1
|
Silva RM, Rosa SS, Santos JAL, Azevedo AM, Fernandes-Platzgummer A. Enabling Mesenchymal Stromal Cells and Their Extracellular Vesicles Clinical Availability-A Technological and Economical Evaluation. JOURNAL OF EXTRACELLULAR BIOLOGY 2025; 4:e70037. [PMID: 40104174 PMCID: PMC11913891 DOI: 10.1002/jex2.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/05/2025] [Accepted: 01/30/2025] [Indexed: 03/20/2025]
Abstract
Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) have shown significant therapeutic potential across a wide range of clinical conditions, complementing the progress of MSC-based therapies, some of which have already received regulatory approval. However, the high cost of these therapies has limited their accessibility, creating an urgent need to explore manufacturing strategies that reduce the cost of goods and selling prices. This study presents the design and simulation of a scalable manufacturing platform for the co-production of clinical-grade MSC and MSC-EVs using SuperPro Designer. Various production scenarios were evaluated to maximise manufacturing capacity while analysing their impact on economic performance. Our findings demonstrate that for MSC-EVs doses containing 1010 and 1011 particles, selling prices range from 166 to 309€ and from 1659 to 3082€, respectively. For clinical doses of MSC, selling prices vary between 965 and 42,673€ depending on dose size and production scale. Importantly, the co-production approach enables cost-sharing between products, contributing to significantly lower prices compared to individual production. Overall, the proposed platform achieved an attractive payback time of 3 years and a return on investment of 36%. By increasing the number of staggered production units, further price reductions and improved economic metrics could be attained. In conclusion, this study highlights the potential of the proposed manufacturing platform to deliver cost-effective, clinical-grade MSC and MSC-EVs products, advancing the field of regenerative medicine and enhancing the accessibility of these innovative treatments.
Collapse
Affiliation(s)
- Ricardo M Silva
- Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
| | - Sara Sousa Rosa
- Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
| | - José A L Santos
- Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
| | - Ana M Azevedo
- Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
| | - Ana Fernandes-Platzgummer
- Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
| |
Collapse
|
2
|
Abdal Dayem A, Bin Jang S, Lim N, Yeo HC, Kwak Y, Lee SH, Shin HJ, Cho SG. Advances in lacrimal gland organoid development: Techniques and therapeutic applications. Biomed Pharmacother 2025; 183:117870. [PMID: 39870025 DOI: 10.1016/j.biopha.2025.117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
The human lacrimal gland (LG), located above the outer orbital region within the frontal bone socket, is essential in maintaining eye surface health and lubrication. It is firmly anchored to the orbital periosteum by the connective tissue, and it is vital for protecting and lubricating the eye by secreting lacrimal fluid. Disruption in the production, composition, or secretion of lacrimal fluid can lead to dry eye syndrome, a condition characterized by ocular discomfort and potential eye surface damage. This review explores the recent advancements in LG organoid generation using tissues and stem cells, highlighting cutting-edge techniques in biomaterial-based and scaffold-free technologies. Additionally, we shed light on the complex pathophysiology of LG dysfunction, providing insights into the LG physiological roles while identifying strategies for generating LG organoids and exploring their potential clinical applications. Alterations in LG morphology or secretory function can affect the tear film stability and quality, leading to various ocular pathological conditions. This comprehensive review underlines the critical crosslink of LG organoid development with disease modeling and drug screening, underscoring their potential for advancing therapeutic applications.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Soo Bin Jang
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nahee Lim
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han Cheol Yeo
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeonjoo Kwak
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Shin-Hyo Lee
- Department of Anatomy, Wonkwang University School of Medicine, Iksan, Republic of Korea; Jesaeng-Euise Clinical Anatomy Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Hyun Jin Shin
- Konkuk University School of Medicine, Chungju city, Republic of Korea; Department of Ophthalmology, Konkuk University Medical Center, Seoul, Republic of Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea; Institute of Biomedical Science & Technology, Konkuk University, Seoul, Republic of Korea.
| | - Sang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., Seoul, Republic of Korea.
| |
Collapse
|
3
|
Lee SA, Kim S, Kim SY, Park JY, Jung HS, Chung SS, Park KS. In Vivo Differentiation of Endogenous Bone Marrow-Derived Cells into Insulin-Producing Cells Using Four Soluble Factors. Diabetes Metab J 2025; 49:150-159. [PMID: 39444334 PMCID: PMC11788547 DOI: 10.4093/dmj.2024.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/17/2024] [Indexed: 10/25/2024] Open
Abstract
Four soluble factors-putrescine, glucosamine, nicotinamide, and signal transducer and activator of transcription 3 (STAT3) inhibitor BP-1-102-were shown to differentiate bone marrow mononucleated cells (BMNCs) into functional insulin-producing cells (IPCs) in vitro. Transplantation of these IPCs improved hyperglycemia in diabetic mice. However, the role of endogenous BMNC regeneration in this effect was unclear. This study aimed to evaluate the effect of these factors on in vivo BMNC differentiation into IPCs in diabetic mice. Mice were orally administered the factors for 5 days, twice at 2-week intervals, and monitored for 45-55 days. Glucose tolerance, glucose-stimulated insulin secretion, and pancreatic insulin content were measured. Chimeric mice harboring BMNCs from insulin promoter luciferase/green fluorescent protein (GFP) transgenic mice were used to track endogenous BMNC fate. These factors lowered blood glucose levels, improved glucose tolerance, and enhanced insulin secretion. Immunostaining confirmed IPCs in the pancreas, showing the potential of these factors to induce β-cell regeneration and improve diabetes treatment.
Collapse
Affiliation(s)
- Seung-Ah Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - Subin Kim
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seog-Young Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jong Yoen Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Hye Seung Jung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Soo Chung
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Kyong Soo Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Gomaa S, Nassef M, Hafez A. Potentials of bone marrow cells-derived from naïve or diabetic mice in autoimmune type 1 diabetes: immunomodulatory, anti-inflammatory, anti hyperglycemic, and antioxidative. Endocrine 2024; 86:959-979. [PMID: 39014283 PMCID: PMC11554735 DOI: 10.1007/s12020-024-03929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND The scarcity of transplanted human islet tissue and the requirement for immunosuppressive drugs to prevent the rejection of allogeneic grafts have hindered the treatment of autoimmune type 1 diabetes mellitus (T1DM) through islet transplantation. However, there is hope in adoptively transferred bone marrow cells (BMCs) therapy, which has emerged as a propitious pathway for forthcoming medications. BMCs have the potential to significantly impact both replacement and regenerative therapies for a range of disorders, including diabetes mellitus, and have demonstrated anti-diabetic effects. AIM The main goal of this study is to evaluate the effectiveness of adoptively transferred bone marrow cells derived from either naïve mice (nBMCs) or diabetic mice (dBMCs) in treating a T1DM mice model. METHODS Male Swiss albino mice were starved for 16 h and then injected with streptozotocin (STZ) at a dose of 40 mg/kg body weight for 5 consecutive days to induce T1DM. After 14 days, the diabetic mice were distributed into four groups. The first group served as a diabetic control treated with sodium citrate buffer, while the other three groups were treated for two weeks, respectively, with insulin (subcutaneously at a dose of 8 U/kg/day), nBMCs (intravenously at a dose of 1 × 106 cells/mouse/once), and dBMCs (intravenously at a dose of 1 × 106 cells/mouse/once). RESULTS It is worth noting that administering adoptively transferred nBMCs or adoptively transferred dBMCs to STZ-induced T1DM mice resulted in a significant amelioration in glycemic condition, accompanied by a considerable reduction in the level of blood glucose and glycosylated hemoglobin % (HbA1C %), ultimately restoring serum insulin levels to their initial state in control mice. Administering nBMCs or dBMCs to STZ-induced T1DM mice led to a remarkable decrease in levels of inflammatory cytokine markers in the serum, including interferon-γ (INF-γ), tumor necrosis factor- α (TNF-α), tumor growth factor-β (TGF-β), interleukin-1 β (L-1β), interlekin-4 (IL-4), interleukin-6 (IL-6), and interleukin-10 (IL-10). Additionally, STZ-induced T1DM mice, when treated with nBMCs or dBMCs, experienced a notable rise in total immunoglobulin (Ig) level. Furthermore, there was a significant reduction in the levels of islet cell autoantibodies (ICA) and insulin autoantibodies (IAA). Furthermore, the serum of STZ-induced T1DM mice showed a significant increase in Zinc transporter 8 antigen protein (ZnT8), islet antigen 2 protein (IA-2), and glutamic acid decarboxylase antigen protein (GAD) levels. Interestingly, the administration of nBMCs or dBMCs resulted in a heightened expression of IA-2 protein in STZ-induced T1DM mice treated with nBMCs or dBMCs. Furthermore, the level of malondialdehyde (MDA) was increased, while the levels of catalase (CAT) and superoxide dismutase (SOD) were decreased in non-treated STZ-induced T1DM mice. However, when nBMCs or dBMCs were administered to STZ-induced T1DM mice, it had a significant impact on reducing oxidative stress. This was accomplished by reducing the levels of MDA in the serum and enhancing the activities of enzymatic antioxidants like CAT and SOD. STZ-induced T1DM mice displayed a significant elevation in the levels of liver enzymes ALT and AST, as well as heightened levels of creatinine and urea. Considering the crucial roles of the liver and kidney in metabolism and excretion, this research further examined the effects of administering nBMCs or dBMCs to STZ-induced T1DM mice. Notably, the administration of these cells alleviated the observed effects. CONCLUSION The present study suggests that utilizing adoptively transferred nBMCs or adoptively transferred dBMCs in the treatment of T1DM led to noteworthy decreases in blood glucose levels, possibly attributed to their capacity to enhance insulin secretion and improve the performance of pancreatic islets. Additionally, BMCs may exert their beneficial effects on the pancreatic islets of diabetic mice through their immunomodulatory, antioxidant, anti-inflammatory, and anti-oxidative stress properties.
Collapse
Affiliation(s)
- Soha Gomaa
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Mohamed Nassef
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Amira Hafez
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
5
|
Miteva M, Mihaylova Z, Mitev V, Aleksiev E, Stanimirov P, Praskova M, Dimitrova VS, Vasileva A, Calenic B, Constantinescu I, Perlea P, Ishkitiev N. A Review of Stem Cell Attributes Derived from the Oral Cavity. Int Dent J 2024; 74:1129-1141. [PMID: 38582718 PMCID: PMC11561491 DOI: 10.1016/j.identj.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024] Open
Abstract
Oral cavity stem cells (OCSCs) have been the focus of intense scientific efforts due to their accessibility and stem cell properties. The present work aims to compare the different characteristics of 6 types of dental stem cells derived from the oral cavity: dental pulp stem cells (DPSC), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSC), stem cells from the apical papilla (SCAP), bone marrow mesenchymal stem cells (BMSC), and gingival mesenchymal stem cells (GMSC). Using immunofluorescence and real-time polymerase chain reaction techniques, we analysed the cells for stem cell, differentiation, adhesion, and extracellular matrix markers; the ability to proliferate in vitro; and multilineage differentiation potential. Markers such as vimentin, CD44, alkaline phosphatase, CD146, CD271, CD49f, Oct 3/4, Sox 9, FGF7, nestin, and BMP4 showed significant differences in expression levels, highlighting the heterogeneity and unique characteristics of each cell type. At the same time, we confirmed that all cell types successfully differentiated into osteogenic, chondrogenic, or adipose lineages, with different readiness. In conclusion, our study reveals the distinct properties and potential applications of various dental-derived stem cells. These findings contribute to a deeper understanding of OCSCs and their significance in future clinical applications.
