1
|
New JS, Dizon BL, King RG, Greenspan NS, Kearney JF. B-1 B Cell-Derived Natural Antibodies against N-Acetyl-d-Glucosamine Suppress Autoimmune Diabetes Pathogenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1320-1331. [PMID: 37747293 PMCID: PMC10592000 DOI: 10.4049/jimmunol.2300264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
Environmental factors and host microbiota strongly influence type 1 diabetes (T1D) progression. We report that neonatal immunization with group A Streptococcus suppresses T1D development in NOD mice by promoting clonal expansion of N-acetyl-d-glucosamine (GlcNAc)-specific B-1 B cells that recognize pancreatic β cell-derived Ags bearing GlcNAc-containing posttranslational modifications. Early exposure to Lancefield group A cell-wall carbohydrate Ags increased production of GlcNAc-reactive serum Abs and enhanced localization of innate-like GlcNAc-specific B cells to pancreatic tissue during T1D pathogenesis. We show that B-1 B cell-derived GlcNAc-specific IgM engages apoptosis-associated β cell Ags, thereby suppressing diabetogenic T cell activation. Likewise, adoptively transferring GlcNAc-reactive B-1 B cells significantly delayed T1D development in naive recipients. Collectively, these data underscore potentially protective involvement of innate-like B cells and natural Abs in T1D progression. These findings suggest that previously reported associations of reduced T1D risk after GAS infection are B cell dependent and demonstrate the potential for targeting the natural Ab repertoire in considering therapeutic strategies for T1D.
Collapse
Affiliation(s)
- J. Stewart New
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Brian L.P. Dizon
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - R. Glenn King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Neil. S. Greenspan
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - John F. Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
2
|
Evrensel A. Microbiome-Induced Autoimmunity and Novel Therapeutic Intervention. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:71-90. [PMID: 36949306 DOI: 10.1007/978-981-19-7376-5_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Microorganisms' flora, which colonize in many parts of our body, stand out as one of the most important components for a healthy life. This microbial organization called microbiome lives in integration with the body as a single and whole organ/system. Perhaps, the human first encounters the microbial activity it carries through the immune system. This encounter and interaction are vital for the development of immune system cells that protect the body against pathogenic organisms and infections throughout life. In recent years, it has been determined that some disruptions in the host-microbiome interaction play an important role in the physiopathology of autoimmune diseases. Although the details of this interaction have not been clarified yet, the focus is on leaky gut syndrome, dysbiosis, toll-like receptor ligands, and B cell dysfunction. Nutritional regulations, prebiotics, probiotics, fecal microbiota transplantation, bacterial engineering, and vaccination are being investigated as new therapeutic approaches in the treatment of problems in these areas. This article reviews recent research in this area.
Collapse
Affiliation(s)
- Alper Evrensel
- Department of Psychiatry, Uskudar University, Istanbul, Turkey
- NP Brain Hospital, Istanbul, Turkey
| |
Collapse
|
3
|
Fraser A, Poole P. Immunostimulants versus placebo for preventing exacerbations in adults with chronic bronchitis or chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2022; 11:CD013343. [PMID: 36373977 PMCID: PMC9661939 DOI: 10.1002/14651858.cd013343.pub2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Individuals with chronic obstructive pulmonary disease (COPD) or chronic bronchitis may experience recurrent exacerbations, which negatively impact prognosis and quality of life, and can impose a significant socioeconomic burden on the individual and wider society. Immunostimulants are a broad category of therapies that may theoretically enhance non-specific immunity against several respiratory insults, thereby reducing exacerbation risk and severity. However, evidence to date for their use in this population is limited. OBJECTIVES To determine the efficacy of immunostimulants in preventing respiratory exacerbations in adults with chronic obstructive pulmonary disease, chronic bronchitis, or both. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest literature search was conducted on 25 January 2022. SELECTION CRITERIA: We included parallel randomised controlled trials (RCTs) that compared immunostimulant therapy, administered by any method and with the intention of preventing (rather than treating) exacerbations, with placebo for a minimum treatment duration of one month in adults with chronic bronchitis or COPD, or both. We excluded participants with other respiratory conditions. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcomes were number of participants with no exacerbations during the study period and all-cause mortality, secondary outcomes were respiratory-related mortality, quality of life, number of participants requiring antibiotics, exacerbation duration, respiratory-related hospitalisation duration and adverse events/side effects. We used GRADE to assess certainty of evidence for each outcome. MAIN RESULTS This review included 36 studies involving 6192 participants. Studies were published between 1981 and 2015. Duration ranged from three to 14 months. The mean age of study participants varied between 35.2 and 82 years. Twelve studies examined participants with COPD only. Seventeen studies reported baseline lung function values; most indicated a moderate-to-severe degree of airflow limitation. Nineteen studies indicated inclusion of participants with a mean baseline exacerbation frequency of two or more in the preceding year. Immunostimulants investigated were OM-85, AM3, RU41740 (Biostim), Ismigen, Diribiotine CK, thymomodulin, pidotimod, D53 (Ribomunyl), Lantigen B, Symbioflor, and hyaluronan; routes of administration were oral, sublingual, and subcutaneous. The risk of bias of the included studies was mostly low or unclear. Participants receiving immunostimulants for a mean duration of six months were slightly more likely to be free of exacerbations during that time (odds ratio (OR) 1.48, 95% confidence interval (CI) 1.15 to 1.90; 15 RCTs, 2961 participants; moderate-certainty evidence). The overall number needed to treat with immunostimulants for a mean of six months, to prevent one participant from experiencing an exacerbation, was 11 (95% CI 7 to 29). This outcome was associated with a moderate degree of unexplained heterogeneity (I2 = 53%). Type of immunostimulant, baseline lung function, baseline exacerbation frequency, treatment duration, and follow-up duration did not modify the effect size, although due to heterogeneity and limited study and participant numbers within some subgroups, the validity of the subgroup treatment effect estimates were uncertain. Immunostimulants probably result in little to no difference in all-cause mortality (OR 0.64, 95% CI 0.37 to 1.10; 5 RCTs, 1558 participants; moderate-certainty evidence) and respiratory-related mortality (OR 0.40, 95% CI 0.15 to 1.07; 2 RCTs, 735 participants; low-certainty evidence) compared to placebo; however, the effects were imprecise and data quality limited the certainty of these results. There was a small improvement in health-related quality of life, as measured by the St George's Respiratory Questionnaire (SGRQ), with immunostimulant compared to placebo (mean difference -4.59, 95% CI -7.59 to -1.59; 2 RCTs, 617 participants; very-low certainty evidence). The effect estimate just met the minimum clinically important difference (MCID) score of 4 units; however, the CI width means the possibility of a non-meaningful difference cannot be excluded. The pooled result from five studies indicated that immunostimulants likely reduce the number of participants requiring antibiotics over a mean duration of six months (OR 0.34, 95% CI 0.18 to 0.63; 542 participants; moderate-certainty evidence). This outcome had a low-to-moderate degree of heterogeneity (I2 = 38%), but the direction of effect was consistent across all studies. There was no evidence of a difference in the odds of experiencing an adverse event with immunostimulant compared to placebo, over a mean duration of six months (OR 1.01, 95% CI 0.84 to 1.21; 20 RCTs, 3780 participants; high-certainty evidence). The CI limits for the associated risk ratio (RR) did not cross thresholds for appreciable harm or benefit (RR 1.02, 95% CI 0.92 to 1.13). An additional seven studies reported no events rates in either study arm. Meta-analyses were not performed for the outcomes of exacerbation duration and respiratory-related hospitalisation duration, due to high levels of heterogeneity across the included studies (exacerbation duration: I2 = 92%; respiratory-related hospitalisation duration: I2 = 83%). Results from an effect direction plot and binomial probability test for exacerbation duration indicated that a significant proportion of studies (94% (95% CI 73% to 99%); P = 0.0002) favoured intervention, possibly indicating that immunostimulants are efficacious in reducing the mean exacerbation duration compared to placebo. However, the degree of uncertainty associated with this estimate remained high due to data quality and heterogeneity. Three studies reported mean duration of respiratory-related hospitalisation, two of which demonstrated a direction of effect that favoured immunostimulant over placebo. AUTHORS' CONCLUSIONS In participants with chronic bronchitis or COPD, we are moderately confident that treatment with immunostimulants is associated with a small reduction in the likelihood of having an exacerbation and a moderate reduction in the requirement for antibiotics. Low numbers of events limit interpretation of the effect of immunostimulants on all-cause and respiratory-related mortality. We are uncertain whether immunostimulants improve quality of life, and whether they are associated with a reduction in exacerbation and respiratory-related hospitalisation durations, although immunostimulants were generally associated with a positive effect direction in the studies that examined these outcomes. Immunostimulants appear to be safe and well-tolerated, and are not associated with an increased risk of adverse events.
