1
|
Wang P, Yu Z, Hu Y, Li W, Xu L, Da F, Wang F. BMI modifies the effect of pregnancy complications on risk of small- or large-for-gestational-age newborns. Pediatr Res 2025; 97:301-310. [PMID: 38871801 DOI: 10.1038/s41390-024-03298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Maternal physical condition (reflected by maternal body mass index (BMI) at delivery) and pregnancy complications influence neonatal health outcomes. High BMI during pregnancy increases various health problems' risks, but studies about the synthesized effect of these factors on fetal growth, are scarce. METHODS The retrospective cohort study was conducted in Zhejiang Province, China from 1 January 2019 to 31 December 2021. The associations between complications and small-for-gestational-age (SGA) and large-for-gestational-age (LGA) were measured by the Fine-Gray model and subgroup analysis. Effect modification and interaction analyses were conducted to explore BMI's modification effect and complications' interaction. RESULTS Several complications increased the risk for SGA and LGA, some significance varied in different subgroups. There was a positive effect modification of gestational diabetes mellitus (GDM) across BMI strata on LGA (relative excess risk due to interaction (RERI) [95% CI] = 0.57 [0.09,1.04]). Several pairwise complications' interactions were synergistic (e.g., pregestational diabetes and intraamniotic infection for SGA (ratio of ORs [95% CI] = 8.50 [1.74,41.37]), pregestational diabetes and assisted reproductive technology (ART) for LGA (ratio of ORs [95% CI] = 2.71 [1.11,6.62])), one was antagonistic (placental problems and ART for LGA (ratio of ORs [95% CI] = 0.58 [0.35,0.96])). CONCLUSIONS High-BMI positively modified the risk of GDM on LGA. Many interactions existed when two specific pregnancy complications occurred simultaneously. IMPACT This is the largest retrospective study covering more than 10 pregnancy complications to date in this aspect. High-BMI (BMI > 28 kg/m2) positively modifies the risk of GDM on LGA. Many pregnancy complications influence the risk of SGA and LGA, with several interactions that may create a "syndrome" effect. Pregnant women with different BMIs should consider the additional risks caused by pregnancy complications for their heterogeneous effects on abnormal fetal growth. Measures should be taken to prevent the occurrence of other exposure factors in the "syndrome". This study may aid in developing a new strategy for improving neonatal outcomes.
Collapse
Affiliation(s)
- Peng Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, China
- School of Stomatology, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, China
| | - Zhengchen Yu
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, China
| | - Yinkai Hu
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, China
| | - Wangzhi Li
- School of Stomatology, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, China
| | - Luxuan Xu
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, China
| | - Fangqing Da
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, China
| | - Fan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, China.
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, China.
| |
Collapse
|
2
|
Chen L, Goh XP, Bendt AK, Tan KML, Leow MKS, Tan KH, Chan JKY, Chan SY, Chong YS, Gluckman PD, Eriksson JG, Wenk MR, Mir SA. Association of Acylcarnitines With Maternal Cardiometabolic Risk Factors Is Defined by Chain Length: The S-PRESTO Study. J Clin Endocrinol Metab 2024; 109:2831-2846. [PMID: 38625914 DOI: 10.1210/clinem/dgae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/02/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
CONTEXT Due to the essential role of carnitine as an intermediary in amino acid, carbohydrate, and lipid metabolism, a detailed characterization of circulating and urinary carnitine concentrations will aid in elucidating the molecular basis of impaired maternal metabolic flexibility and facilitating timely intervention for expectant mothers. OBJECTIVE To investigate the association of maternal plasma and urinary free carnitine and acylcarnitines with cardiometabolic risk factors. METHODS Liquid chromatography tandem mass spectrometry-based quantification of free carnitine and acylcarnitines (C2-C18) was performed on 765 plasma and 702 urine samples collected at preconception, 26 to 28 weeks' pregnancy, and 3 months postpartum in the Singapore PREconception Study of long-Term maternal and child Outcomes (S-PRESTO) cohort study. RESULTS Plasma concentrations of free carnitine and acylcarnitines decreased coupled with increased renal clearance in pregnancy compared with preconception and postpartum. Renal clearance of carnitine increased with an increase in prepregnancy body mass index (ppBMI) and gestational weight gain. Plasma short-chain acylcarnitines were positively associated with ppBMI, irrespective of the physiological state, while medium- and long-chain acylcarnitines were negatively associated with ppBMI at preconception and postpartum but showed a positive association in pregnancy. Similarly, plasma short-chain acylcarnitines were positively associated with Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) whereas medium- and long-chain acylcarnitines were negatively associated with HOMA-IR at preconception and in pregnancy. Mothers who developed gestational diabetes mellitus during pregnancy had ∼10% higher plasma propionylcarnitine concentration and ∼18% higher urine tiglylcarnitine concentration than mothers with normal glucose metabolism at preconception. CONCLUSION This study provides the metabolic and physiological basis of maternal carnitine homeostasis, which can be used in assessment of maternal cardiometabolic health at preconception to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Li Chen
- Singapore Institute for Clinical Sciences, A*STAR, 117609 Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
| | - Xue Ping Goh
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
| | - Anne K Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
| | - Karen Mei-Ling Tan
- Singapore Institute for Clinical Sciences, A*STAR, 117609 Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, 119074 Singapore, Singapore
| | - Melvin Khee-Shing Leow
- Singapore Institute for Clinical Sciences, A*STAR, 117609 Singapore, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, 308433 Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921 Singapore, Singapore
- Duke-National University of Singapore (NUS) Medical School, 169857 Singapore, Singapore
- Department of Obstetrics and Gynaecology and Human Potential Translational Research programme, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| | - Kok Hian Tan
- Duke-National University of Singapore (NUS) Medical School, 169857 Singapore, Singapore
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, 229899 Singapore, Singapore
| | - Jerry Kok Yen Chan
- Duke-National University of Singapore (NUS) Medical School, 169857 Singapore, Singapore
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, 229899 Singapore, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences, A*STAR, 117609 Singapore, Singapore
- Department of Obstetrics and Gynaecology and Human Potential Translational Research programme, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, A*STAR, 117609 Singapore, Singapore
- Department of Obstetrics and Gynaecology and Human Potential Translational Research programme, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, A*STAR, 117609 Singapore, Singapore
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Johan G Eriksson
- Singapore Institute for Clinical Sciences, A*STAR, 117609 Singapore, Singapore
- Department of Obstetrics and Gynaecology and Human Potential Translational Research programme, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
- Folkhalsan Research Center, 00250 Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, 00290 Helsinki, Finland
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
- Department of Biochemistry and Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117596 Singapore, Singapore
| | - Sartaj Ahmad Mir
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
- Department of Biochemistry and Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117596 Singapore, Singapore
| |
Collapse
|
3
|
Saadat N, Aguate F, Nowak AL, Hyer S, Lin AB, Decot H, Koch H, Walker DS, Lydic T, Padmanabhan V, Campos GDL, Misra D, Giurgescu C. Changes in Lipid Profiles with the Progression of Pregnancy in Black Women. J Clin Med 2024; 13:2795. [PMID: 38792337 PMCID: PMC11122055 DOI: 10.3390/jcm13102795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Background/Objectives: Lipid metabolism plays an important role in maternal health and fetal development. There is a gap in the knowledge of how lipid metabolism changes during pregnancy for Black women who are at a higher risk of adverse outcomes. We hypothesized that the comprehensive lipidome profiles would show variation across pregnancy indicative of requirements during gestation and fetal development. Methods: Black women were recruited at prenatal clinics. Plasma samples were collected at 8-18 weeks (T1), 22-29 weeks (T2), and 30-36 weeks (T3) of pregnancy. Samples from 64 women who had term births (≥37 weeks gestation) were subjected to "shotgun" Orbitrap mass spectrometry. Mixed-effects models were used to quantify systematic changes and dimensionality reduction models were used to visualize patterns and identify reliable lipid signatures. Results: Total lipids and major lipid classes showed significant increases with the progression of pregnancy. Phospholipids and glycerolipids exhibited a gradual increase from T1 to T2 to T3, while sphingolipids and total sterol lipids displayed a more pronounced increase from T2 to T3. Acylcarnitines, hydroxy acylcarnitines, and Lyso phospholipid levels significantly decreased from T1 to T3. A deviation was that non-esterified fatty acids decreased from T1 to T2 and increased again from T2 to T3, suggestive of a potential role for these lipids during the later stages of pregnancy. The fatty acids showing this trend included key fatty acids-non-esterified Linoleic acid, Arachidonic acid, Alpha-linolenic acid, Eicosapentaenoic acid, Docosapentaenoic acid, and Docosahexaenoic acid. Conclusions: Mapping lipid patterns and identifying lipid signatures would help develop intervention strategies to reduce perinatal health disparities among pregnant Black women.
Collapse
Affiliation(s)
- Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48019, USA;
| | - Fernando Aguate
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | | | - Suzanne Hyer
- College of Nursing, University of Central Florida, Orlando, FL 32826, USA
| | - Anna B. Lin
- Molecular Metabolism and Disease Mass Spectrometry Core, Michigan State University, East Lansing, MI 48824, USA
| | - Hannah Decot
- Molecular Metabolism and Disease Mass Spectrometry Core, Michigan State University, East Lansing, MI 48824, USA
| | - Hannah Koch
- Molecular Metabolism and Disease Mass Spectrometry Core, Michigan State University, East Lansing, MI 48824, USA
| | | | - Todd Lydic
- Molecular Metabolism and Disease Mass Spectrometry Core, Michigan State University, East Lansing, MI 48824, USA
| | | | - Gustavo de los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Dawn Misra
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Carmen Giurgescu
- College of Nursing, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
4
|
Saadat N, Pallas B, Ciarelli J, Vyas AK, Padmanabhan V. Gestational testosterone excess early to mid-pregnancy disrupts maternal lipid homeostasis and activates biosynthesis of phosphoinositides and phosphatidylethanolamines in sheep. Sci Rep 2024; 14:6230. [PMID: 38486090 PMCID: PMC10940674 DOI: 10.1038/s41598-024-56886-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Gestational hyperandrogenism is a risk factor for adverse maternal and offspring outcomes with effects likely mediated in part via disruptions in maternal lipid homeostasis. Using a translationally relevant sheep model of gestational testosterone (T) excess that manifests maternal hyperinsulinemia, intrauterine growth restriction (IUGR), and adverse offspring cardiometabolic outcomes, we tested if gestational T excess disrupts maternal lipidome. Dimensionality reduction models following shotgun lipidomics of gestational day 127.1 ± 5.3 (term 147 days) plasma revealed clear differences between control and T-treated sheep. Lipid signatures of gestational T-treated sheep included higher phosphoinositides (PI 36:2, 39:4) and lower acylcarnitines (CAR 16:0, 18:0, 18:1), phosphatidylcholines (PC 38:4, 40:5) and fatty acids (linoleic, arachidonic, Oleic). Gestational T excess activated phosphatidylethanolamines (PE) and PI biosynthesis. The reduction in key fatty acids may underlie IUGR and activated PI for the maternal hyperinsulinemia evidenced in this model. Maternal circulatory lipids contributing to adverse cardiometabolic outcomes are modifiable by dietary interventions.