Collapse
Affiliation(s)
- Marina Miteva
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Zornitsa Mihaylova
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Vanyo Mitev
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Evgeniy Aleksiev
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Pavel Stanimirov
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Maria Praskova
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Violeta S Dimitrova
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Anelia Vasileva
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Bogdan Calenic
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, University of Medicine and Farmacy "Carol Davila," Bucharest, Romania.
| | - Ileana Constantinescu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, University of Medicine and Farmacy "Carol Davila," Bucharest, Romania
| | - Paula Perlea
- Department of Endodontics, UMF Carol Davila, Bucharest, Romania.
| | - Nikolay Ishkitiev
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| |
Collapse
|
6
|
De La Monte SM, Yang Y, Tong M. Brain and Serum Membrane Vesicle (Exosome) Profiles in Experimental Alcohol-Related Brain Degeneration: Forging the Path to Non-Invasive Liquid Biopsy Diagnostics. JOURNAL OF MOLECULAR PATHOLOGY 2024; 5:360-384. [PMID: 39931524 PMCID: PMC11810071 DOI: 10.3390/jmp5030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Background Alcohol-related brain degeneration (ARBD) is associated with cognitive-motor impairments that can progress to disability and dementia. White matter (WM) is prominently targeted in ARBD due to chronic neurotoxic and degenerative effects on oligodendrocytes and myelin. Early detection and monitoring of WM pathology in ARBD could lead to therapeutic interventions. Objective This study examines the potential utility of a non-invasive strategy for detecting WM ARBD using exosomes isolated from serum. Comparative analyses were made with paired tissue (Tx) and membrane vesicles (MVs) from the temporal lobe (TL). Methods Long Evans rats were fed for 8 weeks with isocaloric liquid diets containing 37% or 0% caloric ethanol (n = 8/group). TL-Tx, TL-MVs, and serum exosomes (S-EVs) were used to examine ethanol's effects on oligodendrocyte glycoprotein, astrocyte, and oxidative stress markers. Results Ethanol significantly decreased the TL-Tx expression of platelet-derived growth factor receptor alpha (PDGFRA), 2',3'-cyclic nucleotide 3' phosphodiesterase (CNPase), proteolipid protein (PLP), myelin oligodendrocyte glycoprotein (MOG), glial fibrillary acidic protein (GFAP), and 8-OHdG, whereas in the TL-MVs, ethanol increased CNPase, PDGFRA, and 8-OHdG, but decreased MOG and GFAP concordantly with TL-Tx. Ethanol modulated the S-EV expression by reducing PLP, nestin, GFAP, and 4-hydroxynonenal (HNE). Conclusion Chronic ethanol exposures differentially alter the expression of oligodendrocyte/myelin, astrocyte, and oxidative stress markers in the brain, brain MVs, and S-EVs. However, directionally concordant effects across all three compartments were limited. Future studies should advance these efforts by characterizing the relationship between ABRD and molecular pathological changes in brain WM-specific exosomes in serum.
Collapse
Affiliation(s)
- Suzanne M. De La Monte
- Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI 02908, USA
- Departments of Pathology and Laboratory Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Women & Infants Hospital, and the Alpert Medical School of Brown University, Providence, RI 02908, USA
| | - Yiwen Yang
- Graduate Program in Biotechnology, Brown University, Providence, RI 02912, USA
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI 02908, USA
| |
Collapse
|
7
|
Tong Z, Yin Z. Distribution, contribution and regulation of nestin + cells. J Adv Res 2024; 61:47-63. [PMID: 37648021 PMCID: PMC11258671 DOI: 10.1016/j.jare.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Nestin is an intermediate filament first reported in neuroepithelial stem cells. Nestin expression could be found in a variety of tissues throughout all systems of the body, especially during tissue development and tissue regeneration processes. AIM OF REVIEW This review aimed to summarize and discuss current studies on the distribution, contribution and regulation of nestin+ cells in different systems of the body, to discuss the feasibility ofusing nestin as a marker of multilineage stem/progenitor cells, and better understand the potential roles of nestin+ cells in tissue development, regeneration and pathological processes. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the potential of nestin as a marker of multilineage stem/progenitor cells, and as a key factor in tissue development and tissue regeneration. The article discussed the current findings, limitations, and potential clinical implications or applications of nestin+ cells. Additionally, it included the relationship of nestin+ cells to other cell populations. We propose potential future research directions to encourage further investigation in the field.
Collapse
Affiliation(s)
- Ziyang Tong
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
8
|
Park MN. Therapeutic Strategies for Pancreatic-Cancer-Related Type 2 Diabetes Centered around Natural Products. Int J Mol Sci 2023; 24:15906. [PMID: 37958889 PMCID: PMC10648679 DOI: 10.3390/ijms242115906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a highly malignant neoplasm, is classified as one of the most severe and devastating types of cancer. PDAC is a notable malignancy that exhibits a discouraging prognosis and a rising occurrence. The interplay between diabetes and pancreatic cancer exhibits a reciprocal causation. The identified metabolic disorder has been observed to possess noteworthy consequences on health outcomes, resulting in elevated rates of morbidity. The principal mechanisms involve the suppression of the immune system, the activation of pancreatic stellate cells (PSCs), and the onset of systemic metabolic disease caused by dysfunction of the islets. From this point forward, it is important to recognize that pancreatic-cancer-related diabetes (PCRD) has the ability to increase the likelihood of developing pancreatic cancer. This highlights the complex relationship that exists between these two physiological states. Therefore, we investigated into the complex domain of PSCs, elucidating their intricate signaling pathways and the profound influence of chemokines on their behavior and final outcome. In order to surmount the obstacle of drug resistance and eliminate PDAC, researchers have undertaken extensive efforts to explore and cultivate novel natural compounds of the next generation. Additional investigation is necessary in order to comprehensively comprehend the effect of PCRD-mediated apoptosis on the progression and onset of PDAC through the utilization of natural compounds. This study aims to examine the potential anticancer properties of natural compounds in individuals with diabetes who are undergoing chemotherapy, targeted therapy, or immunotherapy. It is anticipated that these compounds will exhibit increased potency and possess enhanced pharmacological benefits. According to our research findings, it is indicated that naturally derived chemical compounds hold potential in the development of PDAC therapies that are both safe and efficacious.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| |
Collapse
|
9
|
Su X, Li X, Wang S, Xue X, Liu R, Bai X, Gong P, Feng C, Cao L, Wang T, Ding Y, Jiang J, Chen Y, Shi Y, Shao C. Nitric oxide-dependent immunosuppressive function of thymus-derived mesenchymal stromal/stem cells. Biol Direct 2023; 18:59. [PMID: 37723551 PMCID: PMC10506207 DOI: 10.1186/s13062-023-00415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND The thymus is required for T cell development and the formation of the adaptive immunity. Stromal cells, which include thymic epithelial cells (TECs) and mesenchymal stromal cells (MSCs), are essential for thymic function. However, the immunomodulatory function of thymus-derived MSCs (T-MSCs) has not been fully explored. METHODS MSCs were isolated from mouse thymus and their general characteristics including surface markers and multi-differentiation potential were characterized. The immunomodulatory function of T-MSCs stimulated by IFN-γ and TNF-α was evaluated in vitro and in vivo. Furthermore, the spatial distribution of MSCs in the thymus was interrogated by using tdTomato-flox mice corssed to various MSC lineage Cre recombinase lines. RESULTS A subset of T-MSCs express Nestin, and are mainly distributed in the thymic medulla region and cortical-medulla junction, but not in the capsule. The Nestin-positive T-MSCs exhibit typical immunophenotypic characteristics and differentiation potential. Additionally, when stimulated with IFN-γ and TNF-α, they can inhibit activated T lymphocytes as efficiently as BM-MSCs, and this function is dependent on the production of nitric oxide (NO). Additionally, the T-MSCs exhibit a remarkable therapeutic efficacy in acute liver injury and inflammatory bowel disease (IBD). CONCLUSIONS Nestin-positive MSCs are mainly distributed in medulla and cortical-medulla junction in thymus and possess immunosuppressive ability upon stimulation by inflammatory cytokines. The findings have implications in understanding the physiological function of MSCs in thymus.
Collapse
Affiliation(s)
- Xiao Su
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Xiaolei Li
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Shiqing Wang
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Xiaotong Xue
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Rui Liu
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Xiaojing Bai
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Pixia Gong
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Chao Feng
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Lijuan Cao
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Tingting Wang
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Yayun Ding
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Junjie Jiang
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Yongjing Chen
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Yufang Shi
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China.
| | - Changshun Shao
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
10
|
Doganyigit Z, Eroglu E, Okan A. Intermediate filament proteins are reliable immunohistological biomarkers to help diagnose multiple tissue-specific diseases. Anat Histol Embryol 2023; 52:655-672. [PMID: 37329162 DOI: 10.1111/ahe.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Cytoskeletal networks are proteins that effectively maintain cell integrity and provide mechanical support to cells by actively transmitting mechanical signals. Intermediate filaments, which are from the cytoskeleton family and are 10 nanometres in diameter, are unlike actin and microtubules, which are highly dynamic cytoskeletal elements. Intermediate filaments are flexible at low strain, harden at high strain and resist breaking. For this reason, these filaments fulfil structural functions by providing mechanical support to the cells through their different strain-hardening properties. Intermediate filaments are suitable in that cells both cope with mechanical forces and modulate signal transmission. These filaments are composed of fibrous proteins that exhibit a central α-helical rod domain with a conserved substructure. Intermediate filament proteins are divided into six groups. Type I and type II include acidic and basic keratins, type III, vimentin, desmin, peripheralin and glial fibrillary acidic protein (GFAP), respectively. Type IV intermediate filament group includes neurofilament proteins and a fourth neurofilament subunit, α-internexin proteins. Type V consists of lamins located in the nucleus, and the type VI group consists of lens-specific intermediate filaments, CP49/phakinin and filen. Intermediate filament proteins show specific immunoreactivity in differentiating cells and mature cells of various types. Various carcinomas such as colorectal, urothelial and ovarian, diseases such as chronic pancreatitis, cirrhosis, hepatitis and cataract have been associated with intermediate filaments. Accordingly, this section reviews available immunohistochemical antibodies to intermediate filament proteins. Identification of intermediate filament proteins by methodological methods may contribute to the understanding of complex diseases.
Collapse
Affiliation(s)
- Zuleyha Doganyigit
- Faculty of Medicine, Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | - Ece Eroglu
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Aslı Okan
- Faculty of Medicine, Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
11
|
Nestin is a marker of unipotent embryonic and adult progenitors differentiating into an epithelial cell lineage of the hair follicles. Sci Rep 2022; 12:17820. [PMID: 36280775 PMCID: PMC9592581 DOI: 10.1038/s41598-022-22427-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/14/2022] [Indexed: 01/19/2023] Open
Abstract
Nestin is an intermediate filament protein transiently expressed in neural stem/progenitor cells. We previously demonstrated that outer root sheath (ORS) keratinocytes of adult hair follicles (HFs) in mice descend from nestin-expressing cells, despite being an epithelial cell lineage. This study determined the exact stage when nestin-expressing ORS stem/precursor cells or their descendants appear during HF morphogenesis, and whether they are present in adult HFs. Using Nes-Cre/CAG-CAT-EGFP mice, in which enhanced green fluorescent protein (EGFP) is expressed following Cre-based recombination driven by the nestin promoter, we found that EGFP+ cells appeared in the epithelial layer of embryonic HFs as early as the peg stage. EGFP+ cells in hair pegs were positive for keratin 14 (K14) and K5, but not vimentin, SOX2, SOX10, or S100 alpha 6. Tracing of tamoxifen-induced EGFP+ cells in postnatal Nes-CreERT2/CAG-CAT-EGFP mice revealed labeling of some isthmus HF epithelial cells in the first anagen stage. EGFP+ cells in adult HFs were not immunolabeled for K15, an HF multipotent stem cell marker. However, when hairs were depilated in Nes-CreERT2/CAG-CAT-EGFP mice to induce the anagen stage after tamoxifen injection, the majority of ORS keratinocytes in depilation-induced anagen HFs were labeled for EGFP. Our findings indicate that nestin-expressing unipotent progenitor cells capable of differentiating into ORS keratinocytes are present in HF primordia and adult HFs.
