire derived from a distinct set of mesenchymal progenitors, and of the transcriptional regulators that can control their development, provides a framework for understanding human adipose tissue function and role in metabolic disease.
Collapse
|
29
|
Taneera J, Dhaiban S, Mohammed AK, Mukhopadhyay D, Aljaibeji H, Sulaiman N, Fadista J, Salehi A. GNAS gene is an important regulator of insulin secretory capacity in pancreatic β-cells. Gene 2019; 715:144028. [PMID: 31374326 DOI: 10.1016/j.gene.2019.144028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Type 2 diabetes (T2D) is a complex polygenic disease with unclear mechanism. In an attempt to identify novel genes involved in β-cell function, we harness a bioinformatics method called Loss-of-function tool (LoFtool) gene score. METHODS RNA-sequencing data from human islets were used to cross-reference genes within the 1st quartile of most intolerant LoFtool score with the 100th most expressed genes in human islets. Out of these genes, GNAS and EEF1A1 genes were selected for further investigation in diabetic islets, metabolic tissues along with their correlation with diabetic phenotypes. The influence of GNAS and EEF1A1 on insulin secretion and β-cell function were validated in INS-1 cells. RESULTS A comparatively higher expression level of GNAS and EEF1A1 was observed in human islets than fat, liver and muscle tissues. Furthermore, diabetic islets displayed a reduced expression of GNAS, but not of EEF1A, compared to non-diabetic islets. The expression of GNAS was positively correlated with insulin secretory index, GLP1R, GIPR and inversely correlated with HbA1c. Diabetic human islets displayed a reduced cAMP generation and insulin secretory capacity in response to glucose. Moreover, siRNA silencing of GNAS in INS-1 cells reduced insulin secretion, insulin content, and cAMP production. In addition, the expression of Insulin, PDX1, and MAFA was significantly down-regulated in GNAS-silenced cells. However, cell viability and apoptosis rate were unaffected. CONCLUSION LoFtool is a powerful tool to identify genes associated with pancreatic islets dysfunction. GNAS is a crucial gene for the β-cell insulin secretory capacity.
Collapse
Affiliation(s)
- Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| | - Sarah Dhaiban
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdul Khader Mohammed
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Debasmita Mukhopadhyay
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Hayat Aljaibeji
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Nabil Sulaiman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Joao Fadista
- Department of Epidemiology Research, Statens Serum Institute, Copenhagen, Denmark; Lund University Diabetes Centre (LUDC), Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Albert Salehi
- Lund University Diabetes Centre (LUDC), Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
30
|
Segrestin B, Moreno-Navarrete JM, Seyssel K, Alligier M, Meugnier E, Nazare JA, Vidal H, Fernandez-Real JM, Laville M. Adipose Tissue Expansion by Overfeeding Healthy Men Alters Iron Gene Expression. J Clin Endocrinol Metab 2019; 104:688-696. [PMID: 30260393 DOI: 10.1210/jc.2018-01169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/20/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT Iron overload has been associated with greater adipose tissue (AT) depots. We retrospectively studied the potential interactions between iron and AT during an experimental overfeeding in participants without obesity. METHODS Twenty-six participants (mean body mass index ± SD, 24.7 ± 3.1 kg/m2) underwent a 56-day overfeeding (+760 kcal/d). Serum iron biomarkers (ELISA), subcutaneous AT (SAT) gene expression, and abdominal AT distribution assessed by MRI were analyzed at the beginning and the end of the intervention. RESULTS Before intervention: SAT mRNA expression of the iron transporter transferrin (Tf) was positively correlated with the expression of genes related to lipogenesis (lipin 1, ACSL1) and lipid storage (SCD). SAT expression of the ferritin light chain (FTL) gene, encoding ferritin (FT), an intracellular iron storage protein, was negatively correlated to SREBF1, a gene related to lipogenesis. Serum FT (mean, 92 ± 57 ng/mL) was negatively correlated with the expression of SAT genes linked to lipid storage (SCD, DGAT2) and to lipogenesis (SREBF1, ACSL1). After intervention: Overfeeding led to a 2.3 ± 1.3-kg weight gain. In parallel to increased expression of lipid storage-related genes (mitoNEET, SCD, DGAT2, SREBF1), SAT Tf, SLC40A1 (encoding ferroportin 1, a membrane iron export channel) and hephaestin mRNA levels increased, whereas SAT FTL mRNA decreased, suggesting increased AT iron requirement. Serum FT decreased to 67 ± 43 ng/mL. However, no significant associations between serum iron biomarkers and AT distribution or expansion were observed. CONCLUSION In healthy men, iron metabolism gene expression in SAT is associated with lipid storage and lipogenesis genes expression and is modulated during a 56-day overfeeding diet.
Collapse
Affiliation(s)
- Berenice Segrestin
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
- Eating Disorder Unit, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - José Maria Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute, Hospital Universitari de Girona Dr Josep Trueta, Departament de Medicina, Universitat de Girona, CIBER Fisiopatologia de la Obesidad y Nutricion, Girona, Spain
| | - Kevin Seyssel
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
| | - Maud Alligier
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
- F-CRIN/FORCE Network, Pierre Bénite, France
| | - Emmanuelle Meugnier
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
| | - Julie-Anne Nazare
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
| | - Hubert Vidal
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
| | - José Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute, Hospital Universitari de Girona Dr Josep Trueta, Departament de Medicina, Universitat de Girona, CIBER Fisiopatologia de la Obesidad y Nutricion, Girona, Spain
| | - Martine Laville
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
- Endocrinology, Diabetes, and Nutrition Department, Groupe Hospitalier Sud, Hospices Civils de Lyon, Pierre Benite, France
- F-CRIN/FORCE Network, Pierre Bénite, France
| |
Collapse
|
31
|
Adamska A, Łebkowska A, Krentowska A, Adamski M, Kowalska I. The Association Between Serum Ferritin Concentration and Visceral Adiposity Estimated by Whole-Body DXA Scan in Women With Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2019; 10:873. [PMID: 31969861 PMCID: PMC6960176 DOI: 10.3389/fendo.2019.00873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/28/2019] [Indexed: 12/23/2022] Open
Abstract
Objective: Women with polycystic ovary syndrome (PCOS) are characterized by insulin resistance and higher prevalence of obesity. Serum ferritin is increased in obesity and is associated with insulin resistance. The aim of the present study was to evaluate the relationships between serum ferritin concentration with insulin resistance and body composition estimated by dual-energy X-ray absorptiometry (DXA) in PCOS women in comparison to the control group. Patients and Methods: One hundred four women were enrolled to the study-65 women with PCOS and 39 women matched for age and BMI as a control group. Serum ferritin concentration and oral glucose tolerance test (OGTT) were performed. Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated. DXA was performed to estimate fat, fat-free mass, and visceral adipose tissue (VAT). Results: Women with PCOS have higher serum concentration of ferritin (p = 0.002), insulin at baseline (p = 0.03), at 60 min of OGTT (p = 0.01), at 120 min of OGTT (p = 0.004), HOMA-IR (p = 0.03), and VAT (p = 0.0001) in comparison to the control group. We observed a relationship of serum ferritin with insulin concentration at baseline (r = 0.25, p = 0.04) and at 120 min of OGTT (r = 0.31, p = 0.01) and with HOMA-IR (r = 0.30, p = 0.01) in the PCOS group. We noticed an association between serum ferritin concentration and VAT (r = 0.42, p = 0.001), trunk fat mass (r = 0.25, p = 0.04), and android fat mass (r = 0.25, p = 0.04) in the PCOS group. Multiple regression analysis revealed that ferritin (p = 0.02, β = 0.17), insulin at baseline (p = 0.001, β = 0.30), glucose at the 120 min of OGTT (p = 0.007, β = 0.26), and triglycerides (p = 0.001, β = 0.33) were independent predictors of VAT amount in PCOS women. Conclusions: Elevated serum ferritin concentration is connected with insulin resistance as well as with DXA-estimated VAT, android, and trunk fat mass in PCOS women, and could be a marker of metabolic dysfunction.
