1
|
Singh H, Singh R, Singh A, Singh H, Singh G, Kaur S, Singh B. Role of oxidative stress in diabetes-induced complications and their management with antioxidants. Arch Physiol Biochem 2024; 130:616-641. [PMID: 37571852 DOI: 10.1080/13813455.2023.2243651] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 08/13/2023]
Abstract
Diabetes mellitus (DM) is a huge global health issue and one of the most studied diseases, with a large global prevalence. Oxidative stress is a cytotoxic consequence of the excessive development of ROS and suppression of the antioxidant defense system for ROS elimination, which accelerates the progression of diabetes complications such as diabetic neuropathy, retinopathy, and nephropathy. Hyperglycaemia induced oxidative stress causes the activation of seven major pathways implicated in the pathogenesis of diabetic complications. These pathways increase the production of ROS and RNS, which contributes to dysregulated autophagy, gene expression changes, and the development of numerous pro-inflammatory mediators which may eventually lead to diabetic complications. This review will illustrate that oxidative stress plays a vital role in the pathogenesis of diabetic complications, and the use of antioxidants will help to reduce oxidative stress and thus may alleviate diabetic complications.
Collapse
Affiliation(s)
- Hasandeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Rajanpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Arshdeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Harshbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Gurpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Sarabjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
2
|
Montagnoli TL, Santos AD, Sudo SZ, Gubert F, Vasques JF, Mendez-Otero R, de Sá MPL, Zapata-Sudo G. Perspectives on Stem Cell Therapy in Diabetic Neuropathic Pain. Neurol Int 2024; 16:933-944. [PMID: 39311343 PMCID: PMC11417725 DOI: 10.3390/neurolint16050070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Diabetes mellitus-related morbidity and mortality are primarily caused by long-term complications such as retinopathy, nephropathy, cardiomyopathy, and neuropathy. Diabetic neuropathy (DN) involves the progressive degeneration of axons and nerve fibers due to chronic exposure to hyperglycemia. This metabolic disturbance leads to excessive activation of the glycolytic pathway, inducing oxidative stress and mitochondrial dysfunction, ultimately resulting in nerve damage. There is no specific treatment for painful DN, and new approaches should aim not only to relieve pain but also to prevent oxidative stress and reduce inflammation. Given that existing therapies for painful DN are not effective for diabetic patients, mesenchymal stromal cells (MSCs)-based therapy shows promise for providing immunomodulatory and paracrine regulatory functions. MSCs from various sources can improve neuronal dysfunction associated with DN. Transplantation of MSCs has led to a reduction in hyperalgesia and allodynia, along with the recovery of nerve function in diabetic rats. While the pathogenesis of diabetic neuropathic pain is complex, clinical trials have demonstrated the importance of MSCs in modulating the immune response in diabetic patients. MSCs reduce the levels of inflammatory factors and increase anti-inflammatory cytokines, thereby interfering with the progression of DM. Further investigation is necessary to ensure the safety and efficacy of MSCs in preventing or treating neuropathic pain in diabetic patients.
Collapse
Affiliation(s)
- Tadeu Lima Montagnoli
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.L.M.); (A.D.S.)
| | - Aimeé Diogenes Santos
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.L.M.); (A.D.S.)
| | - Susumu Zapata Sudo
- Programa de Pós-Graduação em Medicina (Cirurgia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.Z.S.); (M.P.L.d.S.)
| | - Fernanda Gubert
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Juliana Ferreira Vasques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.F.V.); (R.M.-O.)
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.F.V.); (R.M.-O.)
| | - Mauro Paes Leme de Sá
- Programa de Pós-Graduação em Medicina (Cirurgia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.Z.S.); (M.P.L.d.S.)
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.L.M.); (A.D.S.)
- Programa de Pós-Graduação em Medicina (Cirurgia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.Z.S.); (M.P.L.d.S.)
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
3
|
Oyeyemi A, Owonikoko W, Okoro T, Adagbonyi O, Ajeigbe K. Water contamination: A culprit of serum heavy metals concentration, oxidative stress and health risk among residents of a Nigerian crude oil-producing community. Toxicol Rep 2024; 12:375-388. [PMID: 38584719 PMCID: PMC10995875 DOI: 10.1016/j.toxrep.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/16/2024] [Accepted: 03/16/2024] [Indexed: 04/09/2024] Open
Abstract
Niger Delta has become popular for crude oil extraction for the past few decades. This uncoordinated activity has made it a hotspot for xenobiotics exposure and water bodies remain the environmental matrix significantly affected. One of the most deleterious components of crude oil is heavy metals (HMs). This study investigates HMs concentration in water and serum of humans residing in an oil-host community with the consideration of systemic effects, pollution status, carcinogenic and non-carcinogenic health risks and comparison made with residents from a non-oil-producing community. Heavy metal analysis, serum electrolytes, Urea, Creatinine, and liver enzymes were assessed using standard procedures; malondialdehyde, catalase, SOD, glutathione reductase, GPx and total antioxidant capacity (TAC) by spectrophotometry and TNF-α and 8-OHdG assessed via ELISA method. We found altered serum electrolytes; increased serum Pb and Cd levels; increased AST, ALT, ALP and lipid peroxidation; and decreased enzymes antioxidants including TAC among Ugbegugun community residents compared with control. We observed an association between environmental crude oil contamination, ecological and health risks in the community. We concluded that protracted exposure to HMs induces multi-systemic toxicities characterized by DNA damage, depletion of the antioxidant system, and increased free radical generation culminating lipo-peroxidation with significant ecological, carcinogenic, and non-carcinogenic risks characterize crude oil water contamination.
Collapse
Affiliation(s)
- A.W. Oyeyemi
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Okada, Nigeria
- Department of Physiology, Osun State University, Osogbo, Nigeria
| | - W.M. Owonikoko
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Okada, Nigeria
| | - T.D. Okoro
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Okada, Nigeria
| | - O. Adagbonyi
- Department of Anatomy, Igbinedion University, Okada, Nigeria
| | - K.O. Ajeigbe
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Okada, Nigeria
- Department of Physiology, Federal University, Oye-Ekiti, Nigeria
| |
Collapse
|
4
|
Khuwaja G, Moni SS, Alam MF, Makeen HA, Zafar S, Ashafaq M, Alhazmi H, Najmi A, Sayed SF, Shakeel Iqubal SM. Curcumin nanogel and its efficacy against oxidative stress and inflammation in rat models of ischemic stroke. Nanomedicine (Lond) 2024; 19:1069-1085. [PMID: 38661738 PMCID: PMC11221376 DOI: 10.2217/nnm-2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/11/2024] [Indexed: 04/26/2024] Open
Abstract
Aim: The study was designed to develop and analyze curcumin nanoparticles. Methods: Curcumin nanoparticles were formulated and evaluated. Their efficacy in protecting against brain damage was investigated in a rat model of ischemic stroke, considering motor function, muscle strength and antioxidant enzyme activity. Results: Curcumin nanoparticles displayed a zeta potential of -55 ± 13.5 mV and an average particle size of 51.40 ± 21.70 nm. In ischemic stroke rat models, curcumin nanoparticle treatment significantly improved motor functions, and muscle strength and increased the activities of antioxidant enzymes like glutathione peroxidase, glutathione, glutathione S-transferase, superoxide dismutase and catalase, reducing oxidative stress and inflammation. Conclusion: Curcumin nanoparticles showed significant neuroprotective effects in ischemic stroke models.
Collapse
Affiliation(s)
- Gulrana Khuwaja
- Department of Pharmaceutical Chemistry & Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Sivakumar S Moni
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohammad Firoz Alam
- Department of Pharmacology & Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Sarvat Zafar
- Department of Chemistry, College of Science, Jazan University, Samtah, 45142, Jazan, Saudi Arabia
| | - Mohammad Ashafaq
- Department of Pharmacology & Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Hasan Alhazmi
- Department of Pharmaceutical Chemistry & Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
- Health Research Centre, Jazan University, Jazan, 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry & Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Shabihul Fatma Sayed
- Department of Nursing, Farasan University College, Jazan University, Saudi Arabia
| | | |
Collapse
|
5
|
Jali AM, Alam MF, Hanbashi A, Mawkili W, Abdlasaed BM, Alshahrani S, Qahl AM, Alrashah ASS, Shahi HA. Sesamin's Therapeutic Actions on Cyclophosphamide-Induced Hepatotoxicity, Molecular Mechanisms, and Histopathological Characteristics. Biomedicines 2023; 11:3238. [PMID: 38137459 PMCID: PMC10741447 DOI: 10.3390/biomedicines11123238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Cyclophosphamide, an alkylating agent integral to specific cancer chemotherapy protocols, is often curtailed in application owing to its significant hepatotoxic side effects. Therefore, this study was conducted to assess the hepatoprotective potential of sesamin, a plant-originated antioxidant, using rat models. The rats were divided into five groups: a control group received only the vehicle for six days; a cyclophosphamide group received an intraperitoneal (i.p.) single injection of cyclophosphamide (150 mg/kg) on day four; a sesamin group received a daily high oral dose (20 mg/kg) of sesamin for six days; and two groups were pretreated with oral sesamin (10 and 20 mg/kg daily from day one to day six) followed by an i.p. injection of cyclophosphamide on day four. The final and last sesamin dose was administered 24 h before euthanasia. At the end of the experiment, blood and liver tissue were collected for biochemical and histopathological assessments. The results indicated significantly increased liver markers (AST, ALT, ALP, and BIL), cytokines (TNFα and IL-1β), caspase-3, and malondialdehyde (MDA) in the cyclophosphamide group as compared to the normal control. Additionally, there was a significant decline in antioxidants (GSH) and antioxidant enzymes (CAT and SOD), but the sesamin treatment reduced liver marker enzymes, cytokines, and caspase-3 and improved antioxidants and antioxidant enzymes. Thus, sesamin effectively countered these alterations and helped to normalize the histopathological alterations. In conclusion, sesamin demonstrated the potential for attenuating cyclophosphamide-induced hepatotoxicity by modulating cytokine networks, apoptotic pathways, and oxidative stress, suggesting its potential role as an adjunct in chemotherapy to reduce hepatotoxicity.
Collapse
Affiliation(s)
- Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.M.J.); (A.H.); (W.M.); (S.A.); (A.M.Q.); (A.S.S.A.); (H.A.S.)
| | - Mohammad Firoz Alam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.M.J.); (A.H.); (W.M.); (S.A.); (A.M.Q.); (A.S.S.A.); (H.A.S.)
| | - Ali Hanbashi
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.M.J.); (A.H.); (W.M.); (S.A.); (A.M.Q.); (A.S.S.A.); (H.A.S.)
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Wedad Mawkili
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.M.J.); (A.H.); (W.M.); (S.A.); (A.M.Q.); (A.S.S.A.); (H.A.S.)
| | - Basher M. Abdlasaed
- Department of Biology, Faculty of Education, Alasmaray Islamic University, Zliten 218521, Libya;
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.M.J.); (A.H.); (W.M.); (S.A.); (A.M.Q.); (A.S.S.A.); (H.A.S.)
| | - Abdullah M. Qahl
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.M.J.); (A.H.); (W.M.); (S.A.); (A.M.Q.); (A.S.S.A.); (H.A.S.)
- Pharmacy Department, Jazan University Hospital, Jazan University, Jazan 45142, Saudi Arabia
| | - Ahmad S. S. Alrashah
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.M.J.); (A.H.); (W.M.); (S.A.); (A.M.Q.); (A.S.S.A.); (H.A.S.)
