1
|
Zhao H, Sun S, Ding X, Zhang Y, Li B, Wang S, Guo G, Zhang J. Activity and Safety Optimization of Mesoricin: A Dual-Domain Antifungal Peptide from Mesorhizobium sp. J Med Chem 2025. [PMID: 40198836 DOI: 10.1021/acs.jmedchem.4c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Cryptococcus neoformans infections pose a significant global health threat. This study introduces mesoricin, a novel dual-domain antimicrobial peptide (AMP) scaffold derived from Mesorhizobium sp. identified using an in silico quantitative antifungal activity index (AFI). The peptide structure comprises an α-helix domain, which disrupts microbial membranes but exhibits highly hemolytic activity, and a β-sheet domain, which targets intracellular energy metabolism and resilient pathways. Rational design through α-helix domain removal and AFI-guided mutations yielded a mesoricin variant with enhanced antifungal activity and reduced cytotoxicity. The optimized mesoricin exhibited broad-spectrum antifungal activity against various Cryptococcus and Candida species (MIC 8-16 μg/mL) while maintaining high biosafety (IC50 > 128 μg/mL against human cell lines). Particularly, the variant demonstrated enhanced fungicidal effects at sub-MIC levels and superior biofilm control capabilities compared to the prototype peptide. These findings highlight mesoricins as a promising scaffold for AMP development targeting Cryptococcus infections.
Collapse
Affiliation(s)
- Hongwei Zhao
- School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education/Translational Medicine Research Center/Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
| | - Simei Sun
- School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education/Translational Medicine Research Center/Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
| | - Xiang Ding
- School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education/Translational Medicine Research Center/Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
| | - Yiling Zhang
- School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education/Translational Medicine Research Center/Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
| | - Boyan Li
- School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education/Translational Medicine Research Center/Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
| | - Shuyu Wang
- Cancer Molecular Diagnostics Core, Tianjin Medical University, Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Jin Zhang
- School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education/Translational Medicine Research Center/Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
| |
Collapse
|
2
|
Salnikov E, Adélaïde M, Ramos-Martín F, Saad A, Schauer J, Cremanns M, Rima M, Aisenbrey C, Oueslati S, Naas T, Pfennigwerth N, Gatermann S, Sarazin C, Bechinger B, D'Amelio N. Cathelicidin-BF: A Potent Antimicrobial Peptide Leveraging Charge and Phospholipid Recruitment against Multidrug-Resistant Clinical Bacterial Isolates. J Am Chem Soc 2025; 147:11199-11215. [PMID: 40126422 DOI: 10.1021/jacs.4c17821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Cathelicidin-BF (CatBF) is a LL-37 homologous antimicrobial peptide (AMP) isolated from Bungarus fasciatus with an exceptional portfolio of antimicrobial, antiviral, antifungal, and anticancer activities. Contrary to many AMPs, it showed a good pharmacological profile with a half-life of at least 1 h in serum and efficacy against bacterial infections in mice. To evaluate its potential against resistant nosocomial infections, we assessed its activity against 81 clinically relevant resistant bacterial isolates. CatBF exhibited minimum inhibitory concentrations (MICs) as low as 0.5 μM against carbapenem-resistant Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli. Its wide-ranging activity, unaffected by resistance mechanisms or Gram phenotype, prompted us to investigate its molecular mode of action. NMR spectroscopy, paramagnetic probes, and molecular dynamics (MD) simulations were employed to define its structure, penetration depth, and orientation in various membrane models, including micelles, bicelles, oriented bilayers, and vesicles. We found that CatBF's potent activity relies on its strong charge, allowing membrane neutralization at low peptide/lipid ratios and selective recruitment of charged phospholipids. At higher concentrations, a change in peptide orientation reveals membrane invagination and the formation of transient pores possibly leading to bacterial death. Our findings highlight the potential of CatBF as a model for developing resistance-independent agents to combat multidrug-resistant (MDR) bacterial infections.
Collapse
Affiliation(s)
- Evgeniy Salnikov
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, Strasbourg, 67008, France
| | - Morgane Adélaïde
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France
| | - Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France
| | - Ahmad Saad
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, Strasbourg, 67008, France
| | - Jennifer Schauer
- Department of Medical Microbiology, Ruhr-University, Bochum, 44801, Germany
| | - Martina Cremanns
- Department of Medical Microbiology, Ruhr-University, Bochum, 44801, Germany
| | - Mariam Rima
- Team RESIST, INSERM U1184, Université Paris-Saclay, Faculté de Médecine, Bacteriology ward, Hôpital de Bicêtre, 3ème étage, 78 rue du Gal Leclerc, Paris 94270, France
| | - Christopher Aisenbrey
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, Strasbourg, 67008, France
| | - Saoussen Oueslati
- Team RESIST, INSERM U1184, Université Paris-Saclay, Faculté de Médecine, Bacteriology ward, Hôpital de Bicêtre, 3ème étage, 78 rue du Gal Leclerc, Paris 94270, France
| | - Thierry Naas
- Team RESIST, INSERM U1184, Université Paris-Saclay, Faculté de Médecine, Bacteriology ward, Hôpital de Bicêtre, 3ème étage, 78 rue du Gal Leclerc, Paris 94270, France
| | - Niels Pfennigwerth
- Department of Medical Microbiology, Ruhr-University, Bochum, 44801, Germany
| | - Söeren Gatermann
- Department of Medical Microbiology, Ruhr-University, Bochum, 44801, Germany
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France
| | - Burkhard Bechinger
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, Strasbourg, 67008, France
- Institut Universitaire de France, Paris 75005, France
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France
| |
Collapse
|
3
|
Zhang J, Chu A, Ouyang X, Li B, Yang P, Ba Z, Yang Y, Mao W, Zhong C, Gou S, Zhang Y, Liu H, Ni J. Rationally designed highly amphipathic antimicrobial peptides demonstrating superior bacterial selectivity relative to the corresponding α-helix peptide. Eur J Med Chem 2025; 286:117310. [PMID: 39864138 DOI: 10.1016/j.ejmech.2025.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/27/2024] [Accepted: 01/04/2025] [Indexed: 01/28/2025]