Collapse
Affiliation(s)
- Agnieszka Adamska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Białystok, Poland
- *Correspondence: Agnieszka Adamska
| | - Agnieszka Łebkowska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Anna Krentowska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Marcin Adamski
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
32
|
Ryan BJ, Van Pelt DW, Guth LM, Ludzki AC, Gioscia-Ryan RA, Ahn C, Foug KL, Horowitz JF. Plasma ferritin concentration is positively associated with in vivo fatty acid mobilization and insulin resistance in obese women. Exp Physiol 2018; 103:1443-1447. [PMID: 30178895 DOI: 10.1113/ep087283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/31/2018] [Indexed: 01/27/2023]
Abstract
NEW FINDINGS What is the central question of this study? Do obese women with relatively high whole-body iron stores exhibit elevated in vivo rates of fatty acid (FA) release from adipose tissue compared with a well-matched cohort of obese women with relatively low iron stores? What is the main finding and its importance? Obese women with high plasma [ferritin] (a marker of whole-body iron stores) had greater FA mobilization, lipolytic activation in adipose tissue and insulin resistance (IR) compared with obese women with lower plasma [ferritin]. Given that elevated FA mobilization is intimately linked with the development of IR, these findings suggest that elevated iron stores might contribute to IR in obesity by increasing systemic FA availability. ABSTRACT High rates of fatty acid (FA) mobilization from adipose tissue are associated with insulin resistance (IR) in obesity. In vitro evidence suggests that iron stimulates lipolysis in adipocytes, but whether iron is related to in vivo FA mobilization is unknown. We hypothesized that plasma ferritin concentration ([ferritin]), a marker of body iron stores, would be positively associated with FA mobilization. We measured [ferritin], the rate of appearance of FA in the systemic circulation (FA Ra; stable isotope dilution), key adipose tissue lipolytic proteins and IR (hyperinsulinaemic-euglycaemic clamp) in 20 obese, premenopausal women. [Ferritin] was correlated with FA Ra (r = 0.65; P = 0.002) and IR (r = 0.57; P = 0.008); these relationships remained significant after controlling for body mass index and plasma [C-reactive protein] (a marker of systemic inflammation) in multiple regression analyses. We then stratified subjects into tertiles based on [ferritin] to compare subjects with 'High-ferritin' versus 'Low-ferritin'. Plasma [hepcidin] was more than fivefold greater (P < 0.05) in the High-ferritin versus Low-ferritin group, but there was no difference in plasma [C-reactive protein] between groups, indicating that the large difference in plasma [ferritin] reflects a difference in iron stores, not systemic inflammation. We found that FA Ra, adipose protein abundance of hormone-sensitive lipase and adipose triglyceride lipase, and IR were significantly greater in subjects with High-ferritin versus Low-ferritin (all P < 0.05). These data provide the first evidence linking iron and in vivo FA mobilization and suggest that elevated iron stores might contribute to IR in obesity by increasing systemic FA availability.
Collapse
Affiliation(s)
- Benjamin J Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Douglas W Van Pelt
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Lisa M Guth
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Alison C Ludzki
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Rachel A Gioscia-Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Chiwoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Katherine L Foug
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
33
|
Yan HF, Liu ZY, Guan ZA, Guo C. Deferoxamine ameliorates adipocyte dysfunction by modulating iron metabolism in ob/ob mice. Endocr Connect 2018; 7:604-616. [PMID: 29678877 PMCID: PMC5911700 DOI: 10.1530/ec-18-0054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The mechanisms underlying obesity and anti-obesity processes have garnered remarkable attention as potential therapeutic targets for obesity-associated metabolic syndromes. Our prior work has shown the healing efficacy of iron reduction therapies for hepatic steatosis in a rodent model of diabetes and obesity. In this study, we investigated how iron depletion by deferoxamine (DFO) affected adipocyte dysfunction in the epididymal adipose tissues of ob/ob mice. METHODS Male ob/ob mice were assigned to either a vehicle-treated or DFO-treated group. DFO (100 mg/kg body weight) was injected intraperitoneally for 15 days. RESULTS We confirmed that iron deposits were statistically increased in the epididymal fat pad of 26-week-old ob/ob mice compared with wild-type (WT) mice. DFO significantly improved vital parameters of adipose tissue biology by reducing reactive oxygen species and inflammatory marker (TNFα, IL-2, IL-6, and Hepcidin) secretion, by increasing the levels of antioxidant enzymes, hypoxia-inducible factor-1α (HIF-1α) and HIF-1α-targeted proteins, and by altering adipocytic iron-, glucose- and lipid-associated metabolism proteins. Meanwhile, hypertrophic adipocytes were decreased in size, and insulin signaling pathway-related proteins were also activated after 15 days of DFO treatment. CONCLUSIONS These findings suggest that dysfunctional iron homeostasis contributes to the pathophysiology of obesity and insulin resistance in adipose tissues of ob/ob mice. Further investigation is required to develop safe iron chelators as effective treatment strategies against obesity, with potential for rapid clinical application.