Collapse
Affiliation(s)
- Nadia Saadat
- Department of Pediatrics, 7510 MSRB, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 148019-5718, USA
| | - Brooke Pallas
- Unit Lab Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Joseph Ciarelli
- Department of Pediatrics, 7510 MSRB, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 148019-5718, USA
| | - Arpita Kalla Vyas
- Department of Pediatrics, Washington University St. Louis, St. Louis, MO, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, 7510 MSRB, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 148019-5718, USA.
| |
Collapse
|
5
|
Yang Q, Chen S, Jiang W, Mi L, Liu J, Hu Y, Ji X, Wang J, Zhu F. MultiClassMetabo: A Superior Classification Model Constructed Using Metabolic Markers in Multiclass Metabolomics. Anal Chem 2024; 96:1410-1418. [PMID: 38221713 DOI: 10.1021/acs.analchem.3c03212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Multiclass metabolomics has become a popular technique for revealing the mechanisms underlying certain physiological processes, different tumor types, or different therapeutic responses. In multiclass metabolomics, it is highly important to uncover the underlying biological information on biosamples by identifying the metabolic markers with the most associations and classifying the different sample classes. The classification problem of multiclass metabolomics is more difficult than that of the binary problem. To date, various methods exist for constructing classification models and identifying metabolic markers consisting of well-established techniques and newly emerging machine learning algorithms. However, how to construct a superior classification model using these methods remains unclear for a given multiclass metabolomic data set. Herein, MultiClassMetabo has been developed for constructing a superior classification model using metabolic markers identified in multiclass metabolomics. MultiClassMetabo can enable online services, including (a) identifying metabolic markers by marker identification methods, (b) constructing classification models by classification methods, and (c) performing a comprehensive assessment from multiple perspectives to construct a superior classification model for multiclass metabolomics. In summary, MultiClassMetabo is distinguished for its capability to construct a superior classification model using the most appropriate method through a comprehensive assessment, which makes it an important complement to other available tools in multiclass metabolomics. MultiClassMetabo can be accessed at http://idrblab.cn/multiclassmetabo/.
Collapse
Affiliation(s)
- Qingxia Yang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shuman Chen
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Wenyu Jiang
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lan Mi
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiarui Liu
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yu Hu
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xinglai Ji
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jun Wang
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
6
|
Makker K, Wang X. Early Life Origins of Cardio-Metabolic Outcomes in Boston Birth Cohort: Review of Findings and Future directions. PRECISION NUTRITION 2023; 2:e00050. [PMID: 38283709 PMCID: PMC10810337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Affiliation(s)
- Kartikeya Makker
- Division of Neonatology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Xiaobin Wang
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
- Center on the Early Life Origins of Disease, Department of Population Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
7
|
Joshi AD, Rahnavard A, Kachroo P, Mendez KM, Lawrence W, Julián-Serrano S, Hua X, Fuller H, Sinnott-Armstrong N, Tabung FK, Shutta KH, Raffield LM, Darst BF. An epidemiological introduction to human metabolomic investigations. Trends Endocrinol Metab 2023; 34:505-525. [PMID: 37468430 PMCID: PMC10527234 DOI: 10.1016/j.tem.2023.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023]
Abstract
Metabolomics holds great promise for uncovering insights around biological processes impacting disease in human epidemiological studies. Metabolites can be measured across biological samples, including plasma, serum, saliva, urine, stool, and whole organs and tissues, offering a means to characterize metabolic processes relevant to disease etiology and traits of interest. Metabolomic epidemiology studies face unique challenges, such as identifying metabolites from targeted and untargeted assays, defining standards for quality control, harmonizing results across platforms that often capture different metabolites, and developing statistical methods for high-dimensional and correlated metabolomic data. In this review, we introduce metabolomic epidemiology to the broader scientific community, discuss opportunities and challenges presented by these studies, and highlight emerging innovations that hold promise to uncover new biological insights.
Collapse
Affiliation(s)
- Amit D Joshi
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin M Mendez
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wayne Lawrence
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sachelly Julián-Serrano
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Public Health, University of Massachusetts Lowell, Lowell, MA, USA
| | - Xinwei Hua
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA; Department of Cardiology, Peking University Third Hospital, Beijing, China
| | - Harriett Fuller
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nasa Sinnott-Armstrong
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Fred K Tabung
- The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, OH, USA
| | - Katherine H Shutta
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Burcu F Darst
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
8
|
Bandres-Meriz J, Kunz C, Havelund JF, Færgeman NJ, Majali-Martinez A, Ensenauer R, Desoye G. Distinct maternal metabolites are associated with obesity and glucose-insulin axis in the first trimester of pregnancy. Int J Obes (Lond) 2023; 47:529-537. [PMID: 37029207 PMCID: PMC10299907 DOI: 10.1038/s41366-023-01295-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND/OBJECTIVES Obesity in pregnancy associates with changes in the glucose-insulin axis. We hypothesized that these changes affect the maternal metabolome already in the first trimester of human pregnancy and, thus, aimed to identify these metabolites. PATIENTS/METHODS We performed untargeted metabolomics (HPLC-MS/MS) on maternal serum (n = 181, gestational weeks 4+0-11+6). For further analysis, we included only non-smoking women as assessed by serum cotinine levels (ELISA) (n = 111). In addition to body mass index (BMI) and leptin as measures of obesity and adiposity, we metabolically phenotyped women by their fasting glucose, C-peptide and insulin sensitivity (ISHOMA index). To identify metabolites (outcome) associated with BMI, leptin, glucose, C-peptide and/or ISHOMA (exposures), we used a combination of univariable and multivariable regression analyses with multiple confounders and machine learning methods (Partial Least Squares Discriminant Analysis, Random Forest and Support Vector Machine). Additional statistical tests confirmed robustness of results. Furthermore, we performed network analyses (MoDentify package) to identify sets of correlating metabolites that are coordinately regulated by the exposures. RESULTS We detected 2449 serum features of which 277 were annotated. After stringent analysis, 15 metabolites associated with at least one exposure (BMI, leptin, glucose, C-peptide, ISHOMA). Among these, palmitoleoyl ethanolamine (POEA), an endocannabinoid-like lipid endogenously synthesized from palmitoleic acid, and N-acetyl-L-alanine were consistently associated with C-peptide in all the analyses (95% CI: 0.10-0.34; effect size: 21%; p < 0.001; 95% CI: 0.04-0.10; effect size: 7%; p < 0.001). In network analysis, most features correlating with palmitoleoyl ethanolamide and N-acetyl-L-alanine and associated with C-peptide, were amino acids or dipeptides (n = 9, 35%), followed by lipids (n = 7, 27%). CONCLUSIONS We conclude that the metabolome of pregnant women with overweight/obesity is already altered early in pregnancy because of associated changes of C-peptide. Changes of palmitoleoyl ethanolamide concentration in pregnant women with obesity-associated hyperinsulinemia may reflect dysfunctional endocannabinoid-like signalling.
Collapse
Affiliation(s)
- Julia Bandres-Meriz
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.
| | - Christina Kunz
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Jesper F Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | | - Regina Ensenauer
- Institute of Child Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
9
|
Bianco ME, Vu MH, Bain JR, Muehlbauer MJ, Ilkayeva OR, Scholtens DM, Josefson J, Lowe WL. Maternal and Cord Blood Serum Metabolite Associations with Childhood Adiposity and Body Composition Outcomes. Metabolites 2023; 13:749. [PMID: 37367907 PMCID: PMC10302619 DOI: 10.3390/metabo13060749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Maternal metabolites influence the size of newborns independently of maternal body mass index (BMI) and glycemia, highlighting the importance of maternal metabolism on offspring outcomes. This study examined associations of maternal metabolites during pregnancy with childhood adiposity, and cord blood metabolites with childhood adiposity using phenotype and metabolomic data from the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study and the HAPO Follow-Up Study. The maternal metabolites analyses included 2324 mother-offspring pairs, while the cord blood metabolites analyses included 937 offspring. Multiple logistic and linear regression were used to examine associations between primary predictors, maternal or cord blood metabolites, and childhood adiposity outcomes. Multiple maternal fasting and 1 hr metabolites were significantly associated with childhood adiposity outcomes in Model 1 but were no longer significant after adjusting for maternal BMI and/or maternal glycemia. In the fully adjusted model, fasting lactose levels were negatively associated with child BMI z-scores and waist circumference, while fasting urea levels were positively associated with waist circumference. One-hour methionine was positively associated with fat-free mass. There were no significant associations between cord blood metabolites and childhood adiposity outcomes. Few metabolites were associated with childhood adiposity outcomes after adjusting for maternal BMI and glucose, suggesting that maternal BMI accounts for the association between maternal metabolites and childhood adiposity.
Collapse
Affiliation(s)
- Monica E. Bianco
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (M.E.B.); (J.J.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - My H. Vu
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.H.V.); (D.M.S.)
| | - James R. Bain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710, USA; (J.R.B.); (M.J.M.); (O.R.I.)
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710, USA; (J.R.B.); (M.J.M.); (O.R.I.)
| | - Olga R. Ilkayeva
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710, USA; (J.R.B.); (M.J.M.); (O.R.I.)
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, NC 27710, USA
| | - Denise M. Scholtens
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.H.V.); (D.M.S.)
| | - Jami Josefson
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (M.E.B.); (J.J.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - William L. Lowe
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
10
|
Gleason B, Kuang A, Bain JR, Muehlbauer MJ, Ilkayeva OR, Scholtens DM, Lowe WL. Association of Maternal Metabolites and Metabolite Networks with Newborn Outcomes in a Multi-Ancestry Cohort. Metabolites 2023; 13:505. [PMID: 37110162 PMCID: PMC10145069 DOI: 10.3390/metabo13040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The in utero environment is important for newborn size at birth, which is associated with childhood adiposity. We examined associations between maternal metabolite levels and newborn birthweight, sum of skinfolds (SSF), and cord C-peptide in a multinational and multi-ancestry cohort of 2337 mother-newborn dyads. Targeted and untargeted metabolomic assays were performed on fasting and 1 h maternal serum samples collected during an oral glucose tolerance test performed at 24-32 week gestation in women participating in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Anthropometric measurements were obtained on newborns at birth. Following adjustment for maternal BMI and glucose, per-metabolite analyses demonstrated significant associations between maternal metabolite levels and birthweight, SSF, and cord C-peptide. In the fasting state, triglycerides were positively associated and several long-chain acylcarnitines were inversely associated with birthweight and SSF. At 1 h, additional metabolites including branched-chain amino acids, proline, and alanine were positively associated with newborn outcomes. Network analyses demonstrated distinct clusters of inter-connected metabolites significantly associated with newborn phenotypes. In conclusion, numerous maternal metabolites during pregnancy are significantly associated with newborn birthweight, SSF, and cord C-peptide independent of maternal BMI and glucose, suggesting that metabolites in addition to glucose contribute to newborn size at birth and adiposity.
Collapse
Affiliation(s)
- Brooke Gleason
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60091, USA
| | - Alan Kuang
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60091, USA
| | - James R. Bain
- Duke Molecular Physiology Institute, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Olga R. Ilkayeva
- Duke Molecular Physiology Institute, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Denise M. Scholtens
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60091, USA
| | - William L. Lowe
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60091, USA
| |
Collapse
|
11
|
Yang Q, Gong Y, Zhu F. Critical Assessment of the Biomarker Discovery and Classification Methods for Multiclass Metabolomics. Anal Chem 2023; 95:5542-5552. [PMID: 36944135 DOI: 10.1021/acs.analchem.2c04402] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Multiclass metabolomics has been widely applied in clinical practice to understand pathophysiological processes involved in disease progression and diagnostic biomarkers of various disorders. In contrast to the binary problem, the multiclass classification problem is more difficult in terms of obtaining reliable and stable results due to the increase in the complexity of determining exact class decision boundaries. In particular, methods of biomarker discovery and classification have a significant effect on the multiclass model because different methods with significantly varied theories produce conflicting results even for the same dataset. However, a systematic assessment for selecting the most appropriate methods of biomarker discovery and classification for multiclass metabolomics is still lacking. Therefore, a comprehensive assessment is essential to measure the suitability of methods in multiclass classification models from multiple perspectives. In this study, five biomarker discovery methods and nine classification methods were assessed based on four benchmark datasets of multiclass metabolomics. The performance assessment of the biomarker discovery and classification methods was performed using three evaluation criteria: assessment a (cluster analysis of sample grouping), assessment b (biomarker consistency in multiple subgroups), and assessment c (accuracy in the classification model). As a result, 13 combining strategies with superior performance were selected under multiple criteria based on these benchmark datasets. In conclusion, superior strategies that performed consistently well are suggested for the discovery of biomarkers and the construction of a classification model for multiclass metabolomics.