- Pharmacy Administration, Ministry of Health, Health Affairs General Directorate, Najran 66251, Saudi Arabia
| | - Hamad Al Shahi
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.M.J.); (A.H.); (W.M.); (S.A.); (A.M.Q.); (A.S.S.A.); (H.A.S.)
| |
Collapse
|
6
|
Ghaderpour S, Keyhanmanesh R, Hamidian G, Heydari H, Ghiasi F. The effects of voluntary exercise on histological and stereological changes of sciatic nerve, nitric oxide levels, and peripheral neuropathy caused by high-fat diet-induced type 2 diabetes in male rats. Behav Brain Res 2023; 451:114507. [PMID: 37236269 DOI: 10.1016/j.bbr.2023.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
This research was conducted to investigate the possible beneficial impacts of voluntary exercise on sciatic tissue, nitric oxide levels, stereological changes, and peripheral neuropathy caused by "high-fat-diet (HFD)"-induced "type 2 diabetes mellitus (T2DM)" in male rats. Rats were put into four experimental groups at random: "healthy control (C), voluntary exercise (VE), diabetic (D), and diabetic rats treated by voluntary exercise (VED)"; each group contain eight animals. Animals in VE and VED groups performed "voluntary exercise (VE)" for ten weeks. Animals in D and VED groups became diabetic after receiving a HFD for four weeks and an intraperitoneal injection (IP) of "streptozotocin (STZ)" (35 mg/kg). In order to evaluate mechanical and thermal algesia, hot plate, tail withdrawal, and von Frey tests were carried out. At the end of this study, serum NOx levels were assessed, and histological and stereological analyses were conducted. Mechanical nociceptive thresholds indicated considerable reduction (p < 0.001) which was followed by a remarkable enhance (p < 0.001) in thermal nociceptive threshold of D group. Tissue changes were also seen in sciatic nerve of D group. Voluntary exercise modified thermal and mechanical sensitivity in diabetic rats. It also improved the damaged sciatic nerve in diabetic animals.
Collapse
Affiliation(s)
- Saber Ghaderpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hamed Heydari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Ghiasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Therapeutic Potential of Capsaicin against Cyclophosphamide-Induced Liver Damage. J Clin Med 2023; 12:jcm12030911. [PMID: 36769559 PMCID: PMC9917381 DOI: 10.3390/jcm12030911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Cyclophosphamide (CPM) is a classical alkylating agent used in different cancer chemotherapy regimens and is restricted due to severe adverse effects, including hepatotoxicity. Natural or plant-derived antioxidants such as capsaicin were utilized in this study to examine the hepatoprotective benefits against cyclophosphamide-induced hepatotoxicity. The rats were divided into five groups: a normal control group, a toxic group (CPM), an intraperitoneal injection of a single dose of 200 mg/kg b.w. on the fourth day, a pretreated group with two doses of CPS (10 mg and 20 mg/kg b.w.) orally for six consecutive days, and an intraperitoneal administration of 200 mg/kg b.w. on the fourth day of treatment. The fifth group was administered with the highest dose of CPS (20 mg/kg b.w.) orally for six consecutive days. After 24 h of administration of CPS, the rats were anesthetized, blood was collected, and the serum enzyme toxicity was evaluated. After the blood sampling and euthanasia of all the animals, the liver was isolated for further toxicity and histopathological examination. The results revealed that serum liver markers (AST, ALT, ALP, BLI) significantly increased after CPM administration, but were subsequently restored after CPS treatment with both doses. In addition, lipid peroxidation (MDA), inflammatory cytokines (IL-1β, TNF-α), and apoptotic markers (Caspase-3) increased, and antioxidant enzymes (GSH, CAT, SOD) were significantly decreased after CPM administration, and it was re-established by CPS treatment. However, CPS effectively protected against the CPM-induced histopathological architects of liver tissues. In conclusion, CPS attenuates CPM-induced hepatotoxicity via modulating oxidative stress, apoptotic signals, and cytokine pathway. Therefore, CPS could play a significant role as a supplement during the chemotherapy of patients.
Collapse
|
8
|
Alam MF, Hijri SI, Alshahrani S, Alqahtani SS, Jali AM, Ahmed RA, Adawi MM, Algassmi SM, Shaheen ES, Moni SS, Anwer T. Zingerone Attenuates Carfilzomib-Induced Cardiotoxicity in Rats through Oxidative Stress and Inflammatory Cytokine Network. Int J Mol Sci 2022; 23:ijms232415617. [PMID: 36555257 PMCID: PMC9779556 DOI: 10.3390/ijms232415617] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Carfilzomib (CFZ) is an anticancer medication acting as a selective proteasome inhibitor. However, it can cause cardiovascular problems, increasing mortality and morbidity. This study aimed to investigate whether zingerone (ZRN) could help reduce carfilzomib-induced cardiotoxicity in Wistar albino rats. Rats were divided into five groups of six animals each. The first group received normal saline as a control (NC); the second group received multiple doses (six) of CFZ (4 mg/kg) intraperitoneally (IP); the third and fourth groups received zingerone (50 mg/kg and 100 mg/kg oral) along with six doses of CFZ for 16 days; and the fifth group received only 100 mg/kg zingerone orally. Hematological, biochemical, oxidative stress, and histopathological studies confirmed the findings of CFZ-induced cardiotoxicity. We found that ZRN significantly attenuated the effects of CFZ on oxidative stress by enhancing the antioxidant properties of glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). Additionally, ZRN reduces inflammatory cytokines and apoptotic markers, such as IL-1β, IL-6, TNFα, and caspase-3. Overall, zingerone prevents carfilzomib-induced cardiotoxicity in rats, as evidenced by histopathological studies.
Collapse
Affiliation(s)
- Mohammad Firoz Alam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence:
| | - Sami I. Hijri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saad S. Alqahtani
- Department of Pharmacy Practice, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Pharmacy Practice Research Unit, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Rayan A. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mansour M. Adawi
- Department of Histopathology, King Fahad Hospital, Jazan 45142, Saudi Arabia
| | - Sameeh M. Algassmi
- Department of Histopathology, King Fahad Hospital, Jazan 45142, Saudi Arabia
| | - Emad Sayed Shaheen
- Department of Animal House, Medical Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Sivakumar S. Moni
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Tarique Anwer
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
9
|
Drug repurposing – A search for novel therapy for the treatment of diabetic neuropathy. Biomed Pharmacother 2022; 156:113846. [DOI: 10.1016/j.biopha.2022.113846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
|
10
|
Alshahrani S, Ali Thubab HM, Ali Zaeri AM, Anwer T, Ahmed RA, Jali AM, Qadri M, Nomier Y, Moni SS, Alam MF. The Protective Effects of Sesamin against Cyclophosphamide-Induced Nephrotoxicity through Modulation of Oxidative Stress, Inflammatory-Cytokines and Apoptosis in Rats. Int J Mol Sci 2022; 23:ijms231911615. [PMID: 36232918 PMCID: PMC9569534 DOI: 10.3390/ijms231911615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Cyclophosphamide is an anticancer drug with a wide spectrum of clinical uses, but its typical side effects are multiple complications, including nephron toxicity. The possible molecular mechanism of the nephroprotective action of sesamin (SM) against cyclophosphamide (CP) induced renal toxicity was investigated in rats by understanding oxidative stress and inflammatory cytokines. In this study, rats were arbitrarily grouped into the following four groups: a normal control group (CNT); a CP-induced toxicity group; a treatment group with two doses of sesamin SM10 and SM20; a group with sesamin (SM20) alone. A single dose of CP (150 mg/kg body, i.p.) was administered on day 4 of the experiments, while treatment with SM was given orally for seven days from day 1. The group treated with SM showed a significant protective effect against CP-induced renal damage in rats. Treatment with SM significantly increased the antioxidant enzymes (GSH, CAT, and SOD) and reduced malondialdehyde (MDA) levels. Thus, SM significantly overcame the elevated kidney function markers (creatinine, blood urea nitrogen, and uric acid) by attenuating oxidative stress. The SM also significantly reduced the elevated cytokines (IL-1β and TNFα) and caspase-3 in the treated group. Histopathological studies confirmed the protective effect of sesamin (SM) on CP-induced nephrotoxicity. In conclusion, the current findings support the nephroprotective effect of sesamin against CP-induced renal injury.
Collapse
Affiliation(s)
- Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence: (S.A.); (M.F.A.)
| | - Hani M. Ali Thubab
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulrahman M. Ali Zaeri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Tarique Anwer
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Rayan A. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Marwa Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Yousra Nomier
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Sivakumar S. Moni
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad F. Alam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence: (S.A.); (M.F.A.)
| |
Collapse
|
11
|
Kharyal A, Ranjan S, Jaswal S, Parveen D, Gupta GD, Thareja S, Verma SK. Research Progress on 2,4-Thiazolidinedione and 2-Thioxo-4-thiazolidinone Analogues as Aldose Reductase Inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Pathak R, Sachan N, Chandra P. Mechanistic approach towards diabetic neuropathy screening techniques and future challenges: A review. Biomed Pharmacother 2022; 150:113025. [PMID: 35658222 DOI: 10.1016/j.biopha.2022.113025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetic neuropathy, also called peripheral diabetic neuropathy (PDN), is among the most significant diabetes health consequences, alongside diabetic nephropathy, diabetic cardiomyopathy and diabetic retinopathy. Diabetic neuropathy is the existence of signs and indications of peripheral nerve damage in patients with diabetes after other causes have been governed out. Diabetic neuropathy is a painful and severe complication of diabetes that affects roughly 20% of people. The development of diabetic neuropathy is regulated by blood arteries that nourish the peripheral nerves and metabolic problems such as increased stimulation of polyol pathway, loss of myo-inositol and enhanced non-enzymatic glycation. It's divided into four types based on where neurons are most affected: autonomic, peripheral, proximal, and focal, with each kind presenting different symptoms like numbing, gastrointestinal disorders, and heart concerns. Pharmacotherapy for neuropathic pain is complex and for many patients, effective treatment is lacking; as a result, scientific proof recommendations are crucial. As a result, the current demand is to give the most vital medications or combinations of drugs that work directly on the nerves to help diabetic neuropathy patients feel less pain without causing any adverse effects. In diabetic neuropathy research, animal models are ubiquitous, with rats and mice being the most typically chosen for various reasons. This review covers the epidemiology, clinical features, pathology, clinical symptom, mechanism of diabetic neuropathy development, diagnosis, screening models of animals, diabetic neuropathy pharmacotherapy.
Collapse
Affiliation(s)
- Rashmi Pathak
- School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput Delhi Road (NH-24), Moradabad, UP 244102, India
| | - Neetu Sachan
- School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput Delhi Road (NH-24), Moradabad, UP 244102, India
| | - Phool Chandra
- School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput Delhi Road (NH-24), Moradabad, UP 244102, India.
| |
Collapse
|
13
|
Nephroprotective effects of 4-4(hydroxyl-3 methoxyphenyl)-2-butane against sodium tellurite induced acute kidney dysfunction by attenuating oxidative stress and inflammatory cytokines in rats. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Abstract
Diabetic neuropathy is a commonly occurring complication of diabetes that affects hundreds of millions of patients worldwide. Patients suffering from diabetic neuropathy experience abnormal sensations and have damage in their peripheral nerve axons as well as myelin, a tightly packed Schwann cell sheath that wraps around axons to provide insulation and increases electrical conductivity along the nerve fibers. The molecular events underlying myelin damage in diabetic neuropathy are largely unknown, and there is no efficacious treatment for the disease. The current study, using a diabetic mouse model and human patient nerve samples, uncovered a molecular mechanism underlying myelin sheath damage in diabetic neuropathy and provides a potential treatment strategy for the disease. Demyelination is a pathological feature of diabetic neuropathy, a common and painful complication of diabetes, yet the mechanisms underlying diabetes-induced demyelination remain unclear. Here, we show that targeting mixed lineage kinase domain–like protein (MLKL), a protein critical in necroptosis, using Schwann cell–specific genetic knockout, S441A single–amino acid knockin mutation, or pharmacological inhibition all blocked myelin sheath decompaction and prevented the decrease of nerve conduction velocity in streptozotocin-induced diabetic mice. The decompaction of the myelin sheaths of sural nerves was observed in biopsy samples from diabetic patients, and the MLKL-mediated myelin breakdown was activated in human diabetic neuropathy patients. Our study establishes a direct myelin degradation–related role for MLKL in diabetic neuropathy and defines MLKL as a druggable target for developing agents to prevent or treat diabetic neuropathy.
Collapse
|
15
|
Strath LJ, Sorge RE. Racial Differences in Pain, Nutrition, and Oxidative Stress. Pain Ther 2022; 11:37-56. [PMID: 35106711 PMCID: PMC8861224 DOI: 10.1007/s40122-022-00359-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Investigating the disproportionate rates of chronic pain and their related comorbidities between Black and non-Hispanic White (White) individuals is a growing area of interest, both in the healthcare community and in general society. Researchers have identified racial differences in chronic pain prevalence and severity, but still very little is known about the mechanisms underlying them. Current explanations for these differences have primarily focused on socioeconomic status and unequal healthcare between races as causal factors. Whereas these factors are informative, a racial gap still exists between Black and White individuals when these factors are controlled for. One potential cause of this racial gap in chronic pain is the differences in nutrition and dietary intake between groups. Certain foods play a key role in the inflammatory and oxidative stress pathways in the human body and could potentially influence the severity of the pain experience. Here, we review the previous literature on the surrounding topics and propose a potential mechanism to explain racial differences in the chronic pain population, based on established racial differences in diet and oxidative stress.
