1
|
Wu Z, Cai Y, Han Y, Su Y, Zhang T, Wang X, Yan A, Wang L, Wu S, Wang G, Zhang Z. Development of α-Helical Antimicrobial Peptides with Imperfect Amphipathicity for Superior Activity and Selectivity. J Med Chem 2024; 67:19561-19572. [PMID: 39484706 DOI: 10.1021/acs.jmedchem.4c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The advancement of antimicrobial peptides (AMPs) as therapeutic agents is hindered by their poor selectivity. Recent evidence indicates that controlled disruption of the amphipathicity of α-helical AMPs may increase the selectivity. This study investigated the role of imperfect amphipathicity in optimizing AMPs with varied sequences to enhance their activity and selectivity. Among these, the lead peptide RI-18, characterized by an imperfectly amphipathic α-helical structure, demonstrated potent and broad-spectrum antibacterial activity without inducing hemolytic or cytotoxic effects. RI-18 effectively eliminated planktonic and biofilm-associated bacteria as well as persister cells and exhibited high bacterial plasma membrane affinity, inducing rapid membrane permeabilization and rupture. Notably, RI-18 significantly reduced bacterial loads without promoting bacterial resistance, highlighting its therapeutic potential. Overall, this study identified RI-18 as a promising antimicrobial candidate. The rational strategy of tuning imperfect amphipathicity to enhance the AMP activity and selectivity may facilitate the design and development of AMPs.
Collapse
Affiliation(s)
- Zhongxiang Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Ying Cai
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Yajun Han
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yunhan Su
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Tianyu Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Xingyu Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - An Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Liunan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Sijing Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Gan Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Zhiye Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| |
Collapse
|
2
|
Luo L, Cai Y, Su Y, Li C, Tian G, Wang X, Wu Z, Chen W, Zhang T, Zhang Z. Novel Tree Shrew-Derived Antimicrobial Peptide with Broad-Spectrum Antibacterial Activity. ACS OMEGA 2024; 9:45279-45288. [PMID: 39554445 PMCID: PMC11561621 DOI: 10.1021/acsomega.4c06857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
The number of cationic residues and net charge are critical for the activity of antimicrobial peptides (AMPs) due to their role in facilitating initial electrostatic interactions with negatively charged bacterial membranes. A cathelicidin AMP (TC-33) has been identified from the Chinese tree shrew in our previous work, which exhibited weak antimicrobial activity, likely due to its moderately cationic nature. In the current study, based on TC-33, we designed a novel AMP by peptide truncation and Glu substitutions to increase its net cationic charge from +4 to +8. The resulting peptide, TC-LAR-18, showed 4-128-fold enhanced antimicrobial activity relative to TC-33 without causing hemolysis and cytotoxicity within 100 μg/mL. TC-LAR-18 effectively eliminated both planktonic and biofilm-associated bacteria, demonstrating rapid bactericidal effects due to its ability to quickly penetrate and disrupt bacterial cell membranes with a low propensity to induce resistance. Notably, TC-LAR-18 provided substantial protection against skin bacterial infection in mice, underscoring its therapeutic potential. These findings not only highlight the importance of positively charged residues for the antibacterial activity of AMPs but also present a useful drug candidate for combating multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Lin Luo
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- Third
Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University
(Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Ying Cai
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Yunhan Su
- School
of Basic Medical Sciences, Kunming Medical
University, Kunming 650500, Yunnan, China
| | - Chenxi Li
- Third
Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University
(Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Gengzhou Tian
- Department
of Breast Surgery, First Affiliated Hospital
of Kunming Medical University, Kunming 650223, Yunnan, China
| | - Xingyu Wang
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- School
of Life Sciences, Yunnan University, Kunming 650500, China
| | - Zhongxiang Wu
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Wenlin Chen
- Third
Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University
(Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Tianyu Zhang
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Zhiye Zhang
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| |
Collapse
|
3
|
Datta M, Rajeev A, Chattopadhyay I. Application of antimicrobial peptides as next-generation therapeutics in the biomedical world. Biotechnol Genet Eng Rev 2024; 40:2458-2496. [PMID: 37036043 DOI: 10.1080/02648725.2023.2199572] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
Antimicrobial peptide (AMP), also called host defense peptide, is a part of the innate immune system in eukaryotic organisms. AMPs are also produced by prokaryotes in response to stressful conditions and environmental changes. They have a broad spectrum of activity against both Gram positive and Gram negative bacteria. They are also effective against viruses, fungi, parasites, and cancer cells. AMPs are cationic or amphipathic in nature, but in recent years cationic AMPs have attracted a lot of attention because cationic AMPs can easily interact with negatively charged bacterial and cancer cell membranes through electrostatic interaction. AMPs can also eradicate bacterial biofilms and have broad-spectrum activity against multidrug resistant (MDR) bacteria. Although the main target site for AMPs is the cell membrane, they can also disrupt bacterial cell walls, interfere with protein folding and inhibit enzymatic activity. In recent centuries antibiotics are gradually losing their potential because of the continuous rise of antibiotic resistant bacteria. Therefore, there is an urgent need to develop novel therapeutic approaches to treat MDR bacteria, and AMP is such an alternative treatment option over conventional antibiotics. Several communicable diseases like tuberculosis and non-communicable diseases such as cancer can be treated by using AMPs. One of the major advantages of using AMP is that it works with high specificity and does not cause any harm to normal tissue. AMPs can be modified to improve their efficacy. In this narrative review, we are focusing on the potential application of AMPs in medical science.
Collapse
Affiliation(s)
- Manjari Datta
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Ashwin Rajeev
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Indranil Chattopadhyay
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
4
|
Barbosa GG, de Santana CJC, Silva TL, Santana BCG, Paiva PMG, de Freitas GG, Brand GD, Júnior ORP, Castro MS, Napoleão TH. A new temporin with antibacterial activity and cytotoxicity from the skin secretion of Lithobates palmipes (Spix, 1824) (Amphibia: Ranidae) from Brazilian Atlantic Forest. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111041. [PMID: 39427973 DOI: 10.1016/j.cbpb.2024.111041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
This work investigated the peptide profile of skin secretion from Lithobates palmipes collected from the Brazilian Atlantic Forest. The secretion was submitted to reversed phase high-performance liquid chromatography (RP-HPLC) and the fractions were screened for antibacterial activity. RP-HPLC resulted in the separation of several peaks, among which 10 showed antibacterial activity and contained peptides of the ranatuerin, brevinin and temporin families. Fraction 6 was resubmitted to RP-HPLC and a novel peptide from temporin family (temporin-PMb) had its primary structure determined. Temporin-PMb and non-amidated temporin-PMb were synthesized, purified, and evaluated for antibacterial activity, hemolytic activity and cytotoxicity to keratinocytes and cancer cells. Temporin-PMb was active against Klebsiella pneumoniae, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa as well as against methicilin-resistant S. aureus (MRSA) and Acinetobacter baumannii. It was cytotoxic to human cervical adenocarcinoma cells (HeLa) and human mammary adenocarcinoma cells (MCF7) with IC50 of 32.4 and 24.1 μM, respectively. It was also toxic to human keratinocytes (HaCaT; IC50 of 25.0 μM) and showed hemolytic activity. The non-amidated form showed low hemolytic activity and lower HaCaT toxicity, but was only effective against E. coli, S. aureus MRSA, and A. baumanii. In conclusion, Atlantic Forest L. palmipes skin secretion contained different bioactive peptides, including a novel temporin with antibacterial effect and cytotoxicity towards human cancer cells. The amide group was responsible for the activities of the wild-type temporin-PMb. Peptide engineering studies are encouraged aiming at minimizing unwanted effects.
Collapse
Affiliation(s)
- Géssica Gomes Barbosa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Carlos José Correia de Santana
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Tulíbia Laurindo Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Gabriel Gonçalves de Freitas
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | | | - Osmindo Rodrigues Pires Júnior
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Mariana S Castro
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
5
|
Vladkova TG, Smani Y, Martinov BL, Gospodinova DN. Recent Progress in Terrestrial Biota Derived Antibacterial Agents for Medical Applications. Molecules 2024; 29:4889. [PMID: 39459256 PMCID: PMC11510244 DOI: 10.3390/molecules29204889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Conventional antibiotic and multidrug treatments are becoming less and less effective and the discovery of new effective and safe antibacterial agents is becoming a global priority. Returning to a natural antibacterial product is a relatively new current trend. Terrestrial biota is a rich source of biologically active substances whose antibacterial potential has not been fully utilized. The aim of this review is to present the current state-of-the-art terrestrial biota-derived antibacterial agents inspired by natural treatments. It summarizes the most important sources and newly identified or modified antibacterial agents and treatments from the last five years. It focuses on the significance of plant- animal- and bacteria-derived biologically active agents as powerful alternatives to antibiotics, as well as the advantages of utilizing natural antibacterial molecules alone or in combination with antibiotics. The main conclusion is that terrestrial biota-derived antibacterial products and substances open a variety of new ways for modern improved therapeutic strategies. New terrestrial sources of known antibacterial agents and new antibacterial agents from terrestrial biota were discovered during the last 5 years, which are under investigation together with some long-ago known but now experiencing their renaissance for the development of new medical treatments. The use of natural antibacterial peptides as well as combinational therapy by commercial antibiotics and natural products is outlined as the most promising method for treating bacterial infections. In vivo testing and clinical trials are necessary to reach clinical application.
Collapse
Affiliation(s)
- Todorka G. Vladkova
- Department of Polymer Engineering, University of Chemical Technology and Metallurgy, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria
| | - Younes Smani
- Andalusian Center of Developmental Biology, CSIC, Junta de Andalusia, University of Pablo de Olavide, 41013 Seville, Spain;
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, Junta de Andalusia, University of Pablo de Olavide, 41013 Seville, Spain
| | - Boris L. Martinov
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| | - Dilyana N. Gospodinova
- Faculty of Electrical Engineering, Technical University of Sofia, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| |
Collapse
|
6
|
Haddad H, Tangy F, Ouahchi I, Sahtout W, Ouni B, Zaïri A. Evaluation of the antiviral activity of new dermaseptin analogs against Zika virus. Biochem Biophys Rep 2024; 39:101747. [PMID: 38939125 PMCID: PMC11208914 DOI: 10.1016/j.bbrep.2024.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024] Open
Abstract
Zika virus represents the primary cause of infection during pregnancy and can lead to various neurological disorders such as microcephaly and Guillain-Barré syndrome affecting both children and adults. This infection is also associated with urological and nephrological problems. So far, evidence of mosquito-borne Zika virus infection has been reported in a total of 89 countries and territories. However, surveillance efforts primarily concentrate on outbreaks that this virus can cause, yet the measures implemented are typically limited. Currently, there are no specific treatments or vaccines designed for the prevention or treatment of Zika virus infection or its associated disease. The development of effective therapeutic agents presents an urgent need. Importantly, an alternative for advancing the discovery of new molecules could be dermaseptins, a family of antimicrobial peptides known for their potential antiviral properties. In this study, we carried out the synthesis of dermaseptins and their analogs and subsequently assessed the bioactivity tests against Zika virus (ZIKV PF13) of dermaseptins B2 and S4 and their derivatives. The cytotoxicity of these peptides was investigated on HMC3 cell line and HeLa cells by CellTiter-Glo® Luminescent Cell Viability Assay. Thereafter, we evaluated the antiviral activity caused by the action of our dermaseptins on the viral envelope using the Fluorescence Activated Cell Sorting (FACS). The cytotoxicity of our molecules was concentration-dependent at microgram concentrations Expect for dermaseptin B2 and its derivative which present no toxicity against HeLa and HMC3 cell lines. It was observed that all tested analogs from S4 family exhibited antiviral activity with low concentrations ranging from 3 to 12.5 μg/ml , unlike the native B2 and its derivative which increased the infectivity. Pre-incubating of dermaseptins with ZIKV PF13 before infection revealed that these derivatives inhibit the initial stages of virus infection. In summary, these results suggest that dermaseptins could serve as novel lead structures for the development of potent antiviral agents against Zika virus infections.
Collapse
Affiliation(s)
- Houda Haddad
- BIOLIVAL Laboratory, LR14ES06, The Higher Institute of Biotechnology of Monastir ISBM, University of Monastir, Monastir, 5000, Tunisia
- Biochemistry Department, Faculty of Medicine, University of Sousse, Sousse, 4002, Tunisia
| | - Frédéric Tangy
- Institut Pasteur, Université Paris Cité, Vaccines-innovation Laboratory, 75015, Paris, France
| | - Ines Ouahchi
- Cytogenetics and Reproductive Biology department, Farhat Hached University Teaching Hospital, University of Sousse, 4000, Sousse, Tunisia
| | - Wissal Sahtout
- Nephrology Department, Sahloul University Hospital, University of Sousse, 4054, Sousse, Tunisia
- Research Laboratory LR12SP11, Biochemistry Department, Sahloul University Hospital, University of Sousse, 4054, Sousse, Tunisia
| | - Bouraoui Ouni
- Pharmacology Department, Faculty of Medicine, University of Sousse, 4002, ousse, Tunisia
| | - Amira Zaïri
- Biochemistry Department, Faculty of Medicine, University of Sousse, Sousse, 4002, Tunisia
| |
Collapse
|
7
|
Javed A, Oedairadjsingh T, Ludwig IS, Wood TM, Martin NI, Broere F, Weingarth MH, Veldhuizen EJA. Antimicrobial and immunomodulatory activities of porcine cathelicidin Protegrin-1. Mol Immunol 2024; 173:100-109. [PMID: 39094445 DOI: 10.1016/j.molimm.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Antimicrobial peptides (AMPs) are a promising alternative to antibiotics in the fight against multi-drug resistant and immune system-evading bacterial infections. Protegrins are porcine cathelicidins which have been identified in porcine leukocytes. Protegrin-1 is the best characterized family member and has broad antibacterial activity by interacting and permeabilizing bacterial membranes. Many host defense peptides (HDPs) like LL-37 or chicken cathelicidin 2 (CATH-2) have also been shown to have protective biological functions during infections. In this regard, it is interesting to study if Protegrin-1 has the immune modulating potential to suppress unnecessary immune activation by neutralizing endotoxins or by influencing the macrophage functionality in addition to its direct antimicrobial properties. This study showed that Protegrin-1 neutralized lipopolysaccharide- (LPS) and bacteria-induced activation of RAW macrophages by binding and preventing LPS from cell surface attachment. Furthermore, the peptide treatment not only inhibited bacterial phagocytosis by murine and porcine macrophages but also interfered with cell surface and intracellular bacterial survival. Lastly, Protegrin-1 pre-treatment was shown to inhibit the amastigote survival in Leishmania infected macrophages. These experiments describe an extended potential of Protegrin-1's protective role during microbial infections and add to the research towards clinical application of cationic AMPs.
