1
|
Marsch P, Rajagopal N, Nangia S. Biophysics of claudin proteins in tight junction architecture: Three decades of progress. Biophys J 2024; 123:2363-2378. [PMID: 38859584 PMCID: PMC11365114 DOI: 10.1016/j.bpj.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/19/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
Tight junctions are cell-cell adhesion complexes that act as gatekeepers of the paracellular space. Formed by several transmembrane proteins, the claudin family performs the primary gate-keeping function. The claudin proteins form charge and size-selective diffusion barriers to maintain homeostasis across endothelial and epithelial tissue. Of the 27 known claudins in mammals, some are known to seal the paracellular space, while others provide selective permeability. The differences in permeability arise due to the varying expression levels of claudins in each tissue. The tight junctions are observed as strands in freeze-fracture electron monographs; however, at the molecular level, tight junction strands form when multiple claudin proteins assemble laterally (cis assembly) within a cell and head-on (trans assembly) with claudins of the adjacent cell in a zipper-like architecture, closing the gap between the neighboring cells. The disruption of tight junctions caused by changing claudin expression levels or mutations can lead to diseases. Therefore, knowledge of the molecular architecture of the tight junctions and how that is tied to tissue-specific function is critical for fighting diseases. Here, we review the current understanding of the tight junctions accrued over the last three decades from experimental and computational biophysics perspectives.
Collapse
Affiliation(s)
- Patrick Marsch
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| | - Nandhini Rajagopal
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York.
| |
Collapse
|
2
|
Yu Z, Liu D, Wu C, Zhao W. Intestinal absorption of bioactive oligopeptides: paracellular transport and tight junction modulation. Food Funct 2024; 15:6274-6288. [PMID: 38787733 DOI: 10.1039/d4fo00529e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Bioactive oligopeptides have gained increasing attention due to their diverse physiological functions, and these can be transported into the vasculature via transcellular and paracellular pathways. Among these, paracellular transport through the intercellular space is a passive diffusion process without energy consumption. It is currently the most frequently reported absorption route for food-derived bioactive oligopeptides. Previous work has demonstrated that paracellular pathways are mainly controlled by tight junctions, but the mechanism by which they regulate paracellular absorption of bioactive oligopeptides remains unclear. In this review, we summarized the composition of paracellular pathways across the intercellular space and elaborated on the paracellular transport mechanism of bioactive oligopeptides in terms of the interaction between oligopeptides and tight junction proteins, the protein expression level of tight junctions, the signaling pathways regulating intestinal permeability, and the properties of oligopeptides themselves. These findings contribute to a more profound understanding of the paracellular absorption of bioactive oligopeptides.
Collapse
Affiliation(s)
- Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| | - Di Liu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China
| | - Chunjian Wu
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| |
Collapse
|
3
|
Khan N, Kurnik-Łucka M, Latacz G, Gil K. Systematic-Narrative Hybrid Literature Review: Crosstalk between Gastrointestinal Renin-Angiotensin and Dopaminergic Systems in the Regulation of Intestinal Permeability by Tight Junctions. Int J Mol Sci 2024; 25:5566. [PMID: 38791603 PMCID: PMC11122119 DOI: 10.3390/ijms25105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
In the first part of this article, the role of intestinal epithelial tight junctions (TJs), together with gastrointestinal dopaminergic and renin-angiotensin systems, are narratively reviewed to provide sufficient background. In the second part, the current experimental data on the interplay between gastrointestinal (GI) dopaminergic and renin-angiotensin systems in the regulation of intestinal epithelial permeability are reviewed in a systematic manner using the PRISMA methodology. Experimental data confirmed the copresence of DOPA decarboxylase (DDC) and angiotensin converting enzyme 2 (ACE2) in human and rodent enterocytes. The intestinal barrier structure and integrity can be altered by angiotensin (1-7) and dopamine (DA). Both renin-angiotensin and dopaminergic systems influence intestinal Na+/K+-ATPase activity, thus maintaining electrolyte and nutritional homeostasis. The colocalization of B0AT1 and ACE2 indicates the direct role of the renin-angiotensin system in amino acid absorption. Yet, more studies are needed to thoroughly define the structural and functional interaction between TJ-associated proteins and GI renin-angiotensin and dopaminergic systems.
Collapse
Affiliation(s)
- Nadia Khan
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 31-008 Krakow, Poland
| | - Magdalena Kurnik-Łucka
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Gniewomir Latacz
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 31-008 Krakow, Poland
| | - Krzysztof Gil
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| |
Collapse
|
4
|
Jaiswal S, Wang F, Wu X, Chang TS, Shirazi A, Lee M, Dame MK, Spence JR, Wang TD. Near-Infrared In Vivo Imaging of Claudin-1 Expression by Orthotopically Implanted Patient-Derived Colonic Adenoma Organoids. Diagnostics (Basel) 2024; 14:273. [PMID: 38337789 PMCID: PMC10854921 DOI: 10.3390/diagnostics14030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Claudin-1 becomes overexpressed during the transformation of normal colonic mucosa to colorectal cancer (CRC). METHODS Patient-derived organoids expressed clinically relevant target levels and genetic heterogeneity, and were established from human adenoma and normal colons. Colonoids were implanted orthotopically in the colon of immunocompromised mice. This pre-clinical model of CRC provides an intact microenvironment and representative vasculature. Colonoid growth was monitored using white light endoscopy. A peptide specific for claudin-1 was fluorescently labeled for intravenous administration. NIR fluorescence images were collected using endoscopy and endomicroscopy. RESULTS NIR fluorescence images collected using wide-field endoscopy showed a significantly greater target-to-background (T/B) ratio for adenoma versus normal (1.89 ± 0.35 and 1.26 ± 0.06) colonoids at 1 h post-injection. These results were confirmed by optical sections collected using endomicroscopy. Optical sections were collected in vivo with sub-cellular resolution in vertical and horizontal planes. Greater claudin-1 expression by individual epithelial cells in adenomatous versus normal crypts was visualized. A human-specific cytokeratin stain ex vivo verified the presence of human tissues implanted adjacent to normal mouse colonic mucosa. CONCLUSIONS Increased claudin-1 expression was observed from adenoma versus normal colonoids in vivo using imaging with wide field endoscopy and endomicrosopy.
Collapse
Affiliation(s)
- Sangeeta Jaiswal
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fa Wang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaoli Wu
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tse-Shao Chang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ahmad Shirazi
- Division of Integrative System and Design, University of Michigan, Ann Arbor, MI 48109, USA
| | - Miki Lee
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael K Dame
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason R Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas D Wang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Cong X, Mao XD, Wu LL, Yu GY. The role and mechanism of tight junctions in the regulation of salivary gland secretion. Oral Dis 2024; 30:3-22. [PMID: 36825434 DOI: 10.1111/odi.14549] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Tight junctions (TJs) are cell-cell interactions that localize at the most apical portion of epithelial/endothelial cells. One of the predominant functions of TJs is to regulate material transport through paracellular pathway, which serves as a selective barrier. In recent years, the expression and function of TJs in salivary glands has attracted great interest. The characteristics of multiple salivary gland TJ proteins have been identified. During salivation, the activation of muscarinic acetylcholine receptor and transient receptor potential vanilloid subtype 1, as well as other stimuli, promote the opening of acinar TJs by inducing internalization of TJs, thereby contributing to increased paracellular permeability. Besides, endothelial TJs are also redistributed with leakage of blood vessels in cholinergic-stimulated submandibular glands. Furthermore, under pathological conditions, such as Sjögren's syndrome, diabetes mellitus, immunoglobulin G4-related sialadenitis, and autotransplantation, the integrity and barrier function of TJ complex are impaired and may contribute to hyposalivation. Moreover, in submandibular glands of Sjögren's syndrome mouse model and patients, the endothelial barrier is disrupted and involved in hyposecretion and lymphocytic infiltration. These findings enrich our understanding of the secretory mechanisms that link the importance of epithelial and endothelial TJ functions to salivation under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Xin Cong
- Center for Salivary Gland Diseases, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Department of Physiology and Pathophysiology, Peking University School of Basic Sciences, Beijing, China
| | - Xiang-Di Mao
- Center for Salivary Gland Diseases, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Department of Physiology and Pathophysiology, Peking University School of Basic Sciences, Beijing, China
| | - Li-Ling Wu
- Center for Salivary Gland Diseases, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Department of Physiology and Pathophysiology, Peking University School of Basic Sciences, Beijing, China
| | - Guang-Yan Yu
- Center for Salivary Gland Diseases, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
6
|
Taverner A, Almansour K, Gridley K, Marques ARL, MacKay J, Eggleston IM, Mrsny RJ. Structure-function analysis of tight junction-directed permeation enhancer PIP250. J Control Release 2023; 364:S0168-3659(23)00705-8. [PMID: 39491173 DOI: 10.1016/j.jconrel.2023.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
The intestinal paracellular route of absorption is modulated via tight junction (TJ) structures located at the apical neck of polarized intestinal epithelial cells to restrict solute movement through the intercellular space between them. Tight junctions open or close in response to changes in the phosphorylation status of light chain (MLC) at position Ser-19. This phosphorylation event is primarily controlled by MLC kinase (MLCK) and MLC phosphatase (MLCP), the latter being a holoenzyme that involves interaction between protein phosphatase 1 (PP1) and myosin targeting protein 1 (MYPT1). An entirely D-amino acid Permeant Inhibitor of Phosphatase (PIP) peptide sequence designed to disrupt PP1-MYPT1 interactions at the cytoplasmic surface of TJs, PIP250 (rrfkvktkkrk) localized at intracellular TJ structures, altered expression levels of specific TJ proteins, increased cellular phosphorylated MLC (pMLC) levels, binding to PP1, decreased epithelial barrier function, and significantly increased systemic uptake of the poorly absorbed antibiotic gentamicin in vivo. A series of PIP250 peptide analogues showed that positions phe3 and val5 were critical to its functional properties, with some providing opportunities to tune the dynamic actions of its TJ modulation properties. These data confirm the activity of PIP250 as a rationally designed oral permeation enhancer and validated key amino acids involved in its interaction with PP1 that define its overall actions; the magnitude and duration of these enhancing properties were associated with the MYPT1-mimetic properties of the PIP250 peptide analogues described.