Collapse
Affiliation(s)
| | - Phillippa Poole
- Department of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Berber A, Del-Río-Navarro BE, Reyes-Noriega N, Sienra-Monge JJL. Immunostimulants for preventing respiratory tract infection in children: A systematic review and meta-analysis. World Allergy Organ J 2022; 15:100684. [PMID: 36185547 PMCID: PMC9483654 DOI: 10.1016/j.waojou.2022.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/21/2022] [Accepted: 07/22/2022] [Indexed: 11/14/2022] Open
Abstract
Childhood acute respiratory tract infections (ARTIs) are a significant cause of morbidity and mortality, so, immunostimulants have been used as a preventative measure. Despite this, there is no updated evidence regarding the safety and efficacy of immunostimulant drugs for this purpose. This study aimed to determine the effectiveness and safety of immunostimulants in preventing ARTIs in children based on the most recent scientific evidence. Data sources such as PubMed, Cochrane Central Register of Controlled Trials, Embase, Google Scholar, and Scopus were searched from 1965 to 10 January 2022 to identify randomized controlled trials (RCTs) comparing immunostimulants administered by any method, with placebo to prevent ARTIs on children under 18 years of age without immunodeficiencies, anatomical, genetic, or allergic conditions. In order to analyze data from the studies, we used Review Manager 5.4 (The Cochrane Collaboration, 2020), assessed the certainty of the evidence with Grading of Recommendations, Assessment, Development and Evaluations (GRADE), and assessed the quality and risk of bias of the studies using the RoB tool 1.0. Further, outcomes were combined and analyzed using meta-analysis, subgroup analysis, and sensitivity analysis. Throughout the review, we included 72 placebo-controlled clinical trials involving 12,229 children. The meta-analyses, however, included only 38 studies (52.8%) with 4643 children (38% of the total) with data on mean number of ARTIs. These studies demonstrated a reduction in the ARTIs (MD –1.12 [95%CI –1.39 to −0.85]) and ratio of means of ARTIs (0.61 [95%CI 0.54–0.69]), corresponding to a percentage reduction of 39% (95%CI, 46%–31%) with moderate-quality data. Nevertheless, since there was considerable to substantial heterogeneity and bias was unclear in all domains in 32 out of 72 trials, the quality of the evidence for efficacy was deemed low. Only 14 trials reported adverse events. The review indicates that immunostimulants reduce the incidence of ARTIs by 40% on average in susceptible children, despite low-quality evidence, heterogeneity, and the possibility of publication bias. However, further studies are needed to establish immunostimulants' safety and efficacy profiles. This review was conducted without the support of any funding and has no registered number.
Collapse
Affiliation(s)
- Arturo Berber
- External Collaborator of the Hospital Infantil de México Federico Gómez, Mexico
| | | | - Nayely Reyes-Noriega
- Allergy and Immunology Department of the Hospital Infantil de México Federico Gómez, Mexico
| | | |
Collapse
|
5
|
Gardner G, Fraker CA. Natural Killer Cells as Key Mediators in Type I Diabetes Immunopathology. Front Immunol 2021; 12:722979. [PMID: 34489972 PMCID: PMC8417893 DOI: 10.3389/fimmu.2021.722979] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/05/2021] [Indexed: 01/03/2023] Open
Abstract
The immunopathology of type I diabetes (T1D) presents a complicated case in part because of the multifactorial origin of this disease. Typically, T1D is thought to occur as a result of autoimmunity toward islets of Langerhans, resulting in the destruction of insulin-producing cells (β cells) and thus lifelong reliance on exogenous insulin. However, that explanation obscures much of the underlying mechanism, and the actual precipitating events along with the associated actors (latent viral infection, diverse immune cell types and their roles) are not completely understood. Notably, there is a malfunctioning in the regulation of cytotoxic CD8+ T cells that target endocrine cells through antigen-mediated attack. Further examination has revealed the likelihood of an imbalance in distinct subpopulations of tolerogenic and cytotoxic natural killer (NK) cells that may be the catalyst of adaptive immune system malfunction. The contributions of components outside the immune system, including environmental factors such as chronic viral infection also need more consideration, and much of the recent literature investigating the origins of this disease have focused on these factors. In this review, the details of the immunopathology of T1D regarding NK cell disfunction is discussed, along with how those mechanisms stand within the context of general autoimmune disorders. Finally, the rarer cases of latent autoimmune, COVID-19 (viral), and immune checkpoint inhibitor (ICI) induced diabetes are discussed as their exceptional pathology offers insight into the evolution of the disease as a whole.
Collapse
Affiliation(s)
| | - Christopher A. Fraker
- Tissue and Biomedical Engineering Laboratory, Leonard M. Miller School of Medicine, Diabetes Research Institute, University of Miami, Miami, FL, United States
| |
Collapse
|
6
|
Murdaca G, Greco M, Borro M, Gangemi S. Hygiene hypothesis and autoimmune diseases: A narrative review of clinical evidences and mechanisms. Autoimmun Rev 2021; 20:102845. [PMID: 33971339 DOI: 10.1016/j.autrev.2021.102845] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022]
Abstract
Since the start of the "modern era", characterized by the increase in urbanization, a progressive attention to hygiene and autoimmune conditions has considerably grown. Although these diseases are often multifactorial, it was demonstrated that environment factors such as pollution, diet and lifestyles may play a crucial role together with genetic signature. Our research, based on the newest and most significant literature of this topic, highlights that the progressive depletion of microbes and parasites due to increased socioeconomic improvement, may lead to a derangement of immunoregulatory mechanisms. Moreover, special attention was given to the complex interplay between microbial agents, as gut microbiome, diet and vitamin D supplementation with the aim of identifying promising future therapeutic options. In conclusion, autoimmunity cannot be limited to hygiene-hypothesis, but from the point of view of precision medicine, this theory represents a fundamental element together with the study of genomics, the microbiome and proteomics, in order to understand the complex functioning of the immune system.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Monica Greco
- Internal Medicine Department, San Paolo Hospital, 17100 Savona, Italy
| | - Matteo Borro
- Internal Medicine Department, San Paolo Hospital, 17100 Savona, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
7
|
Bach JF. Revisiting the Hygiene Hypothesis in the Context of Autoimmunity. Front Immunol 2021; 11:615192. [PMID: 33584703 PMCID: PMC7876226 DOI: 10.3389/fimmu.2020.615192] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Initially described for allergic diseases, the hygiene hypothesis was extended to autoimmune diseases in the early 2000s. A historical overview allows appreciation of the development of this concept over the last two decades and its discussion in the context of evolution. While the epidemiological data are convergent, with a few exceptions, the underlying mechanisms are multiple and complex. A major question is to determine what is the respective role of pathogens, bacteria, viruses, and parasites, versus commensals. The role of the intestinal microbiota has elicited much interest, but is it a cause or a consequence of autoimmune-mediated inflammation? Our hypothesis is that both pathogens and commensals intervene. Another question is to dissect what are the underlying cellular and molecular mechanisms. The role of immunoregulatory cytokines, in particular interleukin-10 and TGF beta is probably essential. An important place should also be given to ligands of innate immunity receptors present in bacteria, viruses or parasites acting independently of their immunogenicity. The role of Toll-Like Receptor (TLR) ligands is well documented including via TLR ligand desensitization.