Collapse
Affiliation(s)
- Ali Javed
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Utrecht University, the Netherlands; NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, the Netherlands
| | - Trishana Oedairadjsingh
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Utrecht University, the Netherlands
| | - Irene S Ludwig
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Utrecht University, the Netherlands
| | - Thomas M Wood
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, the Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, the Netherlands
| | - Femke Broere
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Utrecht University, the Netherlands
| | - Markus H Weingarth
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, the Netherlands
| | - Edwin J A Veldhuizen
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Utrecht University, the Netherlands.
| |
Collapse
|
8
|
Zhou Q, Li K, Wang K, Hong W, Chen J, Chai J, Yu L, Si Z, Li P. Fluoroamphiphilic polymers exterminate multidrug-resistant Gram-negative ESKAPE pathogens while attenuating drug resistance. SCIENCE ADVANCES 2024; 10:eadp6604. [PMID: 39196947 PMCID: PMC11352906 DOI: 10.1126/sciadv.adp6604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/23/2024] [Indexed: 08/30/2024]
Abstract
ESKAPE pathogens are a panel of most recalcitrant bacteria that could "escape" the treatment of antibiotics and exhibit high incidence of drug resistance. The emergence of multidrug-resistant (MDR) ESKAPE pathogens (particularly Gram-negative bacteria) accounts for high risk of mortality and increased resource utilization in health care. Worse still, there has been no new class of antibiotics approved for exterminating the Gram-negative bacteria for more than 50 years. Therefore, it is urgent to develop novel antibacterial agents with low resistance and potent killing efficacy against Gram-negative ESKAPE pathogens. Herein, we present a class of fluoropolymers by mimicking the amphiphilicity of cationic antimicrobial peptides. Our optimal fluoroamphiphilic polymer (PD45HF5) displayed selective antimicrobial ability for all MDR Gram-negative ESAKPE pathogens, low resistance, high in vitro cell selectivity, and in vivo curative efficacy. These findings implied great potential of fluoroamphiphilic cationic polymers as promising antibacterial agents against MDR Gram-negative ESKAPE bacteria and alleviating antibiotic resistance.
Collapse
Affiliation(s)
- Qian Zhou
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Kunpeng Li
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Kun Wang
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Weilin Hong
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Jingjie Chen
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Jin Chai
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Luofeng Yu
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Zhangyong Si
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo Cixi Institute of Biomedical Engineering, 1219 West Zhongguan Road, Ningbo 315201, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
| |
Collapse
|
9
|
Ortega-Balleza JL, Vázquez-Jiménez LK, Ortiz-Pérez E, Avalos-Navarro G, Paz-González AD, Lara-Ramírez EE, Rivera G. Current Strategy for Targeting Metallo-β-Lactamase with Metal-Ion-Binding Inhibitors. Molecules 2024; 29:3944. [PMID: 39203022 PMCID: PMC11356879 DOI: 10.3390/molecules29163944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Currently, antimicrobial resistance (AMR) is a serious health problem in the world, mainly because of the rapid spread of multidrug-resistant (MDR) bacteria. These include bacteria that produce β-lactamases, which confer resistance to β-lactams, the antibiotics with the most prescriptions in the world. Carbapenems are particularly noteworthy because they are considered the ultimate therapeutic option for MDR bacteria. However, this group of antibiotics can also be hydrolyzed by β-lactamases, including metallo-β-lactamases (MBLs), which have one or two zinc ions (Zn2+) on the active site and are resistant to common inhibitors of serine β-lactamases, such as clavulanic acid, sulbactam, tazobactam, and avibactam. Therefore, the design of inhibitors against MBLs has been directed toward various compounds, with groups such as nitrogen, thiols, and metal-binding carboxylates, or compounds such as bicyclic boronates that mimic hydrolysis intermediates. Other compounds, such as dipicolinic acid and aspergillomarasmin A, have also been shown to inhibit MBLs by chelating Zn2+. In fact, recent inhibitors are based on Zn2+ chelation, which is an important factor in the mechanism of action of most MBL inhibitors. Therefore, in this review, we analyzed the current strategies for the design and mechanism of action of metal-ion-binding inhibitors that combat MDR bacteria.
Collapse
Affiliation(s)
- Jessica L. Ortega-Balleza
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México 03940, Mexico
| | - Lenci K. Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México 03940, Mexico
| | - Eyra Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
| | - Guadalupe Avalos-Navarro
- Departamento de Ciencias Médicas y de la Vida, Instituto de Investigación en Genética Molecular, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47810, Mexico;
| | - Alma D. Paz-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
| | - Edgar E. Lara-Ramírez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
| |
Collapse
|
10
|
Thitirungreangchai T, Roytrakul S, Aunpad R. Deciphering the Intracellular Action of the Antimicrobial Peptide A11 via an In-Depth Analysis of Its Effect on the Global Proteome of Acinetobacter baumannii. ACS Infect Dis 2024; 10:2795-2813. [PMID: 39075773 PMCID: PMC11320580 DOI: 10.1021/acsinfecdis.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
The potential antimicrobial activity and low propensity to induce the development of bacterial resistance have rendered antimicrobial peptides (AMPs) as novel and ideal candidate therapeutic agents for the treatment of infections caused by drug-resistant pathogenic bacteria. The targeting of bacterial membranes by AMPs has been typically considered their sole mode of action; however, increasing evidence supports the existence of multiple and complementary functions of AMPs that result in bacterial death. An in-depth characterization of their mechanism of action could facilitate further research and development of AMPs with higher potency. The current study employs biophysics and proteomics approaches to unveil the mechanisms underlying the antibacterial activity of A11, a potential candidate AMP, against Acinetobacter baumannii, a leading cause of hospital-acquired infections (HAIs) and consequently, a serious global threat. A11 peptide was found to induce membrane depolarization to a high extent, as revealed by flow cytometry and electron microscopy analyses. The prompt intracellular penetration of A11 peptide, observed using confocal microscopy, was found to occur concomitantly with a very low degree of membrane lysis, suggesting that its mode of action predominantly involves a nonlytic killing mechanism. Quantitative proteomics analysis employed for obtaining insights into the mechanisms underlying the antimicrobial activity of A11 peptide revealed that it disrupted energy metabolism, interfered with protein homeostasis, and inhibited fatty acid synthesis that is essential for cell membrane integrity; all these impacted the cellular functions of A. baumannii. A11 treatment also impacted signal transduction associated with the regulation of biofilm formation, hindered the stress response, and influenced DNA repair processes; these are all crucial survival mechanisms of A. baumannii. Additionally, robust antibacterial activity was exhibited by A11 peptide against multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates of A. baumannii; moreover, A11 peptide exhibited synergy with levofloxacin and minocycline as well as low propensity for inducing resistance. Taken together, the findings emphasize the therapeutic potential of A11 peptide as an antibacterial agent against drug-resistant A. baumannii and underscore the need for further investigation.
Collapse
Affiliation(s)
- Thanit Thitirungreangchai
- Graduate
Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sittiruk Roytrakul
- Functional
Proteomics Technology Laboratory, National Center for Genetic Engineering
and Biotechnology, National Science and
Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand
| | - Ratchaneewan Aunpad
- Graduate
Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
11
|
Li C, Cai Y, Luo L, Tian G, Wang X, Yan A, Wang L, Wu S, Wu Z, Zhang T, Chen W, Zhang Z. TC-14, a cathelicidin-derived antimicrobial peptide with broad-spectrum antibacterial activity and high safety profile. iScience 2024; 27:110404. [PMID: 39092176 PMCID: PMC11292558 DOI: 10.1016/j.isci.2024.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
Cathelicidins, a major class of antimicrobial peptides (AMPs), hold considerable potential for antimicrobial drug development. In the present study, we identified a novel cathelicidin AMP (TC-33) derived from the Chinese tree shrew. Despite TC-33 demonstrating weak antimicrobial activity, the novel peptide TC-14, developed based on its active region, exhibited a 432-fold increase in antimicrobial activity over the parent peptide. Structural analysis revealed that TC-14 adopted an amphipathic α-helical conformation. The bactericidal mechanism of TC-14 involved targeting and disrupting the bacterial membrane, leading to rapid membrane permeabilization and rupture. Furthermore, TC-14 exhibited a high-safety profile, as evidenced by the absence of cytotoxic and hemolytic activities, as well as high biocompatibility and safety in vivo. Of note, its potent antimicrobial activity provided significant protection in a murine model of skin infection. Overall, this study presents TC-14 as a promising drug candidate for antimicrobial drug development.
Collapse
Affiliation(s)
- Chenxi Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Ying Cai
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Lin Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Gengzhou Tian
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Xingyu Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - An Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Liunan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Sijing Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Zhongxiang Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Tianyu Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Wenlin Chen
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Zhiye Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| |
Collapse
|
12
|
Chen X, Zhang B, He J, Rui X, He T, Zhang L, Bao J, Jing Y, Cao F. Exploration of Antimicrobial Peptides in the Treatment of Gentamicin-Resistant Klebsiella pneumoniae Infection. Infect Drug Resist 2024; 17:2591-2605. [PMID: 38953095 PMCID: PMC11215974 DOI: 10.2147/idr.s462653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction The emergence of multidrug-resistant Klebsiella pneumoniae (K. pneumoniae) and the decline of effective antibiotics lead to the urgent need for new antibacterial agents. The aim of this study is to investigate the therapeutic effect of antimicrobial peptides against gentamicin-resistant (RT) K. pneumoniae and to screen effective antimicrobial peptides. Methods In this study, the RT strains were induced by gradient gentamicin, and the RT strains were selected by detecting the expression levels of efflux pump genes, porin genes, and biofilm formation genes of the strains combined with their effects on the cells. Then the effects of four antimicrobial peptides on the efflux pump activity, biofilm formation level and cell condition after infection were detected to explore the effects of antimicrobial peptides on RT strains. Finally, the RT strain was used to induce a mouse model of pneumonia, and the four antimicrobial peptides were used to treat pneumonia mice for in vivo experiments. The pathological changes in lung tissues in each group were detected to explore the antimicrobial peptide with the most significant effect on the RT strain in vivo. Results The results showed that the minimal inhibitory concentrations of the RT strains (strain C and strain I) were significantly higher than those of the wild-type strain, and the expression of efflux pump, porin and biofilm formation genes was significantly increased. The antimicrobial peptides could effectively inhibit the biofilm formation and efflux pump protein function of the RT strains. In addition, the antimicrobial peptides showed promising antibacterial effects both in vitro and in vivo. Discussion Our study provided a theoretical basis for the treatment of gentamicin resistant K. pneumoniae infection with antimicrobial peptides, and found that KLA was significantly superior to LL37, Magainin I, KLA and Dermaseptin (10 μg/mL in cells, 50 μg in mice).
Collapse
Affiliation(s)
- Xiaochun Chen
- Department of Laboratory Medicine, Taizhou Second People’s Hospital, Taizhou, People’s Republic of China
| | - Benhong Zhang
- Department of Laboratory Medicine, Hangzhou Gongshu District Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, People’s Republic of China
| | - Jin He
- Department of Laboratory Medicine, Hangzhou Yuhang Jiamu Nursing Home, Hangzhou, People’s Republic of China
| | - Xiaohong Rui
- Department of Laboratory Medicine, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, People’s Republic of China
| | - Tian He
- Department of Laboratory Medicine, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, People’s Republic of China
| | - Lizhu Zhang
- Department of Research, Nanxin Pharm, Nanjing, People’s Republic of China
| | - Junfeng Bao
- Department of Laboratory Medicine, Wuxi Maternal and Child Health Care Hospital, Women’s Hospital of Jiangnan University, Wuxi, People’s Republic of China
| | - Yanfei Jing
- Department of Function, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, People’s Republic of China
| | - Futao Cao
- Department of Emergency, Jiangnan University Medical Center, Wuxi, People’s Republic of China
| |
Collapse
|
13
|
Velkova L, Dolashki A, Petrova V, Pisareva E, Kaynarov D, Kermedchiev M, Todorova M, Dolashka P. Antibacterial Properties of Peptide and Protein Fractions from Cornu aspersum Mucus. Molecules 2024; 29:2886. [PMID: 38930951 PMCID: PMC11206429 DOI: 10.3390/molecules29122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The discovery and investigation of new natural compounds with antimicrobial activity are new potential strategies to reduce the spread of antimicrobial resistance. The presented study reveals, for the first time, the promising antibacterial potential of two fractions from Cornu aspersum mucus with an MW < 20 kDa and an MW > 20 kDa against five bacterial pathogens-Bacillus cereus 1085, Propionibacterium acnes 1897, Salmonella enterica 8691, Enterococcus faecalis 3915, and Enterococcus faecium 8754. Using de novo sequencing, 16 novel peptides with potential antibacterial activity were identified in a fraction with an MW < 20 kDa. Some bioactive compounds in a mucus fraction with an MW > 20 kDa were determined via a proteomic analysis on 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and bioinformatics. High homology with proteins and glycoproteins was found, with potential antibacterial activity in mucus proteins named aspernin, hemocyanins, H-lectins, and L-amino acid oxidase-like protein, as well as mucins (mucin-5AC, mucin-5B, mucin-2, and mucin-17). We hypothesize that the synergy between the bioactive components determined in the composition of the fraction > 20 kDa are responsible for the high antibacterial activity against the tested pathogens in concentrations between 32 and 128 µg/mL, which is comparable to vancomycin, but without cytotoxic effects on model eukaryotic cells of Saccharomyces cerevisiae. Additionally, a positive effect, by reducing the levels of intracellular oxidative damage and increasing antioxidant capacity, on S. cerevisiae cells was found for both mucus extract fractions of C. aspersum. These findings may serve as a basis for further studies to develop a new antibacterial agent preventing the development of antibiotic resistance.