Collapse
Affiliation(s)
- Alistair Taverner
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Khaled Almansour
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Ha'il 55473, Saudi Arabia
| | - Kate Gridley
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Ana Rita Lima Marques
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Julia MacKay
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Ian M Eggleston
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Randall J Mrsny
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
7
|
Guo J, Wang F, Huang Y, He H, Tan W, Yi M, Egelman EH, Xu B. Cell spheroid creation by transcytotic intercellular gelation. NATURE NANOTECHNOLOGY 2023; 18:1094-1104. [PMID: 37217766 PMCID: PMC10525029 DOI: 10.1038/s41565-023-01401-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/14/2023] [Indexed: 05/24/2023]
Abstract
Cell spheroids bridge the discontinuity between in vitro systems and in vivo animal models. However, inducing cell spheroids by nanomaterials remains an inefficient and poorly understood process. Here we use cryogenic electron microscopy to determine the atomic structure of helical nanofibres self-assembled from enzyme-responsive D-peptides and fluorescent imaging to show that the transcytosis of D-peptides induces intercellular nanofibres/gels that potentially interact with fibronectin to enable cell spheroid formation. Specifically, D-phosphopeptides, being protease resistant, undergo endocytosis and endosomal dephosphorylation to generate helical nanofibres. On secretion to the cell surface, these nanofibres form intercellular gels that act as artificial matrices and facilitate the fibrillogenesis of fibronectins to induce cell spheroids. No spheroid formation occurs without endo- or exocytosis, phosphate triggers or shape switching of the peptide assemblies. This study-coupling transcytosis and morphological transformation of peptide assemblies-demonstrates a potential approach for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Yimeng Huang
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
8
|
Ramirez-Velez I, Belardi B. Storming the gate: New approaches for targeting the dynamic tight junction for improved drug delivery. Adv Drug Deliv Rev 2023; 199:114905. [PMID: 37271282 PMCID: PMC10999255 DOI: 10.1016/j.addr.2023.114905] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
As biologics used in the clinic outpace the number of new small molecule drugs, an important challenge for their efficacy and widespread use has emerged, namely tissue penetrance. Macromolecular drugs - bulky, high-molecular weight, hydrophilic agents - exhibit low permeability across biological barriers. Epithelial and endothelial layers, for example within the gastrointestinal tract or at the blood-brain barrier, present the most significant obstacle to drug transport. Within epithelium, two subcellular structures are responsible for limiting absorption: cell membranes and intercellular tight junctions. Previously considered impenetrable to macromolecular drugs, tight junctions control paracellular flux and dictate drug transport between cells. Recent work, however, has shown tight junctions to be dynamic, anisotropic structures that can be targeted for delivery. This review aims to summarize new approaches for targeting tight junctions, both directly and indirectly, and to highlight how manipulation of tight junction interactions may help usher in a new era of precision drug delivery.
Collapse
Affiliation(s)
- Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
9
|
Soler DC, Ballesteros A, Sloan AE, McCormick TS, Stepanyan R. Multiple plasma membrane reporters discern LHFPL5 region that blocks trafficking to the plasma membrane. Sci Rep 2023; 13:2528. [PMID: 36781873 PMCID: PMC9925724 DOI: 10.1038/s41598-023-28045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
The mechano-electrical transduction (MET) channel of the inner ear receptor cells, termed hair cells, is a protein complex that enables our senses of hearing and balance. Hair cell MET requires an elaborate interplay of multiple proteins that form the MET channel. One of the MET complex components is the transmembrane protein LHFPL5, which is required for hair cell MET and hearing. LHFPL5 is thought to form a multi-protein complex with other MET channel proteins, such as PCDH15, TMIE, and TMC1. Despite localizing to the plasma membrane of stereocilia, the mechanosensing organelles of hair cells, LHFPL5 requires its binding partner within the MET complex, PCDH15, to localize to the stereocilia tips in hair cells and to the plasma membrane in heterologous cells. Using the Aquaporin 3-tGFP reporter (AGR) for plasma membrane localization, we found that a region within extracellular loop 1, which interacts with PCDH15, precludes the trafficking of AGR reporter to the plasma membrane in heterologous cell lines. Our results suggest that the presence of protein partners may mask endoplasmic reticulum retention regions or enable the proper folding and trafficking of the MET complex components, to facilitate expression of the MET complex at the stereocilia membrane.
Collapse
Affiliation(s)
- David C Soler
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Brain Tumor and Neuro-Oncology Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- University Hospitals-Cleveland Medical Center and the Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Angela Ballesteros
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Andrew E Sloan
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Brain Tumor and Neuro-Oncology Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- University Hospitals-Cleveland Medical Center and the Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA
- Murdough Family Center for Psoriasis, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Ruben Stepanyan
- Department of Otolaryngology - HNS, Case Western Reserve University, Cleveland, OH, USA.
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
10
|
Zhou L, Hao M, Fan X, Lao Z, Li M, Shang E. Effects of Houpo Mahuang Decoction on serum metabolism and TRPV1/Ca 2+/TJs in asthma. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115873. [PMID: 36309114 DOI: 10.1016/j.jep.2022.115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Houpo Mahuang Decoction (HPMHD is one of the classic traditional Chinese prescriptions that has been used in the treatment of asthma. The therapeutic effects and mechanism of HPMHD in aggravated asthma remain to be explored, especially from the perspective of metabolomics and Transient Receptor Potential Vanilloid-1 (TRPV1)/Ca2+/Tight junction (TJ) regulation. AIM OF THE STUDY To investigate the therapeutic and metabolic regulatory effects and the underlying mechanism of HPMHD in asthmatic rats. MATERIALS AND METHODS The asthmatic rats were administered with the corresponding HPMHD (at dosages of 5.54, 11.07, 22.14 mg/kg). Then inflammatory cells in peripheral blood and bronchoalveolar lavage fluid (BALF) were counted, the levels of interleukin (IL)-4 and IL-13 in BALF were measured, and the changes in enhanced pause (Penh) and pathological damage of lung tissues were also detected to evaluate the protective effects of HPMHD. The serum metabolic profile of HPMHD in asthmatic rats was explored using Ultra-High-Performance Liquid Chromatography-mass spectrometer (UHPLC-MS), and the regulatory effects on TRPV1 and TJs of HPMHD in asthmatic rats were detected by Western blotting analysis. In vitro, 16HBE cells were stimulated with IL-4 plus SO2 derivatives and then administered HPMHD. The intracellular Ca2+ regulated by TRPV1, and the expression levels of TRPV1 and TJ proteins (TJs) were then detected by calcium imaging and Western blotting. The effects were verified by inhibition of TRPV1 and in short hairpin RNA (shRNA)-mediated TRPV1 silencing cells. RESULTS HPMHD significantly attenuated the airway inflammation of asthmatic rats, and reduced the levels of inflammatory cells in peripheral blood and BALF as well as the levels of IL-4 plus IL-13 in BALF. In addition, the airway hyperresponsiveness and lung pathological damage were alleviated. Serum metabolomic analysis showed that 31 metabolites were differentially expressed among the normal saline-, model-, and HPMHD-treated rats. Pathway enrichment analysis showed that the metabolites were involved in 45 pathways, among which, TJs regulation-relevant pathway was associated with the Ca2+ concentration change mediated by the TRP Vanilloid channel. In vivo and in vitro experiments indicated that HPMHD reduced the concentration of intracellular Ca2+ via suppressing the expression and activation of TRPV1, increased the expression of ZO-1, Occludin, and Claudin-3, and protected the integrity of TJs. CONCLUSION The current study indicates that HPMHD alleviates rat asthma and participates in the regulation of serum metabolism. The anti-asthma effects of HPMHD might be related to the protection of TJs by inhibiting the intracellular Ca2+ concentration via TRPV1.
Collapse
Affiliation(s)
- Liping Zhou
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Mengyang Hao
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Xinsheng Fan
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing, 210023, Jiangsu Province, China.
| | - Zishan Lao
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Mengwen Li
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Erxin Shang
- Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing, 210023, Jiangsu Province, China
| |
Collapse
|
11
|
Kim D, Jin L, Park EJ, Na DH. Peptide permeation enhancers for improving oral bioavailability of macromolecules. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Zoladek J, Burlaud-Gaillard J, Chazal M, Desgraupes S, Jeannin P, Gessain A, Pardigon N, Hubert M, Roingeard P, Jouvenet N, Afonso PV. Human Claudin-Derived Peptides Block the Membrane Fusion Process of Zika Virus and Are Broad Flavivirus Inhibitors. Microbiol Spectr 2022; 10:e0298922. [PMID: 36040168 PMCID: PMC9603178 DOI: 10.1128/spectrum.02989-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that emerged in the Pacific islands in 2007 and spread to the Americas in 2015. The infection remains asymptomatic in most cases but can be associated with severe neurological disorders. Despite massive efforts, no specific drug or vaccine against ZIKV infection is available to date. Claudins are tight-junction proteins that favor the entry of several flaviviruses, including ZIKV. In this study, we identified two peptides derived from the N-terminal sequences of claudin-7 and claudin-1, named CL7.1 and CL1.1, respectively, that inhibited ZIKV infection in a panel of human cell lines. Using cell-to-cell fusion assays, we demonstrated that these peptides blocked the ZIKV E-mediated membrane fusion. A comparison of the antiviral efficacy of CL1.1 and CL7.1 pointed to the importance of the peptide amphipathicity. Electron microscopic analysis revealed that CL1.1 altered the ultrastructure of the viral particles likely by binding the virus lipid envelope. However, amphipathicity could not fully explain the antiviral activity of CL1.1. In silico docking simulations suggested that CL1.1 may also interact with the E protein, near its stem region. Overall, our data suggested that claudin-derived peptides inhibition may be linked to simultaneous interaction with the E protein and the viral lipid envelope. Finally, we found that CL1.1 also blocked infection by yellow fever and Japanese encephalitis viruses but not by HIV-1 or SARS-CoV-2. Our results provide a basis for the future development of therapeutics against a wide range of endemic and emerging flaviviruses. IMPORTANCE Zika virus (ZIKV) is a flavivirus transmitted by mosquito bites that have spread to the Pacific Islands and the Americas over the past decade. The infection remains asymptomatic in most cases but can cause severe neurological disorders. ZIKV is a major public health threat in areas of endemicity, and there is currently no specific antiviral drug or vaccine available. We identified two antiviral peptides deriving from the N-terminal sequences of claudin-7 and claudin-1 with the latter being the most effective. These peptides block the envelope-mediated membrane fusion. Our data suggested that the inhibition was likely achieved by simultaneously interacting with the viral lipid envelope and the E protein. The peptides also inhibited other flaviviruses. These results could provide the basis for the development of therapies that might target a wide array of flaviviruses from current epidemics and possibly future emergences.