Collapse
Affiliation(s)
- Larissa J Strath
- Department of Psychology, The University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Robert E Sorge
- Department of Psychology, The University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA.
| |
Collapse
|
16
|
Durán AM, Beeson WL, Firek A, Cordero-MacIntyre Z, De León M. Dietary Omega-3 Polyunsaturated Fatty-Acid Supplementation Upregulates Protective Cellular Pathways in Patients with Type 2 Diabetes Exhibiting Improvement in Painful Diabetic Neuropathy. Nutrients 2022; 14:nu14040761. [PMID: 35215418 PMCID: PMC8876723 DOI: 10.3390/nu14040761] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Omega-3 polyunsaturated fatty acids (PUFAs) have been proposed to improve chronic neuroinflammatory diseases in peripheral and central nervous systems. For instance, docosahexaenoic acid (DHA) protects nerve cells from noxious stimuli in vitro and in vivo. Recent reports link PUFA supplementation to improving painful diabetic neuropathy (pDN) symptoms, but cellular mechanisms responsible for this therapeutic effect are not well understood. The objective of this study is to identify distinct cellular pathways elicited by dietary omega-3 PUFA supplementation in patients with type 2 diabetes mellitus (T2DM) affected by pDN. Methods: Forty volunteers diagnosed with type 2 diabetes were enrolled in the “En Balance-PLUS” diabetes education study. The volunteers participated in weekly lifestyle/nutrition education and daily supplementation with 1000 mg DHA and 200 mg eicosapentaenoic acid. The Short-Form McGill Pain Questionnaire validated clinical determination of baseline and post-intervention pain complaints. Laboratory and untargeted metabolomics analyses were conducted using blood plasma collected at baseline and after three months of participation in the dietary regimen. The metabolomics data were analyzed using random forest, hierarchical clustering, ingenuity pathway analysis, and metabolic pathway mapping. Results: The data show that metabolites involved in oxidative stress and glutathione production shifted significantly to a more anti-inflammatory state post supplementation. Example of these metabolites include cystathionine (+90%), S-methylmethionine (+9%), glycine cysteine-glutathione disulfide (+157%) cysteinylglycine (+19%), glutamate (−11%), glycine (+11%), and arginine (+13.4%). In addition, the levels of phospholipids associated with improved membrane fluidity such as linoleoyl-docosahexaenoyl-glycerol (18:2/22:6) (+253%) were significantly increased. Ingenuity pathway analysis suggested several key bio functions associated with omega-3 PUFA supplementation such as formation of reactive oxygen species (p = 4.38 × 10−4, z-score = −1.96), peroxidation of lipids (p = 2.24 × 10−5, z-score = −1.944), Ca2+ transport (p = 1.55 × 10−4, z-score = −1.969), excitation of neurons (p = 1.07 ×10−4, z-score = −1.091), and concentration of glutathione (p = 3.06 × 10−4, z-score = 1.974). Conclusion: The reduction of pro-inflammatory and oxidative stress pathways following dietary omega-3 PUFA supplementation is consistent with the promising role of these fatty acids in reducing adverse symptoms associated with neuroinflammatory diseases and painful neuropathy.
Collapse
Affiliation(s)
- Alfonso M. Durán
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (A.M.D.); (W.L.B.); (Z.C.-M.)
| | - W. Lawrence Beeson
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (A.M.D.); (W.L.B.); (Z.C.-M.)
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
| | - Anthony Firek
- Comparative Effectiveness and Clinical Outcomes Research Center, Riverside University Health System Medical Center, Moreno Valley, CA 92555, USA;
| | - Zaida Cordero-MacIntyre
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (A.M.D.); (W.L.B.); (Z.C.-M.)
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
| | - Marino De León
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (A.M.D.); (W.L.B.); (Z.C.-M.)
- Correspondence: ; Tel.: +1-909-558-9474
| |
Collapse
|
17
|
Srivastava B, Sen S, Bhakta S, Sen K. Effect of caffeine on the possible amelioration of diabetic neuropathy: A spectroscopic study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120322. [PMID: 34509062 DOI: 10.1016/j.saa.2021.120322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/07/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
IMPORTANCE One of the consequential and alarming complications of diabetes mellitus is diabetic neuropathy (DN). DN is assured to be caused chiefly by excess sorbitol levels in the body. The harmful consequences of DN alike peripheral nerve damage with extremity ulcers may be dodged with timely detection and treatment. The therapeutic methods for DN are scarce and expensive. Therefore economic and user friendly methodologies to prevent acquiring the disease need proper attention. OBJECTIVE The present research has been conducted (1) to analyse the levels of sorbitol in diabetic blood samples and compare them with non-diabetic ones and (2) to study the reduction in sorbitol levels upon addition of an important biochemical compounds caffeine in both sample groups. RESEARCH DESIGN, SETTING, PARTICIPANTS AND METHOD Sorbitol-caffeine interaction analysis of blood samples of 16 patients with type 2 diabetes from KPC Medical College, Kolkata, India was made. The spectroscopic analysis and their interpretations were compared with 16 healthy subjects. MAIN OUTCOMES AND MEASURES Present work describes that caffeine can be helpful in reducing the sorbitol level in diabetics, so the chances of development and progression of diabetic neuropathy can be controlled with the introduction of caffeine. RESULTS A total number of 32 blood samples of patients (aged 35-70 years); mean age ranges were 52.06 ± 2.68 and 53.50 ± 2.66 years for non-diabetic and diabetic ones respectively, glucose and sorbitol screening examination were done by enzymatic methodologies where concentrations were assessed by means of either absorption or fluorescence spectroscopy. The calibration range was 18.2-1119.3 mg/dL (Linear regression analysis r2 = 0.996). The sensitivity of this screening program in detecting DN with the healthy adults has been inquired and found efficient. Results of fasting insulin analyses have also been analysed for HOMA-IR (homeostasis model assessment - insulin resistance) and HOMA-B (homeostasis model assessment - pancreatic β cell function) values. Statistical significance of the results in non-diabetic and diabetic groups were performed and found to be statistically significant. CONCLUSIONS We have defined the relationship between blood glucose level, insulin level, sorbitol and caffeine in human body and utilized them in the plausible remediation of DN.
Collapse
Affiliation(s)
- Bhavya Srivastava
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Souvik Sen
- KPC Medical College and Hospital, 1F, Raja Subodh Chandra Mullick Road, Jadavpur, Kolkata 700032, India
| | - Santanu Bhakta
- KPC Medical College and Hospital, 1F, Raja Subodh Chandra Mullick Road, Jadavpur, Kolkata 700032, India
| | - Kamalika Sen
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
18
|
Raghav A, Singh M, Jeong GB, Giri R, Agarwal S, Kala S. New horizons of biomaterials in treatment of nerve damage in diabetes mellitus: A translational prospective review. Front Endocrinol (Lausanne) 2022; 13:1036220. [PMID: 36387914 PMCID: PMC9647066 DOI: 10.3389/fendo.2022.1036220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Peripheral nerve injury is a serious concern that leads to loss of neuronal communication that impairs the quality of life and, in adverse conditions, causes permanent disability. The limited availability of autografts with associated demerits shifts the paradigm of researchers to use biomaterials as an alternative treatment approach to recover nerve damage. PURPOSE The purpose of this study is to explore the role of biomaterials in translational treatment approaches in diabetic neuropathy. STUDY DESIGN The present study is a prospective review study. METHODS Published literature on the role of biomaterials in therapeutics was searched for. RESULTS Biomaterials can be implemented with desired characteristics to overcome the problem of nerve regeneration. Biomaterials can be further exploited in the treatment of nerve damage especially associated with PDN. These can be modified, customized, and engineered as scaffolds with the potential of mimicking the extracellular matrix of nerve tissue along with axonal regeneration. Due to their beneficial biological deeds, they can expedite tissue repair and serve as carriers of cellular and pharmacological treatments. Therefore, the emerging research area of biomaterials-mediated treatment of nerve damage provides opportunities to explore them as translational biomedical treatment approaches. CONCLUSIONS Pre-clinical and clinical trials in this direction are needed to establish the effective role of several biomaterials in the treatment of other human diseases.
Collapse
Affiliation(s)
- Alok Raghav
- Multidisciplinary Research Unit, Department of Health Research, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
- *Correspondence: Alok Raghav,
| | - Manish Singh
- Multidisciplinary Research Unit, Department of Health Research, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
- Department of Neurosurgery, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
| | - Goo-Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, Incheon, South Korea
| | - Richa Giri
- Multidisciplinary Research Unit, Department of Health Research, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
- Kamlapat Singhania (KPS) Institute of Medicine, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
| | - Saurabh Agarwal
- Multidisciplinary Research Unit, Department of Health Research, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
- Kamlapat Singhania (KPS) Institute of Medicine, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
| | - Sanjay Kala
- Department of Surgery, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
| |
Collapse
|
19
|
Tripathi P, Alshahrani S. Mitigation of ILβ-1, ILβ-6, TNF-α, and markers of apoptosis by ursolic acid against cisplatin-induced oxidative stress and nephrotoxicity in rats. Hum Exp Toxicol 2021; 40:S397-S405. [PMID: 34569348 DOI: 10.1177/09603271211045953] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Ursolic acid (UA) is a natural pentacyclic triterpenoid that is known for its benefits under several pathological conditions. Cisplatin (CP) is among the most preferred chemotherapeutic agents; however, its nephrotoxicity limits its clinical utility. PURPOSE This study was aimed to determine the role of UA in the reduction of CP-induced nephrotoxicity and mitigation of pro-inflammatory cytokines and apoptosis in a rat model. METHODOLOGY Male Wistar rats were randomized into vehicle control, CP (7.5 mg/kg), UA 10 mg/kg, and CP with UA 5 and 10 mg/kg groups. Kidney and blood samples were collected for assessment of renal function, measurement of pro-inflammatory cytokines, apoptosis markers, antioxidant activity, and tissue histology. RESULTS CP significantly increased the levels of serum Cr, BUN, and uric acid; it also induced histological damage reflecting the pathophysiology observed during nephrotoxicity. CP has also shown its pro-oxidant activity in kidney tissue because CP decreased the levels of GSH, SOD, and CAT; it increased the lipid peroxidation as measured by MDA content. In addition, CP significantly upregulated the activity of pro-inflammatory cytokines and expression of apoptotic markers, that is, there were increased levels of IL-1β, IL-6, TNF-α, caspase-3, and caspase-9. Two weeks of continuous treatment of UA showed significant recovery against CP-induced nephrotoxicity; UA decreased the levels of Cr, BUN, and uric acid and ameliorated histological damage. UA also downregulated the activities of IL-1β, IL-6, and TNF-α as well as expression of caspase-3 and caspase-9. Furthermore, CP-induced oxidative stress that was antagonized by UA-the levels of GSH, SOD, and CAT were significantly increased while MDA content was decreased. CONCLUSIONS UA has a protective effect against CP-induced nephrotoxicity, which may be due to its antioxidant activity and mitigation of ILβ-1, ILβ-6, TNF-α, and markers of apoptosis.
Collapse
Affiliation(s)
- Pankaj Tripathi
- Department of Pharmacology and Toxicology, College of Pharmacy, 123285Jazan University, Jazan, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, 123285Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
20
|
Jaroslawska J, Korytko A, Zglejc-Waszak K, Antonowski T, Pomianowski AS, Wasowicz K, Wojtkiewicz J, Juranek JK. Peripheral Neuropathy Presents Similar Symptoms and Pathological Changes in Both High-Fat Diet and Pharmacologically Induced Pre- and Diabetic Mouse Models. Life (Basel) 2021; 11:life11111267. [PMID: 34833143 PMCID: PMC8618965 DOI: 10.3390/life11111267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022] Open
Abstract
The objective of the study was to compare the effects of experimentally induced type 1 or type 2 diabetes (T1D or T2D) on the functional, structural and biochemical properties of mouse peripheral nerves. Eight-week-old C57BL/6 mice were randomly assigned into three groups, including the control (CTRL, chow-fed), STZ (streptozotocin (STZ)-injected), and HFD (high-fat diet (HFD)-fed) group. After 18-weeks of experimental treatment, HFD mice had higher body weights and elevated levels of plasma lipids, while STZ mice developed hyperglycemia. STZ-treated mice, after an extended period of untreated diabetes, developed motor and sensory nerve conduction-velocity deficits. Moreover, relative to control fibers, pre- and diabetic axons were lower in number and irregular in shape. Animals from both treatment groups manifested a pronounced overexpression of nNOS and a reduced expression of SOD1 proteins in the sciatic nerve, indicating oxidative–nitrosative stress and ineffective antioxidant protection in the peripheral nervous system of these mice. Collectively, STZ- and HFD-treated mice revealed similar characteristics of peripheral nerve damage, including a number of morphological and electrophysiological pathologies in the sciatic nerve. While hyperglycemia is a large component of diabetic neuropathy pathogenesis, the non-hyperglycemic effects of diabetes, including dyslipidemia, may also be of importance in the development of this condition.