Collapse
Affiliation(s)
- Qingxia Yang
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaguo Gong
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Fuller H, Iles M, Moore JB, Zulyniak MA. Unique Metabolic Profiles Associate with Gestational Diabetes and Ethnicity in Low- and High-Risk Women Living in the UK. J Nutr 2022; 152:2186-2197. [PMID: 35883228 PMCID: PMC9535440 DOI: 10.1093/jn/nxac163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/28/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is the most common global pregnancy complication; however, prevalence varies substantially between ethnicities, with South Asians (SAs) experiencing up to 3 times the risk of the disease compared with white Europeans (WEs). Factors driving this discrepancy are unclear, although the metabolome is of great interest as GDM is known to be characterized by metabolic dysregulation. OBJECTIVES The primary aim was to characterize and compare the metabolic profiles of GDM in SA and WE women (at <28 wk of gestation) from the Born in Bradford (BIB) prospective birth cohort in the United Kingdom. METHODS In total, 146 fasting serum metabolites, from 2,668 pregnant WE and 2,671 pregnant SA women (average BMI 26.2 kg/m2, average age 27.3 y) were analyzed using partial least squares discriminatory analyses to characterize GDM status. Linear associations between metabolite values and post-oral glucose tolerance test measures of dysglycemia (fasting glucose and 2 h postglucose) were also examined. RESULTS Seven metabolites associated with GDM status in both ethnicities (variable importance in projection ≥1), whereas 6 additional metabolites associated with GDM only in WE women. Unique metabolic profiles were observed in healthy-weight women who later developed GDM, with distinct metabolite patterns identified by ethnicity and BMI status. Of the metabolite values analyzed in relation to dysglycemia, lactate, histidine, apolipoprotein A1, HDL cholesterol, and HDL2 cholesterol associated with decreased glucose concentration, whereas DHA and the diameter of very low-density lipoprotein particles (nm) associated with increased glucose concertation in WE women, and in SAs, albumin alone associated with decreased glucose concentration. CONCLUSIONS This study shows that the metabolic risk profile for GDM differs between WE and SA women enrolled in BiB in the United Kingdom. This suggests that etiology of the disease differs between ethnic groups and that ethnic-appropriate prevention strategies may be beneficial.
Collapse
Affiliation(s)
- Harriett Fuller
- Nutritional Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Mark Iles
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - J Bernadette Moore
- Nutritional Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Michael A Zulyniak
- Nutritional Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, UK
| |
Collapse
|
13
|
Hernández-Saavedra D, Markunas C, Takahashi H, Baer LA, Harris JE, Hirshman MF, Ilkayeva O, Newgard CB, Stanford KI, Goodyear LJ. Maternal Exercise and Paternal Exercise Induce Distinct Metabolite Signatures in Offspring Tissues. Diabetes 2022; 71:2094-2105. [PMID: 35838316 PMCID: PMC9501651 DOI: 10.2337/db22-0341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/12/2022] [Indexed: 01/19/2023]
Abstract
That maternal and paternal exercise improve the metabolic health of adult offspring is well established. Tissue and serum metabolites play a fundamental role in the health of an organism, but how parental exercise affects offspring tissue and serum metabolites has not yet been investigated. Here, male and female breeders were fed a high-fat diet and housed with or without running wheels before breeding (males) and before and during gestation (females). Offspring were sedentary and chow fed, with parents as follows: sedentary (Sed), maternal exercise (MatEx), paternal exercise (PatEx), or maternal+paternal exercise (Mat+PatEx). Adult offspring from all parental exercise groups had similar improvement in glucose tolerance and hepatic glucose production. Targeted metabolomics was performed in offspring serum, liver, and triceps muscle. Offspring from MatEx, PatEx, and Mat+PatEx each had a unique tissue metabolite signature, but Mat+PatEx offspring had an additive phenotype relative to MatEx or PatEx alone in a subset of liver and muscle metabolites. Tissue metabolites consistently indicated that the metabolites altered with parental exercise contribute to enhanced fatty acid oxidation. These data identify distinct tissue-specific adaptations and mechanisms for parental exercise-induced improvement in offspring metabolic health. Further mining of this data set could aid the development of novel therapeutic targets to combat metabolic diseases.
Collapse
Affiliation(s)
- Diego Hernández-Saavedra
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL
| | - Christina Markunas
- Departments of Pharmacology and Cancer Biology and Medicine, Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Durham, NC
| | - Hirokazu Takahashi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Lisa A. Baer
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Johan E. Harris
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Michael F. Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Olga Ilkayeva
- Departments of Pharmacology and Cancer Biology and Medicine, Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Durham, NC
| | - Christopher B. Newgard
- Departments of Pharmacology and Cancer Biology and Medicine, Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Durham, NC
| | - Kristin I. Stanford
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Laurie J. Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
14
|
Network Approaches to Integrate Analyses of Genetics and Metabolomics Data with Applications to Fetal Programming Studies. Metabolites 2022; 12:metabo12060512. [PMID: 35736446 PMCID: PMC9229972 DOI: 10.3390/metabo12060512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
The integration of genetics and metabolomics data demands careful accounting of complex dependencies, particularly when modelling familial omics data, e.g., to study fetal programming of related maternal–offspring phenotypes. Efforts to identify genetically determined metabotypes using classic genome wide association approaches have proven useful for characterizing complex disease, but conclusions are often limited to a series of variant–metabolite associations. We adapt Bayesian network models to integrate metabotypes with maternal–offspring genetic dependencies and metabolic profile correlations in order to investigate mechanisms underlying maternal–offspring phenotypic associations. Using data from the multiethnic Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study, we demonstrate that the strategic specification of ordered dependencies, pre-filtering of candidate metabotypes, incorporation of metabolite dependencies, and penalized network estimation methods clarify potential mechanisms for fetal programming of newborn adiposity and metabolic outcomes. The exploration of Bayesian network growth over a range of penalty parameters, coupled with interactive plotting, facilitate the interpretation of network edges. These methods are broadly applicable to integration of diverse omics data for related individuals.
Collapse
|
15
|
Song Y, Lyu C, Li M, Rahman ML, Chen Z, Zhu Y, Hinkle SN, Chen L, Mitro SD, Li LJ, Weir NL, Tsai MY, Zhang C. Plasma Acylcarnitines during Pregnancy and Neonatal Anthropometry: A Longitudinal Study in a Multiracial Cohort. Metabolites 2021; 11:metabo11120885. [PMID: 34940643 PMCID: PMC8704426 DOI: 10.3390/metabo11120885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
As surrogate readouts reflecting mitochondrial dysfunction, elevated levels of plasma acylcarnitines have been associated with cardiometabolic disorders, such as obesity, gestational diabetes, and type 2 diabetes. This study aimed to examine prospective associations of acylcarnitine profiles across gestation with neonatal anthropometry, including birthweight, birthweight z score, body length, sum of skinfolds, and sum of body circumferences. We quantified 28 acylcarnitines using electrospray ionization tandem mass spectrometry in plasma collected at gestational weeks 10–14, 15–26, 23–31, and 33–39 among 321 pregnant women from the National Institute of Child Health and Human Development (NICHD) Fetal Growth Studies-Singletons. A latent-class trajectory approach was applied to identify trajectories of acylcarnitines across gestation. We examined the associations of individual acylcarnitines and distinct trajectory groups with neonatal anthropometry using weighted generalized linear models adjusting for maternal age, race/ethnicity, education, parity, gestational age at blood collection, and pre-pregnancy body mass index (BMI). We identified three distinct trajectory groups in C2, C3, and C4 and two trajectory groups in C5, C10, C5–DC, C8:1, C10:1, and C12, respectively. Women with nonlinear decreasing C12 levels across gestation (5.7%) had offspring with significantly lower birthweight (−475 g; 95% CI, −942, −6.79), birthweight z score (−0.39, −0.71, −0.06), and birth length (−1.38 cm, −2.49, −0.27) than those with persistently stable C12 levels (94.3%) (all nominal p value < 0.05). Women with consistently higher levels of C10 (6.1%) had offspring with thicker sum of skinfolds (4.91 mm, 0.85, 8.98) than did women with lower levels (93.9%) during pregnancy, whereas women with lower C10:1 levels (12.6%) had offspring with thicker sum of skinfolds (3.23 mm, 0.19, 6.27) than did women with abruptly increasing levels (87.4%) (p < 0.05). In conclusion, this study suggests that distinctive trajectories of C10, C10:1, and C12 acylcarnitine levels throughout pregnancy were significantly associated with neonatal anthropometry.
Collapse
Affiliation(s)
- Yiqing Song
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN 46202, USA;
| | - Chen Lyu
- Department of Population Health, Division of Biostatistics, NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA;
| | - Ming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN 47405, USA;
| | - Mohammad L. Rahman
- Department of Population Medicine and Harvard Pilgrim Healthcare Institute, Harvard Medical School, Boston, MA 02215, USA;
| | - Zhen Chen
- Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD 20817, USA; (Z.C.); (S.D.M.)
| | - Yeyi Zhu
- Kaiser Permanente Northern California Division of Research, Oakland, CA 94612, USA;
| | - Stefanie N. Hinkle
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Liwei Chen
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA;
| | - Susanna D. Mitro
- Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD 20817, USA; (Z.C.); (S.D.M.)
| | - Ling-Jun Li
- Department of O&G, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Natalie L. Weir
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (N.L.W.); (M.Y.T.)
| | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (N.L.W.); (M.Y.T.)
| | - Cuilin Zhang
- Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD 20817, USA; (Z.C.); (S.D.M.)
- Correspondence: ; Tel.: +1-301-435-6917
| |
Collapse
|
16
|
Impact of combined consumption of fish oil and probiotics on the serum metabolome in pregnant women with overweight or obesity. EBioMedicine 2021; 73:103655. [PMID: 34740110 PMCID: PMC8577343 DOI: 10.1016/j.ebiom.2021.103655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND If a pregnant woman is overweight, this can evoke metabolic alterations that may have health consequences for both mother and child. METHODS Pregnant women with overweight/obesity (n = 358) received fish oil+placebo, probiotics+placebo, fish oil+probiotics or placebo+placebo from early pregnancy onwards. The serum metabolome was analysed from fasting samples with a targeted NMR-approach in early and late pregnancy. GDM was diagnosed by OGTT. FINDINGS The intervention changed the metabolic profile of the women, but the effect was influenced by their GDM status. In women without GDM, the changes in nine lipids (FDR<0.05) in the fish oil+placebo-group differed when compared to the placebo+placebo-group. The combination of fish oil and probiotics induced changes in more metabolites, 46 of the lipid metabolites differed in women without GDM when compared to placebo+placebo-group; these included reduced increases in the concentrations and lipid constituents of VLDL-particles and less pronounced alterations in the ratios of various lipids in several lipoproteins. In women with GDM, no differences were detected in the changes of any metabolites due to any of the interventions when compared to the placebo+placebo-group (FDR<0.05). INTERPRETATION Fish oil and particularly the combination of fish oil and probiotics modified serum lipids in pregnant women with overweight or obesity, while no such effects were seen with probiotics alone. The effects were most evident in the lipid contents of VLDL and LDL only in women without GDM. FUNDING State Research Funding for university-level health research in the Turku University Hospital Expert Responsibility Area, Academy of Finland, the Diabetes Research Foundation, the Juho Vainio Foundation, Janssen Research & Development, LLC.