Collapse
Affiliation(s)
- Lyudmila Velkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Aleksandar Dolashki
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Ventsislava Petrova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (V.P.); (E.P.)
| | - Emiliya Pisareva
- Faculty of Biology, Sofia University, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (V.P.); (E.P.)
| | - Dimitar Kaynarov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Momchil Kermedchiev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Maria Todorova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
- Businesslab Ltd., Acad. G. Bonchev Str., bl. 4A, 1113 Sofia, Bulgaria
| | - Pavlina Dolashka
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| |
Collapse
|
14
|
Bahatheg G, Kuppusamy R, Yasir M, Bridge S, Mishra SK, Cranfield CG, StC Black D, Willcox M, Kumar N. Dimeric peptoids as antibacterial agents. Bioorg Chem 2024; 147:107334. [PMID: 38583251 DOI: 10.1016/j.bioorg.2024.107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Building upon our previous study on peptoid-based antibacterials which showed good activity against Gram-positive bacteria only, herein we report the synthesis of 34 dimeric peptoid compounds and the investigation of their activity against Gram-positive and Gram-negative pathogens. The newly designed peptoids feature a di-hydrophobic moiety incorporating phenyl, bromo-phenyl, and naphthyl groups, combined with variable lengths of cationic units such as amino and guanidine groups. The study also underscores the pivotal interplay between hydrophobicity and cationicity in optimizing efficacy against specific bacteria. The bromophenyl dimeric guanidinium peptoid compound 10j showed excellent activity against S. aureus 38 and E. coli K12 with MIC of 0.8 μg mL-1 and 6.2 μg mL-1, respectively. Further investigation into the mechanism of action revealed that the antibacterial effect might be attributed to the disruption of bacterial cell membranes, as suggested by tethered bilayer lipid membranes (tBLMs) and cytoplasmic membrane permeability studies. Notably, these promising antibacterial agents exhibited negligible toxicity against mammalian red blood cells. Additionally, the study explored the potential of 12 active compounds to disrupt established biofilms of S. aureus 38. The most effective biofilm disruptors were ethyl and octyl-naphthyl guanidinium peptoids (10c and 10 k). These compounds 10c and 10 k disrupted the established biofilms of S. aureus 38 with 51 % at 4x MIC (MIC = 17.6 μg mL-1 and 11.2 μg mL-1) and 56 %-58 % at 8x MIC (MIC = 35.2 μg mL-1 and 22.4 μg mL-1) respectively. Overall, this research contributes insights into the design principles of cationic dimeric peptoids and their antibacterial activity, with implications for the development of new antibacterial compounds.
Collapse
Affiliation(s)
- Ghayah Bahatheg
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia; Department of Chemistry, Faculty of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Rajesh Kuppusamy
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia; School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Muhammad Yasir
- School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Samara Bridge
- School of Life Sciences, University of Technology Sydney, PO Box 123, Ultimo 2007, Australia
| | - Shyam K Mishra
- School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Charles G Cranfield
- School of Life Sciences, University of Technology Sydney, PO Box 123, Ultimo 2007, Australia
| | - David StC Black
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Naresh Kumar
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|
15
|
Kravchenko SV, Domnin PA, Grishin SY, Zakhareva AP, Zakharova AA, Mustaeva LG, Gorbunova EY, Kobyakova MI, Surin AK, Poshvina DV, Fadeev RS, Azev VN, Ostroumova OS, Ermolaeva SA, Galzitskaya OV. Optimizing Antimicrobial Peptide Design: Integration of Cell-Penetrating Peptides, Amyloidogenic Fragments, and Amino Acid Residue Modifications. Int J Mol Sci 2024; 25:6030. [PMID: 38892216 PMCID: PMC11173194 DOI: 10.3390/ijms25116030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The escalating threat of multidrug-resistant pathogens necessitates innovative approaches to combat infectious diseases. In this study, we examined peptides R23FS*, V31KS*, and R44KS*, which were engineered to include an amyloidogenic fragment sourced from the S1 protein of S. aureus, along with one or two cell-penetrating peptide (CPP) components. We assessed the antimicrobial efficacy of these peptides in a liquid medium against various strains of both Gram-positive bacteria, including S. aureus (209P and 129B strains), MRSA (SA 180 and ATCC 43300 strains), and B. cereus (strain IP 5832), and Gram-negative bacteria such as P. aeruginosa (ATCC 28753 and 2943 strains) and E. coli (MG1655 and K12 strains). Peptides R23FS*, V31KS*, and R44KS* exhibited antimicrobial activity comparable to gentamicin and meropenem against all tested bacteria at concentrations ranging from 24 to 48 μM. The peptides showed a stronger antimicrobial effect against B. cereus. Notably, peptide R44KS* displayed high efficacy compared to peptides R23FS* and V31KS*, particularly evident at lower concentrations, resulting in significant inhibition of bacterial growth. Furthermore, modified peptides V31KS* and R44KS* demonstrated enhanced inhibitory effects on bacterial growth across different strains compared to their unmodified counterparts V31KS and R44KS. These results highlight the potential of integrating cell-penetrating peptides, amyloidogenic fragments, and amino acid residue modifications to advance the innovation in the field of antimicrobial peptides, thereby increasing their effectiveness against a broad spectrum of pathogens.
Collapse
Affiliation(s)
- Sergey V. Kravchenko
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (A.P.Z.); (D.V.P.)
| | - Pavel A. Domnin
- Biology Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Sergei Y. Grishin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (A.K.S.)
| | - Alena P. Zakhareva
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (A.P.Z.); (D.V.P.)
| | - Anastasiia A. Zakharova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.A.Z.); (O.S.O.)
| | - Leila G. Mustaeva
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.M.); (E.Y.G.); (V.N.A.)
| | - Elena Y. Gorbunova
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.M.); (E.Y.G.); (V.N.A.)
| | - Margarita I. Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
- Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630060 Novosibirsk, Russia
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (A.K.S.)
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.M.); (E.Y.G.); (V.N.A.)
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Darya V. Poshvina
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (A.P.Z.); (D.V.P.)
| | - Roman S. Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
| | - Viacheslav N. Azev
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.M.); (E.Y.G.); (V.N.A.)
| | - Olga S. Ostroumova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.A.Z.); (O.S.O.)
| | | | - Oxana V. Galzitskaya
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia;
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (A.K.S.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
| |
Collapse
|
16
|
Hao S, Shi W, Chen L, Kong T, Wang B, Chen S, Guo X. CATH-2-derived antimicrobial peptide inhibits multidrug-resistant Escherichia coli infection in chickens. Front Cell Infect Microbiol 2024; 14:1390934. [PMID: 38812753 PMCID: PMC11133627 DOI: 10.3389/fcimb.2024.1390934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/18/2024] [Indexed: 05/31/2024] Open
Abstract
Avian colibacillosis (AC), caused by infection with Escherichia coli (E. coli), is a major threat to poultry health, food safety and public health, and results in high mortality and significant economic losses. Currently, new drugs are urgently needed to replace antibiotics due to the continuous emergence and increasing resistance of multidrug-resistant (MDR) strains of E. coli caused by the irrational use of antibiotics in agriculture and animal husbandry. In recent years, antimicrobial peptides (AMPs), which uniquely evolved to protect the host, have emerged as a leading alternative to antibiotics in clinical settings. CATH-2, a member of the antimicrobial cathelicidin peptide family, has been reported to have antibacterial activity. To enhance the antimicrobial potency and reduce the adverse effects on animals, we designed five novel AMPs, named C2-1, C2-2, C2-3, C2-4 and C2-5, based on chicken CATH-2, the secondary structures of these AMPs were consistently α-helical and had an altered net charge and hydrophobicity compared to those of the CATH-2 (1-15) sequences. Subsequently, the antimicrobial activities of CATH-2 (1-15) and five designed peptides against MDR E. coli were evaluated in vitro. Specifically, C2-2 showed excellent antimicrobial activity against either the ATCC standard strain or veterinary clinical isolates of MDR E. coli, with concentrations ranging from 2-8 μg/mL. Furthermore, C2-2 maintained its strong antibacterial efficacy under high temperature and saline conditions, demonstrating significant stability. Similarly, C2-2 retained a high level of safety with no significant hemolytic activity on chicken mature red blood cells or cytotoxicity on chicken kidney cells over the concentration range of 0-64 μg/mL. Moreover, the administration of C2-2 improved the survival rate and reduced the bacterial load in the heart, liver and spleen during MDR E. coli infection in chickens. Additionally, pathological damage to the heart, liver and intestine was prevented when MDR E. coli infected chickens were treated with C2-2. Together, our study showed that C2-2 may be a promising novel therapeutic agent for the treatment of MDR E. coli infections and AC.
Collapse
Affiliation(s)
- Shihao Hao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Wenhui Shi
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Liujun Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Tianyou Kong
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Bin Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Shuming Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Xiaomin Guo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
17
|
He Y, Ruan S, Liang G, Hao J, Zhou X, Li Z, Mu L, Wu J, Yang H. A Nonbactericidal Anionic Antimicrobial Peptide Provides Prophylactic and Therapeutic Efficacies against Bacterial Infections in Mice by Immunomodulatory-Antithrombotic Duality. J Med Chem 2024; 67:7487-7503. [PMID: 38688020 DOI: 10.1021/acs.jmedchem.4c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Although bactericidal cationic antimicrobial peptides (AMPs) have been well characterized, less information is available about the antibacterial properties and mechanisms of action of nonbactericidal AMPs, especially nonbactericidal anionic AMPs. Herein, a novel anionic antimicrobial peptide (Gy-CATH) with a net charge of -4 was identified from the skin of the frog Glyphoglossus yunnanensis. Gy-CATH lacks direct antibacterial effects but exhibits significantly preventive and therapeutic capacities in mice that are infected with Staphylococcus aureus, Enterobacteriaceae coli, methicillin-resistant Staphylococcus aureus (MRSA), or carbapenem-resistant E. coli (CREC). In vitro and in vivo investigations proved the regulation of Gy-CATH on neutrophils and macrophages involved in the host immune defense against infection. Moreover, Gy-CATH significantly reduced the extent of pulmonary fibrin deposition and prevented thrombosis in mice, which was attributed to the regulatory role of Gy-CATH in physiological anticoagulants and platelet aggregation. These findings show that Gy-CATH is a potential candidate for the treatment of bacterial infection.
Collapse
Affiliation(s)
- Yanmei He
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Shimei Ruan
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Guozhu Liang
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jing Hao
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Xiaoyan Zhou
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Zhuorui Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Lixian Mu
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| |
Collapse
|
18
|
Mehraj I, Hamid A, Gani U, Iralu N, Manzoor T, Saleem Bhat S. Combating Antimicrobial Resistance by Employing Antimicrobial Peptides: Immunomodulators and Therapeutic Agents against Infectious Diseases. ACS APPLIED BIO MATERIALS 2024; 7:2023-2035. [PMID: 38533844 DOI: 10.1021/acsabm.3c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The rising prevalence of multiple-drug-resistant pathogens poses a formidable challenge to conventional antimicrobial treatments. The inability of potent antibiotics to combat these "superbugs" underscores the pressing need for alternative therapeutic agents. Antimicrobial peptides (AMPs) represent an alternative class of antibiotics. AMPs are essential immunomodulatory molecules that are found in various organisms. They play a pivotal role in managing microbial ecosystems and bolstering innate immunity by targeting and eliminating invading microorganisms. AMPs also have applications in the agriculture sector by combating animal as well as plant pathogens. AMPs can be exploited for the targeted therapy of various diseases and can also be used in drug-delivery systems. They can be used in synergy with current treatments like antibiotics and can potentially lead to a lower required dosage. AMPs also have huge potential in wound healing and regenerative medicine. Developing AMP-based strategies with improved safety, specificity, and efficacy is crucial in the battle against alarming global microbial resistance. This review will explore AMPs' increasing applicability, their mode of antimicrobial activity, and various delivery systems enhancing their stability and efficacy.