Collapse
Affiliation(s)
- Julia Jaroslawska
- Department of Biological Functions of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
- Correspondence: (J.J.); (J.K.J.)
| | - Agnieszka Korytko
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (A.K.); (K.Z.-W.); (T.A.); (J.W.)
| | - Kamila Zglejc-Waszak
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (A.K.); (K.Z.-W.); (T.A.); (J.W.)
| | - Tomasz Antonowski
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (A.K.); (K.Z.-W.); (T.A.); (J.W.)
| | - Andrzej S. Pomianowski
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-718 Olsztyn, Poland;
| | - Krzysztof Wasowicz
- Department of Pathophysiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-718 Olsztyn, Poland;
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (A.K.); (K.Z.-W.); (T.A.); (J.W.)
| | - Judyta K. Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (A.K.); (K.Z.-W.); (T.A.); (J.W.)
- Correspondence: (J.J.); (J.K.J.)
| |
Collapse
|
21
|
Abe K, Maeda Y, Matsuzaki C, Yokomizo H, Inoue T, Sonoda N, Ogawa Y, Inoguchi T. Bilirubin is inversely related to diabetic peripheral neuropathy assessed by sural nerve conduction study. J Diabetes Investig 2021; 12:2028-2035. [PMID: 33949141 PMCID: PMC8565409 DOI: 10.1111/jdi.13568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/27/2022] Open
Abstract
AIMS/INTRODUCTION Diagnosis of diabetic peripheral neuropathy (DPN) depends on subjective findings, certain investigations for DPN risks have not been performed enough. Bilirubin protects against vascular complications by reducing oxidative stress in diabetes, but is not fully tested for DPN. This study aimed to evaluate sural nerve conduction impairments (SNCI) as an objective DPN marker and the contribution of bilirubin to SNCI. MATERIALS AND METHODS Using DPN-Check® , SNCI was defined as a decline of amplitude potential or conduction velocity below the normal limit in 150 inpatients with diabetes. The correlations between SNCI and conventional DPN diagnosis criteria, the incidence of diabetic retinopathy/nephropathy, biomarkers for atherosclerosis, cardiac function by ultrasonic cardiogram, and bilirubin were statistically tested, followed by the comparison of logistic regression models for SNCI to find confounders with bilirubin. RESULTS The incidence of SNCI was 72.0%. The sensitivity and specificity of SNCI for DPN prediagnosis by simplified criteria were 54.6 and 90.5%, respectively, and similarly corresponded with diabetic retinopathy and nephropathy (sensitivity 57.4 and 50.0%, respectively). SNCI significantly related to diabetes duration, declined estimated glomerular filtration rate, albuminuria and total bilirubin. SNCI incidence was attenuated in the higher bilirubin tertiles (89.8/65.3/54.8%, P < 0.001). Bilirubin was an independent inverse risk factor for SNCI, even after adjustment by known risk factors for DPN and markers for microvascular complications. CONCLUSIONS SNCI is a comprehensive marker for diabetic complications. We first showed the independent inverse relationship between bilirubin and SNCI through the independent pathway with other complications, provably reducing oxidative stress, as previously reported.
Collapse
Affiliation(s)
- Kentaro Abe
- Department of Medicine and Bioregulatory ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Diabetes, Endocrinology and MetabolismNational Hospital Organization Kokura Medical CenterKitakyusyuJapan
| | | | - Chitose Matsuzaki
- Department of Endocrine, Metabolism and DiabetesKyushu University HospitalFukuokaJapan
| | - Hisashi Yokomizo
- Department of Endocrine, Metabolism and DiabetesKyushu University HospitalFukuokaJapan
| | - Tomoaki Inoue
- Department of Endocrine, Metabolism and DiabetesKyushu University HospitalFukuokaJapan
| | - Noriyuki Sonoda
- Department of Medicine and Bioregulatory ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Endocrine, Metabolism and DiabetesKyushu University HospitalFukuokaJapan
| | | |
Collapse
|
22
|
Luna R, Talanki Manjunatha R, Bollu B, Jhaveri S, Avanthika C, Reddy N, Saha T, Gandhi F. A Comprehensive Review of Neuronal Changes in Diabetics. Cureus 2021; 13:e19142. [PMID: 34868777 PMCID: PMC8628358 DOI: 10.7759/cureus.19142] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2021] [Indexed: 12/11/2022] Open
Abstract
There has been an exponential rise in diabetes mellitus (DM) cases on a global scale. Diabetes affects almost every system of the body, and the nervous system is no exception. Although the brain is dependent on glucose, providing it with the energy required for optimal functionality, glucose also plays a key role in the regulation of oxidative stress, cell death, among others, which furthermore contribute to the pathophysiology of neurological disorders. The variety of biochemical processes engaged in this process is only matched by the multitude of clinical consequences resulting from it. The wide-ranging effects on the central and peripheral nervous system include, but are not limited to axonopathies, neurodegenerative diseases, neurovascular diseases, and general cognitive impairment. All language search was conducted on MEDLINE, COCHRANE, EMBASE, and GOOGLE SCHOLAR till September 2021. The following search strings and Medical Subject Headings (MeSH terms) were used: "Diabetes Mellitus," "CNS," "Diabetic Neuropathy," and "Insulin." We explored the literature on diabetic neuropathy, covering its epidemiology, pathophysiology with the respective molecular pathways, clinical consequences with a special focus on the central nervous system and finally, measures to prevent and treat neuronal changes. Diabetes is slowly becoming an epidemic, rapidly increasing the clinical burden on account of its wide-ranging complications. This review focuses on the neuronal changes occurring in diabetes such as the impact of hyperglycemia on brain function and structure, its association with various neurological disorders, and a few diabetes-induced peripheral neuropathic changes. It is an attempt to summarize the relevant literature about neuronal consequences of DM as treatment options available today are mostly focused on achieving better glycemic control; further research on novel treatment options to prevent or delay the progression of neuronal changes is still needed.
Collapse
Affiliation(s)
- Rudy Luna
- Neurofisiología, Instituto Nacional de Neurologia y Neurocirugia, CDMX, MEX
| | | | | | | | - Chaithanya Avanthika
- Medicine and Surgery; Pediatrics, Karnataka Institute of Medical Sciences, Hubli, IND
| | - Nikhil Reddy
- Internal Medicine, Kamineni Academy of Medical Science and Research Centre, Hyderabad, IND
| | - Tias Saha
- Internal Medicine, Diabetic Association Medical College, Faridpur, BGD
| | - Fenil Gandhi
- Medicine, Shree Krishna Hospital, Anand, IND
- Research Project Associate, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
23
|
Sencar L, Coşkun G, Şaker D, Sapmaz T, Kara S, Çelenk A, Polat S, Yılmaz DM, Dağlıoğlu YK, Polat S. Effects of Theranekron and alpha-lipoic acid combined treatment on GAP-43 and Krox-20 gene expressions and inflammation markers in peripheral nerve injury. Ultrastruct Pathol 2021; 45:167-181. [PMID: 34184615 DOI: 10.1080/01913123.2021.1923600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Peripheral nerve injury (PNI) is a major health problem that results in loss of motor and sensory functions. In treatment of PNI, various methods such as anastomosis, nerve grafts, nonneural tissue grafts, and nerve conduits are applied. In the present study, it was aimed to investigate the effects of Theranekron and Alpha-lipoic acid (ALA) combined treatment on nerve healing in experimental PNI by using histomorphometric, electron microscopic, immunohistochemical and molecular biological methods. Sixty-two Wistar rats were divided into six groups; the normal control group, sham operation group, experimental control group having a crush type injury with no treatment, Theranekron treatment group, ALA treatment group and Theranekron+ALA combined treatment group. Sciatic nerve tissue samples were obtained on days 1, 7 and 14 following injury in all groups. GAP-43 expression was upregulated in all PNI received groups compared to the control group. Krox-20 expression was downregulated in all groups that received PNI compared to the control group. While intensely positive TNF-α and IL-6 expressions were observed up to the 1st to the 14th day for the experimental control group, these expressions were seen as "weakly positive" in the treatment groups from the 1st day to the 14th day. The number of myelinated fibers was higher in the control and sham operation groups. Additionally, the number of myelinated nerve fibers increased in the combined treatment group. In conclusion, these findings suggest that combined therapy of Theranekron and ALA promotes structural recovery and it should be considered as an effective treatment protocol following PNI.
Collapse
Affiliation(s)
- Leman Sencar
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Gülfidan Coşkun
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Dilek Şaker
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Tuğçe Sapmaz
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Samet Kara
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Alper Çelenk
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Sema Polat
- Department of Anatomy, Faculty of Medicine, Çukurova University, Adana, Turkey
| | | | - Y Kenan Dağlıoğlu
- Medical Sciences and Experimental Research and Application Center of Çukurova University, Adana, Turkey
| | - Sait Polat
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
24
|
Elbadawy AM, Abd Elmoniem RO, Elsayed AM. Alpha lipoic acid and diabetes mellitus: potential effects on peripheral neuropathy and different metabolic parameters. ALEXANDRIA JOURNAL OF MEDICINE 2021. [DOI: 10.1080/20905068.2021.1907961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
25
|
Xu X, Xu DS. Prospects for the application of transcranial magnetic stimulation in diabetic neuropathy. Neural Regen Res 2021; 16:955-962. [PMID: 33229735 PMCID: PMC8178790 DOI: 10.4103/1673-5374.297062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Encouraging results have been reported for the use of transcranial magnetic stimulation-based nerve stimulation in studies of the mechanisms of neurological regulation, nerve injury repair, and nerve localization. However, to date, there are only a few reviews on the use of transcranial magnetic stimulation for diabetic neuropathy. Patients with diabetic neuropathy vary in disease progression and show neuropathy in the early stage of the disease with mild symptoms, making it difficult to screen and identify. In the later stage of the disease, irreversible neurological damage occurs, resulting in treatment difficulties. In this review, we summarize the current state of diabetic neuropathy research and the prospects for the application of transcranial magnetic stimulation in diabetic neuropathy. We review significant studies on the beneficial effects of transcranial magnetic stimulation in diabetic neuropathy treatment, based on the outcomes of its use to treat neurodegeneration, pain, blood flow change, autonomic nervous disorders, vascular endothelial injury, and depression. Collectively, the studies suggest that transcranial magnetic stimulation can produce excitatory/inhibitory stimulation of the cerebral cortex or local areas, promote the remodeling of the nervous system, and that it has good application prospects for the localization of the injury, neuroprotection, and the promotion of nerve regeneration. Therefore, transcranial magnetic stimulation is useful for the screening and early treatment of diabetic neuropathy. Transcranial magnetic stimulation can also alleviate pain symptoms by changing the cortical threshold and inhibiting the conduction of sensory information in the thalamo-spinal pathway, and therefore it has therapeutic potential for the treatment of pain and pain-related depressive symptoms in patients with diabetic neuropathy. Additionally, based on the effect of transcranial magnetic stimulation on local blood flow and its ability to change heart rate and urine protein content, transcranial magnetic stimulation has potential in the treatment of autonomic nerve dysfunction and vascular injury in diabetic neuropathy. Furthermore, oxidative stress and the inflammatory response are involved in the process of diabetic neuropathy, and transcranial magnetic stimulation can reduce oxidative damage. The pathological mechanisms of diabetic neuropathy should be further studied in combination with transcranial magnetic stimulation technology.