Collapse
|
17
|
Liu Y, Kuang A, Bain JR, Muehlbauer MJ, Ilkayeva OR, Lowe LP, Metzger BE, Newgard CB, Scholtens DM, Lowe WL. Maternal Metabolites Associated With Gestational Diabetes Mellitus and a Postpartum Disorder of Glucose Metabolism. J Clin Endocrinol Metab 2021; 106:3283-3294. [PMID: 34255031 PMCID: PMC8677596 DOI: 10.1210/clinem/dgab513] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Indexed: 12/15/2022]
Abstract
CONTEXT Gestational diabetes is associated with a long-term risk of developing a disorder of glucose metabolism. However, neither the metabolic changes characteristic of gestational diabetes in a large, multi-ancestry cohort nor the ability of metabolic changes during pregnancy, beyond glucose levels, to identify women at high risk for progression to a disorder of glucose metabolism has been examined. OBJECTIVE This work aims to identify circulating metabolites present at approximately 28 weeks' gestation associated with gestational diabetes mellitus (GDM) and development of a disorder of glucose metabolism 10 to 14 years later. METHODS Conventional clinical and targeted metabolomics analyses were performed on fasting and 1-hour serum samples following a 75-g glucose load at approximately 28 weeks' gestation from 2290 women who participated in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Postpartum metabolic traits included fasting and 2-hour plasma glucose following a 75-g glucose load, insulin resistance estimated by the homeostasis model assessment of insulin resistance, and disorders of glucose metabolism (prediabetes and type 2 diabetes) during the HAPO Follow-Up Study. RESULTS Per-metabolite analyses identified numerous metabolites, ranging from amino acids and carbohydrates to fatty acids and lipids, before and 1-hour after a glucose load that were associated with GDM as well as development of a disorder of glucose metabolism and metabolic traits 10 to 14 years post partum. A core group of fasting and 1-hour metabolites mediated, in part, the relationship between GDM and postpartum disorders of glucose metabolism, with the fasting and 1-hour metabolites accounting for 15.7% (7.1%-30.8%) and 35.4% (14.3%-101.0%) of the total effect size, respectively. For prediction of a postpartum disorder of glucose metabolism, the addition of circulating fasting or 1-hour metabolites at approximately 28 weeks' gestation showed little improvement in prediction performance compared to clinical factors alone. CONCLUSION The results demonstrate an association of multiple metabolites with GDM and postpartum metabolic traits and begin to define the underlying pathophysiology of the transition from GDM to a postpartum disorder of glucose metabolism.
Collapse
Affiliation(s)
- Yu Liu
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Alan Kuang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina 27705, USA
- Duke Molecular Physiology Institute, Durham, North Carolina 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27707, USA
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina 27705, USA
- Duke Molecular Physiology Institute, Durham, North Carolina 27701, USA
| | - Olga R Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina 27705, USA
- Duke Molecular Physiology Institute, Durham, North Carolina 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27707, USA
| | - Lynn P Lowe
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Boyd E Metzger
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina 27705, USA
- Duke Molecular Physiology Institute, Durham, North Carolina 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27707, USA
| | - Denise M Scholtens
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - William L Lowe
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Correspondence: William L. Lowe Jr, MD, Department of Medicine, Northwestern University Feinberg School of Medicine, Rubloff 12, 420 E Superior St, Chicago, IL 60611, USA.
| |
Collapse
|
18
|
Kivelä J, Sormunen-Harju H, Girchenko PV, Huvinen E, Stach-Lempinen B, Kajantie E, Villa PM, Reynolds RM, Hämäläinen EK, Lahti-Pulkkinen M, Murtoniemi KK, Laivuori H, Eriksson JG, Räikkönen K, Koivusalo SB. Longitudinal Metabolic Profiling of Maternal Obesity, Gestational Diabetes, and Hypertensive Pregnancy Disorders. J Clin Endocrinol Metab 2021; 106:e4372-e4388. [PMID: 34185058 PMCID: PMC8530734 DOI: 10.1210/clinem/dgab475] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 12/24/2022]
Abstract
CONTEXT Comprehensive assessment of metabolism in maternal obesity and pregnancy disorders can provide information about the shared maternal-fetal milieu and give insight into both maternal long-term health and intergenerational transmission of disease burden. OBJECTIVE To assess levels, profiles, and change in the levels of metabolic measures during pregnancies complicated by obesity, gestational diabetes (GDM), or hypertensive disorders. DESIGN, SETTING AND PARTICIPANTS A secondary analysis of 2 study cohorts, PREDO and RADIEL, including 741 pregnant women. MAIN OUTCOME MEASURES We assessed 225 metabolic measures by nuclear magnetic resonance in blood samples collected at median 13 [interquartile range (IQR) 12.4-13.7], 20 (IQR 19.3-23.0), and 28 (27.0-35.0) weeks of gestation. RESULTS Across all 3 time points women with obesity [body mass index (BMI) ≥ 30kg/m2] in comparison to normal weight (BMI 18.5-24.99 kg/m2) had significantly higher levels of most very-low-density lipoprotein-related measures, many fatty and most amino acids, and more adverse metabolic profiles. The change in the levels of most metabolic measures during pregnancy was smaller in obese than in normal weight women. GDM, preeclampsia, and chronic hypertension were associated with metabolic alterations similar to obesity. The associations of obesity held after adjustment for GDM and hypertensive disorders, but many of the associations with GDM and hypertensive disorders were rendered nonsignificant after adjustment for BMI and the other pregnancy disorders. CONCLUSIONS This study shows that the pregnancy-related metabolic change is smaller in women with obesity, who display metabolic perturbations already in early pregnancy. Metabolic alterations of obesity and pregnancy disorders resembled each other suggesting a shared metabolic origin.
Collapse
Affiliation(s)
- Jemina Kivelä
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heidi Sormunen-Harju
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Polina V Girchenko
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Emilia Huvinen
- Teratology Information Service, Emergency Medicine, Department of Prehospital Emergency Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Beata Stach-Lempinen
- Department of Obstetrics and Gynecology, South Karelia Central Hospital, Lappeenranta, Finland
| | - Eero Kajantie
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Pia M Villa
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Hyvinkää Hospital at Helsinki and Uusimaa Hospital District, Hyvinkää, Finland
| | - Rebecca M Reynolds
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Esa K Hämäläinen
- Department of Clinical Chemistry, University of Eastern Finland, Kuopio, Finland
| | - Marius Lahti-Pulkkinen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish National Institute for Health and Welfare, Helsinki, Finland
| | - Katja K Murtoniemi
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynaecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital and Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Johan G Eriksson
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Saila B Koivusalo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
19
|
Song Q, Wang L, Liu H, Liang Z, Chen Y, Sun D, Li W, Leng J, Yang X, Cardoso MA, Hu G, Qi L. Maternal GDM Status, Genetically Determined Blood Glucose, and Offspring Obesity Risk: An Observational Study. Obesity (Silver Spring) 2021; 29:204-212. [PMID: 33277814 PMCID: PMC8588568 DOI: 10.1002/oby.23047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/03/2020] [Accepted: 09/09/2020] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The purpose of this study was to estimate the associations of genetically determined maternal blood glucose levels with obesity-related outcomes among children from pregnancies with and without gestational diabetes mellitus (GDM). METHODS A total of 1,114 mothers with (N = 560) and without (N = 554) GDM and their children were included in the present study. A maternal genetic risk score (GRS) for blood glucose was constructed on the basis of 17 single-nucleotide polymorphisms identified from a recent genome-wide association study. RESULTS It was found that maternal GRS for blood glucose showed different associations with offspring risk of overweight and obesity, as well as adiposity measures (all P for interaction < 0.05). Among mothers without GDM, genetically determined maternal blood glucose levels were associated with an 89% higher risk of overweight in their children (95% CI: 42%-152% per SD increase in GRS, P = 1.40 × 10-5 ) and a 120% higher risk of obesity (44%-235%, P = 2.61 × 10-4 ) after adjustment for covariates. In addition, higher maternal GRS for blood glucose was associated with children's increased obesity-related traits (all P < 0.05). However, no significant associations were observed among children of mothers with GDM. CONCLUSIONS This study indicates that GDM status may modify the relation between genetically determined glucose levels and obesity risk among children.
Collapse
Affiliation(s)
- Qiying Song
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Leishen Wang
- Tianjin Women’s and Children’s Health Center, Tianjin, China
| | - Huikun Liu
- Tianjin Women’s and Children’s Health Center, Tianjin, China
| | - Zhaoxia Liang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
- Department of Obstetrics, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yuhang Chen
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, Sichuan Province, China
| | - Dianjianyi Sun
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Weiqin Li
- Tianjin Women’s and Children’s Health Center, Tianjin, China
| | - Junhong Leng
- Tianjin Women’s and Children’s Health Center, Tianjin, China
| | - Xilin Yang
- Department of Epidemiology, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Marly Augusto Cardoso
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Gang Hu
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Luo HH, Feng XF, Yang XL, Hou RQ, Fang ZZ. Interactive effects of asparagine and aspartate homeostasis with sex and age for the risk of type 2 diabetes risk. Biol Sex Differ 2020; 11:58. [PMID: 33092635 PMCID: PMC7579815 DOI: 10.1186/s13293-020-00328-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Asparagine and aspartate homeostasis are linked with type 2 diabetes (T2D). This study aimed to explore whether asparagine and aspartate metabolism interacted with sex and age to increase the risk of T2D. METHODS From 27 May 2015 to 3 August 2016, we consecutively retrieved 1032 T2D patients and 1522 subjects without T2D from a tertiary care hospital in Liaoning, China. Restricted cubic spline nested in the logistic regression was used to draw odds ratio curves of plasma asparagine to aspartate ratio for T2D by sex and age. Cut-off point was selected where curves went apart, indicating possible interaction. Addictive interactions of asparagine to aspartate ratio with sex or age and secondary interaction with copresence of unfavorable sex and age were further estimated using relative excess risk due to interaction (RERI), attributable proportion due to interaction (AP), and synergy index (S). RESULTS Ratio of asparagine to aspartate > 1.5 was associated with elevated risk of T2D (OR 7.99, 95%CI 5.50 to 11.6), which was enhanced by female gender to 13.6, (95%CI 8.10-22.9) and by > 50 years of age to 28.7 (14.6-56.3), with significant additive interactions. There was a significant secondary-interaction of copresence of female sex and > 50 years of age with high asparagine to aspartate ratio for increased T2D risk with the OR being further increased to 34.4 (20.5-57.5). CONCLUSIONS High asparagine to aspartate ratio was associated with markedly increased risk of T2D, which was further amplified by either female gender or > 50 years of age, and especially both.
Collapse
Affiliation(s)
- Hui-Huan Luo
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xiao-Fei Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xi-Lin Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Rui-Qin Hou
- Department of Blood Transfusion, Peking University People's Hospital, Beijing, China.
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China. .,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.
| |
Collapse
|
21
|
Bowman CE, Arany Z, Wolfgang MJ. Regulation of maternal-fetal metabolic communication. Cell Mol Life Sci 2020; 78:1455-1486. [PMID: 33084944 DOI: 10.1007/s00018-020-03674-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
Pregnancy may be the most nutritionally sensitive stage in the life cycle, and improved metabolic health during gestation and early postnatal life can reduce the risk of chronic disease in adulthood. Successful pregnancy requires coordinated metabolic, hormonal, and immunological communication. In this review, maternal-fetal metabolic communication is defined as the bidirectional communication of nutritional status and metabolic demand by various modes including circulating metabolites, endocrine molecules, and other secreted factors. Emphasis is placed on metabolites as a means of maternal-fetal communication by synthesizing findings from studies in humans, non-human primates, domestic animals, rabbits, and rodents. In this review, fetal, placental, and maternal metabolic adaptations are discussed in turn. (1) Fetal macronutrient needs are summarized in terms of the physiological adaptations in place to ensure their proper allocation. (2) Placental metabolite transport and maternal physiological adaptations during gestation, including changes in energy budget, are also discussed. (3) Maternal nutrient limitation and metabolic disorders of pregnancy serve as case studies of the dynamic nature of maternal-fetal metabolic communication. The review concludes with a summary of recent research efforts to identify metabolites, endocrine molecules, and other secreted factors that mediate this communication, with particular emphasis on serum/plasma metabolomics in humans, non-human primates, and rodents. A better understanding of maternal-fetal metabolic communication in health and disease may reveal novel biomarkers and therapeutic targets for metabolic disorders of pregnancy.