Collapse
Affiliation(s)
- Insha Mehraj
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Aflaq Hamid
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Ubaid Gani
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Nulevino Iralu
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| |
Collapse
|
19
|
Yang L, Gao Y, Zhang J, Tian C, Lin F, Song D, Zhou L, Peng J, Guo G. Antimicrobial peptide DvAMP combats carbapenem-resistant Acinetobacter baumannii infection. Int J Antimicrob Agents 2024; 63:107106. [PMID: 38325724 DOI: 10.1016/j.ijantimicag.2024.107106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB), an important opportunistic pathogen, is a major cause of healthcare-associated infections. The polymyxins (colistin and polymyxin B) are the last line of defense in the treatment of CRAB infections, and there is an urgent need to develop novel alternative therapeutic strategies. In this study, we found that the antimicrobial peptide DvAMP exhibited satisfactory antibacterial and antibiofilm activity against CRAB. In addition, DvAMP showed tolerable stability in salt ions and serum and exhibited low toxicity in vivo. Investigation of the underlying mechanism demonstrated that DvAMP disrupts cell membrane structural integrity and specifically binds to exogenous lipopolysaccharides (LPS) and phospholipids (PG/CL), resulting in increased membrane permeability and dissipating proton motive force (PMF), further reducing intracellular ATP levels and inducing ROS accumulation, leading to bacterial death. Furthermore, DvAMP therapy efficiently improved survival rates and decreased the bacterial load in the lungs of mice in a mouse pneumonia model, showing that DvAMP administration reduced CRAB susceptibility to lung infection. These results indicate that the peptide DvAMP is a promising alternative therapeutic agent to combat CRAB infection.
Collapse
Affiliation(s)
- Longbing Yang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China; Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Yongfei Gao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Jin Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China; School of Public Health, Guizhou Medical University, Guiyang, China
| | - Chunren Tian
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Fei Lin
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Dongxu Song
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China; Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Luoxiong Zhou
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China; School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jian Peng
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China; Translational Medicine Research Center, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
20
|
Lombardo GP, Miller A, Aragona M, Messina E, Fumia A, Kuciel M, Alesci A, Pergolizzi S, Lauriano ER. Immunohistochemical Characterization of Langerhans Cells in the Skin of Three Amphibian Species. BIOLOGY 2024; 13:210. [PMID: 38666822 PMCID: PMC11048468 DOI: 10.3390/biology13040210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
The amphibian taxon includes three orders that present different morphological characteristics: Anura, Caudata, and Apoda. Their skin has a crucial role: it acts as an immune organ constituting a physical, chemical, immunological, and microbiological barrier to pathogen insult and conducts essential physiological processes. Amphibians have developed specialized features to protect the vulnerable skin barrier, including a glandular network beneath the skin surface that can produce antimicrobial and toxic substances, thus contributing to the defense against pathogens and predators. This study aims to characterize Langerhans cells in the skin of Lithobates catesbeianus (order: Anura; Shaw, 1802), Amphiuma means (order: Caudata; Garden, 1821), and Typhlonectes natans (order: Apoda; Fischer, 1880) with the following antibodies: Langerin/CD207 (c-type lectin), Major Histocompatibility Complex (MHC)II, and Toll-like receptor (TLR)2 (expressed by different types of DCs). Our results showed Langerhans cells positive for Langerin CD/207 in the epidermis of the three species; moreover, some antigen-presenting cells (APCs) in the connective tissue expressed TLR2 and MHCII. The distribution of the Langerhans cells is very similar in the three amphibians examined, despite their different habitats. A greater knowledge of the amphibian immune system could be useful to better understand the phylogeny of vertebrates and to safeguard amphibians from population declines. Furthermore, the similarities between amphibians' and human skin concerning immunological features may be useful in both biology and translational medicine.
Collapse
Affiliation(s)
- Giorgia Pia Lombardo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| | - Anthea Miller
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy;
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy;
| | - Emmanuele Messina
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy;
| | - Michał Kuciel
- Poison Information Centre, Department of Toxicology and Environmental Disease, Faculty of Medicine, Jagellonian University, Kopernika 15, 30-501 Krakòw, Poland;
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| |
Collapse
|
21
|
Vieira APGC, de Souza AN, Lima WG, Brito JCM, Simião DC, Gonçalves LVR, Cordeiro LPB, de Oliveira Scoaris D, Fernandes SOA, Resende JM, Bechinger B, Verly RM, de Lima ME. The Synthetic Peptide LyeTx I mn∆K, Derived from Lycosa erythrognatha Spider Toxin, Is Active against Methicillin-Resistant Staphylococcus aureus (MRSA) In Vitro and In Vivo. Antibiotics (Basel) 2024; 13:248. [PMID: 38534683 PMCID: PMC10967519 DOI: 10.3390/antibiotics13030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
The urgent global health challenge posed by methicillin-resistant Staphylococcus aureus (MRSA) infections demands effective solutions. Antimicrobial peptides (AMPs) represent promising tools of research of new antibacterial agents and LyeTx I mn∆K, a short synthetic peptide based on the Lycosa erythrognatha spider venom, is a good representative. This study focused on analyzing the antimicrobial activities of LyeTx I mn∆K, including minimum inhibitory and bactericidal concentrations, synergy and resensitization assays, lysis activity, the effect on biofilm, and the bacterial death curve in MRSA. Additionally, its characterization was conducted through isothermal titration calorimetry, dynamic light scattering, calcein release, and finally, efficacy in a mice wound model. The peptide demonstrates remarkable efficacy against planktonic cells (MIC 8-16 µM) and biofilms (>30% of inhibition) of MRSA, and outperforms vancomycin in terms of rapid bactericidal action and anti-biofilm effects. The mechanism involves significant membrane damage. Interactions with bacterial model membranes, including those with lysylphosphatidylglycerol (LysylPOPG) modifications, highlight the versatility and selectivity of this compound. Also, the peptide has the ability to sensitize resistant bacteria to conventional antibiotics, showing potential for combinatory therapy. Furthermore, using an in vivo model, this study showed that a formulated gel containing the peptide proved superior to vancomycin in treating MRSA-induced wounds in mice. Together, the results highlight LyeTx I mnΔK as a promising prototype for the development of effective therapeutic strategies against superficial MRSA infections.
Collapse
Affiliation(s)
- Ana Paula Gonçalves Coelho Vieira
- Faculdade de Saúde Santa Casa de Belo Horizonte, Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Belo Horizonte 30150-240, Brazil; (A.P.G.C.V.); (W.G.L.); (L.V.R.G.)
| | - Amanda Neves de Souza
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)—Campus JK, Diamantina 39100-000, Brazil;
- Institut de Chimie, Centre National de la Recherche Scientifique, UMR7177, Université de Strasbourg, 67070 Strasbourg, France;
| | - William Gustavo Lima
- Faculdade de Saúde Santa Casa de Belo Horizonte, Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Belo Horizonte 30150-240, Brazil; (A.P.G.C.V.); (W.G.L.); (L.V.R.G.)
| | | | - Daniela Carolina Simião
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia—Campus Pampulha, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (D.C.S.); (S.O.A.F.)
| | - Lucas Vinícius Ribeiro Gonçalves
- Faculdade de Saúde Santa Casa de Belo Horizonte, Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Belo Horizonte 30150-240, Brazil; (A.P.G.C.V.); (W.G.L.); (L.V.R.G.)
| | - Lídia Pereira Barbosa Cordeiro
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.P.B.C.); (J.M.R.)
| | | | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia—Campus Pampulha, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (D.C.S.); (S.O.A.F.)
| | - Jarbas Magalhães Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.P.B.C.); (J.M.R.)
| | - Burkhard Bechinger
- Institut de Chimie, Centre National de la Recherche Scientifique, UMR7177, Université de Strasbourg, 67070 Strasbourg, France;
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Rodrigo Moreira Verly
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)—Campus JK, Diamantina 39100-000, Brazil;
| | - Maria Elena de Lima
- Faculdade de Saúde Santa Casa de Belo Horizonte, Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Belo Horizonte 30150-240, Brazil; (A.P.G.C.V.); (W.G.L.); (L.V.R.G.)
| |
Collapse
|
22
|
Cai Y, Wang X, Zhang T, Yan A, Luo L, Li C, Tian G, Wu Z, Wang X, Shen D, Han Y, Zhang Z. Rational Design of a Potent Antimicrobial Peptide Based on the Active Region of a Gecko Cathelicidin. ACS Infect Dis 2024; 10:951-960. [PMID: 38315114 DOI: 10.1021/acsinfecdis.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The emergence of multidrug-resistant (MDR) bacteria presents a significant challenge to public health, increasing the risk of infections that are resistant to current antibiotic treatment. Antimicrobial peptides (AMPs) offer a promising alternative to conventional antibiotics in the prevention of MDR bacterial infections. In the present study, we identified a novel cathelicidin AMP from Gekko japonicus, which exhibited broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with minimal inhibitory concentrations ranging from 2.34 to 4.69 μg/mL. To improve its potential therapeutic application, a series of peptides was synthesized based on the active region of the gecko-derived cathelicidin. The lead peptide (RH-16) showed an antimicrobial activity comparable to that of the parent peptide. Structural characterization revealed that RH-16 adopted an amphipathic α-helical conformation. Furthermore, RH-16 demonstrated neither hemolytic nor cytotoxic activity but effectively killed a wide range of clinically isolated, drug-resistant bacteria. The antimicrobial activity of RH-16 was attributed to the nonspecific targeting of bacterial membranes, leading to rapid bacterial membrane permeabilization and rupture. RH-16 also retained its antibacterial activity in plasma and exhibited mild toxicity in vivo. Notably, RH-16 offered robust protection against skin infection in a murine model. Therefore, this newly identified cathelicidin AMP may be a strong candidate for future pharmacological development targeting multidrug resistance. The use of a rational design approach for isolating the minimal antimicrobial unit may accelerate the transition of natural AMPs to clinically applicable antibacterial agents.
Collapse
Affiliation(s)
- Ying Cai
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Xingyu Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Tianyu Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - An Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Lin Luo
- Third Department of Breast Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan 650118, China
| | - Chenxi Li
- Third Department of Breast Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan 650118, China
| | - Gengzhou Tian
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650223, China
| | - Zhongxiang Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Xi Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Dong Shen
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Yajun Han
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhiye Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| |
Collapse
|
23
|
Nazarian-Firouzabadi F, Torres MDT, de la Fuente-Nunez C. Recombinant production of antimicrobial peptides in plants. Biotechnol Adv 2024; 71:108296. [PMID: 38042311 PMCID: PMC11537283 DOI: 10.1016/j.biotechadv.2023.108296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Classical plant breeding methods are limited in their ability to confer disease resistance on plants. However, in recent years, advancements in molecular breeding and biotechnological have provided new approaches to overcome these limitations and protect plants from disease. Antimicrobial peptides (AMPs) constitute promising agents that may be able to protect against infectious agents. Recently, peptides have been recombinantly produced in plants at scale and low cost. Because AMPs are less likely than conventional antimicrobials to elicit resistance of pathogenic bacteria, they open up exciting new avenues for agricultural applications. Here, we review recent advances in the design and production of bioactive recombinant AMPs that can effectively protect crop plants from diseases.
Collapse
Affiliation(s)
- Farhad Nazarian-Firouzabadi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, P.O. Box, 465, Khorramabad, Iran.
| | - Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
24
|
Tiwari K, Patel P, Mondal AH, Mukhopadhyay K. Interaction with lipopolysaccharide is key to efficacy of tryptophan- and arginine-rich α-melanocyte-stimulating hormone analogs against Gram-negative bacteria. Future Microbiol 2024; 19:195-211. [PMID: 38126934 DOI: 10.2217/fmb-2023-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/20/2023] [Indexed: 12/23/2023] Open
Abstract
Aim: In order to search for novel antibacterial therapeutics against Gram-negative bacteria, the antibacterial efficacies and mechanism of action of tryptophan- and arginine-rich α-melanocyte-stimulating hormone analogs were investigated. Materials & methods: We performed a killing assay to determine their efficacy; fluorescence, microscopic studies were used to understand their mechanism and peptide-lipopolysaccharide interaction. A checkerboard assay was used to find the effective combination of peptide and antibiotics. Results: Ana-peptides displayed good killing activity against Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Their strong interaction with lipopolysaccharide damaged the bacterial membranes and led to their subsequent death. Ana-5, the highest cationic and hydrophobic analog, emerged as the most potent peptide, showing synergistic action with rifampicin and erythromycin. Conclusion: Ana-5 can be presented as an important therapeutic candidate against bacterial infections.