Collapse
Affiliation(s)
- Jean-François Bach
- Université de Paris, Paris, France.,INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Academie des Sciences, Paris, France
| |
Collapse
|
8
|
Czaja AJ. Examining pathogenic concepts of autoimmune hepatitis for cues to future investigations and interventions. World J Gastroenterol 2019; 25:6579-6606. [PMID: 31832000 PMCID: PMC6906207 DOI: 10.3748/wjg.v25.i45.6579] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multiple pathogenic mechanisms have been implicated in autoimmune hepatitis, but they have not fully explained susceptibility, triggering events, and maintenance or escalation of the disease. Furthermore, they have not identified a critical defect that can be targeted. The goals of this review are to examine the diverse pathogenic mechanisms that have been considered in autoimmune hepatitis, indicate investigational opportunities to validate their contribution, and suggest interventions that might evolve to modify their impact. English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. Genetic and epigenetic factors can affect susceptibility by influencing the expression of immune regulatory genes. Thymic dysfunction, possibly related to deficient production of programmed cell death protein-1, can allow autoreactive T cells to escape deletion, and alterations in the intestinal microbiome may help overcome immune tolerance and affect gender bias. Environmental factors may trigger the disease or induce epigenetic changes in gene function. Molecular mimicry, epitope spread, bystander activation, neo-antigen production, lymphocytic polyspecificity, and disturbances in immune inhibitory mechanisms may maintain or escalate the disease. Interventions that modify epigenetic effects on gene expression, alter intestinal dysbiosis, eliminate deleterious environmental factors, and target critical pathogenic mechanisms are therapeutic possibilities that might reduce risk, individualize management, and improve outcome. In conclusion, diverse pathogenic mechanisms have been implicated in autoimmune hepatitis, and they may identify a critical factor or sequence that can be validated and used to direct future management and preventive strategies.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States
| |
Collapse
|
9
|
Fraser A, Poole P. Immunostimulants versus placebo for preventing exacerbations in adults with chronic bronchitis or chronic obstructive pulmonary disease. Hippokratia 2019. [DOI: 10.1002/14651858.cd013343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Phillippa Poole
- University of Auckland; Department of Medicine; Private Bag 92019 Auckland New Zealand
| |
Collapse
|
10
|
Epigenetic regulation of Toll-like receptors and its roles in type 1 diabetes. J Mol Med (Berl) 2018; 96:741-751. [PMID: 30003291 DOI: 10.1007/s00109-018-1660-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022]
Abstract
The immune system can be divided into adaptive immunity and innate immunity. Adaptive immunity has been confirmed to be involved in the pathogenesis of autoimmune diseases, including type 1 diabetes (T1D). However, the role of innate immunity in T1D has only been studied recently. T1D is caused by selective autoimmune destruction of pancreatic islet β cells. A series of studies have suggested that TLRs play a critical role in the pathogenesis of T1D. Aberrant TLR signaling will change immune homeostasis and result in immunopathological conditions such as endotoxin shock and autoimmune responses. Thus, TLR signaling pathways are supposed to be strictly and finely regulated. Epigenetics has recently been proven to be a new regulator of TLR expression. DNA methylation, histone modification, and microRNAs are the three main epigenetic modifications. This review will mainly focus on these epigenetic mechanisms of regulation of TLRs and the role of TLRs in the pathogenesis of T1D.
Collapse
|
11
|
The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat Rev Immunol 2017; 18:105-120. [PMID: 29034905 DOI: 10.1038/nri.2017.111] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of autoimmune diseases has been steadily rising. Concomitantly, the incidence of most infectious diseases has declined. This observation gave rise to the hygiene hypothesis, which postulates that a reduction in the frequency of infections contributes directly to the increase in the frequency of autoimmune and allergic diseases. This hypothesis is supported by robust epidemiological data, but the underlying mechanisms are unclear. Pathogens are known to be important, as autoimmune disease is prevented in various experimental models by infection with different bacteria, viruses and parasites. Gut commensal bacteria also play an important role: dysbiosis of the gut flora is observed in patients with autoimmune diseases, although the causal relationship with the occurrence of autoimmune diseases has not been established. Both pathogens and commensals act by stimulating immunoregulatory pathways. Here, I discuss the importance of innate immune receptors, in particular Toll-like receptors, in mediating the protective effect of pathogens and commensals on autoimmunity.
Collapse
|
12
|
Luo XM, Edwards MR, Reilly CM, Mu Q, Ahmed SA. Diet and Microbes in the Pathogenesis of Lupus. Lupus 2017. [DOI: 10.5772/68110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Adjuvant treatment with the bacterial lysate (OM-85) improves management of atopic dermatitis: A randomized study. PLoS One 2017; 12:e0161555. [PMID: 28333952 PMCID: PMC5363804 DOI: 10.1371/journal.pone.0161555] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022] Open
Abstract
Background Environmental factors play a major role on atopic dermatitis (AD) which shows a constant rise in prevalence in western countries over the last decades. The Hygiene Hypothesis suggesting an inverse relationship between incidence of infections and the increase in atopic diseases in these countries, is one of the working hypothesis proposed to explain this trend. Objective This study tested the efficacy and safety of oral administration of the bacterial lysate OM-85 (Broncho-Vaxom®, Broncho-Munal®, Ommunal®, Paxoral®, Vaxoral®), in the treatment of established AD in children. Methods Children aged 6 months to 7 years, with confirmed AD diagnosis, were randomized in a double-blind, placebo-controlled trial to receive, in addition to conventional treatment with emollients and topical corticosteroids, 3.5mg of the bacterial extract OM-85 or placebo daily for 9 months. The primary end-point was the difference between groups in the occurrence of new flares (NF) during the study period, evaluated by Hazard Ratio (HR) derived from conditional Cox proportional hazard regression models accounting for repeated events. Results Among the 179 randomized children, 170 were analysed, 88 in the OM-85 and 82 in the placebo group. As expected most children in both treatment groups experienced at least 1 NF during the study period (75 (85%) patients in the OM-85 group and 72 (88%) in the placebo group). Patients treated with OM-85 as adjuvant therapy had significantly fewer and delayed NFs (HR of repeated flares = 0.80; 95% confidence interval (CI): 0.67–0.96), also when potential confounding factors, as family history of atopy and corticosteroids use, were taken into account (HR = 0.82; 95% CI: 0.69–0.98). No major side effect was reported, with comparable and good tolerability for OM-85 and placebo. Conclusions Results show an adjuvant therapeutic effect of a well standardized bacterial lysate OM-85 on established AD.
Collapse
|
14
|
Antibiotics, gut microbiota, environment in early life and type 1 diabetes. Pharmacol Res 2017; 119:219-226. [PMID: 28188825 DOI: 10.1016/j.phrs.2017.01.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 12/21/2022]
Abstract
The gut microbiota interact with innate immune cells and play an important role in shaping the immune system. Many factors may influence the composition of the microbiota such as mode of birth, diet, infections and medication including antibiotics. In diseases with a multifactorial etiology, like type 1 diabetes, manipulation and alterations of the microbiota in animal models have been shown to influence the incidence and onset of disease. The microbiota are an important part of the internal environment and understanding how these bacteria interact with the innate immune cells to generate immune tolerance may open up opportunities for development of new therapeutic strategies. In this review, we discuss recent findings in relation to the microbiota, particularly in the context of type 1 diabetes.
Collapse
|
15
|
Gitelman SE, Bluestone JA. Regulatory T cell therapy for type 1 diabetes: May the force be with you. J Autoimmun 2016; 71:78-87. [DOI: 10.1016/j.jaut.2016.03.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 12/14/2022]
|
16
|
Madan JC. Neonatal Gastrointestinal and Respiratory Microbiome in Cystic Fibrosis: Potential Interactions and Implications for Systemic Health. Clin Ther 2016; 38:740-6. [PMID: 26973296 DOI: 10.1016/j.clinthera.2016.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE The gastrointestinal microbiome plays a critical role in nutrition and metabolic and immune functions in infants and young children and has implications for lifelong health. Cystic fibrosis (CF) transmembrane conductance regulator (CFTR) mutations in CF result in viscous mucous production, frequent exposure to antibiotics, and atypical colonization patterns, resulting in an evolving dysbiosis of the gastrointestinal and respiratory microsystems; dysbiosis in CF results in systemic inflammation, chronic infection, and dysregulation of immune function. Dysbiosis in both the respiratory system and gut contributes to undernutrition, growth failure, and long-term respiratory and systemic morbidity in infants and children with CF. Understanding the role that the gut and respiratory microbiome plays in health or disease progression in CF will afford opportunities to better identify interventions to affect clinical changes. METHODS Summary was done of the pertinent literature in CF and the study of the microbiome and probiotics. FINDINGS New studies have identified bacteria in the respiratory tract in CF that are typically members of the intestinal microbiota, and enteral exposures to breast milk and probiotics are associated with prolonged periods of respiratory stability in CF. IMPLICATIONS Understanding the complex interactions between the CFTR mutations, microbial colonization, and mucosal and systemic immunity is of major importance to inform new treatment strategies (such as restoring a healthier microbiome with probiotics or dietary interventions) to improve nutritional status and immune competence and to decrease morbidity and mortality in CF.