Collapse
Affiliation(s)
- Xi Xu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Dong-Sheng Xu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Ben Y, Hao J, Zhang Z, Xiong Y, Zhang C, Chang Y, Yang F, Li H, Zhang T, Wang X, Xu Q. Astragaloside IV Inhibits Mitochondrial-Dependent Apoptosis of the Dorsal Root Ganglion in Diabetic Peripheral Neuropathy Rats Through Modulation of the SIRT1/p53 Signaling Pathway. Diabetes Metab Syndr Obes 2021; 14:1647-1661. [PMID: 33883914 PMCID: PMC8055373 DOI: 10.2147/dmso.s301068] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To investigate the effect of astragaloside IV (AS-IV) on mitochondrial-dependent apoptosis in the dorsal root ganglion of diabetic peripheral neuropathy (DPN) rats through the SIRT1/p53 pathway. METHODS Diabetic rat model was induced by high-carbohydrate/high-fat diet and intraperitoneal injection of STZ. Diabetic rats were divided into three groups (n =16 per group): DPN group, AS-IV group (60mg/kg/d) and α-lipoic acid (ALA) group (60mg/kg/d). Weight and blood glucose levels were monitored every 4 weeks for 12 weeks. DPN was evaluated using the Von Frey Filaments Test and nerve conduction velocity. The dorsal root ganglia of rats were isolated and the pathological changes of mitochondria were observed by electron microscopy. The activity of mitochondrial electron transport chain complex, mitochondrial membrane potential, malonaldehyde (MDA) and glutathione (GSH) levels were measured. Neural apoptosis was detected using the Terminal Deoxynucleotidyl Nick-End Labeling (TUNEL) assay kit. The cleaved caspase-3, major proteins in the SIRT1/p53 pathway, including SIRT1, acetyl p53, Drp1, BAX, and BCL-2, were detected using immunohistochemistry and Western blot. Gene expression of major proteins in the SIRT1/p53 pathway was also detected. RESULTS After 12 weeks of treatment, AS-IV and ALA did not significantly affect body weight or fasting glucose levels, but reduced mechanical abnormal pain in DPN and improved nerve conduction velocity. AS-IV and ALA increased the level of GSH and decreased the level of MDA. Both AS-IV and ALA can reduce mitochondrial damage, improve mitochondrial electron transport chain complex activity and mitochondrial membrane potential, and reduce the percentages of positive cells with DNA fragmentation and the expression of cleaved caspase-3 protein. AS-IV and ALA up-regulated the expression of SIRT1 and down-regulated the expression of acetyl-p53, Drp1 and the ratio of BAX to BCL-2. Changes in gene expression were similar. CONCLUSION AS-IV can reduce the occurrence of mitochondrial-dependent apoptosis by regulating the SIRT1/p53 pathway. It has a similar therapeutic effect as ALA and is therefore a promising drug for the potential treatment of DPN.
Collapse
Affiliation(s)
- Ying Ben
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Juan Hao
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Zhihong Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Yunzhao Xiong
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Cuijuan Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Yi Chang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Fan Yang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Hui Li
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Tianya Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiangting Wang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Qingyou Xu
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Correspondence: Qingyou Xu Hebei University of Chinese Medicine, No. 326 Xinshinan Road, Qiaoxi District, Shijiazhuang, Hebei Province, 050090, People’s Republic of ChinaTel +86 13832368865Fax +86 311 89926000 Email
| |
Collapse
|
27
|
Alshahrani S, Tripathi P, Ashafaq M, Sultan MH, Moni SS, Tripathi R, Siddiqui AH, Rashid H, Malhan AM. Role of renin blocker (Aliskiren) on Cisplatin induced-nephrotoxicity in rats. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1857772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Pankaj Tripathi
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammad Ashafaq
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Muhammad H. Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | | | - Rina Tripathi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdul Hakeem Siddiqui
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ali M. Malhan
- Department of Oncology, Prince Mohammed Bin Nasser Hospital, Jazan, Saudi Arabia
| |
Collapse
|
28
|
Improved Renoprotection in Diabetes with Combination Therapy of Coccinia indica Leaf Extract and Low-Dose Pioglitazone. SEPARATIONS 2020. [DOI: 10.3390/separations7040058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The metabolic changes associated with diabetes can lead to nephropathy eventually resulting in end-stage renal disease. Current antidiabetic therapies do not effectively prevent the onset of diabetic kidney diseases as well as progression. Aim: To evaluate the effect of Coccinia indica leaf extract alone and in combination with pioglitazone, an antihyperglycemic agent was used to modulate the progressive kidney damage induced by type 2 diabetes in rats. Hypotheses: Pioglitazone causes severe adverse effects when administered for long-term therapy. The hypotheses in this study is to examine the renoprotective effect of Coccinia indica leaf extract (200 mg/kg p.o.) when co-administered with low-dose pioglitazone (7 mg/kg) in type-2-diabetes-induced nephropathy in rats and simultaneously evaluate the hypoglycemic response as well. Methods: Rats (Males, Sprague Dawley) were kept on a high-fat diet and were given a single dose of streptozotocin (35 mg/kg, i.p.) to induce diabetic nephropathy. Treatment groups received either Coccinia indica leaf extract or pioglitazone or pioglitazone with Coccinia indica extract, fenofibrate, or lisinopril for 7 weeks. Blood glucose, antioxidant status, triglycerides, total cholesterol, creatinine, blood urea nitrogen, and proteinuria levels were estimated and compared with the normal control and disease control (untreated) groups. Results: The untreated diabetic rats showed increased blood glucose levels, lipid profiles, and renal oxidative stress, along with an increase in nephropathy markers such as blood urea nitrogen, creatinine, and proteinuria. Histopathological examination revealed glomerular damage. Combination treatment with Coccinia indica leaf extract and a low dose of pioglitazone normalized the nephropathic markers as well as histopathological changes. Conclusion: Coccinia indica leaf extract when co-administered with a low dose of pioglitazone as antidiabetic therapy showed good glycemic control and a beneficial renoprotective effect. Combination therapy would lower the dose of pioglitazone and also protect kidneys from drug-induced toxicity as observed from normalized nephropathic markers in a diabetic rat model.
Collapse
|
29
|
Rathore P, Arora I, Rastogi S, Akhtar M, Singh S, Samim M. Collagen Nanoparticle-Mediated Brain Silymarin Delivery: An Approach for Treating Cerebral Ischemia and Reperfusion-Induced Brain Injury. Front Neurosci 2020; 14:538404. [PMID: 33192240 PMCID: PMC7649428 DOI: 10.3389/fnins.2020.538404] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Silymarin is a bioactive constituent isolated from milk thistle (Silybum marinum). Since its discovery, silymarin has been considered a gold standard drug in treating ailments related to the liver, resulting from alcohol consumption and viral hepatitis. This hepatoprotective nature of silymarin arises out of antioxidative and tissue-regenerating properties of silymarin. However, several recent studies have established the neuroprotective link of silymarin, too. Thus, the current investigation was aimed at exploring the neuroprotective effect of nanosilymarin (silymarin encapsulated inside collagen-based polymeric nanoparticulate drug delivery system). The study aimed at bringing out the role of nanoparticles in enhancing the therapeutic effect of silymarin against neuronal injury, originating out of oxidative-stress-related brain damages in focal cerebral ischemia. Collagen-based micellar nanoparticles were prepared and stabilized using 3-ethyl carbodiimide-hydrochloride (EDC-Hcl) and malondialdehyde (MDA) as crosslinkers. Nanoparticles were characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) spectroscopy techniques, and the size of nanoparticles was found to be around 48 nm. Male albino Wistar rats were pretreated with three different doses of nanosilymarin of 10, 100, and 1,000 μg/kg b.wt and a dose of free silymarin of 100 mg/kg b.wt intraperitoneally (i.p.) for 7 days. Focal cerebral ischemia was induced using the middle cerebral artery occlusion (MCAO) model on the eighth day for 1 h followed by 24 h reperfusion. The animals were then evaluated for neurobehavioral, infarct analysis, biochemical, histopathological, and immunohistochemical studies. All the above parameters showed remarkable improvement in nanosilymarin-treated groups in comparison to the silymarin-treated group. Nanoparticle encapsulation of drug enhanced neuroprotection by increasing drug bioavailability and targeting. Thus, the present study concluded with satisfactory results, showing the critical role played by nanoparticles in improving the neuroprotection at very low drug doses.
Collapse
Affiliation(s)
- Pankaj Rathore
- Department of Chemistry, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Indu Arora
- Department of Biomedical Sciences, Shaheed Rajguru College, University of Delhi, New Delhi, India
| | - Shweta Rastogi
- Department of Chemistry, Hansraj College, University of Delhi, New Delhi, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Shruti Singh
- Department of Botany, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohammed Samim
- Department of Chemistry, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
30
|
Hussain S, Ashafaq M, Alshahrani S, Siddiqui R, Ahmed RA, Khuwaja G, Islam F. Cinnamon oil against acetaminophen-induced acute liver toxicity by attenuating inflammation, oxidative stress and apoptosis. Toxicol Rep 2020; 7:1296-1304. [PMID: 33024703 PMCID: PMC7528057 DOI: 10.1016/j.toxrep.2020.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023] Open
Abstract
Acetaminophen (APAP) is used as a primary drug due to its antipyretic and analgesic activity. The mechanism of action of APAP toxicity in the liver is due to the depletion of glutathione which elicited free radicals generation. Therefore, the objective of our work is to investigate the APAP induced liver damage and its repair by free radical scavenging activity of cinnamon oil (CO) in male Wistar rats. To investigate the effects of CO at different doses (50, 100 and 200 mg/kg b.w.), animals were given a single oral dose of CO per day for 14 days between 12:00-1:00 PM. The biochemical changes, imbalance in oxidative markers, interleukins, caspases and histopathological studies were determined for quantifying the hepatoprotective effect of CO. One dose of APAP (2 g/kg b.w.) results in significant hepatotoxicity and marked increase the serum markers alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), bilirubin, albumin, total protein, content of lipid peroxidation (LPO), interleukins (IL-1β, IL-6), caspase-3, -9 expression, DNA fragmentation and histopathological changes were observed. Significant decrease in the levels of LPO, interleukins IL-1β, IL-6, caspase-3, -9 expressions, qualitative as well as quantitative determination of DNA fragments and histopathological changes were reversed by the administration of CO dose dependently. Furthermore, it also restores the depleted activity of antioxidative enzymes. Our study shows that an imbalance in the oxidative parameter in the liver by APAP is restored by treating the animals with CO.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- ANOVA, analysis of variance
- APAP, N-acetyl-p-aminophenol
- AST, aspartate aminotransferase
- Acetaminophen
- BHA, butylated hydroxyanisole
- CO, cinnamon oil
- Cinnamon oil
- DNA fragmentation
- GPx, glutathione peroxidase
- GR, glutathione reductase
- GSH, glutathione
- Hepatotoxicity
- LPO, lipid peroxidation
- MDA, malondialdehyde
- MEC, molar extinction coefficient
- NAPQI, N-acetyl parabenzoquinoneimine
- Oxidative stress
- PMS, post mitochondrial supernatants
- SOD, superoxide dismutase
Collapse
Affiliation(s)
- Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Mohammed Ashafaq
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Rahimullah Siddiqui
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Rayan A. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Saudi Arabia
| | - Fakhrul Islam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| |
Collapse
|
31
|
The Neuroprotective Role of Alpha Thioctic Acid and Vitamin B Complex in Diabetic Neuropathy - an Experimental Study. CURRENT HEALTH SCIENCES JOURNAL 2020; 46:150-155. [PMID: 32874687 PMCID: PMC7445648 DOI: 10.12865/chsj.46.02.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/26/2020] [Indexed: 11/18/2022]
Abstract
Worldwide, approximately 463 million people are estimated to suffer from a form of diabetes mellitus, with diabetic neuropathy being one of its most common complication. Using streptozotocin to induce diabetes in C57BL/6J mice, we assess the neuroprotective role of alpha thioctic acid and vitamin B complex in diabetic neuropathy. In order to highlight the peripheral nerve changes produced by diabetes, we performed an electroneurographic recording of the animals and compared the amplitude of the compound muscle action potential (CMAP). Treatment with alpha thioctic acid (A), or vitamin B complex (B), or A+B caused a smaller decrease in CMAP amplitude than if these therapies had not been applied. On the other hand, we found that in group A+B a smaller decrease of CMAP amplitude was observed compared to the control group (6 weeks after the onset of diabetes p<0.0001). Also, separate treatment with alpha thioctic acid alone caused a smaller decrease in CMAP amplitude compared to the control group (6 weeks after the onset of diabetes mellitus p<0.0436), but also separate treatment with vitamin B complex alone resulted in a smaller decrease of CMAP amplitude compared to the Control group (6 weeks after the onset of diabetes p<0.0070). The combined therapy with alpha thioctic acid and vitamin B complex has a greater effect in preventing axonal degeneration in diabetic neuropathy than the single therapy only with alpha thioctic acid or only with vitamin B complex.