Collapse
Affiliation(s)
- Kanchan Tiwari
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priya Patel
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Aftab H Mondal
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
25
|
Jalalifar S, Razavi S, Mirzaei R, Irajian G, Pooshang Bagheri K. A hope for ineffective antibiotics to return to treatment: investigating the anti-biofilm potential of melittin alone and in combination with penicillin and oxacillin against multidrug resistant-MRSA and -VRSA. Front Microbiol 2024; 14:1269392. [PMID: 38370578 PMCID: PMC10870424 DOI: 10.3389/fmicb.2023.1269392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/27/2023] [Indexed: 02/20/2024] Open
Abstract
Background The emergence and rapid spread of multi-drug resistant (MDR) bacterial strains, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant S. aureus (VRSA), have posed a significant challenge to the medical community due to their ability to form biofilm and develop resistance to common antibiotics. Traditional antibiotics that were once effective in treating bacterial infections are now becoming increasingly ineffective, leading to severe consequences for patient outcomes. This concerning situation has called for urgent research to explore alternative treatment strategies. Recent studies have shown that antimicrobial peptides (AMPs) hold promise as effective agents against biofilm-associated drug-resistant infections as well as to enhance the efficacy of conventional antibiotics. Accordingly, we aimed to investigate the antimicrobial and antibiofilm effects of melittin AMP, both alone and in combination with penicillin and oxacillin, against biofilm-forming MDR-MRSA and -VRSA. Methods In this study, we investigated the kinetics of biofilm formation and assessed various parameters related to the antimicrobial and antibiofilm efficacy of melittin and antibiotics, both alone and in combination, against MDR-MRSA and -VRSA. The antimicrobial parameters included the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Fractional Inhibitory Concentration Index (FICi), Fractional Bactericidal Concentration Index (FBCi), and the antibiofilm activity of melittin and antibiotics indicated by the Minimum Biofilm Inhibitory Concentration (MBIC), Minimal Biofilm Eradication Concentration (MBEC), Fractional Biofilm Inhibitory Concentration Index (FBICi), and Fractional Biofilm Eradication Concentration Index (FBECi). Results The MIC results showed that all S. aureus isolates were resistant to penicillin (≥0.25 μg/mL), and 66% of isolates were resistant to oxacillin. The geometric means of the MIC values for penicillin, oxacillin, and melittin were 19.02, 16, and 1.62 μg/ml, respectively, and the geometric means of the MBC values for penicillin, oxacillin, and melittin were 107.63, 49.35, and 5.45 μg/ml, respectively. The study revealed that the combination indexes of melittin-penicillin and melittin-oxacillin, as determined by FIC values against all isolates, were 0.37 and 0.03, respectively. Additionally, melittin-penicillin and melittin-oxacillin exhibited combination indexes based on FBC values against all isolates at 1.145 and 0.711, respectively. Besides, melittin inhibited the biofilm formation of all S. aureus isolates, with MBIC values ranging from 10 to 1.25 μg/mL, and MBEC values ranging from 40 to 10 μg/mL. Generally, the combination indexes of melittin-penicillin and melittin-oxacillin, determined using FBIC values against all isolates, were 0.23 and 0.177, respectively. Moreover, melittin-penicillin and melittin-oxacillin typically had combination indexes based on FBEC values against all isolates at 5 and 2.97, respectively. Conclusion In conclusion, our study provides evidence that melittin is effective against both planktonik and biofilm forms of MRSA and VRSA and exhibits significant synergistic effects when combined with antibiotics. These results suggest that melittin and antibiotics could be a potential candidate for further investigation for in vivo infections caused by MDR S. aureus. Furthermore, melittin has the potential to restore the efficacy of penicillin and oxacillin antibiotics in the treatment of MDR infections. Applying AMPs, like melittin, to revive beta-lactam antibiotics against MRSA and VRSA is an innovative approach against antibiotic-resistant bacteria. Further research is needed to optimize dosage and understand melittin mechanism and interactions with beta-lactam antibiotics for successful clinical applications.
Collapse
Affiliation(s)
- Saba Jalalifar
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab., Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Gholamreza Irajian
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab., Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
26
|
Haddad H, Mejri R, de Araujo AR, Zaïri A. Evaluation of the Antibacterial Activity of New Dermaseptin Derivatives against Acinetobacter baumannii. Pharmaceuticals (Basel) 2024; 17:171. [PMID: 38399385 PMCID: PMC10892451 DOI: 10.3390/ph17020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Nosocomial infections represent one of the biggest health problems nowadays. Acinetobacter baumannii is known as an opportunistic pathogen in humans, affecting people with compromised immune systems, and is becoming increasingly important as a hospital-derived infection. It is known that in recent years, more and more bacteria have become multidrug-resistant (MDR) and, for this reason, the development of new drugs is a priority. However, these products must not affect the human body, and therefore, cytotoxicity studies are mandatory. In this context, antimicrobial peptides with potential antibacterial proprieties could be an alternative. In this research, we describe the synthesis and the bioactivity of dermaseptins and their derivatives against Acinetobacter baumannii. The cytotoxicity of these compounds was investigated on the HEp-2 cell line by MTT cell viability assay. Thereafter, we studied the morphological alterations caused by the action of one of the active peptides on the bacterial membrane using atomic force microscopy (AFM). The cytotoxicity of dermaseptins was concentration-dependent at microgram concentrations. It was observed that all tested analogs exhibited antibacterial activity with Minimum Inhibitory Concentrations (MICs) ranging from 3.125 to 12.5 μg/mL and Minimum Bactericidal Concentrations (MBCs) ranging from 6.25 to 25 μg/mL. Microscopic images obtained by AFM revealed morphological changes on the surface of the treated bacteria caused by K4S4(1-16), as well as significant surface alterations. Overall, these findings demonstrate that dermaseptins might constitute new lead structures for the development of potent antibacterial agents against Acinetobacter baumannii infections.
Collapse
Affiliation(s)
- Houda Haddad
- BIOLIVAL Laboratory, LR14ES06, The Higher Institute of Biotechnology of Monastir ISBM, University of Monastir, Monastir 5000, Tunisia;
- Biochemistry Department, LR18ES47, Faculty of Medicine, University of Sousse, Sousse 4002, Tunisia;
| | - Radhia Mejri
- Biochemistry Department, LR18ES47, Faculty of Medicine, University of Sousse, Sousse 4002, Tunisia;
| | - Alyne Rodrigues de Araujo
- Biodiversity and Biotechnology Research Center, BIOTEC, Federal University of Piauí, Parnaíba 64202-020, PI, Brazil;
| | - Amira Zaïri
- Biochemistry Department, LR18ES47, Faculty of Medicine, University of Sousse, Sousse 4002, Tunisia;
| |
Collapse
|
27
|
Zhang Z, Xu Q, Wang Y, Qu S, Tan J, Tang Y, Li P, Zheng X. Exploiting the synergistic antibacterial activity of shikimic acid and ceftiofur against methicillin-resistant Staphylococcus aureus. World J Microbiol Biotechnol 2024; 40:78. [PMID: 38253730 DOI: 10.1007/s11274-023-03876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024]
Abstract
Efforts to curtail the escalating health threat posed by methicillin-resistant Staphylococcus aureus (MRSA), a formidable superbug, necessitate the development of innovative treatment strategies. Leveraging potential compounds from natural sources in tandem with antibiotics has emerged as a promising approach against MRSA. These strategies should enhance the antibiotic efficacy, reduce dosage and toxicity, and bypass MRSA resistance. In this study, we used a checkerboard assay to illustrate the significant synergistic anti-MRSA effect of shikimic acid (SA), a naturally occurring compound, and ceftiofur (CF). Time-kill curves further revealed that a combination of 1/4 of the minimum inhibitory concentration (MIC) of SA and 1/8 MIC of the sodium CF eradicated MRSA within 2 h, with no noticeable toxicity observed with these concentrations. In vivo experiments confirmed that this combination therapy demonstrated robust antimicrobial activity against MRSA-induced bacteremia in mice, significantly reducing bacterial loads in the kidneys, liver, and spleen, attenuating inflammatory cell infiltration, and alleviating pathological damage. This study not only offers a compelling strategy, capitalizing on the synergistic potential of SA and CF, to rapidly address antibiotic resistance but also contributes significantly to the refinement of antimicrobial therapeutic strategies.
Collapse
Affiliation(s)
- Zhuohui Zhang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Qianqian Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Shiyin Qu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Junjie Tan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Yulong Tang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Pishun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China.
| | - Xiaofeng Zheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
28
|
Lu H, Chai J, Xu Z, Wu J, He S, Liao H, Huang P, Huang X, Chen X, Jiang H, Qu S, Xu X. Cath-KP, a novel peptide derived from frog skin, prevents oxidative stress damage in a Parkinson's disease model. Zool Res 2024; 45:108-124. [PMID: 38114437 PMCID: PMC10839659 DOI: 10.24272/j.issn.2095-8137.2023.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/11/2023] [Indexed: 12/21/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition that results in dyskinesia, with oxidative stress playing a pivotal role in its progression. Antioxidant peptides may thus present therapeutic potential for PD. In this study, a novel cathelicidin peptide (Cath-KP; GCSGRFCNLFNNRRPGRLTLIHRPGGDKRTSTGLIYV) was identified from the skin of the Asiatic painted frog ( Kaloula pulchra). Structural analysis using circular dichroism and homology modeling revealed a unique αββ conformation for Cath-KP. In vitro experiments, including free radical scavenging and ferric-reducing antioxidant analyses, confirmed its antioxidant properties. Using the 1-methyl-4-phenylpyridinium ion (MPP +)-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, Cath-KP was found to penetrate cells and reach deep brain tissues, resulting in improved MPP +-induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1 (Sirt1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation. Both focal adhesion kinase (FAK) and p38 were also identified as regulatory elements. In the MPTP-induced PD mice, Cath-KP administration increased the number of tyrosine hydroxylase (TH)-positive neurons, restored TH content, and ameliorated dyskinesia. To the best of our knowledge, this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress. These findings expand the known functions of cathelicidins, and hold promise for the development of therapeutic agents for PD.
Collapse
Affiliation(s)
- Huanpeng Lu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zijian Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Songzhe He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hang Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Peng Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xi Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Haishan Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shaogang Qu
- Department of Neurology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341001, China
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China. E-mail:
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China. E-mail:
| |
Collapse
|
29
|
Lima WG, Brito JCM, Verly RM, de Lima ME. Jelleine, a Family of Peptides Isolated from the Royal Jelly of the Honey Bees ( Apis mellifera), as a Promising Prototype for New Medicines: A Narrative Review. Toxins (Basel) 2024; 16:24. [PMID: 38251241 PMCID: PMC10819630 DOI: 10.3390/toxins16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
The jelleine family is a group of four peptides (jelleines I-IV) originally isolated from the royal jelly of honey bee (Apis mellifera), but later detected in some honey samples. These oligopeptides are composed of 8-9 amino acid residues, positively charged (+2 to +3 at pH 7.2), including 38-50% of hydrophobic residues and a carboxamide C-terminus. Jelleines, generated by processing of the C-terminal region of major royal jelly proteins 1 (MRJP-1), play an important biological role in royal jelly conservation as well as in protecting bee larvae from potential pathogens. Therefore, these molecules present numerous benefits for human health, including therapeutic purposes as shown in preclinical studies. In this review, we aimed to evaluate the biological effects of jelleines in addition to characterising their toxicities and stabilities. Jelleines I-III have promising antimicrobial activity and low toxicity (LD50 > 1000 mg/Kg). However, jelleine-IV has not shown relevant biological potential. Jelleine-I, but not the other analogues, also has antiparasitic, healing, and pro-coagulant activities in addition to indirectly modulating tumor cell growth and controlling the inflammatory process. Although it is sensitive to hydrolysis by proteases, the addition of halogens increases the chemical stability of these molecules. Thus, these results suggest that jelleines, especially jelleine-I, are a potential target for the development of new, effective and safe therapeutic molecules for clinical use.
Collapse
Affiliation(s)
- William Gustavo Lima
- Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Faculdade de Saúde da Santa Casa de Belo Horizonte, Avenida dos Andradas, 2688, Santa Efigênia, Belo Horizonte 30110-005, MG, Brazil;
| | - Julio Cesar Moreira Brito
- Fundação Ezequiel Dias (FUNED), Rua Conde Pereira Carneiro, 8, Gameleira, Belo Horizonte 30510-010, MG, Brazil;
| | - Rodrigo Moreira Verly
- Departamento de Química, Faculdade de Ciências Exatas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rodovia MGT 367, 5000, Auto da Jacuba, Diamantina 39100-000, MG, Brazil;
| | - Maria Elena de Lima
- Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Faculdade de Saúde da Santa Casa de Belo Horizonte, Avenida dos Andradas, 2688, Santa Efigênia, Belo Horizonte 30110-005, MG, Brazil;
| |
Collapse
|
30
|
Grover P, Thakur K, Bhardwaj M, Mehta L, Raina SN, Rajpal VR. Phytotherapeutics in Cancer: From Potential Drug Candidates to Clinical Translation. Curr Top Med Chem 2024; 24:1050-1074. [PMID: 38279745 DOI: 10.2174/0115680266282518231231075311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024]
Abstract
Annually, a significant number of individuals succumb to cancer, an anomalous cellular condition characterized by uncontrolled cellular proliferation and the emergence of highly perilous tumors. Identifying underlying molecular mechanism(s) driving disease progression has led to various inventive therapeutic approaches, many of which are presently under pre-clinical and/or clinical trials. Over the recent years, numerous alternative strategies for addressing cancer have also been proposed and put into practice. This article delineates the modern therapeutic drugs employed in cancer treatment and their associated toxicity. Due to inherent drug toxicity associated with most modern treatments, demand rises for alternative therapies and phytochemicals with minimal side effects and proven efficacy against cancer. Analogs of taxol, Vinca alkaloids like vincristine and vinblastine, and podophyllotoxin represent a few illustrative examples in this context. The phytochemicals often work by modifying the activity of molecular pathways that are thought to be involved in the onset and progression of cancer. The principal objective of this study is to provide an overview of our current understanding regarding the pharmacologic effects and molecular targets of the active compounds found in natural products for cancer treatment and collate information about the recent advancements in this realm. The authors' interest in advancing the field of phytochemical research stems from both the potential of these compounds for use as drugs as well as their scientific validity. Accordingly, the significance of herbal formulations is underscored, shedding light on anticancer phytochemicals that are sought after at both pre-clinical and clinical levels, with discussion on the opportunities and challenges in pre-clinical and clinical cancer studies.