Collapse
Affiliation(s)
- Hong-Fa Yan
- College of Life and Health SciencesNortheastern University, Shenyang, China
| | - Zhao-Yu Liu
- College of Life and Health SciencesNortheastern University, Shenyang, China
| | - Zhi-Ang Guan
- College of Life and Health SciencesNortheastern University, Shenyang, China
| | - Chuang Guo
- College of Life and Health SciencesNortheastern University, Shenyang, China
| |
Collapse
|
34
|
Moreno-Navarrete JM, Serino M, Blasco-Baque V, Azalbert V, Barton RH, Cardellini M, Latorre J, Ortega F, Sabater-Masdeu M, Burcelin R, Dumas ME, Ricart W, Federici M, Fernández-Real JM. Gut Microbiota Interacts with Markers of Adipose Tissue Browning, Insulin Action and Plasma Acetate in Morbid Obesity. Mol Nutr Food Res 2018; 62. [PMID: 29105287 DOI: 10.1002/mnfr.201700721] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/09/2017] [Indexed: 12/16/2022]
Abstract
SCOPE To examine the potential relationship among gene expression markers of adipose tissue browning, gut microbiota, and insulin sensitivity in humans. METHODS AND RESULTS Gut microbiota composition and gene markers of browning are analyzed in subcutaneous (SAT) and visceral (VAT) adipose tissue from morbidly obese subjects (n = 34). Plasma acetate is measured through 1 H NMR and insulin sensitivity using euglycemic hyperinsulinemic clamp. Subjects with insulin resistance show an increase in the relative abundance (RA) of the phyla Bacteroidetes and Proteobacteria while RA of Firmicutes is decreased. In all subjects, Firmicutes RA is negatively correlated with HbA1c and fasting triglycerides, whereas Proteobacteria RA was negatively correlated with insulin sensitivity. Firmicutes RA is positively associated with markers of brown adipocytes (PRDM16, UCP1, and DIO2) in SAT, but not in VAT. Multivariate regression analysis indicates that Firmicutes RA contributes significantly to SAT PRDM16, UCP1, and DIO2 mRNA variance after controlling for age, BMI, HbA1c , or insulin sensitivity. Interestingly, Firmicutes RA, specifically those bacteria belonging to the Ruminococcaceae family, is positively associated with plasma acetate levels, which are also linked to SAT PRDM16 mRNA and insulin sensitivity. CONCLUSION Gut microbiota composition is linked to adipose tissue browning and insulin action in morbidly obese subjects, possibly through circulating acetate.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
- Department of Medicine, Universitat de Girona, Girona, Spain
| | - Matteo Serino
- Institut National de la Santé et de la Recherche Médicale (Inserm), Toulouse, France
| | - Vincent Blasco-Baque
- Institut National de la Santé et de la Recherche Médicale (Inserm), Toulouse, France
| | - Vincent Azalbert
- Institut National de la Santé et de la Recherche Médicale (Inserm), Toulouse, France
| | - Richard H Barton
- Faculty of Medicine, Department of Surgery and Cancer, Division of Computational and Systems Medicine, Imperial College London, South Kensington, London, UK
| | - Marina Cardellini
- Department of Systems Medicine and Center for Atherosclerosis, University of Rome "Tor Vergata", Rome, Italy
| | - Jèssica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Mònica Sabater-Masdeu
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (Inserm), Toulouse, France
| | - Marc-Emmanuel Dumas
- Faculty of Medicine, Department of Surgery and Cancer, Division of Computational and Systems Medicine, Imperial College London, South Kensington, London, UK
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
- Department of Medicine, Universitat de Girona, Girona, Spain
| | - Massimo Federici
- Department of Systems Medicine and Center for Atherosclerosis, University of Rome "Tor Vergata", Rome, Italy
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
- Department of Medicine, Universitat de Girona, Girona, Spain
| |
Collapse
|
35
|
Aguirre LG, Urrunaga-Pastor D, Moncada-Mapelli E, Guarnizo-Poma M, Lazaro-Alcantara H, Benites-Zapata VA. High serum ferritin levels are associated with insulin resistance but not with impaired glucose tolerance in a healthy people population. Diabetes Metab Syndr 2017; 11 Suppl 2:S983-S988. [PMID: 28755842 DOI: 10.1016/j.dsx.2017.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 07/16/2017] [Indexed: 12/29/2022]
Abstract
AIM To assess the association between elevated serum ferritin levels and the presence of insulin resistance (IR) or impaired glucose tolerance (IGT) in a population of individuals with no endocrine or metabolic disorders background. METHODS Analytical cross-sectional study, carried out in adults of both sexes with no medical history of type 2 diabetes mellitus (T2DM) or other metabolic or endocrine disorder, who attended the outpatient service of a private clinic in Lima-Peru during 2012-2014 period. Impaired serum ferritin levels were defined as serum ferritin values >300μg/L in men and >200μg/L in women. IR was defined as a Homeostasis Model Assessment (HOMA-IR) value ≥3.8 and IGT was defined as an oral glucose tolerance test (OGTT) value between 126mg/dL and 199mg/dL. The reported association measure was the prevalence ratio (PR) with their respective 95% confidence intervals (95% CI). RESULTS We analyzed 213 participants, the average age was 35.8±11.1years and 35.7% were males. The prevalence of impaired serum ferritin levels, IR and IGT in the population was 12.7%, 33.3% and 9.9% respectively. In the adjusted Poisson regression models, the prevalence of IR was higher among the group with impaired serum ferritin levels (PR=1.74; 95%CI:1.18-2.56); however, we found no association between impaired serum ferritin levels and IGT (PR=1.42; 95%CI:0.47-4.30). CONCLUSIONS Impaired levels of serum ferritin are associated with IR, nevertheless, not with IGT in a metabolically healthy population. Serum ferritin could be considered as an early marker of IR prior to the onset of glycaemia disorders.
