1
|
Barros LF, Schirmeier S, Weber B. The Astrocyte: Metabolic Hub of the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041355. [PMID: 38438188 PMCID: PMC11368191 DOI: 10.1101/cshperspect.a041355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Astrocytic metabolism has taken center stage. Interposed between the neuron and the vasculature, astrocytes exert control over the fluxes of energy and building blocks required for neuronal activity and plasticity. They are also key to local detoxification and waste recycling. Whereas neurons are metabolically rigid, astrocytes can switch between different metabolic profiles according to local demand and the nutritional state of the organism. Their metabolic state even seems to be instructive for peripheral nutrient mobilization and has been implicated in information processing and behavior. Here, we summarize recent progress in our understanding of astrocytic metabolism and its effects on metabolic homeostasis and cognition.
Collapse
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos, Valdivia 5110465, Chile
- Universidad San Sebastián, Facultad de Medicina y Ciencia, Valdivia 5110693, Chile
| | - Stefanie Schirmeier
- Technische Universität Dresden, Department of Biology, 01217 Dresden, Germany
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland
| |
Collapse
|
2
|
Sakamuri SSVP, Sure VN, Oruganti L, Wisen W, Chandra PK, Liu N, Fonseca VA, Wang X, Klein J, Katakam PVG. Acute severe hypoglycemia alters mouse brain microvascular proteome. J Cereb Blood Flow Metab 2024; 44:556-572. [PMID: 37944245 PMCID: PMC10981402 DOI: 10.1177/0271678x231212961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/12/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
Hypoglycemia increases the risk related to stroke and neurodegenerative diseases, however, the underlying mechanisms are unclear. For the first time, we studied the effect of a single episode (acute) of severe (ASH) and mild (AMH) hypoglycemia on mouse brain microvascular proteome. After four-hour fasting, insulin was administered (i.p) to lower mean blood glucose in mice and induce ∼30 minutes of ASH (∼30 mg/dL) or AMH (∼75 mg/dL), whereas a similar volume of saline was given to control mice (∼130 mg/dL). Blood glucose was allowed to recover over 60 minutes either spontaneously or by 20% dextrose administration (i.p). Twenty-four hours later, the brain microvessels (BMVs) were isolated, and tandem mass tag (TMT)-based quantitative proteomics was performed using liquid chromatography-mass spectrometry (LC/MS). When compared to control, ASH significantly downregulated 13 proteins (p ≤ 0.05) whereas 23 proteins showed a strong trend toward decrease (p ≤ 0.10). When compared to AMH, ASH significantly induced the expression of 35 proteins with 13 proteins showing an increasing trend. AMH downregulated only 3 proteins. ASH-induced downregulated proteins are involved in actin cytoskeleton maintenance needed for cell shape and migration which are critical for blood-brain barrier maintenance and angiogenesis. In contrast, ASH-induced upregulated proteins are RNA-binding proteins involved in RNA splicing, transport, and stability. Thus, ASH alters BMV proteomics to impair cytoskeletal integrity and RNA processing which are critical for cerebrovascular function.
Collapse
Affiliation(s)
- Siva SVP Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Lokanatha Oruganti
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - William Wisen
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Ning Liu
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Clinical Neuroscience Research Center, New Orleans, LA, USA
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Vivian A Fonseca
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xiaoying Wang
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Clinical Neuroscience Research Center, New Orleans, LA, USA
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jennifer Klein
- Department of Biochemistry & Molecular Biology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Prasad VG Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Clinical Neuroscience Research Center, New Orleans, LA, USA
| |
Collapse
|
3
|
Hossain MI, Haque M, Akter M, Sharmin S, Ahmed A. Blood-brain barrier disruption and edema formation due to prolonged starvation in wild-type mice. Brain Circ 2024; 10:145-153. [PMID: 39036296 PMCID: PMC11259321 DOI: 10.4103/bc.bc_88_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 07/23/2024] Open
Abstract
INTRODUCTION Different types of diseases have been treated by restricted caloric intake or fasting. Although during this long time, fasting protective measures, for example, supplements, are given to the patients to protect vital organs such as the liver and kidney, little attention is given to the brain. The current research aims to investigate hypoglycemia due to prolonged fasting disrupts blood-brain barrier (BBB) in mice. MATERIALS AND METHODS Immunohistochemistry (IHC) and in situ hybridization (ISH) techniques were used to examine the expression of different genes. Evans blue extravasation and wet-dry technique were performed to evaluate the integrity of BBB and the formation of brain edema, respectively. RESULTS We confirmed that hypoglycemia affected mice fasting brain by examining the increased expression of glucose transporter protein 1 and hyperphosphorylation of tau protein. We subsequently found downregulated expression of some genes, which are involved in maintaining BBB such as vascular endothelial growth factor (VEGF) in astrocytes and claudin-5 (a vital component of BBB) and VEGF receptor (VEGFR1) in endothelial cells by ISH. We also found that prolonged fasting caused the brain endothelial cells to express lipocalin-2, an inflammatory marker of brain endothelial cells. We performed Evans blue extravasation to show more dye was retained in the brain of fasted mice than in control mice as a result of BBB disruption. Finally, wet-dry method showed that the brain of prolonged fasted mice contained significantly higher amount of water confirming the formation of brain edema. Therefore, special attention should be given to the brain during treatment with prolonged fasting for various diseases. CONCLUSIONS Our results demonstrated that hypoglycemia due to prolonged fasting disrupts BBB and produces brain edema in wild-type mice, highlighting the importance of brain health during treatment with prolonged fasting.
Collapse
Affiliation(s)
- M. Ibrahim Hossain
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Mehjabeen Haque
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Maria Akter
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Sabrina Sharmin
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Asif Ahmed
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| |
Collapse
|
4
|
Wątroba M, Grabowska AD, Szukiewicz D. Effects of Diabetes Mellitus-Related Dysglycemia on the Functions of Blood-Brain Barrier and the Risk of Dementia. Int J Mol Sci 2023; 24:10069. [PMID: 37373216 DOI: 10.3390/ijms241210069] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes mellitus is one of the most common metabolic diseases worldwide, and its long-term complications include neuropathy, referring both to the peripheral and to the central nervous system. Detrimental effects of dysglycemia, especially hyperglycemia, on the structure and function of the blood-brain barrier (BBB), seem to be a significant backgrounds of diabetic neuropathy pertaining to the central nervous system (CNS). Effects of hyperglycemia, including excessive glucose influx to insulin-independent cells, may induce oxidative stress and secondary innate immunity dependent inflammatory response, which can damage cells within the CNS, thus promoting neurodegeneration and dementia. Advanced glycation end products (AGE) may exert similar, pro-inflammatory effects through activating receptors for advanced glycation end products (RAGE), as well as some pattern-recognition receptors (PRR). Moreover, long-term hyperglycemia can promote brain insulin resistance, which may in turn promote Aβ aggregate accumulation and tau hyperphosphorylation. This review is focused on a detailed analysis of the effects mentioned above towards the CNS, with special regard to mechanisms taking part in the pathogenesis of central long-term complications of diabetes mellitus initiated by the loss of BBB integrity.
Collapse
Affiliation(s)
- Mateusz Wątroba
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| | - Anna D Grabowska
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| | - Dariusz Szukiewicz
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
5
|
Sanchez-Rangel E, Deajon-Jackson J, Hwang JJ. Pathophysiology and management of hypoglycemia in diabetes. Ann N Y Acad Sci 2022; 1518:25-46. [PMID: 36202764 DOI: 10.1111/nyas.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the century since the discovery of insulin, diabetes has changed from an early death sentence to a manageable chronic disease. This change in longevity and duration of diabetes coupled with significant advances in therapeutic options for patients has fundamentally changed the landscape of diabetes management, particularly in patients with type 1 diabetes mellitus. However, hypoglycemia remains a major barrier to achieving optimal glycemic control. Current understanding of the mechanisms of hypoglycemia has expanded to include not only counter-regulatory hormonal responses but also direct changes in brain glucose, fuel sensing, and utilization, as well as changes in neural networks that modulate behavior, mood, and cognition. Different strategies to prevent and treat hypoglycemia have been developed, including educational strategies, new insulin formulations, delivery devices, novel technologies, and pharmacologic targets. This review article will discuss current literature contributing to our understanding of the myriad of factors that lead to the development of clinically meaningful hypoglycemia and review established and novel therapies for the prevention and treatment of hypoglycemia.
Collapse
Affiliation(s)
- Elizabeth Sanchez-Rangel
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jelani Deajon-Jackson
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Janice Jin Hwang
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA.,Division of Endocrinology, Department of Internal Medicine, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Sanchez-Rangel E, Gunawan F, Jiang L, Savoye M, Dai F, Coppoli A, Rothman DL, Mason GF, Hwang JJ. Reversibility of brain glucose kinetics in type 2 diabetes mellitus. Diabetologia 2022; 65:895-905. [PMID: 35247067 PMCID: PMC8960594 DOI: 10.1007/s00125-022-05664-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022]
Abstract
AIMS/HYPOTHESIS We have previously shown that individuals with uncontrolled type 2 diabetes have a blunted rise in brain glucose levels measured by 1H magnetic resonance spectroscopy. Here, we investigate whether reductions in HbA1c normalise intracerebral glucose levels. METHODS Eight individuals (two men, six women) with poorly controlled type 2 diabetes and mean ± SD age 44.8 ± 8.3 years, BMI 31.4 ± 6.1 kg/m2 and HbA1c 84.1 ± 16.2 mmol/mol (9.8 ± 1.4%) underwent 1H MRS scanning at 4 Tesla during a hyperglycaemic clamp (~12.21 mmol/l) to measure changes in cerebral glucose at baseline and after a 12 week intervention that improved glycaemic control through the use of continuous glucose monitoring, diabetes regimen intensification and frequent visits to an endocrinologist and nutritionist. RESULTS Following the intervention, mean ± SD HbA1c decreased by 24.3 ± 15.3 mmol/mol (2.1 ± 1.5%) (p=0.006), with minimal weight changes (p=0.242). Using a linear mixed-effects regression model to compare glucose time courses during the clamp pre and post intervention, the pre-intervention brain glucose level during the hyperglycaemic clamp was significantly lower than the post-intervention brain glucose (p<0.001) despite plasma glucose levels during the hyperglycaemic clamp being similar (p=0.266). Furthermore, the increases in brain glucose were correlated with the magnitude of improvement in HbA1c (r = 0.71, p=0.048). CONCLUSION/INTERPRETATION These findings highlight the potential reversibility of cerebral glucose transport capacity and metabolism that can occur in individuals with type 2 diabetes following improvement of glycaemic control. Trial registration ClinicalTrials.gov NCT03469492.