Collapse
Affiliation(s)
- Jim Zoladek
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
| | - Julien Burlaud-Gaillard
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, Tours, France
- Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Maxime Chazal
- Unité Signalisation Antivirale, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
| | - Sophie Desgraupes
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
| | - Patricia Jeannin
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
| | - Antoine Gessain
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
| | - Nathalie Pardigon
- Groupe Arbovirus, Unité Environnement et Risques Infectieux, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mathieu Hubert
- Unité Virus et Immunité, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
| | - Philippe Roingeard
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, Tours, France
- Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Nolwenn Jouvenet
- Unité Signalisation Antivirale, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
| | - Philippe V. Afonso
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
| |
Collapse
|
13
|
Zhang JY, Liu XX, Lin JY, Bao XY, Peng JQ, Gong ZP, Luan X, Chen Y. Biomimetic engineered nanocarriers inspired by viruses for oral-drug delivery. Int J Pharm 2022; 624:121979. [DOI: 10.1016/j.ijpharm.2022.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
|
14
|
Wakayama E, Kuzu T, Tachibana K, Hirayama R, Okada Y, Kondoh M. Modifying the blood-brain barrier by targeting claudin-5: Safety and risks. Ann N Y Acad Sci 2022; 1514:62-69. [PMID: 35508916 DOI: 10.1111/nyas.14787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The blood-brain barrier is a major obstacle to the delivery of drugs to the central nervous system. In the blood-brain barrier, the spaces between adjacent brain microvascular endothelial cells are sealed by multiprotein complexes known as tight junctions. Among the many components of the tight junction, claudin-5 has received the most attention as a target for loosening the tight-junction seal and allowing drugs to be delivered to the brain. In mice, transient knockdown of claudin-5 and the use of claudin-5 binders have been shown to enhance the permeation of small molecules from the blood into the brain without apparent adverse effects. However, sustained knockdown of claudin-5 in mice is lethal within 40 days, and administration of an anti-claudin-5 antibody induced convulsions in a nonhuman primate. Here, we review the safety concerns of claudin-5-targeted technologies with respect to their clinical application.
Collapse
Affiliation(s)
- Erika Wakayama
- Faculty of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Taiki Kuzu
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
15
|
Zhao B, Fan Y, Li H, Zhang C, Han R, Che D. Mitigative effects of Eleutheroside E against the mechanical barrier dysfunction induced by soybean agglutinin in IPEC-J2 cell line. J Anim Physiol Anim Nutr (Berl) 2022; 106:664-670. [PMID: 35014099 DOI: 10.1111/jpn.13677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/06/2021] [Accepted: 11/14/2021] [Indexed: 01/20/2023]
Abstract
Soybean agglutinin (SBA) is an anti-nutritional factor which decreases the mechanical barrier function in intestinal porcine jejunum epithelial cells (IPEC-J2). Eleutheroside E (EE) is a key part of Acanthopanax senticosus to exert pharmacological effects. This study aims to investigate the effects of EE on the barrier function in IPEC-J2 cells and to determine the ability of EE to enhance the protective effect of barrier function against SBA exposure. The IPEC-J2 cells were cultured in mediums with concentration of 0.1 mg/ml EE, 0.5 ml/ml SBA and 0.1 mg/ml EE pre-treated then treated with 0.5 mg/ml SBA. Then, the transepithelial electric resistance (TEER) value, inflammatory cytokines mRNA expression, tight junction mRNA and protein expression were tested by epithelial Voltohm meter, q-PCR and Western blot method respectively. The results showed that cells treated with 0.1 mg/ml EE had lower permeability (p < 0.05) while 0.5 mg/ml SBA treatment had higher permeability through tested TEER, and higher tight junction proteins (Claudin-3 and ZO-1) expressions and genes (Claudin-3, Occludin and ZO-1) expressions (p < 0.05) in 0.1 mg/ml EE group. IPEC-J2 cells pre-treated with 0.1 mg/ml EE could significantly improve the inflammatory response caused by 0.5 mg/ml SBA by up-regulation for IL-10, TGF-β, and down-regulation gene expression of IL-6, TNF-α and IFN-γ (p < 0.05). In conclusion, 0.1 mg/ml EE can improve the mechanical barrier function and could protect the effects while 0.5 mg/ml of SBA-induced barrier dysfunction in IPEC-J2.
Collapse
Affiliation(s)
- Bao Zhao
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production & Product Quality, and Security, Ministry of Education, Jilin Provincial Swine Industry Technical Innovation Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yueli Fan
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production & Product Quality, and Security, Ministry of Education, Jilin Provincial Swine Industry Technical Innovation Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Huijuan Li
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production & Product Quality, and Security, Ministry of Education, Jilin Provincial Swine Industry Technical Innovation Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chun Zhang
- College of Animal Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Rui Han
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production & Product Quality, and Security, Ministry of Education, Jilin Provincial Swine Industry Technical Innovation Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dongsheng Che
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production & Product Quality, and Security, Ministry of Education, Jilin Provincial Swine Industry Technical Innovation Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
16
|
Bony BA, Tarudji AW, Miller HA, Gowrikumar S, Roy S, Curtis ET, Gee CC, Vecchio A, Dhawan P, Kievit FM. Claudin-1-Targeted Nanoparticles for Delivery to Aging-Induced Alterations in the Blood-Brain Barrier. ACS NANO 2021; 15:18520-18531. [PMID: 34748307 PMCID: PMC9079187 DOI: 10.1021/acsnano.1c08432] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Aging-induced alterations to the blood-brain barrier (BBB) are increasingly being seen as a primary event in chronic progressive neurological disorders that lead to cognitive decline. With the goal of increasing delivery into the brain in hopes of effectively treating these diseases, a large focus has been placed on developing BBB permeable materials. However, these strategies have suffered from a lack of specificity toward regions of disease progression. Here, we report on the development of a nanoparticle (C1C2-NP) that targets regions of increased claudin-1 expression that reduces BBB integrity. Using dynamic contrast enhanced magnetic resonance imaging, we find that C1C2-NP accumulation and retention is significantly increased in brains from 12 month-old mice as compared to nontargeted NPs and brains from 2 month-old mice. Furthermore, we find C1C2-NP accumulation in brain endothelial cells with high claudin-1 expression, suggesting target-specific binding of the NPs, which was validated through fluorescence imaging, in vitro testing, and biophysical analyses. Our results further suggest a role of claudin-1 in reducing BBB integrity during aging and show altered expression of claudin-1 can be actively targeted with NPs. These findings could help develop strategies for longitudinal monitoring of tight junction protein expression changes during aging as well as be used as a delivery strategy for site-specific delivery of therapeutics at these early stages of disease development.
Collapse
Affiliation(s)
- Badrul Alam Bony
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Aria W. Tarudji
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Hunter A. Miller
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Saiprasad Gowrikumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5527, USA
| | - Sourav Roy
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, USA
| | - Evan T. Curtis
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Connor C. Gee
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Alex Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska–Lincoln, NE, 68588-0664, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5527, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, 68198-5527, USA
- Buffet Cancer Center, Omaha, NE, 68198-5527, USA
| | - Forrest M. Kievit
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| |
Collapse
|
17
|
Whelan R, Hargaden GC, Knox AJS. Modulating the Blood-Brain Barrier: A Comprehensive Review. Pharmaceutics 2021; 13:1980. [PMID: 34834395 PMCID: PMC8618722 DOI: 10.3390/pharmaceutics13111980] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
The highly secure blood-brain barrier (BBB) restricts drug access to the brain, limiting the molecular toolkit for treating central nervous system (CNS) diseases to small, lipophilic drugs. Development of a safe and effective BBB modulator would revolutionise the treatment of CNS diseases and future drug development in the area. Naturally, the field has garnered a great deal of attention, leading to a vast and diverse range of BBB modulators. In this review, we summarise and compare the various classes of BBB modulators developed over the last five decades-their recent advancements, advantages and disadvantages, while providing some insight into their future as BBB modulators.
Collapse
Affiliation(s)
- Rory Whelan
- School of Biological and Health Sciences, Technological University Dublin, Central Quad, Grangegorman, D07 XT95 Dublin, Ireland;
- Chemical and Structural Biology, Environmental Sustainability and Health Institute, Technological University Dublin, D07 H6K8 Dublin, Ireland
| | - Grainne C. Hargaden
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, Central Quad, Grangegorman, D07 XT95 Dublin, Ireland;
| | - Andrew J. S. Knox
- School of Biological and Health Sciences, Technological University Dublin, Central Quad, Grangegorman, D07 XT95 Dublin, Ireland;
- Chemical and Structural Biology, Environmental Sustainability and Health Institute, Technological University Dublin, D07 H6K8 Dublin, Ireland
| |
Collapse
|
18
|
Hashimoto Y, Campbell M, Tachibana K, Okada Y, Kondoh M. Claudin-5: A Pharmacological Target to Modify the Permeability of the Blood-Brain Barrier. Biol Pharm Bull 2021; 44:1380-1390. [PMID: 34602546 DOI: 10.1248/bpb.b21-00408] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Claudin-5 is the dominant tight junction protein in brain endothelial cells and exclusively limits the paracellular permeability of molecules larger than 400 Da across the blood-brain barrier (BBB). Its pathological impairment or sustained down-regulation has been shown to lead to the progression of psychiatric and neurological disorders, whereas its expression under physiological conditions prevents the passage of drugs across the BBB. While claudin-5 enhancers could potentially act as vascular stabilizers to treat neurological diseases, claudin-5 inhibitors could function as delivery systems to enhance the brain uptake of hydrophilic small-molecular-weight drugs. Therefore, the effects of claudin-5 manipulation on modulating the BBB in different neurological diseases requires further examination. To manipulate claudin-5 expression levels and function, several claudin-5 modulating molecules have been developed. In this review, we first describe the molecular, cellular and pathological aspects of claudin-5 to highlight the mechanisms of claudin-5 enhancers/inhibitors. We then discuss recently developed claudin-5 enhancers/inhibitors and new methods to discover these molecules.
