1
|
Pappas G, Wilkinson ML, Gow AJ. Nitric oxide regulation of cellular metabolism: Adaptive tuning of cellular energy. Nitric Oxide 2023; 131:8-17. [PMID: 36470373 PMCID: PMC9839556 DOI: 10.1016/j.niox.2022.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Nitric oxide can interact with a wide range of proteins including many that are involved in metabolism. In this review we have summarized the effects of NO on glycolysis, fatty acid metabolism, the TCA cycle, and oxidative phosphorylation with reference to skeletal muscle. Low to moderate NO concentrations upregulate glucose and fatty acid oxidation, while higher NO concentrations shift cellular reliance toward a fully glycolytic phenotype. Moderate NO production directly inhibits pyruvate dehydrogenase activity, reducing glucose-derived carbon entry into the TCA cycle and subsequently increasing anaploretic reactions. NO directly inhibits aconitase activity, increasing reliance on glutamine for continued energy production. At higher or prolonged NO exposure, citrate accumulation can inhibit multiple ATP-producing pathways. Reduced TCA flux slows NADH/FADH entry into the ETC. NO can also inhibit the ETC directly, further limiting oxidative phosphorylation. Moderate NO production improves mitochondrial efficiency while improving O2 utilization increasing whole-body energy production. Long-term bioenergetic capacity may be increased because of NO-derived ROS, which participate in adaptive cellular redox signaling through AMPK, PCG1-α, HIF-1, and NF-κB. However, prolonged exposure or high concentrations of NO can result in membrane depolarization and opening of the MPT. In this way NO may serve as a biochemical rheostat matching energy supply with demand for optimal respiratory function.
Collapse
Affiliation(s)
- Gregory Pappas
- Department of Kinesiology & Applied Physiology, Rutgers the State University of New Jersey, NJ, 08854, USA.
| | - Melissa L Wilkinson
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, NJ, 08854, USA.
| | - Andrew J Gow
- Department of Kinesiology & Applied Physiology, Rutgers the State University of New Jersey, NJ, 08854, USA; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, NJ, 08854, USA.
| |
Collapse
|
2
|
Mu C, Pochakom A, Reimer RA, Choudhary A, Wang M, Rho JM, Scantlebury MH, Shearer J. Addition of Prebiotics to the Ketogenic Diet Improves Metabolic Profile but Does Not Affect Seizures in a Rodent Model of Infantile Spasms Syndrome. Nutrients 2022; 14:2210. [PMID: 35684010 PMCID: PMC9182787 DOI: 10.3390/nu14112210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
The ketogenic diet (KD) is an effective treatment for infantile spasms syndrome (IS). However, the KD has implications for somatic growth, development, and the gut microbiota. The impact of incorporating a prebiotic fiber (PRE, oligofructose-enriched inulin, 0.8 g/dL) into a KD diet on spasms, developmental milestones, fecal gut microbiota, metabolites, and hippocampal mitochondrial metabolism were examined. Following IS induction, animals were randomized to KD or KD + PRE diets. A third group without IS and suckled by dams was included as a normally developing reference group (R). PRE inclusion decreased ketones and increased circulating glucose levels but had no impact on spasms. In the liver, PRE increased triglyceride concentrations, decreased carnitine levels, and downregulated genes encoding enzymes responsible for ketogenesis. In the hippocampus, PRE increased glutathione levels but did not affect the maximal respiratory capacity of mitochondria. Analysis of the gut microbiota showed that KD + PRE increased microbial richness and the relative abundance of Bifidobacterium pseudolongum and Lactobacillus johnsonii. No differences in developmental milestones (i.e., surface righting, negative geotaxis, and open field behavior) were observed between KD and KD + PRE, except for ultrasonic vocalizations that were more frequent in KD + PRE. In summary, PRE did not impact spasms or developmental outcomes, but was effective in improving both metabolic parameters and gut microbiota diversity.
Collapse
Affiliation(s)
- Chunlong Mu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (A.P.); (R.A.R.); (J.S.)
| | - Angela Pochakom
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (A.P.); (R.A.R.); (J.S.)
| | - Raylene A. Reimer
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (A.P.); (R.A.R.); (J.S.)
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (A.C.); (M.W.); (M.H.S.)
| | - Anamika Choudhary
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (A.C.); (M.W.); (M.H.S.)
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Melinda Wang
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (A.C.); (M.W.); (M.H.S.)
| | - Jong M. Rho
- Departments of Neurosciences, Pediatrics and Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA;
| | - Morris H. Scantlebury
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (A.C.); (M.W.); (M.H.S.)
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (A.P.); (R.A.R.); (J.S.)
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (A.C.); (M.W.); (M.H.S.)
| |
Collapse
|
3
|
Saxton SN, Heagerty AM, Withers SB. Perivascular adipose tissue: An immune cell metropolis. Exp Physiol 2020; 105:1440-1443. [PMID: 32648363 DOI: 10.1113/ep087872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the topic of this review? The review discusses how eosinophils can contribute to the function of perivascular adipose tissue and explores the mechanisms involved. What advances does it highlight? Understanding the communication between the cell populations that constitute perivascular adipose tissue function is important for exploring therapeutic options in the treatment of obesity-related cardiovascular complications. This article highlights that eosinophils are able to contribute directly to healthy perivascular adipose tissue function. These immune cells contribute to adrenergic signalling and nitric oxide- and adiponectin-dependent mechanisms in perivascular adipose tissue. ABSTRACT Perivascular adipose tissue is a heterogeneous tissue that surrounds most blood vessels in the body. This review focuses on the contribution of eosinophils located within the adipose tissue to vascular contractility. A high-fat diet reduces the number of these immune cells within perivascular adipose tissue, and this loss is linked to an increase in vascular contractility and hypertension. We explored the mechanisms by which eosinophils contribute to this function using genetically modified mice, ex vivo assessment of contractility and pharmacological tools. We found that eosinophils contribute to adrenergic signalling and nitric oxide- and adiponectin-dependent mechanisms in perivascular adipose tissue. It is now important to explore whether manipulation of these pathways in obesity can alleviate cardiovascular complications, in order to determine whether eosinophils are a valid target for obesity-related disease.
Collapse
Affiliation(s)
- S N Saxton
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - A M Heagerty
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - S B Withers
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.,School of Science, Engineering and Environment, University of Salford, Salford, UK.,Salford Royal NHS Foundation Trust, Salford Royal Hospitals NHS Foundation Trust, Salford, UK
| |
Collapse
|
4
|
Morris EM, Meers GME, Ruegsegger GN, Wankhade UD, Robinson T, Koch LG, Britton SL, Rector RS, Shankar K, Thyfault JP. Intrinsic High Aerobic Capacity in Male Rats Protects Against Diet-Induced Insulin Resistance. Endocrinology 2019; 160:1179-1192. [PMID: 31144719 PMCID: PMC6482035 DOI: 10.1210/en.2019-00118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/02/2019] [Indexed: 01/30/2023]
Abstract
Low aerobic capacity increases the risk for insulin resistance but the mechanisms are unknown. In this study, we tested susceptibility to acute (3-day) high-fat, high-sucrose diet (HFD)-induced insulin resistance in male rats selectively bred for divergent intrinsic aerobic capacity, that is, high-capacity running (HCR) and low-capacity running (LCR) rats. We employed hyperinsulinemic-euglycemic clamps, tracers, and transcriptome sequencing of skeletal muscle to test whether divergence in aerobic capacity impacted insulin resistance through systemic and tissue-specific metabolic adaptations. An HFD evoked decreased insulin sensitivity and insulin signaling in muscle and liver in LCR rats, whereas HCR rats were protected. An HFD led to increased glucose transport in skeletal muscle (twofold) of HCR rats while increasing glucose transport into adipose depots of the LCR rats (twofold). Skeletal muscle transcriptome revealed robust differences in the gene profile of HCR vs LCR on low-fat diet and HFD conditions, including robust differences in specific genes involved in lipid metabolism, adipogenesis, and differentiation. HCR transcriptional adaptations to an acute HFD were more robust than for LCR and included genes driving mitochondrial energy metabolism. In conclusion, intrinsic aerobic capacity robustly impacts systemic and skeletal muscle adaptations to HFD-induced alterations in insulin resistance, an effect that is likely driven by baseline differences in oxidative capacity, gene expression profile, and transcriptional adaptations to an HFD.