Collapse
Affiliation(s)
- Caitlyn E Bowman
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zoltan Arany
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
22
|
Regan JA, Shah SH. Obesity Genomics and Metabolomics: a Nexus of Cardiometabolic Risk. Curr Cardiol Rep 2020; 22:174. [PMID: 33040225 DOI: 10.1007/s11886-020-01422-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Obesity is a significant international public health epidemic with major downstream consequences on morbidity and mortality. While lifestyle factors contribute, there is an evolving understanding of genomic and metabolomic pathways involved with obesity and its relationship with cardiometabolic risk. This review will provide an overview of some of these important findings from both a biologic and clinical perspective. RECENT FINDINGS Recent studies have identified polygenic risk scores and metabolomic biomarkers of obesity and related outcomes, which have also highlighted biological pathways, such as the branched-chain amino acid (BCAA) pathway that is dysregulated in this disease. These biomarkers may help in personalizing obesity interventions and for mitigation of future cardiometabolic risk. A multifaceted approach is necessary to impact the growing epidemic of obesity and related diseases. This will likely include incorporating precision medicine approaches with genomic and metabolomic biomarkers to personalize interventions and improve risk prediction.
Collapse
Affiliation(s)
- Jessica A Regan
- Department of Medicine, Duke University, Durham, NC, USA.,Duke Molecular Physiology Institute, Duke University, 300 N. Duke Street, DUMC, Box 104775, Durham, NC, 27701, USA
| | - Svati H Shah
- Department of Medicine, Duke University, Durham, NC, USA. .,Duke Molecular Physiology Institute, Duke University, 300 N. Duke Street, DUMC, Box 104775, Durham, NC, 27701, USA.
| |
Collapse
|
23
|
Mokkala K, Vahlberg T, Houttu N, Koivuniemi E, Laitinen K. Distinct Metabolomic Profile Because of Gestational Diabetes and its Treatment Mode in Women with Overweight and Obesity. Obesity (Silver Spring) 2020; 28:1637-1644. [PMID: 32705820 DOI: 10.1002/oby.22882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/18/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Whether the presence of gestational diabetes (GDM) and its treatment mode influence the serum metabolic profile in women with overweight or obesity was studied. METHODS The serum metabolic profiles of 352 women with overweight or obesity participating in a mother-infant clinical study were analyzed with a targeted NMR approach (at 35.1 median gestational weeks). GDM was diagnosed with a 2-hour 75-g oral glucose tolerance test. RESULTS The metabolomic profile of the women with GDM (n = 100) deviated from that of women without GDM (n = 252). Differences were seen in 70 lipid variables, particularly higher concentrations of very low-density lipoprotein particles and serum triglycerides were related to GDM. Furthermore, levels of branched-chain amino acids and glycoprotein acetylation, a marker of low-grade inflammation, were higher in women with GDM. Compared with women with GDM treated with diet only, the women treated with medication (n = 19) had higher concentrations of severalizes of VLDL particles and their components, leucine, and isoleucine, as well as glycoprotein acetylation. CONCLUSIONS A clearly distinct metabolic profile was detected in GDM, which deviated even more if the patient was receiving medical treatment. This suggests a need for more intense follow-up and therapy for women with GDM during pregnancy and postpartum to reduce their long-term adverse health risks.
Collapse
Affiliation(s)
- Kati Mokkala
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Tero Vahlberg
- Department of Clinical Medicine, Biostatistics, University of Turku, Turku, Finland
| | - Noora Houttu
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Ella Koivuniemi
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Kirsi Laitinen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| |
Collapse
|
24
|
Liu Y, Kuang A, Talbot O, Bain JR, Muehlbauer MJ, Hayes MG, Ilkayeva OR, Lowe LP, Metzger BE, Newgard CB, Scholtens DM, Lowe WL. Metabolomic and genetic associations with insulin resistance in pregnancy. Diabetologia 2020; 63:1783-1795. [PMID: 32556615 PMCID: PMC7416451 DOI: 10.1007/s00125-020-05198-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Our study aimed to integrate maternal metabolic and genetic data related to insulin sensitivity during pregnancy to provide novel insights into mechanisms underlying pregnancy-induced insulin resistance. METHODS Fasting and 1 h serum samples were collected from women in the Hyperglycemia and Adverse Pregnancy Outcome study who underwent an OGTT at ∼28 weeks' gestation. We obtained targeted and non-targeted metabolomics and genome-wide association data from 1600 and 4528 mothers, respectively, in four ancestry groups (Northern European, Afro-Caribbean, Mexican American and Thai); 1412 of the women had both metabolomics and genome-wide association data. Insulin sensitivity was calculated using a modified insulin sensitivity index that included fasting and 1 h glucose and C-peptide levels after a 75 g glucose load. RESULTS Per-metabolite and network analyses across the four ancestries identified numerous metabolites associated with maternal insulin sensitivity before and 1 h after a glucose load, ranging from amino acids and carbohydrates to fatty acids and lipids. Genome-wide association analyses identified 12 genetic variants in the glucokinase regulatory protein gene locus that were significantly associated with maternal insulin sensitivity, including a common functional missense mutation, rs1260326 (β = -0.2004, p = 4.67 × 10-12 in a meta-analysis across the four ancestries). This SNP was also significantly associated with multiple fasting and 1 h metabolites during pregnancy, including fasting and 1 h triacylglycerols and 2-hydroxybutyrate and 1 h lactate, 2-ketoleucine/ketoisoleucine and palmitoleic acid. Mediation analysis suggested that 1 h palmitoleic acid contributes, in part, to the association of rs1260326 with maternal insulin sensitivity, explaining 13.7% (95% CI 4.0%, 23.3%) of the total effect. CONCLUSIONS/INTERPRETATION The present study demonstrates commonalities between metabolites and genetic variants associated with insulin sensitivity in the gravid and non-gravid states and provides insights into mechanisms underlying pregnancy-induced insulin resistance. Graphical abstract.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Rubloff 12, 420 E. Superior St, Chicago, IL, 60611, USA
- Department of Endocrinology, South Campus, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Alan Kuang
- Department of Preventive Medicine (Biostatistics), Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA
| | - Octavious Talbot
- Department of Preventive Medicine (Biostatistics), Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| | - M Geoffrey Hayes
- Department of Medicine, Northwestern University Feinberg School of Medicine, Rubloff 12, 420 E. Superior St, Chicago, IL, 60611, USA
| | - Olga R Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| | - Lynn P Lowe
- Department of Preventive Medicine (Biostatistics), Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA
| | - Boyd E Metzger
- Department of Medicine, Northwestern University Feinberg School of Medicine, Rubloff 12, 420 E. Superior St, Chicago, IL, 60611, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Denise M Scholtens
- Department of Preventive Medicine (Biostatistics), Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA.
| | - William L Lowe
- Department of Medicine, Northwestern University Feinberg School of Medicine, Rubloff 12, 420 E. Superior St, Chicago, IL, 60611, USA.
| | | |
Collapse
|
25
|
Yang Q, Wang Y, Zhang Y, Li F, Xia W, Zhou Y, Qiu Y, Li H, Zhu F. NOREVA: enhanced normalization and evaluation of time-course and multi-class metabolomic data. Nucleic Acids Res 2020; 48:W436-W448. [PMID: 32324219 PMCID: PMC7319444 DOI: 10.1093/nar/gkaa258] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/21/2020] [Accepted: 04/04/2020] [Indexed: 12/23/2022] Open
Abstract
Biological processes (like microbial growth & physiological response) are usually dynamic and require the monitoring of metabolic variation at different time-points. Moreover, there is clear shift from case-control (N=2) study to multi-class (N>2) problem in current metabolomics, which is crucial for revealing the mechanisms underlying certain physiological process, disease metastasis, etc. These time-course and multi-class metabolomics have attracted great attention, and data normalization is essential for removing unwanted biological/experimental variations in these studies. However, no tool (including NOREVA 1.0 focusing only on case-control studies) is available for effectively assessing the performance of normalization method on time-course/multi-class metabolomic data. Thus, NOREVA was updated to version 2.0 by (i) realizing normalization and evaluation of both time-course and multi-class metabolomic data, (ii) integrating 144 normalization methods of a recently proposed combination strategy and (iii) identifying the well-performing methods by comprehensively assessing the largest set of normalizations (168 in total, significantly larger than those 24 in NOREVA 1.0). The significance of this update was extensively validated by case studies on benchmark datasets. All in all, NOREVA 2.0 is distinguished for its capability in identifying well-performing normalization method(s) for time-course and multi-class metabolomics, which makes it an indispensable complement to other available tools. NOREVA can be accessed at https://idrblab.org/noreva/.
Collapse
Affiliation(s)
- Qingxia Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiqi Xia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation & The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Yunqing Qiu
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation & The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Honglin Li
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
26
|
Shi X, Huang P, Wang L, Lu W, Su W, Yan B, Liu C, Xiao F, Song H, Lin M, Li X. Maternal postload 1-hour glucose level during pregnancy and offspring's overweight/obesity status in preschool age. BMJ Open Diabetes Res Care 2020; 8:e000738. [PMID: 32049640 PMCID: PMC7039585 DOI: 10.1136/bmjdrc-2019-000738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/12/2019] [Accepted: 12/15/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Childhood obesity is associated with adverse outcomes such as metabolic syndrome, diabetes, and cardiovascular diseases in adulthood. Identifying risk factors related to excessive adiposity in early childhood is of great importance for obesity intervention. The results of studies for associations between maternal with gestational diabetes and offspring obesity are conflicting. Nonetheless, the association of maternal glucose across a spectrum of glucose values with childhood adiposity outcomes is less clear. AIM To assess the association of maternal glucose across a spectrum of glucose values with childhood adiposity at age 5 years. METHODS A population-based cohort study was conducted between 2011 and 2018. Using the healthcare records data were from the Medical Birth Registry in Xiamen, China. The primary outcome was offspring obese/obesity. Primary predictors were maternal oral glucose tolerance test values during pregnancy. RESULTS 6090 mother-child pairs were analyzed. The mean age of the children at follow-up was 5.2 years. At multiple logistic regression, after adjustment for variables, including maternal pre-pregnancy body mass index (BMI), birth weight of offspring, and insulin therapy, ORs for offspring overweight/obesity were 1.13 (95% CI 0.90 to 1.42) for maternal fasting glucose levels, 1.12 (95% CI 1.04 to 1.22) for 1-hour glucose, and 1.04 (95% CI 0.95 to 1.14) for 2-hour glucose. The adjusted association of offspring BMI Z-score with maternal 1-hour glucose level remained significant. There were no significant associations between BMI Z-score and maternal fasting glucose and 2-hour glucose level. Exploratory sex-specific analyses indicated generally consistent associations for boys and girls. CONCLUSION Maternal postload 1-hour glucose across a spectrum of glucose values during pregnancy was an independent risk for offspring weight gain at age 5 years, indicating the importance of screen and management of maternal 1-hour glucose level, except for fasting glucose and 2-hour glucose level during pregnancy in order to prevent offspring weight gain in early childhood.