Collapse
Affiliation(s)
| | | | | | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
19
|
Formulation strategies to improve the efficacy of intestinal permeation enhancers . Adv Drug Deliv Rev 2021; 177:113925. [PMID: 34418495 DOI: 10.1016/j.addr.2021.113925] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
The use of chemical permeation enhancers (PEs) is the most widely tested approach to improve oral absorption of low permeability active agents, as represented by peptides. Several hundred PEs increase intestinal permeability in preclinical bioassays, yet few have progressed to clinical testing and, of those, only incremental increases in oral bioavailability (BA) have been observed. Still, average BA values of ~1% were sufficient for two recent FDA approvals of semaglutide and octreotide oral formulations. PEs are typically screened in static in vitro and ex-vivo models where co-presentation of active agent and PE in high concentrations allows the PE to alter barrier integrity with sufficient contact time to promote flux across the intestinal epithelium. The capacity to maintain high concentrations of co-presented agents at the epithelium is not reached by standard oral dosage forms in the upper GI tract in vivo due to dilution, interference from luminal components, fast intestinal transit, and possible absorption of the PE per se. The PE-based formulations that have been assessed in clinical trials in either immediate-release or enteric-coated solid dosage forms produce low and variable oral BA due to these uncontrollable physiological factors. For PEs to appreciably increase intestinal permeability from oral dosage forms in vivo, strategies must facilitate co-presentation of PE and active agent at the epithelium for a sustained period at the required concentrations. Focusing on peptides as examples of a macromolecule class, we review physiological impediments to optimal luminal presentation, discuss the efficacy of current PE-based oral dosage forms, and suggest strategies that might be used to improve them.
Collapse
|
20
|
Popova OP, Kuznetsova AV, Bogomazova SY, Ivanov AA. Claudins as biomarkers of differential diagnosis and prognosis of tumors. J Cancer Res Clin Oncol 2021; 147:2803-2817. [PMID: 34241653 DOI: 10.1007/s00432-021-03725-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022]
Abstract
Claudins are a superfamily of transmembrane proteins, the optimal expression and localization of which are important for the normal physiological function of the epithelium and any imbalance may have pathological consequences. Not only insufficient but also excessive production of claudins in cancer cells, as well as their aberrant localization, equally manifest the formation of a malignant phenotype. Many works are distinguished by contradictory data, which demonstrate the action of the same claudins both in the role of tumor-growth suppressors and promoters in the same cancers. The most important possible causes of significant discrepancies in the results of the works are a considerable variability of sampling and the absence of a consistent approach both to the assessment of the immune reactivity of claudins and to the differential analysis of their subcellular localization. Combined, these drawbacks hinder the histological assessment of the link between claudins and tumor progression. In particular, ambiguous expression of claudins in breast cancer subtypes, revealed by various authors in immunohistochemical analysis, not only fails to facilitate the identification of the claudin-low molecular subtype but rather complicates these efforts. Research into the role of claudins in carcinogenesis has undoubtedly confirmed the potential value of this class of proteins as significant biomarkers in some cancer types; however, the immunohistochemical approach to the assessment of claudins still has limitations, needs standardization, and, to date, has not reached a diagnostic or a prognostic value.
Collapse
Affiliation(s)
- Olga P Popova
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, 20, Bld 1, Delegatskaya Street, Moscow, 127473, Russia
| | - Alla V Kuznetsova
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, 20, Bld 1, Delegatskaya Street, Moscow, 127473, Russia.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| | - Svetlana Yu Bogomazova
- Department of Pathology, National Medical Research Treatment and Rehabilitation Centre, Ministry of Health of the Russian Federation, Ivankovskoe shosse, 3, Moscow, 125367, Russia
| | - Alexey A Ivanov
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, 20, Bld 1, Delegatskaya Street, Moscow, 127473, Russia.
| |
Collapse
|
21
|
Fernandez-Cantos MV, Garcia-Morena D, Iannone V, El-Nezami H, Kolehmainen M, Kuipers OP. Role of microbiota and related metabolites in gastrointestinal tract barrier function in NAFLD. Tissue Barriers 2021; 9:1879719. [PMID: 34280073 PMCID: PMC8489918 DOI: 10.1080/21688370.2021.1879719] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 11/06/2022] Open
Abstract
The Gastrointestinal (GI) tract is composed of four main barriers: microbiological, chemical, physical and immunological. These barriers play important roles in maintaining GI tract homeostasis. In the crosstalk between these barriers, microbiota and related metabolites have been shown to influence GI tract barrier integrity, and alterations of the gut microbiome might lead to an increase in intestinal permeability. As a consequence, translocation of bacteria and their products into the circulatory system increases, reaching proximal and distal tissues, such as the liver. One of the most prevalent chronic liver diseases, Nonalcoholic Fatty Liver Disease (NAFLD), has been associated with an altered gut microbiota and barrier integrity. However, the causal link between them has not been fully elucidated yet. In this review, we aim to highlight relevant bacterial taxa and their related metabolites affecting the GI tract barriers in the context of NAFLD, discussing their implications in gut homeostasis and in disease.
Collapse
Affiliation(s)
- Maria Victoria Fernandez-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Diego Garcia-Morena
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Valeria Iannone
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Hani El-Nezami
- Molecular and Cell Biology Division, School of Biological Sciences, University of Hong Kong, Hong Kong SAR
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Taylor A, Warner M, Mendoza C, Memmott C, LeCheminant T, Bailey S, Christensen C, Keller J, Suli A, Mizrachi D. Chimeric Claudins: A New Tool to Study Tight Junction Structure and Function. Int J Mol Sci 2021; 22:ijms22094947. [PMID: 34066630 PMCID: PMC8124314 DOI: 10.3390/ijms22094947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
The tight junction (TJ) is a structure composed of multiple proteins, both cytosolic and membranal, responsible for cell–cell adhesion in polarized endothelium and epithelium. The TJ is intimately connected to the cytoskeleton and plays a role in development and homeostasis. Among the TJ’s membrane proteins, claudins (CLDNs) are key to establishing blood–tissue barriers that protect organismal physiology. Recently, several crystal structures have been reported for detergent extracted recombinant CLDNs. These structural advances lack direct evidence to support quaternary structure of CLDNs. In this article, we have employed protein-engineering principles to create detergent-independent chimeric CLDNs, a combination of a 4-helix bundle soluble monomeric protein (PDB ID: 2jua) and the apical—50% of human CLDN1, the extracellular domain that is responsible for cell–cell adhesion. Maltose-binding protein-fused chimeric CLDNs (MBP-CCs) used in this study are soluble proteins that retain structural and functional aspects of native CLDNs. Here, we report the biophysical characterization of the structure and function of MBP-CCs. MBP-fused epithelial cadherin (MBP-eCAD) is used as a control and point of comparison of a well-characterized cell-adhesion molecule. Our synthetic strategy may benefit other families of 4-α-helix membrane proteins, including tetraspanins, connexins, pannexins, innexins, and more.
Collapse
|
23
|
Brunner J, Ragupathy S, Borchard G. Target specific tight junction modulators. Adv Drug Deliv Rev 2021; 171:266-288. [PMID: 33617902 DOI: 10.1016/j.addr.2021.02.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Intercellular tight junctions represent a formidable barrier against paracellular drug absorption at epithelia (e.g., nasal, intestinal) and the endothelium (e.g., blood-brain barrier). In order to enhance paracellular transport of drugs and increase their bioavailability and organ deposition, active excipients modulating tight junctions have been applied. First-generation of permeation enhancers (PEs) acted by unspecific interactions, while recently developed PEs address specific physiological mechanisms. Such target specific tight junction modulators (TJMs) have the advantage of a defined specific mechanism of action. To date, merely a few of these novel active excipients has entered into clinical trials, as their lack in safety and efficiency in vivo often impedes their commercialisation. A stronger focus on the development of such active excipients would result in an economic and therapeutic improvement of current and future drugs.
Collapse
Affiliation(s)
- Joël Brunner
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Sakthikumar Ragupathy
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Gerrit Borchard
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
24
|
Schett G, Tanaka Y, Isaacs JD. Why remission is not enough: underlying disease mechanisms in RA that prevent cure. Nat Rev Rheumatol 2021; 17:135-144. [PMID: 33303993 DOI: 10.1038/s41584-020-00543-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 01/04/2023]
Abstract
Cure is the aspirational aim for the treatment of all diseases, including chronic inflammatory conditions such as rheumatoid arthritis (RA); however, it has only been during the twenty-first century that remission, let alone cure, has been a regularly achievable target in RA. Little research has been carried out on how to cure RA, and the term 'cure' still requires definition for this disease. Even now, achieving a cure seems to be a rare occurrence among individuals with RA. Therefore, this Review is aimed at addressing the obstacles to the achievement of cure in RA. The differences between remission and cure in RA are first defined, followed by a discussion of the underlying factors (referred to as drivers) that prevent the achievement of cure in RA by triggering sustained immune activation and effector cytokine production. Such drivers include adaptive immune system activation, mesenchymal tissue priming and so-called 'remote' (non-immune and non-articular) factors. Strategies to target these drivers are also presented, with an emphasis on the development of strategies that could complement currently used cytokine inhibition and thereby improve the likelihood of curing RA.
