1
|
Vourdoumpa A, Paltoglou G, Charmandari E. The Genetic Basis of Childhood Obesity: A Systematic Review. Nutrients 2023; 15:1416. [PMID: 36986146 PMCID: PMC10058966 DOI: 10.3390/nu15061416] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Overweight and obesity in childhood and adolescence represents one of the most challenging public health problems of our century owing to its epidemic proportions and the associated significant morbidity, mortality, and increase in public health costs. The pathogenesis of polygenic obesity is multifactorial and is due to the interaction among genetic, epigenetic, and environmental factors. More than 1100 independent genetic loci associated with obesity traits have been currently identified, and there is great interest in the decoding of their biological functions and the gene-environment interaction. The present study aimed to systematically review the scientific evidence and to explore the relation of single-nucleotide polymorphisms (SNPs) and copy number variants (CNVs) with changes in body mass index (BMI) and other measures of body composition in children and adolescents with obesity, as well as their response to lifestyle interventions. Twenty-seven studies were included in the qualitative synthesis, which consisted of 7928 overweight/obese children and adolescents at different stages of pubertal development who underwent multidisciplinary management. The effect of polymorphisms in 92 different genes was assessed and revealed SNPs in 24 genetic loci significantly associated with BMI and/or body composition change, which contribute to the complex metabolic imbalance of obesity, including the regulation of appetite and energy balance, the homeostasis of glucose, lipid, and adipose tissue, as well as their interactions. The decoding of the genetic and molecular/cellular pathophysiology of obesity and the gene-environment interactions, alongside with the individual genotype, will enable us to design targeted and personalized preventive and management interventions for obesity early in life.
Collapse
Affiliation(s)
- Aikaterini Vourdoumpa
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
| | - George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
2
|
Yanik T, Durhan ST. Specific Functions of Melanocortin 3 Receptor (MC3R). J Clin Res Pediatr Endocrinol 2023; 15:1-6. [PMID: 36053086 PMCID: PMC9976164 DOI: 10.4274/jcrpe.galenos.2022.2022-5-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Melanocortin 3 receptor (MC3R) is a G-protein coupled receptor which has been defined mostly as a regulator of the appetite/hunger balance mechanisms to date. In addition to its function regarding the weight gain and appetite control mechanisms of MC3R, recent studies have shown that MC3R controls growth, puberty, and circadian rhythms as well. Despite the drastic effects of MC3R deficiency in humans and other mammals, its cellular mechanisms are still under investigation. In this review paper, we aimed to point out the importance of MC3R regulations in three main areas: 1) its impact on weight and appetite control, 2) its role in the control of growth, puberty, and the circadian rhythm, and, 3) its protein-protein interactions and cellular mechanisms.
Collapse
Affiliation(s)
- Tulin Yanik
- Middle East Technical University, Department of Biological Sciences, Ankara, Turkey,* Address for Correspondence: Middle East Technical University, Department of Biological Sciences, Ankara, Turkey Phone: +90 312 210 64 65 E-mail:
| | - Seyda Tugce Durhan
- Middle East Technical University, Department of Biochemistry, Ankara, Turkey
| |
Collapse
|
3
|
Piper NBC, Whitfield EA, Stewart GD, Xu X, Furness SGB. Targeting appetite and satiety in diabetes and obesity, via G protein-coupled receptors. Biochem Pharmacol 2022; 202:115115. [PMID: 35671790 DOI: 10.1016/j.bcp.2022.115115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes and obesity have reached pandemic proportions throughout the world, so much so that the World Health Organisation coined the term "Globesity" to help encapsulate the magnitude of the problem. G protein-coupled receptors (GPCRs) are highly tractable drug targets due to their wide involvement in all aspects of physiology and pathophysiology, indeed, GPCRs are the targets of approximately 30% of the currently approved drugs. GPCRs are also broadly involved in key physiologies that underlie type 2 diabetes and obesity including feeding reward, appetite and satiety, regulation of blood glucose levels, energy homeostasis and adipose function. Despite this, only two GPCRs are the target of approved pharmaceuticals for treatment of type 2 diabetes and obesity. In this review we discuss the role of these, and select other candidate GPCRs, involved in various facets of type 2 diabetic or obese pathophysiology, how they might be targeted and the potential reasons why pharmaceuticals against these targets have not progressed to clinical use. Finally, we provide a perspective on the current development pipeline of anti-obesity drugs that target GPCRs.
Collapse
Affiliation(s)
- Noah B C Piper
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Emily A Whitfield
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gregory D Stewart
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Sebastian G B Furness
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia; Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
4
|
Wang W, Lin YJ, Chen ZX, Guo DY. Identification and characterization of two novel melanocortin-3 receptor mutations in Chinese obese individuals. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166107. [PMID: 33621651 DOI: 10.1016/j.bbadis.2021.166107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/31/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022]
Abstract
The melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R), known as neural melanocortin receptors, have been implicated to be critical components of the hypothalamic leptin-melanocortin pathway and related to obesity pathogenesis. In contrast to extensive evidence from physiologic, biological, genetic studies demonstrating that MC4R is a critical regulator in obesity, whether MC3R mutation causes obesity is still controversial. In the present study, we screened for coding variants in the MC3R gene of 176 obese individuals (mean BMI 34.84 ± 0.19 kg/m2) and 170 lean controls (mean BMI 20.70 ± 0.08 kg/m2) to assess the prevalence of MC3R mutations in a Chinese cohort. Two novel mutations, A33D (c.C98 > A) and A259T (c.G775 > A), were identified in two subjects with morbid obesity, respectively. A259T was also identified in the carrier's sibling. In vitro functional studies showed that A33D was defective in the cAMP signaling pathway, whereas A259T MC3R had defective maximal binding and cAMP generation in response to NDP- and α-MSH, likely due to decreased cell surface expression. In addition, we showed that A33D and A259T were biased receptors and defect in constitutive activation of ERK1/2 signaling through MC3R might be a cause for morbid obesity. Our sequencing and co-segregation studies combined with comprehensive functional analysis demonstrated that A259T might be predisposing to obesity. Further investigations in larger cohorts will be needed in order to define this association and the specific phenotypic characteristics resulting from these mutations.
Collapse
Affiliation(s)
- Wei Wang
- Department of Clinical laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., 128 Hetongli Rd, Huli District, Xiamen 361000, China.
| | - Yue-Jun Lin
- Department of Clinical laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., 128 Hetongli Rd, Huli District, Xiamen 361000, China
| | - Zhao-Xia Chen
- Department of Clinical laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., 128 Hetongli Rd, Huli District, Xiamen 361000, China
| | - Dong-Yu Guo
- Department of Clinical laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., 128 Hetongli Rd, Huli District, Xiamen 361000, China.
| |
Collapse
|
5
|
Zhang HJ, Cui ZH, Liu M, Min TQ, Xiao X, Wang ZQ, Tao YX. Pharmacological characterization of three chicken melanocortin-3 receptor mutants. Domest Anim Endocrinol 2021; 74:106507. [PMID: 32841887 DOI: 10.1016/j.domaniend.2020.106507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
The melanocortin-3 receptor (MC3R) is a G protein-coupled receptor and potentially important in production traits. Three naturally occurring mutations (M54L, G104S, and L151R) in chicken MC3R (cMC3R) were reported previously to be associated with production traits. Here, we inserted the full-length cMC3R coding sequence into pcDNA3.1(+) and generated the 3 mutations by site-directed mutagenesis. The total and cell surface expression of the receptors was measured by flow cytometry. We analyzed the pharmacological characteristics, including binding and cyclic adenosine monophosphate (cAMP) and mitogen-activated protein kinase (MAPK) signaling, using 6 ligands ([Nle4, D-Phe7]-α-melanocyte stimulating hormone (MSH), α-, β-, γ-, and D-Trp8-γ-MSHs, and agouti-related peptide). All mutants had similar total and cell surface expression as the wild-type (WT) cMC3R. M54L had similar pharmacological properties as the WT cMC3R. G104S did not exhibit any specific binding but had minimal response to α-, β-, γ-, and D-Trp8-γ-MSH, although it generated 24% WT response when stimulated by NDP-MSH. Although L151R had normal binding, the responses to agonists were reduced to approximately 25% of that of the WT. In MAPK signaling, all 3 mutants showed significantly increased agonist-stimulated phosphorylation of extracellular signal-regulated protein kinases 1/2, indicating the existence of biased signaling at G104S and L151R. In summary, our studies demonstrated that although all 3 mutations are significantly associated with production traits, only G104S and L151R had severe defects in receptor pharmacology. How M54L might cause production trait differences remains to be investigated.
Collapse
Affiliation(s)
- H-J Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Z-H Cui
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - M Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - T-Q Min
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - X Xiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Z-Q Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China.
| | - Y-X Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
6
|
Micioni Di Bonaventura E, Botticelli L, Tomassoni D, Tayebati SK, Micioni Di Bonaventura MV, Cifani C. The Melanocortin System behind the Dysfunctional Eating Behaviors. Nutrients 2020; 12:E3502. [PMID: 33202557 PMCID: PMC7696960 DOI: 10.3390/nu12113502] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
The dysfunction of melanocortin signaling has been associated with obesity, given the important role in the regulation of energy homeostasis, food intake, satiety and body weight. In the hypothalamus, the melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) contribute to the stability of these processes, but MC3R and MC4R are also localized in the mesolimbic dopamine system, the region that responds to the reinforcing properties of highly palatable food (HPF) and where these two receptors seem to affect food reward and motivation. Loss of function of the MC4R, resulting from genetic mutations, leads to overeating in humans, but to date, a clear understanding of the underlying mechanisms and behaviors that promote overconsumption of caloric foods remains unknown. Moreover, the MC4R demonstrated to be a crucial modulator of the stress response, factor that is known to be strictly related to binge eating behavior. In this review, we will explore the preclinical and clinical studies, and the controversies regarding the involvement of melanocortin system in altered eating patterns, especially binge eating behavior, food reward and motivation.