Collapse
Affiliation(s)
- Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | | | - Monika Bhardwaj
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, 180001, India
| | - Lovekesh Mehta
- Amity Institute of Pharmacy, Amity University, Noida, 201301, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, Noida, 201301, India
| | - Vijay Rani Rajpal
- Department of Botany, Hansraj College, Delhi University, Delhi, 110007, India
| |
Collapse
|
31
|
Zhang Z, Chen Y, Gao J, Yang M, Zhang D, Wang L, Zhang T, Cao Q, Mwangi J, He C, Li Y, Liu X, Jiang X, Kamau PM, Lai R. Orientational Nanoconjugation with Gold Endows Marked Antimicrobial Potential and Drugability of Ultrashort Dipeptides. NANO LETTERS 2023; 23:11874-11883. [PMID: 38097378 PMCID: PMC10755742 DOI: 10.1021/acs.nanolett.3c03909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Antibiotic resistance is a global threat. Antimicrobial peptides (AMPs) are highly desirable to treat multidrug-resistant pathogen infection. However, few AMPs are clinically available, due to high cost, instability, and poor selectivity. Here, ultrashort AMPs (2-3 residues with an N-terminal cysteine) are designed and assembled as gold nanoparticles. Au-S conjugation and ultrashort size restrict nonspecific reactions and peptide orientation, thus concentrating positively charged residues on the surface. The nanostructured assemblies enormously enhance antimicrobial abilities by 1000-6000-fold and stability. One representative (Au-Cys-Arg-NH2, Au_CR) shows selective antibacterial activity against Staphylococcus aureus with 10 nM minimal inhibitory concentration. Au_CR has comparable or better in vivo antimicrobial potency than vancomycin and methicillin, with low propensity to induce resistance, little side effects, and high stability (17.5 h plasma half-life). Au_CR acts by inducing collapse of membrane potential and rupture of the bacterial membrane. The report provides insights for developing AMP-metal nanohybrids, particularly tethering nonspecific reactions and AMP orientation on the metal surface.
Collapse
Affiliation(s)
- Zhiye Zhang
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yaoyao Chen
- Department
of Zoology, College of Life Sciences, Nanjing
Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jinai Gao
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School
of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
| | - Min Yang
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming
College of Life Science, University of Chinese
Academy of Sciences, Kunming 650204, Yunnan, China
| | - Dengdeng Zhang
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Department
of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Le Wang
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Tianyu Zhang
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine
(HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Qiqi Cao
- Department
of Zoology, College of Life Sciences, Nanjing
Agricultural University, Nanjing 210095, Jiangsu, China
| | - James Mwangi
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming
College of Life Science, University of Chinese
Academy of Sciences, Kunming 650204, Yunnan, China
| | - Chenglu He
- Department
of Clinical Laboratory, First Affiliated
Hospital of Kunming Medical College, Kunming 650032, Yunnan, China
| | - Ya Li
- Department
of Clinical Laboratory, First Affiliated
Hospital of Kunming Medical College, Kunming 650032, Yunnan, China
| | - Xiangsheng Liu
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine
(HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Xingyu Jiang
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Peter Muiruri Kamau
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming
College of Life Science, University of Chinese
Academy of Sciences, Kunming 650204, Yunnan, China
| | - Ren Lai
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School
of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
32
|
Zhao Q, Yang N, Gu X, Li Y, Teng D, Hao Y, Lu H, Mao R, Wang J. High-Yield Preparation of American Oyster Defensin (AOD) via a Small and Acidic Fusion Tag and Its Functional Characterization. Mar Drugs 2023; 22:8. [PMID: 38276646 PMCID: PMC10821286 DOI: 10.3390/md22010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The marine peptide, American oyster defensin (AOD), is derived from Crassostrea virginica and exhibits a potent bactericidal effect. However, recombinant preparation has not been achieved due to the high charge and hydrophobicity. Although the traditional fusion tags such as Trx and SUMO shield the effects of target peptides on the host, their large molecular weight (12-20 kDa) leads to the yields lower than 20% of the fusion protein. In this study, a short and acidic fusion tag was employed with a compact structure of only 1 kDa. Following 72 h of induction in a 5 L fermenter, the supernatant exhibited a total protein concentration of 587 mg/L. The recombinant AOD was subsequently purified through affinity chromatography and enterokinase cleavage, resulting in the final yield of 216 mg/L and a purity exceeding 93%. The minimum inhibitory concentrations (MICs) of AOD against Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus galactis ranged from 4 to 8 μg/mL. Moreover, time-killing curves indicated that AOD achieved a bactericidal rate of 99.9% against the clinical strain S. epidermidis G-81 within 0.5 h at concentrations of 2× and 4× MIC. Additionally, the activity of AOD was unchanged after treatment with artificial gastric fluid and intestinal fluid for 4 h. Biocompatibility testing demonstrated that AOD, at a concentration of 128 μg/mL, exhibited a hemolysis rate of less than 0.5% and a cell survival rate of over 83%. Furthermore, AOD's in vivo therapeutic efficacy against mouse subcutaneous abscess revealed its capability to restrain bacterial proliferation and reduce bacterial load, surpassing that of antibiotic lincomycin. These findings indicate AOD's potential for clinical usage.
Collapse
Affiliation(s)
- Qingyi Zhao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xinxi Gu
- Enzyme Engineering Laboratory, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yuanyuan Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Haiqiang Lu
- Enzyme Engineering Laboratory, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
33
|
da Silva Gebara R, da Silva MS, Calixto SD, Simão TLBV, Zeraik AE, Lassounskaia E, Muzitano MF, Petretski JH, Gomes VM, de Oliveira Carvalho A. Antifungal, Antimycobacterial, Protease and α‒Amylase Inhibitory Activities of a Novel Serine Bifunctional Protease Inhibitor from Adenanthera pavonina L. Seeds. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10194-z. [PMID: 38117407 DOI: 10.1007/s12602-023-10194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Antifungal resistance poses a significant challenge to disease management, necessitating the development of novel drugs. Antimicrobial peptides offer potential solutions. This study focused on extraction and characterization of peptides from Adenanthera pavonina seeds with activity against Candida species, Mycobacterium tuberculosis, proteases, and α-amylases. Peptides were extracted in phosphate buffer and heated at 90°C for 10 min to create a peptide rich heated fraction (PRHF). After confirming antimicrobial activity and the presence of peptides, the PRHF underwent ion exchange chromatography, yielding retained and non-retained fractions. These fractions were evaluated for antimicrobial activity and cytotoxicity against murine macrophages. The least toxic and most active fraction underwent reversed-phase chromatography, resulting in ten fractions. These fractions were tested for peptides and antimicrobial activity. The most active fraction was rechromatographed on a reversed-phase column, resulting in two fractions that were assessed for antimicrobial activity. The most active fraction revealed a single band of approximately 6 kDa and was tested for inhibitory effects on proteases and α-amylases. Thermal stability experiments were conducted on the 6 kDa peptide at different temperatures followed by reassessment of antifungal activity and circular dichroism. The 6 kDa peptide inhibited yeasts, M. tuberculosis, human salivary and Tenebrio molitor larvae intestine α-amylases, and proteolytic activity from fungal extracts, and thus named ApPI. Remarkably, ApPI retained antifungal activity and conformation after heating and is primarily composed of α-helices. ApPI is a thermally stable serine protease/α-amylase inhibitor from A. pavonina seeds, offering promise as a foundational molecule for innovative therapeutic agents against fungal infections and tuberculosis.
Collapse
Affiliation(s)
- Rodrigo da Silva Gebara
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Marciele Souza da Silva
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Sanderson Dias Calixto
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Thatiana Lopes Biá Ventura Simão
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Ana Eliza Zeraik
- Laboratório de Química e Função de Proteinas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Elena Lassounskaia
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Michelle Frazão Muzitano
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Macaé, 27933-378, RJ, Brazil
| | - Jorge Hudson Petretski
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil.
| |
Collapse
|
34
|
Baindara P, Mandal SM. Gut-Antimicrobial Peptides: Synergistic Co-Evolution with Antibiotics to Combat Multi-Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1732. [PMID: 38136766 PMCID: PMC10740742 DOI: 10.3390/antibiotics12121732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Due to huge diversity and dynamic competition, the human gut microbiome produces a diverse array of antimicrobial peptides (AMPs) that play an important role in human health. The gut microbiome has an important role in maintaining gut homeostasis by the AMPs and by interacting with other human organs via established connections such as the gut-lung, and gut-brain axis. Additionally, gut AMPs play a synergistic role with other gut microbiota and antimicrobials to maintain gut homeostasis by fighting against multi-antibiotic resistance (MAR) bacteria. Further, conventional antibiotics intake creates a synergistic evolutionary pressure for gut AMPs, where antibiotics and gut AMPs fight synergistically against MAR. Overall, gut AMPs are evolving under a complex and highly synergistic co-evolutionary pressure created by the various interactions between gut microbiota, gut AMPs, and antibiotics; however, the complete mechanism is not well understood. The current review explores the synergistic action of gut AMPs and antibiotics along with possibilities to fight against MAR bacteria.
Collapse
Affiliation(s)
- Piyush Baindara
- Radiation Oncology, NextGen Precision Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Santi M. Mandal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| |
Collapse
|
35
|
Heng P, Shi B, Li D, Ou H, He Y, Zhou L. Rapid visualization molecular fluorescence detection of methicillin-resistant Staphylococcus aureus using the multiplex MIRA-qPCR method. Biotechnol J 2023; 18:e2300200. [PMID: 37626194 DOI: 10.1002/biot.202300200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Multidrug-resistant (MDR) bacterial infections constitute a major public health problem worldwide. A rapid method for the detection of methicillin-resistant Staphylococcus aureus (MRSA) is critical for the timely prevention of bacterial infections and the accurate clinical use of drugs. The nuc and mecA genes are potentially indicative of MRSA infection and in this study, a multiplex molecular fluorescence multi-enzyme isothermal rapid amplification visual assay was proposed and established. The method is capable of detecting MRSA at 17 min, 40°C amplification, and is well differentiated from common clinical bacteria in specific assays, with 500 colony-forming units (CFU) mL-1 of MRSA detected under optimal conditions. This method has excellent diagnostic capabilities versus classical methods to detect clinical samples and shows potential in the identification of pathogenic microorganisms in a clinical setting.
Collapse
Affiliation(s)
- Pengfei Heng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Bo Shi
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Dongmei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hua Ou
- Department of Laboratory Medicine, People's Hospital of Xinjin District, Chengdu, Sichuan, China
| | - Yang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lili Zhou
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
36
|
Rawling M, Schiavone M, Mugnier A, Leclercq E, Merrifield D, Foey A, Apper E. Modulation of Zebrafish ( Danio rerio) Intestinal Mucosal Barrier Function Fed Different Postbiotics and a Probiotic from Lactobacilli. Microorganisms 2023; 11:2900. [PMID: 38138044 PMCID: PMC10745996 DOI: 10.3390/microorganisms11122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
It is generally accepted that microbes play a critical role in maintaining gut barrier function, making them ideal to target in order to mitigate the effects of intestinal diseases such as inflammatory bowel disease with specialist supplementations such as probiotic or postbiotic preparations. In this study, specific strains of Lactobacillus helvictus both live and inactivated and Lactobacillus plantarum inactivated were fed to zebrafish at an inclusion level of 6 × 106 cells/g in order to assess the effects on gut barrier function and protection. Taken together, our results indicate that dietary administration of pro- or postbiotics strengthens the gut barrier function and innate immunity of healthy zebrafish in a strain-specific and process-dependent way. With some differences in the response intensity, the three treatments led to increased intestinal villi length and proportion of IELs, reinforcement of the GC population and up-regulated expression of biomarkers of AMP production and tight junction zona-occludin 2a (zo-2a). In addition, LPPost had an impact on the adaptive immune response, and we hypothesized that it conferred the potential to drive Th17/ILC3 immunity, as suggested by its effect on the gene expression of il22, of different AMPs, and the expression of zo2a. Moreover, LPPost showed the potential to drive Th1/ILC1-like immunity, with a higher percentage of CD8+ cells and higher ifnγ gene expression. In summary, the use of inactivated Lactobacilli species in this study represented a promising strategy for improving barrier function and regulating the immune fate of the intestinal mucosa in a strain-specific way.
Collapse
Affiliation(s)
- Mark Rawling
- Aquatic Animal Nutrition and Health Research Group, School of Marine and Biological Sciences, Plymouth University, Plymouth, Devon PL4 8AA, UK; (D.M.); (A.F.)
| | - Marion Schiavone
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France; (M.S.); (A.M.); (E.L.)
| | - Amélie Mugnier
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France; (M.S.); (A.M.); (E.L.)
| | - Eric Leclercq
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France; (M.S.); (A.M.); (E.L.)
| | - Daniel Merrifield
- Aquatic Animal Nutrition and Health Research Group, School of Marine and Biological Sciences, Plymouth University, Plymouth, Devon PL4 8AA, UK; (D.M.); (A.F.)
| | - Andrew Foey
- Aquatic Animal Nutrition and Health Research Group, School of Marine and Biological Sciences, Plymouth University, Plymouth, Devon PL4 8AA, UK; (D.M.); (A.F.)
| | - Emmanuelle Apper
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France; (M.S.); (A.M.); (E.L.)
| |
Collapse
|
37
|
Tang Z, Jiang W, Li S, Huang X, Yang Y, Chen X, Qiu J, Xiao C, Xie Y, Zhang X, Li J, Verma CS, He Y, Yang A. Design and evaluation of tadpole-like conformational antimicrobial peptides. Commun Biol 2023; 6:1177. [PMID: 37980400 PMCID: PMC10657444 DOI: 10.1038/s42003-023-05560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
Antimicrobial peptides are promising alternatives to conventional antibiotics. Herein, we report a class of "tadpole-like" peptides consisting of an amphipathic α-helical head and an aromatic tail. A structure-activity relationship (SAR) study of "tadpole-like" temporin-SHf and its analogs revealed that increasing the number of aromatic residues in the tail, introducing Arg to the α-helical head and rearranging the peptide topology dramatically increased antimicrobial activity. Through progressive structural optimization, we obtained two peptides, HT2 and RI-HT2, which exhibited potent antimicrobial activity, no hemolytic activity and cytotoxicity, and no propensity to induce resistance. NMR and molecular dynamics simulations revealed that both peptides indeed adopted "tadpole-like" conformations. Fluorescence experiments and electron microscopy confirmed the membrane targeting mechanisms of the peptides. Our studies not only lead to the discovery of a series of ultrashort peptides with potent broad-spectrum antimicrobial activities, but also provide a new strategy for rational design of novel "tadpole-like" antimicrobial peptides.