Collapse
Affiliation(s)
- Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum fur Immuntherapie, FAU Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
25
|
Madni A, Rehman S, Sultan H, Khan MM, Ahmad F, Raza MR, Rai N, Parveen F. Mechanistic Approaches of Internalization, Subcellular Trafficking, and Cytotoxicity of Nanoparticles for Targeting the Small Intestine. AAPS PharmSciTech 2020; 22:3. [PMID: 33221968 PMCID: PMC7680634 DOI: 10.1208/s12249-020-01873-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Targeting the small intestine employing nanotechnology has proved to be a more effective way for site-specific drug delivery. The drug targeting to the small intestine can be achieved via nanoparticles for its optimum bioavailability within the systemic circulation. The small intestine is a remarkable candidate for localized drug delivery. The intestine has its unique properties. It has a less harsh environment than the stomach, provides comparatively more retention time, and possesses a greater surface area than other parts of the gastrointestinal tract. This review focuses on elaborating the intestinal barriers and approaches to overcome these barriers for internalizing nanoparticles and adopting different cellular trafficking pathways. We have discussed various factors that contribute to nanocarriers' cellular uptake, including their surface chemistry, surface morphology, and functionalization of nanoparticles. Furthermore, the fate of nanoparticles after their uptake at cellular and subcellular levels is also briefly explained. Finally, we have delineated the strategies that are adopted to determine the cytotoxicity of nanoparticles.
Collapse
Affiliation(s)
- Asadullah Madni
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Sadia Rehman
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Humaira Sultan
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Faiz Ahmad
- Departments of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - M Rafi Raza
- Department of Mechanical Engineering, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Nadia Rai
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Farzana Parveen
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
26
|
Maher S, Geoghegan C, Brayden DJ. Intestinal permeation enhancers to improve oral bioavailability of macromolecules: reasons for low efficacy in humans. Expert Opin Drug Deliv 2020; 18:273-300. [PMID: 32937089 DOI: 10.1080/17425247.2021.1825375] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Intestinal permeation enhancers (PEs) are substances that transiently alter the intestinal epithelial barrier to facilitate permeation of macromolecules with low oral bioavailability (BA). While a number of PEs have progressed to clinical testing in conventional formulations with macromolecules, there has been only low single digit increases in oral BA, irrespective of whether the drug met primary or secondary clinical endpoints. AREAS COVERED This article considers the causes of sub-optimal BA of macromolecules from PE dosage forms and suggests approaches that may improve performance in humans. EXPERT OPINION Permeation enhancement is most effective when the PE is co-localized with the macromolecule at the epithelial surface. Conditions in the GI tract impede optimal co-localization. Novel delivery systems that limit dilution and spreading of the PE and macromolecule in the small intestine have attempted to replicate promising enhancement efficacy observed in static drug delivery models.
Collapse
Affiliation(s)
- Sam Maher
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Caroline Geoghegan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Hashimoto Y, Campbell M. Tight junction modulation at the blood-brain barrier: Current and future perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183298. [PMID: 32353377 DOI: 10.1016/j.bbamem.2020.183298] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/09/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is the one of the most robust physical barriers in the body, comprised of tight junction (TJ) proteins in brain microvascular endothelial cells. The need for drugs to treat central nervous systems diseases is ever increasing, however the presence of the BBB significantly hampers the uptake of drugs into the brain. To overcome or circumvent the barrier, many kinds of techniques are being developed. Modulating the paracellular route by disruption of the TJ complex has been proposed as a potential drug delivery system to treat brain diseases, however, it has several limitations and is still in a developmental stage. However, recent significant advance in medical equipment /tools such as targeted ultra-sound technologies may resolve these limitations. In this review, we introduce recent advances in site- or molecular size-selective BBB disruption/modulation technologies and we include details on pharmacological inhibitory molecules against intercellular TJ proteins to modulate the BBB.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin 2, Ireland.
| | - Matthew Campbell
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin 2, Ireland.
| |
Collapse
|
28
|
Mailly L, Baumert TF. Hepatitis C virus infection and tight junction proteins: The ties that bind. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183296. [PMID: 32268133 DOI: 10.1016/j.bbamem.2020.183296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
Abstract
The hepatitis C virus (HCV) is a major cause of liver diseases ranging from liver inflammation to advanced liver diseases like cirrhosis and hepatocellular carcinoma (HCC). HCV infection is restricted to the liver, and more specifically to hepatocytes, which represent around 80% of liver cells. The mechanism of HCV entry in human hepatocytes has been extensively investigated since the discovery of the virus 30 years ago. The entry mechanism is a multi-step process relying on several host factors including heparan sulfate proteoglycan (HSPG), low density lipoprotein receptor (LDLR), tetraspanin CD81, Scavenger Receptor class B type I (SR-BI), Epidermal Growth Factor Receptor (EGFR) and Niemann-Pick C1-like 1 (NPC1L1). Moreover, in order to establish a persistent infection, HCV entry is dependent on the presence of tight junction (TJ) proteins Claudin-1 (CLDN1) and Occludin (OCLN). In the liver, tight junction proteins play a role in architecture and homeostasis including sealing the apical pole of adjacent cells to form bile canaliculi and separating the basolateral domain drained by sinusoidal blood flow. In this review, we will highlight the role of liver tight junction proteins in HCV infection, and we will discuss the potential targeted therapeutic approaches to improve virus eradication.
Collapse
Affiliation(s)
- Laurent Mailly
- Université de Strasbourg, INSERM, UMR-S1110, Institut de Recherche sur les Maladies Virales et Hépatiques, F-67000 Strasbourg, France.
| | - Thomas F Baumert
- Université de Strasbourg, INSERM, UMR-S1110, Institut de Recherche sur les Maladies Virales et Hépatiques, F-67000 Strasbourg, France; Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France; Institut Universitaire de France, F-75231 Paris, France.
| |
Collapse
|
29
|
Piontek J, Krug SM, Protze J, Krause G, Fromm M. Molecular architecture and assembly of the tight junction backbone. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183279. [PMID: 32224152 DOI: 10.1016/j.bbamem.2020.183279] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022]
Abstract
The functional and structural concept of tight junctions has developed after discovery of claudin and TAMP proteins. Many of these proteins contribute to epi- and endothelial barrier but some, in contrast, form paracellular channels. Claudins form the backbone of tight junction (TJ) strands whereas other proteins regulate TJ dynamics. The current joined double-row model of TJ strands and channels is crucially based on the linear alignment of claudin-15 in the crystal. Molecular dynamics simulations, protein docking, mutagenesis, cellular TJ reconstitution, and electron microscopy studies largely support stability and functionality of the model. Here, we summarize in silico and in vitro data about TJ strand assembly including comparison of claudin crystal structures and alternative models. Sequence comparisons, experimental and structural data substantiate differentiation of classic and non-classic claudins differing in motifs related to strand assembly. Classic claudins seem to share a similar mechanism of strand formation. Interface variations likely contribute to TJ strand flexibility. Combined in vitro/in silico studies are expected to elucidate mechanistic keys determining TJ regulation.
Collapse
Affiliation(s)
- Jörg Piontek
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Susanne M Krug
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Jonas Protze
- Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Michael Fromm
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany.
| |
Collapse
|
30
|
Brewer MG, Anderson EA, Pandya RP, De Benedetto A, Yoshida T, Hilimire TA, Martinez-Sobrido L, Beck LA, Miller BL. Peptides Derived from the Tight Junction Protein CLDN1 Disrupt the Skin Barrier and Promote Responsiveness to an Epicutaneous Vaccine. J Invest Dermatol 2019; 140:361-369.e3. [PMID: 31381894 DOI: 10.1016/j.jid.2019.06.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/16/2019] [Accepted: 06/13/2019] [Indexed: 12/27/2022]
Abstract
Keratinocytes express many pattern recognition receptors that enhance the skin's adaptive immune response to epicutaneous antigens. We have shown that these pattern recognition receptors are expressed below tight junctions (TJ), strongly implicating TJ disruption as a critical step in antigen responsiveness. To disrupt TJs, we designed peptides inspired by the first extracellular loop of the TJ transmembrane protein CLDN1. These peptides transiently disrupted TJs in the human lung epithelial cell line 16HBE and delayed TJ formation in primary human keratinocytes. Building on these observations, we tested whether vaccinating mice with an epicutaneous influenza patch containing TJ-disrupting peptides was an effective strategy to elicit an immunogenic response. Application of a TJ-disrupting peptide patch resulted in barrier disruption as measured by increased transepithelial water loss. We observed a significant increase in antigen-specific antibodies when we applied patches with TJ-disrupting peptide plus antigen (influenza hemagglutinin) in either a patch-prime or a patch-boost model. Collectively, these observations demonstrate that our designed peptides perturb TJs in human lung as well as human and murine skin epithelium, enabling epicutaneous vaccine delivery. We anticipate that this approach could obviate currently used needle-based vaccination methods that require administration by health care workers and biohazard waste removal.
Collapse
Affiliation(s)
- Matthew G Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Elizabeth A Anderson
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Radha P Pandya
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Anna De Benedetto
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Takeshi Yoshida
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Thomas A Hilimire
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Lisa A Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA.
| | - Benjamin L Miller
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA.
| |
Collapse
|
31
|
Zhao B, Che D, Adams S, Guo N, Han R, Zhang C, Qin G, Farouk MH, Jiang H. N-Acetyl-d-galactosamine prevents soya bean agglutinin-induced intestinal barrier dysfunction in intestinal porcine epithelial cells. J Anim Physiol Anim Nutr (Berl) 2019; 103:1198-1206. [PMID: 30934149 DOI: 10.1111/jpn.13091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/23/2022]
Abstract
Soya bean agglutinin (SBA) is a glycoprotein and the main anti-nutritional component in most soya bean feedstuffs. It is mainly a non-fibre carbohydrate-based protein and represents about 10% of soya bean-based anti-nutritional effects. In this study, we sought to determine the effects of N-Acetyl-D-galactosamine (GalNAc or D-GalNAc) on the damage induced by SBA on the membrane permeability and tight junction proteins of piglet intestinal epithelium (IPEC-J2) cells. The IPEC-J2 cells were pre-cultured with 0, 0.125 × 10-4 , 0.25 × 10-4 , 0.5 × 10-4 , 1.0 × 10-4 and 2.0 × 10-4 mmol/L GalNAc at different time period (1, 2, 4 and 8 hr) before being exposed to 0.5 mg/ml SBA for 24 hr. The results indicate that pre-incubation with GalNAc mitigates the mechanical barrier injury as reflected by a significant increase in trans-epithelial electric resistance (TEER) value and a decrease in alkaline phosphatase (ALP) activity in cell culture medium pre-treated with GalNAc before incubation with SBA as both indicate a reduction in cellular membrane permeability. In addition, mRNA levels of the tight junction proteins occludin and claudin-3 were lower in the SBA-treated groups without pre-treatment with GalNAc. The mRNA expression of occludin was reduced by 17.3% and claudin-3 by 42% (p < 0.01). Moreover, the corresponding protein expression levels were lowered by 17.8% and 43.5% (p < 0.05) respectively. However, in the GalNAc pre-treated groups, occludin and claudin-3 mRNAs were reduced by 1.6% (p > 0.05) and 2.7% (p < 0.01), respectively, while the corresponding proteins were reduced by 4.3% and 7.2% (p < 0.05). In conclusion, GalNAc may prevent the effect of SBA on membrane permeability and tight junction proteins on IPEC-J2s.