Collapse
Affiliation(s)
| | - Luca Botticelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.M.D.B.); (L.B.); (S.K.T.); (C.C.)
| | - Daniele Tomassoni
- School of Bioscience and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| | - Seyed Khosrow Tayebati
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.M.D.B.); (L.B.); (S.K.T.); (C.C.)
| | | | - Carlo Cifani
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.M.D.B.); (L.B.); (S.K.T.); (C.C.)
| |
Collapse
|
7
|
Kerns J, Fisher M. Epidemiology, pathophysiology and etiology of obesity in children and adolescents. Curr Probl Pediatr Adolesc Health Care 2020; 50:100869. [PMID: 32950388 DOI: 10.1016/j.cppeds.2020.100869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jessica Kerns
- Division of Adolescent Medicine, Cohen Children's Medical Center, Northwell Health, 410 Lakeville Road, Suite 108, New Hyde Park, New York, 11042, United States; Donald and Barbara Zucker, School of Medicine at Hofstra/Northwell, Hempstead, New York, United States.
| | - Martin Fisher
- Division of Adolescent Medicine, Cohen Children's Medical Center, Northwell Health, 410 Lakeville Road, Suite 108, New Hyde Park, New York, 11042, United States; Donald and Barbara Zucker, School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
| |
Collapse
|
8
|
Yu H, Chhabra KH, Thompson Z, Jones GL, Kiran S, Shangguan G, Low MJ. Hypothalamic POMC deficiency increases circulating adiponectin despite obesity. Mol Metab 2020; 35:100957. [PMID: 32244188 PMCID: PMC7082555 DOI: 10.1016/j.molmet.2020.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Objective The steep rise in the prevalence of obesity and its related metabolic syndrome have become a major worldwide health concerns. Melanocortin peptides from hypothalamic arcuate nucleus (Arc) POMC neurons induce satiety to limit food intake. Consequently, Arc Pomc-deficient mice (ArcPomc−/−) exhibit hyperphagia and obesity. Previous studies demonstrated that the circulating levels of adiponectin, a protein abundantly produced and secreted by fat cells, negatively correlate with obesity in both rodents and humans. However, we found that ArcPomc−/− mice have increased circulating adiponectin levels despite obesity. Therefore, we investigated the physiological function and underlying mechanisms of hypothalamic POMC in regulating systemic adiponectin levels. Methods Circulating adiponectin was measured in obese ArcPomc−/− mice at ages 4–52 weeks. To determine whether increased adiponectin was a direct result of ArcPomc deficiency or a secondary effect of obesity, we examined plasma adiponectin levels in calorie-restricted mice with or without a history of obesity and in ArcPomc−/− mice before and after genetic restoration of Pomc expression in the hypothalamus. To delineate the mechanisms causing increased adiponectin in ArcPomc−/− mice, we determined sympathetic outflow to adipose tissue by assessing epinephrine, norepinephrine, and tyrosine hydroxylase protein levels and measured the circulating adiponectin in the mice after acute norepinephrine or propranolol treatments. In addition, adiponectin mRNA and protein levels were measured in discrete adipose tissue depots to ascertain which fat depots contributed the most to the high level of adiponectin in the ArcPomc−/− mice. Finally, we generated compound Adiopoq−/−:ArcPomc−/− mice and compared their growth, body composition, and glucose homeostasis to the individual knockout mouse strains and their wild-type controls. Results Obese ArcPomc−/− female mice had unexpectedly increased plasma adiponectin compared to wild-type siblings at all ages greater than 8 weeks. Despite chronic calorie restriction to achieve normal body weights, higher adiponectin levels persisted in the ArcPomc−/− female mice. Genetic restoration of Pomc expression in the Arc or acute treatment of the ArcPomc−/− female mice with melanotan II reduced adiponectin levels to control littermate values. The ArcPomc−/− mice had defective thermogenesis and decreased epinephrine, norepinephrine, and tyrosine hydroxylase protein levels in their fat pads, indicating reduced sympathetic outflow to adipose tissue. Injections of norepinephrine into the ArcPomc−/− female mice reduced circulating adiponectin levels, whereas injections of propranolol significantly increased adiponectin levels. Despite the beneficial effects of adiponectin on metabolism, the deletion of adiponectin alleles in the ArcPomc−/− mice did not exacerbate their metabolic abnormalities. Conclusion In summary, to the best of our knowledge, this study provides the first evidence that despite obesity, the ArcPomc−/− mouse model has high circulating adiponectin levels, which demonstrated that increased fat mass is not necessarily correlated with hypoadiponectinemia. Our investigation also found a previously unknown physiological pathway connecting POMC neurons via the sympathetic nervous system to circulating adiponectin, thereby shedding light on the biological regulation of adiponectin. Obese female hypothalamic-specific Pomc-deficient mice have unexpectedly elevated circulating adiponectin. Restoration of Pomc expression in the hypothalamus reduces plasma adiponectin. Low sympathetic output to subcutaneous fat depots in the Pomc-deficient mice contributes to high adiponectin levels. Deletion of adiponectin in hypothalamic-specific Pomc-deficient mice does not alter their metabolic phenotype.
Collapse
Affiliation(s)
- Hui Yu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| | - Kavaljit H Chhabra
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Zoe Thompson
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Graham L Jones
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Sylee Kiran
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA; School of Literature, Science, and Arts, University of Michigan, Ann Arbor, MI, USA
| | - Gary Shangguan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Koerperich ZM, Ericson MD, Freeman KT, Speth RC, Pogozheva ID, Mosberg HI, Haskell-Luevano C. Incorporation of Agouti-Related Protein (AgRP) Human Single Nucleotide Polymorphisms (SNPs) in the AgRP-Derived Macrocyclic Scaffold c[Pro-Arg-Phe-Phe-Asn-Ala-Phe-dPro] Decreases Melanocortin-4 Receptor Antagonist Potency and Results in the Discovery of Melanocortin-5 Receptor Antagonists. J Med Chem 2020; 63:2194-2208. [PMID: 31845801 DOI: 10.1021/acs.jmedchem.9b00860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While the melanocortin receptors (MCRs) are known to be involved in numerous biological pathways, the potential roles of the MC5R have not been clearly elucidated in humans. Agouti-related protein (AgRP), an MC3R/MC4R antagonist and MC4R inverse agonist, contains an exposed β-hairpin loop composed of six residues (Arg-Phe-Phe-Asn-Ala-Phe) that is imperative for binding and function. Within this active loop of AgRP, four human missense polymorphisms were deposited into the NIH Variation Viewer database. These polymorphisms, Arg111Cys, Arg111His, Phe112Tyr, and Ala115Val (AgRP full-length numbering), were incorporated into the peptide macrocycles c[Pro1-Arg2-Phe3-Phe4-Xaa5-Ala6-Phe7-dPro8], where Xaa was Dap5 or Asn5, to explore the functional effects of these naturally occurring substitutions in a simplified AgRP scaffold. All peptides lowered potency at least 10-fold in a cAMP accumulation assay compared to the parent sequences at the MC4Rs. Compounds MDE 6-82-3c, ZMK 2-82, MDE 6-82-1c, ZMK 2-85, and ZMK 2-112 are also the first AgRP-based chemotypes that antagonize the MC5R.
Collapse
Affiliation(s)
- Zoe M Koerperich
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mark D Ericson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T Freeman
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert C Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida 33328-2018, United States.,College of Medicine, Georgetown University, Washington, D.C. 20057, United States
| | - Irina D Pogozheva
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Henry I Mosberg
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Hepsen S, Cakal E, Karakose M, Eyerci N, Saat H, Beysel S, Oztekin S, Pinarli F, Parlak M. Melanocortin 3 receptor gene polymorphism is associated with polycystic ovary syndrome in Turkish population. Gynecol Endocrinol 2019; 35:685-690. [PMID: 30784330 DOI: 10.1080/09513590.2019.1576614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a frequent complex disorder with an ill-defined etiology. Genetic factors seem rather effective at the occurrence of the disease, however, the evidence of established various studies results are unsatisfied. We aimed to make a contribution to the genetic baseline of the disease by investigating melanocortin 3 receptor gene polymorphism in affected patients. 101 PCOS patients and 162 age-matched healthy volunteered control subjects recruited to the study. PCOS patients classified according to their BMI class and insulin resistance situation. Anthropometric measurements, physical examination results, laboratory findings, and hormone levels were recorded for each participant and analysis of two SNPs on the MC3R gene; rs3746619 and rs3827103 were performed. Although no significant difference was observed in rs3827103 polymorphism between PCOS patients and controls; rs3746619 polymorphism was determined associated with PCOS in the heritage of dominant (AA + AC) and co-dominant (AA) genotypes. Two polymorphisms did not found related to obesity and insulin resistance in PCOS subgroups analysis. MC3R gene rs 3746619 polymorphism was found associated with PCOS in the Turkish population and may make a contribution to the genetic baseline of the disease.
Collapse
Affiliation(s)
- Sema Hepsen
- a Department of Endocrinology and Metabolism , University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital , Ankara , Turkey
| | - Erman Cakal
- a Department of Endocrinology and Metabolism , University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital , Ankara , Turkey
| | - Melia Karakose
- b Department of Endocrinology and Metabolism , Necmettin Erbakan University, Meram Medicine Faculty , Konya , Turkey
| | - Nilnur Eyerci
- c Department of Medical Biology , Kafkas University , Kars , Turkey
| | - Hanife Saat
- d Department of Medical Genetic , University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital , Ankara , Turkey
| | - Selvihan Beysel
- e Department of Endocrinology and Metabolism , Eskisehir State Hospital , Eskisehir , Turkey
| | - Sanem Oztekin
- f Department of Internal Medicine , University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital , Ankara , Turkey
| | - Ferda Pinarli
- g Department of Medical Genetic , University of Health Sciences Diskapi Yildirim Beyazit Training and Research Hospital , Ankara , Turkey
| | - Mesut Parlak
- h Department of Pharmacology , Sivas Numune Hospital , Sivas , Turkey
| |
Collapse
|
11
|
Zhang HJ, Xie HJ, Wang W, Wang ZQ, Tao YX. Pharmacology of the giant panda (Ailuropoda melanoleuca) melanocortin-3 receptor. Gen Comp Endocrinol 2019; 277:73-81. [PMID: 30391243 DOI: 10.1016/j.ygcen.2018.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/13/2018] [Accepted: 10/30/2018] [Indexed: 11/22/2022]
Abstract
The melanocortin-3 receptor (MC3R) is a member of the G protein-coupled receptor superfamily that plays a critical role in controlling energy balance and metabolism. Although pharmacological characterization of MC3R has been reported previously in several other species, there is no report on the MC3R from giant panda (Ailuropoda melanoleuca). This ancient species is known as a 'living fossil' and is among the most endangered animals in the world. Giant panda survive on a specialized diet of bamboo despite possessing a typical carnivorous digestive system. We report herein the molecular cloning and pharmacological characterization of amMC3R. Homology and phylogenetic analysis showed that amMC3R was highly homologous (>85%) to several other mammalian MC3Rs. Using human MC3R (hMC3R) as a control, the binding of five agonists, [Nle4, D-Phe7]-α-melanocyte stimulating hormone (NDP-MSH), α-, β-, γ-, and D-Trp8-γ-MSH, was investigated, as well as Gs-cAMP and pERK1/2 signaling. The results showed that amMC3R bound NDP- and D-Trp8-γ-MSH with the highest affinity, followed by α-, β-, and γ-MSH, with the same rank order as hMC3R. When stimulated with agonists, amMC3R displayed increased intracellular cAMP and activation of pERK1/2. These data suggest that the cloned amMC3R was a functional receptor. The availability of amMC3R and knowledge of its pharmacological functions will assist further investigation of its role in controlling energy balance and metabolism.
Collapse
Affiliation(s)
- Hai-Jie Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Hua-Jie Xie
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Wei Wang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Zhi-Qiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China.
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
12
|
Koya C, Yu T, Strong C, Tsai MC. Association between Two Common Missense Substitutions, Thr6Lys and Val81Ile, in MC3R Gene and Childhood Obesity: A Meta-Analysis. Child Obes 2019; 14:218-226. [PMID: 29688747 DOI: 10.1089/chi.2017.0265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Two common missense variants in the melanocortin-3 receptor (MC3R) gene, Thr6Lys (T6K) and Val81Ile (V81I), are presumably correlated with pediatric obesity. This meta-analysis aimed to examine and synthesize evidence on the association between these two common MC3R polymorphisms and the development of childhood obesity. METHODS A combination of words relevant to the research question was searched on PubMed, EMBASE, Scopus, and the Cochrane database. Results were restricted to human studies, specifically child and adolescent populations. Articles were excluded based on accessibility of full online texts and availability of pertinent data. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using a random effects model to determine the association of the polymorphisms with obesity. RESULTS Searches on the databases using the keywords identified 65 potentially relevant reports. Among them, 32 studies were excluded due to irrelevance, and 28 studies excluded due to lack of access, insufficient data, and investigation of other variants. A final set of five studies included in this meta-analysis found that the risk of overweight/obesity increased by 46.1% per K allele and 21.7% per I allele. Only homozygous genotypes for T6K were associated with a 3.10-fold (95% CI: 1.29-7.43) increased risk of overweight/obesity in children. Data were insufficient to examine if homozygosity for both rare alleles further increases risk. CONCLUSIONS Our results supported a recessive inheritance model for MC3R gene as a potential cause of childhood obesity. High clinical heterogeneity existed among studies and thus requires more research of larger participation for future integration of data.