Collapse
|
12
|
Huang J, Deng R, Li W, Jiang M, Xiang AP, Zhang X. Nestin+ Mesenchymal Precursors Generate Distinct Spleen Stromal Cell Subsets and Have Immunomodulatory Function. Int J Mol Sci 2022; 23:ijms231911819. [PMID: 36233119 PMCID: PMC9569994 DOI: 10.3390/ijms231911819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are known to be widespread in many tissues and possess a broad spectrum of immunoregulatory properties. They have been used in the treatment of a variety of inflammatory diseases; however, the therapeutic effects are still inconsistent owing to their heterogeneity. Spleen stromal cells have evolved to regulate the immune response at many levels as they are bathed in a complex inflammatory milieu during infection. Therefore, it is unknown whether they have stronger immunomodulatory effects than their counterparts derived from other tissues. Here, using a transgenic mouse model expressing GFP driven by the Nestin (Nes) promoter, Nes-GFP+ cells from bone marrow and spleen were collected. Artificial lymphoid reconstruction in vivo was performed. Cell phenotype, inhibition of T cell inflammatory cytokines, and in vivo therapeutic effects were assessed. We observed Nes-GFP+ cells colocalized with splenic stromal cells and further demonstrated that these Nes-GFP+ cells had the ability to establish ectopic lymphoid-like structures in vivo. Moreover, we showed that the Nes-GFP+ cells possessed the characteristics of MSCs. Spleen-derived Nes-GFP+ cells exhibited greater immunomodulatory ability in vitro and more remarkable therapeutic efficacy in inflammatory diseases, especially inflammatory bowel disease (IBD) than bone marrow-derived Nes-GFP+ cells. Overall, our data showed that Nes-GFP+ cells contributed to subsets of spleen stromal populations and possessed the biological characteristics of MSCs with a stronger immunoregulatory function and therapeutic potential than bone marrow-derived Nes-GFP+ cells.
Collapse
Affiliation(s)
- Jing Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Ronghai Deng
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Meihua Jiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510080, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
- Correspondence: ; Tel.: +86-20-87335982
| |
Collapse
|
13
|
Human Primary Odontoblast-like Cell Cultures—A Focused Review Regarding Cell Characterization. J Clin Med 2022; 11:jcm11185296. [PMID: 36142943 PMCID: PMC9501234 DOI: 10.3390/jcm11185296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Cell cultures can provide useful in vitro models. Since odontoblasts are postmitotic cells, they cannot be expanded in cell cultures. Due to their extension into the dentin, injuries are inevitable during isolation. Therefore, “odontoblast-like” cell culture models have been established. Nowadays, there is no accepted definition of odontoblast-like cell cultures, i.e., isolation, induction, and characterization of cells are not standardized. Furthermore, no quality-control procedures are defined yet. Thus, the aim of this review was to evaluate both the methods used for establishment of cell cultures and the validity of molecular methods used for their characterization. An electronic search was performed in February 2022 using the Medline, Scopus, and Web of Science database identifying publications that used human primary odontoblast-like cell cultures as models and were published between 2016 and 2022. Data related to (I) cell culture conditions, (II) stem cell screening, (III) induction media, (IV) mineralization, and (V) cell characterization were analyzed. The included publications were not able to confirm an odontoblast-like nature of their cell cultures. For their characterization, not only a similarity to dentin but also a distinction from bone must be demonstrated. This is challenging, due to the developmental and evolutionary proximity of these two tissue types.
Collapse
|
14
|
Wang Y, Wei T, Wang Q, Zhang C, Li K, Deng J. Resveratrol's neural protective effects for the injured embryoid body and cerebral organoid. BMC Pharmacol Toxicol 2022; 23:47. [PMID: 35820950 PMCID: PMC9275253 DOI: 10.1186/s40360-022-00593-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Resveratrol (RSV) is a polyphenol compound found in grapes, veratrum and other plants. It has been reported that RSV has anti-inflammatory, anti-oxidant, anti-cancer and other pharmacological effects. However, the impacts of RSV on development of nervous system are not understood well. The study aims to investigate RSV's neuroprotective effect during development and to provide a health care for pregnant women and their fetuses with RSV supplementation. METHODS In this study, we induced human induced pluripotent stem cells (hiPSCs) to form the embryoid bodies (EBs) and cerebral organoids (COs) with 3 dimensional (3D) culture. In the meantime, D-galactose (D-gal, 5 mg/ml) was used to make nervous injury model, and on the other hand, RSV with various doses, such as 2 μm/L, 10 μm/L, 50 μm/L, were applied to understand its neuroprotection. Therefore, the cultures were divided into control group, D-gal nervous injury group and RSV intervention groups. After that, the diameters of EBs and COs were measured regularly under a reverted microscope. In the meantime, the neural proliferation, cell apoptosis and the differentiation of germ layers were detected via immunofluorescence. RESULTS (1) D-gal could delay the development of EBs and COs; (2) RSV could rescue the atrophy of EBs and COs caused by D-gal; (3) RSV showed its neuroprotection, through promoting the neural cell proliferation, inhibiting apoptosis and accelerating the differentiation of germ layers. CONCLUSION RSV has a neuroprotective effect on the development of the nervous system, suggesting RSV supplementation may be necessary during the health care of pregnancy and childhood.
Collapse
Affiliation(s)
- Yanli Wang
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450002, Henan Province, China
| | - Tingting Wei
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450002, Henan Province, China
| | - Qiang Wang
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450002, Henan Province, China
| | - Chaonan Zhang
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450002, Henan Province, China
| | - Keyan Li
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450002, Henan Province, China
| | - Jinbo Deng
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450002, Henan Province, China.
| |
Collapse
|
15
|
Taguchi T, Duan W, Wolfson W, Duhon B, Halphen EG, Lopez MJ. Feline Adipose Derived Multipotent Stromal Cell Transdifferentiation Into Functional Insulin Producing Cell Clusters. Front Bioeng Biotechnol 2022; 10:904519. [PMID: 35769100 PMCID: PMC9234738 DOI: 10.3389/fbioe.2022.904519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent feline endocrinopathies, affecting up to 1% of pet cats. De novo generation of functional insulin producing cell (IPC) clusters via transdifferentiation of feline adipose-derived multipotent stromal cells (ASCs) may not only provide a viable, functional cell therapy for feline DM, but may also serve as a platform for developing a comparable human treatment given feline and human DM similarities. Cells were induced to form IPCs with a novel, three-stage culture process with stromal or differentiation medium under static and dynamic conditions. Clusters were evaluated for intracellular zinc, viability, intracellular insulin, glucagon, and somatostatin, ultrastructure, glucose stimulated insulin secretion in the presence or absence of theophylline, and protein and gene expression. Isolated cells were multipotent, and cell clusters cultured in both media had robust cell viability. Those cultured in differentiation medium contained zinc and mono- or polyhormonal α-, β-, and δ-like cells based on immunohistochemical labeling and Mallory-Heidenhan Azan-Gomori’s staining. Ultrastructurally, cell clusters cultured in differentiation medium contained insulin granules within vesicles, and clusters had a concentration-dependent insulin response to glucose in the presence and absence of theophylline which increased both insulin secretion and intracellular content. Expression of NK6.1, Pax6, Isl1, Glut2, RAB3A, glucagon, insulin, and somatostatin increased with differentiation stage for both sexes, and expression of nestin at stages 1 and 2 and Neurod1 at stage 2 was higher in cells from female donors. The cluster insulin secretion responses and endocrine and oncogene gene expression profiles were inconsistent with insulinoma characteristics. A total of 180 proteins were upregulated in differentiated clusters, and the majority were associated with biological regulation, metabolic processes, or stimulus response. Dynamic culture of IPC clusters resulted in clusters composed of cells primarily expressing insulin that released higher insulin with glucose stimulation than those in static culture. Collectively, the results of this study support generation of functional IPC clusters using feline ASCs isolated from tissues removed during routine sterilization. Further, cluster functionality is enhanced with dynamic, motion-driven shear stress. This work establishes a foundation for development of strategies for IPC therapy for short or long-term diabetes treatment and may represent an option to study prevention and treatment of diabetes across species.
Collapse
Affiliation(s)
- Takashi Taguchi
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Wei Duan
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Wendy Wolfson
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Brandy Duhon
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Emily G. Halphen
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Mandi J. Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- *Correspondence: Mandi J. Lopez,
| |
Collapse
|
16
|
Jiang T, Wei F, Xie K. Clinical significance of pancreatic ductal metaplasia. J Pathol 2022; 257:125-139. [PMID: 35170758 DOI: 10.1002/path.5883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/08/2022]
Abstract
Pancreatic ductal metaplasia (PDM) is the stepwise replacement of differentiated somatic cells with ductal or ductal-like cells in the pancreas. PDM is usually triggered by cellular and environmental insults. PDM development may involve all cell lineages of the pancreas, and acinar cells with the highest plasticity are the major source of PDM. Pancreatic progenitor cells are also involved as cells of origin or transitional intermediates. PDM is heterogeneous at the histological, cellular, and molecular levels and only certain subsets of PDM develop further into pancreatic intraepithelial neoplasia (PanIN) and then pancreatic ductal adenocarcinoma (PDAC). The formation and evolution of PDM is regulated at the cellular and molecular levels through a complex network of signaling pathways. The key molecular mechanisms that drive PDM formation and its progression into PanIN/PDAC remain unclear, but represent key targets for reversing or inhibiting PDM. Alternatively, PDM could be a source of pancreas regeneration, including both exocrine and endocrine components. Cellular aging and apoptosis are obstacles to PDM-to-PanIN progression or pancreas regeneration. Functional identification of the cellular and molecular events driving senescence and apoptosis in PDM and its progression would help not only to restrict the development of PDM into PanIN/PDAC, but may also facilitate pancreatic regeneration. This review systematically assesses recent advances in the understanding of PDM physiology and pathology, with a focus on its implications for enhancing regeneration and prevention of cancer. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tingting Jiang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, PR China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, PR China
| | - Fang Wei
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, PR China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, PR China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, PR China
| |
Collapse
|
17
|
Li X, He J, Xie K. Molecular signaling in pancreatic ductal metaplasia: emerging biomarkers for detection and intervention of early pancreatic cancer. Cell Oncol (Dordr) 2022; 45:201-225. [PMID: 35290607 DOI: 10.1007/s13402-022-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal metaplasia (PDM) is the transformation of potentially various types of cells in the pancreas into ductal or ductal-like cells, which eventually replace the existing differentiated somatic cell type(s). PDM is usually triggered by and manifests its ability to adapt to environmental stimuli and genetic insults. The development of PDM to atypical hyperplasia or dysplasia is an important risk factor for pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDA). Recent studies using genetically engineered mouse models, cell lineage tracing, single-cell sequencing and others have unraveled novel cellular and molecular insights in PDM formation and evolution. Those novel findings help better understand the cellular origins and functional significance of PDM and its regulation at cellular and molecular levels. Given that PDM represents the earliest pathological changes in PDA initiation and development, translational studies are beginning to define PDM-associated cell and molecular biomarkers that can be used to screen and detect early PDA and to enable its effective intervention, thereby truly and significantly reducing the dreadful mortality rate of PDA. This review will describe recent advances in the understanding of PDM biology with a focus on its underlying cellular and molecular mechanisms, and in biomarker discovery with clinical implications for the management of pancreatic regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jie He
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China.
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China.
| |
Collapse
|
18
|
Li S, Xie K. Ductal metaplasia in pancreas. Biochim Biophys Acta Rev Cancer 2022; 1877:188698. [DOI: 10.1016/j.bbcan.2022.188698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
|
19
|
Gao Y, Guan W, Bai C. Pancreatic Duct Cells Isolated From Canines Differentiate Into Beta-Like Pancreatic Islet Cells. Front Vet Sci 2022; 8:771196. [PMID: 35071380 PMCID: PMC8769286 DOI: 10.3389/fvets.2021.771196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, we isolated and cultured pancreatic ductal cells from canines and revealed the possibility for using them to differentiate into functional pancreatic beta cells in vitro. Passaged pancreatic ductal cells were induced to differentiate into beta-like pancreatic islet cells using a mixture of induced factors. Differentiated pancreatic ductal cells were analyzed based on intracellular insulin granules using transmission electron microscopy, the expression of insulin and glucagon using immunofluorescence, and glucose-stimulated insulin secretion using ELISA. Our data revealed that differentiated pancreatic ductal cells not only expressed insulin and glucagon but also synthesized insulin granules and secreted insulin at different glucose concentrations. Our study might assist in the development of effective cell therapies for the treatment of type 1 diabetes mellitus in dogs.