Collapse
Affiliation(s)
- Bao Zhao
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dongsheng Che
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Seidu Adams
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Nan Guo
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Rui Han
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chun Zhang
- Department of Animal Science and Technology, Changchun University of science and technology, Changchun, China
| | - Guixin Qin
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Mohammed Hamdy Farouk
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Hailong Jiang
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
32
|
Sawant-Basak A, Rodrigues AD, Lech M, Doyonnas R, Kasaian M, Prasad B, Tsamandouras N. Physiologically Relevant, Humanized Intestinal Systems to Study Metabolism and Transport of Small Molecule Therapeutics. Drug Metab Dispos 2018; 46:1581-1587. [PMID: 30126862 DOI: 10.1124/dmd.118.082784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/16/2018] [Indexed: 01/15/2023] Open
Abstract
Intestinal disposition of small molecules involves interplay of drug metabolizing enzymes (DMEs), transporters, and host-microbiome interactions, which has spurred the development of in vitro intestinal models derived from primary tissue sources. Such models have been bioengineered from intestinal crypts, mucosal extracts, induced pluripotent stem cell (iPSC)-derived organoids, and human intestinal tissue. This minireview discusses the utility and limitations of these human-derived models in support of small molecule drug metabolism and disposition. Enteroids from human intestinal crypts, organoids derived from iPSCs using growth factors or small molecule compounds, and enterocytes extracted from mucosal scrapings show key absorptive cell morphology while are limited in quantitative applications due to the lack of accessibility to the apical compartment, the lack of monolayers, or low expression of key DMEs, transporters, and nuclear hormone receptors. Despite morphogenesis to epithelial cells, similar challenges have been reported by more advanced technologies that have explored the impact of flow and mechanical stretch on proliferation and differentiation of Caco-2 cells. Most recently, bioengineered human intestinal epithelial or ileal cells have overcome many of the challenges, as the DME and transporter expression pattern resembles that of native intestinal tissue. Engineering advances may improve such models to support longer-term applications and meet end-user needs. Biochemical characterization and transcriptomic, proteomic, and functional endpoints of emerging novel intestinal models, when referenced to native human tissue, can provide greater confidence and increased utility in drug discovery and development.
Collapse
Affiliation(s)
- Aarti Sawant-Basak
- Pfizer Worldwide Research & Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (A.S.-B.); Pfizer Worldwide Research & Development, PDM, Eastern Point Road, Groton, 06340 (A.D.R.); Pfizer Worldwide Research & Development, Inflammation and Immunology, 1 Portland Street, Cambridge, MA 02139 (M.L., M.K.); Pfizer Worldwide Research & Development, Discovery Sciences, Eastern Point Road, Groton, 06340 (R.D.); Assistant Professor, Department of Pharmaceutics, UWRAPT H268, Health Science Building, Seattle (B.P.); Pfizer Worldwide Research & Development, Early Clinical Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (N.T.).
| | - A David Rodrigues
- Pfizer Worldwide Research & Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (A.S.-B.); Pfizer Worldwide Research & Development, PDM, Eastern Point Road, Groton, 06340 (A.D.R.); Pfizer Worldwide Research & Development, Inflammation and Immunology, 1 Portland Street, Cambridge, MA 02139 (M.L., M.K.); Pfizer Worldwide Research & Development, Discovery Sciences, Eastern Point Road, Groton, 06340 (R.D.); Assistant Professor, Department of Pharmaceutics, UWRAPT H268, Health Science Building, Seattle (B.P.); Pfizer Worldwide Research & Development, Early Clinical Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (N.T.)
| | - Matthew Lech
- Pfizer Worldwide Research & Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (A.S.-B.); Pfizer Worldwide Research & Development, PDM, Eastern Point Road, Groton, 06340 (A.D.R.); Pfizer Worldwide Research & Development, Inflammation and Immunology, 1 Portland Street, Cambridge, MA 02139 (M.L., M.K.); Pfizer Worldwide Research & Development, Discovery Sciences, Eastern Point Road, Groton, 06340 (R.D.); Assistant Professor, Department of Pharmaceutics, UWRAPT H268, Health Science Building, Seattle (B.P.); Pfizer Worldwide Research & Development, Early Clinical Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (N.T.)
| | - Regis Doyonnas
- Pfizer Worldwide Research & Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (A.S.-B.); Pfizer Worldwide Research & Development, PDM, Eastern Point Road, Groton, 06340 (A.D.R.); Pfizer Worldwide Research & Development, Inflammation and Immunology, 1 Portland Street, Cambridge, MA 02139 (M.L., M.K.); Pfizer Worldwide Research & Development, Discovery Sciences, Eastern Point Road, Groton, 06340 (R.D.); Assistant Professor, Department of Pharmaceutics, UWRAPT H268, Health Science Building, Seattle (B.P.); Pfizer Worldwide Research & Development, Early Clinical Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (N.T.)
| | - Marion Kasaian
- Pfizer Worldwide Research & Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (A.S.-B.); Pfizer Worldwide Research & Development, PDM, Eastern Point Road, Groton, 06340 (A.D.R.); Pfizer Worldwide Research & Development, Inflammation and Immunology, 1 Portland Street, Cambridge, MA 02139 (M.L., M.K.); Pfizer Worldwide Research & Development, Discovery Sciences, Eastern Point Road, Groton, 06340 (R.D.); Assistant Professor, Department of Pharmaceutics, UWRAPT H268, Health Science Building, Seattle (B.P.); Pfizer Worldwide Research & Development, Early Clinical Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (N.T.)
| | - Bhagwat Prasad
- Pfizer Worldwide Research & Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (A.S.-B.); Pfizer Worldwide Research & Development, PDM, Eastern Point Road, Groton, 06340 (A.D.R.); Pfizer Worldwide Research & Development, Inflammation and Immunology, 1 Portland Street, Cambridge, MA 02139 (M.L., M.K.); Pfizer Worldwide Research & Development, Discovery Sciences, Eastern Point Road, Groton, 06340 (R.D.); Assistant Professor, Department of Pharmaceutics, UWRAPT H268, Health Science Building, Seattle (B.P.); Pfizer Worldwide Research & Development, Early Clinical Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (N.T.)
| | - Nikolaos Tsamandouras
- Pfizer Worldwide Research & Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (A.S.-B.); Pfizer Worldwide Research & Development, PDM, Eastern Point Road, Groton, 06340 (A.D.R.); Pfizer Worldwide Research & Development, Inflammation and Immunology, 1 Portland Street, Cambridge, MA 02139 (M.L., M.K.); Pfizer Worldwide Research & Development, Discovery Sciences, Eastern Point Road, Groton, 06340 (R.D.); Assistant Professor, Department of Pharmaceutics, UWRAPT H268, Health Science Building, Seattle (B.P.); Pfizer Worldwide Research & Development, Early Clinical Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (N.T.)
| |
Collapse
|
33
|
Cyr DG, Dufresne J, Gregory M. Cellular junctions in the epididymis, a critical parameter for understanding male reproductive toxicology. Reprod Toxicol 2018; 81:207-219. [PMID: 30130578 DOI: 10.1016/j.reprotox.2018.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 12/28/2022]
Abstract
Epididymal sperm maturation is a critical aspect of male reproduction in which sperm acquire motility and the ability to fertilize an ovum. Sperm maturation is dependent on the creation of a specific environment that changes along the epididymis and which enables the maturation process. The blood-epididymis barrier creates a unique luminal micro-environment, different from blood, by limiting paracellular transport and forcing receptor-mediated transport of macromolecules across the epididymal epithelium. Direct cellular communication between cells allows coordinated function of the epithelium. A limited number of studies have directly examined the effects of toxicants on junctional proteins and barrier function in the epididymis. Effects on the integrity of the blood-epididymis barrier have resulted in decreased fertility and, in some cases, the development of sperm granulomas. Studies have shown that in addition to tight junctions, proteins implicated in the maintenance of adherens junctions and gap junctions alter epididymal functions. This review will provide an overview of the types and roles of cellular junctions in the epididymis, and how these are targeted by different toxicants.
Collapse
Affiliation(s)
- Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada.
| | - Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
34
|
Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med 2018; 50:1-9. [PMID: 30115904 PMCID: PMC6095905 DOI: 10.1038/s12276-018-0126-x] [Citation(s) in RCA: 907] [Impact Index Per Article: 151.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract is a specialized organ in which dynamic interactions between host cells and the complex environment occur in addition to food digestion. Together with the chemical barrier of the mucosal layer and the cellular immune system, the epithelial cell layer performs a pivotal role as the first physical barrier against external factors and maintains a symbiotic relationship with commensal bacteria. The tight junction proteins, including occludin, claudins, and zonula occludens, are crucial for the maintenance of epithelial barrier integrity. To allow the transport of essential molecules and restrict harmful substances, the intracellular signaling transduction system and a number of extracellular stimuli such as cytokines, small GTPases, and post-translational modifications dynamically modulate the tight junction protein complexes. An imbalance in these regulations leads to compromised barrier integrity and is linked with pathological conditions. Despite the obscurity of the causal relationship, the loss of barrier integrity is considered to contribute to inflammatory bowel disease, obesity, and metabolic disorders. The elucidation of the role of diseases in barrier integrity and the underlying regulatory mechanisms have improved our understanding of the intestinal barrier to allow the development of novel and potent therapeutic approaches. A better understanding of how the cells that line the inside of the intestines allow nutrients in, while keeping harmful substances and pathogens out could lead to new therapies for inflammatory bowel disease, obesity, and other conditions. A team from South Korea led by Sung Ho Ryu from Pohang University of Science and Technology review the regulatory mechanisms that help maintain the intestinal epithelial barrier. They discuss the role of tight junction proteins in forming a seal between adjacent cells and the various signaling pathways that loosen or tighten these junctions to enable limited transport. Loss of barrier integrity because of genetics, gut microbes, auto-immunity, diet, or other factors is often implicated in disease, and restoring barrier function with drugs or probiotics could help ameliorate many health problems.