Collapse
Affiliation(s)
- Charita Koya
- 1 Faculty of Health Sciences, University of Ottawa , Ottawa, Ontario, Canada
| | - Tsung Yu
- 2 Department of Public Health, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Carol Strong
- 2 Department of Public Health, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Meng-Che Tsai
- 3 Division of Genetics, Endocrinology, and Metabolism, Department of Pediatrics, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University , Tainan, Taiwan
| |
Collapse
|
13
|
Brommage R, Powell DR, Vogel P. Predicting human disease mutations and identifying drug targets from mouse gene knockout phenotyping campaigns. Dis Model Mech 2019; 12:dmm038224. [PMID: 31064765 PMCID: PMC6550044 DOI: 10.1242/dmm.038224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Two large-scale mouse gene knockout phenotyping campaigns have provided extensive data on the functions of thousands of mammalian genes. The ongoing International Mouse Phenotyping Consortium (IMPC), with the goal of examining all ∼20,000 mouse genes, has examined 5115 genes since 2011, and phenotypic data from several analyses are available on the IMPC website (www.mousephenotype.org). Mutant mice having at least one human genetic disease-associated phenotype are available for 185 IMPC genes. Lexicon Pharmaceuticals' Genome5000™ campaign performed similar analyses between 2000 and the end of 2008 focusing on the druggable genome, including enzymes, receptors, transporters, channels and secreted proteins. Mutants (4654 genes, with 3762 viable adult homozygous lines) with therapeutically interesting phenotypes were studied extensively. Importantly, phenotypes for 29 Lexicon mouse gene knockouts were published prior to observations of similar phenotypes resulting from homologous mutations in human genetic disorders. Knockout mouse phenotypes for an additional 30 genes mimicked previously published human genetic disorders. Several of these models have helped develop effective treatments for human diseases. For example, studying Tph1 knockout mice (lacking peripheral serotonin) aided the development of telotristat ethyl, an approved treatment for carcinoid syndrome. Sglt1 (also known as Slc5a1) and Sglt2 (also known as Slc5a2) knockout mice were employed to develop sotagliflozin, a dual SGLT1/SGLT2 inhibitor having success in clinical trials for diabetes. Clinical trials evaluating inhibitors of AAK1 (neuropathic pain) and SGLT1 (diabetes) are underway. The research community can take advantage of these unbiased analyses of gene function in mice, including the minimally studied 'ignorome' genes.
Collapse
Affiliation(s)
- Robert Brommage
- Department of Metabolism Research, Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, TX 77381, USA
| | - David R Powell
- Department of Metabolism Research, Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, TX 77381, USA
| | - Peter Vogel
- St. Jude Children's Research Hospital, Pathology, MS 250, Room C5036A, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
14
|
Demidowich AP, Parikh VJ, Dedhia N, Branham RE, Madi SA, Marwitz SE, Roberson RB, Uhlman AJ, Levi NJ, Mi SJ, Jun JY, Broadney MM, Brady SM, Yanovski JA. Associations of the melanocortin 3 receptor C17A + G241A haplotype with body composition and inflammation in African-American adults. Ann Hum Genet 2019; 83:355-360. [PMID: 30937899 DOI: 10.1111/ahg.12315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND The MC3R haplotype C17A + G241A, which encodes a partially inactivated receptor, has high prevalence in individuals of predominately African ancestry. In pediatric cohorts, homozygosity for this common variant has been associated with obesity, reduced lean mass, and greater fasting insulin. However, metabolic and body composition measures have not been well studied in adults with this haplotype. METHODS A convenience sample of 237 healthy African-American adult volunteers was studied. TaqMan assays were used to genotype MC3R variants. Labs were drawn in the morning in the fasted state. Body composition data was obtained via dual-energy X-ray absorptiometry. An analysis of covariance was used to examine the associations of genotype with metabolic and body composition measures controlling for age and sex. RESULTS Individuals homozygous for the MC3R C17A + G241A haplotype had significantly greater body mass index, fat mass, fat mass percentage, and C-reactive protein, with reduced lean mass percentage as compared to heterozygous and wild-type participants (all ps < 0.05); fasting insulin was marginally nonsignificant between groups (p = 0.053). After adjusting for fat mass, laboratory differences no longer remained significant. CONCLUSIONS Homozygosity for MC3R C17A + G241A is associated with increased adiposity in African-American adults. Further studies are needed to elucidate the mechanisms behind these associations.
Collapse
Affiliation(s)
- Andrew P Demidowich
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, 20892.,Office of the Clinical Director, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, 20892
| | - Viraj J Parikh
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, 20892
| | - Nicket Dedhia
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, 20892
| | - Rachel E Branham
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, 20892
| | - Samar A Madi
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, 20892
| | - Shannon E Marwitz
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, 20892
| | - Robin B Roberson
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, 20892
| | - Andrew J Uhlman
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, 20892
| | - Noah J Levi
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, 20892
| | - Sarah J Mi
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, 20892
| | - Joo Yun Jun
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, 20892
| | - Miranda M Broadney
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, 20892
| | - Sheila M Brady
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, 20892
| | - Jack A Yanovski
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, 20892
| |
Collapse
|
15
|
Pei H, Patterson CM, Sutton AK, Burnett KH, Myers MG, Olson DP. Lateral Hypothalamic Mc3R-Expressing Neurons Modulate Locomotor Activity, Energy Expenditure, and Adiposity in Male Mice. Endocrinology 2019; 160:343-358. [PMID: 30541071 PMCID: PMC6937456 DOI: 10.1210/en.2018-00747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023]
Abstract
The central melanocortin system plays a crucial role in the control of energy balance. Although the decreased energy expenditure and increased adiposity of melanocortin-3 receptor (Mc3R)-null mice suggest the importance of Mc3R-regulated neurons in energy homeostasis, the roles for specific subsets of Mc3R neurons in energy balance have yet to be determined. Because the lateral hypothalamic area (LHA) contributes to the control of energy expenditure and feeding, we generated Mc3rcre mice to determine the roles of LHA Mc3R (Mc3RLHA) neurons in energy homeostasis. We found that Mc3RLHA neurons overlap extensively with LHA neuron markers that contribute to the control of energy balance (neurotensin, galanin, and leptin receptor) and project to brain areas involved in the control of feeding, locomotion, and energy expenditure, consistent with potential roles for Mc3RLHA neurons in these processes. Indeed, selective chemogenetic activation of Mc3RLHA neurons increased locomotor activity and augmented refeeding after a fast. Although the ablation of Mc3RLHA neurons did not alter food intake, mice lacking Mc3RLHA neurons displayed decreased energy expenditure and locomotor activity, along with increased body mass and adiposity. Thus, Mc3R neurons lie within LHA neurocircuitry that modulates locomotor activity and energy expenditure and contribute to energy balance control.
Collapse
Affiliation(s)
- Hongjuan Pei
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan
| | | | - Amy K Sutton
- Molecular and Integrative Physiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Korri H Burnett
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan
| | - Martin G Myers
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan
- Molecular and Integrative Physiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - David P Olson
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan
- Molecular and Integrative Physiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
- Correspondence: David P. Olson, MD, PhD, University of Michigan, 1000 Wall Street, Brehm Tower 6329, Ann Arbor, Michigan 48105. E-mail:
| |
Collapse
|
16
|
Tam V, Turcotte M, Meyre D. Established and emerging strategies to crack the genetic code of obesity. Obes Rev 2019; 20:212-240. [PMID: 30353704 DOI: 10.1111/obr.12770] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
Tremendous progress has been made in the genetic elucidation of obesity over the past two decades, driven largely by technological, methodological and organizational innovations. Current strategies for identifying obesity-predisposing loci/genes, including cytogenetics, linkage analysis, homozygosity mapping, admixture mapping, candidate gene studies, genome-wide association studies, custom genotyping arrays, whole-exome sequencing and targeted exome sequencing, have achieved differing levels of success, and the identified loci in aggregate explain only a modest fraction of the estimated heritability of obesity. This review outlines the successes and limitations of these approaches and proposes novel strategies, including the use of exceptionally large sample sizes, the study of diverse ethnic groups and deep phenotypes and the application of innovative methods and study designs, to identify the remaining obesity-predisposing genes. The use of both established and emerging strategies has the potential to crack the genetic code of obesity in the not-too-distant future. The resulting knowledge is likely to yield improvements in obesity prediction, prevention and care.
Collapse
Affiliation(s)
- V Tam
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - M Turcotte
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - D Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
17
|
Girardet C, Marks DL, Butler AA. Melanocortin-3 Receptors Expressed on Agouti-Related Peptide Neurons Inhibit Feeding Behavior in Female Mice. Obesity (Silver Spring) 2018; 26:1849-1855. [PMID: 30426710 PMCID: PMC7294842 DOI: 10.1002/oby.22306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Activation of hypothalamic agouti-related peptide expressing (AgRP)+ve neurons during energy deficit is a negative valence signal, rapidly activating food-seeking behaviors. This study examined the roles of melanocortin-3 receptors (MC3Rs) coexpressed in a subpopulation of AgRP+ve neurons. METHODS AgRP-MC3R mice expressing MC3Rs selectively in AgRP+ve neurons were generated by crossing AgRP-IRES-Cre mice with LoxTBMc3r mice containing a "loxP-STOP-loxP" sequence in the 5' untranslated region. Body weight, body composition, and feeding behavior were assessed during ad libitum and time-restricted feeding conditions. RESULTS In females, food intake of AgRP-IRES-Cre+ve (n = 7) or AgRP-IRES-Cre-ve (n = 9) mice was not significantly different; these mice were therefore pooled to form the "control" group. Female AgRP-MC3R mice exhibited lower food intake (25.4 ± 2.4 kJ/12 h; n = 6) compared with controls (35.3 ± 1.8 kJ/12 h; n = 16) and LoxTBMc3r mice (32.1 ± 2.1 kJ/12 h; n = 9) in the active phase during the dark period. Food intake during the rest phase (lights on) when mice consume less food (9-10 kJ) was normal between genotypes. Body weight and composition of AgRP-MC3R and LoxTBMc3r mice were similar, suggesting compensatory mechanisms for reduced calorie intake. Remarkably, AgRP-MC3R mice continued to consume less food during refeeding after fasting and time-restricted feeding. CONCLUSIONS MC3Rs expressed on AgRP+ve neurons appear to exert a strong inhibitory signal on hypothalamic networks governing feeding behavior.