Collapse
Affiliation(s)
- E Matthew Morris
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Research Service, Kansas City VA Medical Center, Kansas City, Missouri
| | - Grace M E Meers
- Department of Nutrition and Exercise Physiology, University of Missouri–Columbia, Columbia, Missouri
| | - Gregory N Ruegsegger
- Department of Biomedical Sciences, University of Missouri–Columbia, Columbia, Missouri
| | - Umesh D Wankhade
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Tommy Robinson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Lauren G Koch
- Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio
| | - Steven L Britton
- Deparment of Anesthesiology, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri–Columbia, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Kartik Shankar
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Research Service, Kansas City VA Medical Center, Kansas City, Missouri
| |
Collapse
|
5
|
Ducommun S, Deak M, Zeigerer A, Göransson O, Seitz S, Collodet C, Madsen AB, Jensen TE, Viollet B, Foretz M, Gut P, Sumpton D, Sakamoto K. Chemical genetic screen identifies Gapex-5/GAPVD1 and STBD1 as novel AMPK substrates. Cell Signal 2019; 57:45-57. [PMID: 30772465 DOI: 10.1016/j.cellsig.2019.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of cellular energy homeostasis, acting as a sensor of energy and nutrient status. As such, AMPK is considered a promising drug target for treatment of medical conditions particularly associated with metabolic dysfunctions. To better understand the downstream effectors and physiological consequences of AMPK activation, we have employed a chemical genetic screen in mouse primary hepatocytes in an attempt to identify novel AMPK targets. Treatment of hepatocytes with a potent and specific AMPK activator 991 resulted in identification of 65 proteins phosphorylated upon AMPK activation, which are involved in a variety of cellular processes such as lipid/glycogen metabolism, vesicle trafficking, and cytoskeleton organisation. Further characterisation and validation using mass spectrometry followed by immunoblotting analysis with phosphorylation site-specific antibodies identified AMPK-dependent phosphorylation of Gapex-5 (also known as GTPase-activating protein and VPS9 domain-containing protein 1 (GAPVD1)) on Ser902 in hepatocytes and starch-binding domain 1 (STBD1) on Ser175 in multiple cells/tissues. As new promising roles of AMPK as a key metabolic regulator continue to emerge, the substrates we identified could provide new mechanistic and therapeutic insights into AMPK-activating drugs in the liver.
Collapse
Affiliation(s)
- Serge Ducommun
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, bâtiment G, 1015 Lausanne, Switzerland; School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Maria Deak
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, bâtiment G, 1015 Lausanne, Switzerland
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center for Environmental Health, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Olga Göransson
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
| | - Susanne Seitz
- Institute for Diabetes and Cancer, Helmholtz Center for Environmental Health, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Caterina Collodet
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, bâtiment G, 1015 Lausanne, Switzerland; School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Agnete B Madsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Benoit Viollet
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris cité, Paris, France
| | - Marc Foretz
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris cité, Paris, France
| | - Philipp Gut
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, bâtiment G, 1015 Lausanne, Switzerland
| | - David Sumpton
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Kei Sakamoto
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, bâtiment G, 1015 Lausanne, Switzerland; School of Life Sciences, EPFL, 1015 Lausanne, Switzerland.
| |
Collapse
|
6
|
Thomas MM, Wang DC, D'Souza DM, Krause MP, Layne AS, Criswell DS, O'Neill HM, Connor MK, Anderson JE, Kemp BE, Steinberg GR, Hawke TJ. Muscle-specific AMPK β1β2-null mice display a myopathy due to loss of capillary density in nonpostural muscles. FASEB J 2014; 28:2098-107. [PMID: 24522207 DOI: 10.1096/fj.13-238972] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AMP-activated protein kinase (AMPK) is a master regulator of metabolism. While muscle-specific AMPK β1β2 double-knockout (β1β2M-KO) mice display alterations in metabolic and mitochondrial capacity, their severe exercise intolerance suggested a secondary contributor to the observed phenotype. We find that tibialis anterior (TA), but not soleus, muscles of sedentary β1β2M-KO mice display a significant myopathy (decreased myofiber areas, increased split and necrotic myofibers, and increased centrally nucleated myofibers. A mitochondrial- and fiber-type-specific etiology to the myopathy was ruled out. However, β1β2M-KO TA muscles displayed significant (P<0.05) increases in platelet aggregation and apoptosis within myofibers and surrounding interstitium (P<0.05). These changes correlated with a 45% decrease in capillary density (P<0.05). We hypothesized that the β1β2M-KO myopathy in resting muscle resulted from impaired AMPK-nNOSμ signaling, causing increased platelet aggregation, impaired vasodilation, and, ultimately, ischemic injury. Consistent with this hypothesis, AMPK-specific phosphorylation (Ser1446) of nNOSμ was decreased in β1β2M-KO compared to wild-type (WT) mice. The AMPK-nNOSμ relationship was further demonstrated by administration of 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) to β1β2-MKO muscles and C2C12 myotubes. AICAR significantly increased nNOSμ phosphorylation and nitric oxide production (P<0.05) within minutes of administration in WT muscles and C2C12 myotubes but not in β1β2M-KO muscles. These findings highlight the importance of the AMPK-nNOSμ pathway in resting skeletal muscle.
Collapse
Affiliation(s)
- Melissa M Thomas
- 2Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St. West, Hamilton, ON L8S4L8, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lee-Young RS, Bonner JS, Mayes WH, Iwueke I, Barrick BA, Hasenour CM, Kang L, Wasserman DH. AMP-activated protein kinase (AMPK)α2 plays a role in determining the cellular fate of glucose in insulin-resistant mouse skeletal muscle. Diabetologia 2013; 56:608-17. [PMID: 23224579 PMCID: PMC4075509 DOI: 10.1007/s00125-012-2787-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 11/01/2012] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS We determined whether: (1) an acute lipid infusion impairs skeletal muscle AMP-activated protein kinase (AMPK)α2 activity, increases inducible nitric oxide synthase (iNOS) and causes peripheral insulin resistance in conscious, unstressed, lean mice; and (2) restoration of AMPKα2 activity during the lipid infusion attenuates the increase in iNOS and reverses the defect in insulin sensitivity in vivo. METHODS Chow-fed, 18-week-old C57BL/6J male mice were surgically catheterised. After 5 days they received: (1) a 5 h infusion of 5 ml kg(-1) h(-1) Intralipid + 6 U/h heparin (Lipid treatment) or saline (Control); (2) Lipid treatment or Control, followed by a 2 h hyperinsulinaemic-euglycaemic clamp (insulin clamp; 4 mU kg(-1) min(-1)); and (3) infusion of the AMPK activator, 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) (1 mg kg(-1) min(-1)), or saline during Lipid treatment, followed by a 2 h insulin clamp. In a separate protocol, mice producing a muscle-specific kinase-dead AMPKα2 subunit (α2-KD) underwent an insulin clamp to determine the role of AMPKα2 in insulin-mediated muscle glucose metabolism. RESULTS Lipid treatment decreased AMPKα2 activity, increased iNOS abundance/activation and reduced whole-body insulin sensitivity in vivo. AICAR increased AMPKα2 activity twofold; this did not suppress iNOS or improve whole-body or tissue-specific rates of glucose uptake during Lipid treatment. AICAR caused a marked increase in insulin-mediated glycogen synthesis in skeletal muscle. Consistent with this latter result, lean α2-KD mice exhibited impaired insulin-stimulated glycogen synthesis even though muscle glucose uptake was not affected. CONCLUSIONS/INTERPRETATION Acute induction of insulin resistance via lipid infusion in healthy mice impairs AMPKα2, increases iNOS and causes insulin resistance in vivo. However, these changes do not appear to be interrelated. Rather, a functionally active AMPKα2 subunit is required for insulin-stimulated muscle glycogen synthesis.