Collapse
Affiliation(s)
- Elizabeth Sanchez-Rangel
- Department of Internal Medicine/Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Felona Gunawan
- Department of Internal Medicine/Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Lihong Jiang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Mary Savoye
- Department of Pediatric Endocrinology and General Clinical Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Feng Dai
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Anastasia Coppoli
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| | - Graeme F Mason
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Janice Jin Hwang
- Department of Internal Medicine/Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Williams LM, Fujimoto T, Weaver RR, Logsdon AF, Evitts KM, Young JE, Banks WA, Erickson MA. Prolonged culturing of iPSC-derived brain endothelial-like cells is associated with quiescence, downregulation of glycolysis, and resistance to disruption by an Alzheimer’s brain milieu. Fluids Barriers CNS 2022; 19:10. [PMID: 35123529 PMCID: PMC8817611 DOI: 10.1186/s12987-022-00307-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Human induced pluripotent stem cell (hiPSC)-derived brain endothelial-like cells (iBECs) are a robust, scalable, and translatable model of the human blood–brain barrier (BBB). Prior works have shown that high transendothelial electrical resistance (TEER) persists in iBECs for at least 2 weeks, emphasizing the utility of the model for longer term studies. However, most studies evaluate iBECs within the first few days of subculture, and little is known about their proliferative state, which could influence their functions. In this study, we characterized iBEC proliferative state in relation to key BBB properties at early (2 days) and late (9 days) post-subculture time points.
Methods
hiPSCs were differentiated into iBECs using fully defined, serum-free medium. The proportion of proliferating cells was determined by BrdU assays. We evaluated TEER, expression of glycolysis enzymes and tight and adherens junction proteins (TJP and AJP), and glucose transporter-1 (GLUT1) function by immunoblotting, immunofluorescence, and quantifying radiolabeled tracer permeabilities. We also compared barrier disruption in response to TNF-α and conditioned medium (CM) from hiPSC-derived neurons harboring the Alzheimer’s disease (AD)-causing Swedish mutation (APPSwe/+).
Results
A significant decline in iBEC proliferation over time in culture was accompanied by adoption of a more quiescent endothelial metabolic state, indicated by downregulation of glycolysis-related proteins and upregulation GLUT1. Interestingly, upregulation of GLUT1 was associated with reduced glucose transport rates in more quiescent iBECs. We also found significant decreases in claudin-5 (CLDN5) and vascular endothelial-cadherin (VE-Cad) and a trend toward a decrease in platelet endothelial cell adhesion molecule-1 (PECAM-1), whereas zona occludens-1 (ZO-1) increased and occludin (OCLN) remained unchanged. Despite differences in TJP and AJP expression, there was no difference in mean TEER on day 2 vs. day 9. TNF-α induced disruption irrespective of iBEC proliferative state. Conversely, APPSwe/+ CM disrupted only proliferating iBEC monolayers.
Conclusion
iBECs can be used to study responses to disease-relevant stimuli in proliferating vs. more quiescent endothelial cell states, which may provide insight into BBB vulnerabilities in contexts of development, brain injury, and neurodegenerative disease.
Collapse
|
8
|
He C, Li Q, Cui Y, Gao P, Shu W, Zhou Q, Wang L, Li L, Lu Z, Zhao Y, Ma H, Chen X, Jia H, Zheng H, Yang G, Liu D, Tepel M, Zhu Z. Recurrent moderate hypoglycemia accelerates the progression of cognitive deficits through impairment of TRPC6/GLUT3 pathway in diabetic APP/PS1 mice. JCI Insight 2022; 7:154595. [PMID: 35077394 PMCID: PMC8983129 DOI: 10.1172/jci.insight.154595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
Currently, the most effective strategy for dealing with Alzheimer’s disease (AD) is delaying the onset of dementia. Severe hypoglycemia is strongly associated with dementia; however, the effects of recurrent moderate hypoglycemia (RH) on the progression of cognitive deficits in patients with diabetes with genetic susceptibility to AD remain unclear. Here, we report that insulin-controlled hyperglycemia slightly aggravated AD-type pathologies and cognitive impairment; however, RH significantly increased neuronal hyperactivity and accelerated the progression of cognitive deficits in streptozotocin-induced (STZ-induced) diabetic APP/PS1 mice. Glucose transporter 3–mediated (GLUT3-mediated) neuronal glucose uptake was not significantly altered under hyperglycemia but was markedly reduced by RH, which induced excessive mitochondrial fission in the hippocampus. Overexpression of GLUT3, specifically in the dentate gyrus (DG) area of the hippocampus, enhanced mitochondrial function and improved cognitive deficits. Activation of the transient receptor potential channel 6 (TRPC6) increased GLUT3-mediated glucose uptake in the brain and alleviated RH-induced cognitive deficits, and inactivation of the Ca2+/AMPK pathway was responsible for TRPC6-induced GLUT3 inhibition. Taken together, RH impairs brain GLUT3-mediated glucose uptake and further provokes neuronal mitochondrial dysfunction by inhibiting TRPC6 expression, which then accelerates progression of cognitive deficits in diabetic APP/PS1 mice. Avoiding RH is essential for glycemic control in patients with diabetes, and TRPC6/GLUT3 represents potent targets for delaying the onset of dementia in patients with diabetes.
Collapse
Affiliation(s)
- Chengkang He
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Qiang Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Yuanting Cui
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Wentao Shu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Qing Zhou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Yu Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Huan Ma
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Xiaowei Chen
- Brain Research Center, Army Medical University, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Hongbo Jia
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Hongting Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Gangyi Yang
- Endocrine Department, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Martin Tepel
- Odense University Hospital, Department of Nephrology, University of Southern Denmark, Institute for Molecular Medicine, Cardiovascular and Renal Research, Institute of Clinical Research, Odense, Denmark
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| |
Collapse
|
9
|
Insulin-Induced Recurrent Hypoglycemia Up-Regulates Glucose Metabolism in the Brain Cortex of Chemically Induced Diabetic Rats. Int J Mol Sci 2021; 22:ijms222413470. [PMID: 34948265 PMCID: PMC8708764 DOI: 10.3390/ijms222413470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetes is a chronic metabolic disease that seriously compromises human well-being. Various studies highlight the importance of maintaining a sufficient glucose supply to the brain and subsequently safeguarding cerebral glucose metabolism. The goal of the present work is to clarify and disclose the metabolic alterations induced by recurrent hypoglycemia in the context of long-term hyperglycemia to further comprehend the effects beyond brain harm. To this end, chemically induced diabetic rats underwent a protocol of repeatedly insulin-induced hypoglycemic episodes. The activity of key enzymes of glycolysis, the pentose phosphate pathway and the Krebs cycle was measured by spectrophotometry in extracts or isolated mitochondria from brain cortical tissue. Western blot analysis was used to determine the protein content of glucose and monocarboxylate transporters, players in the insulin signaling pathway and mitochondrial biogenesis and dynamics. We observed that recurrent hypoglycemia up-regulates the activity of mitochondrial hexokinase and Krebs cycle enzymes (namely, pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase and succinate dehydrogenase) and the protein levels of mitochondrial transcription factor A (TFAM). Both insults increased the nuclear factor erythroid 2–related factor 2 (NRF2) protein content and induced divergent effects in mitochondrial dynamics. Insulin-signaling downstream pathways were found to be down-regulated, and glycogen synthase kinase 3 beta (GSK3β) was found to be activated through both decreased phosphorylation at Ser9 and increased phosphorylation at Y216. Interestingly, no changes in the levels of cAMP response element-binding protein (CREB), which plays a key role in neuronal plasticity and memory, were caused by hypoglycemia and/or hyperglycemia. These findings provide experimental evidence that recurrent hypoglycemia, in the context of chronic hyperglycemia, has the capacity to evoke coordinated adaptive responses in the brain cortex that will ultimately contribute to sustaining brain cell health.
Collapse
|
10
|
Hertenstein H, McMullen E, Weiler A, Volkenhoff A, Becker HM, Schirmeier S. Starvation-induced regulation of carbohydrate transport at the blood-brain barrier is TGF-β-signaling dependent. eLife 2021; 10:e62503. [PMID: 34032568 PMCID: PMC8149124 DOI: 10.7554/elife.62503] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
During hunger or malnutrition, animals prioritize alimentation of the brain over other organs to ensure its function and, thus, their survival. This protection, also-called brain sparing, is described from Drosophila to humans. However, little is known about the molecular mechanisms adapting carbohydrate transport. Here, we used Drosophila genetics to unravel the mechanisms operating at the blood-brain barrier (BBB) under nutrient restriction. During starvation, expression of the carbohydrate transporter Tret1-1 is increased to provide more efficient carbohydrate uptake. Two mechanisms are responsible for this increase. Similar to the regulation of mammalian GLUT4, Rab-dependent intracellular shuttling is needed for Tret1-1 integration into the plasma membrane; even though Tret1-1 regulation is independent of insulin signaling. In addition, starvation induces transcriptional upregulation that is controlled by TGF-β signaling. Considering TGF-β-dependent regulation of the glucose transporter GLUT1 in murine chondrocytes, our study reveals an evolutionarily conserved regulatory paradigm adapting the expression of sugar transporters at the BBB.