Collapse
Affiliation(s)
- Clemence Girardet
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Daniel L. Marks
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Mail Code L481 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Andrew A. Butler
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
18
|
Eerola K, Virtanen S, Vähätalo L, Ailanen L, Cai M, Hruby V, Savontaus M, Savontaus E. Hypothalamic γ-melanocyte stimulating hormone gene delivery reduces fat mass in male mice. J Endocrinol 2018; 239:19–31. [PMID: 30307151 DOI: 10.1530/joe-18-0009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
γ-Melanocyte stimulating hormone (γ-MSH) is an endogenous agonist of the melanocortin 3-receptor (MC3R). Genetic disruption of MC3Rs increases adiposity and blunts responses to fasting, suggesting that increased MC3R signaling could be physiologically beneficial in the long term. Interestingly, several studies have concluded that activation of MC3Rs is orexigenic in the short term. Therefore, we aimed to examine the short- and long-term effects of γ-MSH in the hypothalamic arcuate nucleus (ARC) on energy homeostasis and hypothesized that the effect of MC3R agonism is dependent on the state of energy balance and nutrition. Lentiviral gene delivery was used to induce a continuous expression of γ-Msh only in the ARC of male C57Bl/6N mice. Parameters of body energy homeostasis were monitored as food was changed from chow (6 weeks) to Western diet (13 weeks) and back to chow (7 weeks). The γ-MSH treatment decreased the fat mass to lean mass ratio on chow, but the effect was attenuated on Western diet. After the switch back to chow, an enhanced loss in weight (−15% vs −6%) and fat mass (−37% vs −12%) and reduced cumulative food intake were observed in γ-MSH-treated animals. Fasting-induced feeding was increased on chow diet only; however, voluntary running wheel activity on Western diet was increased. The γ-MSH treatment also modulated the expression of key neuropeptides in the ARC favoring weight loss. We have shown that a chronic treatment intended to target ARC MC3Rs modulates energy balance in nutritional state-dependent manner. Enhancement of diet-induced weight loss could be beneficial in treatment of obesity.
Collapse
Affiliation(s)
- K Eerola
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - S Virtanen
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - L Vähätalo
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - L Ailanen
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - M Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - V Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - M Savontaus
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - E Savontaus
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| |
Collapse
|
19
|
Novoselova TV, Chan LF, Clark AJL. Pathophysiology of melanocortin receptors and their accessory proteins. Best Pract Res Clin Endocrinol Metab 2018; 32:93-106. [PMID: 29678289 DOI: 10.1016/j.beem.2018.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The melanocortin receptors (MCRs) and their accessory proteins (MRAPs) are involved in regulation of a diverse range of endocrine pathways. Genetic variants of these components result in phenotypic variation and disease. The MC1R is expressed in skin and variants in the MC1R gene are associated with ginger hair color. The MC2R mediates the action of ACTH in the adrenal gland to stimulate glucocorticoid production and MC2R mutations result in familial glucocorticoid deficiency (FGD). MC3R and MC4R are involved in metabolic regulation and their gene variants are associated with severe pediatric obesity, whereas the function of MC5R remains to be fully elucidated. MRAPs have been shown to modulate the function of MCRs and genetic variants in MRAPs are associated with diseases including FGD type 2 and potentially early onset obesity. This review provides an insight into recent advances in MCRs and MRAPs physiology, focusing on the disorders associated with their dysfunction.
Collapse
Affiliation(s)
- T V Novoselova
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, Chartehouse Square, London, EC1M 6BQ, United Kingdom.
| | - L F Chan
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, Chartehouse Square, London, EC1M 6BQ, United Kingdom
| | - A J L Clark
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, Chartehouse Square, London, EC1M 6BQ, United Kingdom
| |
Collapse
|
20
|
Stryjecki C, Alyass A, Meyre D. Ethnic and population differences in the genetic predisposition to human obesity. Obes Rev 2018; 19:62-80. [PMID: 29024387 DOI: 10.1111/obr.12604] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/17/2017] [Accepted: 08/02/2017] [Indexed: 12/22/2022]
Abstract
Obesity rates have escalated to the point of a global pandemic with varying prevalence across ethnic groups. These differences are partially explained by lifestyle factors in addition to genetic predisposition to obesity. This review provides a comprehensive examination of the ethnic differences in the genetic architecture of obesity. Using examples from evolution, heritability, admixture, monogenic and polygenic studies of obesity, we provide explanations for ethnic differences in the prevalence of obesity. The debate over definitions of race and ethnicity, the advantages and limitations of multi-ethnic studies and future directions of research are also discussed. Multi-ethnic studies have great potential to provide a better understanding of ethnic differences in the prevalence of obesity that may result in more targeted and personalized obesity treatments.
Collapse
Affiliation(s)
- C Stryjecki
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - A Alyass
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - D Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
21
|
Page LC, Shi M, Freemark M. Early-Onset Obesity Caused by Monogenic Disorders. CURRENT PEDIATRICS REPORTS 2017. [DOI: 10.1007/s40124-017-0132-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Yang LK, Tao YX. Biased signaling at neural melanocortin receptors in regulation of energy homeostasis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2486-2495. [PMID: 28433713 DOI: 10.1016/j.bbadis.2017.04.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022]
Abstract
The global prevalence of obesity highlights the importance of understanding on regulation of energy homeostasis. The central melanocortin system is an important intersection connecting the neural pathways controlling satiety and energy expenditure to regulate energy homeostasis by sensing and integrating the signals of external stimuli. In this system, neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy homeostasis. Recently, multiple intracellular signaling pathways and biased signaling at neural MCRs have been discovered, providing new insights into neural MCR signaling. This review attempts to summarize biased signaling including biased receptor mutants (both naturally occurring and lab-generated) and biased ligands at neural MCRs, and to provide a better understanding of obesity pathogenesis and new therapeutic implications for obesity treatment.
Collapse
Affiliation(s)
- Li-Kun Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
23
|
Demidowich AP, Jun JY, Yanovski JA. Polymorphisms and mutations in the melanocortin-3 receptor and their relation to human obesity. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2468-2476. [PMID: 28363697 DOI: 10.1016/j.bbadis.2017.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/18/2022]
Abstract
Inactivating mutations in the melanocortin 3 receptor (Mc3r) have been described as causing obesity in mice, but the physiologic effects of MC3R mutations in humans have been less clear. Here we review the MC3R polymorphisms and mutations identified in humans, and the in vitro, murine, and human cohort studies examining their putative effects. Some, but not all, studies suggest that the common human MC3R variant T6K+V81I, as well as several other rare, function-altering mutations, are associated with greater adiposity and hyperleptinemia with altered energy partitioning. In vitro, the T6K+V81I variant appears to decrease MC3R expression and therefore cAMP generation in response to ligand binding. Knockin mouse studies confirm that the T6K+V81I variant increases feeding efficiency and the avidity with which adipocytes derived from bone or adipose tissue stem cells store triglycerides. Other MC3R mutations occur too infrequently in the human population to make definitive conclusions regarding their clinical effects. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
Affiliation(s)
- Andrew P Demidowich
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Joo Yun Jun
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jack A Yanovski
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
24
|
Butler AA, Girardet C, Mavrikaki M, Trevaskis JL, Macarthur H, Marks DL, Farr SA. A Life without Hunger: The Ups (and Downs) to Modulating Melanocortin-3 Receptor Signaling. Front Neurosci 2017; 11:128. [PMID: 28360832 PMCID: PMC5352694 DOI: 10.3389/fnins.2017.00128] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/01/2017] [Indexed: 11/13/2022] Open
Abstract
Melanocortin neurons conserve body mass in hyper- or hypo-caloric conditions by conveying signals from nutrient sensors into areas of the brain governing appetite and metabolism. In mice, melanocortin-3 receptor (MC3R) deletion alters nutrient partitioning independently of hyperphagia, promoting accumulation of fat over muscle mass. Enhanced rhythms in insulin and insulin-responsive metabolic genes during hypocaloric feeding suggest partial insulin resistance and enhanced lipogenesis. However, exactly where and how MC3Rs affect metabolic control to alter nutrient partitioning is not known. The behavioral phenotypes exhibited by MC3R-deficient mice suggest a contextual role in appetite control. The impact of MC3R-deficiency on feeding behavior when food is freely available is minor. However, homeostatic responses to hypocaloric conditioning involving increased expression of appetite-stimulating (orexigenic) neuropeptides, binge-feeding, food anticipatory activity (FAA), entrainment to nutrient availability and enhanced feeding-related motivational responses are compromised with MC3R-deficiency. Rescuing Mc3r transcription in hypothalamic and limbic neurons improves appetitive responses during hypocaloric conditioning while having minor effects on nutrient partitioning, suggesting orexigenic functions. Rescuing hypothalamic MC3Rs also restores responses of fasting-responsive hypothalamic orexigenic neurons in hypocaloric conditions, suggesting actions that sensitize fasting-responsive neurons to signals from nutrient sensors. MC3R signaling in ventromedial hypothalamic SF1(+ve) neurons improves metabolic control, but does not restore appetitive responses or nutrient partitioning. In summary, desensitization of fasting-responsive orexigenic neurons may underlie attenuated appetitive responses of MC3R-deficient mice in hypocaloric situations. Further studies are needed to identify the specific location(s) of MC3Rs controlling appetitive responses and partitioning of nutrients between fat and lean tissues.
Collapse
Affiliation(s)
- Andrew A Butler
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis, MO, USA
| | - Clemence Girardet
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis, MO, USA
| | - Maria Mavrikaki
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis, MO, USA
| | - James L Trevaskis
- In vivo Pharmacology, Cardiovascular and Metabolic Disease, Medimmune Gaithersburg, MD, USA
| | - Heather Macarthur
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis, MO, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health and Science University Portland, OR, USA
| | - Susan A Farr
- Department of Internal Medicine, Division of Geriatrics, Saint Louis University School of MedicineSt. Louis, MO, USA; VA Medical CenterSt. Louis, MO, USA
| |
Collapse
|
25
|
Singh RK, Kumar P, Mahalingam K. Molecular genetics of human obesity: A comprehensive review. C R Biol 2017; 340:87-108. [PMID: 28089486 DOI: 10.1016/j.crvi.2016.11.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/03/2016] [Accepted: 11/10/2016] [Indexed: 12/25/2022]
Abstract
Obesity and its related health complications is a major problem worldwide. Hypothalamus and their signalling molecules play a critical role in the intervening and coordination with energy balance and homeostasis. Genetic factors play a crucial role in determining an individual's predisposition to the weight gain and being obese. In the past few years, several genetic variants were identified as monogenic forms of human obesity having success over common polygenic forms. In the context of molecular genetics, genome-wide association studies (GWAS) approach and their findings signified a number of genetic variants predisposing to obesity. However, the last couple of years, it has also been noticed that alterations in the environmental and epigenetic factors are one of the key causes of obesity. Hence, this review might be helpful in the current scenario of molecular genetics of human obesity, obesity-related health complications (ORHC), and energy homeostasis. Future work based on the clinical discoveries may play a role in the molecular dissection of genetic approaches to find more obesity-susceptible gene loci.