Collapse
Affiliation(s)
- Juliette C Madan
- Division of Neonatology, Department of Pediatrics, Children's Hospital at Dartmouth, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.
| |
Collapse
|
17
|
Diagnosis and Management of Recurrent Respiratory Tract Infections in Children: A Practical Guide. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2015. [DOI: 10.5812/pedinfect.31039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Lee CH, Li TC, Tsai CI, Lin SY, Lee IT, Lee HJ, Wu YC, Su YC. Association between Albuminuria and Different Body Constitution in Type 2 Diabetes Patients: Taichung Diabetic Body Constitution Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:603048. [PMID: 26587046 PMCID: PMC4637481 DOI: 10.1155/2015/603048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/04/2015] [Indexed: 11/17/2022]
Abstract
Objective. Albuminuria in type 2 diabetes mellitus (T2DM) patients increases the risk of diabetic nephropathy, the leading cause of end-stage renal disease worldwide. Because albuminuria is modifiable, identifying relevant risk factors could facilitate prevention and/or management. This cross-sectional study investigated whether body constitution (BC) independently predicts albuminuria. Method. Patients with T2DM (n = 846) received urinalysis, a blood test, and diabetic retinopathy examination. Albuminuria was defined by an elevated urinary albumin/creatinine ratio (≥30 μg/mg). BC type (Yang deficiency, Yin deficiency, and Phlegm stasis) was assessed using a body constitution questionnaire (BCQ). Traditional risk factors for albuminuria were also recorded. Odds ratios (ORs) of albuminuria for BC were estimated using multivariate logistic regression. Results. Albuminuria was more prevalent in patients with Yang deficiency or Phlegm stasis (both P < 0.01). After adjustment, patients with both Yang deficiency and Phlegm stasis exhibited a significantly higher risk of albuminuria (OR = 3.037; 95% confidence interval = 1.572-5.867, and P < 0.001). Conclusion. BC is strongly associated with albuminuria in T2DM patients. Using a BCQ to assess BC is noninvasive, convenient, and inexpensive and can provide information for health care professionals to identify T2DM patients who are at a high risk of albuminuria.
Collapse
Affiliation(s)
- Cheng-Hung Lee
- Graduate Institute of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Traditional Chinese Medicine, Han Ming Hospital, Changhua 50072, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Tsai-Chung Li
- Graduate Institute of Biostatistics, China Medical University, Taichung 40402, Taiwan
- Department of Health Administration, College of Health Science, Asian University, Taichung 41354, Taiwan
| | - Chia-I Tsai
- Department of Traditional Chinese Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Shih-Yi Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - I-Te Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Hsin-Jung Lee
- Division of New Drugs, Center for Drug Evaluation, Taipei 11557, Taiwan
| | - Ya-Chi Wu
- Division of New Drugs, Center for Drug Evaluation, Taipei 11557, Taiwan
| | - Yi-Chang Su
- Graduate Institute of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
19
|
Haurogné K, Pavlovic M, Rogniaux H, Bach JM, Lieubeau B. Type 1 Diabetes Prone NOD Mice Have Diminished Cxcr1 mRNA Expression in Polymorphonuclear Neutrophils and CD4+ T Lymphocytes. PLoS One 2015; 10:e0134365. [PMID: 26230114 PMCID: PMC4521788 DOI: 10.1371/journal.pone.0134365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/08/2015] [Indexed: 01/09/2023] Open
Abstract
In humans, CXCR1 and CXCR2 are two homologous proteins that bind ELR+ chemokines. Both receptors play fundamental roles in neutrophil functions such as migration and reactive oxygen species production. Mouse Cxcr1 and Cxcr2 genes are located in an insulin-dependent diabetes genetic susceptibility locus. The non obese diabetic (NOD) mouse is a spontaneous well-described animal model for insulin-dependent type 1 diabetes. In this disease, insulin deficiency results from the destruction of insulin-producing beta cells by autoreactive T lymphocytes. This slow-progressing disease is dependent on both environmental and genetic factors. Here, we report descriptive data about the Cxcr1 gene in NOD mice. We demonstrate decreased expression of mRNA for Cxcr1 in neutrophils and CD4+ lymphocytes isolated from NOD mice compared to other strains, related to reduced NOD Cxcr1 gene promoter activity. Looking for Cxcr1 protein, we next analyze the membrane proteome of murine neutrophils by mass spectrometry. Although Cxcr2 protein is clearly found in murine neutrophils, we did not find evidence of Cxcr1 peptides using this method. Nevertheless, in view of recently-published experimental data obtained in NOD mice, we argue for possible Cxcr1 involvement in type 1 diabetes pathogenesis.
Collapse
Affiliation(s)
- Karine Haurogné
- INRA USC1383, IECM, Nantes, France
- LUNAM Université, Oniris, EA4644, Nantes, France
| | | | | | - Jean-Marie Bach
- INRA USC1383, IECM, Nantes, France
- LUNAM Université, Oniris, EA4644, Nantes, France
| | - Blandine Lieubeau
- INRA USC1383, IECM, Nantes, France
- LUNAM Université, Oniris, EA4644, Nantes, France
| |
Collapse
|
20
|
Kearney SC, Dziekiewicz M, Feleszko W. Immunoregulatory and immunostimulatory responses of bacterial lysates in respiratory infections and asthma. Ann Allergy Asthma Immunol 2015; 114:364-9. [DOI: 10.1016/j.anai.2015.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 01/22/2023]
|
21
|
Drescher KM, von Herrath M, Tracy S. Enteroviruses, hygiene and type 1 diabetes: toward a preventive vaccine. Rev Med Virol 2014; 25:19-32. [PMID: 25430610 DOI: 10.1002/rmv.1815] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 12/24/2022]
Abstract
Enteroviruses and humans have long co-existed. Although recognized in ancient times, poliomyelitis and type 1 diabetes (T1D) were exceptionally rare and not epidemic, due in large part to poor sanitation and personal hygiene which resulted in repeated exposure to fecal-oral transmitted viruses and other infectious agents and viruses and the generation of a broad protective immunity. As a function of a growing acceptance of the benefits of hygienic practices and microbiologically clean(er) water supplies, the likelihood of exposure to diverse infectious agents and viruses declined. The effort to vaccinate against poliomyelitis demonstrated that enteroviral diseases are preventable by vaccination and led to understanding how to successfully attenuate enteroviruses. Type 1 diabetes onset has been convincingly linked to infection by numerous enteroviruses including the group B coxsackieviruses (CVB), while studies of CVB infections in NOD mice have demonstrated not only a clear link between disease onset but an ability to reduce the incidence of T1D as well: CVB infections can suppress naturally occurring autoimmune T1D. We propose here that if we can harness and develop the capacity to use attenuated enteroviral strains to induce regulatory T cell populations in the host through vaccination, then a vaccine could be considered that should function to protect against both autoimmune as well as virus-triggered T1D. Such a vaccine would not only specifically protect from certain enterovirus types but more importantly, also reset the organism's regulatory rheostat making the further development of pathogenic autoimmunity less likely.
Collapse
Affiliation(s)
- Kristen M Drescher
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA
| | | | | |
Collapse
|
22
|
Kumar V, Delovitch TL. Different subsets of natural killer T cells may vary in their roles in health and disease. Immunology 2014; 142:321-36. [PMID: 24428389 DOI: 10.1111/imm.12247] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/31/2022] Open
Abstract
Natural killer T cells (NKT) can regulate innate and adaptive immune responses. Type I and type II NKT cell subsets recognize different lipid antigens presented by CD1d, an MHC class-I-like molecule. Most type I NKT cells express a semi-invariant T-cell receptor (TCR), but a major subset of type II NKT cells reactive to a self antigen sulphatide use an oligoclonal TCR. Whereas TCR-α dominates CD1d-lipid recognition by type I NKT cells, TCR-α and TCR-β contribute equally to CD1d-lipid recognition by type II NKT cells. These variable modes of NKT cell recognition of lipid-CD1d complexes activate a host of cytokine-dependent responses that can either exacerbate or protect from disease. Recent studies of chronic inflammatory and autoimmune diseases have led to a hypothesis that: (i) although type I NKT cells can promote pathogenic and regulatory responses, they are more frequently pathogenic, and (ii) type II NKT cells are predominantly inhibitory and protective from such responses and diseases. This review focuses on a further test of this hypothesis by the use of recently developed techniques, intravital imaging and mass cytometry, to analyse the molecular and cellular dynamics of type I and type II NKT cell antigen-presenting cell motility, interaction, activation and immunoregulation that promote immune responses leading to health versus disease outcomes.