Collapse
Affiliation(s)
- Yuhua Gao
- Institute of Precision Medicine, Jining Medical University, Jining, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weijun Guan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunyu Bai
- Institute of Precision Medicine, Jining Medical University, Jining, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Muthu S, Jeyaraman M, Jeyaraman N, Rajendran RL, Gangadaran P. Where Do We Stand in Stem Cell Therapy for the Management of Diabetes Mellitus?-A Scientometric Research Trend Analysis from 1990 to 2020. Bioengineering (Basel) 2021; 8:159. [PMID: 34821725 PMCID: PMC8615097 DOI: 10.3390/bioengineering8110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 02/05/2023] Open
Abstract
Stem cell therapy has been considered a promising strategy in the management of both type I and type II diabetes mellitus (DM) because of its immunomodulatory and regenerative capability to restore the beta cell number and function. Various modalities of cellular therapy like transplantation of pancreatic islet cells, transplantation of pancreatic ductal stem cells, and mesenchymal stromal cell transplantation have been tried, and the modality is undergoing rapid advancements that may become the reality in the near future. In the course of its evolution, it is essential to have a comprehensive summary of the progress for a greater capacity to refine our future directives. With technological developments like data mining, graphic drawing, and information analytics combined with computational statistics, visualization of scientific metrology has become a reality. With a newer perspective, we intend to use scientometric tools including text mining, co-word analysis, word frequency analysis, co-citation analysis, cluster network analysis, to perform a systematic and comprehensive analysis of the research trend in stem cell therapy in the management of DM over the past three decades (1990-2020) and to identify the future research hotspots.
Collapse
Affiliation(s)
- Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624001, Tamil Nadu, India;
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India;
| | - Madhan Jeyaraman
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India;
- Department of Orthopedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India;
- Department of Orthopedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
21
|
Memon B, Younis I, Abubaker F, Abdelalim EM. PDX1 - /NKX6.1 + progenitors derived from human pluripotent stem cells as a novel source of insulin-secreting cells. Diabetes Metab Res Rev 2021; 37:e3400. [PMID: 32857429 DOI: 10.1002/dmrr.3400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022]
Abstract
AIM Beta cell replacement strategies are a promising alternative for diabetes treatment. Human pluripotent stem cells (hPSCs) serve as a scalable source for producing insulin-secreting cells for transplantation therapy. We recently generated novel hPSC-derived pancreatic progenitors, expressing high levels of the transcription factor NKX6.1, in the absence of PDX1 (PDX1- /NKX6.1+ ). Herein, our aim was to characterize this novel population and assess its ability to differentiate into insulin-secreting beta cells in vitro. MATERIALS AND METHODS Three different hPSC lines were differentiated into PDX1- /NKX6.1+ progenitors, which were further differentiated into insulin-secreting cells using two different protocols. The progenitors and beta cells were extensively characterized. Transcriptome analysis was performed at different stages and compared with the profiles of various pancreatic counterparts. RESULTS PDX1- /NKX6.1+ progenitors expressed high levels of nestin, a key marker of pancreatic islet-derived progenitors, in the absence of E-cadherin, similar to pancreatic mesenchymal stem cells. At progenitor stage, comparison of the two populations showed downregulation of pancreatic epithelial genes and upregulation of neuronal development genes in PDX1- /NKX6.1+ cells in comparison to the PDX1+ /NKX6.1+ cells. Interestingly, on further differentiation, PDX1- /NKX6.1+ cells generated mono-hormonal insulin+ cells and activated pancreatic key genes, such as PDX1. The transcriptome profile of PDX1- /NKX6.1+ -derived beta (3D-beta) was closely similar to those of human pancreatic islets and purified hPSC-derived beta cells. Also, the 3D-beta cells secreted C-peptide in response to increased glucose concentrations indicating their functionality. CONCLUSION These findings provide a novel source of insulin-secreting cells that can be used for beta cell therapy for diabetes.
Collapse
Affiliation(s)
- Bushra Memon
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, PO Box 34110,, Qatar
| | - Ihab Younis
- Biological Sciences Program, Carnegie Mellon University in Qatar, Qatar Foundation (QF), Doha, Qatar
| | - Fadhil Abubaker
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Essam M Abdelalim
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, PO Box 34110,, Qatar
| |
Collapse
|
22
|
Lodestijn SC, van Neerven SM, Vermeulen L, Bijlsma MF. Stem Cells in the Exocrine Pancreas during Homeostasis, Injury, and Cancer. Cancers (Basel) 2021; 13:cancers13133295. [PMID: 34209288 PMCID: PMC8267661 DOI: 10.3390/cancers13133295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/16/2021] [Accepted: 06/26/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Pancreatic cancer is one of the most lethal malignancies. Hence, improved therapies are urgently needed. Recent research indicates that pancreatic cancers depend on cancer stem cells (CSCs) for tumor expansion, metastasis, and therapy resistance. However, the exact functionality of pancreatic CSCs is still unclear. CSCs have much in common with normal pancreatic stem cells that have been better, albeit still incompletely, characterized. In this literature review, we address how pancreatic stem cells influence growth, homeostasis, regeneration, and cancer. Furthermore, we outline which intrinsic and extrinsic factors regulate stem cell functionality during these different processes to explore potential novel targets for treating pancreatic cancer. Abstract Cell generation and renewal are essential processes to develop, maintain, and regenerate tissues. New cells can be generated from immature cell types, such as stem-like cells, or originate from more differentiated pre-existing cells that self-renew or transdifferentiate. The adult pancreas is a dormant organ with limited regeneration capacity, which complicates studying these processes. As a result, there is still discussion about the existence of stem cells in the adult pancreas. Interestingly, in contrast to the classical stem cell concept, stem cell properties seem to be plastic, and, in circumstances of injury, differentiated cells can revert back to a more immature cellular state. Importantly, deregulation of the balance between cellular proliferation and differentiation can lead to disease initiation, in particular to cancer formation. Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a 5-year survival rate of only ~9%. Unfortunately, metastasis formation often occurs prior to diagnosis, and most tumors are resistant to current treatment strategies. It has been proposed that a specific subpopulation of cells, i.e., cancer stem cells (CSCs), are responsible for tumor expansion, metastasis formation, and therapy resistance. Understanding the underlying mechanisms of pancreatic stem cells during homeostasis and injury might lead to new insights to understand the role of CSCs in PDAC. Therefore, in this review, we present an overview of the current literature regarding the stem cell dynamics in the pancreas during health and disease. Furthermore, we highlight the influence of the tumor microenvironment on the growth behavior of PDAC.
Collapse
Affiliation(s)
- Sophie C. Lodestijn
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sanne M. van Neerven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
23
|
Jeong SY, Choi WH, Jeon SG, Lee S, Park JM, Park M, Lee H, Lew H, Yoo J. Establishment of functional epithelial organoids from human lacrimal glands. Stem Cell Res Ther 2021; 12:247. [PMID: 33883032 PMCID: PMC8059179 DOI: 10.1186/s13287-021-02133-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/01/2021] [Indexed: 11/29/2022] Open
Abstract
Background Tear deficiency due to lacrimal gland (LG) dysfunction is one of the major causes of dry eye disease (DED). Therefore, LG stem cell-based therapies have been extensively reported to regenerate injured lacrimal tissue; however, the number of stem cells in the LG tissue is low, and 2D long-term cultivation reduces the differentiation capacity of stem cells. Nevertheless, 3D LG organoids could be an alternative for a DED therapy because it is capable of prolonged growth while maintaining the characteristics of the LG tissue. Here, we report the development of LG organoids and their application as cell therapeutics. Methods Digested cells from human LG tissue were mixed with Matrigel and cultured in five different media modified from human prostate/salivary organoid culture media. After organoid formation, the growth, specific marker expression, and histological characteristics were analyzed to authenticate the formation of LG organoids. The secretory function of LG organoids was confirmed through calcium influx or proteomics analysis after pilocarpine treatment. To explore the curability of the developed organoids, mouse-derived LG organoids were fabricated and transplanted into the lacrimal tissue of a mouse model of DED. Results The histological features and specific marker expression of LG organoids were similar to those of normal LG tissue. In the pilocarpine-treated LG organoid, levels of internal Ca2+ ions and β-hexosaminidase, a lysosomal protein in tear fluid, were increased. In addition, the secreted proteins from pilocarpine-treated lacrimal organoids were identified through proteomics. More than 70% of the identified proteins were proven to exosome through gene ontology analysis. These results indicate that our developed organoid was pilocarpine reactive, demonstrating the function of LG. Additionally, we developed LG organoids from patients with Sjogren’s syndrome patients (SS) and confirmed that their histological features were similar to those of SS-derived LG tissue. Finally, we confirmed that the mouse LG organoids were well engrafted in the lacrimal tissue two weeks after transplantation. Conclusion This study demonstrates that the established LG organoids resemble the characteristics of normal LG tissue and may be used as a therapy for patients with DED. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02133-y.
Collapse
Affiliation(s)
- Sang Yun Jeong
- Department of Microbiology and CHA Organoid Research Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Woo Hee Choi
- Department of Microbiology and CHA Organoid Research Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.,ORGANOIDSCIENCES, Ltd., Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Seong Gyeong Jeon
- Department of Microbiology and CHA Organoid Research Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Sookon Lee
- Department of Rheumatology, Bundang CHA Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Jong-Moon Park
- Department of Pharmacology, Gacheon University, Incheon, Gyeonggi-do, Republic of Korea
| | - Mira Park
- Department of Ophthalmology, Bundang CHA Medical Center, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Hookeun Lee
- Department of Pharmacology, Gacheon University, Incheon, Gyeonggi-do, Republic of Korea
| | - Helen Lew
- Department of Ophthalmology, Bundang CHA Medical Center, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| | - Jongman Yoo
- Department of Microbiology and CHA Organoid Research Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea. .,ORGANOIDSCIENCES, Ltd., Seongnam, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
24
|
Tang S, Zhang M, Zeng S, Huang Y, Qin M, Nasri U, Santamaria P, Riggs AD, Jin L, Zeng D. Reversal of autoimmunity by mixed chimerism enables reactivation of β cells and transdifferentiation of α cells in diabetic NOD mice. Proc Natl Acad Sci U S A 2020; 117:31219-31230. [PMID: 33229527 PMCID: PMC7733788 DOI: 10.1073/pnas.2012389117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) results from the autoimmune destruction of β cells, so cure of firmly established T1D requires both reversal of autoimmunity and restoration of β cells. It is known that β cell regeneration in nonautoimmune diabetic mice can come from differentiation of progenitors and/or transdifferentiation of α cells. However, the source of β cell regeneration in autoimmune nonobese diabetic (NOD) mice remains unclear. Here, we show that, after reversal of autoimmunity by induction of haploidentical mixed chimerism, administration of gastrin plus epidermal growth factor augments β cell regeneration and normalizes blood glucose in the firmly established diabetic NOD mice. Using transgenic NOD mice with inducible lineage-tracing markers for insulin-producing β cells, Sox9+ ductal progenitors, Nestin+ mesenchymal stem cells, and glucagon-producing α cells, we have found that both reactivation of dysfunctional low-level insulin expression (insulinlo) β cells and neogenesis contribute to the regeneration, with the latter predominantly coming from transdifferentiation of α cells. These results indicate that, after reversal of autoimmunity, reactivation of β cells and transdifferentiation of α cells can provide sufficient new functional β cells to reach euglycemia in firmly established T1D.
Collapse
Affiliation(s)
- Shanshan Tang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 210009 Nanjing, China
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
| | - Mingfeng Zhang
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
| | - Samuel Zeng
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Yaxun Huang
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Department of Organ Transplantation, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Melissa Qin
- Diabetes and Metabolism Research Institute, Summer Student Academy of City of Hope, Duarte, CA 91010
| | - Ubaydah Nasri
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Center, Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
- Pathogenesis and Treatment of Autoimmunity Laboratory, Institut D'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Arthur D Riggs
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010;
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 210009 Nanjing, China;
| | - Defu Zeng
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010;
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
| |
Collapse
|
25
|
Panvini FM, Pacini S, Montali M, Barachini S, Mazzoni S, Morganti R, Ciancia EM, Carnicelli V, Petrini M. High NESTIN Expression Marks the Endosteal Capillary Network in Human Bone Marrow. Front Cell Dev Biol 2020; 8:596452. [PMID: 33364234 PMCID: PMC7753038 DOI: 10.3389/fcell.2020.596452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Hematopoiesis is hosted, supported and regulated by a special bone marrow (BM) microenvironment known as "niche." BM niches have been classified based on micro-anatomic distance from the bone surface into "endosteal" and "central" niches. Whilst different blood vessels have been found in both BM niches in mice, our knowledge of the human BM architecture is much more limited. Here, we have used a combination of markers including NESTIN, CD146, and αSMA labeling different blood vessels in benign human BM. Applying immunohistochemical/immunofluorescence techniques on BM trephines and performing image analysis on almost 300 microphotographs, we detected high NESTIN expression in BM endothelial cells (BMECs) of small arteries (A) and endosteal arterioles (EA), and also in very small vessels we named NESTIN+ capillary-like tubes (NCLTs), not surrounded by sub-endothelial perivascular cells that occasionally reported low levels of NESTIN expression. Statistically, NCLTs were detected within 40 μm from bone trabecula, frequently found in direct contact to the bone line and spatially correlated with hematopoietic stem/progenitor cells. Our results support the expression of NESTIN in human BMECs of EA and A in accordance with the updated classification of murine BM micro-vessels. NCLTs for their peculiar characteristics and micro-anatomical localization have been here proposed as transitional vessels possibly involved in regulating human hematopoiesis.