Collapse
Affiliation(s)
- R S Lee-Young
- Cellular and Molecular Metabolism Laboratory, Division of Metabolism and Obesity, Baker IDI Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Duggan GE, Hittel DS, Sensen CW, Weljie AM, Vogel HJ, Shearer J. Metabolomic response to exercise training in lean and diet-induced obese mice. J Appl Physiol (1985) 2011; 110:1311-8. [DOI: 10.1152/japplphysiol.00701.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise training is a common therapeutic approach known to antagonize the metabolic consequences of obesity. The aims of the present study were to examine 1) whether short-term, moderate-intensity exercise training alters the basal metabolite profile and 2) if 10 days of mild exercise training can correct obesity-induced shifts in metabolic spectra. After being weaned, male C57BL/6J littermates were randomly divided into two diet groups: low fat (LF) or high fat (HF). After 12 wk of dietary manipulation, HF animals were obese and hyperglycemic compared with LF animals. Mice from each group were further divided into sedentary or exercise treatments. Exercise training consisted of wheel running exercise (2 h/day, 10 days, 5.64 m/min). After exercise training, animals were rested (36 h) and fasted (6 h) before serum collection. Samples were analyzed by high-resolution one-dimensional proton NMR. Fifty high- and medium-concentration metabolites were identified. Pattern recognition algorithms and multivariate modeling were used to identify and isolate significant metabolites changing in response to HF and exercise training. The results showed that while exercise can mitigate some of the abnormal patterns in metabolic spectra induced by HF diet feeding, they cannot negate it. In fact, when the effects of diet and exercise were compared, diet was a stronger predictor and had the larger influence on the metabolic profile. External validation of models showed that diet could be correctly classified with an accuracy of 89%, whereas exercise training could be classified 73% of the time. The results demonstrate metabolomics to effectively characterize obesity-induced perturbations in metabolism and support the concept that exercise is beneficial for this condition.
Collapse
Affiliation(s)
- Gavin E. Duggan
- Department of Biological Sciences, Bio-NMR Center, Faculty of Science,
| | - Dustin S. Hittel
- Faculty of Kinesiology, and
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christoph W. Sensen
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aalim M. Weljie
- Department of Biological Sciences, Bio-NMR Center, Faculty of Science,
| | - Hans J. Vogel
- Department of Biological Sciences, Bio-NMR Center, Faculty of Science,
| | - Jane Shearer
- Faculty of Kinesiology, and
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Wasserman DH, Kang L, Ayala JE, Fueger PT, Lee-Young RS. The physiological regulation of glucose flux into muscle in vivo. ACTA ACUST UNITED AC 2011; 214:254-62. [PMID: 21177945 DOI: 10.1242/jeb.048041] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Skeletal muscle glucose uptake increases dramatically in response to physical exercise. Moreover, skeletal muscle comprises the vast majority of insulin-sensitive tissue and is a site of dysregulation in the insulin-resistant state. The biochemical and histological composition of the muscle is well defined in a variety of species. However, the functional consequences of muscle biochemical and histological adaptations to physiological and pathophysiological conditions are not well understood. The physiological regulation of muscle glucose uptake is complex. Sites involved in the regulation of muscle glucose uptake are defined by a three-step process consisting of: (1) delivery of glucose to muscle, (2) transport of glucose into the muscle by GLUT4 and (3) phosphorylation of glucose within the muscle by a hexokinase (HK). Muscle blood flow, capillary recruitment and extracellular matrix characteristics determine glucose movement from the blood to the interstitium. Plasma membrane GLUT4 content determines glucose transport into the cell. Muscle HK activity, cellular HK compartmentalization and the concentration of the HK inhibitor glucose 6-phosphate determine the capacity to phosphorylate glucose. Phosphorylation of glucose is irreversible in muscle; therefore, with this reaction, glucose is trapped and the uptake process is complete. Emphasis has been placed on the role of the glucose transport step for glucose influx into muscle with the past assertion that membrane transport is rate limiting. More recent research definitively shows that the distributed control paradigm more accurately defines the regulation of muscle glucose uptake as each of the three steps that define this process are important sites of flux control.
Collapse
Affiliation(s)
- David H Wasserman
- Department of Molecular Physiology and Biophysics and the Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
10
|
Jeppesen J, Albers PH, Rose AJ, Birk JB, Schjerling P, Dzamko N, Steinberg GR, Kiens B. Contraction-induced skeletal muscle FAT/CD36 trafficking and FA uptake is AMPK independent. J Lipid Res 2011; 52:699-711. [PMID: 21297178 DOI: 10.1194/jlr.m007138] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to investigate the molecular mechanisms regulating FA translocase CD36 (FAT/CD36) translocation and FA uptake in skeletal muscle during contractions. In one model, wild-type (WT) and AMP-dependent protein kinase kinase dead (AMPK KD) mice were exercised or extensor digitorum longus (EDL) and soleus (SOL) muscles were contracted, ex vivo. In separate studies, FAT/CD36 translocation and FA uptake in response to muscle contractions were investigated in the perfused rat hindlimb. Exercise induced a similar increase in skeletal muscle cell surface membrane FAT/CD36 content in WT (+34%) and AMPK KD (+37%) mice. In contrast, 5-aminoimidazole-4-carboxamide ribonucleoside only induced an increase in cell surface FAT/CD36 content in WT (+29%) mice. Furthermore, in the perfused rat hindlimb, muscle contraction induced a rapid (1 min, +15%) and sustained (10 min, +24%) FAT/CD36 relocation to cell surface membranes. The increase in cell surface FAT/CD36 protein content with muscle contractions was associated with increased FA uptake, both in EDL and SOL muscle from WT and AMPK KD mice and in the perfused rat hindlimb. This suggests that AMPK is not essential in regulation of FAT/CD36 translocation and FA uptake in skeletal muscle during contractions. However, AMPK could be important in regulation of FAT/CD36 distribution in other physiological situations.