Collapse
Affiliation(s)
- Helen Hertenstein
- Department of Biology, Institute of Zoology, Technische Universität DresdenDresdenGermany
| | - Ellen McMullen
- Institut für Neuro- und Verhaltensbiologie, WWU MünsterMünsterGermany
| | - Astrid Weiler
- Department of Biology, Institute of Zoology, Technische Universität DresdenDresdenGermany
| | - Anne Volkenhoff
- Department of Biology, Institute of Zoology, Technische Universität DresdenDresdenGermany
| | - Holger M Becker
- Department of Biology, Institute of Zoology, Technische Universität DresdenDresdenGermany
- Division of General Zoology, Department of Biology, University of KaiserslauternKaiserslauternGermany
| | - Stefanie Schirmeier
- Department of Biology, Institute of Zoology, Technische Universität DresdenDresdenGermany
| |
Collapse
|
11
|
Kyrtata N, Emsley HCA, Sparasci O, Parkes LM, Dickie BR. A Systematic Review of Glucose Transport Alterations in Alzheimer's Disease. Front Neurosci 2021; 15:626636. [PMID: 34093108 PMCID: PMC8173065 DOI: 10.3389/fnins.2021.626636] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction: Alzheimer's disease (AD) is characterized by cerebral glucose hypometabolism. Hypometabolism may be partly due to reduced glucose transport at the blood-brain barrier (BBB) and across astrocytic and neuronal cell membranes. Glucose transporters (GLUTs) are integral membrane proteins responsible for moving glucose from the bloodstream to parenchymal cells where it is metabolized, and evidence indicates vascular and non-vascular GLUTs are altered in AD brains, a process which could starve the brain of glucose and accelerate cognitive decline. Here we review the literature on glucose transport alterations in AD from human and rodent studies. Methods: Literature published between 1st January 1946 and 1st November 2020 within EMBASE and MEDLINE databases was searched for the terms "glucose transporters" AND "Alzheimer's disease". Human and rodent studies were included while reviews, letters, and in-vitro studies were excluded. Results: Forty-three studies fitting the inclusion criteria were identified, covering human (23 studies) and rodent (20 studies). Post-mortem studies showed consistent reductions in GLUT1 and GLUT3 in the hippocampus and cortex of AD brains, areas of the brain closely associated with AD pathology. Tracer studies in rodent models of AD and human AD also exhibit reduced uptake of glucose and glucose-analogs into the brain, supporting these findings. Longitudinal rodent studies clearly indicate that changes in GLUT1 and GLUT3 only occur after amyloid-β pathology is present, and several studies indicate amyloid-β itself may be responsible for GLUT changes. Furthermore, evidence from human and rodent studies suggest GLUT depletion has severe effects on brain function. A small number of studies show GLUT2 and GLUT12 are increased in AD. Anti-diabetic medications improved glucose transport capacity in AD subjects. Conclusions: GLUT1 and GLUT3 are reduced in hippocampal and cortical regions in patients and rodent models of AD, and may be caused by high levels of amyloid-β in these regions. GLUT3 reductions appear to precede the onset of clinical symptoms. GLUT2 and GLUT12 appear to increase and may have a compensatory role. Repurposing anti-diabetic drugs to modify glucose transport shows promising results in human studies of AD.
Collapse
Affiliation(s)
- Natalia Kyrtata
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, United Kingdom
| | - Hedley C. A. Emsley
- Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
- Department of Neurology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
| | - Oli Sparasci
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Greater Manchester Mental Health NHS Foundation Trust, Manchester, United Kingdom
| | - Laura M. Parkes
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ben R. Dickie
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
12
|
McMullen E, Weiler A, Becker HM, Schirmeier S. Plasticity of Carbohydrate Transport at the Blood-Brain Barrier. Front Behav Neurosci 2021; 14:612430. [PMID: 33551766 PMCID: PMC7863721 DOI: 10.3389/fnbeh.2020.612430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
Neuronal function is highly energy demanding, requiring efficient transport of nutrients into the central nervous system (CNS). Simultaneously the brain must be protected from the influx of unwanted solutes. Most of the energy is supplied from dietary sugars, delivered from circulation via the blood-brain barrier (BBB). Therefore, selective transporters are required to shuttle metabolites into the nervous system where they can be utilized. The Drosophila BBB is formed by perineural and subperineurial glial cells, which effectively separate the brain from the surrounding hemolymph, maintaining a constant microenvironment. We identified two previously unknown BBB transporters, MFS3 (Major Facilitator Superfamily Transporter 3), located in the perineurial glial cells, and Pippin, found in both the perineurial and subperineurial glial cells. Both transporters facilitate uptake of circulating trehalose and glucose into the BBB-forming glial cells. RNA interference-mediated knockdown of these transporters leads to pupal lethality. However, null mutants reach adulthood, although they do show reduced lifespan and activity. Here, we report that both carbohydrate transport efficiency and resulting lethality found upon loss of MFS3 or Pippin are rescued via compensatory upregulation of Tret1-1, another BBB carbohydrate transporter, in Mfs3 and pippin null mutants, while RNAi-mediated knockdown is not compensated for. This means that the compensatory mechanisms in place upon mRNA degradation following RNA interference can be vastly different from those resulting from a null mutation.
Collapse
Affiliation(s)
- Ellen McMullen
- Department of Biology, Institute of Zoology, Technische Universität Dresden, Dresden, Germany
| | - Astrid Weiler
- Department of Biology, Institute of Zoology, Technische Universität Dresden, Dresden, Germany
| | - Holger M. Becker
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Stefanie Schirmeier
- Department of Biology, Institute of Zoology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
13
|
Watt C, Sanchez-Rangel E, Hwang JJ. Glycemic Variability and CNS Inflammation: Reviewing the Connection. Nutrients 2020; 12:nu12123906. [PMID: 33371247 PMCID: PMC7766608 DOI: 10.3390/nu12123906] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Glucose is the primary energy source for the brain, and exposure to both high and low levels of glucose has been associated with numerous adverse central nervous system (CNS) outcomes. While a large body of work has highlighted the impact of hyperglycemia on peripheral and central measures of oxidative stress, cognitive deficits, and vascular complications in Type 1 and Type 2 diabetes, there is growing evidence that glycemic variability significantly drives increased oxidative stress, leading to neuroinflammation and cognitive dysfunction. In this review, the latest data on the impact of glycemic variability on brain function and neuroinflammation will be presented. Because high levels of oxidative stress have been linked to dysfunction of the blood-brain barrier (BBB), special emphasis will be placed on studies investigating the impact of glycemic variability on endothelial and vascular inflammation. The latest clinical and preclinical/in vitro data will be reviewed, and clinical/therapeutic implications will be discussed.
Collapse
|
14
|
van der Kooij MA. The impact of chronic stress on energy metabolism. Mol Cell Neurosci 2020; 107:103525. [PMID: 32629109 DOI: 10.1016/j.mcn.2020.103525] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 01/21/2023] Open
Abstract
The brain is exceptionally demanding in terms of energy metabolism. Approximately 20% of the calories consumed are devoted to our cerebral faculties, with the lion's share provided in the form of glucose. The brain's stringent energy dependency requires a high degree of harmonization between the elements responsible for supplying- and metabolizing energetic substrates. However, chronic stress may jeopardize this homeostatic energy balance by disruption of critical metabolic processes. In agreement, stress-related mental disorders have been linked with perturbations in energy metabolism. Prominent stress-induced metabolic alterations include the actions of hormones, glucose uptake and mitochondrial adjustments. Importantly, fundamental stress-responsive metabolic adjustments in humans and animal models bear a striking resemblance. Here, an overview is provided of key findings, demonstrating the pervasive impact of chronic stress on energy metabolism. Furthermore, I argue that medications, aimed primarily at restoring metabolic homeostasis, may constitute a novel approach to treat mental disorders.
Collapse
|
15
|
Bednařík P, Henry PG, Khowaja A, Rubin N, Kumar A, Deelchand D, Eberly LE, Seaquist E, Öz G, Moheet A. Hippocampal Neurochemical Profile and Glucose Transport Kinetics in Patients With Type 1 Diabetes. J Clin Endocrinol Metab 2020; 105:5601935. [PMID: 31637440 PMCID: PMC7046023 DOI: 10.1210/clinem/dgz062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/27/2019] [Indexed: 01/28/2023]
Abstract
CONTEXT Longstanding type 1 diabetes (T1D) may lead to alterations in hippocampal neurochemical profile. Upregulation of hippocampal glucose transport as a result of recurrent exposure to hypoglycemia may preserve cognitive function during future hypoglycemia in subjects with T1D and impaired awareness of hypoglycemia (IAH). The effect of T1D on hippocampal neurochemical profile and glucose transport is unknown. OBJECTIVE To test the hypothesis that hippocampal neurochemical composition is altered in T1D and glucose transport is upregulated in T1D with IAH. DESIGN AND PARTICIPANTS Hippocampal neurochemical profile was measured with single-voxel magnetic resonance spectroscopy at 3T during euglycemia in 18 healthy controls (HC), 10 T1D with IAH, and 12 T1D with normal awareness to hypoglycemia (NAH). Additionally, 12 HC, 8 T1D-IAH, and 6 T1D-NAH were scanned during hyperglycemia to assess hippocampal glucose transport with metabolic modeling. SETTING University medical center. MAIN OUTCOME MEASURES Concentrations of hippocampal neurochemicals measured during euglycemia and ratios of maximal transport rate to cerebral metabolic rate of glucose (Tmax/CMRGlc), derived from magnetic resonance spectroscopy-measured hippocampal glucose as a function of plasma glucose. RESULTS Comparison of hippocampal neurochemical profile revealed no group differences (HC, T1D, T1D-IAH, and T1D-NAH). The ratio Tmax/CMRGlc was not significantly different between the groups, T1D-IAH (1.58 ± 0.09) and HC (1.65 ± 0.07, P = 0.54), between T1D-NAH (1.50 ± 0.09) and HC (P = 0.19), and between T1D-IAH and T1D-NAH (P = 0.53). CONCLUSIONS Subjects with T1D with sufficient exposure to recurrent hypoglycemia to create IAH did not have alteration of Tmax/CMRglc or neurochemical profile compared with participants with T1D-NAH or HC.
Collapse
Affiliation(s)
- Petr Bednařík
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Imaging Methods, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Amir Khowaja
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Nathan Rubin
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Anjali Kumar
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Dinesh Deelchand
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Lynn E Eberly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Elizabeth Seaquist
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Amir Moheet
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Correspondence and Reprint Requests: Amir Moheet, MBBS, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, MMC 101, 420 Delaware St. SE, Minneapolis, MN 55455. E-mail:
| |
Collapse
|
16
|
Dewan N, Shukla V, Rehni AK, Koronowski KB, Klingbeil KD, Stradecki‐Cohan H, Garrett TJ, Rundek T, Perez‐Pinzon MA, Dave KR. Exposure to recurrent hypoglycemia alters hippocampal metabolism in treated streptozotocin-induced diabetic rats. CNS Neurosci Ther 2020; 26:126-135. [PMID: 31282100 PMCID: PMC6930817 DOI: 10.1111/cns.13186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
AIMS Exposure to recurrent hypoglycemia (RH) is common in diabetic patients receiving glucose-lowering therapies and is implicated in causing cognitive impairments. Despite the significant effect of RH on hippocampal function, the underlying mechanisms are currently unknown. Our goal was to determine the effect of RH exposure on hippocampal metabolism in treated streptozotocin-diabetic rats. METHODS Hyperglycemia was corrected by insulin pellet implantation. Insulin-treated diabetic (ITD) rats were exposed to mild/moderate RH once a day for 5 consecutive days. RESULTS The effect of RH on hippocampal metabolism revealed 65 significantly altered metabolites in the RH group compared with controls. Several significant differences in metabolite levels belonging to major pathways (eg, Krebs cycle, gluconeogenesis, and amino acid metabolism) were discovered in RH-exposed ITD rats when compared to a control group. Key glycolytic enzymes including hexokinase, phosphofructokinase, and pyruvate kinase were affected by RH exposure. CONCLUSION Our results demonstrate that the exposure to RH leads to metabolomics alterations in the hippocampus of insulin-treated streptozotocin-diabetic rats. Understanding how RH affects hippocampal metabolism may help attenuate the adverse effects of RH on hippocampal functions.