Collapse
|
32
|
Salman M, Tabassum H, Parvez S. Tannic Acid Provides Neuroprotective Effects Against Traumatic Brain Injury Through the PGC-1α/Nrf2/HO-1 Pathway. Mol Neurobiol 2020; 57:2870-2885. [PMID: 32399817 DOI: 10.1007/s12035-020-01924-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/22/2020] [Indexed: 12/30/2022]
Abstract
The present research was conducted to elucidate a possible molecular mechanism related to neuromodulatory effects of tannic acid (TA) supplementation against traumatic brain injury (TBI) in a rodent model. Oxidative damage and neuroinflammation play a critical role in TBI and lead to behavioral alterations and neuronal dysfunction and death. These changes suggest a potential avenue in neurotherapeutic intervention. The aim of the present study was to investigate the neuroprotective effects of TA and potential mechanism of these effects in a controlled cortical impact injury model of TBI in Wistar rats that were treated with TA (50 mg/kg body weight. i.p.) before 30 min and 6 and 18 h after TBI. TBI-induced rats were examined after 24 h for behavioral dysfunction, Nissl stain, lipid peroxidation rate, glutathione level, activities of antioxidant enzymes (catalase, glutathione S-transferase, glutathione peroxidase, and superoxide dismutase), the expression level of 4-hydroxynonenal, pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin-1 beta, as well as brain edema and immunoreactivity of glial fibrillary acidic protein. Results indicated that TA supplementation significantly modulated above mentioned alterations. Moreover, TA treatment effectively upregulated the protein expression of peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α) and nuclear factor-E2-related factor-2 (Nrf2) as well as mitochondrial transcription factor A and heme oxygenase-1 (HO-1) following TBI. Overall, our results suggest that TA effectively ameliorates the behavioral alterations, oxidative damage, mitochondrial impairment, and inflammation against TBI that may be attributed to activation of PGC-1α/Nrf-2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Mohd Salman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Heena Tabassum
- Division of Biomedical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Govt. of India, V. Ramalingaswamy Bhawan, P.O. Box No. 4911, New Delhi, 110029, India.
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
33
|
Khuwaja G, Al-Bratty M, Alhazmi HA, Khan A, Safhi MM, Ashafaq M, Islam F, Islam F, Taha MM. Pharmacological melioration by Selenium on the toxicity of tellurium in neuroendocrine centre (Pituitary Gland) in male wistar rats: A mechanistic approach. Saudi Pharm J 2020; 28:630-636. [PMID: 32435145 PMCID: PMC7229321 DOI: 10.1016/j.jsps.2020.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/05/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose The present research was designed to evaluate the toxicity of tellurium and its prevention by selenium on the pituitary gland in male Wistar rats. Methods 30 rats were used weighing 200–250 gm, and randomly divided them into five groups. Each group contained an equal number of animals. Group-1 was nominated as control group. Group-2 received an intraperitoneal dose of selenium 0.3 mg per kg body wt. Group-3 was administered with tellurium 4.15 mg per kg body wt. Group-4 was given low-dose (L) of both selenium 0.15 and tellurium 2.075, Group-5 was given High-dose (H) of both selenium 0.3 and tellurium 4.15 mg/kg body wt. orally once in a day. After 15 days of dosing, the behavioral activities- motor co-ordination rotarod and grip strength test were measured. On 16th-day animals were sacrificed and activity of LPO, GSH, caspase-3, caspase-9, GPx, GR, SOD, catalase, and AChE were performed on the pituitary gland as per standard method reported. Results Se when given together with Te, significantly protects the motor coordination up to 32.5%, and also protects the grip strength up to 75% in group 4 and 5 respectively as compared to group- 3. Se + Te treatment protects the activity of TBARS up to 48.68% and GSH is 58%. As compared to control, it protects caspase-3 up to 118% and caspase-9 up to 83%. The level of AChE was also observed to be modulated by the administration of Se in Group- 4 and 5. Se + Te protected AChE up to 28.6%. Similar findings were observed for the biochemical activities of GPx (140% protection), SOD (458%), GR (159%), and catalase (95%) activities that were protected significantly Se + Te in Group- 4 and 5. Conclusion Selenium dose-dependently protects behavioral activities. It also protects apoptosis, oxidative stress, and AChE activities in the pituitary gland.
Collapse
Affiliation(s)
- Gulrana Khuwaja
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Al-Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia.,Substance Abuse Research Centre (SARC), College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammad M Safhi
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammad Ashafaq
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Farha Islam
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Saudi Arabia
| | - Fakhrul Islam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Manal M Taha
- Substance Abuse Research Centre (SARC), College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
34
|
Ashafaq M, Hussain S, Alshahrani S, Madkhali O, Siddiqui R, Khuwaja G, Alam MI, Islam F. Role of cinnamon oil against acetaminophen overdose induced neurological aberrations through brain stress and cytokine upregulation in rat brain. Drug Chem Toxicol 2020; 45:633-640. [DOI: 10.1080/01480545.2020.1747484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mohammad Ashafaq
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Osama Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Rahimullah Siddiqui
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - M. Intakhab Alam
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Fakhrul Islam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Eid SA, El Massry M, Hichor M, Haddad M, Grenier J, Dia B, Barakat R, Boutary S, Chanal J, Aractingi S, Wiesel P, Szyndralewiez C, Azar ST, Boitard C, Zaatari G, Eid AA, Massaad C. Targeting the NADPH Oxidase-4 and Liver X Receptor Pathway Preserves Schwann Cell Integrity in Diabetic Mice. Diabetes 2020; 69:448-464. [PMID: 31882567 DOI: 10.2337/db19-0517] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/15/2019] [Indexed: 11/13/2022]
Abstract
Diabetes triggers peripheral nerve alterations at a structural and functional level, collectively referred to as diabetic peripheral neuropathy (DPN). This work highlights the role of the liver X receptor (LXR) signaling pathway and the cross talk with the reactive oxygen species (ROS)-producing enzyme NADPH oxidase-4 (Nox4) in the pathogenesis of DPN. Using type 1 diabetic (T1DM) mouse models together with cultured Schwann cells (SCs) and skin biopsies from patients with type 2 diabetes (T2DM), we revealed the implication of LXR and Nox4 in the pathophysiology of DPN. T1DM animals exhibit neurophysiological defects and sensorimotor abnormalities paralleled by defective peripheral myelin gene expression. These alterations were concomitant with a significant reduction in LXR expression and increase in Nox4 expression and activity in SCs and peripheral nerves, which were further verified in skin biopsies of patients with T2DM. Moreover, targeted activation of LXR or specific inhibition of Nox4 in vivo and in vitro to attenuate diabetes-induced ROS production in SCs and peripheral nerves reverses functional alteration of the peripheral nerves and restores the homeostatic profiles of MPZ and PMP22. Taken together, our findings are the first to identify novel, key mediators in the pathogenesis of DPN and suggest that targeting LXR/Nox4 axis is a promising therapeutic approach.
Collapse
Affiliation(s)
- Stéphanie A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
- INSERM UMR 1124, University Paris Descartes, Faculty of Basic and Biomedical Sciences, Paris, France
| | - Mohamed El Massry
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
- INSERM UMR 1124, University Paris Descartes, Faculty of Basic and Biomedical Sciences, Paris, France
| | - Mehdi Hichor
- INSERM UMR 1124, University Paris Descartes, Faculty of Basic and Biomedical Sciences, Paris, France
| | - Mary Haddad
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Julien Grenier
- INSERM UMR 1124, University Paris Descartes, Faculty of Basic and Biomedical Sciences, Paris, France
| | - Batoul Dia
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Rasha Barakat
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
- INSERM U1016, Cochin Institute, University Paris Descartes, Faculty of Medicine, Sorbonne Paris Cité, Paris, France
| | - Suzan Boutary
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Johan Chanal
- INSERM U1016, Cochin Institute, University Paris Descartes, Faculty of Medicine, Sorbonne Paris Cité, Paris, France
| | - Selim Aractingi
- INSERM U1016, Cochin Institute, University Paris Descartes, Faculty of Medicine, Sorbonne Paris Cité, Paris, France
| | | | | | - Sami T Azar
- Department of Internal Medicine, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
- AUB Diabetes, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Christian Boitard
- INSERM U1016, Cochin Institute, University Paris Descartes, Faculty of Medicine, Sorbonne Paris Cité, Paris, France
| | - Ghazi Zaatari
- Department of Pathology, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
- AUB Diabetes, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Charbel Massaad
- INSERM UMR 1124, University Paris Descartes, Faculty of Basic and Biomedical Sciences, Paris, France
| |
Collapse
|
36
|
Inhibition of DNA Repair Protein Ku70 in High-Glucose Environment Aggravates the Neurotoxicity Induced by Bupivacaine in SH-SY5Y Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1283214. [PMID: 32076604 PMCID: PMC7013357 DOI: 10.1155/2020/1283214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/10/2019] [Accepted: 01/02/2020] [Indexed: 11/17/2022]
Abstract
Bupivacaine, a common local anesthetic, causes serious nerve injury, especially in diabetic patients, as high glucose has been reported to enhance bupivacaine-induced neurotoxicity. However, the key regulator for synergism remains unknown. To our surprise, the expression of repair protein Ku70 is suppressed, while the high-glucose environment induces DNA oxidative damage in neurons. Here, we aim to investigate whether the inhibition of Ku70 by high-glucose conditions aggrandized bupivacaine-induced DNA damage. Consistent with previous results, bupivacaine induced reactive oxygen species production and upregulated Ku70 and cleaved caspase-3 expressions at both transcript and protein levels and ultimately caused nucleic acid damage and apoptosis in human neuroblastoma (SH-SY5Y) cells. High-glucose treatment inhibited the expression of Ku70 and enhanced bupivacaine-induced neurotoxicity. In contrast, the overexpression of Ku70 mitigated DNA damage and apoptosis triggered by bupivacaine and high glucose. In conclusion, our data indicated that local anesthetics may aggravate nerve toxicity in a high-glucose environment.
Collapse
|
37
|
Attenuation of diabetic retinopathy and neuropathy by resveratrol: Review on its molecular mechanisms of action. Life Sci 2020; 245:117350. [PMID: 31982401 DOI: 10.1016/j.lfs.2020.117350] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Resveratrol is an important phenolic phytochemical from the therapeutic perspective. It has therapeutic impacts over wide range of diseases, especially the ones related to oxidative stress. Resveratrol, being primarily a potent anti-oxidant phytochemical, has significant impact against major diseases as inflammatory disorders, diabetes, and cancer. In the current review article, we intend to highlight the molecular aspects of the mechanism of action of resveratrol against major diabetic implications, namely, retinopathy and neuropathy. Both these diabetic implications are among the first fallouts of chronic hyperglycaemia. Resveratrol, via multiple molecular pathways, tend to attenuate and reverse these deformity and other disease-causing implications.