Collapse
Affiliation(s)
- J Jeppesen
- Copenhagen Muscle Research Center, Molecular Physiology Group, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Snell PG, Ward R, Kandaswami C, Stohs SJ. Comparative effects of selected non-caffeinated rehydration sports drinks on short-term performance following moderate dehydration. J Int Soc Sports Nutr 2010; 7:28. [PMID: 20727213 PMCID: PMC2936297 DOI: 10.1186/1550-2783-7-28] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/22/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The effect of moderate dehydration and consequent fluid replenishment on short-duration maximal treadmill performance was studied in eight healthy, fit (VO2max = 49.7 +/- 8.7 mL kg-1 min-1) males aged 28 +/- 7.5 yrs. METHODS The study involved a within subject, blinded, crossover, placebo design. Initially, all subjects performed a baseline exercise test using an individualized treadmill protocol structured to induce exhaustion in 7 to 10 min. On each of the three subsequent testing days, the subjects exercised at 70-75% VO2max for 60 min at 29-33 degrees C, resulting in a dehydration weight loss of 1.8-2.1% body weight. After 60 min of rest and recovery at 22 C, subjects performed the same treadmill test to voluntary exhaustion, which resulted in a small reduction in VO2max and a decline in treadmill performance by 3% relative to the baseline results. Following another 60 min rest and recovery, subjects ingested the same amount of fluid lost in the form of one of three lemon-flavored, randomly assigned commercial drinks, namely Crystal Light (placebo control), Gatorade(R) and Rehydrate Electrolyte Replacement Drink, and then repeated the treadmill test to voluntary exhaustion. RESULTS VO2max returned to baseline levels with Rehydrate, while there was only a slight improvement with Gatorade and Crystal Light. There were no changes in heart rate or ventilation with all three different replacement drinks. Relative to the dehydrated state, a 6.5% decrease in treadmill performance time occurred with Crystal Light, while replenishment with Gatorade, which contains fructose, glucose, sodium and potassium, resulted in a 2.1% decrease. In contrast, treatment with Rehydrate, which comprises fructose, glucose polymer, calcium, magnesium, sodium, potassium, amino acids, thiols and vitamins, resulted in a 7.3% increase in treadmill time relative to that of the dehydrated state. CONCLUSIONS The results indicate that constituents other than water, simple transportable monosaccharides and sodium are important for maximal exercise performance and effective recovery associated with endurance exercise-induced dehydration.
Collapse
Affiliation(s)
- Peter G Snell
- University of Texas Southwestern Medical School, Dallas, TX, USA
| | | | | | - Sidney J Stohs
- Creighton University Health Sciences Center, Omaha, NE, USA
| |
Collapse
|
12
|
Abstract
The function and survival of all organisms is dependent on the dynamic control of energy metabolism, when energy demand is matched to energy supply. The AMP-activated protein kinase (AMPK) alphabetagamma heterotrimer has emerged as an important integrator of signals that control energy balance through the regulation of multiple biochemical pathways in all eukaryotes. In this review, we begin with the discovery of the AMPK family and discuss the recent structural studies that have revealed the molecular basis for AMP binding to the enzyme's gamma subunit. AMPK's regulation involves autoinhibitory features and phosphorylation of both the catalytic alpha subunit and the beta-targeting subunit. We review the role of AMPK at the cellular level through examination of its many substrates and discuss how it controls cellular energy balance. We look at how AMPK integrates stress responses such as exercise as well as nutrient and hormonal signals to control food intake, energy expenditure, and substrate utilization at the whole body level. Lastly, we review the possible role of AMPK in multiple common diseases and the role of the new age of drugs targeting AMPK signaling.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research, University of Melbourne, Fitzroy, Victoria, Australia.
| | | |
Collapse
|
13
|
Steinberg GR. Role of the AMP-activated protein kinase in regulating fatty acid metabolism during exercise. Appl Physiol Nutr Metab 2009; 34:315-22. [PMID: 19448692 DOI: 10.1139/h09-009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During moderate-intensity exercise, fatty acids are the predominant substrate for working skeletal muscle. The release of fatty acids from adipose tissue stores, combined with the ability of skeletal muscle to actively fine tune the gradient between fatty acid and carbohydrate metabolism, depending on substrate availability and energetic demands, requires a coordinated system of metabolic control. Over the past decade, since the discovery that AMP-activated protein kinase (AMPK) was increased in accordance with exercise intensity, there has been significant interest in the proposed role of this ancient stress-sensing kinase as a critical integrative switch controlling metabolic responses during exercise. In this review, studies examining the role of AMPK as a regulator of fatty acid metabolism in both adipose tissue and skeletal muscle during exercise will be discussed. Exercise induces activation of AMPK in adipocytes and regulates triglyceride hydrolysis and esterfication through phosphorylation of hormone sensitive lipase (HSL) and glycerol-3-phosphate acyl-transferase, respectively. In skeletal muscle, exercise-induced activation of AMPK is associated with increases in fatty acid uptake, phosphorylation of HSL, and increased fatty acid oxidation, which is thought to occur via the acetyl-CoA carboxylase-malony-CoA-CPT-1 signalling axis. Despite the importance of AMPK in regulating fatty acid metabolism under resting conditions, recent evidence from transgenic models of AMPK deficiency suggest that alternative signalling pathways may also be important for the control of fatty acid metabolism during exercise.
Collapse
Affiliation(s)
- Gregory R Steinberg
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria 3065, Australia.
| |
Collapse
|
14
|
Lee-Young RS, Griffee SR, Lynes SE, Bracy DP, Ayala JE, McGuinness OP, Wasserman DH. Skeletal muscle AMP-activated protein kinase is essential for the metabolic response to exercise in vivo. J Biol Chem 2009; 284:23925-34. [PMID: 19525228 DOI: 10.1074/jbc.m109.021048] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AMP-activated protein kinase (AMPK) has been postulated as a super-metabolic regulator, thought to exert numerous effects on skeletal muscle function, metabolism, and enzymatic signaling. Despite these assertions, little is known regarding the direct role(s) of AMPK in vivo, and results obtained in vitro or in situ are conflicting. Using a chronically catheterized mouse model (carotid artery and jugular vein), we show that AMPK regulates skeletal muscle metabolism in vivo at several levels, with the result that a deficit in AMPK activity markedly impairs exercise tolerance. Compared with wild-type littermates at the same relative exercise capacity, vascular glucose delivery and skeletal muscle glucose uptake were impaired; skeletal muscle ATP degradation was accelerated, and arterial lactate concentrations were increased in mice expressing a kinase-dead AMPKalpha2 subunit (alpha2-KD) in skeletal muscle. Nitric-oxide synthase (NOS) activity was significantly impaired at rest and in response to exercise in alpha2-KD mice; expression of neuronal NOS (NOSmicro) was also reduced. Moreover, complex I and IV activities of the electron transport chain were impaired 32 +/- 8 and 50 +/- 7%, respectively, in skeletal muscle of alpha2-KD mice (p < 0.05 versus wild type), indicative of impaired mitochondrial function. Thus, AMPK regulates neuronal NOSmicro expression, NOS activity, and mitochondrial function in skeletal muscle. In addition, these results clarify the role of AMPK in the control of muscle glucose uptake during exercise. Collectively, these findings demonstrate that AMPK is central to substrate metabolism in vivo, which has important implications for exercise tolerance in health and certain disease states characterized by impaired AMPK activation in skeletal muscle.
Collapse
Affiliation(s)
- Robert S Lee-Young
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Jensen TE, Wojtaszewski JFP, Richter EA. AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient? Acta Physiol (Oxf) 2009; 196:155-74. [PMID: 19243572 DOI: 10.1111/j.1748-1716.2009.01979.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In skeletal muscle, the contraction-activated heterotrimeric 5'-AMP-activated protein kinase (AMPK) protein is proposed to regulate the balance between anabolic and catabolic processes by increasing substrate uptake and turnover in addition to regulating the transcription of proteins involved in mitochondrial biogenesis and other aspects of promoting an oxidative muscle phenotype. Here, the current knowledge on the expression of AMPK subunits in human quadriceps muscle and evidence from rodent studies suggesting distinct AMPK subunit expression pattern in different muscle types is reviewed. Then, the intensity and time dependence of AMPK activation in human quadriceps and rodent muscle are evaluated. Subsequently, a major part of this review critically examines the evidence supporting a necessary and/or sufficient role of AMPK in a broad spectrum of skeletal muscle contraction-relevant processes. These include glucose uptake, glycogen synthesis, post-exercise insulin sensitivity, fatty acid (FA) uptake, intramuscular triacylglyceride hydrolysis, FA oxidation, suppression of protein synthesis, proteolysis, autophagy and transcriptional regulation of genes relevant to promoting an oxidative phenotype.