Collapse
Affiliation(s)
- Neelesh Dewan
- Peritz Scheinberg Cerebral Vascular Disease Research LaboratoriesUniversity of Miami School of MedicineMiamiFloridaUSA
- Department of NeurologyUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Vibha Shukla
- Peritz Scheinberg Cerebral Vascular Disease Research LaboratoriesUniversity of Miami School of MedicineMiamiFloridaUSA
- Department of NeurologyUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Ashish K. Rehni
- Peritz Scheinberg Cerebral Vascular Disease Research LaboratoriesUniversity of Miami School of MedicineMiamiFloridaUSA
- Department of NeurologyUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Kevin B. Koronowski
- Peritz Scheinberg Cerebral Vascular Disease Research LaboratoriesUniversity of Miami School of MedicineMiamiFloridaUSA
- Department of NeurologyUniversity of Miami School of MedicineMiamiFloridaUSA
- Neuroscience ProgramUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Kyle D. Klingbeil
- Peritz Scheinberg Cerebral Vascular Disease Research LaboratoriesUniversity of Miami School of MedicineMiamiFloridaUSA
- Department of NeurologyUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Holly Stradecki‐Cohan
- Peritz Scheinberg Cerebral Vascular Disease Research LaboratoriesUniversity of Miami School of MedicineMiamiFloridaUSA
- Department of NeurologyUniversity of Miami School of MedicineMiamiFloridaUSA
- Neuroscience ProgramUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Timothy J. Garrett
- Southeast Center for Integrated Metabolomics, Clinical and Translational Science InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Tatjana Rundek
- Department of NeurologyUniversity of Miami School of MedicineMiamiFloridaUSA
- Evelyn F. McKnight Brain InstituteUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Miguel A. Perez‐Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research LaboratoriesUniversity of Miami School of MedicineMiamiFloridaUSA
- Department of NeurologyUniversity of Miami School of MedicineMiamiFloridaUSA
- Neuroscience ProgramUniversity of Miami School of MedicineMiamiFloridaUSA
- Evelyn F. McKnight Brain InstituteUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Kunjan R. Dave
- Peritz Scheinberg Cerebral Vascular Disease Research LaboratoriesUniversity of Miami School of MedicineMiamiFloridaUSA
- Department of NeurologyUniversity of Miami School of MedicineMiamiFloridaUSA
- Neuroscience ProgramUniversity of Miami School of MedicineMiamiFloridaUSA
- Evelyn F. McKnight Brain InstituteUniversity of Miami School of MedicineMiamiFloridaUSA
| |
Collapse
|
17
|
Ennis K, Felt B, Georgieff MK, Rao R. Early-Life Iron Deficiency Alters Glucose Transporter-1 Expression in the Adult Rodent Hippocampus. J Nutr 2019; 149:1660-1666. [PMID: 31162576 PMCID: PMC6736205 DOI: 10.1093/jn/nxz100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/26/2018] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Early-life iron deficiency (ID) impairs hippocampal energy production. Whether there are changes in glucose transporter (GLUT) expression is not known. OBJECTIVE The aim of this study was to investigate whether early-life ID and the treatment iron dose alter brain regional GLUT expression in adult rats and mice. METHODS In Study 1, ID was induced in male and female Sprague Dawley rat pups by feeding dams a 3-mg/kg iron diet during gestation and the first postnatal week, followed by treatment using low-iron [3-10 mg/kg; formerly iron-deficient (FID)-10 group], standard-iron (40-mg/kg; FID-40 group), or high-iron (400-mg/kg; FID-400 group) diets until weaning. The control group received the 40 mg/kg iron diet. GLUT1, GLUT3, hypoxia-inducible factor (HIF)-1α, and prolyl-hydroxylase-2 (PHD2) mRNA and protein expression in the cerebral cortex, hippocampus, striatum, cerebellum, and hypothalamus were determined at adulthood. In Study 2, the role of hippocampal ID in GLUT expression was examined by comparing the Glut1, Glut3, Hif1α, and Phd2 mRNA expression in adult male and female wild-type (WT) and nonanemic hippocampal iron-deficient and iron-replete dominant negative transferrin receptor 1 (DNTfR1-/-) transgenic mice. RESULTS In Study 1, Glut1, Glut3, and Hif1α mRNA, and GLUT1 55-kDa protein expression was upregulated 20-33% in the hippocampus of the FID-10 group but not the FID-40 group, relative to the control group. Hippocampal Glut1 mRNA (-39%) and GLUT1 protein (-30%) expression was suppressed in the FID-400 group, relative to the control group. Glut1 and Glut3 mRNA expression was not altered in the other brain regions in the 3 FID groups. In Study 2, hippocampal Glut1 (+14%) and Hif1α (+147%) expression was upregulated in the iron-deficient DNTfR1-/- mice, but not in the iron-replete DNTfR1-/- mice, relative to the WT mice (P < 0.05, all). CONCLUSIONS Early-life ID is associated with altered hippocampal GLUT1 expression in adult rodents. The mouse study suggests that tissue ID is potentially responsible.
Collapse
Affiliation(s)
- Kathleen Ennis
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Barbara Felt
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, USA
| | - Raghavendra Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, USA,Address correspondence to RR (e-mail: )
| |
Collapse
|
18
|
Stanley S, Moheet A, Seaquist ER. Central Mechanisms of Glucose Sensing and Counterregulation in Defense of Hypoglycemia. Endocr Rev 2019; 40:768-788. [PMID: 30689785 PMCID: PMC6505456 DOI: 10.1210/er.2018-00226] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
Glucose homeostasis requires an organism to rapidly respond to changes in plasma glucose concentrations. Iatrogenic hypoglycemia as a result of treatment with insulin or sulfonylureas is the most common cause of hypoglycemia in humans and is generally only seen in patients with diabetes who take these medications. The first response to a fall in glucose is the detection of impending hypoglycemia by hypoglycemia-detecting sensors, including glucose-sensing neurons in the hypothalamus and other regions. This detection is then linked to a series of neural and hormonal responses that serve to prevent the fall in blood glucose and restore euglycemia. In this review, we discuss the current state of knowledge about central glucose sensing and how detection of a fall in glucose leads to the stimulation of counterregulatory hormone and behavior responses. We also review how diabetes and recurrent hypoglycemia impact glucose sensing and counterregulation, leading to development of impaired awareness of hypoglycemia in diabetes.
Collapse
Affiliation(s)
- Sarah Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amir Moheet
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Elizabeth R Seaquist
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
19
|
Crucial players in Alzheimer's disease and diabetes mellitus: Friends or foes? Mech Ageing Dev 2019; 181:7-21. [PMID: 31085195 DOI: 10.1016/j.mad.2019.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 03/02/2019] [Accepted: 03/26/2019] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) and diabetes mellitus, especially type 2 (T2DM), are very common and widespread diseases in contemporary societies, and their incidence is steadily on the increase. T2DM is a multiple metabolic disorder, with several mechanisms including hyperglycaemia, insulin resistance, insulin receptor and insulin growth factor disturbances, glucose toxicity, formation of advanced glycation end products (AGEs) and the activity of their receptors. AD is the most common form of dementia, characterized by the accumulation of extracellular beta amyloid peptide aggregates and intracellular hyper-phosphorylated tau proteins, which are thought to drive and/or accelerate inflammatory and oxidative stress processes leading to neurodegeneration. The aim of this paper is to provide a comprehensive review of the evidence linking T2DM to the onset and development of AD and highlight the unknown or poorly studied "nooks and crannies" of this interesting relationship, hence providing an opportunity to stimulate new ideas for the analysis of comorbidities between AD and DM. Despite, indication of possible biomarkers of early diagnosis of T2DM and AD, this review is also an attempt to answer the question as to whether the crucial factors in the development of both conditions support the link between DM and AD.
Collapse
|
20
|
Rehni AK, Dave KR. Impact of Hypoglycemia on Brain Metabolism During Diabetes. Mol Neurobiol 2018; 55:9075-9088. [PMID: 29637442 PMCID: PMC6179939 DOI: 10.1007/s12035-018-1044-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/27/2018] [Indexed: 12/24/2022]
Abstract
Diabetes is a metabolic disease afflicting millions of people worldwide. A substantial fraction of world's total healthcare expenditure is spent on treating diabetes. Hypoglycemia is a serious consequence of anti-diabetic drug therapy, because it induces metabolic alterations in the brain. Metabolic alterations are one of the central mechanisms mediating hypoglycemia-related functional changes in the brain. Acute, chronic, and/or recurrent hypoglycemia modulate multiple metabolic pathways, and exposure to hypoglycemia increases consumption of alternate respiratory substrates such as ketone bodies, glycogen, and monocarboxylates in the brain. The aim of this review is to discuss hypoglycemia-induced metabolic alterations in the brain in glucose counterregulation, uptake, utilization and metabolism, cellular respiration, amino acid and lipid metabolism, and the significance of other sources of energy. The present review summarizes information on hypoglycemia-induced metabolic changes in the brain of diabetic and non-diabetic subjects and the manner in which they may affect brain function.
Collapse
Affiliation(s)
- Ashish K Rehni
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA.