Collapse
|
38
|
Rathore P, Arora I, Rastogi S, Akhtar M, Singh S, Samim M. Collagen–curcumin nanocomposites showing an enhanced neuroprotective effect against short term focal cerebral ischemia. RSC Adv 2020; 10:2241-2253. [PMID: 35494586 PMCID: PMC9048592 DOI: 10.1039/c9ra08508d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/05/2020] [Indexed: 01/26/2023] Open
Abstract
The effectiveness of curcumin in treating cerebral ischemia has been reported in recent studies. However, its mode of action is still not defined. The objective of the present study is to formulate collagen–curcumin nanocomposites which will work effectively against cerebral ischemia/reperfusion injury. Ischemic injury is followed by inflammatory damage and oxidative stress, which together contribute a lot in the pathogenesis of cerebral ischemia and may be considered a good target for treatment. The present study focused on examining the effectiveness of collagen–curcumin nanocomposites stabilized by increasing the degree of crosslinking in reducing oxidative stress associated with brain injury resulting from cerebral ischemia. The collagen nanoparticles were prepared by conjugating collagen on the surface of Tween©80 micelles, and further stabilizing them using crosslinkers. The effectiveness of the prepared nanocomposite was validated by performing infarct analysis followed by biochemical, behavioral, histopathological and immunohistochemical studies. The outcomes of this study are promising for the use of collagen–curcumin nanocomposites in showing neuroprotective potential in treating ischemic injury. A synthetic collagen–curcumin nanocomposite enhanced drug efficacy by increasing its bioavailability and showing slow and sustained drug release in the treatment against focal cerebral ischemia.![]()
Collapse
Affiliation(s)
- Pankaj Rathore
- Department of Chemistry
- School of Chemical & Life Sciences
- Jamia Hamdard
- New Delhi-62
- India
| | - Indu Arora
- Department of Biomedical Sciences
- Shaheed Rajguru College
- Delhi University
- New Delhi
- India
| | - Shweta Rastogi
- Department of Chemistry
- Hansraj College
- Delhi University
- Delhi
- India
| | - Mohd. Akhtar
- Department of Pharmacology
- School of Pharmaceutical Education & Research
- Jamia Hamdard
- New Delhi-62
- India
| | - Shruti Singh
- Department of Botany
- School of Chemical & Life Sciences
- Jamia Hamdard
- New Delhi-62
- India
| | - Mohammed Samim
- Department of Chemistry
- School of Chemical & Life Sciences
- Jamia Hamdard
- New Delhi-62
- India
| |
Collapse
|
39
|
Chhabria K, Vouros A, Gray C, MacDonald RB, Jiang Z, Wilkinson RN, Plant K, Vasilaki E, Howarth C, Chico TJA. Sodium nitroprusside prevents the detrimental effects of glucose on the neurovascular unit and behaviour in zebrafish. Dis Model Mech 2019; 12:dmm.039867. [PMID: 31481433 PMCID: PMC6765192 DOI: 10.1242/dmm.039867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetes is associated with dysfunction of the neurovascular unit, although the mechanisms of this are incompletely understood and currently no treatment exists to prevent these negative effects. We previously found that the nitric oxide (NO) donor sodium nitroprusside (SNP) prevents the detrimental effect of glucose on neurovascular coupling in zebrafish. We therefore sought to establish the wider effects of glucose exposure on both the neurovascular unit and on behaviour in zebrafish, and the ability of SNP to prevent these. We incubated 4-days post-fertilisation (dpf) zebrafish embryos in 20 mM glucose or mannitol for 5 days until 9 dpf, with or without 0.1 mM SNP co-treatment for 24 h (8-9 dpf), and quantified vascular NO reactivity, vascular mural cell number, expression of a klf2a reporter, glial fibrillary acidic protein (GFAP) and transient receptor potential cation channel subfamily V member 4 (TRPV4), as well as spontaneous neuronal activation at 9 dpf, all in the optic tectum. We also assessed the effect on light/dark preference and locomotory characteristics during free-swimming studies. We find that glucose exposure significantly reduced NO reactivity, klf2a reporter expression, vascular mural cell number and TRPV4 expression, while significantly increasing spontaneous neuronal activation and GFAP expression (all in the optic tectum). Furthermore, when we examined larval behaviour, we found that glucose exposure significantly altered light/dark preference and high and low speed locomotion while in light. Co-treatment with SNP reversed all these molecular and behavioural effects of glucose exposure. Our findings comprehensively describe the negative effects of glucose exposure on the vascular anatomy, molecular phenotype and function of the optic tectum, and on whole-organism behaviour. We also show that SNP or other NO donors may represent a therapeutic strategy to ameliorate the complications of diabetes on the neurovascular unit.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Karishma Chhabria
- Neuroimaging in Cardiovascular Disease (NICAD) Network, University of Sheffield, Sheffield, S10 2TN, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Avgoustinos Vouros
- Department of Computer Science, University of Sheffield, Portobello, Sheffield, S1 4DP, UK
| | - Caroline Gray
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ryan B MacDonald
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Zhen Jiang
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Robert Neil Wilkinson
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Karen Plant
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Eleni Vasilaki
- Department of Computer Science, University of Sheffield, Portobello, Sheffield, S1 4DP, UK
| | - Clare Howarth
- Neuroimaging in Cardiovascular Disease (NICAD) Network, University of Sheffield, Sheffield, S10 2TN, UK .,Department of Psychology, University of Sheffield, Cathedral Court, 1 Vicar Lane, Sheffield, S1 2LT, UK
| | - Timothy J A Chico
- Neuroimaging in Cardiovascular Disease (NICAD) Network, University of Sheffield, Sheffield, S10 2TN, UK .,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
40
|
Antioxidant and Hepatoprotective Effect of Cajanus cajan in N-Nitrosodiethylamine-Induced Liver Damage. Sci Pharm 2019. [DOI: 10.3390/scipharm87030024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
N-Nitrosodiethylamine (NDEA) is a nitrosamine derivative with carcinogenic and mutagenic properties which can be found in tobacco smoke, meat and various food products. This study examined the antioxidant and hepatoprotective potential of Cajanus cajan (C. cajan) with respect to hepatotoxicity in male Wistar rats. Administration of NDEA induced hepatotoxicity at 200 mg/kg while C. cajan was administered (200, 400 and 800 mg/kg) for 28 days. NDEA-induced hepatotoxicity significantly (p ≤ 0.05) increased alanine aminotransferase (ALT), aspartate aminotransferase (AST) and malondialdehyde (MDA) and significantly (p ≤ 0.05) decreased reduced glutathione (GSH), albumin (ALB), glutathione S-transferase (GST), catalase (CAT) and superoxide dismutase (SOD). C. cajan-treated groups were seen to have significantly (p ≤ 0.05) decreased ALT and AST and significantly (p < 0.05) increased ALB, GST, GSH, SOD and CAT. The NDEA-treated group also showed a marginal increase in body weight and a significant (p ≤ 0.05) increase in liver weight. The C. cajan treated groups showed a significant (p ≤ 0.05) increase and decrease respectively in body and liver weights. Histopathological changes also substantiated NDEA-induced hepatotoxicity and the hepatoprotective effect of C. cajan on the liver. The results indicate that C. cajan has the potential to ameliorate NDEA-induced hepatotoxicity.
Collapse
|
41
|
Farias VX, Uchoa PN, Aquino CP, Britto LRG, Fonteles MC, Leal-Cardoso JH, Silva-Alves KS, Havt A, Prata MMG, Heimark DB, Nascimento NRF, Santos CF. Expression of myo-inositol cotransporters in the sciatic nerve and dorsal root ganglia in experimental diabetes. ACTA ACUST UNITED AC 2019; 52:e8589. [PMID: 31166385 PMCID: PMC6556969 DOI: 10.1590/1414-431x20198589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/09/2019] [Indexed: 02/03/2023]
Abstract
The transport of myo-inositol is the main mechanism for the maintenance of its high intracellular levels. We aimed to measure the mRNA and protein levels of myo-inositol cotransporters in the sciatic nerve (SN) and dorsal root ganglia (DRG) during experimental diabetes. Streptozotocin-induced (STZ; 4, 8, and 12 weeks; 65 mg/kg; ip) diabetic rats (DB) and age-matched euglycemic (E) rats were used for the analysis of mRNA and protein levels of sodium myo-inositol cotransporters 1, 2 (SMIT1, SMIT2) or H+/myo-inositol cotransporter (HMIT). There was a significant reduction in the mRNA levels for SMIT1 in the SN and DRG (by 36.9 and 31.0%) in the 4-week DB (DB4) group compared to the E group. SMIT2 was not expressed in SN. The mRNA level for SMIT2 was up-regulated only in the DRG in the DB4 group. On the other hand, the protein level of SMIT1 decreased by 42.5, 41.3, and 44.8% in the SN after 4, 8, and 12 weeks of diabetes, respectively. In addition, there was a decrease of 64.3 and 58.0% of HMIT in membrane and cytosolic fractions, respectively, in the SN of the DB4 group. In the DRG, there was an increase of 230 and 86.3% for SMIT1 and HMIT, respectively, in the DB12 group. The levels of the main inositol transporters, SMIT1 and HMIT, were greatly reduced in the SN but not in the DRG. SMIT-1 was selectively reduced in the sciatic nerve during experimental STZ-induced diabetes.
Collapse
Affiliation(s)
- V X Farias
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - P N Uchoa
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - C P Aquino
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - L R G Britto
- Instituto de Ciências Biomédicas, Laboratório de Neurofisiologia, Universidade de São Paulo, SP, Brasil
| | - M C Fonteles
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - J H Leal-Cardoso
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - K S Silva-Alves
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - A Havt
- Instituto de Ciências Biomédicas, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M M G Prata
- Instituto de Ciências Biomédicas, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - D B Heimark
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - N R F Nascimento
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - C F Santos
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
42
|
Polyphenols of marine red macroalga Symphyocladia latiuscula ameliorate diabetic peripheral neuropathy in experimental animals. Heliyon 2019; 5:e01781. [PMID: 31193485 PMCID: PMC6529741 DOI: 10.1016/j.heliyon.2019.e01781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/24/2019] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
Aims Chronic hyperglycaemia activates the polyol pathway of glucose metabolism thereby stimulating the activation aldose reductase enzyme that in turn initiates a cascade of deleterious events, eventually, leading to nerve damage or neuropathy. Marine macroalgae and their isolated chemical constituents have been found to possess potential antidiabetic activity and have proved beneficial in the treatment of diabetes. In this study the neuroprotective effect of polyphenols isolated from the red macroalga Symphyocladia latiuscula was evaluated in experimental diabetic peripheral neuropathy. Main methods The polyphenolic fraction from Symphyocladia latiuscula was isolated. Diabetic peripheral neuropathy (DPN) was induced in animals by intraperitoneal injection of streptozotocin (45 mg/kg, b. w) and maintained for 6 weeks followed by treatment with SLPP or epalrestat. Nerve Conduction Velocity (NCV) and Compound Muscle Action Potential (CMAP) were measured using a non-invasive method followed by muscular grip strength test. Sciatic nerve aldose reductase activity, sorbitol accumulation, Na+K+-ATPase activity, production of pro-inflammatory cytokines and expression of AR and PKC were assessed. Key findings The Symphyocladia latiuscula polyphenols (SLPP) were found to inhibit aldose reductase activity as well as their expression in diabetic animals thereby improving the NCV, CMAP and muscle grip strength. Improvements in the sciatic nerve Na+K+-ATPase activity and intraneural accumulation of sorbitol, an index of aldose reductase overactivity, were evident with SLPP treatment. The production of pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) and expression of protein kinase C (PKC) were also diminished. Significance The data suggest that the polyphenols of Symphyocladia latiuscula have neuroprotective potential against experimental DPN.
Collapse
|
43
|
Ferreira RS, Dos Santos NAG, Bernardes CP, Sisti FM, Amaral L, Fontana ACK, Dos Santos AC. Caffeic Acid Phenethyl Ester (CAPE) Protects PC12 Cells Against Cisplatin-Induced Neurotoxicity by Activating the AMPK/SIRT1, MAPK/Erk, and PI3k/Akt Signaling Pathways. Neurotox Res 2019; 36:175-192. [PMID: 31016689 DOI: 10.1007/s12640-019-00042-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 01/01/2023]
Abstract
Peripheral sensory neuropathy (PSN) is a well-known side effect of cisplatin characterized by axonal damage. In the early stage of neurotoxicity, cisplatin affects proteins that modulate neurite outgrowth and neuroplasticity, without inducing mitochondrial damage or apoptosis. There are no preventive therapies for cisplatin-induced peripheral neuropathy; therefore, measures to improve axonal growth and connectivity would be beneficial. Caffeic acid phenethyl ester (CAPE) is a bioactive component of propolis with neurotrophic and neuroprotective activities. We have recently showed that CAPE protects against cisplatin-induced neurotoxicity by activating NGF high-affinity receptors (trkA) and inducing neuroplasticity. We have now assessed other potential early targets of cisplatin and additional mechanisms involved in the neuroprotection of CAPE. Cisplatin reduced axonal cytoskeletal proteins (F-actin and β-III-tubulin) without inducing oxidative damage in PC12 cells. It also reduced energy-related proteins (AMPK α, p-AMPK α, and SIRT1) and glucose uptake. At this stage of neurotoxicity, glutamate excitotoxicity is not involved in the toxicity of cisplatin. CAPE attenuated the downregulation of the cytoskeleton and energy-related markers as well as SIRT1 and phosphorylated AMPK α. Moreover, the neuroprotective mechanism of CAPE also involves the activation of the neurotrophic signaling pathways MAPK/Erk and PI3k/Akt. The PI3K/Akt pathway is involved in the upregulation of SIRT1 induced by CAPE, but not in the upregulation of cytoskeletal proteins. Altogether, these findings suggest that the neuroprotective effect of CAPE against cisplatin-induced neurotoxicity involves both (a) a neurotrophic mechanism that mimics the mechanism triggered by the NGF itself and (b) a non-neurotrophic mechanism that upregulates the cytoskeletal proteins.