Collapse
Affiliation(s)
- Luis G Aguirre
- Sociedad Científica de Estudiantes de Medicina de la Universidad de San Martín de Porres, Universidad de San Martín de Porres, Lima, Peru
| | - Diego Urrunaga-Pastor
- Sociedad Científica de Estudiantes de Medicina de la Universidad de San Martín de Porres, Universidad de San Martín de Porres, Lima, Peru
| | - Enrique Moncada-Mapelli
- Sociedad Científica de Estudiantes de Medicina de la Universidad de San Martín de Porres, Universidad de San Martín de Porres, Lima, Peru
| | | | | | - Vicente A Benites-Zapata
- Centre for Public Health Research, Research Institute, Faculty of Medicine, Universidad de San Martín de Porres, Lima, Peru.
| |
Collapse
|
36
|
Deugnier Y, Bardou-Jacquet É, Lainé F. Dysmetabolic iron overload syndrome (DIOS). Presse Med 2017; 46:e306-e311. [PMID: 29169710 DOI: 10.1016/j.lpm.2017.05.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/18/2017] [Indexed: 02/08/2023] Open
Abstract
Dysmetabolic iron overload syndrome (DIOS) corresponds to mild increase in both liver and body iron stores associated with various components of metabolic syndrome in the absence of any identifiable cause of iron excess. It is characterized by hyperferritinemia with normal or moderately increased transferrin saturation, one or several metabolic abnormalities (increased body mass index with android distribution of fat, elevated blood pressure, dyslipidaemia, abnormal glucose metabolism, steatohepatitis), and mild hepatic iron excess at magnetic resonance imaging or liver biopsy. Alteration of iron metabolism in DIOS likely results from a multifactorial and dynamic process triggered by an excessively rich diet, facilitated by environmental and genetic cofactors and implying a cross-talk between the liver and visceral adipose tissue. Phlebotomy therapy cannot be currently considered as a valuable option in DIOS patients. Sustained modification of diet and life-style habits remains the first therapeutic intervention in these patients together with drug control of increased blood pressure, abnormal blood glucose and dyslipidaemia when necessary.
Collapse
Affiliation(s)
- Yves Deugnier
- CHU de Rennes, hôpital Pontchaillou, centre de référence des surcharges génétiques en fer, service des maladies du foie, 2, rue Henri-Le-Guilloux, 35033 Rennes, France; University of Rennes 1, faculté de médecine, 35034 Rennes, France; Hôpital Pontchaillou, Inserm, CIC1414, 35033 Rennes, France.
| | - Édouard Bardou-Jacquet
- CHU de Rennes, hôpital Pontchaillou, centre de référence des surcharges génétiques en fer, service des maladies du foie, 2, rue Henri-Le-Guilloux, 35033 Rennes, France; University of Rennes 1, faculté de médecine, 35034 Rennes, France; Hôpital Pontchaillou, Inserm, CIC1414, 35033 Rennes, France
| | - Fabrice Lainé
- CHU de Rennes, hôpital Pontchaillou, centre de référence des surcharges génétiques en fer, service des maladies du foie, 2, rue Henri-Le-Guilloux, 35033 Rennes, France; Hôpital Pontchaillou, Inserm, CIC1414, 35033 Rennes, France
| |
Collapse
|
37
|
Labrecque J, Laforest S, Michaud A, Biertho L, Tchernof A. Impact of Bariatric Surgery on White Adipose Tissue Inflammation. Can J Diabetes 2017; 41:407-417. [PMID: 28365202 DOI: 10.1016/j.jcjd.2016.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/23/2016] [Accepted: 12/05/2016] [Indexed: 12/14/2022]
|
38
|
Increased adipose tissue heme levels and exportation are associated with altered systemic glucose metabolism. Sci Rep 2017; 7:5305. [PMID: 28706239 PMCID: PMC5509649 DOI: 10.1038/s41598-017-05597-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
Iron status is known to be associated with the physiology of adipose tissue (AT). We aimed to investigate AT heme and expression of heme exporter (FLVCR1) in association with obesity and type 2 diabetes (T2D). Substantial amounts of FLVCR1 mRNA and protein levels were detected in AT, being significantly increased in subjects with T2D, and positively correlated with fasting glucose, fasting triglycerides and with circulating markers of iron stores (serum ferritin, blood hemoglobin and hematocrit). In both visceral (VAT) and subcutaneous AT (SAT), increased heme levels were found in subjects with T2D. Reinforcing these associations, FLVCR1 mRNA levels were positively linked to fasting glucose in an independent cohort. Longitudianlly, the percent change of FLVCR1 positively correlated with the percent change in fasting glucose (r = 0.52, p = 0.03) after bariatric surgery-induced weight loss. High-fat diet-induced weight gain in rats did not result in significant changes in AT Flvcr1 mRNA but, remarkably, the expression of this gene positively correlated with fasting glucose and negatively with insulin sensitivity (QUICKI). Altogether, these findings showed a direct association between FLVCR1 mRNA levels and hyperglycemia, suggesting that increased adipose tissue heme exportation might disrupt, or is the consequence of, impaired systemic glucose metabolism during the progression to T2D.
Collapse
|
39
|
Moreno-Navarrete JM, Ortega F, Rodríguez A, Latorre J, Becerril S, Sabater-Masdeu M, Ricart W, Frühbeck G, Fernández-Real JM. HMOX1 as a marker of iron excess-induced adipose tissue dysfunction, affecting glucose uptake and respiratory capacity in human adipocytes. Diabetologia 2017; 60:915-926. [PMID: 28243792 DOI: 10.1007/s00125-017-4228-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS Iron excess in adipose tissue is known to promote adipose tissue dysfunction. Here, we aimed to investigate the possible role of haem oxygenase 1 (HMOX1) in iron excess-induced adipose tissue dysfunction. METHODS Cross-sectionally, HMOX1 gene expression in subcutaneous and visceral adipose tissue was analysed in two independent cohorts (n = 234 and 40) in relation to obesity. We also evaluated the impact of weight loss (n = 21), weight gain (in rats, n = 20) on HMOX1 mRNA; HMOX1 mRNA levels during human adipocyte differentiation; the effects of inflammation and iron on adipocyte HMOX1; and the effects of HMOX1-induced activity on adipocyte mitochondrial respiratory function, glucose uptake and adipogenesis. RESULTS Adipose tissue HMOX1 was increased in obese participants (p = 0.01) and positively associated with obesity-related metabolic disturbances, and markers of iron accumulation, inflammation and oxidative stress (p < 0.01). HMOX1 was negatively correlated with mRNAs related to mitochondrial biogenesis, the insulin signalling pathway and adipogenesis (p < 0.01). These associations were replicated in an independent cohort. Bariatric surgery-induced weight loss led to reduced HMOX1 (0.024 ± 0.010 vs 0.010 ± 0.004 RU, p < 0.0001), whereas in rats, high-fat diet-induced weight gain resulted in increased Hmox1 mRNA levels (0.22 ± 0.15 vs 0.54 ± 0.22 RU, p = 0.005). These changes were in parallel with changes in BMI and adipose tissue markers of iron excess, adipogenesis and inflammation. In human adipocytes, iron excess and inflammation led to increased HMOX1 mRNA levels. HMOX1 induction (by haem arginate [hemin] administration), resulted in a significant reduction of mitochondrial respiratory capacity (including basal respiration and spare respiratory capacity), glucose uptake and adipogenesis in parallel with increased expression of inflammatory- and iron excess-related genes. CONCLUSIONS/INTERPRETATION HMOX1 is an important marker of iron excess-induced adipose tissue dysfunction and metabolic disturbances in human obesity.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Hospital of Girona 'Dr Josep Trueta', Carretera de França s/n, 17007, Girona, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain, .
| | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Hospital of Girona 'Dr Josep Trueta', Carretera de França s/n, 17007, Girona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Amaia Rodríguez
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, 31008, Spain
| | - Jèssica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Hospital of Girona 'Dr Josep Trueta', Carretera de França s/n, 17007, Girona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Sara Becerril
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, 31008, Spain
| | - Mònica Sabater-Masdeu
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Hospital of Girona 'Dr Josep Trueta', Carretera de França s/n, 17007, Girona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Hospital of Girona 'Dr Josep Trueta', Carretera de França s/n, 17007, Girona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
- Department of Medicine, Universitat de Girona, Girona, 17007, Spain
| | - Gema Frühbeck
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, 31008, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Hospital of Girona 'Dr Josep Trueta', Carretera de França s/n, 17007, Girona, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain, .
- Department of Medicine, Universitat de Girona, Girona, 17007, Spain.
| |
Collapse
|
40
|
Zhao L, Fu HY, Raju R, Vishwanathan N, Hu WS. Unveiling gene trait relationship by cross-platform meta-analysis on Chinese hamster ovary cell transcriptome. Biotechnol Bioeng 2017; 114:1583-1592. [PMID: 28218403 DOI: 10.1002/bit.26272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 01/17/2017] [Accepted: 02/15/2017] [Indexed: 12/15/2022]
Abstract
In the past few years, transcriptome analysis has been increasingly employed to better understand the physiology of Chinese hamster ovary (CHO) cells at a global level. As more transcriptome data accumulated, meta-analysis on data sets collected from various sources can potentially provide better insights on common properties of those cells. Here, we performed meta-analysis on transcriptome data of different CHO cell lines obtained using NimbleGen or Affymetrix microarray platforms. Hierarchical clustering, non-negative matrix factorization (NMF) analysis, and principal component analysis (PCA) accordantly showed the samples were clustered into two groups: one consists of adherent cells in serum-containing medium, and the other suspension cells in serum-free medium. Genes that were differentially expressed between the two clusters were enriched in a few functional classes by Database for Annotation, Visualization, and Integrated Discovery (DAVID) of which many were common with the enriched gene sets identified by Gene Set Enrichment Analysis (GSEA), including extracellular matrix (ECM) receptor interaction, cell adhesion molecules (CAMs), and lipid related metabolism pathways. Despite the heterogeneous sources of the cell samples, the adherent and suspension growth characteristics and serum-supplementation appear to be a dominant feature in the transcriptome. The results demonstrated that meta-analysis of transcriptome could uncover features in combined data sets that individual data set might not reveal. As transcriptome data sets accumulate over time, meta-analysis will become even more revealing. Biotechnol. Bioeng. 2017;114: 1583-1592. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hsu-Yuan Fu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Ravali Raju
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Nandita Vishwanathan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
41
|
Barton JC, Acton RT. Diabetes in HFE Hemochromatosis. J Diabetes Res 2017; 2017:9826930. [PMID: 28331855 PMCID: PMC5346371 DOI: 10.1155/2017/9826930] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/12/2016] [Accepted: 01/04/2017] [Indexed: 02/08/2023] Open
Abstract
Diabetes in whites of European descent with hemochromatosis was first attributed to pancreatic siderosis. Later observations revealed that the pathogenesis of diabetes in HFE hemochromatosis is multifactorial and its clinical manifestations are heterogeneous. Increased type 2 diabetes risk in HFE hemochromatosis is associated with one or more factors, including abnormal iron homeostasis and iron overload, decreased insulin secretion, cirrhosis, diabetes in first-degree relatives, increased body mass index, insulin resistance, and metabolic syndrome. In p.C282Y homozygotes, serum ferritin, usually elevated at hemochromatosis diagnosis, largely reflects body iron stores but not diabetes risk. In persons with diabetes type 2 without hemochromatosis diagnoses, serum ferritin levels are higher than those of persons without diabetes, but most values are within the reference range. Phlebotomy therapy to achieve iron depletion does not improve diabetes control in all persons with HFE hemochromatosis. The prevalence of type 2 diabetes diagnosed today in whites of European descent with and without HFE hemochromatosis is similar. Routine iron phenotyping or HFE genotyping of patients with type 2 diabetes is not recommended. Herein, we review diabetes in HFE hemochromatosis and the role of iron in diabetes pathogenesis in whites of European descent with and without HFE hemochromatosis.