Collapse
Affiliation(s)
- Ziyi Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Wuqiao Jiang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Shuangli Li
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xue Huang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Yi Yang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaorong Chen
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Jingyi Qiu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Chuyu Xiao
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Ying Xie
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Xu Zhang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jianguo Li
- Bioinformatics Institute, A∗STAR, 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
- Singapore Eye Research Institute, Singapore, 169856, Singapore
| | - Chandra Shekhar Verma
- Bioinformatics Institute, A∗STAR, 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
- Department of Biological Sciences, National University of, Singapore, 117543, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
38
|
Mwangi J, Kamau PM, Thuku RC, Lai R. Design methods for antimicrobial peptides with improved performance. Zool Res 2023; 44:1095-1114. [PMID: 37914524 PMCID: PMC10802102 DOI: 10.24272/j.issn.2095-8137.2023.246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023] Open
Abstract
The recalcitrance of pathogens to traditional antibiotics has made treating and eradicating bacterial infections more difficult. In this regard, developing new antimicrobial agents to combat antibiotic-resistant strains has become a top priority. Antimicrobial peptides (AMPs), a ubiquitous class of naturally occurring compounds with broad-spectrum antipathogenic activity, hold significant promise as an effective solution to the current antimicrobial resistance (AMR) crisis. Several AMPs have been identified and evaluated for their therapeutic application, with many already in the drug development pipeline. Their distinct properties, such as high target specificity, potency, and ability to bypass microbial resistance mechanisms, make AMPs a promising alternative to traditional antibiotics. Nonetheless, several challenges, such as high toxicity, lability to proteolytic degradation, low stability, poor pharmacokinetics, and high production costs, continue to hamper their clinical applicability. Therefore, recent research has focused on optimizing the properties of AMPs to improve their performance. By understanding the physicochemical properties of AMPs that correspond to their activity, such as amphipathicity, hydrophobicity, structural conformation, amino acid distribution, and composition, researchers can design AMPs with desired and improved performance. In this review, we highlight some of the key strategies used to optimize the performance of AMPs, including rational design and de novo synthesis. We also discuss the growing role of predictive computational tools, utilizing artificial intelligence and machine learning, in the design and synthesis of highly efficacious lead drug candidates.
Collapse
Affiliation(s)
- James Mwangi
- Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Peptides of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Centre for Non-Human Primates, Kunming Primate Research Centre, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Centre, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Peter Muiruri Kamau
- Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Peptides of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Centre for Non-Human Primates, Kunming Primate Research Centre, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Centre, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rebecca Caroline Thuku
- Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Peptides of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Centre for Non-Human Primates, Kunming Primate Research Centre, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Centre, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Peptides of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Centre for Non-Human Primates, Kunming Primate Research Centre, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Centre, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Centre for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China. E-mail:
| |
Collapse
|
39
|
He Y, Shen Y, Feng X, Ruan S, Zhao Y, Mu L, Wu J, Yang H. Tree Frog-Derived Cathelicidin Protects Mice against Bacterial Infection through Its Antimicrobial and Anti-Inflammatory Activities and Regulatory Effect on Phagocytes. ACS Infect Dis 2023; 9:2252-2268. [PMID: 37855266 DOI: 10.1021/acsinfecdis.3c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Due to excessive use or abuse in the food industry, agriculture, and medicine, many pathogens are developing resistance against conventional antibiotics. Antimicrobial peptides (AMPs) hold promise as effective therapeutic options for the treatment of bacterial infections. Herein, a novel cathelicidin antimicrobial peptide (Zs-CATH) was identified from the tree frog Zhangixalus smaragdinus. Zs-CATH mainly adopted an amphipathic β-sheet structure in a membrane-mimetic environment. It showed broad-spectrum antibacterial activity against Gram-positive and Gram-negative bacteria in vitro and significantly protected mice from lethal infections induced by Gram-negative bacteria Escherichia coli ATCC 25922 or Gram-positive bacteria Staphylococcus aureus ATCC 25923 in vivo. In addition, Zs-CATH exerted a strong anti-inflammatory effect by neutralizing lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and promoting macrophage M2 polarization, thus inhibiting the secretion of proinflammatory cytokines (TNF-α, IL-6, and IL-1β) and enhancing the production of M2 macrophage markers IL-10, IL-4, and CD206. The MAPK and NF-κB inflammatory signaling pathways and transcriptional activator 6 (STAT6) were involved in this effect. In mice, Zs-CATH rapidly recruited neutrophils and monocytes/macrophages to the abdominal cavity but not T and B lymphocytes. Zs-CATH did not exhibit a direct chemoattractant effect on phagocytes but significantly promoted phagocyte migration in the presence of macrophages. Zs-CATH stimulated macrophages to secrete chemokines CXCL1, CXCL2, and CCL2, which mediated the recruitment of phagocytes. Furthermore, Zs-CATH promoted the production of reactive oxygen species (ROS) and neutrophil extracellular traps (NETs), which are oxygen-dependent and oxygen-independent mechanisms of the microbicidal activity of neutrophils, respectively. Zs-CATH exhibited no toxic side effects on mammalian cells and mice. These findings show that in addition to direct antibacterial activity, Zs-CATH also possesses the ability to modulate immune and inflammatory processes during bacterial infection, showing potential for development as anti-infective and/or anti-inflammatory agents.
Collapse
Affiliation(s)
- Yanmei He
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Yan Shen
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Xiaoli Feng
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Shimei Ruan
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Yingying Zhao
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Lixian Mu
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| |
Collapse
|
40
|
He W, Fu D, Gai Y, Liu X, Yang C, Ye Z, Chen X, Liu J, Chang B. An infection-microenvironment-targeted and responsive peptide-drug nanosystem for sepsis emergency by suppressing infection and inflammation. Asian J Pharm Sci 2023; 18:100869. [PMID: 38161786 PMCID: PMC10755722 DOI: 10.1016/j.ajps.2023.100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 11/19/2023] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a life-threatening emergency that causes millions of deaths every year due to severe infection and inflammation. Nevertheless, current therapeutic regimens are inadequate to promptly address the vast diversity of potential pathogens. Omiganan, an antimicrobial peptide, has shown promise for neutralizing endotoxins and eliminating diverse pathogens. However, its clinical application is hindered by safety and stability concerns. Herein, we present a nanoscale drug delivery system (Omi-hyd-Dex@HA NPs) that selectively targets infectious microenvironments (IMEs) and responds to specific stimuli for efficient intervention in sepsis. The system consists of omiganan-dexamethasone conjugates linked by hydrazone bonds which self-assemble into nanoparticles coated with a hyaluronic acid (HA). The HA coating not only facilitates IMEs-targeting through interaction with intercellular-adhesion-molecule-1 on inflamed endotheliocytes, but also improves the biosafety of the nanosystem and enhances drug accumulation in primary infection sites triggered by hyaluronidase. The nanoparticles release dual drugs in IMEs through pH-sensitive cleavage of hydrazone bonds to eradicate pathogens and suppress inflammation. In multiple tissue infection and sepsis animal models, Omi-hyd-Dex@HA NPs exhibited rapid source control and comprehensive inflammation reduction, thereby preventing subsequent fatal complications and significantly improving survival outcomes. The bio-responsive and self-delivering nanosystem offers a promising strategy for systemic sepsis treatment in emergencies.
Collapse
Affiliation(s)
- Wei He
- The Second Clinical College, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Daan Fu
- Department of Anesthesiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Hubei Province Key Laboratory of Molecular Imaging, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xingxin Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu 610065, China
| | - Chang Yang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Zhilan Ye
- Department of Geriatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xu Chen
- The Second Clinical College, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bingcheng Chang
- The Second Clinical College, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| |
Collapse
|
41
|
Wang Z, Meng J, Li H, Xia S, Wang Y, Luan Y. PAMPred: A hierarchical evolutionary ensemble framework for identifying plant antimicrobial peptides. Comput Biol Med 2023; 166:107545. [PMID: 37806057 DOI: 10.1016/j.compbiomed.2023.107545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/04/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Antimicrobial peptides (AMPs) play a crucial role in plant immune regulation, growth and development stages, which have attracted significant attentions in recent years. As the wet-lab experiments are laborious and cost-prohibitive, it is indispensable to develop computational methods to discover novel plant AMPs accurately. In this study, we presented a hierarchical evolutionary ensemble framework, named PAMPred, which consisted of a multi-level heterogeneous architecture to identify plant AMPs. Specifically, to address the existing class imbalance problem, a cluster-based resampling method was adopted to build multiple balanced subsets. Then, several peptide features including sequence information-based and physicochemical properties-based features were fed into the different types of basic learners to increase the ensemble diversity. For boosting the predictive capability of PAMPred, the improved particle swarm optimization (PSO) algorithm and dynamic ensemble pruning strategy were used to optimize the weights at different levels adaptively. Furthermore, extensive ten-fold cross-validation and independent testing experimental results demonstrated that PAMPred achieved excellent prediction performance and generalization ability, and outperformed the state-of-the-art methods. It also indicated that the proposed method could serve as an effective auxiliary tool to identify plant AMPs, which would be conducive to explore the immune regulatory mechanism of plants.
Collapse
Affiliation(s)
- Zhaowei Wang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China.
| | - Haibin Li
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Shihao Xia
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yu Wang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
42
|
Kannoth S, Ali N, Prasanth GK, Arvind K, Mohany M, Hembrom PS, Sadanandan S, Vasu DA, Grace T. Transcriptome analysis of Corvus splendens reveals a repertoire of antimicrobial peptides. Sci Rep 2023; 13:18728. [PMID: 37907616 PMCID: PMC10618271 DOI: 10.1038/s41598-023-45875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Multidrug resistance has become a global health problem associated with high morbidity and mortality. Antimicrobial peptides have been acknowledged as potential leads for prospective anti-infectives. Owing to their scavenging lifestyle, Corvus splendens is thought to have developed robust immunity to pathogens found in their diet, implying that they have evolved mechanisms to resist infection. In the current study, the transcriptome of C. splendens was sequenced, and de novo assembled to identify the presence of antimicrobial peptide genes. 72.09 million high-quality clean reads were obtained which were then de novo assembled into 3,43,503 transcripts and 74,958 unigenes. About 37,559 unigenes were successfully annotated using SwissProt, Pfam, GO, and KEGG databases. A search against APD3, CAMPR3 and LAMP databases identified 63 AMP candidates belonging to more than 20 diverse families and functional classes. mRNA of AvBD-2, AvBD-13 and CATH-2 were found to be differentially expressed between the three tested crows as well as among the tissues. We also characterized Corvus Cathelicidin 2 (CATH-2) to gain knowledge of its antimicrobial mechanisms. The CD spectroscopy of synthesized mature Corvus CATH-2 peptide displayed an amphipathic α-helical structure. Though the synthetic CATH-2 caused hemolysis of human RBC, it also exhibited antimicrobial activity against E. coli, S. aureus, and B. cereus. Docking simulation results revealed that this peptide could bind to the LPS binding site of MD-2, which may prevent LPS from entering the MD-2 binding pocket, and trigger TLR4 signaling pathway. The Corvus CATH-2 characterized in this study could aid in the development of novel therapeutics.
Collapse
Affiliation(s)
- Shalini Kannoth
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ganesh K Prasanth
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Kumar Arvind
- Neurogenetics Branch, National Institute of Neurological Disorder and Stroke, National Institute of Health, Bethesda, MD, 20892, USA
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Preety Sweta Hembrom
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Shemmy Sadanandan
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Deepa Azhchath Vasu
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Tony Grace
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India.
| |
Collapse
|
43
|
Sevim Akan H, Şahal G, Karaca TD, Gürpınar ÖA, Maraş M, Doğan A. Evaluation of glycyl-arginine and lysyl-aspartic acid dipeptides for their antimicrobial, antibiofilm, and anticancer potentials. Arch Microbiol 2023; 205:365. [PMID: 37906313 DOI: 10.1007/s00203-023-03724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Antibacterial resistance and cancer are worldwide challenges and have been defined as major threats by international health organizations. Peptides are produced naturally by all organisms and have a variety of immunomodulatory, physiological, and wound-healing properties. They can also provide protection against microorganisms and tumor cells. Therefore, we aimed to determine the antimicrobial, antibiofilm, and anticancer potentials of Glycyl-Arginine and Lysyl-Aspartic acid dipeptides. The Broth Dilution and Crystal Violet Binding assays assessed the antimicrobial tests and biofilm inhibitory effects. The MTT assay was used to measure the cytotoxic effects of dipeptides on HeLa cell viability. According to our results, Candida tropicalis T26 and Proteus mirabilis U15 strains were determined as more resistant to Staphylococcus epidermidis W17 against Glycyl-Arginine and Lysyl-Aspartic acid dipeptides with MICs higher than 2 mM (1 mg/mL). Sub-MICs of Glycyl-Arginine caused inhibitions against biofilm formation of all the tested clinical isolates, with the highest inhibition observed against S. epidermidisW17. Lysyl-Aspartic acid exhibited zero to no effect against biofilm formation of P. mirabilisU15, and S. epidermidisW17, whereas it exhibited 52% inhibition of biofilm formation of C. tropicalisT26. Cell viability results revealed that HeLa cell viability decreases with increasing concentration of both dipeptides. Also, parallel to antimicrobial tests, Glycyl-Arginine has a greater cytotoxic effect compared to Lysyl-Aspartic acid. The findings from this study will contribute to the advancement of novel strategies involving dipeptide-based synthesizable molecules and drug development studies. However, it is essential to note that there are still challenges, including the need for extensive experimental and clinical trials.