Collapse
Affiliation(s)
- Rafaela Scalco Ferreira
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Neife Aparecida Guinaim Dos Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carolina P Bernardes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Flávia Malvestio Sisti
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lilian Amaral
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andreia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Antonio Cardozo Dos Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
44
|
Mao H, Wei W, Fu XL, Dong JJ, Lyu XY, Jia T, Tang Y, Zhao S. Efficacy of autologous bone marrow mononuclear cell transplantation therapy in patients with refractory diabetic peripheral neuropathy. Chin Med J (Engl) 2019; 132:11-16. [PMID: 30628954 PMCID: PMC6629317 DOI: 10.1097/cm9.0000000000000009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Owing to the multifactorial nature of the pathogenesis of diabetic peripheral neuropathy (DPN), conventional drug therapies have not been effective. The application of stem cells transplantation may be useful for the treatment of DPN. This study was designed to assess the safety and therapeutic effects of autologous bone marrow mononuclear cells (BMMNCs) transplantation on the treatment of refractory DPN. METHODS One hundred and sixty-eight patients with refractory DPN were recruited and enrolled in the study. They received intramuscular injection of BMMNCs and followed at 1, 3, 6, 12, 18, 24, and 36 months after the transplantation. Clinical data, Toronto Clinical Scoring System (TCSS), and nerve conduction studies (NCSs) were compared before and after the transplantation. RESULTS The signs and symptoms of neuropathy were significantly improved after BMMNCs transplantation. The values of the TCSS scores at 1 month (9.68 ± 2.49 vs. 12.55 ± 2.19, P < 0.001) and 3 months (8.47 ± 2.39 vs. 12.55 ± 2.19, P < 0.001) after the treatment reduced significantly compared with the baseline value. This decrement remained persistent until the end of the study. The conduction velocity and action potential and sensory nerves were significantly improved after transplantation (3 and 12 months after the treatment vs. the baseline: motor nerve conduction velocity, 40.24 ± 2.80 and 41.00 ± 2.22 m/s vs. 38.21 ± 2.28 m/s, P < 0.001; sensory nerve conduction velocity, 36.96 ± 2.26 and 39.15 ± 2.61 m/s vs. 40.41 ± 2.22 m/s, P < 0.001; compound muscle action potential, 4.67 ± 1.05 and 5.50 ± 1.20 μV vs. 5.68 ± 1.08 μV, P < 0.001; sensory nerve action potential, 4.29 ± 0.99 and 5.14 ± 1.26 μV vs. 5.41 ± 1.14 μV, P < 0.001). No adverse event associated with the treatment was observed during the follow-up period. CONCLUSIONS Autologous transplantation of BMMNCs may be an effective and promising therapeutic strategy for the treatment of refractory DPN.
Collapse
Affiliation(s)
- Hong Mao
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Wei Wei
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Xiu-Li Fu
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Jing-Jian Dong
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Xiao-Yu Lyu
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Ting Jia
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Yang Tang
- Department of Economics, Nanyang Technological University, Singapore 637332, Singapore
| | - Shi Zhao
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| |
Collapse
|
45
|
Abstract
The hyperglycemia-induced enhanced oxidative stress is a key factor of diabetic peripheral neuropathy implicated in the pathogenesis of diabetic neuropathy, and microRNA may be involved, playing promotion or protection roles. In this study, we aimed to investigate the function of miR-25 during the development of oxidative/nitrative stress and in subsequent neurological problems. We detected the oxidative stress effects and expression of miR-25 on sciatic nerves from db/db diabetic model mice and analyzed the expression of related genes by qPCR and Western blotting. Interestingly, we observed increased reactive oxygen species (ROS) and Nox4 expression in db/db mice accompanied with reduced miR-25. MiR-25 inhibitor treatment increased nicotinamide adenine dinucleotide phosphate activity in Schwann cells, whereas miR-25 precursor overexpression led to opposite results. MiR-25 precursor reduced the activation of protein kinase C and decreased Nox4 expression at both mRNA and protein levels. Advanced glycation endproducts (AGEs) and the receptor for advanced glycation endproducts (RAGE) were increased in the serum and in the peripheral nerves obtained from diabetic mice, and miR-25 inhibitor treatment in Schwann cells from wt mice led to the same effect. However, miR-25 precursor transfection reduced AGEs and RAGE, and further reduced inflammatory factors that contribute to the pathological process of peripheral nerves. These findings, for the first time, indicate that miR-25 acts as a protection factor in diabetic neuropathy by downregulating AGE-RAGE and reducing nicotinamide adenine dinucleotide phosphate oxidase. miR-25 reduced protein kinase C-α phosphorylation to produce less reactive oxygen species in diabetic peripheral nerves, and therefore it played an important role in the regulation of oxidative/nitrative stress and in consequent neurological dysfunction.
Collapse
|
46
|
Alphalipoic Acid Prevents Oxidative Stress and Peripheral Neuropathy in Nab-Paclitaxel-Treated Rats through the Nrf2 Signalling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3142732. [PMID: 30881589 PMCID: PMC6387730 DOI: 10.1155/2019/3142732] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 01/13/2023]
Abstract
Peripheral neuropathy is the major dose-limiting side effect of paclitaxel (PTX), affecting both the quality of life and the survival of cancer patients. Nab-paclitaxel (nab-PTX) was developed to provide additional clinical benefits and overcome the safety drawbacks of solvent-based PTX. However, the prevalence of peripheral neuropathy induced by nab-PTX was reported higher than that induced by solvent-based PTX. Upon investigation, oxidative stress plays a major role in the toxicity of nab-PTX. In order to assess if the antioxidant alphalipoic acid (α-LA) could prevent the nab-PTX-induced peripheral neuropathy, Sprague-Dawley (SD) rats were treated with three doses of α-LA (15, 30, and 60 mg/kg in normal saline, i.p., q.d. (days 1-30)) and/or nab-PTX (7.4 mg/kg in normal saline, i.v., q.w. (days 8, 15, and 22)). Body weight and peripheral neuropathy were measured and assessed regularly during the study. The assessment of peripheral neuropathy was performed by the von Frey and acetone tests. A tumor xenograft model of pancreatic cancer was used to assess the impact of α-LA on the antitumor effect of nab-PTX. Results showed that α-LA significantly ameliorated the peripheral neuropathy induced by nab-PTX (p < 0.05) without promoting tumor growth or reducing the chemotherapeutic effect of nab-PTX in a tumor xenograft model. Moreover, α-LA might significantly reverse the superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) levels altered by nab-PTX in the serum and the spinal cord of rats. Furthermore, α-LA could reverse the mRNA and protein expressions of Nrf2 (nuclear factor erythroid 2-related factor 2) and three Nrf2-responsive genes (HO-1, γ-GCLC, and NQO1) altered by nab-PTX in the dorsal root ganglion (DRG) of rats. In conclusion, our study suggests that α-LA could prevent oxidative stress and peripheral neuropathy in nab-PTX-treated rats through the Nrf2 signalling pathway without diminishing chemotherapeutic effect.
Collapse
|
47
|
Bönhof GJ, Herder C, Strom A, Papanas N, Roden M, Ziegler D. Emerging Biomarkers, Tools, and Treatments for Diabetic Polyneuropathy. Endocr Rev 2019; 40:153-192. [PMID: 30256929 DOI: 10.1210/er.2018-00107] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022]
Abstract
Diabetic neuropathy, with its major clinical sequels, notably neuropathic pain, foot ulcers, and autonomic dysfunction, is associated with substantial morbidity, increased risk of mortality, and reduced quality of life. Despite its major clinical impact, diabetic neuropathy remains underdiagnosed and undertreated. Moreover, the evidence supporting a benefit for causal treatment is weak at least in patients with type 2 diabetes, and current pharmacotherapy is largely limited to symptomatic treatment options. Thus, a better understanding of the underlying pathophysiology is mandatory for translation into new diagnostic and treatment approaches. Improved knowledge about pathogenic pathways implicated in the development of diabetic neuropathy could lead to novel diagnostic techniques that have the potential of improving the early detection of neuropathy in diabetes and prediabetes to eventually embark on new treatment strategies. In this review, we first provide an overview on the current clinical aspects and illustrate the pathogenetic concepts of (pre)diabetic neuropathy. We then describe the biomarkers emerging from these concepts and novel diagnostic tools and appraise their utility in the early detection and prediction of predominantly distal sensorimotor polyneuropathy. Finally, we discuss the evidence for and limitations of the current and novel therapy options with particular emphasis on lifestyle modification and pathogenesis-derived treatment approaches. Altogether, recent years have brought forth a multitude of emerging biomarkers reflecting different pathogenic pathways such as oxidative stress and inflammation and diagnostic tools for an early detection and prediction of (pre)diabetic neuropathy. Ultimately, these insights should culminate in improving our therapeutic armamentarium against this common and debilitating or even life-threatening condition.
Collapse
Affiliation(s)
- Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany
| | - Nikolaos Papanas
- Second Department of Internal Medicine, Diabetes Center, Diabetic Foot Clinic, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
48
|
Samaddar S, Koneri R. Neuroprotective efficacy of polyphenols of marine brown macroalga Ecklonia cava in diabetic peripheral neuropathy. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_212_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
49
|
Sadeghiyan Galeshkalami N, Abdollahi M, Najafi R, Baeeri M, Jamshidzade A, Falak R, Davoodzadeh Gholami M, Hassanzadeh G, Mokhtari T, Hassani S, Rahimifard M, Hosseini A. Alpha-lipoic acid and coenzyme Q10 combination ameliorates experimental diabetic neuropathy by modulating oxidative stress and apoptosis. Life Sci 2019; 216:101-110. [DOI: 10.1016/j.lfs.2018.10.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 01/25/2023]
|
50
|
Cho SJ, Kang KA, Piao MJ, Ryu YS, Fernando PDSM, Zhen AX, Hyun YJ, Ahn MJ, Kang HK, Hyun JW. 7,8-Dihydroxyflavone Protects High Glucose-Damaged Neuronal Cells against Oxidative Stress. Biomol Ther (Seoul) 2019; 27:85-91. [PMID: 30481956 PMCID: PMC6319554 DOI: 10.4062/biomolther.2018.202] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is considered a major contributor in the pathogenesis of diabetic neuropathy and in diabetes complications, such as nephropathy and cardiovascular diseases. Diabetic neuropathy, which is the most frequent complications of diabetes, affect sensory, motor, and autonomic nerves. This study aimed to investigate whether 7,8-dihydroxyflavone (7,8-DHF) protects SH-SY5Y neuronal cells against high glucose-induced toxicity. In the current study, we found that diabetic patients exhibited higher lipid peroxidation caused by oxidative stress than healthy subjects. 7,8-DHF exhibits superoxide anion and hydroxyl radical scavenging activities. High glucose-induced toxicity severely damaged SH-SY5Y neuronal cells, causing mitochondrial depolarization; however, 7,8-DHF recovered mitochondrial polarization. Furthermore, 7,8-DHF effectively modulated the expression of pro-apoptotic protein (Bax) and anti-apoptotic protein (Bcl-2) under high glucose, thus inhibiting the activation of caspase signaling pathways. These results indicate that 7,8-DHF has antioxidant effects and protects cells from apoptotic cell death induced by high glucose. Thus, 7,8-DHF may be developed into a promising candidate for the treatment of diabetic neuropathy.
Collapse
Affiliation(s)
- Suk Ju Cho
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Kyoung Ah Kang
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Mei Jing Piao
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Yea Seong Ryu
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | | | - Ao Xuan Zhen
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Yu Jae Hyun
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Mee Jung Ahn
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Hee Kyoung Kang
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| |
Collapse
|