Collapse
Affiliation(s)
- Vipin Kumar
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA, USA
| | | |
Collapse
|
23
|
Pallotta MT, Orabona C, Bianchi R, Vacca C, Fallarino F, Belladonna ML, Volpi C, Mondanelli G, Gargaro M, Allegrucci M, Talesa VN, Puccetti P, Grohmann U. Forced IDO1 expression in dendritic cells restores immunoregulatory signalling in autoimmune diabetes. J Cell Mol Med 2014; 18:2082-91. [PMID: 25215657 PMCID: PMC4193887 DOI: 10.1111/jcmm.12360] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/03/2014] [Indexed: 12/20/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO1), a tryptophan catabolizing enzyme, is recognized as an authentic regulator of immunity in several physiopathologic conditions. We have recently demonstrated that IDO1 does not merely degrade tryptophan and produce immunoregulatory kynurenines, but it also acts as a signal-transducing molecule, independently of its enzymic function. IDO1 signalling activity is triggered in plasmacytoid dendritic cells (pDCs) by transforming growth factor-β (TGF-β), an event that requires the non-canonical NF-κB pathway and induces long-lasting IDO1 expression and autocrine TGF-β production in a positive feedback loop, thus sustaining a stably regulatory phenotype in pDCs. IDO1 expression and catalytic function are defective in pDCs from non-obese diabetic (NOD) mice, a prototypic model of autoimmune diabetes. In the present study, we found that TGF-β failed to activate IDO1 signalling function as well as up-regulate IDO1 expression in NOD pDCs. Moreover, TGF-β-treated pDCs failed to exert immunosuppressive properties in vivo. Nevertheless, transfection of NOD pDCs with Ido1 prior to TGF-β treatment resulted in activation of the Ido1 promoter and induction of non-canonical NF-κB and TGF-β, as well as decreased production of the pro-inflammatory cytokines, interleukin 6 (IL-6) and tumour necrosis factor-α (TNF-α). Overexpression of IDO1 in TGF-β-treated NOD pDCs also resulted in pDC ability to suppress the in vivo presentation of a pancreatic β-cell auto-antigen. Thus, our data suggest that a correction of IDO1 expression may restore its dual function and thus represent a proper therapeutic manoeuvre in this autoimmune setting.
Collapse
|
24
|
Abela AG, Fava S. Does the level of bacterial exposure in early life impact the risk of Type 1 diabetes? Expert Rev Clin Immunol 2014; 9:695-7. [PMID: 23971746 DOI: 10.1586/1744666x.2013.814410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Gülden E, Wen L. Toll-Like Receptor Activation in Immunity vs. Tolerance in Autoimmune Diabetes. Front Immunol 2014; 5:119. [PMID: 24715890 PMCID: PMC3970021 DOI: 10.3389/fimmu.2014.00119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/07/2014] [Indexed: 12/21/2022] Open
Affiliation(s)
- Elke Gülden
- Section of Endocrinology, Yale University School of Medicine , New Haven, CT , USA
| | - Li Wen
- Section of Endocrinology, Yale University School of Medicine , New Haven, CT , USA
| |
Collapse
|
26
|
Luan H, Zhang Q, Wang L, Wang C, Zhang M, Xu X, Zhou H, Li X, Xu Q, He F, Yuan J, Lv Y. OM85-BV induced the productions of IL-1β, IL-6, and TNF-α via TLR4- and TLR2-mediated ERK1/2/NF-κB pathway in RAW264.7 cells. J Interferon Cytokine Res 2014; 34:526-36. [PMID: 24605772 DOI: 10.1089/jir.2013.0077] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Broncho-Vaxom (OM85-BV) is an extract mixture from 8 strains of Gram(+) and Gram(-) bacteria and plays an important role in anti-infection immune response by regulating macrophage activity and cytokine productions. However, the mechanism by which OM85-BV enhances the cytokine expression is still obscure. In this study, we evaluated the effects of OM85-BV on the productions of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) in RAW264.7 murine macrophages. Exposure of RAW264.7 cells to 100 μg/mL OM85-BV upregulated the expression of IL-1β, IL-6, and TNF-α at the mRNA and protein levels in a time- and dose-dependent manner. In addition, OM85-BV induced extracellular signal-regulated kinase (ERK) 1/2 and nuclear factor-kappa B (NF-κB) phosphorylation. Pretreatment with U0126 or Bay11-7082, respectively, could decrease IL-1β, IL-6, and TNF-α productions induced by OM85-BV. Application of Toll-like receptor (TLR) 4 or TLR2 small-interfering RNA (siRNA) into RAW264.7 cells could inhibit the productions of cytokines and ERK1/2 and NF-κB phosphorylation induced by OM85-BV. Consistent with this, downregulating either myeloid differentiation factor 88 (MyD88) or TRIF-related adaptor molecule (TRAM) gene with MyD88-siRNA or TRAM-siRNA separately could reduce the productions of cytokines and ERK1/2 and NF-κB phosphorylation induced by OM85-BV. Our study demonstrated that the productions of IL-1β, IL-6, and TNF-α induced by OM85-BV in RAW264.7 cells were through TLR4 and TLR2 signaling pathway-mediated activation of ERK1/2 and NF-κB.
Collapse
Affiliation(s)
- Hong Luan
- 1 Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Parola C, Salogni L, Vaira X, Scutera S, Somma P, Salvi V, Musso T, Tabbia G, Bardessono M, Pasquali C, Mantovani A, Sozzani S, Bosisio D. Selective activation of human dendritic cells by OM-85 through a NF-kB and MAPK dependent pathway. PLoS One 2013; 8:e82867. [PMID: 24386121 PMCID: PMC3875422 DOI: 10.1371/journal.pone.0082867] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/06/2013] [Indexed: 01/08/2023] Open
Abstract
OM-85 (Broncho-Vaxom®, Broncho-Munal®, Ommunal®, Paxoral®, Vaxoral®), a product made of the water soluble fractions of 21 inactivated bacterial strain patterns responsible for respiratory tract infections, is used for the prevention of recurrent upper respiratory tract infections and acute exacerbations in chronic obstructive pulmonary disease patients. OM-85 is able to potentiate both innate and adaptive immune responses. However, the molecular mechanisms responsible for OM-85 activation are still largely unknown. Purpose of this study was to investigate the impact of OM-85 stimulation on human dendritic cell functions. We show that OM-85 selectively induced NF-kB and MAPK activation in human DC with no detectable action on the interferon regulatory factor (IRF) pathway. As a consequence, chemokines (i.e. CXCL8, CXCL6, CCL3, CCL20, CCL22) and B-cell activating cytokines (i.e. IL-6, BAFF and IL-10) were strongly upregulated. OM-85 also synergized with the action of classical pro-inflammatory stimuli used at suboptimal concentrations. Peripheral blood mononuclear cells from patients with COPD, a pathological condition often associated with altered PRR expression pattern, fully retained the capability to respond to OM-85. These results provide new insights on the molecular mechanisms of OM-85 activation of the immune response and strengthen the rational for its use in clinical settings.
Collapse
Affiliation(s)
- Carmen Parola
- Dept. Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Laura Salogni
- Dept. Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Xenia Vaira
- Dept. Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Sara Scutera
- Dept. Public Health and Pediatric Sciences, Università degli Studi di Torino, Torino, Italy
| | - Paolo Somma
- Dept. Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Valentina Salvi
- Dept. Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Tiziana Musso
- Dept. Public Health and Pediatric Sciences, Università degli Studi di Torino, Torino, Italy
| | - Giuseppe Tabbia
- Pulmonary Division, Ospedale S. Giovanni Battista, Torino, Italy
| | - Marco Bardessono
- Pulmonary Division, Ospedale S. Giovanni Battista, Torino, Italy
| | | | - Alberto Mantovani
- Humanitas Clinical and Research Center, Rozzano, Italy
- Dept. Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Silvano Sozzani
- Dept. Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
- Humanitas Clinical and Research Center, Rozzano, Italy
| | - Daniela Bosisio
- Dept. Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
- * E-mail:
| |
Collapse
|
28
|
De Benedetto F, Sevieri G. Prevention of respiratory tract infections with bacterial lysate OM-85 bronchomunal in children and adults: a state of the art. Multidiscip Respir Med 2013; 8:33. [PMID: 23692890 PMCID: PMC3679713 DOI: 10.1186/2049-6958-8-33] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/19/2013] [Indexed: 11/10/2022] Open
Abstract
Respiratory tract infections (RTIs) are a leading cause of morbidity and also represent a cause of death in some parts of the world. The treatment of RTIs implies a continuous search for stronger therapies and represents an economical burden for health services and society. In this context the prevention of infections is absolutely required. The use of bacterial lysates as immuno-modulators to boost immunological response is widely debated. Aim of this review is to summarize the main clinical studies on the effect of the bacterial lysate OM-85 in treating RTIs in susceptible subjects - namely children and chronic obstructive pulmonary disease (COPD)-affected adults. Results from clinical trials and recent systematic reviews are reported.The results show that mean number of RTIs decreases upon treatment with OM-85, as measured by frequency of exacerbations or number of antibiotic courses. Data from systematic reviews indicated that OM-85 is particularly beneficial in children at high risk of RTIs. In COPD-affected adults, clinical studies showed that treatment with OM-85 reduced exacerbations, although systematic reviews did not legitimate the protective effect of OM-85 toward COPD as significant.The use of OM-85 could be efficacious in reducing exacerbation frequency of RTIs in children and adults at risk. However further high-quality studies are needed to better explain the mechanism of action and confirm the beneficial results of OM85.