Collapse
Affiliation(s)
- Francesca M. Panvini
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simone Pacini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marina Montali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Mazzoni
- Department of Translational Research and New Technology in Medicine, University of Pisa, Pisa, Italy
| | - Riccardo Morganti
- Statistical Support to Clinical Trials Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Eugenio M. Ciancia
- Department of Pathology, Azienda Ospedsaliero Universitaria Pisana, Pisa, Italy
| | - Vittoria Carnicelli
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Mario Petrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
26
|
Yang K, Lee M, Jones PA, Liu SS, Zhou A, Xu J, Sreekanth V, Wu JLY, Vo L, Lee EA, Pop R, Lee Y, Wagner BK, Melton DA, Choudhary A, Karp JM. A 3D culture platform enables development of zinc-binding prodrugs for targeted proliferation of β cells. SCIENCE ADVANCES 2020; 6:eabc3207. [PMID: 33208361 PMCID: PMC7673808 DOI: 10.1126/sciadv.abc3207] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Advances in treating β cell loss include islet replacement therapies or increasing cell proliferation rate in type 1 and type 2 diabetes, respectively. We propose developing multiple proliferation-inducing prodrugs that target high concentration of zinc ions in β cells. Unfortunately, typical two-dimensional (2D) cell cultures do not mimic in vivo conditions, displaying a markedly lowered zinc content, while 3D culture systems are laborious and expensive. Therefore, we developed the Disque Platform (DP)-a high-fidelity culture system where stem cell-derived β cells are reaggregated into thin, 3D discs within 2D 96-well plates. We validated the DP against standard 2D and 3D cultures and interrogated our zinc-activated prodrugs, which release their cargo upon zinc chelation-so preferentially in β cells. Through developing a reliable screening platform that bridges the advantages of 2D and 3D culture systems, we identified an effective hit that exhibits 2.4-fold increase in β cell proliferation compared to harmine.
Collapse
Affiliation(s)
- Kisuk Yang
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Nanomedicine, Harvard Stem Cell Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA
| | - Miseon Lee
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Peter Anthony Jones
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Nanomedicine, Harvard Stem Cell Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Sophie S Liu
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Nanomedicine, Harvard Stem Cell Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Angela Zhou
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Nanomedicine, Harvard Stem Cell Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Xu
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Nanomedicine, Harvard Stem Cell Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vedagopuram Sreekanth
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jamie L Y Wu
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Nanomedicine, Harvard Stem Cell Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lillian Vo
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Nanomedicine, Harvard Stem Cell Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eunjee A Lee
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Nanomedicine, Harvard Stem Cell Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Ramona Pop
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Yuhan Lee
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Nanomedicine, Harvard Stem Cell Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
- Chemical Biology Program, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey M Karp
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Center for Nanomedicine, Harvard Stem Cell Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
27
|
Functional β-Cell Differentiation of Small-Tail Han Sheep Pancreatic Mesenchymal Stem Cells and the Therapeutic Potential in Type 1 Diabetic Mice. Pancreas 2020; 49:947-954. [PMID: 32658079 DOI: 10.1097/mpa.0000000000001604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES This study aims to investigate the characteristics of sheep pancreatic mesenchymal stem cells (PSCs) and therapeutic potential of differentiated β-like cells in streptozotocin-induced diabetic mice. METHODS Pancreatic mesenchymal stem cells were isolated from 3- to 4-month-old sheep embryos, and their biological characteristics were explored. The function and therapeutic potential of differentiated β-like insulin-producing cells were also investigated in vitro and in vivo. Differentiated cells were identified through dithizone staining and immunofluorescence staining. Insulin secretion was analyzed using an enzyme-linked immunosorbent assay kit. The preliminary therapeutic potential of induced β-like cells in diabetic mice was detected by blood glucose and body weight. RESULTS Primary PSCs were isolated and subcultured up to passage 36. Immunofluorescence staining presented PSC-expressed important markers such as Pdx1, Nkx6-1, Ngn3, and Nestin. Primary PSCs could be induced into functional pancreatic β-like islet cells with a 3-step protocol. The induced β-like islet cells could ameliorate blood glucose in diabetic mice. CONCLUSIONS The method proposed for generating pancreatic islet β cells provided a preliminary phenotypic investigation of induced cell treatment in diabetic mice, and also laid a foundation in the identification of pharmaceutical targets to treat insulin-dependent diabetes.
Collapse
|
28
|
Villard O, Armanet M, Couderc G, Bony C, Moreaux J, Noël D, De Vos J, Klein B, Veyrune JL, Wojtusciszyn A. Characterization of immortalized human islet stromal cells reveals a MSC-like profile with pancreatic features. Stem Cell Res Ther 2020; 11:158. [PMID: 32303252 PMCID: PMC7165390 DOI: 10.1186/s13287-020-01649-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/12/2020] [Accepted: 03/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) represent an interesting tool to improve pancreatic islet transplantation. They have immunomodulatory properties and secrete supportive proteins. However, the functional properties of MSCs vary according to many factors such as donor characteristics, tissue origin, or isolation methods. To counteract this heterogeneity, we aimed to immortalize and characterize adherent cells derived from human pancreatic islets (hISCs), using phenotypic, transcriptomic, and functional analysis. METHODS Adherent cells derived from human islets in culture were infected with a hTERT retrovirus vector and then characterized by microarray hybridization, flow cytometry analysis, and immunofluorescence assays. Osteogenic, adipogenic, and chondrogenic differentiation as well as PBMC proliferation suppression assays were used to compare the functional abilities of hISCs and MSCs. Extracellular matrix (ECM) gene expression profile analysis was performed using the SAM (Significance Analysis of Microarrays) software, and protein expression was confirmed by western blotting. RESULTS hISCs kept an unlimited proliferative potential. They exhibited several properties of MSCs such as CD73, CD90, and CD105 expression and differentiation capacity. From a functional point of view, hISCs inhibited the proliferation of activated peripheral blood mononuclear cells. The transcriptomic profile of hISCs highly clusterized with bone marrow (BM)-MSCs and revealed a differential enrichment of genes involved in the organization of the ECM. Indeed, the expression and secretion profiles of ECM proteins including collagens I, IV, and VI, fibronectin, and laminins, known to be expressed in abundance around and within the islets, were different between hISCs and BM-MSCs. CONCLUSION We generated a new human cell line from pancreatic islets, with MSCs properties and retaining some pancreatic specificities related to the production of ECM proteins. hISCs appear as a very promising tool in islet transplantation by their availability (as a source of inexhaustible source of cells) and ability to secrete a supportive "pancreatic" microenvironment.
Collapse
Affiliation(s)
- Orianne Villard
- Laboratory of Cell Therapy for Diabetes, Institute of Regenerative Medicine and Biotherapy, Univ. Montpellier, CHU Montpellier, Montpellier, France
- Department of Endocrinology, Diabetes, and Nutrition, Univ. Montpellier, CHU Montpellier, Montpellier, France
| | - Mathieu Armanet
- Laboratory of Cell Therapy for Diabetes, Institute of Regenerative Medicine and Biotherapy, Univ. Montpellier, CHU Montpellier, Montpellier, France
- Cell Therapy Unit, Hospital Saint- Louis, AP-HP, Paris, France
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, 8 avenue de la Sallaz - 1011, Lausanne, Switzerland
| | - Guilhem Couderc
- Department of Biological Haematology, Univ. Montpellier, CHU Montpellier, Montpellier, France
- Department of Cell and Tissue Engineering, Univ. Montpellier, CHU Montpellier, Montpellier, France
| | - Claire Bony
- IRMB, INSERM U 1183, Univ Montpellier, INSERM, Montpellier, France
| | - Jerome Moreaux
- Department of Biological Haematology, Univ. Montpellier, CHU Montpellier, Montpellier, France
- IGH, Univ Montpellier, CNRS, Montpellier, France
| | - Daniele Noël
- IRMB, INSERM U 1183, Univ Montpellier, INSERM, Montpellier, France
| | - John De Vos
- Department of Biological Haematology, Univ. Montpellier, CHU Montpellier, Montpellier, France
- Department of Cell and Tissue Engineering, Univ. Montpellier, CHU Montpellier, Montpellier, France
- IRMB, INSERM U 1183, Univ Montpellier, INSERM, Montpellier, France
| | - Bernard Klein
- Department of Cell and Tissue Engineering, Univ. Montpellier, CHU Montpellier, Montpellier, France
| | - Jean-Luc Veyrune
- Department of Biological Haematology, Univ. Montpellier, CHU Montpellier, Montpellier, France
- Department of Cell and Tissue Engineering, Univ. Montpellier, CHU Montpellier, Montpellier, France
| | - Anne Wojtusciszyn
- Laboratory of Cell Therapy for Diabetes, Institute of Regenerative Medicine and Biotherapy, Univ. Montpellier, CHU Montpellier, Montpellier, France.
- Department of Endocrinology, Diabetes, and Nutrition, Univ. Montpellier, CHU Montpellier, Montpellier, France.
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, 8 avenue de la Sallaz - 1011, Lausanne, Switzerland.
| |
Collapse
|
29
|
Cooper TT, Sherman SE, Bell GI, Ma J, Kuljanin M, Jose SE, Lajoie GA, Hess DA. Characterization of a Vimentin high /Nestin high proteome and tissue regenerative secretome generated by human pancreas-derived mesenchymal stromal cells. Stem Cells 2020; 38:666-682. [PMID: 31904137 DOI: 10.1002/stem.3143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Multipotent/mesenchymal stromal cells (MSCs) exist within a variety of postnatal tissues; however, global proteomic analyses comparing tissue-specific MSC are limited. Using human bone marrow (BM)-derived MSCs as a gold standard, we used label-free mass spectrometry and functional assays to characterize the proteome, secretome, and corresponding function of human pancreas-derived MSCs (Panc-MSCs) with a classical phenotype (CD90+/CD73+/CD105+/CD45-/CD31-). Both MSC subtypes expressed mesenchymal markers vimentin, α-SMA, and STRO-1; however, expression of nestin was increased in Panc-MSCs. Accordingly, these Vimentinhigh /Nestinhigh cells were isolated from fresh human pancreatic islet and non-islet tissues. Next, we identified expression of >60 CD markers shared between Panc-MSCs and BM-MSCs, including validated expression of CD14. An additional 19 CD markers were differentially expressed, including reduced pericyte-marker CD146 expression on Panc-MSCs. Panc-MSCs also showed reduced expression of proteins involved in lipid and retinoid metabolism. Accordingly, Panc-MSCs showed restricted responses to adipogenic stimuli in vitro, although both MSC types demonstrated trilineage differentiation. In contrast, Panc-MSCs demonstrated accelerated growth kinetics and competency to pro-neurogenic stimuli in vitro. The secretome of Panc-MSCs was highly enriched for proteins associated with vascular development, wound healing and chemotaxis. Similar to BM-MSCs, Panc-MSCs conditioned media augmented endothelial cell survival, proliferation, and tubule formation in vitro. Importantly, the secretome of both MSC types was capable of stimulating chemotactic infiltration of murine endothelial cells in vivo and reduced hyperglycemia in STZ-treated mice following intrapancreatic injection. Overall, this study provides foundational knowledge to develop Panc-MSCs as a unique MSC subtype with functional properties beneficial in regenerative medicine for diabetes and vascular disease.