Collapse
Affiliation(s)
- Xiulin Shi
- Xiamen Diabetes Institute, Xiamen, China
- Department of Endocrinology and Diabetes, Xiamen University and Fujian Medical University Affiliated First Hospital, Xiamen, China
| | - Peiying Huang
- Xiamen Diabetes Institute, Xiamen, China
- Department of Endocrinology and Diabetes, Xiamen University and Fujian Medical University Affiliated First Hospital, Xiamen, China
| | - Liying Wang
- Xiamen Diabetes Institute, Xiamen, China
- Department of Endocrinology and Diabetes, Xiamen University and Fujian Medical University Affiliated First Hospital, Xiamen, China
| | - Wei Lu
- Xiamen Diabetes Institute, Xiamen, China
- Department of Endocrinology and Diabetes, Xiamen University and Fujian Medical University Affiliated First Hospital, Xiamen, China
| | - Weijuan Su
- Xiamen Diabetes Institute, Xiamen, China
- Department of Endocrinology and Diabetes, Xiamen University and Fujian Medical University Affiliated First Hospital, Xiamen, China
| | - Bing Yan
- Xiamen Diabetes Institute, Xiamen, China
- Department of Endocrinology and Diabetes, Xiamen University and Fujian Medical University Affiliated First Hospital, Xiamen, China
| | - Changqin Liu
- Xiamen Diabetes Institute, Xiamen, China
- Department of Endocrinology and Diabetes, Xiamen University and Fujian Medical University Affiliated First Hospital, Xiamen, China
| | - Fangsen Xiao
- Xiamen Diabetes Institute, Xiamen, China
- Department of Endocrinology and Diabetes, Xiamen University and Fujian Medical University Affiliated First Hospital, Xiamen, China
| | - Haiqu Song
- Xiamen Diabetes Institute, Xiamen, China
- Department of Endocrinology and Diabetes, Xiamen University and Fujian Medical University Affiliated First Hospital, Xiamen, China
| | - Mingzhu Lin
- Xiamen Diabetes Institute, Xiamen, China
- Department of Endocrinology and Diabetes, Xiamen University and Fujian Medical University Affiliated First Hospital, Xiamen, China
| | - Xuejun Li
- Xiamen Diabetes Institute, Xiamen, China
- Department of Endocrinology and Diabetes, Xiamen University and Fujian Medical University Affiliated First Hospital, Xiamen, China
| |
Collapse
|
27
|
Gilley SP, Weaver NE, Sticca EL, Jambal P, Palacios A, Kerns ME, Anand P, Kemp JF, Westcott JE, Figueroa L, Garcés AL, Ali SA, Pasha O, Saleem S, Hambidge KM, Hendricks AE, Krebs NF, Borengasser SJ. Longitudinal Changes of One-Carbon Metabolites and Amino Acid Concentrations during Pregnancy in the Women First Maternal Nutrition Trial. Curr Dev Nutr 2020; 4:nzz132. [PMID: 32175519 PMCID: PMC7064164 DOI: 10.1093/cdn/nzz132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/09/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Maternal dietary restriction and supplementation of one-carbon (1C) metabolites can impact offspring growth and DNA methylation. However, longitudinal research of 1C metabolite and amino acid (AA) concentrations over the reproductive cycle of human pregnancy is limited. OBJECTIVE To investigate longitudinal 1C metabolite and AA concentrations prior to and during pregnancy and the effects of a small-quantity lipid-based nutrition supplement (LNS) containing >20 micronutrients and prepregnancy BMI (ppBMI). METHODS This study was an ancillary study of the Women First Trial (NCT01883193, clinicaltrials.gov) focused on a subset of Guatemalan women (n = 134), 49% of whom entered pregnancy with a BMI ≥25 kg/m2. Ninety-five women received LNS during pregnancy (+LNS group), while the remainder did not (-LNS group). A subset of women from the Pakistan study site (n = 179) were used as a replication cohort, 124 of whom received LNS. Maternal blood was longitudinally collected on dried blood spot (DBS) cards at preconception, and at 12 and 34 wk gestation. A targeted metabolomics assay was performed on DBS samples at each time point using LC-MS/MS. Longitudinal analyses were performed using linear mixed modeling to investigate the influence of time, LNS, and ppBMI. RESULTS Concentrations of 23 of 27 metabolites, including betaine, choline, and serine, changed from preconception across gestation after application of a Bonferroni multiple testing correction (P < 0.00185). Sixteen of those metabolites showed similar changes in the replication cohort. Asymmetric and symmetric dimethylarginine were decreased by LNS in the participants from Guatemala. Only tyrosine was statistically associated with ppBMI at both study sites. CONCLUSIONS Time influenced most 1C metabolite and AA concentrations with a high degree of similarity between the 2 diverse study populations. These patterns were not significantly altered by LNS consumption or ppBMI. Future investigations will focus on 1C metabolite changes associated with infant outcomes, including DNA methylation. This trial was registered at clinicaltrials.gov as NCT01883193.
Collapse
Affiliation(s)
- Stephanie P Gilley
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas E Weaver
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO, USA
| | - Evan L Sticca
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Purevsuren Jambal
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra Palacios
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mattie E Kerns
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Pratibha Anand
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer F Kemp
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jamie E Westcott
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lester Figueroa
- Institute of Nutrition in Central America and Panama, Guatemala City, Guatemala
| | - Ana Lucía Garcés
- Institute of Nutrition in Central America and Panama, Guatemala City, Guatemala
| | - Sumera A Ali
- Aga Khan University, Department of Community Health Sciences, Karachi, Pakistan
| | - Omrana Pasha
- Aga Khan University, Department of Community Health Sciences, Karachi, Pakistan
- Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sarah Saleem
- Aga Khan University, Department of Community Health Sciences, Karachi, Pakistan
| | - K Michael Hambidge
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Audrey E Hendricks
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO, USA
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nancy F Krebs
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah J Borengasser
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
28
|
Manta-Vogli PD, Schulpis KH, Dotsikas Y, Loukas YL. The significant role of carnitine and fatty acids during pregnancy, lactation and perinatal period. Nutritional support in specific groups of pregnant women. Clin Nutr 2019; 39:2337-2346. [PMID: 31732292 DOI: 10.1016/j.clnu.2019.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Pregnancy is characterized by a complexity of metabolic processes that may impact fetal health and development. Women's nutrition during pregnancy and lactation is considered important for both mother and infant. This review aims to investigate the significant role of fatty acids and carnitine during pregnancy and lactation in specific groups of pregnant and lactating women. METHODS The literature was reviewed using relevant data bases (e.g. Pubmed, Scopus, Science Direct) and relevant articles were selected to provide information and data for the text and associated Tables. RESULTS Dynamic features especially of plasma carnitine profile during pregnancy and lactation, indicate an extraordinarily active participation of carnitine in the intermediary metabolism both in pregnant woman and in neonate and may also have implications for health and disease later in life. Maternal diets rich in trans and saturated fatty acids can lead to impairments in the metabolism and development of the offspring, whereas the consumption of long chain-polyunsaturated fatty acids during pregnancy plays a beneficial physiologic and metabolic role in the health of offspring. CONCLUSIONS Pregnant women who are underweight, overweight or obese, with gestational diabetes mellitus or diabetes mellitus and those who choose vegan/vegetarian diets or are coming from socially disadvantaged areas, should be nutritionally supported to achieve a higher quality diet during pregnancy and/or lactation.
Collapse
Affiliation(s)
- Penelope D Manta-Vogli
- Department of Clinical Nutrition & Dietetics Agia Sofia Children's Hospital, Athens, Greece.
| | | | - Yannis Dotsikas
- Laboratory of Pharm. Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, GR-157 71, Athens, Greece.
| | - Yannis L Loukas
- Laboratory of Pharm. Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, GR-157 71, Athens, Greece.
| |
Collapse
|
29
|
Kadakia R, Talbot O, Kuang A, Bain JR, Muehlbauer MJ, Stevens RD, Ilkayeva OR, Lowe LP, Metzger BE, Newgard CB, Scholtens DM, Lowe WL. Cord Blood Metabolomics: Association With Newborn Anthropometrics and C-Peptide Across Ancestries. J Clin Endocrinol Metab 2019; 104:4459-4472. [PMID: 31498869 PMCID: PMC6735762 DOI: 10.1210/jc.2019-00238] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022]
Abstract
CONTEXT Newborn adiposity is associated with childhood obesity. Cord blood metabolomics is one approach that can be used to understand early-life contributors to adiposity and insulin resistance. OBJECTIVE To determine the association of cord blood metabolites with newborn adiposity and hyperinsulinemia in a multiethnic cohort of newborns. DESIGN Cross-sectional, observational study. SETTING Hyperglycemia and Adverse Pregnancy Outcome study. PARTICIPANTS One thousand six hundred multiethnic mother-newborn pairs. MAIN OUTCOME MEASURE Cord blood C-peptide, birthweight, and newborn sum of skinfolds. RESULTS Meta-analyses across four ancestry groups (Afro-Caribbean, Northern European, Thai, and Mexican American) demonstrated significant associations of cord blood metabolites with cord blood C-peptide, birthweight, and newborn sum of skinfolds. Several metabolites, including branched-chain amino acids (BCAAs), medium- and long-chain acylcarnitines, nonesterified fatty acids, and triglycerides were negatively associated with cord C-peptide but positively associated with birthweight and/or sum of skinfolds. 1,5-Anhydroglucitol, an inverse marker of recent maternal glycemia, was significantly inversely associated with birthweight and sum of skinfolds. Network analyses revealed groups of interrelated amino acid, acylcarnitine, and fatty acid metabolites associated with all three newborn outcomes. CONCLUSIONS Cord blood metabolites are associated with newborn size and cord blood C-peptide levels after adjustment for maternal body mass index and glucose during pregnancy. Negative associations of metabolites with C-peptide at birth were observed. 1,5-Anhydroglucitol appears to be a marker of adiposity in newborns. BCAAs were individually associated with birthweight and demonstrated possible associations with newborn adiposity in network analyses.
Collapse
Affiliation(s)
- Rachel Kadakia
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
- Correspondence and Reprint Requests: William L. Lowe, Jr., MD, Feinberg School of Medicine, Northwestern University, Rubloff Building, 12th Floor, 420 East Superior Street, Chicago, Ilinois 60611.
| | - Octavious Talbot
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Alan Kuang
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
- Duke Molecular Physiology Institute, Durham, North Carolina
- Duke University School of Medicine, Durham, North Carolina
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
- Duke Molecular Physiology Institute, Durham, North Carolina
- Duke University School of Medicine, Durham, North Carolina
| | - Robert D Stevens
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
- Duke Molecular Physiology Institute, Durham, North Carolina
- Duke University School of Medicine, Durham, North Carolina
| | - Olga R Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
- Duke Molecular Physiology Institute, Durham, North Carolina
- Duke University School of Medicine, Durham, North Carolina
| | - Lynn P Lowe
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Boyd E Metzger
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
- Duke Molecular Physiology Institute, Durham, North Carolina
- Duke University School of Medicine, Durham, North Carolina
| | | | - William L Lowe
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | |
Collapse
|
30
|
Wang G, Sun Q, Liang L, Clash C, Zhang C, Hong X, Ji Y, Radovick S, Pearson C, Bartell TR, Zuckerman B, Cheng TL, Hu FB, Wang X. Inter-generational link of obesity in term and preterm births: role of maternal plasma acylcarnitines. Int J Obes (Lond) 2019; 43:1967-1977. [PMID: 31332276 PMCID: PMC6900290 DOI: 10.1038/s41366-019-0417-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/20/2019] [Accepted: 06/10/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND/OBJECTIVES Acylcarnitines, intermediates of fatty acid oxidation, are known to be involved in obesity and insulin resistance. Since maternal prepregnancy overweight or obesity (OWO) is a recognized major risk factor for offspring OWO, we hypothesized that maternal plasma acylcarnitines may play a role in inter-generational OWO. SUBJECTS/METHODS This study included 1402 mother-child pairs (1043 term, 359 preterm) recruited at birth from 1998–2013 and followed prospectively up to age 18 years at the Boston Medical Center. The primary outcomes were child OWO defined as BMI≥85th percentile for age and sex. The primary exposures were maternal prepregnancy OWO defined as BMI≥25 and maternal acylcarnitine levels measured in plasma samples collected soon after delivery using liquid chromatography–tandem mass spectrometry (LC-MS) in a targeted manner. RESULTS Approximately 40% of the children in this study were OWO by age 5. Maternal OWO had a significant association with childhood OWO, both in term and preterm births. β-hydroxybutyryl-carnitine (C4-OH) levels were significantly and positively associated with child OWO among term births after adjustment for potential confounders and multiple-comparisons. Children born to OWO mothers in the top tertile C4-OH levels were at highest risk of OWO: OR=3.78 (95%: 2.47, 5.79) as compared with those born to non-OWO mothers in the lowest tertile (P for interaction of maternal OWO and C4-OH= 0.035). In a four-way decomposition of mediation/interaction analysis, we estimated that C4-OH levels explained about 27% (se=0.08) of inter-generational OWO risk (P=0.001). In contrast, these associations were not observed in preterm births. CONCLUSIONS In this U.S. urban low-income birth cohort, we provide further evidence of the inter-generational link of OWO and reveal the differential role of C4-OH in explaining the inter-generational obesity between term and preterm births. Further investigations are warranted to better understand and prevent the inter-generational transmission of OWO.