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
21
|
Lim SW, van Wijngaarden P, Harper CA, Al‐Qureshi SH. Early worsening of diabetic retinopathy due to intensive glycaemic control. Clin Exp Ophthalmol 2018; 47:265-273. [DOI: 10.1111/ceo.13393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/26/2018] [Accepted: 09/15/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Shueh Wen Lim
- Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Centre for Eye Research Australia Melbourne Victoria Australia
| | - Peter van Wijngaarden
- Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Centre for Eye Research Australia Melbourne Victoria Australia
- Ophthalmology, Department of SurgeryUniversity of Melbourne Sydney Victoria Australia
| | - Colin A. Harper
- Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Centre for Eye Research Australia Melbourne Victoria Australia
| | - Salmaan H. Al‐Qureshi
- Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Centre for Eye Research Australia Melbourne Victoria Australia
| |
Collapse
|
22
|
Expression profile of glucose transport-related genes under chronic and acute exposure to growth hormone in zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2018. [DOI: 10.1016/j.cbpa.2018.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
Rehni AK, Shukla V, Perez-Pinzon MA, Dave KR. Acidosis mediates recurrent hypoglycemia-induced increase in ischemic brain injury in treated diabetic rats. Neuropharmacology 2018; 135:192-201. [PMID: 29551689 DOI: 10.1016/j.neuropharm.2018.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Cerebral ischemia is a serious possible manifestation of diabetic vascular disease. Recurrent hypoglycemia (RH) enhances ischemic brain injury in insulin-treated diabetic (ITD) rats. In the present study, we determined the role of ischemic acidosis in enhanced ischemic brain damage in RH-exposed ITD rats. METHODS Diabetic rats were treated with insulin and mild/moderate RH was induced for 5 days. Three sets of experiments were performed. The first set evaluated the effects of RH exposure on global cerebral ischemia-induced acidosis in ITD rats. The second set evaluated the effect of an alkalizing agent (Tris-(hydroxymethyl)-aminomethane: THAM) on ischemic acidosis-induced brain injury in RH-exposed ITD rats. The third experiment evaluated the effect of the glucose transporter (GLUT) inhibitor on ischemic acidosis-induced brain injury in RH-exposed ITD rats. Hippocampal pH and lactate were measured during ischemia and early reperfusion for all three experiments. Neuronal survival in Cornu Ammonis 1 (CA1) hippocampus served as a measure of ischemic brain injury. FINDINGS Prior RH exposure increases lactate concentration and decreases pH during ischemia and early reperfusion when compared to controls. THAM and GLUT inhibitor treatments attenuated RH-induced increase in ischemic acidosis. GLUT inhibitor treatment reduced the RH-induced increase in lactate levels. Both THAM and GLUT inhibitor treatments significantly decreased ischemic damage in RH-exposed ITD rats. CONCLUSIONS Ischemia causes increased acidosis in RH-exposed ITD rats via a GLUT-sensitive mechanism. Exploring downstream pathways may help understand mechanisms by which prior exposure to RH increases cerebral ischemic damage.
Collapse
Affiliation(s)
- Ashish K Rehni
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Vibha Shukla
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
24
|
Hwang JJ, Parikh L, Lacadie C, Seo D, Lam W, Hamza M, Schmidt C, Dai F, Sejling AS, Belfort-DeAguiar R, Constable RT, Sinha R, Sherwin R. Hypoglycemia unawareness in type 1 diabetes suppresses brain responses to hypoglycemia. J Clin Invest 2018; 128:1485-1495. [PMID: 29381484 DOI: 10.1172/jci97696] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Among nondiabetic individuals, mild glucose decrements alter brain activity in regions linked to reward, motivation, and executive control. Whether these effects differ in type 1 diabetes mellitus (T1DM) patients with and without hypoglycemia awareness remains unclear. METHODS Forty-two individuals (13 healthy control [HC] subjects, 16 T1DM individuals with hypoglycemia awareness [T1DM-Aware], and 13 T1DM individuals with hypoglycemia unawareness [T1DM-Unaware]) underwent blood oxygen level-dependent functional MRI brain imaging during a 2-step hyperinsulinemic euglycemic (90 mg/dl)-hypoglycemic (60 mg/dl) clamp for assessment of neural responses to mild hypoglycemia. RESULTS Mild hypoglycemia in HC subjects altered activity in the caudate, insula, prefrontal cortex, and angular gyrus, whereas T1DM-Aware subjects showed no caudate and insula changes, but showed altered activation patterns in the prefrontal cortex and angular gyrus. Most strikingly, in direct contrast to HC and T1DM-Aware subjects, T1DM-Unaware subjects failed to show any hypoglycemia-induced changes in brain activity. These findings were also associated with blunted hormonal counterregulatory responses and hypoglycemia symptom scores during mild hypoglycemia. CONCLUSION In T1DM, and in particular T1DM-Unaware patients, there is a progressive blunting of brain responses in cortico-striatal and fronto-parietal neurocircuits in response to mild-moderate hypoglycemia. These findings have implications for understanding why individuals with impaired hypoglycemia awareness fail to respond appropriately to falling blood glucose levels. FUNDING This study was supported in part by NIH grants R01DK020495, P30 DK045735, K23DK109284, K08AA023545. The Yale Center for Clinical Investigation is supported by an NIH Clinical Translational Science Award (UL1 RR024139).
Collapse
Affiliation(s)
| | | | | | - Dongju Seo
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | | | - Feng Dai
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anne-Sophie Sejling
- Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital, Hillerød, Denmark
| | | | | | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
25
|
Glycogen Supercompensation in the Rat Brain After Acute Hypoglycemia is Independent of Glucose Levels During Recovery. Neurochem Res 2017; 42:1629-1635. [PMID: 28083850 DOI: 10.1007/s11064-017-2178-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
Abstract
Patients with diabetes display a progressive decay in the physiological counter-regulatory response to hypoglycemia, resulting in hypoglycemia unawareness. The mechanism through which the brain adapts to hypoglycemia may involve brain glycogen. We tested the hypothesis that brain glycogen supercompensation following hypoglycemia depends on blood glucose levels during recovery. Conscious rats were submitted to hypoglycemia of 2 mmol/L for 90 min and allowed to recover at different glycemia, controlled by means of i.v. glucose infusion. Brain glycogen concentration was elevated above control levels after 24 h of recovery in the cortex, hippocampus and striatum. This glycogen supercompensation was independent of blood glucose levels in the post-hypoglycemia period. In the absence of a preceding hypoglycemia insult, brain glycogen concentrations were unaltered after 24 h under hyperglycemia. In the hypothalamus, which controls peripheral glucose homeostasis, glycogen levels were unaltered. Overall, we conclude that post-hypoglycemia glycogen supercompensation occurs in several brain areas and its magnitude is independent of plasma glucose levels. By supporting brain metabolism during recurrent hypoglycemia periods, glycogen may have a role in the development of hypoglycemia unawareness.
Collapse
|
26
|
Jensen VFH, Mølck AM, Chapman M, Alifrangis L, Andersen L, Lykkesfeldt J, Bøgh IB. Chronic Hyperinsulinaemic Hypoglycaemia in Rats Is Accompanied by Increased Body Weight, Hyperleptinaemia, and Decreased Neuronal Glucose Transporter Levels in the Brain. Int J Endocrinol 2017; 2017:7861236. [PMID: 28421113 PMCID: PMC5379133 DOI: 10.1155/2017/7861236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/19/2016] [Accepted: 12/26/2016] [Indexed: 12/18/2022] Open
Abstract
The brain is vulnerable to hypoglycaemia due to a continuous need of energy substrates to meet its high metabolic demands. Studies have shown that severe acute insulin-induced hypoglycaemia results in oxidative stress in the rat brain, when neuroglycopenia cannot be evaded despite increased levels of cerebral glucose transporters. Compensatory measures in the brain during chronic insulin-induced hypoglycaemia are less well understood. The present study investigated how the brain of nondiabetic rats copes with chronic insulin-induced hypoglycaemia for up to eight weeks. Brain level of different substrate transporters and redox homeostasis was evaluated. Hyperinsulinaemia for 8 weeks consistently lowered blood glucose levels by 30-50% (4-6 mM versus 7-9 mM in controls). The animals had increased food consumption, body weights, and hyperleptinaemia. During infusion, protein levels of the brain neuronal glucose transporter were decreased, whereas levels of lipid peroxidation products were unchanged. Discontinued infusion was followed by transient systemic hyperglycaemia and decreased food consumption and body weight. After 4 weeks, plasma levels of lipid peroxidation products were increased, possibly as a consequence of hyperglycaemia-induced oxidative stress. The present data suggests that chronic moderate hyperinsulinaemic hypoglycaemia causes increased body weight and hyperleptinaemia. This is accompanied by decreased neuronal glucose transporter levels, which may be leptin-induced.
Collapse
Affiliation(s)
- Vivi F. H. Jensen
- Department of Veterinary Disease Biology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Toxicology, Safety Pharm and Pathology, Novo Nordisk A/S, Maaloev, Denmark
- *Vivi F. H. Jensen:
| | - Anne-Marie Mølck
- Department of Toxicology, Safety Pharm and Pathology, Novo Nordisk A/S, Maaloev, Denmark
| | | | - Lene Alifrangis
- Department of Development DMPK, Novo Nordisk A/S, Maaloev, Denmark
| | - Lene Andersen
- Department of Development Bioanalysis, Novo Nordisk A/S, Maaloev, Denmark
| | - Jens Lykkesfeldt
- Department of Veterinary Disease Biology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ingrid B. Bøgh
- Department of Toxicology, Safety Pharm and Pathology, Novo Nordisk A/S, Maaloev, Denmark
| |
Collapse
|
27
|
Gorman DM, le Roux CW, Docherty NG. The Effect of Bariatric Surgery on Diabetic Retinopathy: Good, Bad, or Both? Diabetes Metab J 2016; 40:354-364. [PMID: 27766242 PMCID: PMC5069391 DOI: 10.4093/dmj.2016.40.5.354] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/01/2016] [Indexed: 01/08/2023] Open
Abstract
Bariatric surgery, initially intended as a weight-loss procedure, is superior to standard lifestyle intervention and pharmacological therapy for type 2 diabetes in obese individuals. Intensive medical management of hyperglycemia is associated with improved microvascular outcomes. Whether or not the reduction in hyperglycemia observed after bariatric surgery translates to improved microvascular outcomes is yet to be determined. There is substantial heterogeneity in the data relating to the impact of bariatric surgery on diabetic retinopathy (DR), the most common microvascular complication of diabetes. This review aims to collate the recent data on retinal outcomes after bariatric surgery. This comprehensive evaluation revealed that the majority of DR cases remain stable after surgery. However, risk of progression of pre-existing DR and the development of new DR is not eliminated by surgery. Instances of regression of DR are also noted. Potential risk factors for deterioration include severity of DR at the time of surgery and the magnitude of glycated hemoglobin reduction. Concerns also exist over the detrimental effects of postprandial hypoglycemia after surgery. In vivo studies evaluating the chronology of DR development and the impact of bariatric surgery could provide clarity on the situation. For now, however, the effect of bariatric surgery on DR remains inconclusive.