Collapse
Affiliation(s)
- Tyler T Cooper
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada.,Department of Biochemistry, Don Rix Protein Identification Facility, Western University, London, Ontario, Canada
| | - Stephen E Sherman
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
| | - Gillian I Bell
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
| | - Jun Ma
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada.,Department of Biochemistry, Don Rix Protein Identification Facility, Western University, London, Ontario, Canada
| | - Miljan Kuljanin
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada.,Department of Biochemistry, Don Rix Protein Identification Facility, Western University, London, Ontario, Canada
| | - Shauna E Jose
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, Don Rix Protein Identification Facility, Western University, London, Ontario, Canada
| | - David A Hess
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
30
|
De D, Karmakar P, Bhattacharya D. Stem Cell Aging and Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1326:11-37. [PMID: 32910426 DOI: 10.1007/5584_2020_577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stem cells are a promising source for regenerative medicine to cure a plethora of diseases that are currently treated based on either palliative or symptomatic relief or by preventing their onset and progression. Aging-associated degenerative changes in stem cells, stem cell niches, and signaling pathways bring a step by step decline in the regenerative and functional potential of tissues. Clinical studies and experiments on model organisms have pointed out checkpoints that aging will inevitably impose on stem cell aiming for transplantation and hence questions are raised about the age of the donor. In the following discourse, we review the fundamental molecular pathways that are implicated in stem cell aging and the current progress in tissue engineering and transplantation of each type of stem cells in regenerative medicine. We further focus on the consequences of stem cell aging on their clinical uses and the development of novel strategies to bypass those pitfalls and improve tissue replenishment.
Collapse
Affiliation(s)
- Debojyoti De
- Department of Life science and Biotechnology, Jadavpur University, Kolkata, India
| | - Parimal Karmakar
- Department of Life science and Biotechnology, Jadavpur University, Kolkata, India
| | | |
Collapse
|
31
|
Teixeira PDS, Couto GC, Furigo IC, List EO, Kopchick JJ, Donato J. Central growth hormone action regulates metabolism during pregnancy. Am J Physiol Endocrinol Metab 2019; 317:E925-E940. [PMID: 31479305 PMCID: PMC7132326 DOI: 10.1152/ajpendo.00229.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The maternal organism undergoes numerous metabolic adaptations to become prepared for the demands associated with the coming offspring. These metabolic adaptations involve changes induced by several hormones that act at multiple levels, ultimately influencing energy and glucose homeostasis during pregnancy and lactation. Previous studies have shown that central growth hormone (GH) action modulates glucose and energy homeostasis. However, whether central GH action regulates metabolism during pregnancy and lactation is still unknown. In the present study, we generated mice carrying ablation of GH receptor (GHR) in agouti-related protein (AgRP)-expressing neurons, in leptin receptor (LepR)-expressing cells or in the entire brain to investigate the role played by central GH action during pregnancy and lactation. AgRP-specific GHR ablation led to minor metabolic changes during pregnancy and lactation. However, while brain-specific GHR ablation reduced food intake and body adiposity during gestation, LepR GHR knockout (KO) mice exhibited increased leptin responsiveness in the ventromedial nucleus of the hypothalamus during late pregnancy, although their offspring showed reduced growth rate. Additionally, both Brain GHR KO and LepR GHR KO mice had lower glucose tolerance and glucose-stimulated insulin secretion during pregnancy, despite presenting increased insulin sensitivity, compared with control pregnant animals. Our findings revealed that during pregnancy central GH action regulates food intake, fat retention, as well as the sensitivity to insulin and leptin in a cell-specific manner. Together, the results suggest that GH acts in concert with other "gestational hormones" to prepare the maternal organism for the metabolic demands of the offspring.
Collapse
Affiliation(s)
- Pryscila D S Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gisele C Couto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Isadora C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
EMT and Stemness-Key Players in Pancreatic Cancer Stem Cells. Cancers (Basel) 2019; 11:cancers11081136. [PMID: 31398893 PMCID: PMC6721598 DOI: 10.3390/cancers11081136] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Metastasis and tumor progression are the major cause of death in patients suffering from pancreatic ductal adenocarcinoma. Tumor growth and especially dissemination are typically associated with activation of an epithelial-to-mesenchymal transition (EMT) program. This phenotypic transition from an epithelial to a mesenchymal state promotes migration and survival both during development and in cancer progression. When re-activated in pathological contexts such as cancer, this type of developmental process confers additional stemness properties to specific subsets of cells. Cancer stem cells (CSCs) are a subpopulation of cancer cells with stem-like features that are responsible for the propagation of the tumor as well as therapy resistance and cancer relapse, but also for circulating tumor cell release and metastasis. In support of this concept, EMT transcription factors generate cells with stem cell properties and mediate chemoresistance. However, their role in pancreatic ductal adenocarcinoma metastasis remains controversial. As such, a better characterization of CSC populations will be crucial in future development of therapies targeting these cells. In this review, we will discuss the latest updates on the mechanisms common to pancreas development and CSC-mediated tumor progression.
Collapse
|
33
|
Rashed S, Gabr M, Abdel-Aziz AA, Zakaria M, Khater S, Ismail A, Fouad A, Refaie A. Differentiation Potential of Nestin (+) and Nestin (-) Cells Derived from Human Bone Marrow Mesenchymal Stem Cells into Functional Insulin Producing Cells. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:1-13. [PMID: 32195201 DOI: 10.22088/ijmcm.bums.8.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/13/2019] [Indexed: 01/09/2023]
Abstract
The feasibility of isolating and manipulating mesenchymal stem cells (MSCs) from human patients provides hope for curing numerous diseases and disorders. Recent phenotypic analysis has shown heterogeneity of MSCs. Nestin progenitor cell is a subpopulation within MSCs which plays a role in pancreas regeneration during embryogenesis. This study aimed to separate nestin (+) cells from human bone marrow MSCs, and differentiate these cells into functional insulin producing cells (IPCs) compared with nestin (-) cells. Manual magnetic separation was performed to obtain nestin (+) cells from MSCs. Approximately 91±3.3% of nestin (+) cells were positive for anti-nestin antibody. Pluripotent genes were overexpressed in nestin (+) cells compared with nestin (-) cells as revealed by quantitative real time-PCR (qRT-PCR). Following in vitro differentiation, flow cytometric analysis showed that 2.7±0.5% of differentiated nestin (+) cells were positive for anti-insulin antibody in comparison with 0.08±0.02% of nestin (-) cells. QRT-PCR showed higher expression of insulin and other endocrine genes in comparison with nestin (-) cells. While immunofluorescence technique showed the presence of insulin and C-peptide granules in nestin (+) cells. Therefore, our results introduced nestin (+) cells as a pluripotent subpopulation within human MSCs which is capable to differentiate and produce functional IPCs.
Collapse
Affiliation(s)
- Sahar Rashed
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Mahmoud Gabr
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Abdel-Aziz Abdel-Aziz
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mahmoud Zakaria
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Sherry Khater
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Amani Ismail
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Ali Fouad
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Ayman Refaie
- Nephrology Department, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| |
Collapse
|
34
|
Tan J, Liu L, Li B, Xie Q, Sun J, Pu H, Zhang L. Pancreatic stem cells differentiate into insulin-secreting cells on fibroblast-modified PLGA membranes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:593-601. [DOI: 10.1016/j.msec.2018.12.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 10/15/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
|
35
|
Karaoz E, Tepekoy F, Yilmaz I, Subasi C, Kabatas S. Reduction of Inflammation and Enhancement of Motility after Pancreatic Islet Derived Stem Cell Transplantation Following Spinal Cord Injury. J Korean Neurosurg Soc 2019; 62:153-165. [PMID: 30840970 PMCID: PMC6411578 DOI: 10.3340/jkns.2018.0035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/23/2018] [Indexed: 01/01/2023] Open
Abstract
Objective Spinal cord injury (SCI) is a very serious health problem, usually caused by a trauma and accompanied by elevated levels of inflammation indicators. Stem cell-based therapy is promising some valuable strategies for its functional recovery. Nestin-positive progenitor and/or stem cells (SC) isolated from pancreatic islets (PI) show mesenchymal stem cell (MSC) characteristics. For this reason, we aimed to analyze the effects of rat pancreatic islet derived stem cell (rPI-SC) delivery on functional recovery, as well as the levels of inflammation factors following SCI.
Methods rPI-SCs were isolated, cultured and their MSC characteristics were determined through flow cytometry and immunofluorescence analysis. The experimental rat population was divided into three groups : 1) laminectomy & trauma, 2) laminectomy & trauma & phosphate-buffered saline (PBS), and 3) laminectomy+trauma+SCs. Green fluorescent protein (GFP) labelled rPI-SCs were transplanted into the injured rat spinal cord. Their motilities were evaluated with Basso, Beattie and Bresnahan (BBB) Score. After 4-weeks, spinal cord sections were analyzed for GFP labeled SCs and stained for vimentin, S100β, brain derived neurotrophic factor (BDNF), 2’,3’-cyclic-nucleotide 3'-phosphodiesterase (CNPase), vascular endothelial growth factor (VEGF) and proinflammatory (interleukin [IL]-6, transforming growth factor [TGF]-β, macrophage inflammatory protein [MIP]-2, myeloperoxidase [MPO]) and anti-inflammatory (IL-1 receptor antagonis) factors.
Results rPI-SCs were revealed to display MSC characteristics and express neural and glial cell markers including BDNF, glial fibrillary acidic protein (GFAP), fibronectin, microtubule associated protein-2a,b (MAP2a,b), β3-tubulin and nestin as well as antiinflammatory prostaglandin E2 receptor, EP3. The BBB scores showed significant motor recovery in group 3. GFP-labelled cells were localized on the injury site. In addition, decreased proinflammatory factor levels and increased intensity of anti-inflammatory factors were determined.
Conclusion Transplantation of PI-SCs might be an effective strategy to improve functional recovery following spinal cord trauma.
Collapse
Affiliation(s)
- Erdal Karaoz
- Department of Histology & Embryology, Faculty of Medicine, İstinye University, İstanbul, Turkey.,Center for Stem Cell and Tissue Engineering Research & Practice, İstinye University, İstanbul, Turkey.,Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), İstanbul, Turkey
| | - Filiz Tepekoy
- Department of Histology & Embryology, Faculty of Medicine, İstinye University, İstanbul, Turkey
| | - Irem Yilmaz
- Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), İstanbul, Turkey
| | - Cansu Subasi
- Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), İstanbul, Turkey
| | - Serdar Kabatas
- Neurosurgery Clinic, Gaziosmanpasa Taksim Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
36
|
Hassouna A, M. Abd Elgwad M, Fahmy H. Stromal Stem Cells: Nature, Biology and Potential Therapeutic Applications. STROMAL CELLS - STRUCTURE, FUNCTION, AND THERAPEUTIC IMPLICATIONS 2019. [DOI: 10.5772/intechopen.77346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
37
|
Navarro-Tableros V, Gomez Y, Brizzi MF, Camussi G. Generation of Human Stem Cell-Derived Pancreatic Organoids (POs) for Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:179-220. [PMID: 31025308 DOI: 10.1007/5584_2019_340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin-dependent diabetes mellitus or type 1 diabetes mellitus (T1DM) is an auto-immune condition characterized by the loss of pancreatic β-cells. The curative approach for highly selected patients is the pancreas or the pancreatic islet transplantation. Nevertheless, these options are limited by a growing shortage of donor organs and by the requirement of immunosuppression.Xenotransplantation of porcine islets has been extensively investigated. Nevertheless, the strong xenoimmunity and the risk of transmission of porcine endogenous retroviruses, have limited their application in clinic. Generation of β-like cells from stem cells is one of the most promising strategies in regenerative medicine. Embryonic, and more recently, adult stem cells are currently the most promising cell sources exploited to generate functional β-cells in vitro. A number of studies demonstrated that stem cells could generate functional pancreatic organoids (POs), able to restore normoglycemia when implanted in different preclinical diabetic models. Nevertheless, a gradual loss of function and cell dead are commonly detected when POs are transplanted in immunocompetent animals. So far, the main issue to be solved is the post-transplanted islet loss, due to the host immune attack. To avoid this hurdle, nanotechnology has provided a number of polymers currently under investigation for islet micro and macro-encapsulation. These new approaches, besides conferring PO immune protection, are able to supply oxygen and nutrients and to preserve PO morphology and long-term viability.Herein, we summarize the current knowledge on bioengineered POs and the stem cell differentiation platforms. We also discuss the in vitro strategies used to generate functional POs, and the protocols currently used to confer immune-protection against the host immune attack (micro- and macro-encapsulation). In addition, the most relevant ongoing clinical trials, and the most relevant hurdles met to move towards clinical application are revised.
Collapse
Affiliation(s)
- Victor Navarro-Tableros
- 2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Turin, Turin, Italy
| | - Yonathan Gomez
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy.