Collapse
Affiliation(s)
- T E Jensen
- Molecular Physiology Group, Copenhagen Muscle Research Centre, Section of Human Physiology, Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
16
|
Contractions but not AICAR increase FABPpm content in rat muscle sarcolemma. Mol Cell Biochem 2009; 326:45-53. [PMID: 19142713 DOI: 10.1007/s11010-008-0006-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Accepted: 06/17/2008] [Indexed: 12/30/2022]
Abstract
UNLABELLED In the present study, it was investigated whether acute muscle contractions in rat skeletal muscle increased the protein content of FABPpm in the plasma membrane. Furthermore, the effect of AICAR stimulation on FAT/CD36 and FABPpm protein content in sarcolemma of rat skeletal muscle was evaluated. METHODS Male wistar rats (150 g) were anesthetized and either subjected to in situ electrically induced contractions (hindlimb muscles: 20 min, 10-20 V, 200 ms trains, 100 Hz) or stimulated with the pharmacological activator of AMPK, AICAR. To investigate changes in the content of FABPpm and FAT/CD36 in the plasma membrane by these stimuli, the giant sarcolemma vesicle (GSV) technique was applied. The hindlimb muscles were removed and used for the production of GSV and lysates. All samples were analyzed using the western blotting technique. RESULTS Electrical stimulation of rat hindlimb muscle resulted in an increase in FABPpm protein content in the GSV of 61% (P < 0.05) and in FAT/CD36 protein content in the GSV of 33% (P < 0.05). AICAR stimulation increased FAT/CD36 protein content in GSV by 22% (P < 0.05), whereas FABPpm protein content in GSV was unaffected by AICAR treatment. There was no change in total FAT/CD36 and FABPpm protein expression, measured in lysates with western blotting, by either stimulus. AMPK thr172 and ERK1/2 thr202/204 phosphorylation were significantly increased with muscle contractions (P < 0.05), whereas only AMPK thr172 phosphorylation was increased with AICAR stimulation (P < 0.05). CONCLUSION These data show that contractions increase both FAT/CD36 and FABPpm protein content in skeletal muscle plasma membrane, whereas only FAT/CD36 protein content is increased when muscle are stimulated with AICAR. This suggests that AMPK is involved in regulation of FAT/CD36, but not FABPpm in skeletal muscle. However, since both ERK1/2 thr202/204 and AMPK thr172 phosphorylation are increased during muscle contractions, the present study cannot rule out that both could play a significant role in regulation of FAT/CD36 and FABPpm during muscle contractions.
Collapse
|
17
|
Zhang J, Xie Z, Dong Y, Wang S, Liu C, Zou MH. Identification of nitric oxide as an endogenous activator of the AMP-activated protein kinase in vascular endothelial cells. J Biol Chem 2008; 283:27452-27461. [PMID: 18693249 DOI: 10.1074/jbc.m802578200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In endothelial cells, the AMP-activated protein kinase (AMPK) is stimulated by sheer stress or growth factors that stimulate release of nitric oxide (NO). We hypothesized that NO might act as an endogenous activator of AMPK in endothelial cells. Exposure of human umbilical vein endothelial cells (HUVECs) to NO donors caused an increase in phosphorylation of both Thr-172 of AMPK and Ser-1177 of endothelial nitric oxide synthase, a downstream enzyme of AMPK. NO-induced activation of AMPK was not affected by inhibition of LKB1, an AMPK kinase. In contrast, inhibition of calcium calmodulin-dependent protein kinase kinase abolished the effect of NO in HUVECs. NO-induced AMPK activation in HeLa S3 cells was abolished by either 1H-(1,2,4)-oxadiazole[4,3-a]quinoxalon-1-one, a potent inhibitor for guanylyl cyclase, or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM), an intracellular Ca(2+) chelator, indicating that NO-induced AMPK activation is guanylyl cyclase-mediated and calcium-dependent. Exposure of HUVECs or isolated mice aortas to either calcium ionophore A23187 or bradykinin significantly increased AMPK Thr-172 phosphorylation, which was abolished by N-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase. Finally, A23187- or bradykinin-enhanced AMPK activation was significantly greater in aortas from wild type mice than those in the aortas of endothelial nitric oxide synthase knock-out mice. Taken together, we conclude that NO might act as an endogenous AMPK activator.
Collapse
Affiliation(s)
- Junhua Zhang
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Zhonglin Xie
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Yunzhou Dong
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Shuangxi Wang
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Chao Liu
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Ming-Hui Zou
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
18
|
Shearer J, Sellars EA, Farah A, Graham TE, Wasserman DH. Effects of chronic coffee consumption on glucose kinetics in the conscious rat. Can J Physiol Pharmacol 2007; 85:823-30. [PMID: 17901893 DOI: 10.1139/y07-070] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epidemiological studies indicate that regular coffee consumption reduces the risk of developing type 2 diabetes. Despite these findings, the biological mechanisms by which coffee consumption exerts these effects are unknown. The aim of this study was twofold: to develop a rat model that would further delineate the effects of regular coffee consumption on glucose kinetics, and to determine whether coffee, with or without caffeine, alters the actions of insulin on glucose kinetics in vivo. Male Sprague–Dawley rats were fed a high-fat diet for 4 weeks in combination with one of the following: (i) drinking water as placebo (PL), (ii) decaffeinated coffee (2 g/100 mL) (DC), or (iii) alkaloid caffeine (20 mg/100 mL) added to decaffeinated coffee (2 g/100 mL) (CAF). Catheters were chronically implanted in a carotid artery and jugular vein for sampling and infusions, respectively. Recovered animals (5 days postoperative) were fasted for 5 h before hyperinsulinemic-euglycemic clamps (2 mU·kg–1·min–1). Glucose was clamped at 6 mmol/L and isotopes (2-deoxy-[14C]glucose and [3-3H]glucose) were administered to obtain indices of whole-body and tissue-specific glucose kinetics. Glucose infusion rates and measures of whole-body metabolic clearance were greater in DC than in PL or CAF, indicating increased whole-body insulin sensitivity. As the only difference between DC and CAF was the addition of alkaloid caffeine, it can be concluded that caffeine antagonizes the beneficial effects of DC. Given these findings, decaffeinated coffee may represent a nutritional means of combating insulin resistance.