Collapse
Affiliation(s)
- Dora M. Gorman
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin School of Medicine and Medical Sciences, Dublin, Ireland
| | - Carel W. le Roux
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin School of Medicine and Medical Sciences, Dublin, Ireland
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Investigative Science, Imperial College London, London, UK
| | - Neil G. Docherty
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin School of Medicine and Medical Sciences, Dublin, Ireland
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Nagalski A, Kozinski K, Wisniewska MB. Metabolic pathways in the periphery and brain: Contribution to mental disorders? Int J Biochem Cell Biol 2016; 80:19-30. [PMID: 27644152 DOI: 10.1016/j.biocel.2016.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022]
Abstract
The association between mental disorders and diabetes has a long history. Recent large-scale, well-controlled epidemiological studies confirmed a link between diabetes and psychiatric illnesses. The scope of this review is to summarize our current understanding of this relationship from a molecular perspective. We first discuss the potential contribution of diabetes-associated metabolic impairments to the etiology of mental conditions. Then, we focus on possible shared molecular risk factors and mechanisms. Simple comorbidity, shared susceptibility loci, and common pathophysiological processes in diabetes and mental illnesses have changed our traditional way of thinking about mental illness. We conclude that schizophrenia and affective disorders are not limited to an imbalance in dopaminergic and serotoninergic neurotransmission in the brain. They are also systemic disorders that can be considered, to some extent, as metabolic disorders.
Collapse
Affiliation(s)
- Andrzej Nagalski
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Kamil Kozinski
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Marta B Wisniewska
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.
| |
Collapse
|
29
|
Rooijackers HMM, Wiegers EC, Tack CJ, van der Graaf M, de Galan BE. Brain glucose metabolism during hypoglycemia in type 1 diabetes: insights from functional and metabolic neuroimaging studies. Cell Mol Life Sci 2016; 73:705-22. [PMID: 26521082 PMCID: PMC4735263 DOI: 10.1007/s00018-015-2079-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 12/30/2022]
Abstract
Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain's handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge.
Collapse
Affiliation(s)
- Hanne M M Rooijackers
- Department of Internal Medicine 463, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Evita C Wiegers
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine 463, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marinette van der Graaf
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan E de Galan
- Department of Internal Medicine 463, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery. Mol Neurobiol 2016; 54:1046-1077. [PMID: 26801191 DOI: 10.1007/s12035-015-9672-6] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/17/2015] [Indexed: 12/31/2022]
Abstract
Glucose transporters (GLUTs) at the blood-brain barrier maintain the continuous high glucose and energy demands of the brain. They also act as therapeutic targets and provide routes of entry for drug delivery to the brain and central nervous system for treatment of neurological and neurovascular conditions and brain tumours. This article first describes the distribution, function and regulation of glucose transporters at the blood-brain barrier, the major ones being the sodium-independent facilitative transporters GLUT1 and GLUT3. Other GLUTs and sodium-dependent transporters (SGLTs) have also been identified at lower levels and under various physiological conditions. It then considers the effects on glucose transporter expression and distribution of hypoglycemia and hyperglycemia associated with diabetes and oxygen/glucose deprivation associated with cerebral ischemia. A reduction in glucose transporters at the blood-brain barrier that occurs before the onset of the main pathophysiological changes and symptoms of Alzheimer's disease is a potential causative effect in the vascular hypothesis of the disease. Mutations in glucose transporters, notably those identified in GLUT1 deficiency syndrome, and some recreational drug compounds also alter the expression and/or activity of glucose transporters at the blood-brain barrier. Approaches for drug delivery across the blood-brain barrier include the pro-drug strategy whereby drug molecules are conjugated to glucose transporter substrates or encapsulated in nano-enabled delivery systems (e.g. liposomes, micelles, nanoparticles) that are functionalised to target glucose transporters. Finally, the continuous development of blood-brain barrier in vitro models is important for studying glucose transporter function, effects of disease conditions and interactions with drugs and xenobiotics.
Collapse
|
31
|
Duarte JMN. Metabolic Alterations Associated to Brain Dysfunction in Diabetes. Aging Dis 2015; 6:304-21. [PMID: 26425386 DOI: 10.14336/ad.2014.1104] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/04/2014] [Indexed: 12/13/2022] Open
Abstract
From epidemiological studies it is known that diabetes patients display increased risk of developing dementia. Moreover, cognitive impairment and Alzheimer's disease (AD) are also accompanied by impaired glucose homeostasis and insulin signalling. Although there is plenty of evidence for a connection between insulin-resistant diabetes and AD, definitive linking mechanisms remain elusive. Cerebrovascular complications of diabetes, alterations in glucose homeostasis and insulin signalling, as well as recurrent hypoglycaemia are the factors that most likely affect brain function and structure. While difficult to study in patients, the mechanisms by which diabetes leads to brain dysfunction have been investigated in experimental models that display phenotypes of the disease. The present article reviews the impact of diabetes and AD on brain structure and function, and discusses recent findings from translational studies in animal models that link insulin resistance to metabolic alterations that underlie brain dysfunction. Such modifications of brain metabolism are likely to occur at early stages of neurodegeneration and impact regional neurochemical profiles and constitute non-invasive biomarkers detectable by magnetic resonance spectroscopy (MRS).
Collapse
Affiliation(s)
- João M N Duarte
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
32
|
Rapid adaptation of rat brain and liver metabolism to a ketogenic diet: an integrated study using (1)H- and (13)C-NMR spectroscopy. J Cereb Blood Flow Metab 2015; 35:1154-62. [PMID: 25785828 PMCID: PMC4640267 DOI: 10.1038/jcbfm.2015.29] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/11/2014] [Accepted: 01/22/2015] [Indexed: 11/08/2022]
Abstract
The ketogenic diet (KD) is an effective alternative treatment for refractory epilepsy in children, but the mechanisms by which it reduces seizures are poorly understood. To investigate how the KD modifies brain metabolism, we infused control (CT) and 7-day KD rats with either [1-(13)C]glucose (Glc) or [2,4-(13)C2]β-hydroxybutyrate (β-HB). Specific enrichments of amino acids (AAs) measured by (1)H- and (13)C-NMR in total brain perchloric acid extracts were similar between CT and KD rats after [1-(13)C]Glc infusion whereas they were higher in KD rats after [2,4-(13)C2]β-HB infusion. This suggests better metabolic efficiency of ketone body utilization on the KD. The relative rapid metabolic adaptation to the KD included (1) 11%-higher brain γ-amino butyric acid (GABA)/glutamate (Glu) ratio versus CT, (2) liver accumulation of the ketogenic branched-chain AAs (BCAAs) leucine (Leu) and isoleucine (ILeu), which were never detected in CT, and (3) higher brain Leu and ILeu contents. Since Glu and GABA are excitatory and inhibitory neurotransmitters, respectively, higher brain GABA/Glu ratio could contribute to the mechanism by which the KD reduces seizures in epilepsy. Increased BCAA on the KD may also contribute to better seizure control.
Collapse
|
33
|
Abstract
Diabetes alters cerebral metabolism, structure, and function. Both hyperglycemia and therapy-associated hypoglycemia are believed to have an impact on the brain, and this impact may depend on the age of the individual, their stage of neurological development, and whether they have Type 1 or Type 2 diabetes. Hypoglycemia in children with Type 1 has consistently been associated with a reduction in neurocognitive function, but such a finding has not been seen in adults with Type 1 diabetes. Both hypoglycemia and hyperglycemia have been linked with dementia in adults with Type 2 diabetes. In both Type 1 and Type 2 diabetes, recurrent episodes of treatment-associated hypoglycemia impair how well the brain can sense and respond to subsequent episodes of hypoglycemia. In this brief review, we will review how diabetes affects the brain with a focus on investigations done in our own laboratory. We have focused on using high magnetic field imaging and spectroscopy to identify subtle changes in brain structure and metabolism that may contribute to the long-term cerebral complications of diabetes. We have found evidence of microstructural changes in white matter regions, reduced gray matter density, and reduced activation of the thalamus in response to recurrent hypoglycemia in patients with Type 1 diabetes.
Collapse
Affiliation(s)
- Elizabeth R Seaquist
- From the Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
34
|
Blanco AM, Gómez-Boronat M, Pérez-Maceira J, Mancebo MJ, Aldegunde M. Brain glycogen supercompensation after different conditions of induced hypoglycemia and sustained swimming in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 2015; 187:55-60. [PMID: 25956213 DOI: 10.1016/j.cbpa.2015.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 11/17/2022]
Abstract
Brain glycogen is depleted when used as an emergency energy substrate. In mammals, brain glycogen levels rebound to higher than normal levels after a hypoglycemic episode and a few hours after refeeding or administration of glucose. This phenomenon is called glycogen supercompensation. However, this mechanism has not been investigated in lower vertebrates. The aim of this study was therefore to determine whether brain glycogen supercompensation occurs in the rainbow trout brain. For this purpose, short-term brain glucose and glycogen contents were determined in rainbow trout after being subjected to the following experimental conditions: i) a 5-day or 10-day fasting period and refeeding; ii) a single injection of insulin (4 mg kg(-1)) and refeeding; and iii) sustained swimming and injection of glucose (500 mg kg(-1)). Food deprivation during the fasting periods and insulin administration both induced a decrease in glucose and glycogen levels in the brain. However, only refeeding after 10 days of fasting significantly increased the brain glycogen content above control levels, in a clear short-term supercompensation response. Unlike in mammals, prolonged exercise did not alter brain glucose or glycogen levels. Furthermore, brain glycogen supercompensation was not observed after glucose administration in fish undergoing sustained swimming. To our knowledge, this is the first study providing direct experimental evidence for the existence of a short-term glycogen supercompensation response in a teleost brain, although the response was only detectable after prolonged fasting.
Collapse
Affiliation(s)
- A M Blanco
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Gómez-Boronat
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - J Pérez-Maceira
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M J Mancebo
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Aldegunde
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
35
|
Evaluating the SERCA2 and VEGF mRNAs as Potential Molecular Biomarkers of the Onset and Progression in Huntington's Disease. PLoS One 2015; 10:e0125259. [PMID: 25915065 PMCID: PMC4411078 DOI: 10.1371/journal.pone.0125259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 03/20/2015] [Indexed: 01/19/2023] Open
Abstract
Abnormalities of intracellular Ca2+ homeostasis and signalling as well as the down-regulation of neurotrophic factors in several areas of the central nervous system and in peripheral tissues are hallmarks of Huntington’s disease (HD). As there is no therapy for this hereditary, neurodegenerative fatal disease, further effort should be made to slow the progression of neurodegeneration in patients through the definition of early therapeutic interventions. For this purpose, molecular biomarker(s) for monitoring disease onset and/or progression and response to treatment need to be identified. In the attempt to contribute to the research of peripheral candidate biomarkers in HD, we adopted a multiplex real-time PCR approach to analyse the mRNA level of targeted genes involved in the control of cellular calcium homeostasis and in neuroprotection. For this purpose we recruited a total of 110 subjects possessing the HD mutation at different clinical stages of the disease and 54 sex- and age-matched controls. This study provides evidence of reduced transcript levels of sarco-endoplasmic reticulum-associated ATP2A2 calcium pump (SERCA2) and vascular endothelial growth factor (VEGF) in peripheral blood mononuclear cells (PBMCs) of manifest and pre-manifest HD subjects. Our results provide a potentially new candidate molecular biomarker for monitoring the progression of this disease and contribute to understanding some early events that might have a role in triggering cellular dysfunctions in HD.