- Fondazione per la Ricerca Biomedica-ONLUS, Turin, Italy.
| |
Collapse
|
38
|
Srivastava A, Dadheech N, Vakani M, Gupta S. Pancreatic resident endocrine progenitors demonstrate high islet neogenic fidelity and committed homing towards diabetic mice pancreas. J Cell Physiol 2018; 234:8975-8987. [PMID: 30341903 DOI: 10.1002/jcp.27568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
Pancreatic progenitors have been explored for their profound characteristics and unique commitment to generate new functional islets in regenerative medicine. Pancreatic resident endocrine progenitors (PREPs) with mesenchymal stem cell (MSC) phenotype were purified from BALB/c mice pancreas and characterized. PREPs were differentiated into mature islet clusters in vitro by activin-A and swertisin and functionally characterized. A temporal gene and protein profiling was performed during differentiation. Furthermore, PREPs were labeled with green fluorescent protein (GFP) and transplanted intravenously into streptozotocin (STZ) diabetic mice while monitoring their homing and differentiation leading to amelioration in the diabetic condition. PREPs were positive for unique progenitor markers and transcription factors essential for endocrine pancreatic homeostasis along with having the multipotent MSC phenotype. These cells demonstrated high fidelity for islet neogenesis in minimum time (4 days) to generate mature functional islet clusters (shortest reported period for any isolated stem/progenitor). Furthermore, GFP-labeled PREPs transplanted in STZ diabetic mice migrated and localized within the injured pancreas without trapping in any other major organ and differentiated rapidly into insulin-producing cells without an external stimulus. A rapid decrease in fasting blood glucose levels toward normoglycemia along with significant increase in fasting serum insulin levels was observed, which ameliorated the diabetic condition. This study highlights the unique potential of PREPs to generate mature islets within the shortest period and their robust homing toward the damaged pancreas, which ameliorated the diabetic condition suggesting PREPs affinity toward their niche, which can be exploited and extended to other stem cell sources in diabetic therapeutics.
Collapse
Affiliation(s)
- Abhay Srivastava
- Molecular Endocrinology and Stem Cell Research Lab, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Nidheesh Dadheech
- Dr. AM James Shapiro Laboratory, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Mitul Vakani
- Molecular Endocrinology and Stem Cell Research Lab, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Sarita Gupta
- Molecular Endocrinology and Stem Cell Research Lab, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
39
|
Nowak A, Dziegiel P. Implications of nestin in breast cancer pathogenesis (Review). Int J Oncol 2018; 53:477-487. [PMID: 29901100 DOI: 10.3892/ijo.2018.4441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/14/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of the present review was to summarize the current knowledge of the involvement of nestin in breast cancer (BC) pathogenesis. Nestin is a member of the class VI family of intermediate filament proteins, originally identified as a marker of neural stem cells and subsequently demonstrated to be expressed in BC and other cancer types. In normal breast tissue, nestin is expressed in the basal/myoepithelial cells of the mammary gland. In BC, nestin identifies basal-like tumours and predicts aggressive behaviour and poor prognosis. Nestin expression has also been detected in BC stem cells and newly-formed tumour vessels, being a factor in promoting invasion and metastasis. The present review provides an up-to-date overview of the involvement of nestin in processes facilitating BC pathogenesis and progression.
Collapse
Affiliation(s)
- Aleksandra Nowak
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Dziegiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
40
|
Bernal A, Arranz L. Nestin-expressing progenitor cells: function, identity and therapeutic implications. Cell Mol Life Sci 2018; 75:2177-2195. [PMID: 29541793 PMCID: PMC5948302 DOI: 10.1007/s00018-018-2794-z] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/28/2018] [Accepted: 03/07/2018] [Indexed: 02/06/2023]
Abstract
The neuroepithelial stem cell protein, or Nestin, is a cytoskeletal intermediate filament initially characterized in neural stem cells. However, current extensive evidence obtained in in vivo models and humans shows presence of Nestin+ cells with progenitor and/or regulatory functions in a number of additional tissues, remarkably bone marrow. This review presents the current knowledge on the role of Nestin in essential stem cell functions, including self-renewal/proliferation, differentiation and migration, in the context of the cytoskeleton. We further discuss the available in vivo models for the study of Nestin+ cells and their progeny, their function and elusive nature in nervous system and bone marrow, and their potential mechanistic role and promising therapeutic value in preclinical models of disease. Future improved in vivo models and detection methods will allow to determine the true essence of Nestin+ cells and confirm their potential application as therapeutic target in a range of diseases.
Collapse
Affiliation(s)
- Aurora Bernal
- Stem Cell Aging and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, MH Building Level 6, 9019, Tromsø, Norway
| | - Lorena Arranz
- Stem Cell Aging and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, MH Building Level 6, 9019, Tromsø, Norway.
- Department of Hematology, University Hospital of North Norway, Tromsø, Norway.
- Young Associate Investigator, Norwegian Center for Molecular Medicine (NCMM), Oslo, Norway.
| |
Collapse
|
41
|
Rattananinsruang P, Dechsukhum C, Leeanansaksiri W. Establishment of Insulin-Producing Cells From Human Embryonic Stem Cells Underhypoxic Condition for Cell Based Therapy. Front Cell Dev Biol 2018; 6:49. [PMID: 29868580 PMCID: PMC5962719 DOI: 10.3389/fcell.2018.00049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/16/2018] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus (DM) is a group of diseases characterized by abnormally high levels of glucose in the blood stream. In developing a potential therapy for diabetic patients, pancreatic cells transplantation has drawn great attention. However, the hinder of cell transplantation for diabetes treatment is insufficient sources of insulin-producing cells. Therefore, new cell based therapy need to be developed. In this regard, human embryonic stem cells (hESCs) may serve as good candidates for this based on their capability of differentiation into various cell types. In this study, we designed a new differentiation protocol that can generate hESC-derived insulin-producing cells (hES-DIPCs) in a hypoxic condition. We also emphasized on the induction of definitive endoderm during embryoid bodies (EBs) formation. After induction of hESCs differentiation into insulin-producing cells (IPCs), the cells obtained from the cultures exhibited pancreas-related genes such as Pdx1, Ngn3, Nkx6.1, GLUT2, and insulin. These cells also showed positive for DTZ-stained cellular clusters and contained ability of insulin secretion in a glucose-dependent manner. After achievement to generated functional hES-DIPCs in vitro, some of the hES-DIPCs were then encapsulated named encapsulated hES-DIPCs. The data showed that the encapsulated cells could possess the function of insulin secretion in a time-dependent manner. The hES-DIPCs and encapsulated hES-DIPCs were then separately transplanted into STZ-induced diabetic mice. The findings showed the significant blood glucose levels regulation capacity and declination of IL-1β concentration in all transplanted mice. These results indicated that both hES-DIPCs and encapsulated hES-DIPCs contained the ability to sustain hyperglycemia condition as well as decrease inflammatory cytokine level in vivo. The findings of this study may apply for generation of a large number of hES-DIPCs in vitro. In addition, the implication of this work is therapeutic value in type I diabetes treatment in the future. The application for type II diabetes treatment remain to be investigated.
Collapse
Affiliation(s)
- Piyaporn Rattananinsruang
- School of Preclinic, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Chavaboon Dechsukhum
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Wilairat Leeanansaksiri
- School of Preclinic, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
42
|
Balyura M, Gelfgat E, Steenblock C, Androutsellis-Theotokis A, Ruiz-Babot G, Guasti L, Werdermann M, Ludwig B, Bornstein T, Schally AV, Brennand A, Bornstein SR. Expression of progenitor markers is associated with the functionality of a bioartificial adrenal cortex. PLoS One 2018; 13:e0194643. [PMID: 29596439 PMCID: PMC5875767 DOI: 10.1371/journal.pone.0194643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/07/2018] [Indexed: 11/19/2022] Open
Abstract
Encapsulation of primary bovine adrenocortical cells in alginate is an efficacious model of a bioartificial adrenal cortex. Such a bioartificial adrenal cortex can be used for the restoration of lost adrenal function in vivo as well as for in vitro modeling of the adrenal microenvironment and for investigation of cell–cell interactions in the adrenals. The aim of this work was the optimization of a bioartificial adrenal cortex, that is the generation of a highly productive, self-regenerating, long-term functioning and immune tolerant bioartificial organ. To achieve this, it is necessary that adrenocortical stem and progenitor cells are present in the bioartificial gland, as these undifferentiated cells play important roles in the function of the mature gland. Here, we verified the presence of adrenocortical progenitors in cultures of bovine adrenocortical cells, studied the dynamics of their appearance and growth and determined the optimal time point for cell encapsulation. These procedures increased the functional life span and reduced the immunogenicity of the bioartificial adrenal cortex. This model allows the use of the luteinizing hormone-releasing hormone (LHRH) agonist triptorelin, the neuropeptide bombesin, and retinoic acid to alter cell number and the release of cortisol over long periods of time.
Collapse
Affiliation(s)
- Mariya Balyura
- University Hospital Carl Gustav Carus, Dept. of Medicine III, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| | - Evgeny Gelfgat
- University Hospital Carl Gustav Carus, Dept. of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Charlotte Steenblock
- University Hospital Carl Gustav Carus, Dept. of Medicine III, Technische Universität Dresden, Dresden, Germany
| | | | - Gerard Ruiz-Babot
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Martin Werdermann
- University Hospital Carl Gustav Carus, Dept. of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Barbara Ludwig
- University Hospital Carl Gustav Carus, Dept. of Medicine III, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine, Dresden, Germany
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Tobias Bornstein
- University Hospital Carl Gustav Carus, Dept. of Medicine III, Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences Division, King's College London, London, United Kingdom
| | - Andrew V. Schally
- Divisions of Endocrinology and Hematology–Oncology, Departments of Medicine and Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL, United States of America
- Veterans Affairs Medical Center, Miami, FL, United States of America
| | - Ana Brennand
- University Hospital Carl Gustav Carus, Dept. of Medicine III, Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences Division, King's College London, London, United Kingdom
| | - Stefan R. Bornstein
- University Hospital Carl Gustav Carus, Dept. of Medicine III, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine, Dresden, Germany
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences Division, King's College London, London, United Kingdom
| |
Collapse
|
43
|
Nadri S, Barati G, Mostafavi H, Esmaeilzadeh A, Enderami SE. Differentiation of conjunctiva mesenchymal stem cells into secreting islet beta cells on plasma treated electrospun nanofibrous scaffold. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:178-187. [DOI: 10.1080/21691401.2017.1416391] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Samad Nadri
- Metabolic Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ghasem Barati
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Mostafavi
- Department of Physiology and Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology & Cancer Gene therapy Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Ehsan Enderami
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
44
|
Nowak A, Grzegrzółka J, Kmiecik A, Piotrowska A, Matkowski R, Dzięgiel P. Role of nestin expression in angiogenesis and breast cancer progression. Int J Oncol 2017; 52:527-535. [PMID: 29345290 DOI: 10.3892/ijo.2017.4223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/22/2017] [Indexed: 11/06/2022] Open
Abstract
Nestin is an intermediate filament protein and a stem cell marker expressed in several tumours. There is growing evidence of an association between the expression level of nestin and the pathogenesis of triple-negative breast cancer (TNBC). Nestin is also expressed in newly forming tumour vessels and is a valuable marker of ongoing angiogenesis. In this study, we aimed to evaluate the prognostic value of nestin expression in breast tumour cells and to determine whether this expression influences angiogenesis. Immunohistochemical (IHC) analyses were carried out on 124 cases of invasive ductal carcinoma (IDC) of the breast with a panel of murine monoclonal antibodies against nestin, CD31, CD34, SOX-18 and Ki‑67. We evaluated nestin expression in tumour and endothelial cells, Ki‑67 in tumour cells, and CD31, CD34 and SOX-18 in endothelial cells. Our results demonstrated that nestin expression in tumour cells correlated with the area and number of vessels expressing nestin, CD31, CD34 and SOX-18. We also found a positive correlation between nestin-expressing vessels and SOX-18-expressing vessels. Our results are consistent with those of previous studies, in which nestin expression in endothelial cells was shown to be strongly associated with triple-negative subtype, poorly differentiated G3 tumours, a higher proliferation index and a shorter overall survival. Nestin expression was also examined in human breast cancer cell lines (MCF-7, SK-BR-3, MDA‑MB‑231 and BO2 cells) representing a different level of tumour aggressiveness and reflecting histological grade. A higher nestin protein level was observed in more aggressive MDA‑MB‑231 and BO2 cells than in MCF-7 and SK-BR-3 cells.