Collapse
Affiliation(s)
- Rajan Kumar Singh
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, 632014 Vellore, India
| | - Permendra Kumar
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, 632014 Vellore, India
| | - Kulandaivelu Mahalingam
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, 632014 Vellore, India.
| |
Collapse
|
26
|
Aris IM, Tint MT, Teh AL, Holbrook JD, Quah PL, Chong MF, Lin X, Soh SE, Saw S, Kwek K, Godfrey KM, Gluckman PD, Chong YS, Lek N, Yap F, Lee YS. MC3R gene polymorphisms are associated with early childhood adiposity gain and infant appetite in an Asian population. Pediatr Obes 2016; 11:450-458. [PMID: 26663875 PMCID: PMC5111755 DOI: 10.1111/ijpo.12086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/17/2015] [Accepted: 10/24/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Polymorphic variants within human melanocortin-3 receptor gene (MC3R) gene have been associated with obesity. However, its influence on infancy and early childhood adiposity has not been reported before. OBJECTIVES We assessed associations between genotype at polymorphic sites within MC3R with early childhood adiposity and interaction with early childhood appetitive traits. METHODS We studied 1090 singletons in an Asian mother-offspring cohort genotyped for MC3R and in a subgroup (n = 422) who had completed Child Eating Behaviour Questionnaires (CEBQ) at 12 months. Children were followed from birth to 48 months, and up to 10 measurements of body mass index and five measures of triceps and subscapular skin-folds were obtained. RESULTS Independent of potential confounders, each additional MC3R minor allele copy was associated with greater body mass index standard deviation score [B{95% confidence interval}: 0.004 units/month {0.001,0.007}; p = 0.007], triceps [0.009 mm/month {0.001,0.02}; p = 0.021] and subscapular skin-fold [0.008 mm/month {0.002,0.01}; p = 0.011] gain velocity in the first 48 months. Each additional MC3R minor allele copy was also associated with increased odds of overweight [odds ratio {95% confidence interval}: 1.48{1.17-1.88}] and obesity [1.58{1.10-2.28}] in the first 48 months. Every additional copy of MC3R minor allele was positively associated with 'slowness-in-eating' appetitive trait [0.24{0.06,0.39}, p = 0.006]; however, the relationship between 'slowness-in-eating' with adiposity gain was not statistically significant. CONCLUSIONS Our findings support the role of MC3R genetic variants in adiposity gain during early childhood.
Collapse
Affiliation(s)
- I. M. Aris
- Singapore Institute for Clinical SciencesAgency for Science, Technology and ResearchSingapore
- Department of Paediatrics, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - M. T. Tint
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - A. L. Teh
- Singapore Institute for Clinical SciencesAgency for Science, Technology and ResearchSingapore
| | - J. D. Holbrook
- Singapore Institute for Clinical SciencesAgency for Science, Technology and ResearchSingapore
| | - P. L. Quah
- Singapore Institute for Clinical SciencesAgency for Science, Technology and ResearchSingapore
| | - M. F.‐F. Chong
- Singapore Institute for Clinical SciencesAgency for Science, Technology and ResearchSingapore
- Department of Paediatrics, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - X. Lin
- Singapore Institute for Clinical SciencesAgency for Science, Technology and ResearchSingapore
| | - S. E. Soh
- Singapore Institute for Clinical SciencesAgency for Science, Technology and ResearchSingapore
- Department of Paediatrics, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - S.‐M. Saw
- Saw Swee Hock School of Public HealthNational University of SingaporeSingapore
| | - K. Kwek
- Department of Maternal Fetal MedicineKK Women's and Children's HospitalSingapore
| | - K. M. Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - P. D. Gluckman
- Department of Paediatrics, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Liggins InstituteUniversity of AucklandAucklandNew Zealand
| | - Y. S. Chong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - N. Lek
- Department of PaediatricsKK Women's and Children's HospitalSingapore
| | - F. Yap
- Department of PaediatricsKK Women's and Children's HospitalSingapore
| | - Y. S. Lee
- Singapore Institute for Clinical SciencesAgency for Science, Technology and ResearchSingapore
- Department of Paediatrics, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Khoo Teck Puat‐National University Children's Medical InstituteNational University Health SystemSingapore
| |
Collapse
|
27
|
You P, Hu H, Chen Y, Zhao Y, Yang Y, Wang T, Xing R, Shao Y, Zhang W, Li D, Chen H, Liu M. Effects of Melanocortin 3 and 4 Receptor Deficiency on Energy Homeostasis in Rats. Sci Rep 2016; 6:34938. [PMID: 27713523 PMCID: PMC5054679 DOI: 10.1038/srep34938] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/20/2016] [Indexed: 01/08/2023] Open
Abstract
Melanocortin-3 and 4 receptors (MC3R and MC4R) can regulate energy homeostasis, but their respective roles especially the functions of MC3R need more exploration. Here Mc3r and Mc4r single and double knockout (DKO) rats were generated using CRISPR-Cas9 system. Metabolic phenotypes were examined and data were compared systematically. Mc3r KO rats displayed hypophagia and decreased body weight, while Mc4r KO and DKO exhibited hyperphagia and increased body weight. All three mutants showed increased white adipose tissue mass and adipocyte size. Interestingly, although Mc3r KO did not show a significant elevation in lipids as seen in Mc4r KO, DKO displayed even higher lipid levels than Mc4r KO. DKO also showed more severe glucose intolerance and hyperglycaemia than Mc4r KO. These data demonstrated MC3R deficiency caused a reduction of food intake and body weight, whereas at the same time exhibited additive effects on top of MC4R deficiency on lipid and glucose metabolism. This is the first phenotypic analysis and systematic comparison of Mc3r KO, Mc4r KO and DKO rats on a homogenous genetic background. These mutant rats will be important in defining the complicated signalling pathways of MC3R and MC4R. Both Mc4r KO and DKO are good models for obesity and diabetes research.
Collapse
Affiliation(s)
- Panpan You
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China
| | - Handan Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China
| | - Yuting Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China
| | - Yongliang Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China
| | - Yiqing Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China
| | - Tongtong Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China
| | - Roumei Xing
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China
| | - Yanjiao Shao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China
| | - Wen Zhang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China
| | - Huaqing Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China.,Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
28
|
Yoshiuchi I. Evidence for natural selection at the melanocortin-3 receptor gene in European and African populations. Acta Diabetol 2016; 53:583-7. [PMID: 26909893 DOI: 10.1007/s00592-016-0846-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
AIMS Obesity is increasing steadily in worldwide prevalence and is known to cause serious health problems in association with type 2 diabetes mellitus (T2DM), including hypertension, stroke, and cardiovascular diseases. According to the thrifty gene hypothesis, the natural selection of obesity-related genes is important during feast and famine because they control body weight and fat levels. Past human adaptations to environmental changes in food supply, lifestyle, and geography may have influenced the selection of genes associated with the metabolism of glucose, lipids, and energy. The melanocortin-3 receptor gene (MC3R) is associated with obesity, with MC3R-deficient mice showing increased fat mass. MC3R variations are also linked with childhood obesity and insulin resistance. Here, we aimed to uncover evidence of selection at MC3R. METHODS We performed a three-step method to detect selection at MC3R using HapMap population data. We used Wright's F statistics as a measure of population differentiation, the long-range haplotype test to identify extended haplotypes, and the integrated haplotype score (iHS) to detect selection at MC3R. RESULTS We observed high population differentiation between European and African populations at two MC3R childhood obesity- and insulin resistance-associated single-nucleotide polymorphisms (rs3746619 and rs3827103) using Wright's F statistics. The iHS revealed evidence of natural selection at MC3R. CONCLUSIONS These findings provide evidence for natural selection at MC3R. Further investigation is warranted into adaptive evolution at T2DM- and obesity-associated genes.
Collapse
Affiliation(s)
- Issei Yoshiuchi
- Departments of Genetics, Diabetes Mellitus, and Medicine, Yoshiuchi Medical Diabetes Institute, 2-16-41 Kamakurayama, Kamakura City, Kanagawa, 248-0031, Japan.
| |
Collapse
|
29
|
A mouse model for a partially inactive obesity-associated human MC3R variant. Nat Commun 2016; 7:10522. [PMID: 26818770 PMCID: PMC4738366 DOI: 10.1038/ncomms10522] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/22/2015] [Indexed: 12/30/2022] Open
Abstract
We previously reported children homozygous for two MC3R sequence variants (C17A+G241A) have greater fat mass than controls. Here we show, using homozygous knock-in mouse models in which we replace murine Mc3r with wild-type human (MC3RhWT/hWT) and double-mutant (C17A+G241A) human (MC3RhDM/hDM) MC3R, that MC3RhDM/hDM have greater weight and fat mass, increased energy intake and feeding efficiency, but reduced length and fat-free mass compared with MC3RhWT/hWT. MC3RhDM/hDM mice do not have increased adipose tissue inflammatory cell infiltration or greater expression of inflammatory markers despite their greater fat mass. Serum adiponectin levels are increased in MC3RhDM/hDM mice and MC3RhDM/hDM human subjects. MC3RhDM/hDM bone- and adipose tissue-derived mesenchymal stem cells (MSCs) differentiate into adipocytes that accumulate more triglyceride than MC3RhWT/hWT MSCs. MC3RhDM/hDM impacts nutrient partitioning to generate increased adipose tissue that appears metabolically healthy. These data confirm the importance of MC3R signalling in human metabolism and suggest a previously-unrecognized role for the MC3R in adipose tissue development. The melanocortin receptor, MC3R, regulates organismal energy homeostasis. Here, Lee et al. create knock-in mice with the a mutated version of the human MC3R receptor found in obese children, and show these mice have more fat and smaller bone, yet are by and large metabolically healthy.
Collapse
|
30
|
Mutations in Melanocortin-3 Receptor Gene and Human Obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:97-129. [DOI: 10.1016/bs.pmbts.2016.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Rodrigues AR, Almeida H, Gouveia AM. Intracellular signaling mechanisms of the melanocortin receptors: current state of the art. Cell Mol Life Sci 2015; 72:1331-45. [PMID: 25504085 PMCID: PMC11113477 DOI: 10.1007/s00018-014-1800-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/07/2014] [Accepted: 12/01/2014] [Indexed: 12/28/2022]
Abstract
The melanocortin system is composed by the agonists adrenocorticotropic hormone and α, β and γ-melanocyte-stimulating hormone, and two naturally occurring antagonists, agouti and agouti-related protein. These ligands act by interaction with a family of five melanocortin receptors (MCRs), assisted by MCRs accessory proteins (MRAPs). MCRs stimulation activates different signaling pathways that mediate a diverse array of physiological processes, including pigmentation, energy metabolism, inflammation and exocrine secretion. This review focuses on the regulatory mechanisms of MCRs signaling, highlighting the differences among the five receptors. MCRs signal through G-dependent and independent mechanisms and their functional coupling to agonists at the cell surface is regulated by interacting proteins, namely MRAPs and β-arrestins. The knowledge of the distinct modulation pattern of MCRs signaling and function may be helpful for the future design of novel drugs able to combine specificity, safety and effectiveness in the course of their therapeutic use.
Collapse
Affiliation(s)
- Adriana R Rodrigues
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal,
| | | | | |
Collapse
|
32
|
Yanovski JA. Pediatric obesity. An introduction. Appetite 2015; 93:3-12. [PMID: 25836737 DOI: 10.1016/j.appet.2015.03.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 01/04/2023]
Abstract
The prevalence of child and adolescent obesity in the United States increased dramatically between 1970 and 2000, and there are few indications that the rates of childhood obesity are decreasing. Obesity is associated with myriad medical, psychological, and neurocognitive abnormalities that impact children's health and quality of life. Genotypic variation is important in determining the susceptibility of individual children to undue gains in adiposity; however, the rapid increase in pediatric obesity prevalence suggests that changes to children's environments and/or to their learned behaviors may dramatically affect body weight regulation. This paper presents an overview of the epidemiology, consequences, and etiopathogenesis of pediatric obesity, serving as a general introduction to the subsequent papers in this Special Issue that address aspects of childhood obesity and cognition in detail.