Collapse
Affiliation(s)
- Guoying Wang
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Qi Sun
- Departments of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Clary Clash
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Cuilin Zhang
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.,Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Xiumei Hong
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yuelong Ji
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sally Radovick
- Department of Pediatrics, The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Colleen Pearson
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Tami R Bartell
- Mary Ann & J. Milburn Smith Child Health Research, Outreach and Advocacy Center, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Barry Zuckerman
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Tina L Cheng
- Division of General Pediatrics & Adolescent Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA. .,Division of General Pediatrics & Adolescent Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
31
|
Lowe WL, Lowe LP, Kuang A, Catalano PM, Nodzenski M, Talbot O, Tam WH, Sacks DA, McCance D, Linder B, Lebenthal Y, Lawrence JM, Lashley M, Josefson JL, Hamilton J, Deerochanawong C, Clayton P, Brickman WJ, Dyer AR, Scholtens DM, Metzger BE. Maternal glucose levels during pregnancy and childhood adiposity in the Hyperglycemia and Adverse Pregnancy Outcome Follow-up Study. Diabetologia 2019; 62:598-610. [PMID: 30648193 PMCID: PMC6421132 DOI: 10.1007/s00125-018-4809-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/12/2018] [Indexed: 01/04/2023]
Abstract
AIMS/HYPOTHESIS Maternal type 2 diabetes during pregnancy and gestational diabetes are associated with childhood adiposity; however, associations of lower maternal glucose levels during pregnancy with childhood adiposity, independent of maternal BMI, remain less clear. The objective was to examine associations of maternal glucose levels during pregnancy with childhood adiposity in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) cohort. METHODS The HAPO Study was an observational epidemiological international multi-ethnic investigation that established strong associations of glucose levels during pregnancy with multiple adverse perinatal outcomes. The HAPO Follow-up Study (HAPO FUS) included 4832 children from ten HAPO centres whose mothers had a 75 g OGTT at ~28 weeks gestation 10-14 years earlier, with glucose values blinded to participants and clinical caregivers. The primary outcome was child adiposity, including: (1) being overweight/obese according to sex- and age-specific cut-offs based on the International Obesity Task Force (IOTF) criteria; (2) IOTF-defined obesity only; and (3) measurements >85th percentile for sum of skinfolds, waist circumference and per cent body fat. Primary predictors were maternal OGTT and HbA1c values during pregnancy. RESULTS Fully adjusted models that included maternal BMI at pregnancy OGTT indicated positive associations between maternal glucose predictors and child adiposity outcomes. For one SD difference in pregnancy glucose and HbA1c measures, ORs for each child adiposity outcome were in the range of 1.05-1.16 for maternal fasting glucose, 1.11-1.19 for 1 h glucose, 1.09-1.21 for 2 h glucose and 1.12-1.21 for HbA1c. Associations were significant, except for associations of maternal fasting glucose with offspring being overweight/obese or having waist circumference >85th percentile. Linearity was confirmed in all adjusted models. Exploratory sex-specific analyses indicated generally consistent associations for boys and girls. CONCLUSIONS/INTERPRETATION Exposure to higher levels of glucose in utero is independently associated with childhood adiposity, including being overweight/obese, obesity, skinfold thickness, per cent body fat and waist circumference. Glucose levels less than those diagnostic of diabetes are associated with greater childhood adiposity; this may have implications for long-term metabolic health.
Collapse
Affiliation(s)
- William L Lowe
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Lynn P Lowe
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alan Kuang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Patrick M Catalano
- MetroHealth Medical Center, Cleveland, OH, USA
- Nutrition Obesity Research Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Michael Nodzenski
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Octavious Talbot
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Wing-Hung Tam
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Prince of Wales Hospital, Hong Kong, China
| | - David A Sacks
- Kaiser Permanente Southern California, Pasadena, CA, USA
| | | | - Barbara Linder
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Yael Lebenthal
- Schneider Children's Medical Center of Israel, Petah-Tiqva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Michele Lashley
- School of Clinical Medicine and Research, Queen Elizabeth Hospital, University of the West Indies, St Michael, Barbados
| | - Jami L Josefson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Ann and Robert H Lurie Children's Hospital, Chicago, IL, USA
| | - Jill Hamilton
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | - Peter Clayton
- Royal Manchester Children's Hospital, Royal Manchester University Hospitals, NHS Foundation Trust, Manchester, UK
- Manchester Academic Health Sciences Centre, School of Medical Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Wendy J Brickman
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Ann and Robert H Lurie Children's Hospital, Chicago, IL, USA
| | - Alan R Dyer
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Denise M Scholtens
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Boyd E Metzger
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | | |
Collapse
|
32
|
Kadakia R, Nodzenski M, Talbot O, Kuang A, Bain JR, Muehlbauer MJ, Stevens RD, Ilkayeva OR, O'Neal SK, Lowe LP, Metzger BE, Newgard CB, Scholtens DM, Lowe WL. Maternal metabolites during pregnancy are associated with newborn outcomes and hyperinsulinaemia across ancestries. Diabetologia 2019; 62:473-484. [PMID: 30483859 PMCID: PMC6374187 DOI: 10.1007/s00125-018-4781-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/26/2018] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS We aimed to determine the association of maternal metabolites with newborn adiposity and hyperinsulinaemia in a multi-ethnic cohort of mother-newborn dyads. METHODS Targeted and non-targeted metabolomics assays were performed on fasting and 1 h serum samples from a total of 1600 mothers in four ancestry groups (Northern European, Afro-Caribbean, Mexican American and Thai) who participated in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study, underwent an OGTT at ~28 weeks gestation and whose newborns had anthropometric measurements at birth. RESULTS In this observational study, meta-analyses demonstrated significant associations of maternal fasting and 1 h metabolites with birthweight, cord C-peptide and/or sum of skinfolds across ancestry groups. In particular, maternal fasting triacylglycerols were associated with newborn sum of skinfolds. At 1 h, several amino acids, fatty acids and lipid metabolites were associated with one or more newborn outcomes. Network analyses revealed clusters of fasting acylcarnitines, amino acids, lipids and fatty acid metabolites associated with cord C-peptide and sum of skinfolds, with the addition of branched-chain and aromatic amino acids at 1 h. CONCLUSIONS/INTERPRETATION The maternal metabolome during pregnancy is associated with newborn outcomes. Maternal levels of amino acids, acylcarnitines, lipids and fatty acids and their metabolites during pregnancy relate to fetal growth, adiposity and cord C-peptide, independent of maternal BMI and blood glucose levels.
Collapse
Affiliation(s)
- Rachel Kadakia
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Ann and Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, Box 54, Chicago, IL, 60611, USA.
| | - Michael Nodzenski
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Octavious Talbot
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alan Kuang
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Robert D Stevens
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Olga R Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Sara K O'Neal
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Lynn P Lowe
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Boyd E Metzger
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | | | - William L Lowe
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
33
|
Michelsen TM, Holme AM, Holm MB, Roland MC, Haugen G, Powell TL, Jansson T, Henriksen T. Uteroplacental Glucose Uptake and Fetal Glucose Consumption: A Quantitative Study in Human Pregnancies. J Clin Endocrinol Metab 2019; 104:873-882. [PMID: 30339207 DOI: 10.1210/jc.2018-01154] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022]
Abstract
CONTEXT Maternal glucose levels and body mass index (BMI) are determinants of fetal overgrowth, but their relation to fetal glucose consumption is not well characterized in human pregnancy. OBJECTIVES To quantify uteroplacental glucose uptake and the allocation of glucose between the placenta and fetus and to identify factors that affect fetal glucose consumption. DESIGN Human in vivo study in term pregnancies. SETTING Oslo University Hospital, Norway. PARTICIPANTS One hundred seventy-nine healthy women with elective cesarean section. INTERVENTIONS Uterine and umbilical blood flow was determined using Doppler ultrasonography. Glucose and insulin were measured in the maternal radial artery and uterine vein and the umbilical artery and vein. In a subcohort (n = 33), GLUT1 expression was determined in isolated syncytiotrophoblast basal and microvillous plasma membranes. MAIN OUTCOME MEASURES Uteroplacental glucose uptake and placental and fetal glucose consumption quantified by the Fick principle. RESULTS Median (Q1, Q3) uteroplacental glucose uptake was 117.1 (59.1, 224.9) μmol⋅min-1, and fetal and placental glucose consumptions were 28.9 (15.4, 41.8) µmol⋅min-1⋅kg fetus-1 and 51.4 (-65.8, 185.4) µmol⋅min-1⋅kg placenta-1, respectively. Fetal glucose consumption correlated with birth weight (ρ: 0.34; P < 0.001) and maternal-fetal glucose gradient (ρ: 0.60; P < 0.001), but not with maternal BMI or uteroplacental glucose uptake. Uteroplacental glucose uptake was correlated to placental glucose consumption (ρ: 0.77; P < 0.001). Fetal and placental glucose consumptions were inversely correlated (ρ: -0.47; P < 0.001), but neither was correlated with placental GLUT1 expression. CONCLUSION These findings suggest that fetal glucose consumption is balanced against the placental needs for glucose and that placental glucose consumption is a key modulator of maternal-fetal glucose transfer in women.
Collapse
Affiliation(s)
- Trond M Michelsen
- Department of Obstetrics Rikshospitalet, Division of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Research Unit, Sørlandet Hospital, Arendal, Norway
| | - Ane M Holme
- Department of Obstetrics Rikshospitalet, Division of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Maia B Holm
- Department of Obstetrics Rikshospitalet, Division of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Marie C Roland
- Department of Obstetrics Rikshospitalet, Division of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway
- Norwegian Advisory Unit on Women's Health, Oslo University Hospital, Oslo, Norway
| | - Guttorm Haugen
- University of Oslo, Oslo, Norway
- Department of Fetal Medicine, Division of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway
| | - Theresa L Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Division of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Tore Henriksen
- Department of Obstetrics Rikshospitalet, Division of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| |
Collapse
|
34
|
Urinary metabolic variation analysis during pregnancy and application in Gestational Diabetes Mellitus and spontaneous abortion biomarker discovery. Sci Rep 2019; 9:2605. [PMID: 30796299 PMCID: PMC6384939 DOI: 10.1038/s41598-019-39259-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/21/2019] [Indexed: 01/13/2023] Open
Abstract
Pregnancy is associated with the onset of many adaptation processes that are likely to change over the course of gestation. Understanding normal metabolites’ variation with pregnancy progression is crucial for gaining insights of the key nutrients for normal fetal growth, and for comparative research of pregnancy-related complications. This work presents liquid chromatography-mass spectrum-based urine metabolomics study of 50 health pregnant women at three time points during pregnancy. The influence of maternal physiological factors, including age, BMI, parity and gravity to urine metabolome was explored. Additionally, urine metabolomics was applied for early prediction of two pregnancy complications, gestational diabetes mellitus and spontaneous abortion. Our results suggested that during normal pregnancy progression, pathways of steroid hormone biosynthesis and tyrosine metabolism were significantly regulated. BMI is a factor that should be considered during cross-section analysis. Application analysis discovered potential biomarkers for GDM in the first trimester with AUC of 0.89, and potential biomarkers for SA in the first trimester with AUC of 0.90. In conclusion, our study indicated that urine metabolome could reflect variations during pregnancy progression, and has potential value for pregnancy complications early prediction. The clinical trial number for this study is NCT03246295.