Collapse
Affiliation(s)
- Handan Sevim Akan
- Department Biology, Faculty of Science, Hacettepe University, Beytepe, Cankaya, 06800, Ankara, Turkey.
| | - Gülcan Şahal
- Department Biology, Faculty of Science, Hacettepe University, Beytepe, Cankaya, 06800, Ankara, Turkey
| | - Tuğçe Deniz Karaca
- Department of Medical Services and Techniques, Gazi University Health Service Vocational School, Ankara, Turkey
| | - Özer Aylin Gürpınar
- Department Biology, Faculty of Science, Hacettepe University, Beytepe, Cankaya, 06800, Ankara, Turkey
| | - Meltem Maraş
- Department of Mathematics and Science Education, Faculty of Education Ereğli, Bülent Ecevit University, Zonguldak, Turkey
| | - Alev Doğan
- Department of Science Education, Faculty of Gazi Education, Gazi University, Teknikokullar, Ankara, Turkey
| |
Collapse
|
44
|
Nakagawa A, Sakamoto T, Kanost MR, Tabunoki H. The Development of New Methods to Stimulate the Production of Antimicrobial Peptides in the Larvae of the Black Soldier Fly Hermetia illucens. Int J Mol Sci 2023; 24:15765. [PMID: 37958748 PMCID: PMC10647447 DOI: 10.3390/ijms242115765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
(1) The global population is projected to reach a staggering 9.8 billion people by the year 2050, leading to major concerns about food security. The necessity to increase livestock production is inevitable. The black soldier fly (BSF) is known for its ability to consume a wide range of organic waste, and BSF larvae have already been used as a partial substitute for fishmeal. In contrast, the use of antibiotics in livestock feed for growth promotion and prophylaxis poses a severe threat to global health owing to antimicrobial resistance. Insect antimicrobial peptides (AMPs) have shown the potential to rapidly disrupt target bacterial membranes, making bacterial resistance to AMPs a less likely concern. (2) In this study, we explored various methods for stimulating AMP synthesis in BSF larvae and found that thermal injury effectively induced the production of various AMP types. Additionally, we investigated the activation of innate immune response pathways that lead to AMP production following thermal injury. (3) Interestingly, thermal injury treatment, although not involving bacteria, exhibited a similar response to that observed following Gram-positive bacterial infection in eliciting the expression of AMP genes. (4) Our findings offer support for the industrial use of BSF to enhance livestock production and promote environmental health.
Collapse
Affiliation(s)
- Atsuyoshi Nakagawa
- Future Tech Laboratory, Corporate Research & Development, UBE Corporation, 8-1 Goi-Minamikaigan, Chiba 290-0045, Japan;
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Takuma Sakamoto
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Tokyo 183-8509, Japan;
| | - Michael R. Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506-3702, USA;
| | - Hiroko Tabunoki
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Tokyo 183-8509, Japan;
| |
Collapse
|
45
|
Yuan J, Wang J, Li X, Zhang Y, Xian J, Wang C, Zhang J, Wu C. Amphiphilic small molecule antimicrobials: From cationic antimicrobial peptides (CAMPs) to mechanism-related, structurally-diverse antimicrobials. Eur J Med Chem 2023; 262:115896. [PMID: 39491431 DOI: 10.1016/j.ejmech.2023.115896] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Bacterial infections are characterized by their rapid and widespread proliferation, leading to significant morbidity. Despite the availability of a variety of antimicrobial drugs, the resistance exhibited by pathogenic microorganisms towards these drugs demonstrates a consistent upward trajectory year after year. This trend can be attributed to the abuse or misuse of antibiotics. Although antimicrobial peptides can avoid the emergence of drug resistance to a certain extent, their clinical application has been hindered by factors such as their high production cost, poor in vivo stability, and potential cytotoxicity. Consequently, there arises an urgent need for the development of novel antimicrobial drugs. Small-molecule amphiphatic antimicrobials have a good prospect for research and development. These peptides hold the potential to address several issues, including the high cost of antimicrobial peptide production, poor in vivo stability, and cytotoxicity. Moreover, they exhibit the capability to overcome bacterial resistance, thereby considerably satisfying market demands and clinical needs. This paper reviews recent research pertaining to small molecule host-defending amphiphatic antimicrobials with cationic amphiphilic structures. It focuses on the design concepts, inherent relationships, drug-like properties, antimicrobial activities, application prospects, and emerging screening methods for novel antimicrobial. This review assumes paramount importance in mitigating the current shortcomings of antimicrobial agents. It also provides potential new ideas and methodologies for the research and development of antimicrobial agents.
Collapse
Affiliation(s)
- Jiani Yuan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jinghong Xian
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chengyong Wu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
46
|
Carrera-Aubesart A, Gallo M, Defaus S, Todorovski T, Andreu D. Topoisomeric Membrane-Active Peptides: A Review of the Last Two Decades. Pharmaceutics 2023; 15:2451. [PMID: 37896211 PMCID: PMC10610229 DOI: 10.3390/pharmaceutics15102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In recent decades, bioactive peptides have been gaining recognition in various biomedical areas, such as intracellular drug delivery (cell-penetrating peptides, CPPs) or anti-infective action (antimicrobial peptides, AMPs), closely associated to their distinct mode of interaction with biological membranes. Exploiting the interaction of membrane-active peptides with diverse targets (healthy, tumoral, bacterial or parasitic cell membranes) is opening encouraging prospects for peptides in therapeutics. However, ordinary peptides formed by L-amino acids are easily decomposed by proteases in biological fluids. One way to sidestep this limitation is to use topoisomers, namely versions of the peptide made up of D-amino acids in either canonic (enantio) or inverted (retroenantio) sequence. Rearranging peptide sequences in this fashion provides a certain degree of native structure mimicry that, in appropriate contexts, may deliver desirable biological activity while avoiding protease degradation. In this review, we will focus on recent accounts of membrane-active topoisomeric peptides with therapeutic applications as CPP drug delivery vectors, or as antimicrobial and anticancer candidates. We will also discuss the most common modes of interaction of these peptides with their membrane targets.
Collapse
Affiliation(s)
- Adam Carrera-Aubesart
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Maria Gallo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Sira Defaus
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Toni Todorovski
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - David Andreu
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| |
Collapse
|
47
|
Song X, Qiao Y, Ma J, Zhang X, Liu J, Xin W, Xing S, Wang Y. Co-expression of four penaeidins in transgenic rice seeds: an alternative strategy for substitute antibiotic agricultural products. Transgenic Res 2023; 32:463-473. [PMID: 37535257 DOI: 10.1007/s11248-023-00361-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
The co-expression of multiple antimicrobial peptides (AMPs) in genetically modified (GM) crops can give plants a broader antibacterial spectrum and lower the pathogen risk of drug resistance. Therefore, four penaeidins (shrimp-derived AMPs) were fused and encoded in an artificial gene (PEN1234), driven by the seed-specific promoter Pzein, with the aim of co-expression in seeds of transgenic rice. The resistant rice plants, acquired via Agrobacterium-mediated transformation and glufosinate screening, were identified by PCR and the modified disk-diffusion method, and eight GM lines with high AMP content in the seeds were obtained. Among them, the PenOs017 line had the largest penaeidin content, at approximately 251-300 μg/g in seeds and 15-47 μg/g in roots and leaves. The AMPs in the seeds kept their antibacterial properties even after the seed had been boiled in hot water and could significantly inhibit the growth of methicillin-resistant Staphylococcus aureus, and AMPs in the leaves could effectively inhibit Xanthomonas oryzae pv. Oryzae. The results indicate that PenOs017 seeds containing AMPs are an ideal raw-material candidate for antibiotic-free food and feed, and may require fewer petrochemical fungicides or bactericides for disease control during cultivation than conventional rice.
Collapse
Affiliation(s)
- Xinyuan Song
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yu Qiao
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jian Ma
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130000, China
| | - Xue Zhang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jie Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Wen Xin
- Beijing TransGen Biotech Co., Ltd., Beijing, 100192, China
| | - Shaochen Xing
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Yunpeng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
48
|
Wang A, Zhou M, Chen Q, Jin H, Xu G, Guo R, Wang J, Lai R. Functional Analyses of Three Targeted DNA Antimicrobial Peptides Derived from Goats. Biomolecules 2023; 13:1453. [PMID: 37892141 PMCID: PMC10605153 DOI: 10.3390/biom13101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
With the increase in drug-resistant bacteria, new antibacterial drugs have emerged as a prominent area of research and development. Antimicrobial peptides (AMPs), as innate immune agents, have garnered significant attention due to their potent, rapid, and broad-spectrum antibacterial activity. This study focused on investigating the functionality of three AMPs (CATH 1, CATH 2, and MAP34-B) derived from goat submandibular glands. Among these AMPs, CATH 2 and MAP34-B exhibited direct antibacterial activity against both Gram-negative and Gram-positive bacteria, primarily targeting the bacterial membrane. Additionally, these two AMPs were found to have the potential to induce reactive oxygen species (ROS) production in bacterial cells and interact with bacterial genome DNA, which may play a crucial role in their mechanisms of action. Furthermore, both CATH 1 and CATH 2 demonstrated significant antioxidant activity, and all three AMPs exhibited potential anti-inflammatory activity. Importantly, the cytotoxic activity of these AMPs against mammalian cells was found to be weak, and their hemolytic activity was extremely low. Overall, the characteristics of these three AMPs found in goat submandibular glands offer new insights for the study of host protection from an immunological perspective. They hold promise as potential candidates for the development of novel antibacterial agents, particularly in the context of combating drug-resistant bacteria.
Collapse
Affiliation(s)
- Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Mengying Zhou
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, China
| | - Qian Chen
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Hui Jin
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Gaochi Xu
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Ruiyin Guo
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271000, China;
| | - Ren Lai
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Kim H, Jang JH, Jung IY, Kim HR, Cho JH. Novel Genetically Engineered Probiotics for Targeted Elimination of Pseudomonas aeruginosa in Intestinal Colonization. Biomedicines 2023; 11:2645. [PMID: 37893018 PMCID: PMC10604247 DOI: 10.3390/biomedicines11102645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The intestinal carriage rates of Pseudomonas aeruginosa are notably elevated in immunosuppressed individuals and hospitalized patients, increasing the risk of infection and antibiotic-associated diarrhea. A potential solution to this issue lies in autonomous antibacterial therapy, remaining inactive until a pathogen is detected, and releasing antibacterial compounds on demand to eliminate the pathogen. This study focuses on the development of genetically engineered probiotics capable of detecting and eradicating P. aeruginosa by producing and secreting PA2-GNU7, a P. aeruginosa-selective antimicrobial peptide (AMP), triggered by the presence of P. aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone (3OC12HSL). To achieve this goal, plasmid-based systems were constructed to produce AMPs in response to 3OC12HSL and secrete them into the extracellular medium using either the microcin V secretion system or YebF as a carrier protein. Following the transfer of these plasmid-based systems to Escherichia coli Nissle 1917 (EcN), we successfully demonstrated the ability of the engineered EcN to express and secrete PA2-GNU7, leading to the inhibition of P. aeruginosa growth in vitro. In addition, in a mouse model of intestinal P. aeruginosa colonization, the administration of engineered EcN resulted in reduced levels of P. aeruginosa in both the feces and the colon. These findings suggest that engineered EcN holds promise as a potential option for combating intestinal P. aeruginosa colonization, thus mitigating the risk of future endogenous infections in vulnerable patients.
Collapse
Affiliation(s)
- Hyun Kim
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.K.); (J.H.J.)
| | - Ju Hye Jang
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.K.); (J.H.J.)
| | - In Young Jung
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (I.Y.J.); (H.R.K.)
| | - Ha Rang Kim
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (I.Y.J.); (H.R.K.)
| | - Ju Hyun Cho
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.K.); (J.H.J.)
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (I.Y.J.); (H.R.K.)
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
50
|
Tiwari P, Srivastava Y, Sharma A, Vinayagam R. Antimicrobial Peptides: The Production of Novel Peptide-Based Therapeutics in Plant Systems. Life (Basel) 2023; 13:1875. [PMID: 37763279 PMCID: PMC10532476 DOI: 10.3390/life13091875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The increased prevalence of antibiotic resistance is alarming and has a significant impact on the economies of emerging and underdeveloped nations. The redundancy of antibiotic discovery platforms (ADPs) and injudicious use of conventional antibiotics has severely impacted millions, across the globe. Potent antimicrobials from biological sources have been extensively explored as a ray of hope to counter the growing menace of antibiotic resistance in the population. Antimicrobial peptides (AMPs) are gaining momentum as powerful antimicrobial therapies to combat drug-resistant bacterial strains. The tremendous therapeutic potential of natural and synthesized AMPs as novel and potent antimicrobials is highlighted by their unique mode of action, as exemplified by multiple research initiatives. Recent advances and developments in antimicrobial discovery and research have increased our understanding of the structure, characteristics, and function of AMPs; nevertheless, knowledge gaps still need to be addressed before these therapeutic options can be fully exploited. This thematic article provides a comprehensive insight into the potential of AMPs as potent arsenals to counter drug-resistant pathogens, a historical overview and recent advances, and their efficient production in plants, defining novel upcoming trends in drug discovery and research. The advances in synthetic biology and plant-based expression systems for AMP production have defined new paradigms in the efficient production of potent antimicrobials in plant systems, a prospective approach to countering drug-resistant pathogens.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Yashdeep Srivastava
- RR Institute of Modern Technology, Dr. A.P.J. Abdul Kalam Technical University, Sitapur Road, Lucknow 226201, Uttar Pradesh, India;
| | - Abhishek Sharma
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar 392426, Gujarat, India;
| | - Ramachandran Vinayagam
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|