Collapse
Affiliation(s)
- J Shearer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Light Hall 702, Nashville, TN 37215, USA
| | | | | | | | | |
Collapse
|
19
|
Binas B, Erol E. FABPs as determinants of myocellular and hepatic fuel metabolism. Mol Cell Biochem 2007; 299:75-84. [PMID: 17001451 DOI: 10.1007/s11010-005-9043-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In vitro experiments and expression patterns have long suggested important roles for the genetically related cytosolic fatty acid binding proteins (FABPs) in lipid metabolism. However, evidence for such roles in vivo has become available only recently from genetic manipulation of FABP expression in mice. Here, we summarize the fuel-metabolic phenotypes of mice lacking the genes encoding heart-type FABP (H-/- mice) or liver-type FABP (L-/- mice). Cytosolic extracts from H-/- heart and skeletal muscle and from L-/- liver showed massively reduced binding of long chain fatty acids (LCFA) and, in case of L-/- liver, also of LCFA-CoA. Uptake, oxidation, and esterification LCFA, when measured in vivo and/or ex vivo, were markedly reduced in H-/- heart and muscle and in L-/- liver. The reduced LCFA oxidation in H-/- heart and L-/- liver was not due to reduced activity of PPARa, a fatty acid-sensitive transcription factor that determines the lipid-oxidative capacity in these organs. In H-/- mice, mechanisms of compensation were partially studied and included a redistribution of muscle mitochondria as well as increases of cardiac and skeletal muscle glucose uptakes and of hepatic ketogenesis. In skeletal muscle, the altered glucose uptake included decreased basal but increased insulin-dependent components. Metabolic compensation was only partial, however, since the H-/- mice showed decreased exercise tolerance. In conclusion, the recent studies established H- and L-FABP as major determinants of regional LCFA utilization; therefore the H-/- and L-/- mice are attractive models for studying principles of fuel selection and metabolic homeostasis.
Collapse
Affiliation(s)
- B Binas
- Department of Pathobiology, College of Vet. Medicine, Texas A&M University, College Station, TX 77843, USA.
| | | |
Collapse
|
20
|
de Lange P, Moreno M, Silvestri E, Lombardi A, Goglia F, Lanni A. Fuel economy in food‐deprived skeletal muscle: signaling pathways and regulatory mechanisms. FASEB J 2007; 21:3431-41. [PMID: 17595346 DOI: 10.1096/fj.07-8527rev] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Energy deprivation poses a tremendous challenge to skeletal muscle. Glucose (ATP) depletion causes muscle fibers to undergo rapid adaptive changes toward the use of fatty acids (instead of glucose) as fuel. Physiological situations involving energy deprivation in skeletal muscle include exercise and fasting. A vast body of evidence is available on the signaling pathways that lead to structural/metabolic changes in muscle during exercise and endurance training. In contrast, only recently has a systematic, overall picture been obtained of the signaling processes (and their kinetics and sequential order) that lead to adaptations of the muscle to the fasting state. It has become clear that the reaction of the organism to food restraint or deprivation involves a rapid signaling process causing skeletal muscles, which generally use glucose as their predominant fuel, to switch to the use of fat as fuel. Efficient sensing of glucose depletion in skeletal muscle guarantees maintained activity in those tissues that rely entirely on glucose (such as the brain). To metabolize fatty acids, skeletal muscle needs to activate complex transcription, translation, and phosphorylation pathways. Only recently has it become clear that these pathways are interrelated and tightly regulated in a rapid, transient manner. Food deprivation may trigger these responses with a timing/intensity that differs among animal species and that may depend on their individual ability to induce structural/metabolic changes that serve to safeguard whole-body energy homeostasis in the longer term. The increased cellular AMP/ATP ratio induced by food deprivation, which results in activation of AMP-activated protein kinase (AMPK), initiates a rapid signaling process, resulting in the recruitment of factors mediating the structural/metabolic shift in skeletal muscle toward this change in fuel usage. These factors include peroxisome proliferator-activated receptor (PPAR)gamma coactivator-1alpha (PGC-1alpha), PPARdelta, and their target genes, which are involved in the formation of oxidative muscle fibers, mitochondrial biogenesis, oxidative phosphorylation, and fatty acid oxidation. Fatty acids, besides being the fuel for mitochondrial oxidation, have been identified as important signaling molecules regulating the transcription and/or activity of the genes or gene products involved in fatty acid metabolism during food deprivation. It is thus becoming increasingly clear that fatty acids determine the economy of their own usage. We discuss the order of events from the onset of food deprivation and their importance.
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Steinberg GR, Macaulay SL, Febbraio MA, Kemp BE. AMP-activated protein kinase--the fat controller of the energy railroad. Can J Physiol Pharmacol 2007; 84:655-65. [PMID: 16998529 DOI: 10.1139/y06-005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AMP-activated protein kinase plays an important role in the regulation of lipid metabolism in response to metabolic stress and energy demand. It is also under endocrine control. AMPK acts at multiple steps and has a central role controlling fatty acid, triglyceride, and cholesterol synthesis, as well as the oxidation of fatty acids through direct phosphorylation effects and the control of gene transcription. As such, it can be considered to be the fat controller of the energy railroad. It is thought that AMPK may be a major mediator of the health benefits of exercise in mitigating the development of obesity and age-onset diseases.
Collapse
|
22
|
Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G. Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 2006; 17:571-88. [PMID: 16524713 DOI: 10.1016/j.jnutbio.2005.12.001] [Citation(s) in RCA: 459] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 11/30/2005] [Accepted: 12/02/2005] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is synthesized from L-arginine by NO synthase in virtually all cell types. Emerging evidence shows that NO regulates the metabolism of glucose, fatty acids and amino acids in mammals. As an oxidant, pathological levels of NO inhibit nearly all enzyme-catalyzed reactions through protein oxidation. However, as a signaling molecule, physiological levels of NO stimulate glucose uptake as well as glucose and fatty acid oxidation in skeletal muscle, heart, liver and adipose tissue; inhibit the synthesis of glucose, glycogen, and fat in target tissues (e.g., liver and adipose); and enhance lipolysis in adipocytes. Thus, an inhibition of NO synthesis causes hyperlipidemia and fat accretion in rats, whereas dietary arginine supplementation reduces fat mass in diabetic fatty rats. The putative underlying mechanisms may involve multiple cyclic guanosine-3',5'-monophosphate-dependent pathways. First, NO stimulates the phosphorylation of adenosine-3',5'-monophosphate-activated protein kinase, resulting in (1) a decreased level of malonyl-CoA via inhibition of acetyl-CoA carboxylase and activation of malonyl-CoA decarboxylase and (2) a decreased expression of genes related to lipogenesis and gluconeogenesis (glycerol-3-phosphate acyltransferase, sterol regulatory element binding protein-1c and phosphoenolpyruvate carboxykinase). Second, NO increases the phosphorylation of hormone-sensitive lipase and perilipins, leading to the translocation of the lipase to the neutral lipid droplets and, hence, the stimulation of lipolysis. Third, NO activates expression of peroxisome proliferator-activated receptor-gamma coactivator-1alpha, thereby enhancing mitochondrial biogenesis and oxidative phosphorylation. Fourth, NO increases blood flow to insulin-sensitive tissues, promoting substrate uptake and product removal via the circulation. Modulation of the arginine-NO pathway through dietary supplementation with L-arginine or L-citrulline may aid in the prevention and treatment of the metabolic syndrome in obese humans and companion animals, and in reducing unfavorable fat mass in animals of agricultural importance.