Collapse
Affiliation(s)
- James C. Barton
- Southern Iron Disorders Center, Birmingham, AL 35209, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ronald T. Acton
- Southern Iron Disorders Center, Birmingham, AL 35209, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
42
|
Moreno-Navarrete JM, Moreno M, Puig J, Blasco G, Ortega F, Xifra G, Ricart W, Fernández-Real JM. Hepatic iron content is independently associated with serum hepcidin levels in subjects with obesity. Clin Nutr 2016; 36:1434-1439. [PMID: 27745814 DOI: 10.1016/j.clnu.2016.09.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 08/31/2016] [Accepted: 09/23/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Serum hepcidin concentration is known to increase in parallel to circulating markers of iron stores. We aimed to investigate whether this is reflected at the tissue level in subjects with obesity. METHODS Serum hepcidin and ferritin levels (ELISA) and hepatic iron content (using magnetic resonance imaging) were analyzed longitudinally in 44 participants (19 without obesity and 25 with obesity). In a subgroup of 16 participants with obesity, a weight loss intervention was performed. RESULTS Serum hepcidin, ferritin and hepatic iron content (HIC) were significantly increased in participants with obesity. Age- and gender-adjusted serum hepcidin was positively correlated with BMI, hsCRP, ferritin and HIC. In addition, age- and gender-adjusted serum hepcidin was positively correlated with ferritin and HIC in both non-obese and obese participants. In multivariate regression analysis, hepatic iron content (p < 0.01) and serum ferritin (p < 0.001) contributed independently to circulating hepcidin concentration variation after controlling for age, gender, BMI and hsCRP. Diet intervention-induced weight loss led to decreased serum hepcidin (p = 0.01), serum ferritin concentration (p = 0.01) and HIC (p = 0.002). Of note, the percent change of serum hepcidin strongly correlated with the percent change of serum ferritin (r = 0.69, p = 0.01) and HIC (r = 0.61, p = 0.03) even after controlling for age and gender. CONCLUSIONS Serum hepcidin is a reliable marker of the hepatic iron content in subjects with obesity.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Hospital Dr Josep Trueta, CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - María Moreno
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Hospital Dr Josep Trueta, CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Josep Puig
- Department of Radiology, Institut d'Investigació Biomèdica de Girona (IdIBGi), Hospital Dr Josep Trueta, Girona, Spain
| | - Gerard Blasco
- Department of Radiology, Institut d'Investigació Biomèdica de Girona (IdIBGi), Hospital Dr Josep Trueta, Girona, Spain
| | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Hospital Dr Josep Trueta, CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Gemma Xifra
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Hospital Dr Josep Trueta, CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Hospital Dr Josep Trueta, CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Hospital Dr Josep Trueta, CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain.
| |
Collapse
|
43
|
Frikke-Schmidt H, O'Rourke RW, Lumeng CN, Sandoval DA, Seeley RJ. Does bariatric surgery improve adipose tissue function? Obes Rev 2016; 17:795-809. [PMID: 27272117 PMCID: PMC5328428 DOI: 10.1111/obr.12429] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 12/19/2022]
Abstract
Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. © 2016 World Obesity.
Collapse
Affiliation(s)
| | - R W O'Rourke
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | - C N Lumeng
- Department of Pediatrics, University of Michigan, Ann Arbor, USA
| | - D A Sandoval
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | - R J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, USA
| |
Collapse
|
44
|
Fernández-Real JM, Blasco G, Puig J, Moreno M, Xifra G, Sánchez-Gonzalez J, Maria Alustiza J, Pedraza S, Ricart W, María Moreno-Navarrete J. Adipose tissue R2* signal is increased in subjects with obesity: A preliminary MRI study. Obesity (Silver Spring) 2016; 24:352-8. [PMID: 26813526 DOI: 10.1002/oby.21347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/28/2015] [Accepted: 08/29/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Circulating and adipose tissue markers of iron overload are increased in subjects with obesity. The aim is to study iron signals in adipose tissue. METHODS Adipose tissue R2* values and hepatic iron concentration (HIC) were evaluated using magnetic resonance imaging (MRI) in 23 middle-aged subjects with obesity and 20 subjects without obesity. RESULTS Subcutaneous (SAT) and visceral adipose tissue (VAT) R2* were increased in subjects with obesity (P = 0.004 and P = 0.008) and correlated significantly and positively with HIC in all subjects. Strikingly, most of the associations of liver iron with metabolic parameters were replicated with SAT and VAT R2*. BMI, waist circumference, fat mass, HOMA value, and C-reactive protein positively correlated with HIC and SAT and VAT R2*. BMI or percent fat mass (but not insulin resistance) contributed independently to 26.8-34.8% of the variance in sex- and age-adjusted SAT or VAT R2* (β > 0.40, P < 0.005). Within subjects with obesity, total cholesterol independently contributed to 14.8% of sex- and age-adjusted VAT iron variance (β = 0.50, P = 0.025). CONCLUSIONS Increased R2* in adipose tissue, which might indicate iron content, runs in parallel to liver iron stores of subjects with obesity. VAT iron seems also associated with serum cholesterol within subjects with obesity.
Collapse
Affiliation(s)
- José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut D'investigació Biomèdica De Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto De Salud Carlos III (ISCIII), Girona, Spain
| | - Gerard Blasco
- Department of Radiology, Girona Biomedical Research Institute (IDIBGI)-Diagnostic Imaging Institute (IDI), Girona, Spain
| | - Josep Puig
- Department of Radiology, Girona Biomedical Research Institute (IDIBGI)-Diagnostic Imaging Institute (IDI), Girona, Spain
| | - Maria Moreno
- Department of Diabetes, Endocrinology and Nutrition, Institut D'investigació Biomèdica De Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto De Salud Carlos III (ISCIII), Girona, Spain
| | - Gemma Xifra
- Department of Diabetes, Endocrinology and Nutrition, Institut D'investigació Biomèdica De Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto De Salud Carlos III (ISCIII), Girona, Spain
| | | | - Jose Maria Alustiza
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital (HUD), University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Salvador Pedraza
- Department of Radiology, Girona Biomedical Research Institute (IDIBGI)-Diagnostic Imaging Institute (IDI), Girona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut D'investigació Biomèdica De Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto De Salud Carlos III (ISCIII), Girona, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut D'investigació Biomèdica De Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto De Salud Carlos III (ISCIII), Girona, Spain
| |
Collapse
|
45
|