Collapse
|
35
|
Karpati T, Leventer-Roberts M, Feldman B, Cohen-Stavi C, Raz I, Balicer R. Patient clusters based on HbA1c trajectories: A step toward individualized medicine in type 2 diabetes. PLoS One 2018; 13:e0207096. [PMID: 30427908 PMCID: PMC6235308 DOI: 10.1371/journal.pone.0207096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/24/2018] [Indexed: 01/08/2023] Open
Abstract
Aims To identify clinically meaningful clusters of patients with similar glycated hemoglobin (HbA1c) trajectories among patients with type 2 diabetes. Methods A retrospective cohort study using unsupervised machine learning clustering methodologies to determine clusters of patients with similar longitudinal HbA1c trajectories. Stability of these clusters was assessed and supervised random forest analysis verified the clusters’ reproducibility. Clinical relevance of the clusters was assessed through multivariable analysis, comparing differences in risk for a composite outcome (macrovascular and microvascular outcomes, hypoglycemic events, and all-cause mortality) at HbA1c thresholds for each cluster. Results Among 60,423 patients, three clusters of HbA1c trajectories were generated: stable (n = 45,679), descending (n = 6,084), and ascending (n = 8,660) trends, which were reproduced with 99.8% accuracy using a random forest model. In the clinical relevance assessment, HbA1c levels demonstrated a J-shape association with the risk for outcomes. HbA1c level thresholds for minimizing outcomes’ risk differed by cluster: 6.0–6.4% for the stable cluster, <8.0% for the descending cluster, and <9.0 for the ascending cluster. Conclusions By applying unsupervised machine learning to longitudinal HbA1c trajectories, we have identified clusters of patients who have distinct risk for diabetes-related complications. These clusters can be the basis for developing individualized models to personalize glycemic targets.
Collapse
Affiliation(s)
- Tomas Karpati
- Clalit Research Institute, Tel Aviv, Israel
- * E-mail:
| | | | | | | | - Itamar Raz
- Israeli National Council of Diabetes, Jerusalem, Israel
| | | |
Collapse
|
36
|
Barbour LA, Hernandez TL. Maternal Lipids and Fetal Overgrowth: Making Fat from Fat. Clin Ther 2018; 40:1638-1647. [PMID: 30236792 PMCID: PMC6195465 DOI: 10.1016/j.clinthera.2018.08.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/25/2022]
Abstract
There is increasing recognition that maternal glucose concentrations lower than those previously used for diagnosis of gestational diabetes mellitus (GDM) and targeted for treatment can result in excess fetal growth. Yet, mothers with GDM who appear to have optimal glycemic control and mothers with obesity and normal glucose tolerance still have a significantly increased risk for delivering infants who are large for gestational age, or even more importantly, who have increased adiposity at birth. What is less appreciated is that in addition to glucose, maternal lipids are also substrates for fetal fat accretion and that placental lipases can hydrolyze maternal triglycerides (TGs) to free fatty acids for fetal-placental availability. Maternal TG levels are 40% to 50% higher on average in mothers with obesity and GDM compared to those in normal-weight mothers early in pregnancy and are sustained at higher levels throughout gestation. Increasing evidence supports that maternal TG, both fasting and postprandial, are also predictors of newborn adiposity (newborn %fat), a risk factor for childhood obesity, and that early exposure is at least as strong of a risk factor as later exposure in mothers with obesity. In the setting of maternal nutrient excess and maternal insulin resistance, which lead to fetal hyperinsulinemia, excess free fatty acid exposure in the fetus may result in lipid storage and fetal fat development in subcutaneous and possibly other depots. In this commentary, we provide further evidence to make a case for targeting maternal fasting and postprandial TG in mothers with obesity who have elevated TG in early pregnancy to determine whether a TG-lowering interventional approach might limit fetal overgrowth and potentially mitigate the intrauterine contribution to childhood obesity and metabolic disease.
Collapse
Affiliation(s)
- Linda A Barbour
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes. University of Colorado, Anschutz Medical Campus, Aurora, Colorado; Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Teri L Hernandez
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes. University of Colorado, Anschutz Medical Campus, Aurora, Colorado; College of Nursing, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
37
|
Wesolowski SR, Mulligan CM, Janssen RC, Baker PR, Bergman BC, D'Alessandro A, Nemkov T, Maclean KN, Jiang H, Dean TA, Takahashi DL, Kievit P, McCurdy CE, Aagaard KM, Friedman JE. Switching obese mothers to a healthy diet improves fetal hypoxemia, hepatic metabolites, and lipotoxicity in non-human primates. Mol Metab 2018; 18:25-41. [PMID: 30337225 PMCID: PMC6308036 DOI: 10.1016/j.molmet.2018.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/12/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) risk begins in utero in offspring of obese mothers. A critical unmet need in this field is to understand the pathways and biomarkers underlying fetal hepatic lipotoxicity and whether maternal dietary intervention during pregnancy is an effective countermeasure. Methods We utilized a well-established non-human primate model of chronic, maternal, Western-style diet induced obesity (OB-WSD) compared with mothers on a healthy control diet (CON) or a subset of OB-WSD mothers switched to the CON diet (diet reversal; OB-DR) prior to and for the duration of the next pregnancy. Fetuses were studied in the early 3rd trimester. Results Fetuses from OB-WSD mothers had higher circulating triglycerides (TGs) and lower arterial oxygenation suggesting hypoxemia, compared with fetuses from CON and OB-DR mothers. Hepatic TG content, oxidative stress (TBARs), and de novo lipogenic genes were increased in fetuses from OB-WSD compared with CON mothers. Fetuses from OB-DR mothers had lower lipogenic gene expression and TBARs yet persistently higher TGs. Metabolomic profiling of fetal liver and serum (umbilical artery) revealed distinct separation of CON and OB-WSD groups, and an intermediate phenotype in fetuses from OB-DR mothers. Pathway analysis identified decreased tricarboxylic acid cycle intermediates, increased amino acid (AA) metabolism and byproducts, and increased gluconeogenesis, suggesting an increased reliance on AA metabolism to meet energy needs in the liver of fetuses from OB-WSD mothers. Components in collagen synthesis, including serum protein 5-hydroxylysine and hepatic lysine and proline, were positively correlated with hepatic TGs and TBARs, suggesting early signs of fibrosis in livers from the OB-WSD group. Importantly, hepatic gluconeogenic and arginine related intermediates and serum levels of lactate, pyruvate, several AAs, and nucleotide intermediates were normalized in the OB-DR group. However, hepatic levels of CDP-choline and total ceramide levels remained high in fetuses from OB-DR mothers. Conclusions Our data provide new metabolic evidence that, in addition to fetal hepatic steatosis, maternal WSD creates fetal hypoxemia and increases utilization of AAs for energy production and early activation of gluconeogenic pathways in the fetal liver. When combined with hyperlipidemia and limited antioxidant activity, the fetus suffers from hepatic oxidative stress and altered intracellular metabolism which can be improved with maternal diet intervention. Our data reinforce the concept that multiple “first hits” occur in the fetus prior to development of obesity and demonstrate new biomarkers with potential clinical implications for monitoring NAFLD risk in offspring. Maternal WSD increases fetal hypoxemia and utilization of AAs for gluconeogenesis. Maternal WSD increases fetal oxidative stress and precursors to liver fibrosis. Carnosine and l-proline uniquely correlated with fetal TG and oxidative stress. Fetal TGs were correlated with fetal arterial oxygen saturation. Diet reversal in obese WSD mothers prevents fetal hypoxemia and oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Peter R Baker
- Department of Pediatrics, Section of Genetics and Metabolism, USA
| | - Bryan C Bergman
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, USA
| | - Angelo D'Alessandro
- Department of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Travis Nemkov
- Department of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | - Hua Jiang
- Department of Pediatrics, Section of Genetics and Metabolism, USA
| | - Tyler A Dean
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Diana L Takahashi
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Paul Kievit
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, USA
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jacob E Friedman
- Department of Pediatrics, Section of Neonatology, USA; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, USA; Department of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
38
|
Preconception Micronutrient Supplementation Reduced Circulating Branched Chain Amino Acids at 12 Weeks Gestation in an Open Trial of Guatemalan Women Who Are Overweight or Obese. Nutrients 2018; 10:nu10091282. [PMID: 30208589 PMCID: PMC6165402 DOI: 10.3390/nu10091282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
Elevated branched chain amino acids (BCAAs: valine, leucine, and isoleucine) are well-established biomarkers of obesity-associated insulin resistance (IR). Mounting evidence suggests that low- and middle-income countries are suffering from a "double burden" of both undernutrition (growth stunting) and overnutrition (obesity) as these countries undergo a "nutrition transition". The purpose of this study was to examine if pre-pregnancy body mass index (BMI, kg/m²) and a daily lipid-based micronutrient supplement (LNS, Nutriset) would lead to cross-sectional differences in circulating levels of branched chain amino acids (BCAAs) in Guatemalan women experiencing short stature during early pregnancy. Using data from an ongoing randomized controlled trial, Women First, we studied women who were normal weight (NW, BMI range for this cohort = 20.1⁻24.1 kg/m²) or overweight/obese (OW/OB, BMI range for this cohort = 25.6⁻31.9 kg/m²), and divided into two groups: those who received daily LNS ≥ 3 months prior to conception through 12 weeks gestation (+LNS), or no LNS (-LNS) (n = 9⁻10/group). BCAAs levels were obtained from dried blood spot card samples (DBS) assessed at 12 weeks gestation. DBS cards provide a stable, efficient, and reliable means of collecting, transporting, and storing blood samples in low resource or field settings. Circulating maternal leptin, adiponectin, and insulin were determined by immunoassays from serum samples collected at 12 weeks gestation. We found maternal pre-pregnancy body mass index (ppBMI) was associated with higher circulating BCAAs (r² = 0.433, p = 0.002) and higher leptin/adiponectin ratio (r = 0.466, p = 0.044) in -LNS mothers at 12 weeks gestation. +LNS mothers demonstrated no correlations between BCAAs or leptin/adiponectin ratio across ppBMI suggesting LNS may be effective at improving metabolic status in OW/OB mothers during early pregnancy.
Collapse
|
39
|
Baker PR, Friedman JE. Mitochondrial role in the neonatal predisposition to developing nonalcoholic fatty liver disease. J Clin Invest 2018; 128:3692-3703. [PMID: 30168806 DOI: 10.1172/jci120846] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global epidemic in obese children and adults, and the onset might have fetal origins. A growing body of evidence supports the role of developmental programming, whereby the maternal environment affects fetal and infant development, altering the risk profile for disease later in life. Human and nonhuman primate studies of maternal obesity demonstrate that risk factors for pediatric obesity and NAFLD begin in utero. The pathologic mechanisms for NAFLD are multifactorial but have centered on altered mitochondrial function/dysfunction that might precede insulin resistance. Compared with the adult liver, the fetal liver has fewer mitochondria, low activity of the fatty acid metabolic enzyme carnitine palmitoyl-CoA transferase-1, and little or no gluconeogenesis. Exposure to excess maternal fuels during fetal life uniquely alters hepatic fatty acid oxidation, tricarboxylic acid cycle activity, de novo lipogenesis, and mitochondrial health. These events promote increased oxidative stress and excess triglyceride storage, and, together with altered immune function and epigenetic changes, they prime the fetal liver for NAFLD and might drive the risk for nonalcoholic steatohepatitis in the next generation.
Collapse
Affiliation(s)
- Peter R Baker
- Section of Clinical Genetics and Metabolism, Department of Pediatrics
| | - Jacob E Friedman
- Section of Neonatology, Department of Pediatrics.,Department of Biochemistry and Molecular Genetics, and.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|