Collapse
|
23
|
Camacho RC, Lacy DB, James FD, Donahue EP, Wasserman DH. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside renders glucose output by the liver of the dog insensitive to a pharmacological increment in insulin. Am J Physiol Endocrinol Metab 2005; 289:E1039-43. [PMID: 16046457 DOI: 10.1152/ajpendo.00247.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to test whether stimulation of net hepatic glucose output (NHGO) by increased concentrations of the AMP analog, 5-aminoimidazole-4-carboxamide-1-beta-d-ribosyl-5-monophosphate, can be suppressed by pharmacological insulin levels. Dogs had sampling (artery, portal vein, hepatic vein) and infusion (vena cava, portal vein) catheters and flow probes (hepatic artery, portal vein) implanted >16 days before study. Protocols consisted of equilibration (-130 to -30 min), basal (-30 to 0 min), and hyperinsulinemic-euglycemic (0-150 min) periods. At time (t) = 0 min, somatostatin was infused, and basal glucagon was replaced via the portal vein. Insulin was infused in the portal vein at either 2 (INS2) or 5 (INS5) mU.kg(-1).min(-1). At t = 60 min, 1 mg.kg(-1).min(-1) portal venous 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion was initiated. Arterial insulin rose approximately 9- and approximately 27-fold in INS2 and INS5, respectively. Glucagon, catecholamines, and cortisol did not change throughout the study. NHGO was completely suppressed before t = 60 min. Intraportal AICAR stimulated NHGO by 1.9 +/- 0.5 and 2.0 +/- 0.5 mg.kg(-1).min(-1) in INS2 and INS5, respectively. AICAR stimulated tracer-determined endogenous glucose production similarly in both groups. Intraportal AICAR infusion significantly increased hepatic acetyl-CoA carboxylase (ACC, Ser(79)) phosphorylation in INS2. Hepatic ACC (Ser(79)) phosphorylation, however, was not increased in INS5. Thus intraportal AICAR infusion renders hepatic glucose output insensitive to pharmacological insulin. The effectiveness of AICAR in countering the suppressive effect of pharmacological insulin on NHGO occurs even though AICAR-stimulated ACC phosphorylation is completely blocked.
Collapse
Affiliation(s)
- Raul C Camacho
- Dept. of Molecular Physiology and Biophysics, Duiabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
24
|
Wiernsperger NF. Is non-insulin dependent glucose uptake a therapeutic alternative? Part 1: physiology, mechanisms and role of non insulin-dependent glucose uptake in type 2 diabetes. DIABETES & METABOLISM 2005; 31:415-26. [PMID: 16357785 DOI: 10.1016/s1262-3636(07)70212-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several decades of research for treating type 2 diabetes have yielded new drugs but the actual experience with the available oral antidiabetic compounds clearly shows that therapeutic needs are not matched. This highlights the urgent need for exploring other pathways. All cell types have the capacity to take up glucose independently of insulin, whereby basal but also hyperglycaemia-promoted glucose supply is ensured. Although poorly explored, insulin-independent glucose uptake might nevertheless represent a therapeutic target, as an alternative to the clear limits of actual drug treatments. This review not only critically examines some major pathways not requiring insulin (although they may be influenced by the hormone) but importantly, this analysis extends to the clinical applicability of these potential therapeutic principles by also considering their predictable tolerability for long-term therapy. In particular vascular safety (the ultimate problem linked with diabetes) will be envisaged because of the ubiquitous distribution of glucose transporters and some linked mechanisms. Several mechanisms can be identified which do not require insulin for their functioning. The first part of this review deals with the description, the regulation and the limits of some mechanisms representing potential pharmacological targets capable of having a highly significant impact on glucose uptake. These selected topics are: a) unmasking and/or activation of glucose transporters in cell plasma membranes, b) insulin mimetics acting at postreceptor level, c) activation of AMPK, d) increasing nitric oxide and e) increasing glucose-6P and glycogen stores.
Collapse
Affiliation(s)
- N F Wiernsperger
- INSERM UMR 585, Bâtiment Louis Pasteur, INSA Lyon, Cedex, France.
| |
Collapse
|
25
|
Mount PF, Hill RE, Fraser SA, Levidiotis V, Katsis F, Kemp BE, Power DA. Acute renal ischemia rapidly activates the energy sensor AMPK but does not increase phosphorylation of eNOS-Ser1177. Am J Physiol Renal Physiol 2005; 289:F1103-15. [PMID: 15914772 DOI: 10.1152/ajprenal.00458.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A fundamental aspect of acute renal ischemia is energy depletion, manifest as a falling level of ATP that is associated with a simultaneous rise in AMP. The energy sensor AMP-activated protein kinase (AMPK) is activated by a rising AMP-to-ATP ratio, but its role in acute renal ischemia is unknown. AMPK is activated in the ischemic heart and is reported to phosphorylate both endothelial nitric oxide synthase (eNOS) and acetyl-CoA carboxylase. To study activation of AMPK in acute renal ischemia, the renal pedicle of anesthetized Sprague-Dawley rats was cross-clamped for increasing time intervals. AMPK was strongly activated within 1 min and remained so after 30 min. However, despite the robust activation of AMPK, acute renal ischemia did not increase phosphorylation of the AMPK phosphorylation sites eNOS-Ser(1177) or acetyl-CoA carboxylase-Ser(79). Activation of AMPK in bovine aortic endothelial cells by the ATP-depleting agent antimycin A and the antidiabetic drug phenformin also did not increase phosphorylation of eNOS-Ser(1177), confirming that AMPK activation and phosphorylation of eNOS are dissociated in some situations. Immunoprecipitation studies demonstrated that the dissociation between AMPK activation and phosphorylation of eNOS-Ser(1177) was not due to changes in the physical associations between AMPK, eNOS, or heat shock protein 90. In conclusion, acute renal ischemia rapidly activates the energy sensor AMPK, which is known to maintain ATP reserves during energy stress. The substrates it phosphorylates, however, are different from those in other organs such as the heart.
Collapse
Affiliation(s)
- Peter F Mount
- Austin Research Institute, Austin Health, University of Melbourne, Heidelberg 3084, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
26
|
Camacho RC, Pencek RR, Lacy DB, James FD, Donahue EP, Wasserman DH. Portal venous 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion overcomes hyperinsulinemic suppression of endogenous glucose output. Diabetes 2005; 54:373-82. [PMID: 15677495 DOI: 10.2337/diabetes.54.2.373] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AMP-activated protein kinase (AMPK) plays a key role in regulating metabolism, serving as a metabolic master switch. The aim of this study was to assess whether increased concentrations of the AMP analog, 5-aminoimidazole-4-carboxamide-1-beta-D-ribosyl-5-monophosphate, in the liver would create a metabolic response consistent with an increase in whole-body metabolic need. Dogs had sampling (artery, portal vein, hepatic vein) and infusion (vena cava, portal vein) catheters and flow probes (hepatic artery, portal vein) implanted >16 days before a study. Protocols consisted of equilibration (-130 to -30 min), basal (-30 to 0 min), and hyperinsulinemic-euglycemic or -hypoglycemic clamp periods (0-150 min). At t = 0 min, somatostatin was infused and glucagon was replaced in the portal vein at basal rates. An intraportal hyperinsulinemic (2 mU . kg(-1) . min(-1)) infusion was also initiated at this time. Glucose was clamped at hypoglycemic or euglycemic levels in the presence (H-AIC, n = 6; E-AIC, n = 6) or absence (H-SAL, n = 6; E-SAL, n = 6) of a portal venous 5-aminoimidazole-4-carboxamide-ribofuranoside (AICAR) infusion (1 mg . kg(-1) . min(-1)) initiated at t = 60 min. In the presence of intraportal saline, glucose was infused into the vena cava to match glucose levels seen with intraportal AICAR. Glucagon remained fixed at basal levels, whereas insulin rose similarly in all groups. Glucose fell to 50 +/- 2 mg/dl by t = 60 min in hypoglycemic groups and remained at 105 +/- 3 mg/dl in euglycemic groups. Endogenous glucose production (R(a)) was similarly suppressed among groups in the presence of euglycemia or hypoglycemia before t = 60 min and remained suppressed in the H-SAL and E-SAL groups. However, intraportal AICAR infusion stimulated R(a) to increase by 2.5 +/- 1.0 and 3.4 +/- 0.4 mg . kg(-1) . min(-1) in the E-AIC and H-AIC groups, respectively. Arteriovenous measurement of net hepatic glucose output showed similar results. AICAR stimulated hepatic glycogen to decrease by 5 +/- 3 and 19 +/- 5 mg/g tissue (P < 0.05) in the presence of euglycemia and hypoglycemia, respectively. AICAR significantly increased net hepatic lactate output in the presence of hypoglycemia. Thus, intraportal AICAR infusion caused marked stimulation of both hepatic glucose output and net hepatic glycogenolysis, even in the presence of high levels of physiological insulin. This stimulation of glucose output by AICAR was equally marked in the presence of both euglycemia and hypoglycemia. However, hypoglycemia amplified the net hepatic glycogenolytic response to AICAR by approximately fourfold.