Collapse
Affiliation(s)
- Jack A Yanovski
- Section on Growth and Obesity, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Yang F, Huang H, Tao YX. Biased signaling in naturally occurring mutations in human melanocortin-3 receptor gene. Int J Biol Sci 2015; 11:423-33. [PMID: 25798062 PMCID: PMC4366641 DOI: 10.7150/ijbs.11032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/21/2015] [Indexed: 12/17/2022] Open
Abstract
The melanocortin-3 receptor (MC3R) is primarily expressed in the hypothalamus and plays an important role in the regulation of energy homeostasis. Recently, some studies demonstrated that MC3R also signals through mitogen-activated protein kinases (MAPKs), especially extracellular signal-regulated kinases 1 and 2 (ERK1/2). ERK1/2 signaling is known to alter gene expression, potentially contributing to the prolonged action of melanocortins on energy homeostasis regulation. In the present study, we performed detailed functional studies on 8 novel naturally occurring MC3R mutations recently reported, and the effects of endogenous MC3R agonist, α-melanocyte stimulating hormone (MSH), on ERK1/2 signaling on all 22 naturally occurring MC3R mutations reported to date. We found that mutants D158Y and L299V were potential pathogenic causes to obesity. Four residues, F82, D158, L249 and L299, played critical roles in different aspects of MC3R function. α-MSH exhibited balanced activity in Gs-cAMP and ERK1/2 signaling pathways in 15 of the 22 mutant MC3Rs. The other 7 mutant MC3Rs were biased to either one of the signaling pathways. In summary, we provided novel data about the structure-function relationship of MC3R, identifying residues important for receptor function. We also demonstrated that some mutations exhibited biased signaling, preferentially activating one intracellular signaling pathway, adding a new layer of complexity to MC3R pharmacology.
Collapse
Affiliation(s)
- Fan Yang
- 1. Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA. ; 2. Current address: College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Hui Huang
- 1. Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Ya-Xiong Tao
- 1. Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
34
|
Taylor-Douglas DC, Basu A, Gardner RM, Aspelund S, Wen X, Yanovski JA. Evaluation of hypothalamic murine and human melanocortin 3 receptor transcript structure. Biochem Biophys Res Commun 2014; 454:234-8. [PMID: 25450386 DOI: 10.1016/j.bbrc.2014.10.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/15/2014] [Indexed: 11/16/2022]
Abstract
The melanocortin 3 receptor (MC3R) is involved in regulation of energy homeostasis. However, its transcript structure is not well understood. We therefore studied initiation and termination sites for hypothalamic murine Mc3r and human MC3R transcripts. Rapid Amplification of cDNA Ends (RACE) was performed for the 5' and 3' ends of murine and human hypothalamic RNA. 5' RACE experiments using hypothalamic murine RNA indicated mouse hypothalamus expresses two major Mc3r transcription start sites: one with a 5' UTR approximately 368 bases in length and another previously unknown transcript with a 5' UTR approximately 440 bases in length. 5' RACE experiments using human hypothalamic RNA identified a 5' UTR beginning 533 bases upstream of the start codon with a 248 base splice. 3' RACE experiments using hypothalamic murine RNA indicated the 3' UTR terminates approximately 1286 bases after the translational stop codon, with a previously unknown 787 base splice between consensus splice donor and acceptor sites. 3' RACE experiments using human MC3R transcript indicated the 3' UTR terminates approximately 115-160 bases after the translational stop codon. These data provide insight into melanocortin 3 receptor transcript structure.
Collapse
Affiliation(s)
- Dezmond C Taylor-Douglas
- Section on Growth and Obesity, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA; Howard University College of Medicine, Department of Physiology, 520 W Street N.W., Washington, DC 20059, USA
| | - Arunabha Basu
- Section on Growth and Obesity, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Ryan M Gardner
- Section on Growth and Obesity, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Sender Aspelund
- Section on Growth and Obesity, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Xin Wen
- Section on Growth and Obesity, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Jack A Yanovski
- Section on Growth and Obesity, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Lute B, Jou W, Lateef DM, Goldgof M, Xiao C, Piñol RA, Kravitz AV, Miller NR, Huang YG, Girardet C, Butler AA, Gavrilova O, Reitman ML. Biphasic effect of melanocortin agonists on metabolic rate and body temperature. Cell Metab 2014; 20:333-45. [PMID: 24981835 PMCID: PMC4126889 DOI: 10.1016/j.cmet.2014.05.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/03/2014] [Accepted: 05/22/2014] [Indexed: 11/30/2022]
Abstract
The melanocortin system regulates metabolic homeostasis and inflammation. Melanocortin agonists have contradictorily been reported to both increase and decrease metabolic rate and body temperature. We find two distinct physiologic responses occurring at similar doses. Intraperitoneal administration of the nonselective melanocortin agonist MTII causes a melanocortin-4 receptor (Mc4r)-mediated hypermetabolism/hyperthermia. This is preceded by a profound, transient hypometabolism/hypothermia that is preserved in mice lacking any one of Mc1r, Mc3r, Mc4r, or Mc5r. Three other melanocortin agonists also caused hypothermia, which is actively achieved via seeking a cool environment, vasodilation, and inhibition of brown adipose tissue thermogenesis. These results suggest that the hypometabolic/hypothermic effect of MTII is not due to a failure of thermoregulation. The hypometabolism/hypothermia was prevented by dopamine antagonists, and MTII selectively activated arcuate nucleus dopaminergic neurons, suggesting that these neurons may contribute to the hypometabolism/hypothermia. We propose that the hypometabolism/hypothermia is a regulated response, potentially beneficial during extreme physiologic stress.
Collapse
Affiliation(s)
- Beth Lute
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - William Jou
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Dalya M Lateef
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Margalit Goldgof
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Ramón A Piñol
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Alexxai V Kravitz
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Nicole R Miller
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Yuning George Huang
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Clemence Girardet
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Andrew A Butler
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Yilmaz Z, Kaplan AS, Tiwari AK, Levitan RD, Piran S, Bergen AW, Kaye WH, Hakonarson H, Wang K, Berrettini WH, Brandt HA, Bulik CM, Crawford S, Crow S, Fichter MM, Halmi KA, Johnson CL, Keel PK, Klump KL, Magistretti P, Mitchell JE, Strober M, Thornton LM, Treasure J, Woodside DB, Knight J, Kennedy JL. The role of leptin, melanocortin, and neurotrophin system genes on body weight in anorexia nervosa and bulimia nervosa. J Psychiatr Res 2014; 55:77-86. [PMID: 24831852 PMCID: PMC4191922 DOI: 10.1016/j.jpsychires.2014.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/05/2014] [Accepted: 04/04/2014] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Although low weight is a key factor contributing to the high mortality in anorexia nervosa (AN), it is unclear how AN patients sustain low weight compared with bulimia nervosa (BN) patients with similar psychopathology. Studies of genes involved in appetite and weight regulation in eating disorders have yielded variable findings, in part due to small sample size and clinical heterogeneity. This study: (1) assessed the role of leptin, melanocortin, and neurotrophin genetic variants in conferring risk for AN and BN; and (2) explored the involvement of these genes in body mass index (BMI) variations within AN and BN. METHOD Our sample consisted of 745 individuals with AN without a history of BN, 245 individuals with BN without a history of AN, and 321 controls. We genotyped 20 markers with known or putative function among genes selected from leptin, melanocortin, and neurotrophin systems. RESULTS There were no significant differences in allele frequencies among individuals with AN, BN, and controls. AGRP rs13338499 polymorphism was associated with lowest illness-related BMI in those with AN (p = 0.0013), and NTRK2 rs1042571 was associated with highest BMI in those with BN (p = 0.0018). DISCUSSION To our knowledge, this is the first study to address the issue of clinical heterogeneity in eating disorder genetic research and to explore the role of known or putatively functional markers in genes regulating appetite and weight in individuals with AN and BN. If replicated, our results may serve as an important first step toward gaining a better understanding of weight regulation in eating disorders.
Collapse
Affiliation(s)
- Zeynep Yilmaz
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Clinical Research Department, Centre for Addiction and Mental Health, Toronto, Canada
| | - Allan S Kaplan
- Clinical Research Department, Centre for Addiction and Mental Health, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Arun K Tiwari
- Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Canada
| | - Robert D Levitan
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Mood and Anxiety Program, Centre for Addiction and Mental Health, Toronto, Canada
| | - Sara Piran
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Andrew W Bergen
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Walter H Kaye
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Hakon Hakonarson
- Joseph Stokes Jr. Research Institute, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kai Wang
- Department of Psychiatry, University of Southern California, Los Angeles, CA, USA
| | - Wade H Berrettini
- Department of Psychiatry, Center of Neurobiology and Behavior, University of Pennsylvania, Philadelphia, PA, USA
| | - Harry A Brandt
- Department of Psychiatry, Sheppard Pratt Health System, Towson, MD, USA
| | - Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven Crawford
- Department of Psychiatry, Sheppard Pratt Health System, Towson, MD, USA
| | - Scott Crow
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Manfred M Fichter
- Department of Psychiatry, University of Munich (LMU), Munich, Germany; Roseneck Hospital for Behavioral Medicine, Prien, Germany
| | - Katherine A Halmi
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | | | - Pamela K Keel
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Kelly L Klump
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Pierre Magistretti
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - James E Mitchell
- Department of Clinical Neuroscience, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA; Neuropsychiatric Research Institute, Fargo, ND, USA
| | - Michael Strober
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Laura M Thornton
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janet Treasure
- Department of Academic Psychiatry, King's College London, Institute of Psychiatry, London, United Kingdom
| | - D Blake Woodside
- Department of Psychiatry, University of Toronto, Toronto, Canada; Eating Disorders Program, Toronto General Hospital, Toronto, Canada
| | - Joanne Knight
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Canada
| | - James L Kennedy
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
37
|
Park J, Sharma N, Cutting GR. Melanocortin 3 receptor has a 5' exon that directs translation of apically localized protein from the second in-frame ATG. Mol Endocrinol 2014; 28:1547-57. [PMID: 25051171 DOI: 10.1210/me.2014-1105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Melanocortin-3 receptor (MC3R) is a canonical MSH receptor that plays an essential role in energy homeostasis. Variants in MC3R have been implicated in obesity in humans and mice. However, interpretation of the functional consequences of these variants is challenging because the translational start site of MC3R is unclear. Using 5' rapid amplification of cDNA ends, we discovered a novel upstream exon that extends the length of the 5' untranslated region (UTR) in MC3R without changing the open-reading frame. The full-length 5' UTR directs utilization of an evolutionarily conserved second in-frame ATG as the primary translation start site. MC3R synthesized from the second ATG is localized to apical membranes of polarized Madin-Darby canine kidney cells, consistent with its function as a cell surface mediator of melanocortin signaling. Expression of MC3R causes relocalization of melanocortin receptor accessory protein 2, an accessory factor for melanocortin-2 receptor, to the apical membrane, coincident with the location of MC3R. In contrast, protein synthesized from MC3R cDNAs lacking the 5' UTR displayed diffuse cytosolic distribution and has no effect on the distribution of melanocortin receptor accessory protein 2. Our findings demonstrate that a previously unannotated 5' exon directs translation of MC3R protein that localizes to apical membranes of polarized cells. Together, our work provides insight on the structure of human MC3R and reveals a new pathway for regulation of energy metabolism.