Collapse
Affiliation(s)
- Aleksandra Nowak
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Jędrzej Grzegrzółka
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Alicja Kmiecik
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Rafał Matkowski
- Breast Unit, Department of Surgical Oncology, Lower Silesian Oncology Centre, 51-612 Wroclaw, Poland
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
45
|
Abstract
The pancreas is a complex organ with exocrine and endocrine components. Many pathologies impair exocrine function, including chronic pancreatitis, cystic fibrosis and pancreatic ductal adenocarcinoma. Conversely, when the endocrine pancreas fails to secrete sufficient insulin, patients develop diabetes mellitus. Pathology in either the endocrine or exocrine pancreas results in devastating economic and personal consequences. The current standard therapy for treating patients with type 1 diabetes mellitus is daily exogenous insulin injections, but cell sources of insulin provide superior glycaemic regulation and research is now focused on the goal of regenerating or replacing β cells. Stem-cell-based models might be useful to study exocrine pancreatic disorders, and mesenchymal stem cells or secreted factors might delay disease progression. Although the standards that bioengineered cells must meet before being considered as a viable therapy are not yet established, any potential therapy must be acceptably safe and functionally superior to current therapies. Here, we describe progress and challenges in cell-based methods to restore pancreatic function, with a focus on optimizing the site for cell delivery and decreasing requirements for immunosuppression through encapsulation. We also discuss the tools and strategies being used to generate exocrine pancreas and insulin-producing β-cell surrogates in situ and highlight obstacles to clinical application.
Collapse
|
46
|
Sandikci M, Karagenc L, Yildiz M. Changes on the Pancreas in Experimental Diabetes and the Effect of Lycopene on These Changes: Pdx-1, Ngn-3, and Nestin Expressions. Anat Rec (Hoboken) 2017; 300:2200-2207. [PMID: 28921917 DOI: 10.1002/ar.23687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 01/30/2017] [Accepted: 03/21/2017] [Indexed: 01/20/2023]
Abstract
The aim of the present study was to investigate changes occurring in the number of beta cells, as well as the expressions of Ngn-3, nestin and Pdx-1 of pancreatic progenitor cells in the pancreas of experimentally-induced adult diabetic rats and to determine the effect of orally-administered lycopene on these changes. Following the administration of 50 mg/kg streptozotocin to rats, four groups of animals were established: control + corn oil, control + lycopene, diabetic + corn oil and diabetic + lycopene. The animals in the control + lycopene and diabetic + lycopene groups received 4 mg/kg lycopene for a period of four weeks. The expressions of insulin, Ngn-3, nestin, and Pdx-1 were determined through immunohistochemistry in sections taken from pancreas tissue samples at the end of the experiment. The number of insulin-positive cells was found to be significantly low in the diabetic groups compared to the control groups. In addition, the presence of Ngn-3 and nestin-positive cells within the exocrine pancreas surrounding the islands was noted in the diabetic groups. Lycopene, in general did not have any effect in any of the parameters analyzed in the present study. It is suggested that these cells would function as stem cells to replace the lost beta-cell population. It is also suggested that it is possible to demonstrate the antioxidant effects of lycopene in the pancreas of diabetic rats by increasing the dose and duration of lycopene administration. Anat Rec, 300:2200-2207, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mustafa Sandikci
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydin, Turkey
| | - Levent Karagenc
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydin, Turkey
| | - Mustafa Yildiz
- Department of Occupational Health and Safety, School of Applied Sciences at Çan, Çanakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
47
|
Jiang Y, Zhang W, Xu S, Lin H, Sui W, Liu H, Peng L, Fang Q, Chen L, Lou J. Transplantation of human fetal pancreatic progenitor cells ameliorates renal injury in streptozotocin-induced diabetic nephropathy. J Transl Med 2017; 15:147. [PMID: 28655312 PMCID: PMC5488369 DOI: 10.1186/s12967-017-1253-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a severe complication of diabetes mellitus (DM). Pancreas or islet transplantation has been reported to prevent the development of DN lesions and ameliorate or reverse existing glomerular lesions in animal models. Shortage of pancreas donor is a severe problem. Islets derived from stem cells may offer a potential solution to this problem. Objective To evaluate the effect of stem cell-derived islet transplantation on DN in a rat model of streptozotocin-induced DM. Methods Pancreatic progenitor cells were isolated from aborted fetuses of 8 weeks of gestation. And islets were prepared by suspension culture after a differentiation of progenitor cells in medium containing glucagon-like peptide-1 (Glp-1) and nicotinamide. Then islets were transplanted into the liver of diabetic rats via portal vein. Blood glucose, urinary volume, 24 h urinary protein and urinary albumin were measured once biweekly for 16 weeks. Graft survival was evaluated by monitoring human C-peptide level in rat sera and by immunohistochemical staining for human mitochondrial antigen and human C-peptide in liver tissue. The effect of progenitor-derived islets on filtration membrane was examined by electron microscopy and real-time polymerase chain reaction (PCR). Immunohistochemical staining, real-time PCR and western blot were employed for detecting fibronectin, protein kinase C beta (PKCβ), protein kinase A (PKA), inducible nitric oxide synthase (iNOS) and superoxide dismutase (SOD). Results Islet-like clusters derived from 8th gestational-week human fetal pancreatic progenitors survived in rat liver. And elevated serum level of human C-peptide was detected. Blood glucose, 24 h urinary protein and urinary albumin were lower in progenitor cell group than those in DN or insulin treatment group. Glomerular basement membrane thickness and fibronectin accumulation decreased significantly while podocytes improved morphologically in progenitor cell group. Furthermore, receptor of advanced glycation end products and PKCβ became down-regulated whereas PKA up-regulated by progenitor cell-derived islets. And iNOS rose while SOD declined. Conclusions DN may be reversed by transplantation of human fetal pancreatic progenitor cell-derived islets. And fetal pancreatic progenitor cells offer potential resources for cell replacement therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1253-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongwei Jiang
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.,Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Wenjian Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Shiqing Xu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Hua Lin
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Weiguo Sui
- First Kidney Transplantation Hemopurification Center of Chinese PLA, 181st Hospital of Chinese People's Liberation Army, Guilin, 541002, China
| | - Honglin Liu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Qing Fang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Jinning Lou
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
48
|
Atouf F, Choi Y, Fowler MJ, Poffenberger G, Vobecky J, Ta M, Chapman GB, Powers AC, Lumelsky NL. Generation of Islet-Like Hormone-Producing Cells In Vitro from Adult Human Pancreas. Cell Transplant 2017; 14:735-48. [PMID: 16454348 DOI: 10.3727/000000005783982602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transplantation of pancreatic islets can provide long-lasting insulin independence for diabetic patients, but the current islet supply is limited. Here we describe a new in vitro system that utilizes adult human pancreatic islet-enriched fractions to generate hormone-producing cells over 3–4 weeks of culture. By labeling proliferating cells with a retrovirus-expressing green fluorescent protein, we show that in this system hormone-producing cells are generated de novo. These hormone-producing cells aggregate to form islet-like cell clusters. The cell clusters, when tested in vitro, release insulin in response to glucose and other secretagogues. After transplantation into immunodeficient, nondiabetic mice, the islet-like cell clusters survive and release human insulin. We propose that this system will be useful as an experimental tool for investigating mechanisms for generating new islet cells from the postnatal pancreas, and for designing strategies to generate physiologically competent pancreatic islet cells ex vivo.
Collapse
Affiliation(s)
- Fouad Atouf
- Islet and Autoimmunity Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1453, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Martinez-Gamboa M, Cruz-Vega DE, Moreno-Cuevas J, Gonzalez-Garza MT. Induction of Nestin Early Expression as a Hallmark for Mesenchymal Stem Cells Expression of PDX-1 as a Pre-disposing Factor for Their Conversion into Insulin Producing Cells. Int J Stem Cells 2017; 10:76-82. [PMID: 28024317 PMCID: PMC5488779 DOI: 10.15283/ijsc16040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2016] [Indexed: 12/18/2022] Open
Abstract
Diabetes constitutes a worldwide epidemic that affects all ethnic groups. Cell therapy is one of the best alternatives of treatment, by providing an effective way to regenerate insulin-producing cells lost during the course of the disease, but many issues remain to be solved. Several groups have been working in the development of a protocol capable of differentiating Mesenchymal Stem Cells (MSCs) into physiologically sound Insulin Producing Cells (IPCs). In order to obtain a simple, fast and direct method, we propose in this manuscript the induction of MSCs to express NESTIN in a short time period (2 h), proceeded by incubation in a low glucose induced medium (24 h) and lastly by incubation in a high glucose medium. Samples from cell cultures incubated in high glucose medium from 12 to 168 h were obtained to detect the expression of INSULIN-1, INSULIN -2, PDX-1 and GLUT-2 genes. Induced cells were exposed to a glucose challenge, in order to assess the production of insulin. This method allowed us to obtain cells expressing PDX-1, which resembles a progenitor insulin-producing cell.
Collapse
Affiliation(s)
- Marisela Martinez-Gamboa
- Escuela De Ciencias De La Salud, Valle de las Palmas, Universidad Autónoma de Baja California, Tijuana, B.C, CP 22263, México.,Cell Therapy Group, Escuela Nacional De Medicina, Tecnológico de Monterrey, Monterrey, CP 64710, NL, México
| | - Delia Elba Cruz-Vega
- Cell Therapy Group, Escuela Nacional De Medicina, Tecnológico de Monterrey, Monterrey, CP 64710, NL, México
| | - Jorge Moreno-Cuevas
- Cell Therapy Group, Escuela Nacional De Medicina, Tecnológico de Monterrey, Monterrey, CP 64710, NL, México
| | | |
Collapse
|
50
|
Mitutsova V, Yeo WWY, Davaze R, Franckhauser C, Hani EH, Abdullah S, Mollard P, Schaeffer M, Fernandez A, Lamb NJC. Adult muscle-derived stem cells engraft and differentiate into insulin-expressing cells in pancreatic islets of diabetic mice. Stem Cell Res Ther 2017; 8:86. [PMID: 28420418 PMCID: PMC5395782 DOI: 10.1186/s13287-017-0539-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Background Pancreatic beta cells are unique effectors in the control of glucose homeostasis and their deficiency results in impaired insulin production leading to severe diabetic diseases. Here, we investigated the potential of a population of nonadherent muscle-derived stem cells (MDSC) from adult mouse muscle to differentiate in vitro into beta cells when transplanted as undifferentiated stem cells in vivo to compensate for beta-cell deficiency. Results In vitro, cultured MDSC spontaneously differentiated into insulin-expressing islet-like cell clusters as revealed using MDSC from transgenic mice expressing GFP or mCherry under the control of an insulin promoter. Differentiated clusters of beta-like cells co-expressed insulin with the transcription factors Pdx1, Nkx2.2, Nkx6.1, and MafA, and secreted significant levels of insulin in response to glucose challenges. In vivo, undifferentiated MDSC injected into streptozotocin (STZ)-treated mice engrafted within 48 h specifically to damaged pancreatic islets and were shown to differentiate and express insulin 10–12 days after injection. In addition, injection of MDSC into hyperglycemic diabetic mice reduced their blood glucose levels for 2–4 weeks. Conclusion These data show that MDSC are capable of differentiating into mature pancreatic beta islet-like cells, not only upon culture in vitro, but also in vivo after systemic injection in STZ-induced diabetic mouse models. Being nonteratogenic, MDSC can be used directly by systemic injection, and this potential reveals a promising alternative avenue in stem cell-based treatment of beta-cell deficiencies. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0539-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Violeta Mitutsova
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France
| | - Wendy Wai Yeng Yeo
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France.,Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Romain Davaze
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France
| | - Celine Franckhauser
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France
| | - El-Habib Hani
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France
| | - Syahril Abdullah
- Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Patrice Mollard
- Networks and Rhythms in Endocrine Glands, IGF, CNRS UMR-5203, Montpellier, France
| | - Marie Schaeffer
- Networks and Rhythms in Endocrine Glands, IGF, CNRS UMR-5203, Montpellier, France
| | - Anne Fernandez
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France.
| | - Ned J C Lamb
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France.
| |
Collapse
|