Collapse
|
35
|
Neuhaus W, Piontek A, Protze J, Eichner M, Mahringer A, Subileau EA, Lee IFM, Schulzke JD, Krause G, Piontek J. Reversible opening of the blood-brain barrier by claudin-5-binding variants of Clostridium perfringens enterotoxin's claudin-binding domain. Biomaterials 2018; 161:129-143. [DOI: 10.1016/j.biomaterials.2018.01.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 02/06/2023]
|
36
|
Dithmer S, Staat C, Müller C, Ku MC, Pohlmann A, Niendorf T, Gehne N, Fallier-Becker P, Kittel Á, Walter FR, Veszelka S, Deli MA, Blasig R, Haseloff RF, Blasig IE, Winkler L. Claudin peptidomimetics modulate tissue barriers for enhanced drug delivery. Ann N Y Acad Sci 2017; 1397:169-184. [DOI: 10.1111/nyas.13359] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Sophie Dithmer
- Leibniz Institut für Molekulare Pharmakologie; Berlin Germany
| | - Christian Staat
- Leibniz Institut für Molekulare Pharmakologie; Berlin Germany
| | - Carolin Müller
- Leibniz Institut für Molekulare Pharmakologie; Berlin Germany
| | - Min-Chi Ku
- Berlin Ultrahigh Field Facility; Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility; Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility; Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
- Experimental and Clinical Research Center; Charite and Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | - Nora Gehne
- Leibniz Institut für Molekulare Pharmakologie; Berlin Germany
| | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology; University of Tuebingen; Tuebingen Germany
| | - Ágnes Kittel
- Institute of Experimental Medicine; Hungarian Academy of Sciences; Budapest Hungary
| | - Fruzsina R. Walter
- Institute of Biophysics, Biological Research Centre; Hungarian Academy of Sciences; Szeged Hungary
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre; Hungarian Academy of Sciences; Szeged Hungary
| | - Maria A. Deli
- Institute of Biophysics, Biological Research Centre; Hungarian Academy of Sciences; Szeged Hungary
| | - Rosel Blasig
- Leibniz Institut für Molekulare Pharmakologie; Berlin Germany
| | | | | | - Lars Winkler
- Leibniz Institut für Molekulare Pharmakologie; Berlin Germany
| |
Collapse
|
37
|
Garcia-Hernandez V, Quiros M, Nusrat A. Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Ann N Y Acad Sci 2017; 1397:66-79. [PMID: 28493289 DOI: 10.1111/nyas.13360] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/17/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022]
Abstract
The intestinal epithelium forms a highly dynamic and selective barrier that controls absorption of fluid and solutes while restricting pathogen access to underlying tissues. Barrier properties are achieved by intercellular junctions that include an apical tight junction (TJ) and subjacent adherens junctions and desmosomes. The TJ tetraspan claudin proteins form pores between epithelial cells to control paracellular fluid and ion movement. In addition to regulation of barrier function, claudin family members control epithelial homeostasis and are expressed in a spatiotemporal manner in the intestinal crypt-luminal axis. This delicate balance of physiologic differential claudin protein expression is altered during mucosal inflammation. Inflammatory mediators influence transcriptional regulation, as well as endocytic trafficking, targeting, and retention of claudins in the TJ. Increased expression of intestinal epithelial claudin-1, -2, and -18 with downregulation of claudin-3, -4, -5, -7, -8, and -12 has been observed in intestinal inflammatory disorders. Such changes in claudin proteins modify the epithelial barrier function in addition to influencing epithelial and mucosal homeostasis. An improved understanding of the regulatory mechanisms that control epithelial claudin proteins will provide strategies to strengthen the epithelial barrier function and restore mucosal homeostasis in inflammatory disorders.
Collapse
Affiliation(s)
| | - Miguel Quiros
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
38
|
Piontek A, Rossa J, Protze J, Wolburg H, Hempel C, Günzel D, Krause G, Piontek J. Polar and charged extracellular residues conserved among barrier-forming claudins contribute to tight junction strand formation. Ann N Y Acad Sci 2017; 1397:143-156. [DOI: 10.1111/nyas.13341] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/26/2017] [Accepted: 03/01/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Anna Piontek
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Berlin Germany
| | - Jan Rossa
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Berlin Germany
| | - Jonas Protze
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Berlin Germany
| | - Hartwig Wolburg
- Institute of Pathology and Neuropathology; University of Tübingen; Tübingen Germany
| | - Caroline Hempel
- Institute of Clinical Physiology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Dorothee Günzel
- Institute of Clinical Physiology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Berlin Germany
| | - Jörg Piontek
- Institute of Clinical Physiology; Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
39
|
Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev 2016; 106:277-319. [PMID: 27320643 DOI: 10.1016/j.addr.2016.06.005] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
Abstract
Intestinal permeation enhancers (PEs) are one of the most widely tested strategies to improve oral delivery of therapeutic peptides. This article assesses the intestinal permeation enhancement action of over 250 PEs that have been tested in intestinal delivery models. In depth analysis of pre-clinical data is presented for PEs as components of proprietary delivery systems that have progressed to clinical trials. Given the importance of co-presentation of sufficiently high concentrations of PE and peptide at the small intestinal epithelium, there is an emphasis on studies where PEs have been formulated with poorly permeable molecules in solid dosage forms and lipoidal dispersions.
Collapse
|
40
|
Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev 2016; 106:256-276. [PMID: 27496705 DOI: 10.1016/j.addr.2016.07.007] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/02/2016] [Accepted: 07/08/2016] [Indexed: 12/23/2022]
Abstract
In this contribution, we review the molecular and physiological barriers to oral delivery of peptides and nanoparticles. We discuss the opportunities and predictivity of various in vitro systems with special emphasis on human intestine in Ussing chambers. First, the molecular constraints to peptide absorption are discussed. Then the physiological barriers to peptide delivery are examined. These include the gastric and intestinal environment, the mucus barrier, tight junctions between epithelial cells, the enterocytes of the intestinal epithelium, and the subepithelial tissue. Recent data from human proteome studies are used to provide information about the protein expression profiles of the different physiological barriers to peptide and nanoparticle absorption. Strategies that have been employed to increase peptide absorption across each of the barriers are discussed. Special consideration is given to attempts at utilizing endogenous transcytotic pathways. To reliably translate in vitro data on peptide or nanoparticle permeability to the in vivo situation in a human subject, the in vitro experimental system needs to realistically capture the central aspects of the mentioned barriers. Therefore, characteristics of common in vitro cell culture systems are discussed and compared to those of human intestinal tissues. Attempts to use the cell and tissue models for in vitro-in vivo extrapolation are reviewed.
Collapse
Affiliation(s)
- P Lundquist
- Department of Pharmacy, Uppsala University, Box 580, SE-752 37 Uppsala, Sweden.
| | - P Artursson
- Department of Pharmacy, Uppsala University, Box 580, SE-752 37 Uppsala, Sweden.
| |
Collapse
|
41
|
Sánchez-Navarro M, Garcia J, Giralt E, Teixidó M. Using peptides to increase transport across the intestinal barrier. Adv Drug Deliv Rev 2016; 106:355-366. [PMID: 27155131 DOI: 10.1016/j.addr.2016.04.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/24/2016] [Accepted: 04/29/2016] [Indexed: 02/05/2023]
Abstract
The oral route is the preferred for the administration of drugs; however, it has some serious limitations. One of the main disadvantages is poor permeability across the intestinal barrier. Various approaches are currently being adopted to overcome this issue. In this review, we describe the alternatives that use peptides to enhance intestinal absorption. First, we define the various sources of peptide enhancers followed by the analysis of the absorption mechanism used. We then comment on the possible toxic effects derived from their use as permeation enhancers, as well as potential formulation strategies. Finally, the advantages and drawbacks of peptides as intestinal enhancers are examined.
Collapse
|
42
|
Hashimoto Y, Yagi K, Kondoh M. Current progress in a second-generation claudin binder, anti-claudin antibody, for clinical applications. Drug Discov Today 2016; 21:1711-1718. [DOI: 10.1016/j.drudis.2016.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/29/2016] [Accepted: 07/05/2016] [Indexed: 12/22/2022]
|
43
|
Schlingmann B, Overgaard CE, Molina SA, Lynn KS, Mitchell LA, Dorsainvil White S, Mattheyses AL, Guidot DM, Capaldo CT, Koval M. Regulation of claudin/zonula occludens-1 complexes by hetero-claudin interactions. Nat Commun 2016; 7:12276. [PMID: 27452368 PMCID: PMC4962485 DOI: 10.1038/ncomms12276] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/15/2016] [Indexed: 01/06/2023] Open
Abstract
Claudins are tetraspan transmembrane tight-junction proteins that regulate epithelial barriers. In the distal airspaces of the lung, alveolar epithelial tight junctions are crucial to regulate airspace fluid. Chronic alcohol abuse weakens alveolar tight junctions, priming the lung for acute respiratory distress syndrome, a frequently lethal condition caused by airspace flooding. Here we demonstrate that in response to alcohol, increased claudin-5 paradoxically accompanies an increase in paracellular leak and rearrangement of alveolar tight junctions. Claudin-5 is necessary and sufficient to diminish alveolar epithelial barrier function by impairing the ability of claudin-18 to interact with a scaffold protein, zonula occludens 1 (ZO-1), demonstrating that one claudin affects the ability of another claudin to interact with the tight-junction scaffold. Critically, a claudin-5 peptide mimetic reverses the deleterious effects of alcohol on alveolar barrier function. Thus, claudin controlled claudin-scaffold protein interactions are a novel target to regulate tight-junction permeability.