Moreno-Navarrete JM, Moreno M, Ortega F, Sabater M, Xifra G, Ricart W, Fernández-Real JM. CISD1 in association with obesity-associated dysfunctional adipogenesis in human visceral adipose tissue. Obesity (Silver Spring) 2016; 24:139-47. [PMID: 26692580 DOI: 10.1002/oby.21334] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/05/2015] [Accepted: 08/14/2015] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To investigate CISD1 mRNA and protein in human adipose tissue in association with obesity and adipogenesis. METHODS Subcutaneous (SAT) and visceral (VAT) adipose tissue CISD1 gene expression (real-time PCR) and protein (Western blot) levels were investigated in human adipose tissue and during human adipocyte differentiation. RESULTS SAT and VAT CISD1 mRNA and protein levels were significantly decreased in subjects with obesity and negatively correlated with BMI after controlling for age and sex. In participants with morbid obesity, VAT CISD1 gene expression was positively correlated with insulin sensitivity (r = 0.47, P = 0.01), and bariatric surgery-induced weight loss led to increased SAT CISD1 mRNA levels. In both VAT and SAT, CISD1 gene expression was significantly associated with SIRT1, ISCA2, and mitochondrial biogenesis-related (PPARGC1A, TFAM, and MT-CO3) and browning-related (PRDM16 and UCP1) gene expression. In addition, VAT CISD1 gene expression was significantly associated with adipogenic and iron metabolism-related genes. Importantly, these correlations were replicated in a second cohort. At the cellular level, CISD1 gene expression increased during human adipocyte differentiation in correlation with adipogenic genes (r > 0.60, P < 0.005). CONCLUSIONS These data suggest a possible role of CISD1 in obesity-associated dysfunctional adipogenesis in human VAT.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut D'investigació Biomèdica De Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto De Salud Carlos III (ISCIII), Girona, Spain
| | - María Moreno
- Department of Diabetes, Endocrinology and Nutrition, Institut D'investigació Biomèdica De Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto De Salud Carlos III (ISCIII), Girona, Spain
| | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut D'investigació Biomèdica De Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto De Salud Carlos III (ISCIII), Girona, Spain
| | - Mònica Sabater
- Department of Diabetes, Endocrinology and Nutrition, Institut D'investigació Biomèdica De Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto De Salud Carlos III (ISCIII), Girona, Spain
| | - Gemma Xifra
- Department of Diabetes, Endocrinology and Nutrition, Institut D'investigació Biomèdica De Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto De Salud Carlos III (ISCIII), Girona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut D'investigació Biomèdica De Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto De Salud Carlos III (ISCIII), Girona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut D'investigació Biomèdica De Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto De Salud Carlos III (ISCIII), Girona, Spain
| |
Collapse
|
46
|
Pihan-Le Bars F, Bonnet F, Loréal O, Le Loupp AG, Ropert M, Letessier E, Prieur X, Bach K, Deugnier Y, Fromenty B, Cariou B. Indicators of iron status are correlated with adiponectin expression in adipose tissue of patients with morbid obesity. DIABETES & METABOLISM 2015; 42:105-11. [PMID: 26677772 DOI: 10.1016/j.diabet.2015.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/09/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022]
Abstract
AIM The aim of this study was to assess interactions between glucose and iron homoeostasis in the adipose tissue (AT) of obese subjects. METHODS A total of 46 obese patients eligible for bariatric surgery were recruited into the study. Anthropometric and biochemical characteristics were assessed, and biopsies of subcutaneous (SCAT) and visceral adipose tissue (VAT) performed. The mRNA levels of genes involved in iron and glucose homoeostasis were measured in their AT and compared with a pool of control samples. RESULTS Gene expression of hepcidin (HAMP) was significantly increased in the SCAT and VAT of obese patients, while transferrin receptor (TFRC) expression was reduced, compared with non-obese controls, suggesting a higher iron load in obese patients. Also, mRNA levels of adiponectin (ADIPOQ) were decreased in both SCAT and VAT in obese patients, and correlated negatively with hepcidin expression, while adiponectin expression was positively correlated with TFRC expression in both SCAT and VAT. Interestingly, TFRC expression in VAT correlated negatively with several metabolic parameters, such as fasting blood glucose and LDL cholesterol. CONCLUSION Iron content appears to be increased in the SCAT and VAT of obese patients, and negatively correlated with adiponectin expression, which could be contributing to insulin resistance and the metabolic complications of obesity.
Collapse
Affiliation(s)
- F Pihan-Le Bars
- Inserm, UMR 991, Université de Rennes 1, 35000 Rennes, France; Service d'Endocrinologie-Diabétologie, CHU de Rennes, 35200 Rennes, France
| | - F Bonnet
- Inserm, UMR 991, Université de Rennes 1, 35000 Rennes, France; Service d'Endocrinologie-Diabétologie, CHU de Rennes, 35200 Rennes, France.
| | - O Loréal
- Inserm, UMR 991, Université de Rennes 1, 35000 Rennes, France; Centre National de Référence des surcharges en fer rares d'origine génétique, CHU Pontchaillou, 35000 Rennes, France
| | - A-G Le Loupp
- Laboratoire de Biochimie, CHU de Nantes, 44000 Nantes, France; Université de Nantes, 44000 Nantes, France
| | - M Ropert
- Inserm, UMR 991, Université de Rennes 1, 35000 Rennes, France; Laboratoire de Biochimie, CHU de Rennes, 35000 Rennes, France
| | - E Letessier
- Clinique de Chirurgie Digestive et Endocrinienne, CHU de Nantes, 44000 Nantes, France
| | - X Prieur
- Université de Nantes, 44000 Nantes, France; Inserm, UMR 1087-CNRS UMR 6291, l'Institut du Thorax, 44000 Nantes, France
| | - K Bach
- Laboratoire de Biochimie, CHU de Nantes, 44000 Nantes, France; Université de Nantes, 44000 Nantes, France
| | - Y Deugnier
- Inserm, UMR 991, Université de Rennes 1, 35000 Rennes, France; Centre National de Référence des surcharges en fer rares d'origine génétique, CHU Pontchaillou, 35000 Rennes, France; Service des maladies du foie, CHU de Rennes, 35000 Rennes, France
| | - B Fromenty
- Inserm, UMR 991, Université de Rennes 1, 35000 Rennes, France
| | - B Cariou
- Université de Nantes, 44000 Nantes, France; Inserm, UMR 1087-CNRS UMR 6291, l'Institut du Thorax, 44000 Nantes, France; CHU de Nantes, clinique d'Endocrinologie, l'Institut du Thorax, 44000 Nantes, France
| |
Collapse
|
47
|
Fernández-Real JM, McClain D, Manco M. Mechanisms Linking Glucose Homeostasis and Iron Metabolism Toward the Onset and Progression of Type 2 Diabetes. Diabetes Care 2015; 38:2169-76. [PMID: 26494808 DOI: 10.2337/dc14-3082] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The bidirectional relationship between iron metabolism and glucose homeostasis is increasingly recognized. Several pathways of iron metabolism are modified according to systemic glucose levels, whereas insulin action and secretion are influenced by changes in relative iron excess. We aimed to update the possible influence of iron on insulin action and secretion and vice versa. RESEARCH DESIGN AND METHODS The mechanisms that link iron metabolism and glucose homeostasis in the main insulin-sensitive tissues and insulin-producing β-cells were revised according to their possible influence on the development of type 2 diabetes (T2D). RESULTS The mechanisms leading to dysmetabolic hyperferritinemia and hepatic overload syndrome were diverse, including diet-induced alterations in iron absorption, modulation of gluconeogenesis, heme-mediated disruption of circadian glucose rhythm, impaired hepcidin secretion and action, and reduced copper availability. Glucose metabolism in adipose tissue seems to be affected by both iron deficiency and excess through interaction with adipocyte differentiation, tissue hyperplasia and hypertrophy, release of adipokines, lipid synthesis, and lipolysis. Reduced heme synthesis and dysregulated iron uptake or export could also be contributing factors affecting glucose metabolism in the senescent muscle, whereas exercise is known to affect iron and glucose status. Finally, iron also seems to modulate β-cells and insulin secretion, although this has been scarcely studied. CONCLUSIONS Iron is increasingly recognized to influence glucose metabolism at multiple levels. Body iron stores should be considered as a potential target for therapy in subjects with T2D or those at risk for developing T2D. Further research is warranted.