Collapse
Affiliation(s)
- Jeenah Park
- McKusick-Nathans Institute of Genetic Medicine (J.P., N.S., G.R.C.), Johns Hopkins University, Baltimore, Maryland 21218; and Department of Pediatrics (G.R.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-3914
| | | | | |
Collapse
|
38
|
Alsmadi O, Melhem M, Hebbar P, Thareja G, John SE, Alkayal F, Behbehani K, Thanaraj TA. Leptin in association with common variants of MC3R mediates hypertension. Am J Hypertens 2014; 27:973-81. [PMID: 24487982 DOI: 10.1093/ajh/hpt285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Recent research illustrates the role of central melanocortin signaling and leptin in the regulation of arterial blood pressure in animal models. Unraveling the genetic basis of interactions between melanocortin and leptin in humans will provide new insight into the regulation of arterial pressure. METHOD Our study population consisted of 332 Kuwaiti natives. Polymorphisms from exons of leptin, MC3R, and MC4R genes were identified by Sanger sequencing. MC3R expression and leptin levels were determined. Linear regression models, adjusted for age, gender, antihypertensive medication, and body mass index, were used to perform statistical association tests. RESULTS We observed a significant association between the MC3R missense variant (rs3827103 [Val81 Ile]) and systolic blood pressure (SBP; P = 0.01, β = 4.9). The N-terminus variant (rs3746619 [Thr6→Lys]) is in linkage disequilibrium (r2 = 0.65) with the rs3827103 variant. The AA haplotype of rs3746619-rs3827103 is significantly associated with SBP (P = 0.005, β=5.03). Minor allele frequencies of these two variants in the Kuwaiti population are twice those seen in European population. In individuals who harbor these variants, we found that the plasma leptin levels were positively correlated with SBP and that the expression of MC3R was downregulated. Leptin levels correlated with obesity traits irrespective of the genotypes at the variant positions. CONCLUSION An increase in leptin levels is known to increase sympathetic nerve activity that, in turn, increases blood pressure. Thus, it is possible that the observed MC3R variants in association with leptin levels are involved in regulation of blood pressure in humans.
Collapse
Affiliation(s)
- Osama Alsmadi
- Dasman Genome Centre, Dasman Diabetes Institute, Kuwait
| | | | - Prashantha Hebbar
- Integrative Informatics Department, Dasman Diabetes Institute, Kuwait
| | - Gaurav Thareja
- Integrative Informatics Department, Dasman Diabetes Institute, Kuwait
| | - Sumi E John
- Integrative Informatics Department, Dasman Diabetes Institute, Kuwait
| | - Fadi Alkayal
- Dasman Genome Centre, Dasman Diabetes Institute, Kuwait
| | | | | |
Collapse
|
39
|
Gragnoli C. Hypothesis of the neuroendocrine cortisol pathway gene role in the comorbidity of depression, type 2 diabetes, and metabolic syndrome. APPLICATION OF CLINICAL GENETICS 2014; 7:43-53. [PMID: 24817815 PMCID: PMC4012344 DOI: 10.2147/tacg.s39993] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Depression, type 2 diabetes (T2D), and metabolic syndrome (MetS) are often comorbid. Depression per se increases the risk for T2D by 60%. This risk is not accounted for by the use of antidepressant therapy. Stress causes hyperactivation of the hypothalamic–pituitary–adrenal (HPA) axis, by triggering the hypothalamic corticotropin-releasing hormone (CRH) secretion, which stimulates the anterior pituitary to release the adrenocorticotropin hormone (ACTH), which causes the adrenal secretion of cortisol. Depression is associated with an increased level of cortisol, and CRH and ACTH at inappropriately “normal” levels, that is too high compared to their expected lower levels due to cortisol negative feedback. T2D and MetS are also associated with hypercortisolism. High levels of cortisol can impair mood as well as cause hyperglycemia and insulin resistance and other traits typical of T2D and MetS. We hypothesize that HPA axis hyperactivation may be due to variants in the genes of the CRH receptors (CRHR1, CRHR2), corticotropin receptors (or melanocortin receptors, MC1R-MC5R), glucocorticoid receptor (NR3C1), mineralocorticoid receptor (NR3C2), and of the FK506 binding protein 51 (FKBP5), and that these variants may be partially responsible for the clinical association of depression, T2D and MetS. In this review, we will focus on the correlation of stress, HPA axis hyperactivation, and the possible genetic role of the CRHR1, CRHR2, MCR1–5, NR3C1, and NR3C2 receptors and FKBP5 in the susceptibility to the comorbidity of depression, T2D, and MetS. New studies are needed to confirm the hypothesized role of these genes in the clinical association of depression, T2D, and MetS.
Collapse
Affiliation(s)
- Claudia Gragnoli
- Center for Biotechnology and Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA ; Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome, Italy
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Common obesity is widely regarded as a complex, multifactorial trait influenced by the 'obesogenic' environment, sedentary behavior, and genetic susceptibility contributed by common and rare genetic variants. This review describes the recent advances in understanding the role of genetics in obesity. RECENT FINDINGS New susceptibility loci and genetic variants are being uncovered, but the collective effect is relatively small and could not explain most of the BMI heritability. Yet-to-be identified common and rare variants, epistasis, and heritable epigenetic changes may account for part of the 'missing heritability'. Evidence is emerging about the role of epigenetics in determining obesity susceptibility, mediating developmental plasticity, which confers obesity risk from early life experiences. Genetic prediction scores derived from selected genetic variants, and also differential DNA methylation levels and methylation scores, have been shown to correlate with measures of obesity and response to weight loss intervention. Genetic variants, which confer susceptibility to obesity-related morbidities like nonalcoholic fatty liver disease, were also discovered recently. SUMMARY We can expect discovery of more rare genetic variants with the advent of whole exome and genome sequencing, and also greater understanding of epigenetic mechanisms by which environment influences genetic expression and which mediate the gene-environment interaction.
Collapse
|
41
|
Common polymorphism (81Val>Ile) and rare mutations (257Arg>Ser and 335Ile>Ser) of the MC3R gene in obese Polish children and adolescents. Mol Biol Rep 2013; 40:6893-8. [PMID: 24142065 PMCID: PMC3835951 DOI: 10.1007/s11033-013-2808-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 10/12/2013] [Indexed: 01/11/2023]
Abstract
The predisposing role to human obesity of the MC3R gene polymorphism is controversial. In this report we present the first study focused on the search for the MC3R polymorphism in the Polish population. Altogether 257 obese children and adolescents (RBMI>120) and 94 adults, who were never obese or overweight (BMI<25), were studied. For all subjects the entire coding sequence was analyzed by direct DNA sequencing. One common polymorphism (81Val>Ile) and two rare mutations (257Arg>Ser and 335Ile>Ser) were identified. The common polymorphism was widely distributed in the obese and control cohorts, while the mutations were identified in four obese subjects only. In case of the 335Ile>Ser substitution a three-generation family, consisting of 20 members, was also analyzed. It was found that all carriers of the 335Ser mutation were obese, but among non-carriers obese subjects also were found. Our study suggests that the predisposing effect to obesity of the 81Ile polymorphic variant is rather unlikely. With regard to the studied rare mutations we suggest that the 335Ser allele may have a small predisposing effect.
Collapse
|
42
|
Girardet C, Butler AA. Neural melanocortin receptors in obesity and related metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2013; 1842:482-94. [PMID: 23680515 DOI: 10.1016/j.bbadis.2013.05.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/16/2013] [Accepted: 05/03/2013] [Indexed: 12/11/2022]
Abstract
Obesity is a global health issue, as it is associated with increased risk of developing chronic conditions associated with disorders of metabolism such as type 2 diabetes and cardiovascular disease. A better understanding of how excessive fat accumulation develops and causes diseases of the metabolic syndrome is urgently needed. The hypothalamic melanocortin system is an important point of convergence connecting signals of metabolic status with the neural circuitry that governs appetite and the autonomic and neuroendocrine system controling metabolism. This system has a critical role in the defense of body weight and maintenance of homeostasis. Two neural melanocortin receptors, melanocortin 3 and 4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy balance. Mutations in the MC4R gene are the most common cause of monogenic obesity in humans, and a large literature indicates a role in regulating both energy intake through the control of satiety and energy expenditure. In contrast, MC3Rs have a more subtle role in energy homeostasis. Results from our lab indicate an important role for MC3Rs in synchronizing rhythms in foraging behavior with caloric cues and maintaining metabolic homeostasis during periods of nutrient scarcity. However, while deletion of the Mc3r gene in mice alters nutrient partitioning to favor accumulation of fat mass no obvious role for MC3R haploinsufficiency in human obesity has been reported. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
MESH Headings
- Animals
- Body Weight/genetics
- Cardiovascular Diseases/complications
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Humans
- Metabolic Diseases/genetics
- Metabolic Diseases/metabolism
- Metabolic Diseases/pathology
- Mice
- Obesity/complications
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
Collapse
Affiliation(s)
- Clemence Girardet
- Department of Metabolism and Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Andrew A Butler
- Department of Metabolism and Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
43
|
Novoselova TV, Jackson D, Campbell DC, Clark AJL, Chan LF. Melanocortin receptor accessory proteins in adrenal gland physiology and beyond. J Endocrinol 2013; 217:R1-11. [PMID: 23418361 DOI: 10.1530/joe-12-0501] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The melanocortin receptor (MCR) family consists of five G-protein-coupled receptors (MC1R-MC5R) with diverse physiological roles. MC1R controls pigmentation, MC2R is a critical component of the hypothalamic-pituitary-adrenal axis, MC3R and MC4R have a vital role in energy homeostasis and MC5R is involved in exocrine function. The melanocortin receptor accessory protein (MRAP) and its paralogue MRAP2 are small single-pass transmembrane proteins that have been shown to regulate MCR expression and function. In the adrenal gland, MRAP is an essential accessory factor for the functional expression of the MC2R/ACTH receptor. The importance of MRAP in adrenal gland physiology is demonstrated by the clinical condition familial glucocorticoid deficiency, where inactivating MRAP mutations account for ∼20% of cases. MRAP is highly expressed in both the zona fasciculata and the undifferentiated zone. Expression in the undifferentiated zone suggests that MRAP could also be important in adrenal cell differentiation and/or maintenance. In contrast, the role of adrenal MRAP2, which is highly expressed in the foetal gland, is unclear. The expression of MRAPs outside the adrenal gland is suggestive of a wider physiological purpose, beyond MC2R-mediated adrenal steroidogenesis. In vitro, MRAPs have been shown to reduce surface expression and signalling of all the other MCRs (MC1,3,4,5R). MRAP2 is predominantly expressed in the hypothalamus, a site that also expresses a high level of MC3R and MC4R. This raises the intriguing possibility of a CNS role for the MRAPs.
Collapse
Affiliation(s)
- T V Novoselova
- Centre for Endocrinology, Queen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M6BQ, UK
| | | | | | | | | |
Collapse
|
44
|
Suazo J, Hodgson MI, Obregón AM, Valladares M, Weisstaub G, Amador P, Santos JL. Prevalence of metabolic syndrome in obese Chilean children and association with gene variants of the leptin-melanocortin system. J Pediatr Endocrinol Metab 2013; 26:1131-9. [PMID: 23817596 DOI: 10.1515/jpem-2013-0084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/14/2013] [Indexed: 11/15/2022]
Abstract
Metabolic syndrome (MS) related to adult type 2 diabetes mellitus and cardiovascular disease is prevalent among obese children/adolescents. Genetic variants of the leptin-melanocortin system have been associated with components of MS. The aim of our study is to estimate the prevalence of MS (according to Cook's criteria) in a Chilean cross-sectional sample of 259 obese children (47.1% girls, aged 6-12 years), and to assess the association between common genetic variants of leptin-melanocortin pathway genes (LEP, LEPR, POMC, MC3R and MC4R) with components of the MS using logistic regression. We observed an overall MS prevalence of 26.3% (32.2% in girls and 21.1% in boys) in obese Chilean children. No associations were detected between genetic variants of leptin-melanocortin genes and MS components. MS prevalence among our obese children sample is similar to those previously described in Chile, demonstrating the increased risk of diseases in adulthood that obese children carry.