Collapse
|
36
|
Brain and behavioral perturbations in rats following Western diet access. Appetite 2015; 93:35-43. [PMID: 25862980 DOI: 10.1016/j.appet.2015.03.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/21/2015] [Accepted: 03/25/2015] [Indexed: 11/22/2022]
Abstract
Energy dense "Western" diets (WD) are known to cause obesity as well as learning and memory impairments, blood-brain barrier damage, and psychological disturbances. Impaired glucose (GLUT1) and monocarboxylate (MCT1) transport may play a role in diet-induced dementia development. In contrast, ketogenic diets (KD) have been shown to be neuroprotective. We assessed the effect of 10, 40 and 90 days WD, KD and Chow maintenance on spontaneous alternation (SA) and vicarious trial and error (VTE) behaviors in male rats, then analyzed blood glucose, insulin, and ketone levels; and hippocampal GLUT1 and MCT1 mRNA. Compared to Chow and KD, rats fed WD had increased 90 day insulin levels. SA was decreased in WD rats at 10, but not 40 or 90 days. VTE was perturbed in WD-fed rats, particularly at 10 and 90 days, indicating hippocampal deficits. WD rats had lower hippocampal GLUT1 and MCT1 expression compared to Chow and KD, and KD rats had increased 90 day MCT1 expression compared to Chow and WD. These data suggest that WD reduces glucose and monocarboxylate transport at the hippocampus, which may result in learning and memory deficits. Further, KD consumption may be useful for MCT1 transporter recovery, which may benefit cognition.
Collapse
|
37
|
Sajja RK, Prasad S, Cucullo L. Impact of altered glycaemia on blood-brain barrier endothelium: an in vitro study using the hCMEC/D3 cell line. Fluids Barriers CNS 2014; 11:8. [PMID: 24708805 PMCID: PMC3985548 DOI: 10.1186/2045-8118-11-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/17/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cerebrovascular complications involving endothelial dysfunction at the blood-brain barrier (BBB) are central to the pathogenesis of diabetes-related CNS disorders. However, clinical and experimental studies have reported contrasting evidence in relation to the effects of hyperglycemia on BBB permeability and function. Similarly the effect of hypoglycemia on BBB integrity is not well understood. Therefore, we assessed the differential impact of hypo and hyperglycemic conditions on BBB integrity and endothelial function in vitro using hCMEC/D3, a well characterized human brain microvascular endothelial cell line. METHODS Parallel monolayers of hCMEC/D3 were exposed to normal, hypo- or hyperglycemic media, containing 5.5, 2.2 or 35 mM D-glucose, respectively. Following 3-24h exposure, the expression and distribution of BBB tight junction (ZO-1 and claudin-5) adherence junction (VE-cadherin) proteins, and glucose transporters as well as inflammatory (VCAM-1) and oxidative stress (Nrf-2) markers were analyzed by immunofluorescence and western blotting. Endothelial release of growth factors and pro-inflammatory cytokines were determined by ELISA. Further, the impact of altered glycemia on BBB permeability was assessed in hCMEC/D3 - astrocyte co-cultures on Transwell supports using fluorescent dextrans (4-70 kDa). RESULTS Compared to controls, exposure to hypoglycemia (3 and 24h) down-regulated the expression of claudin-5 and disrupted the ZO-1 localization at cell-cell contacts, while hyperglycemia marginally reduced claudin-5 expression without affecting ZO-1 distribution. Permeability to dextrans (4-10 kDa) and VEGF release at 24h were significantly increased by hypo- and hyperglycemia, although 70 kDa dextran permeability was increased only under hypoglycemic conditions. The expression of SGLT-1 was up-regulated at 24h hypoglycemic exposure while only a modest increase of GLUT-1 expression was observed. In addition, the expression of Nrf-2 and release of interleukin-6 and PDGF-BB, were down-regulated by hypoglycemia (but not hyperglycemia), while both conditions induced a marginal and transient increase in VCAM-1 expression from 3 to 24h, including a significant increase in VE-cadherin expression at 3 h following hyperglycemia. CONCLUSIONS In summary, our findings demonstrate a potential impairment of BBB integrity and function by hypo or hyperglycemia, through altered expression/distribution of TJ proteins and nutrient transporters. In addition, hypoglycemic exposure severely affects the expression of oxidative and inflammatory stress markers of BBB endothelium.
Collapse
Affiliation(s)
| | | | - Luca Cucullo
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S, Coulter Street, Amarillo, TX 79106, USA.
| |
Collapse
|
38
|
Takimoto M, Hamada T. Acute exercise increases brain region-specific expression of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins. J Appl Physiol (1985) 2014; 116:1238-50. [PMID: 24610532 DOI: 10.1152/japplphysiol.01288.2013] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The brain is capable of oxidizing lactate and ketone bodies through monocarboxylate transporters (MCTs). We examined the protein expression of MCT1, MCT2, MCT4, glucose transporter 1 (GLUT1), and cytochrome-c oxidase subunit IV (COX IV) in the rat brain within 24 h after a single exercise session. Brain samples were obtained from sedentary controls and treadmill-exercised rats (20 m/min, 8% grade). Acute exercise resulted in an increase in lactate in the cortex, hippocampus, and hypothalamus, but not the brainstem, and an increase in β-hydroxybutyrate in the cortex alone. After a 2-h exercise session MCT1 increased in the cortex and hippocampus 5 h postexercise, and the effect lasted in the cortex for 24 h postexercise. MCT2 increased in the cortex and hypothalamus 5-24 h postexercise, whereas MCT2 increased in the hippocampus immediately after exercise, and remained elevated for 10 h postexercise. Regional upregulation of MCT2 after exercise was associated with increases in brain-derived neurotrophic factor and tyrosine-related kinase B proteins, but not insulin-like growth factor 1. MCT4 increased 5-10 h postexercise only in the hypothalamus, and was associated with increased hypoxia-inducible factor-1α expression. However, none of the MCT isoforms in the brainstem was affected by exercise. Whereas GLUT 1 in the cortex increased only at 18 h postexercise, COX IV in the hippocampus increased 10 h after exercise and remained elevated for 24 h postexercise. These results suggest that acute prolonged exercise induces the brain region-specific upregulation of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins.
Collapse
Affiliation(s)
- Masaki Takimoto
- Laboratory of Exercise Physiology and Biochemistry, Graduate School of Sport and Exercise Sciences, Osaka University of Health and Sport Sciences, Osaka, Japan
| | | |
Collapse
|
39
|
Jensen VFH, Bøgh IB, Lykkesfeldt J. Effect of insulin-induced hypoglycaemia on the central nervous system: evidence from experimental studies. J Neuroendocrinol 2014; 26:123-50. [PMID: 24428753 DOI: 10.1111/jne.12133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 12/13/2013] [Accepted: 01/08/2014] [Indexed: 12/12/2022]
Abstract
Insulin-induced hypoglycaemia (IIH) is a major acute complication in type 1 as well as in type 2 diabetes, particularly during intensive insulin therapy. The brain plays a central role in the counter-regulatory response by eliciting parasympathetic and sympathetic hormone responses to restore normoglycaemia. Brain glucose concentrations, being approximately 15-20% of the blood glucose concentration in humans, are rigorously maintained during hypoglycaemia through adaptions such as increased cerebral glucose transport, decreased cerebral glucose utilisation and, possibly, by using central nervous system glycogen as a glucose reserve. However, during sustained hypoglycaemia, the brain cannot maintain a sufficient glucose influx and, as the cerebral hypoglycaemia becomes severe, electroencephalogram changes, oxidative stress and regional neuronal death ensues. With particular focus on evidence from experimental studies on nondiabetic IIH, this review outlines the central mechanisms behind the counter-regulatory response to IIH, as well as cerebral adaption to avoid sequelae of cerebral neuroglycopaenia, including seizures and coma.
Collapse
Affiliation(s)
- V F H Jensen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Diabetes Toxicology and Safety Pharmacology, Novo Nordisk A/S, Maaloev, Denmark
| | | | | |
Collapse
|
40
|
Prasad S, Sajja RK, Naik P, Cucullo L. Diabetes Mellitus and Blood-Brain Barrier Dysfunction: An Overview. ACTA ACUST UNITED AC 2014; 2:125. [PMID: 25632404 DOI: 10.4172/2329-6887.1000125] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A host of diabetes-related insults to the central nervous system (CNS) have been clearly documented in type-1 and -2 diabetic patients as well as experimental animal models. These host of neurological disorders encompass hemodynamic impairments (e.g., stroke), vascular dementia, cognitive deficits (mild to moderate), as well as a number of neurochemical, electrophysiological and behavioral alterations. The underlying causes of diabetes-induced CNS complications are multifactorial and are relatively little understood although it is now evident that blood-brain barrier (BBB) damage plays a significant role in diabetes-dependent CNS disorders. Changes in plasma glucose levels (hyper- or hypoglycemia) have been associated with altered BBB transport functions (e.g., glucose, insulin, choline, amino acids, etc.), integrity (tight junction disruption), and oxidative stress in the CNS microcapillaries. Last two implicating a potential causal role for upregulation and activation of the receptor for advanced glycation end products (RAGE). This type I membrane-protein also transports amyloid-beta (Aβ) from the blood into the brain across the BBB thus, establishing a link between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD, also referred to as "type 3 diabetes"). Hyperglycemia has been associated with progression of cerebral ischemia and the consequent enhancement of secondary brain injury. Difficulty in detecting vascular impairments in the large, heterogeneous brain microvascular bed and dissecting out the impact of hyper- and hypoglycemia in vivo has led to controversial results especially with regard to the effects of diabetes on BBB. In this article, we review the major findings and current knowledge with regard to the impact of diabetes on BBB integrity and function as well as specific brain microvascular effects of hyper- and hypoglycemia.
Collapse
Affiliation(s)
- Shikha Prasad
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health, Texas, USA
| | - Ravi K Sajja
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health, Texas, USA
| | - Pooja Naik
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health, Texas, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health, Texas, USA ; Vascular Drug research Center, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| |
Collapse
|
41
|
Cura AJ, Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2013; 2:863-914. [PMID: 22943001 DOI: 10.1002/cphy.c110024] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol, and dehydroascorbicacid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into three classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been coopted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 is a proton/myoinositol cotransporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity, and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption,distribution, cellular transport and metabolism, and recovery/retention. Glucose transport and metabolism have coevolved in mammals to support cerebral glucose utilization.