Collapse
Affiliation(s)
| | - Gianfranco Sevieri
- School of Specialization in RespiratoryDiseases, University of Padua, Padua, Italy
| |
Collapse
|
29
|
Hansen CH, Metzdorff SB, Hansen AK. Customizing laboratory mice by modifying gut microbiota and host immunity in an early "window of opportunity". Gut Microbes 2013; 4:241-5. [PMID: 23549457 PMCID: PMC3669170 DOI: 10.4161/gmic.23999] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We recently investigated how post-natal microbial gut colonization is important for the development of the immune system, especially in the systemic compartments. This addendum presents additional data which in accordance with our previous findings show that early life microbial colonization is critical for a fine-tuned immune homeostasis to develop also in the intestinal environment. A generalized reduction in the expression of immune signaling related genes in the small intestine may explain previously shown increased systemic adaptive immune reactivity, if the regulatory cross-talk between intra- and extra-intestinal immune cells is immature following a neonatal germ-free period. These findings are furthermore discussed in the context of recently published results on how lack of microbial exposure in the neonatal life modifies disease expression in rodents used as models mimicking human inflammatory diseases. In particular, with a focus on how these interesting findings could be used to optimize the use of rodent models.
Collapse
|
30
|
Herold KC, Vignali DAA, Cooke A, Bluestone JA. Type 1 diabetes: translating mechanistic observations into effective clinical outcomes. Nat Rev Immunol 2013; 13:243-56. [PMID: 23524461 PMCID: PMC4172461 DOI: 10.1038/nri3422] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Type 1 diabetes (T1D) remains an important health problem, particularly in western countries, where the incidence has been increasing in younger children. In 1986, Eisenbarth described T1D as a chronic autoimmune disease. Work over the past three-and-a-half decades has identified many of the genetic, immunological and environmental factors that are involved in the disease and have led to hypotheses concerning its pathogenesis. Clinical trials have been conducted to test these hypotheses but have had mixed results. Here, we discuss the findings that have led to our current concepts of the disease mechanisms involved in T1D and the clinical studies promoted by these studies. The findings from preclinical and clinical studies support the original proposed model for how T1D develops but have also suggested that this disease is more complex than was originally thought and will require broader treatment approaches.
Collapse
Affiliation(s)
- Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, Connecticut 06520, USA.
| | | | | | | |
Collapse
|
31
|
Del-Rio-Navarro BE, Espinosa-Rosales FJ, Flenady V, Sienra-Monge JJL. Cochrane Review: Immunostimulants for preventing respiratory tract infection in children. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/ebch.1833] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Caramalho I, Rodrigues-Duarte L, Perez A, Zelenay S, Penha-Gonçalves C, Demengeot J. Regulatory T cells contribute to diabetes protection in lipopolysaccharide-treated non-obese diabetic mice. Scand J Immunol 2011; 74:585-95. [PMID: 21916921 DOI: 10.1111/j.1365-3083.2011.02627.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is well established that viral, parasitic or bacterial infections can prevent type 1 diabetes (T1D) occurrence in non-obese diabetic (NOD) mice. On the other hand, defects in CD4(+) Regulatory T cell (Treg) numbers and/or function contribute to T1D aetiology in NOD mice and in humans. In this work, we formally tested whether the protective role of the bacterial product lipopolysaccharide (LPS) on diabetes incidence results from enhanced Treg activity. We first report that weekly administration of LPS to young prediabetic NOD mice, presenting or not insulitis at the time of treatment, afforded full protection from diabetes. Taking advantage from the high but incomplete penetrance of diabetes in NOD mice raised in specific pathogen free (SPF) conditions we compared untreated disease-free old animals with gender- and age-matched LPS-treated mice. Histological and flow cytometry analysis indicated that LPS treatment did not prevent islet infiltration or priming of diabetogenic T cells but increased Foxp3(+) and CD103(+) Treg frequency and numbers. By performing adoptive transfer experiments into alymphoid NOD/SCID recipients, we further demonstrated that CD25(+) cells from LPS-treated NOD mice, but not from naturally protected animals, maintained diabetogenic cells at check. Our study suggests that T cell regulation represents a cellular mechanism to explain the 'hygiene hypothesis' and reinforces the notion that immune activity consolidates dominant tolerance.
Collapse
Affiliation(s)
- I Caramalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | | | | | | | | | | |
Collapse
|
33
|
Boerner BP, Sarvetnick NE. Type 1 diabetes: role of intestinal microbiome in humans and mice. Ann N Y Acad Sci 2011; 1243:103-18. [DOI: 10.1111/j.1749-6632.2011.06340.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 2011; 6:e25792. [PMID: 22043294 PMCID: PMC3197175 DOI: 10.1371/journal.pone.0025792] [Citation(s) in RCA: 559] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 09/11/2011] [Indexed: 12/12/2022] Open
Abstract
Recent studies have suggested a bacterial role in the development of autoimmune disorders including type 1 diabetes (T1D). Over 30 billion nucleotide bases of Illumina shotgun metagenomic data were analyzed from stool samples collected from four pairs of matched T1D case-control subjects collected at the time of the development of T1D associated autoimmunity (i.e., autoantibodies). From these, approximately one million open reading frames were predicted and compared to the SEED protein database. Of the 3,849 functions identified in these samples, 144 and 797 were statistically more prevalent in cases and controls, respectively. Genes involved in carbohydrate metabolism, adhesions, motility, phages, prophages, sulfur metabolism, and stress responses were more abundant in cases while genes with roles in DNA and protein metabolism, aerobic respiration, and amino acid synthesis were more common in controls. These data suggest that increased adhesion and flagella synthesis in autoimmune subjects may be involved in triggering a T1D associated autoimmune response. Extensive differences in metabolic potential indicate that autoimmune subjects have a functionally aberrant microbiome. Mining 16S rRNA data from these datasets showed a higher proportion of butyrate-producing and mucin-degrading bacteria in controls compared to cases, while those bacteria that produce short chain fatty acids other than butyrate were higher in cases. Thus, a key rate-limiting step in butyrate synthesis is more abundant in controls. These data suggest that a consortium of lactate- and butyrate-producing bacteria in a healthy gut induce a sufficient amount of mucin synthesis to maintain gut integrity. In contrast, non-butyrate-producing lactate-utilizing bacteria prevent optimal mucin synthesis, as identified in autoimmune subjects.
Collapse
|
35
|
Hall SW, Cooke A. Autoimmunity and inflammation: murine models and translational studies. Mamm Genome 2011; 22:377-89. [PMID: 21688192 DOI: 10.1007/s00335-011-9338-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/26/2011] [Indexed: 12/26/2022]
Abstract
Autoimmune and inflammatory diseases, including type 1 diabetes, multiple sclerosis, inflammatory bowel disease, and rheumatoid arthritis, constitute an important and growing public health burden. However, in many cases our understanding of disease biology is limited and available therapies vary greatly in their efficacy and safety. Animal models of autoimmune and inflammatory diseases have provided valuable tools to researchers investigating their aetiology, pathology, and novel therapeutic strategies. Although such models vary in the degree to which they reflect human autoimmune and inflammatory diseases and caution is required in the extrapolation of animal data to the clinical setting, therapeutic approaches first evaluated in established animal models, including collagen-induced arthritis, experimental autoimmune encephalomyelitis, and the nonobese diabetic mouse, have successfully progressed to clinical investigation and practice. Similarly, these models have proven useful in providing support for basic hypotheses regarding the underlying causes and pathology of autoimmune and inflammatory diseases. Here we review selected murine models of autoimmunity and inflammation and efforts to translate findings from these models into both basic insights into disease biology and novel therapeutic strategies.
Collapse
Affiliation(s)
- Samuel W Hall
- Department of Pathology, University of Cambridge, UK.
| | | |
Collapse
|
36
|
OdDHL inhibits T cell subset differentiation and delays diabetes onset in NOD mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1213-20. [PMID: 21653742 DOI: 10.1128/cvi.00032-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Some infectious diseases have been shown to halt the onset of autoimmune disease in animal models and have been suggested to also influence autoimmune pathology in humans. The isolation and study of small molecules and proteins from the infectious agents responsible for the protective effect will enable a mechanistic understanding of how these components may prevent or delay the onset of autoimmunity. In this study we confirm that the quorum-sensing signal molecule OdDHL from Pseudomonas aeruginosa can delay the onset of type 1 diabetes in the NOD mouse model. Furthermore, using an antigen-presenting cell-free system, we find not only that OdDHL inhibits the proliferation of naïve T cells but also that it directly inhibits the differentiation of T cell subsets. OdDHL was shown to have no effect on the inhibition of primed and committed differentiated T cell responses, suggesting that that immune mechanism mediated by this molecule may be more restricted to initial stages of infection.