Collapse
|
45
|
Lee YS. Melanocortin 3 receptor gene and melanocortin 4 receptor gene mutations: the Asian Perspective. Diabetes Metab Res Rev 2012; 28 Suppl 2:26-31. [PMID: 23280863 DOI: 10.1002/dmrr.2351] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Melanocortin 4 receptor (MC4R) deficiency resulting from disruption of one or both MC4R alleles represents the commonest monogenic form of human obesity to date. Human MC4R deficiency was reported to affect 4 and 5.8% of severely obese French and British populations respectively. However, studies elsewhere reported low incidence of MC4R mutations in their obese populations. The significance of MC4R mutations in Asian obese populations has not been adequately examined, though small studies in Japan, China, and Singapore reported few or no pathogenic mutations, suggesting a low prevalence in this part of the world. There were also few common mutations described across populations, suggesting a relative lack of founder effect. The pathogenic role of melanocortin 3 receptor gene (MC3R) mutations in human obesity is not as well described and accepted as MC4R mutations, though it is gradually gaining ground. Two common single nucleotide polymorphisms Thr6Lys and Val81Ile within the coding region were associated with higher body fat and leptin levels in obese children, supported by impaired signaling activity in vitro. There were also reports of missense mutations enriched in obese populations. While MC3R mutations are unlikely to result in an autosomal dominant form of monogenic obesity given the lack of strong co-segregation in family studies, the studies so far provided evidence that MC3R can be one of the genes which contributes to increased adiposity, and exert an effect on the human phenotype.
Collapse
Affiliation(s)
- Yung Seng Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore.
| |
Collapse
|
46
|
Yang F, Tao YX. Functional characterization of nine novel naturally occurring human melanocortin-3 receptor mutations. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1752-61. [PMID: 22884546 DOI: 10.1016/j.bbadis.2012.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/12/2012] [Accepted: 07/27/2012] [Indexed: 12/20/2022]
Abstract
The melanocortin-3 receptor (MC3R) is a member of family A rhodopsin-like G protein-coupled receptors. Mouse genetic studies suggested that MC3R and the related MC4R are non-redundant regulators of energy homeostasis. Lack of Mc3r leads to higher feed efficiency and fat mass. However, until now only a few MC3R mutations have been identified in humans and the role of MC3R in the pathogenesis of obesity was unclear. In the present study, we performed detailed functional studies on nine naturally occurring MC3R mutations recently reported. We found that all nine mutants had decreased cell surface expression. A260V, M275T, and L297V had decreased total expression whereas the other six mutants had normal total expression. Mutants S69C and T280S exhibited significant defects in ligand binding and signaling. The dramatic defects of T280S might be partially caused by decreased cell surface expression. In addition, we found mutants M134I and M275T had decreased maximal binding but displayed similar signaling properties as wild-type MC3R. All the other mutants had normal binding and signaling activities. Co-expression studies showed that all mutants except L297V did not affect wild-type MC3R signaling. Multiple mutations at T280 demonstrated the necessity of Thr for cell surface expression, ligand binding, and signaling. In summary, we provided detailed data of these novel human MC3R mutations leading to a better understanding of structure-function relationship of MC3R and the role of MC3R mutation in obesity.
Collapse
Affiliation(s)
- Fan Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
47
|
Henagan TM, Forney L, Dietrich MA, Harrell BR, Stewart LK. Melanocortin receptor expression is associated with reduced CRP in response to resistance training. J Appl Physiol (1985) 2012; 113:393-400. [PMID: 22678961 PMCID: PMC4422369 DOI: 10.1152/japplphysiol.00107.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 06/03/2012] [Indexed: 12/18/2022] Open
Abstract
The existing paradigm of exercise-induced decreases in chronic inflammation focuses on the expression of inflammatory receptors on systemic monocytes in response to exercise training, with the role of anti-inflammatory receptors largely ignored. Our recent preliminary studies indicate that the anti-inflammatory melanocortin receptors (MCRs) may play a role in modulating exercise-induced decreases in chronic inflammation. Here, we present a study designed to determine the effect of intense, resistance exercise training on systemic monocyte MCR expression. Because low-grade chronic inflammation is associated with elevated cardiometabolic risk in healthy populations and exercise decreases chronic inflammation, we investigated the associations between systemic monocyte cell surface expression of MCRs and inflammatory markers as a possible mechanism for the beneficial anti-inflammatory effects of resistance training. To this end, the present study includes 40 adults (aged 19-27 yr) and implements a 12-wk periodized, intensive resistance training intervention. Melanocortin 1 and 3 receptor expression on systemic monocytes and inflammatory markers, including C-reactive protein (CRP), interleukin (IL)-6, IL-1β, and IL-10, were measured before and after the intervention. Resistance training significantly altered MCR systemic monocyte cell surface expression, had no chronic effects on IL-6, IL-1β, or IL-10 expression, but significantly decreased CRP levels from a moderate to a low cardiovascular disease risk category. More specifically, decreased melanocortin 3 receptor expression significantly correlated with decreased CRP, independent of changes in adiposity. These data suggest that the observed responses in MCR expression and decreases in cardiovascular disease risk in response to resistance training represent an important anti-inflammatory mechanism in regulating exercise-induced decreases in chronic inflammation that occur independent of chronic changes in systemic cytokines.
Collapse
Affiliation(s)
- Tara M Henagan
- Neurosignaling Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | | | | | | | | |
Collapse
|
48
|
Begriche K, Marston OJ, Rossi J, Burke LK, McDonald P, Heisler LK, Butler AA. Melanocortin-3 receptors are involved in adaptation to restricted feeding. GENES, BRAIN, AND BEHAVIOR 2012; 11:291-302. [PMID: 22353545 PMCID: PMC3319531 DOI: 10.1111/j.1601-183x.2012.00766.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 01/09/2012] [Accepted: 01/12/2012] [Indexed: 11/29/2022]
Abstract
The central nervous melanocortin system forms a neural network that maintains energy homeostasis. Actions involving neural melanocortin-3 receptors (MC3Rs) regulate the expression rhythms in ingestive behaviors and metabolism anticipating nutrient intake. Here, we characterized the response of Mc3r knockout (Mc3r(-/-)) and wild type (WT) mice to a restricted feeding (RF) schedule where food access was limited to a 4-h period mid light cycle using a mechanical barrier. Mc3r(-/-) mice adapted poorly to the food restriction schedule. Anticipatory activity and the initial bout of intense feeding activity associated with granting food access were attenuated in Mc3r(-/-) mice, resulting in increased weight loss relative to controls. To investigate whether activity in specific hypothalamic nuclei contribute to the Mc3r(-/-) phenotype observed, we assessed hypothalamic FOS-immunoreactivity (FOS-IR) associated with food restriction. Food access markedly increased FOS-IR in the dorsomedial hypothalamus (DMH), but not in the suprachiasmatic or ventromedial hypothalamic nuclei (SCN and VMN, respectively) compared to ad libitum fed mice. Mc3r(-/-) mice displayed a significant reduction in FOS-IR in the DMH during feeding. Analysis of MC3R signaling in vitro indicated dose-dependent stimulation of the extracellular signal-regulated kinase (ERK) pathway by the MC3R agonist d-Trp(8)-γMSH. Treatment of WT mice with d-Trp(8)-γMSH administered intracerebroventricularly increased the number of pERK neurons 1.7-fold in the DMH. These observations provide further support for the involvement of the MC3Rs in regulating adaptation to food restriction. Moreover, MC3Rs may modulate the activity of neurons in the DMH, a region previously linked to the expression of the anticipatory response to RF.
Collapse
Affiliation(s)
- K Begriche
- Department of Metabolism and Aging, The Scripps Research InstituteJupiter, FL, USA
| | - O J Marston
- Department of Pharmacology, University of CambridgeCambridge, United Kingdom
| | - J Rossi
- Department of Metabolism and Aging, The Scripps Research InstituteJupiter, FL, USA
| | - L K Burke
- Department of Pharmacology, University of CambridgeCambridge, United Kingdom
| | - P McDonald
- Department of Molecular Therapeutics and Translational Research Institute, The Scripps Research InstituteJupiter, FL, USA
| | - L K Heisler
- Department of Pharmacology, University of CambridgeCambridge, United Kingdom
| | - A A Butler
- Department of Metabolism and Aging, The Scripps Research InstituteJupiter, FL, USA
| |
Collapse
|
49
|
Biebermann H, Kühnen P, Kleinau G, Krude H. The neuroendocrine circuitry controlled by POMC, MSH, and AGRP. Handb Exp Pharmacol 2012:47-75. [PMID: 22249810 DOI: 10.1007/978-3-642-24716-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Obesity is one of the most challenging health problems worldwide. Over the past few decades, our knowledge concerning mechanisms of weight regulation has increased tremendously leading to the identification of the leptin-melanocortin pathway. The filling level of energy stores is signaled to the brain, and the information is integrated by hypothalamic nuclei, resulting in a well-orchestrated response to food intake and energy expenditure to ensure constant body weight. One of the key players in this system is proopiomelanocortin (POMC), a precursor of a variety of neuropeptides. POMC-derived alpha- and beta-MSH play an important role in energy homeostasis by activating melanocortin receptors expressed in the arcuate nucleus (MC3R) and in the nucleus paraventricularis (MC4R). Activation of these two G protein-coupled receptors is antagonized by agouti-related peptide (AgRP). Naturally occurring mutations in this system were identified in patients suffering from common obesity as well as in patients demonstrating a phenotype of severe early-onset obesity, adrenal insufficiency, red hair, and pale skin. Detailed understanding of the complex system of POMC-AgRP-MC3R-MC4R and their interaction with other hypothalamic as well as peripheral signals is a prerequisite to combat the obesity epidemic.
Collapse
Affiliation(s)
- Heike Biebermann
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | |
Collapse
|
50
|
Tarnow P, Rediger A, Schulz A, Grüters A, Biebermann H. Identification of the translation start site of the human melanocortin 3 receptor. Obes Facts 2012; 5:45-51. [PMID: 22433616 DOI: 10.1159/000336070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 10/12/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The melanocortin-3-receptor (MC3R) is a G-protein coupled receptor participating in hypothalamic energy metabolism. So far, it was assumed that the translation of the human MC3R starts at the non-conserved first ATG, however, a second evolutionary conserved ATG is located 37 amino acids downstream. One frequent polymorphism, T6K, is located between these two ATGs. METHODS For characterization of the two potential start ATGs, COS-7 cells were transfected with plasmids encoding the longer and the shorter form of the human MC3R. For signal transduction properties, cAMP was measured. Cell surface expression was determined by using an ELISA method. The translational start point of the MC3R was investigated by a GFP-based method. RESULTS Signal transduction was comparable for the long and the short receptor form. Cell surface expression via aminoterminal hemagglutinin tag could only be detected in the shorter form, but not in the longer one. In our study we show that the translation of the human MC3R protein starts at the evolutionary conserved ATG codon which results in a shorter protein than previously assumed. CONCLUSION The polymorphism T6K is not located in the coding region of the human MC3R and has no influence on translation initiation which makes an impact on body weight unlikely.
Collapse
Affiliation(s)
- Patrick Tarnow
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Humboldt University, Augustenburger Platz 1, Berlin, Germany
| | | | | | | | | |
Collapse
|