Collapse
Affiliation(s)
- José Manuel Fernández-Real
- University Hospital of Girona "DrJosepTrueta," Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain CIBER Fisiopatología de la Obesidad y Nutrición, Girona, Spain
| | - Donald McClain
- Departments of Biochemistry and Internal Medicine, University of Utah, Salt Lake City, UT Veterans Administration Research Service, Salt Lake City VAHCS, Salt Lake City, UT
| | - Melania Manco
- Bambino Gesù Children's Hospital and Research Institute, Research Unit for Multifactorial Disease, Rome, Italy
| |
Collapse
|
48
|
Jézéquel C, Lainé F, Laviolle B, Kiani A, Bardou-Jacquet E, Deugnier Y. Both hepatic and body iron stores are increased in dysmetabolic iron overload syndrome. A case-control study. PLoS One 2015; 10:e0128530. [PMID: 26030828 PMCID: PMC4451770 DOI: 10.1371/journal.pone.0128530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/28/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND & AIMS Hepatic iron is increased in dysmetabolic iron overload syndrome (DIOS). Whether this reflects elevated body iron stores is still debated. The study was aimed at assessing body iron stores in DIOS patients by calculating the amount of mobilized iron (AMI). METHODS We conducted a prospective case-control study comparing AMI in 12 DIOS patients and 12 overweight normoferritinemic subjects matched on BMI and age. All participants were phlebotomized until serum ferritin dropped ≤ 50μg/L. RESULTS The two groups were comparable with respect to metabolic abnormalities and differed according to serum ferritin levels only. AMI was significantly (p<0.0001) higher in DIOS (2.5g±0.7) than in controls (0.8g±0.3). No side effects were related to phlebotomies.
Collapse
Affiliation(s)
- Caroline Jézéquel
- CHU Rennes, Liver Unit, F-35033, Rennes, France
- INSERM, CIC 1414, F-35033, Rennes, France
- * E-mail:
| | - Fabrice Lainé
- CHU Rennes, Liver Unit, F-35033, Rennes, France
- INSERM, CIC 1414, F-35033, Rennes, France
| | - Bruno Laviolle
- INSERM, CIC 1414, F-35033, Rennes, France
- University Rennes 1, Faculty of Medicine, F- 35043, Rennes, France
| | - Anita Kiani
- INSERM, CIC 1414, F-35033, Rennes, France
- CHU Rennes, Department of Radiology, F-35033, Rennes, France
| | - Edouard Bardou-Jacquet
- CHU Rennes, Liver Unit, F-35033, Rennes, France
- INSERM, CIC 1414, F-35033, Rennes, France
- INSERM, U991, F-35033, Rennes, France
| | - Yves Deugnier
- CHU Rennes, Liver Unit, F-35033, Rennes, France
- INSERM, CIC 1414, F-35033, Rennes, France
- University Rennes 1, Faculty of Medicine, F- 35043, Rennes, France
| |
Collapse
|
49
|
Peffer K, Verbeek ALM, Swinkels DW, Geurts-Moespot AJ, den Heijer M, Atsma F. Donation intensity and metabolic syndrome in active whole-blood donors. Vox Sang 2015; 109:25-34. [DOI: 10.1111/vox.12258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 01/08/2015] [Accepted: 01/16/2015] [Indexed: 01/15/2023]
Affiliation(s)
- K. Peffer
- Department of Donor Studies; Sanquin Research; Nijmegen The Netherlands
- Department for Health Evidence; Radboud University Medical Center; Nijmegen The Netherlands
| | - A. L. M. Verbeek
- Department for Health Evidence; Radboud University Medical Center; Nijmegen The Netherlands
| | - D. W. Swinkels
- Laboratory of Genetic, Endocrine and Metabolic Diseases; Department of Laboratory Medicine; Radboud University Medical Center; Nijmegen The Netherlands
| | - A. J. Geurts-Moespot
- Laboratory of Genetic, Endocrine and Metabolic Diseases; Department of Laboratory Medicine; Radboud University Medical Center; Nijmegen The Netherlands
| | - M. den Heijer
- Department for Health Evidence; Radboud University Medical Center; Nijmegen The Netherlands
- Department of Internal Medicine; VU University Medical Center; Amsterdam The Netherlands
| | - F. Atsma
- Department of Donor Studies; Sanquin Research; Nijmegen The Netherlands
- Scientific Institute for Quality of Healthcare; Radboud University Medical Center; Nijmegen The Netherlands
| |
Collapse
|
50
|
Hubler MJ, Peterson KR, Hasty AH. Iron homeostasis: a new job for macrophages in adipose tissue? Trends Endocrinol Metab 2015; 26:101-9. [PMID: 25600948 PMCID: PMC4315734 DOI: 10.1016/j.tem.2014.12.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 12/29/2022]
Abstract
Elevated serum ferritin and increased cellular iron concentrations are risk factors for diabetes; however, the etiology of this association is unclear. Metabolic tissues such as pancreas, liver, and adipose tissue (AT), as well as the immune cells resident in these tissues, may be involved. Recent studies demonstrate that the polarization status of macrophages has important relevance to their iron-handling capabilities. Furthermore, a subset of macrophages in AT have elevated iron concentrations and a gene expression profile indicative of iron handling, a capacity diminished in obesity. Because iron overload in adipocytes increases systemic insulin resistance, iron handling by AT macrophages may have relevance not only to adipocyte iron stores but also to local and systemic insulin sensitivity.
Collapse
Affiliation(s)
- Merla J Hubler
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristin R Peterson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|