Collapse
Affiliation(s)
- Raul C Camacho
- Department of Molecular Physiology and Biophysics, Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Shearer J, Fueger PT, Rottman JN, Bracy DP, Binas B, Wasserman DH. Heart-type fatty acid-binding protein reciprocally regulates glucose and fatty acid utilization during exercise. Am J Physiol Endocrinol Metab 2005; 288:E292-7. [PMID: 15454399 DOI: 10.1152/ajpendo.00287.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of heart-type cytosolic fatty acid-binding protein (H-FABP) in mediating whole body and muscle-specific long-chain fatty acid (LCFA) and glucose utilization was examined using exercise as a phenotyping tool. Catheters were chronically implanted in a carotid artery and jugular vein of wild-type (WT, n = 8), heterozygous (H-FABP(+/-), n = 8), and null (H-FABP(-/-), n = 7) chow-fed C57BL/6J mice, and mice were allowed to recover for 7 days. After a 5-h fast, conscious, unrestrained mice were studied during 30 min of treadmill exercise (0.6 mph). A bolus of [(125)I]-15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid and 2-deoxy-[(3)H]glucose was administered to obtain rates of whole body metabolic clearance (MCR) and indexes of muscle LCFA (R(f)) and glucose (R(g)) utilization. Fasting, nonesterified fatty acids (mM) were elevated in H-FABP(-/-) mice (2.2 +/- 0.9 vs. 1.3 +/- 0.1 and 1.3 +/- 0.2 for WT and H-FABP(+/-)). During exercise, blood glucose (mM) increased in WT (11.7 +/- 0.8) and H-FABP(+/-) (12.6 +/- 0.9) mice, whereas H-FABP(-/-) mice developed overt hypoglycemia (4.8 +/- 0.8). Examination of tissue-specific and whole body glucose and LCFA utilization demonstrated a dependency on H-FABP with exercise in all tissues examined. Reductions in H-FABP led to decreasing exercise-stimulated R(f) and increasing R(g) with the most pronounced effects in heart and soleus muscle. Similar results were seen for MCR with decreasing LCFA and increasing glucose clearance with declining levels of H-FABP. These results show that, in vivo, H-FABP has reciprocal effects on glucose and LCFA utilization and whole body fuel homeostasis when metabolic demands are elevated by exercise.
Collapse
Affiliation(s)
- Jane Shearer
- Dept. of Molecular Physiology and Biophysics, Vanderbilt University, 823 Light Hall, Nashville, TN 37232-0615, USA
| | | | | | | | | | | |
Collapse
|
28
|
Li J, Hu X, Selvakumar P, Russell RR, Cushman SW, Holman GD, Young LH. Role of the nitric oxide pathway in AMPK-mediated glucose uptake and GLUT4 translocation in heart muscle. Am J Physiol Endocrinol Metab 2004; 287:E834-41. [PMID: 15265762 DOI: 10.1152/ajpendo.00234.2004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AMP-activated protein kinase (AMPK) is a serine-threonine kinase that regulates cellular metabolism and has an essential role in activating glucose transport during hypoxia and ischemia. The mechanisms responsible for AMPK stimulation of glucose transport are uncertain, but may involve interaction with other signaling pathways or direct effects on GLUT vesicular trafficking. One potential downstream mediator of AMPK signaling is the nitric oxide pathway. The aim of this study was to examine the extent to which AMPK mediates glucose transport through activation of the nitric oxide (NO)-signaling pathway in isolated heart muscles. Incubation with 1 mM 5-amino-4-imidazole-1-beta-carboxamide ribofuranoside (AICAR) activated AMPK (P < 0.01) and stimulated glucose uptake (P < 0.05) and translocation of the cardiomyocyte glucose transporter GLUT4 to the cell surface (P < 0.05). AICAR treatment increased phosphorylation of endothelial NO synthase (eNOS) approximately 1.8-fold (P < 0.05). eNOS, but not neuronal NOS, coimmunoprecipitated with both the alpha(2) and alpha(1) AMPK catalytic subunits in heart muscle. NO donors also increased glucose uptake and GLUT4 translocation (P < 0.05). Inhibition of NOS with N(omega)-nitro-l-arginine and N(omega)-methyl-l-arginine reduced AICAR-stimulated glucose uptake by 21 +/- 3% (P < 0.05) and 25 +/- 4% (P < 0.05), respectively. Inhibition of guanylate cyclase with ODQ and LY-83583 reduced AICAR-stimulated glucose uptake by 31 +/- 4% (P < 0.05) and 22 +/- 3% (P < 0.05), respectively, as well as GLUT4 translocation to the cell surface (P < 0.05). Taken together, these results indicate that activation of the NO-guanylate cyclase pathway contributes to, but is not the sole mediator of, AMPK stimulation of glucose uptake and GLUT4 translocation in heart muscle.
Collapse
Affiliation(s)
- Ji Li
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Shearer J, Fueger PT, Rottman JN, Bracy DP, Martin PH, Wasserman DH. AMPK stimulation increases LCFA but not glucose clearance in cardiac muscle in vivo. Am J Physiol Endocrinol Metab 2004; 287:E871-7. [PMID: 15265760 DOI: 10.1152/ajpendo.00125.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AMP-activated protein kinase (AMPK) independently increases glucose and long-chain fatty acid (LCFA) utilization in isolated cardiac muscle preparations. Recent studies indicate this may be due to AMPK-induced phosphorylation and activation of nitric oxide synthase (NOS). Given this, the aim of the present study was to assess the effects of AMPK stimulation by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR; 10 mg.kg(-1).min(-1)) on glucose and LCFA utilization in cardiac muscle and to determine the NOS dependence of any observed effects. Catheters were chronically implanted in a carotid artery and jugular vein of Sprague-Dawley rats. After 4 days of recovery, conscious, unrestrained rats were given either water or water containing 1 mg/ml nitro-L-arginine methyl ester (L-NAME) for 2.5 days. After an overnight fast, rats underwent one of four protocols: saline, AICAR, AICAR + L-NAME, or AICAR + Intralipid (20%, 0.02 ml.kg(-1).min(-1)). Glucose was clamped at approximately 6.5 mM in all groups, and an intravenous bolus of 2-deoxy-[(3)H]glucose and [(125)I]-15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid was administered to obtain indexes of glucose and LCFA uptake and clearance. Despite AMPK activation, as evidenced by acetyl-CoA carboxylase (Ser(221)) and AMPK phosphorylation (Thr(172)), AICAR increased cardiac LCFA but not glucose clearance. L-NAME + AICAR established that this effect was not due to NOS activation, and AICAR + Intralipid showed that increased cardiac LCFA clearance was not LCFA-concentration dependent. These results demonstrate that, in vivo, AMPK stimulation increases LCFA but not glucose clearance by a NOS-independent mechanism.
Collapse
Affiliation(s)
- Jane Shearer
- Dept. of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232-0615, USA
| | | | | | | | | | | |
Collapse
|