Collapse
|
37
|
Giongo A, Atkinson MA, Triplett EW. Microbiology of Type 1 diabetes: possible implications for management of the disease. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/dmt.11.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
|
39
|
Diana J, Brezar V, Beaudoin L, Dalod M, Mellor A, Tafuri A, von Herrath M, Boitard C, Mallone R, Lehuen A. Viral infection prevents diabetes by inducing regulatory T cells through NKT cell-plasmacytoid dendritic cell interplay. ACTA ACUST UNITED AC 2011; 208:729-45. [PMID: 21444661 PMCID: PMC3135349 DOI: 10.1084/jem.20101692] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease resulting from T cell-mediated destruction of insulin-producing β cells, and viral infections can prevent the onset of disease. Invariant natural killer T cells (iNKT cells) exert a regulatory role in T1D by inhibiting autoimmune T cell responses. As iNKT cell-plasmacytoid dendritic cell (pDC) cooperation controls viral replication in the pancreatic islets, we investigated whether this cellular cross talk could interfere with T1D development during viral infection. Using both virus-induced and spontaneous mouse models of T1D, we show that upon viral infection, iNKT cells induce TGF-β-producing pDCs in the pancreatic lymph nodes (LNs). These tolerogenic pDCs convert naive anti-islet T cells into Foxp3(+) CD4(+) regulatory T cells (T reg cells) in pancreatic LNs. T reg cells are then recruited into the pancreatic islets where they produce TGF-β, which dampens the activity of viral- and islet-specific CD8(+) T cells, thereby preventing T1D development in both T1D models. These findings reveal a crucial cooperation between iNKT cells, pDCs, and T reg cells for prevention of T1D by viral infection.
Collapse
Affiliation(s)
- Julien Diana
- Institut National de la Santé et de la Recherche Médicale Unité 986, Hôpital Cochin/St Vincent de Paul, 75674 Paris, Cedex 14, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Boosting airway T-regulatory cells by gastrointestinal stimulation as a strategy for asthma control. Mucosal Immunol 2011; 4:43-52. [PMID: 20668438 DOI: 10.1038/mi.2010.43] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The hallmark of atopic asthma is transient airways hyperresponsiveness (AHR) preceded by aeroallergen-induced Th-cell activation. This is preceded by upregulation of CD86 on resident airway dendritic cells (DCs) that normally lack competence in T-cell triggering. Moreover, AHR duration is controlled via T-regulatory (Treg) cells, which can attenuate CD86 upregulation on DC. We show that airway mucosal Treg/DC interaction represents an accessible therapeutic target for asthma control. Notably, baseline airway Treg activity in sensitized rats can be boosted by microbe-derived stimulation of the gut, resulting in enhanced capacity to control CD86 expression on airway DC triggered by aeroallergen and accelerated resolution of AHR.
Collapse
|
41
|
Villa E, Garelli V, Braido F, Melioli G, Canonica GW. May we strengthen the human natural defenses with bacterial lysates? World Allergy Organ J 2010; 3:S17-23. [PMID: 23282746 PMCID: PMC3666147 DOI: 10.1097/wox.0b013e3181ee0cfd] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
During the last twenty years bacterial lysates have gained a new interest and their use has obtained a progressively larger consensus in the medical practice. They are commonly used as immunomodulators, in order to up-regulate immune responses against infectious damages. As a matter of fact, the role of these lysate seems relevant in upper and lower respiratory tract infections prevention, frequently observed both in paediatric and elder ages, and which represent a relevant problem also in terms of socio-economical implications. The effects of bacterial lysates as immunostimulatory agents have become the central point of many studies. The aim of those in vivo and in vitro studies was to understand and evaluate the capacity of this kind of treatments to create a better answer of the immune system against microbial infections, eventually leading to a reduction in their number. All the in vivo and in vitro findings analyzed support the evidence that bacterial lysates are powerful inducers of a specific immune response against bacterial infections. Both in paediatric and adult clinical trials, a positive trend has been found in terms of overall reduction of infection rates and duration, beneficial effect on symptoms, reduction in antibiotics use and possibility to improve the patient's quality of life in several diseases. Further well-designed trials in terms of blinding and randomization procedures and including a higher number of patients, selected according to the disease and its severity, are needed.
Collapse
Affiliation(s)
- Elisa Villa
- Allergy Respiratory Disease Department, Department of
Internal Medicine (DiMI), University of Genova, Italy
| | - Valentina Garelli
- Allergy Respiratory Disease Department, Department of
Internal Medicine (DiMI), University of Genova, Italy
| | - Fulvio Braido
- Allergy Respiratory Disease Department, Department of
Internal Medicine (DiMI), University of Genova, Italy
| | - Giovanni Melioli
- Central Laboratory of Analysis, Giannina Gaslini Institute,
Genoa, Italy
| | - Giorgio Walter Canonica
- Allergy Respiratory Disease Department, Department of
Internal Medicine (DiMI), University of Genova, Italy
| |
Collapse
|
42
|
Abstract
The development of type 1 diabetes involves a complex interaction between pancreatic beta-cells and cells of both the innate and adaptive immune systems. Analyses of the interactions between natural killer (NK) cells, NKT cells, different dendritic cell populations and T cells have highlighted how these different cell populations can influence the onset of autoimmunity. There is evidence that infection can have either a potentiating or inhibitory role in the development of type 1 diabetes. Interactions between pathogens and cells of the innate immune system, and how this can influence whether T cell activation or tolerance occurs, have been under close scrutiny in recent years. This Review focuses on the nature of this crosstalk between the innate and the adaptive immune responses and how pathogens influence the process.
Collapse
|
43
|
Aumeunier A, Grela F, Ramadan A, Pham Van L, Bardel E, Gomez Alcala A, Jeannin P, Akira S, Bach JF, Thieblemont N. Systemic Toll-like receptor stimulation suppresses experimental allergic asthma and autoimmune diabetes in NOD mice. PLoS One 2010; 5:e11484. [PMID: 20628601 PMCID: PMC2900205 DOI: 10.1371/journal.pone.0011484] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 06/11/2010] [Indexed: 01/07/2023] Open
Abstract
Background Infections may be associated with exacerbation of allergic and autoimmune diseases. Paradoxically, epidemiological and experimental data have shown that some microorganisms can also prevent these pathologies. This observation is at the origin of the hygiene hypothesis according to which the decline of infections in western countries is at the origin of the increased incidence of both Th1-mediated autoimmune diseases and Th2-mediated allergic diseases over the last decades. We have tested whether Toll-like receptor (TLR) stimulation can recapitulate the protective effect of infectious agents on allergy and autoimmunity. Methods and Findings Here, we performed a systematic study of the disease-modifying effects of a set of natural or synthetic TLR agonists using two experimental models, ovalbumin (OVA)-induced asthma and spontaneous autoimmune diabetes, presenting the same genetic background of the non obese diabetic mouse (NOD) that is highly susceptible to both pathologies. In the same models, we also investigated the effect of probiotics. Additionally, we examined the effect of the genetic invalidation of MyD88 on the development of allergic asthma and spontaneous diabetes. We demonstrate that multiple TLR agonists prevent from both allergy and autoimmunity when administered parenterally. Probiotics which stimulate TLRs also protect from these two diseases. The physiological relevance of these findings is further suggested by the major acceleration of OVA-induced asthma in MyD88 invalidated mice. Our results strongly indicate that the TLR-mediated effects involve immunoregulatory cytokines such as interleukin (IL)-10 and transforming growth factor (TGF)-β and different subsets of regulatory T cells, notably CD4+CD25+FoxP3+ T cells for TLR4 agonists and NKT cells for TLR3 agonists. Conclusions/Significance These observations demonstrate that systemic administration of TLR ligands can suppress both allergic and autoimmune responses. They provide a plausible explanation for the hygiene hypothesis. They also open new therapeutic perspectives for the prevention of these pathologies.