Collapse
Affiliation(s)
- Barbara Schlingmann
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
| | - Christian E. Overgaard
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
| | - Samuel A. Molina
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
| | - K. Sabrina Lynn
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
| | - Leslie A. Mitchell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
| | - StevenClaude Dorsainvil White
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
| | | | - David M. Guidot
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia 30033, USA
| | | | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
- Department of Cell Biology, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
44
|
Identification of a Potent and Broad-Spectrum Hepatitis C Virus Fusion Inhibitory Peptide from the E2 Stem Domain. Sci Rep 2016; 6:25224. [PMID: 27121372 PMCID: PMC4848495 DOI: 10.1038/srep25224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) envelope proteins E1 and E2 play an essential role in virus entry. However, the fusion mechanisms of HCV remain largely unclear, hampering the development of efficient fusion inhibitors. Here, we developed two cell-based membrane fusion models that allow for screening a peptide library covering the full-length E1 and E2 amino acid sequences. A peptide from the E2 stem domain, named E27, was found to possess the ability to block E1E2-mediated cell-cell fusion and inhibit cell entry of HCV pseudoparticles and infection of cell culture-derived HCV at nanomolar concentrations. E27 demonstrated broad-spectrum inhibition of the major genotypes 1 to 6. A time-of-addition experiment revealed that E27 predominantly functions in the late steps during HCV entry, without influencing the expression and localization of HCV co-receptors. Moreover, we demonstrated that E27 interfered with hetero-dimerization of ectopically expressed E1E2 in cells, and mutational analysis suggested that E27 might target a conserved region in E1. Taken together, our findings provide a novel candidate as well as a strategy for developing potent and broad-spectrum HCV fusion inhibitors, which may complement the current direct-acting antiviral medications for chronic hepatitis C, and shed light on the mechanism of HCV membrane fusion.
Collapse
|
45
|
Baker OJ. Current trends in salivary gland tight junctions. Tissue Barriers 2016; 4:e1162348. [PMID: 27583188 DOI: 10.1080/21688370.2016.1162348] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022] Open
Abstract
Tight junctions form a continuous intercellular barrier between epithelial cells that is required to separate tissue spaces and regulate selective movement of solutes across the epithelium. They are composed of strands containing integral membrane proteins (e.g., claudins, occludin and tricellulin, junctional adhesion molecules and the coxsackie adenovirus receptor). These proteins are anchored to the cytoskeleton via scaffolding proteins such as ZO-1 and ZO-2. In salivary glands, tight junctions are involved in polarized saliva secretion and barrier maintenance between the extracellular environment and the glandular lumen. This review seeks to provide an overview of what is currently known, as well as the major questions and future research directions, regarding tight junction expression, organization and function within salivary glands.
Collapse
Affiliation(s)
- Olga J Baker
- School of Dentistry, University of Utah , Salt Lake City, UT, USA
| |
Collapse
|
46
|
Rabinsky EF, Joshi BP, Pant A, Zhou J, Duan X, Smith A, Kuick R, Fan S, Nusrat A, Owens SR, Appelman HD, Wang TD. Overexpressed Claudin-1 Can Be Visualized Endoscopically in Colonic Adenomas In Vivo. Cell Mol Gastroenterol Hepatol 2016; 2:222-237. [PMID: 27840845 PMCID: PMC4980721 DOI: 10.1016/j.jcmgh.2015.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/06/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Conventional white-light colonoscopy aims to reduce the incidence and mortality of colorectal cancer (CRC). CRC has been found to arise from missed polypoid and flat precancerous lesions. We aimed to establish proof-of-concept for real-time endoscopic imaging of colonic adenomas using a near-infrared peptide that is specific for claudin-1. METHODS We used gene expression profiles to identify claudin-1 as a promising early CRC target, and performed phage display against the extracellular loop of claudin-1 (amino acids 53-80) to identify the peptide RTSPSSR. With a Cy5.5 label, we characterized binding parameters and showed specific binding to human CRC cells. We collected in vivo near-infrared fluorescence images endoscopically in the CPC;Apc mouse, which develops colonic adenomas spontaneously. With immunofluorescence, we validated specific peptide binding to adenomas from the proximal human colon. RESULTS We found a 2.5-fold increase in gene expression for claudin-1 in human colonic adenomas compared with normal. We showed specific binding of RTSPSSR to claudin-1 in knockdown and competition studies, and measured an affinity of 42 nmol/L and a time constant of 1.2 minutes to SW620 cells. In the mouse, we found a significantly higher target-to-background ratio for both polypoid and flat adenomas compared with normal by in vivo images. On immunofluorescence, we found significantly greater intensity for human adenomas (mean ± SD, 25.5 ± 14.0) vs normal (mean ± SD, 9.1 ± 6.0) and hyperplastic polyps (mean ± SD, 3.1 ± 3.7; P = 10-5 and 8 × 10-12, respectively), and for sessile serrated adenomas (mean ± SD, 20.1 ± 13.3) vs normal and hyperplastic polyps (P = .02 and 3 × 10-7, respectively). CONCLUSIONS Claudin-1 is overexpressed in premalignant colonic lesions, and can be detected endoscopically in vivo with a near-infrared, labeled peptide.
Collapse
Key Words
- APC, adenomatous polyposis coli
- BSA, bovine serum albumin
- CLDN1, claudin-1
- CRC, colorectal cancer
- Colon Cancer
- DAPI, 4′,6-diamidino-2-phenylindole
- Early Detection
- HRP, horseradish peroxidase
- IF, immunofluorescence
- IHC, immunohistochemistry
- Molecular Imaging
- PBS, phosphate-buffered saline
- PBST, phosphate-buffered saline plus 0.1% Tween-20
- PFA, paraformaldehyde
- RT, room temperature
- SSA, sessile serrated adenoma
- T/B, target-to-background
- TEER, transepithelial electrical resistance
- TFA, trifluoroacetic acid
- ZO-1, zonula occludens-1
- siCL, control small interfering RNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Emily F. Rabinsky
- Department of Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Bishnu P. Joshi
- Department of Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Asha Pant
- Department of Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Juan Zhou
- Department of Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Xiyu Duan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Arlene Smith
- Department of Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Rork Kuick
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Shuling Fan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Scott R. Owens
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Henry D. Appelman
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Thomas D. Wang
- Department of Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
47
|
Ölander M, Wiśniewski JR, Matsson P, Lundquist P, Artursson P. The Proteome of Filter-Grown Caco-2 Cells With a Focus on Proteins Involved in Drug Disposition. J Pharm Sci 2016; 105:817-827. [DOI: 10.1016/j.xphs.2015.10.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/31/2022]
|
48
|
Greene C, Campbell M. Tight junction modulation of the blood brain barrier: CNS delivery of small molecules. Tissue Barriers 2016; 4:e1138017. [PMID: 27141420 DOI: 10.1080/21688370.2015.1138017] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 01/06/2023] Open
Abstract
The blood brain barrier (BBB) represents a major obstacle for targeted drug delivery to the brain for the treatment of central nervous system (CNS) disorders. Significant advances in barrier research over the past decade has led to the discovery of an increasing number of structural and regulatory proteins in tight junctions (TJ) and adherens junctions (AJ). These discoveries are providing the framework for the development of novel TJ modulators which can act specifically and temporarily to alter BBB function and regulate paracellular uptake of molecules. TJ modulators that have shown therapeutic potential in preclinical models include claudin-5 and occludin siRNAs, peptides derived from zonula occludens toxin as well as synthetic peptides targeting the extracellular loops of TJs. Adding to the array of modulating agents are novel mechanisms of BBB regulation such as focused ultrasound (FUS). This review will give a succinct overview of BBB biology and TJ modulation in general. Novel insights into BBB regulation in health and disease will also be summarized.
Collapse
Affiliation(s)
- Chris Greene
- Smurfit Institute of Genetics, Trinity College Dublin ; Dublin 2, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin ; Dublin 2, Ireland
| |
Collapse
|
49
|
Claudin 1 in Breast Cancer: New Insights. J Clin Med 2015; 4:1960-76. [PMID: 26633531 PMCID: PMC4693152 DOI: 10.3390/jcm4121952] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/09/2015] [Accepted: 11/14/2015] [Indexed: 12/20/2022] Open
Abstract
Claudin 1 is a small transmembrane protein responsible for maintaining the barrier function that exists between epithelial cells. A tight junction protein that regulates the paracellular transport of small ions across adjacent cells, claudin 1 maintains cellular polarity and plays a major role in cell-cell communication and epithelial cell homeostasis. Long considered to be a putative tumor suppressor in human breast cancer, new studies suggest a role much more complex. While most invasive breast cancers exhibit a down regulation or absence of claudin 1, some aggressive subtypes that exhibit high claudin 1 levels have now been described. Furthermore, a causal role for claudin 1 in breast cancer progression has recently been demonstrated in some breast cancer cell lines. In this review we highlight new insights into the role of claudin 1 in breast cancer, including its involvement in collective migration and epithelial mesenchymal transition (EMT).
Collapse
|
50
|
Huang J, Zhang L, He C, Qu Y, Li J, Zhang J, Du T, Chen X, Yu Y, Liu B, Zhu Z. Claudin-1 enhances tumor proliferation and metastasis by regulating cell anoikis in gastric cancer. Oncotarget 2015; 6:1652-65. [PMID: 25544763 PMCID: PMC4359322 DOI: 10.18632/oncotarget.2936] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/01/2014] [Indexed: 01/14/2023] Open
Abstract
Claudin-1 (CLDN1) is overexpressed in gastric cancer and correlated with tumor invasion, metastasis and poor outcome. Here, we both down and up regulated CLDN1 expression in gastric cancer cells to elucidate its role in gastric carcinogenesis and tumor progression. We found that deficiency of CLDN1 inhibited cells migration, invasion, and colony formation in vitro and tumorigenicity, metastasis in vivo. Also, CLDN1 promoted cell aggregation and increased anoikis resistance. Down or up regulation of CLDN1 was accompanied with changes of membrane β-catenin expression as well as Akt and Src activities. When β-catenin was up-regulated in CLDN1-KD cells, cell aggregation and anoikis resistance were restored, and Akt and Src signal pathways were re-activated. Taken together, these findings suggest that CLDN1 is oncogenic in gastric cancer and its malignant potential may be attributed in part to regulation of anoikis, by mediating membrane β-catenin-regulated cell-cell adhesion and cell survival.
Collapse
Affiliation(s)
- Jie Huang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changyu He
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Qu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianian Zhang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Du
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuehua Chen
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingyan Yu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|