Collapse
Affiliation(s)
- Anthony J Cura
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
42
|
Alf MF, Duarte JM, Schibli R, Gruetter R, Krämer SD. Brain Glucose Transport and Phosphorylation Under Acute Insulin-Induced Hypoglycemia in Mice: An 18F-FDG PET Study. J Nucl Med 2013; 54:2153-60. [DOI: 10.2967/jnumed.113.122812] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
43
|
Gardell AM, Yang J, Sacchi R, Fangue NA, Hammock BD, Kültz D. Tilapia (Oreochromis mossambicus) brain cells respond to hyperosmotic challenge by inducing myo-inositol biosynthesis. ACTA ACUST UNITED AC 2013; 216:4615-25. [PMID: 24072790 DOI: 10.1242/jeb.088906] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study aimed to determine the regulation of the de novo myo-inositol biosynthetic (MIB) pathway in Mozambique tilapia (Oreochromis mossambicus) brain following acute (25 ppt) and chronic (30, 60 and 90 ppt) salinity acclimations. The MIB pathway plays an important role in accumulating the compatible osmolyte, myo-inositol, in cells in response to hyperosmotic challenge and consists of two enzymes, myo-inositol phosphate synthase and inositol monophosphatase. In tilapia brain, MIB enzyme transcriptional regulation was found to robustly increase in a time (acute acclimation) or dose (chronic acclimation) dependent manner. Blood plasma osmolality and Na(+) and Cl(-) concentrations were also measured and significantly increased in response to both acute and chronic salinity challenges. Interestingly, highly significant positive correlations were found between MIB enzyme mRNA and blood plasma osmolality in both acute and chronic salinity acclimations. Additionally, a mass spectrometry assay was established and used to quantify total myo-inositol concentration in tilapia brain, which closely mirrored the hyperosmotic MIB pathway induction. Thus, myo-inositol is a major compatible osmolyte that is accumulated in brain cells when exposed to acute and chronic hyperosmotic challenge. These data show that the MIB pathway is highly induced in response to environmental salinity challenge in tilapia brain and that this induction is likely prompted by increases in blood plasma osmolality. Because the MIB pathway uses glucose-6-phosphate as a substrate and large amounts of myo-inositol are being synthesized, our data also illustrate that the MIB pathway likely contributes to the high energetic demand posed by salinity challenge.
Collapse
Affiliation(s)
- Alison M Gardell
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
44
|
Rosiglitazone attenuates hyperglycemia-enhanced hemorrhagic transformation after transient focal ischemia in rats. Neuroscience 2013; 250:651-7. [PMID: 23892005 DOI: 10.1016/j.neuroscience.2013.07.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/22/2013] [Accepted: 07/16/2013] [Indexed: 01/10/2023]
Abstract
Hemorrhagic transformation (HT) has been claimed to represent the most feared complication of treatment with intravenous tissue plasminogen activator (t-PA) therapy. In this study, we tested the effect of rosiglitazone on HT in a rat focal cerebral ischemia model. Male Sprague-Dawley rats received an injection of 50% dextrose (6ml/kg intraperitoneally) and were subjected to middle cerebral artery occlusion (MCAO) 10 min later, with the regional cerebral blood flow monitored in vivo by laser-Doppler-flowmetry. Two groups were included: rosiglitazone treatment and vehicle group. In the treatment group, after 1.5h of ischemia, rosiglitazone (2mg/kg) was administered at the onset of reperfusion. Neurobehavioral scores, infarct volume, hemoglobin leakage, hemorrhage rate, the expression of collagen IV and glucose transporter 1 (GLUT1) were measured at 24h after ischemia. Rosiglitazone improved neurobehavioral deficits, reduced infarct volume and hemorrhage rate, and inhibited hemoglobin leakage, when compared with the vehicle group. In addition, it increased the expression of collagen IV and GLUT1 compared to the vehicle group. Our results suggest that rosiglitazone attenuated the hyperglycemia-induced HT after MCAO, possibly by preservation of GLUT1 expression.
Collapse
|
45
|
Abstract
Functional neuroimaging techniques can be used to study changes in regional brain activation, using changes in surrogate markers such as regional cerebral perfusion and rates of glucose uptake or metabolism. These approaches are shedding new light on two major health problems: the increasing burden of type 2 diabetes mellitus (T2DM), which is driven by the rising prevalence of insulin resistance and obesity; and recurrent intractable problematic hypoglycaemia, which is driven by the cognitive impairment that can occur in association with iatrogenic hypoglycaemic episodes. Some patients with diabetes mellitus lose awareness of being hypoglycaemic, which puts them at risk of severe hypoglycaemia as they are unlikely to take action to prevent the condition worsening. Involvement of corticolimbic brain and centres serving higher executive functions as well as the hypothalamus has been demonstrated in both situations and has implications for therapy. This Review describes the relevant principles of functional neuroimaging techniques and presents data supporting the notion that the dysregulation of central pathways involved in metabolic regulation, reward and appetite could contribute to problematic hypoglycaemia during therapy for diabetes mellitus and to insulin-resistant obesity and T2DM. Understanding these dysregulations could enable the development of novel clinical interventions.
Collapse
Affiliation(s)
- Yee-Seun Cheah
- Diabetes Research Group, Weston Education Centre, Denmark Hill Campus, King's College London, 10 Cutcombe Road, London SE5 9RJ, UK
| | | |
Collapse
|
46
|
Cura AJ, Carruthers A. AMP kinase regulation of sugar transport in brain capillary endothelial cells during acute metabolic stress. Am J Physiol Cell Physiol 2012; 303:C806-14. [PMID: 22763120 DOI: 10.1152/ajpcell.00437.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AMP-dependent kinase (AMPK) and GLUT1-mediated sugar transport in blood-brain barrier endothelial cells are activated during acute cellular metabolic stress. Using murine brain microvasculature endothelium bEnd.3 cells, we show that AMPK phosphorylation and stimulation of 3-O-methylglucose transport by the AMPK agonist AICAR are inhibited in a dose-dependent manner by the AMPK antagonist Compound C. AMPK α1- or AMPK α2-knockdown by RNA interference or AMPK inhibition by Compound C reduces AMPK phosphorylation and 3-O-methylglucose transport stimulation induced by cellular glucose-depletion, by potassium cyanide (KCN), or by carbonyl cyanide-p-trifluoromethoxy-phenylhydrazone (FCCP). Cell surface biotinylation studies reveal that plasma membrane GLUT1 levels are increased two- to threefold by cellular glucose depletion, AICAR or KCN treatment, and that these increases are prevented by Compound C and by AMPK α1- or α2-knockdown. These results support the hypothesis that AMPK activation in blood-brain barrier-derived endothelial cells directs the trafficking of GLUT1 intracellular pools to the plasma membrane, thereby increasing endothelial sugar transport capacity.
Collapse
Affiliation(s)
- Anthony J Cura
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, USA
| | | |
Collapse
|
47
|
Leroy C, Pierre K, Simpson IA, Pellerin L, Vannucci SJ, Nehlig A. Temporal changes in mRNA expression of the brain nutrient transporters in the lithium-pilocarpine model of epilepsy in the immature and adult rat. Neurobiol Dis 2011; 43:588-97. [PMID: 21624469 PMCID: PMC3726264 DOI: 10.1016/j.nbd.2011.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 05/09/2011] [Accepted: 05/14/2011] [Indexed: 11/30/2022] Open
Abstract
The lithium-pilocarpine model mimics most features of human temporal lobe epilepsy. Following our prior studies of cerebral metabolic changes, here we explored the expression of transporters for glucose (GLUT1 and GLUT3) and monocarboxylates (MCT1 and MCT2) during and after status epilepticus (SE) induced by lithium-pilocarpine in PN10, PN21, and adult rats. In situ hybridization was used to study the expression of transporter mRNAs during the acute phase (1, 4, 12 and 24h of SE), the latent phase, and the early and late chronic phases. During SE, GLUT1 expression was increased throughout the brain between 1 and 12h of SE, more strongly in adult rats; GLUT3 increased only transiently, at 1 and 4h of SE and mainly in PN10 rats; MCT1 was increased at all ages but 5-10-fold more in adult than in immature rats; MCT2 expression increased mainly in adult rats. At all ages, MCT1 and MCT2 up-regulation was limited to the circuit of seizures while GLUT1 and GLUT3 changes were more widespread. During the latent and chronic phases, the expression of nutrient transporters was normal in PN10 rats. In PN21 rats, GLUT1 was up-regulated in all brain regions. In contrast, in adult rats GLUT1 expression was down-regulated in the piriform cortex, hilus and CA1 as a result of extensive neuronal death. The changes in nutrient transporter expression reported here further support previous findings in other experimental models demonstrating rapid transcriptional responses to marked changes in cerebral energetic/glucose demand.
Collapse
Affiliation(s)
| | - Karin Pierre
- Department of Physiology, University of Lausanne, Switzerland
| | - Ian A. Simpson
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA, U.S.A
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, Switzerland
| | - Susan J. Vannucci
- Department of Pediatrics/Newborn Medicine, Weill Cornell Medical College, New York, NY, U.S.A
| | | |
Collapse
|
48
|
Abstract
The counterregulatory response to hypoglycemia is a complex and well-coordinated process. As blood glucose concentration declines, peripheral and central glucose sensors relay this information to central integrative centers to coordinate neuroendocrine, autonomic, and behavioral responses and avert the progression of hypoglycemia. Diabetes, both type 1 and type 2, can perturb these counterregulatory responses. Moreover, defective counterregulation in the setting of diabetes can progress to hypoglycemia unawareness. While the mechanisms that underlie the development of hypoglycemia unawareness are not completely known, possible causes include altered sensing of hypoglycemia by the brain and/or impaired coordination of responses to hypoglycemia. Further study is needed to better understand the intricacies of the counterregulatory response and the mechanisms contributing to the development of hypoglycemia unawareness.
Collapse
Affiliation(s)
- Nolawit Tesfaye
- Department of Medicine, Division of Endocrinology and Diabetes, University of Minnesota, 420 Delaware St. SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
49
|
Affiliation(s)
- Rory J McCrimmon
- Biomedical Research Institute, University of Dundee, Dundee, Scotland.
| | | |
Collapse
|
50
|
Gailliot MT, Hildebrandt B, Eckel LA, Baumeister RF. A Theory of Limited Metabolic Energy and Premenstrual Syndrome Symptoms: Increased Metabolic Demands during the Luteal Phase Divert Metabolic Resources from and Impair Self-Control. REVIEW OF GENERAL PSYCHOLOGY 2010. [DOI: 10.1037/a0018525] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|