Collapse
Affiliation(s)
- Aude Aumeunier
- Université Paris Descartes, Paris, France
- CNRS, UMR8147, Paris, France
| | - Françoise Grela
- Université Paris Descartes, Paris, France
- CNRS, UMR8147, Paris, France
| | | | - Linh Pham Van
- Université Paris Descartes, Paris, France
- CNRS, UMR8147, Paris, France
| | - Emilie Bardel
- Université Paris Descartes, Paris, France
- CNRS, UMR8147, Paris, France
| | | | | | - Shizuo Akira
- Department of Host Defense, Osaka University, Osaka, Japan
| | | | | |
Collapse
|
44
|
Okada H, Kuhn C, Feillet H, Bach JF. The 'hygiene hypothesis' for autoimmune and allergic diseases: an update. Clin Exp Immunol 2010; 160:1-9. [PMID: 20415844 DOI: 10.1111/j.1365-2249.2010.04139.x] [Citation(s) in RCA: 716] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
According to the 'hygiene hypothesis', the decreasing incidence of infections in western countries and more recently in developing countries is at the origin of the increasing incidence of both autoimmune and allergic diseases. The hygiene hypothesis is based upon epidemiological data, particularly migration studies, showing that subjects migrating from a low-incidence to a high-incidence country acquire the immune disorders with a high incidence at the first generation. However, these data and others showing a correlation between high disease incidence and high socio-economic level do not prove a causal link between infections and immune disorders. Proof of principle of the hygiene hypothesis is brought by animal models and to a lesser degree by intervention trials in humans. Underlying mechanisms are multiple and complex. They include decreased consumption of homeostatic factors and immunoregulation, involving various regulatory T cell subsets and Toll-like receptor stimulation. These mechanisms could originate, to some extent, from changes in microbiota caused by changes in lifestyle, particularly in inflammatory bowel diseases. Taken together, these data open new therapeutic perspectives in the prevention of autoimmune and allergic diseases.
Collapse
Affiliation(s)
- H Okada
- INSERM U1013, Necker-Enfants Malades Hospital, Paris, France
| | | | | | | |
Collapse
|
45
|
Chatenoud L, You S, Okada H, Kuhn C, Michaud B, Bach JF. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: immune therapies of type 1 diabetes: new opportunities based on the hygiene hypothesis. Clin Exp Immunol 2010; 160:106-12. [PMID: 20415859 DOI: 10.1111/j.1365-2249.2010.04125.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Insulin-dependent (type 1) diabetes is a prototypic organ-specific autoimmune disease resulting from the selective destruction of insulin-secreting beta cells within pancreatic islets of Langerhans by an immune-mediated inflammation involving autoreactive CD4(+) and CD8(+) T lymphocytes which infiltrate pancreatic islets. Current treatment is substitutive, i.e. chronic use of exogenous insulin which, in spite of significant advances, is still associated with major constraints (multiple daily injections, risks of hypoglycaemia) and lack of effectiveness over the long term in preventing severe degenerative complications. Finding a cure for autoimmune diabetes by establishing effective immune-based therapies is a real medical health challenge, as the disease incidence increases steadily in industrialized countries. As the disease affects mainly children and young adults, any candidate immune therapy must therefore be safe and avoid a sustained depression of immune responses with the attendant problems of recurrent infection and drug toxicity. Thus, inducing or restoring immune tolerance to target autoantigens, controlling the pathogenic response while preserving the host reactivity to exogenous/unrelated antigens, appears to be the ideal approach. Our objective is to review the major progress accomplished over the last 20 years towards that aim. In addition, we would like to present another interesting possibility to access new preventive strategies based on the 'hygiene hypothesis', which proposes a causal link between the increasing incidence of autoimmune diseases, including diabetes, and the decrease of the infectious burden. The underlying rationale is to identify microbial-derived compounds mediating the protective activity of infections which could be developed therapeutically.
Collapse
|
46
|
Abstract
Selected bacteria, viruses, parasites and nonliving, immunologically active microbial substances prevent autoimmune diabetes in animal models. Such agents might also have a protective effect in humans by providing immune stimuli critical during childhood development. The 'hygiene hypothesis' proposes that reduced exposure to environmental stimuli, including microbes, underlies the rising incidence of childhood autoimmune diseases, including type 1 diabetes mellitus (T1DM). This hypothesis is supported by data that highlight the importance of infant exposure to environmental microbes for appropriate development of the immune system, which might explain the observation that administration of microbes or their components inhibits autoimmune disease in animals. This finding raises the possibility of using live, nonpathogenic microbes (for example, probiotics) or microbial components to modulate or 're-educate' the immune system and thereby vaccinate against T1DM. Progress has been assisted by the identification of receptors and pathways through which gut microbes influence development of the immune system. Such mechanistic data have moved a field that was once regarded as being on the scientific fringe to the mainstream, and support increased funding to advance this promising area of research in the hope that it might deliver the long awaited answer of how to safely prevent T1DM.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Department of Endocrinology, Flinders Medical Centre, Flinders Drive, Bedford Park, Adelaide, SA 5042, Australia.
| |
Collapse
|
47
|
Villa E, Garelli V, Braido F, Melioli G, Canonica GW. May We Strengthen the Human Natural Defenses with Bacterial Lysates? World Allergy Organ J 2010. [DOI: 10.1186/1939-4551-3-s2-s17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
48
|
Zipris D. Toll-like receptors and type 1 diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:585-610. [PMID: 20217515 DOI: 10.1007/978-90-481-3271-3_25] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that results in the progressive loss of insulin producing cells. Studies performed in humans with T1D and animal models of the disease over the past two decades have suggested a key role for the adaptive immune system in disease mechanisms. The role of the innate immune system in triggering T1D was shown only recently. Research in this area was greatly facilitated by the discovery of toll-like receptors (TLRs) that were found to be a key component of the innate immune system that detect microbial infections and initiate antimicrobial host defense responses. New data indicate that in some situations, the innate immune system is associated with mechanisms triggering autoimmune diabetes. In fact, studies preformed in the BioBreeding Diabetes Resistant (BBDR) and LEW1.WR1 rat models of T1D demonstrate that virus infection leads to islet destruction via mechanisms that may involve TLR9-induced innate immune system activation. Data from these studies also show that TLR upregulation can synergize with virus infection to dramatically increase disease penetrance. Reports from murine models of T1D implicate both MyD88-dependent and MyD88-independent pathways in the course of disease. The new knowledge about the role of innate immune pathways in triggering islet destruction could lead to the discovery of new molecules that may be targeted for disease prevention.
Collapse
Affiliation(s)
- Danny Zipris
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW It has often been suggested that autoimmune diseases are initiated by certain infectious agents that mimic self-antigens or polyclonally activated autoreactive lymphocytes. An alternative, and not necessarily mutually exclusive, hypothesis that some infections might inhibit the onset of some autoimmune conditions has more recently been explored. In this review, the evidence suggesting that the current rise in the incidence of some autoimmune diseases is attributable to a decrease in the incidence of exposure to certain infections will be discussed. RECENT FINDINGS Studies using animal models have shown that some infectious agents or products derived from them have the potential to inhibit the onset of autoimmunity. These studies have led to the suggestion that human autoimmune or allergic diseases might be alleviated by the use of microbial products. There are some data that would support such an observation. SUMMARY The incidence of some autoimmune diseases has increased dramatically in recent years in the developed world. Many autoimmune diseases are governed by both genetic and environmental factors. Our immune system has coevolved with infectious agents. There have been marked changes in the exposure to certain infectious agents over the last 70 years. It has been proposed that certain infections of historical importance might inhibit the development of autoimmune disorder. This review highlights studies addressing the ways in which infectious agents might inhibit onset of autoimmunity, and how this might lead to the development of novel therapeutic approaches.
Collapse
|
50
|
Nikolic T, Welzen-Coppens JMC, Leenen PJM, Drexhage HA, Versnel MA. Plasmacytoid dendritic cells in autoimmune diabetes - potential tools for immunotherapy. Immunobiology 2009; 214:791-9. [PMID: 19628297 DOI: 10.1016/j.imbio.2009.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which a T-cell-mediated attack destroys the insulin-producing cells of the pancreatic islets. Despite insulin supplementation severe complications ask for novel treatments that aim at cure or delay of the onset of the disease. In spontaneous animal models for diabetes like the nonobese diabetic (NOD) mouse, distinct steps in the pathogenesis of the disease can be distinguished. In the past 10 years it became evident that DC and macrophages play an important role in all three phases of the pathogenesis of T1D. In phase 1, dendritic cells (DC) and macrophages accumulate at the islet edges. In phase 2, DC and macrophages are involved in the activation of autoreactive T cells that accumulate in the pancreas. In the third phase the islets are invaded by macrophages, DC and NK cells followed by the destruction of the beta-cells. Recent data suggest a role for a new member of the DC family: the plasmacytoid DC (pDC). pDC have been found to induce tolerance in experimental models of asthma. Several studies in humans and the NOD mouse support a similar role for pDC in diabetes. Mechanisms found to be involved in tolerance induction by pDC are inhibition of effector T cells, induction of regulatory T cells, production of cytokines and indoleamine 2,3-dioxygenase (IDO). The exact mechanism of tolerance induction by pDC in diabetes remains to be established but the intrinsic tolerogenic properties of pDC provide a promising, yet underestimated target for therapeutic intervention.
Collapse
Affiliation(s)
- Tatjana Nikolic
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|