Abstract
De novo design of antimicrobial peptides is a pivotal strategy for developing new antibacterial agents, leveraging its rapid and efficient nature. (XXYY)n, where X represents cationic residues, Y denotes hydrophobic residues, and n varies from 2 to 4, is a classical α-helix template. Based on which, numerous antimicrobial peptides have been synthesized. Herein, we hypothesize that the amphipathy of this type of α-helix template can be further enhanced based on the principles of α-helical protein folding, characterized by a rotation occurring every 3.6 amino acid residues, and propose the highly amphipathic template XXYYXXYXXYYX (where X represents cationic residues and Y denotes hydrophobic residues). Accordingly, the amino acid composition and arrangement of the α-helix peptide (RRWF)3 are adjusted, yielding the highly amphipathic counterpart H-R (RRWFRRWRRWFR). The structure-activity relationship of which is further explored through the substitution of residues at positions 8 and 12. Notably, the highly amphipathic peptides exhibit enhanced antimicrobial activity and reduced hemolytic toxicity compared to (RRWF)3, resulting in superior bacterial selectivity. The most highly amphipathic peptide, H-R, demonstrates potent activity against biofilms and multidrug-resistant bacteria, low propensity for resistance, and high safety and effectiveness in vivo. The antibacterial mechanisms of H-R are also preliminarily investigated in this study. As noted, H-R represents a promising antimicrobial candidate for addressing infections associated with drug-resistant bacteria.
Collapse
Affiliation(s)
- Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Anqi Chu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Xu Ouyang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Beibei Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Ping Yang
- Institute of Pharmaceutics, School of Pharmacy, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Zufang Ba
- Institute of Pharmaceutics, School of Pharmacy, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Yinyin Yang
- Institute of Pharmaceutics, School of Pharmacy, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Wenbo Mao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Chao Zhong
- Institute of Pharmaceutics, School of Pharmacy, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Sanhu Gou
- Institute of Pharmaceutics, School of Pharmacy, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Yun Zhang
- Institute of Pharmaceutics, School of Pharmacy, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Hui Liu
- Institute of Pharmaceutics, School of Pharmacy, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Jingman Ni
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing, 100050, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Institute of Pharmaceutics, School of Pharmacy, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
4
|
Finatto AN, Meurens F, de Oliveira Costa M. Piggybacking on nature: exploring the multifaceted world of porcine β-defensins. Vet Res 2025; 56:47. [PMID: 40033445 DOI: 10.1186/s13567-025-01465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 12/16/2024] [Indexed: 03/05/2025] Open
Abstract
Porcine β-defensins (pBDs) are cationic peptides that are classically associated with the innate immune system. These molecules yield both antimicrobial and immunomodulatory properties, as evidenced by various in vitro and animal trials. Researchers have revealed that enhancing pBD expression can be achieved through dietary components and gene editing techniques in pigs and porcine cell models. This state-of-the-art review aims to encapsulate the pivotal findings and progress made in the field of pBD over recent decades, with a specific emphasis on the biological role of pBD in infection control and its usage in clinical trials, thereby offering a new landscape of opportunities for research aimed at identifying prophylactic and therapeutic alternatives for both swine medicine and translational purposes.
Collapse
Affiliation(s)
- Arthur Nery Finatto
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - François Meurens
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, St. Hyacinthe, QC, J2S 2M2, Canada
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Matheus de Oliveira Costa
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
- Department of Population Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Davani-Davari D, Tiwari RK, Parang K. Future applications of cyclic antimicrobial peptides in drug delivery. Expert Opin Drug Deliv 2025; 22:383-404. [PMID: 39876578 DOI: 10.1080/17425247.2025.2460661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/12/2025] [Accepted: 01/27/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Cyclic antimicrobial peptides (CAMPs) are gaining attention as promising candidates in advanced drug delivery systems due to their structural stability, resistance to proteolytic degradation, and versatile therapeutic potential. Their unique properties enable applications that extend beyond combating multidrug-resistant (MDR) pathogens. Their amphipathic and cell-penetrating properties allow them to efficiently transport drugs across cellular membranes. AREAS COVERED This review explores the structural advantages and mechanisms of action of CAMPs, emphasizing their role in drug delivery. The literature analysis (2010-2024) from PubMed, Scopus, and Web of Science highlights developments in CAMP-conjugated therapies, liposomal formulations, and encapsulation systems. The review also examines their antimicrobial potency, amphipathic and cell-penetrating properties, and integration into nanocarrier technologies to enhance drug stability, bioavailability, and precision targeting. Challenges such as toxicity, scalability, and cost are also discussed. CAMPs have the potential to revolutionize drug delivery through their robustness and multifunctionality, particularly in precision medicine. EXPERT OPINION Future advancements in peptide engineering, nanotechnology, and AI-driven design are expected to enhance CAMPs' therapeutic specificity, reduce toxicity, and broaden their applications, including oncology and gene therapy, paving the way for their integration into next-generation therapeutics.
Collapse
Affiliation(s)
- Dorna Davani-Davari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, USA
| | - Rakesh Kumar Tiwari
- Department of Biomedical Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, OR, USA
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, USA
| |
Collapse
|
6
|
Jiang Z, Sun L, Li Y, Li H, Fu Y, Li J, Sun Z. The Antimicrobial Peptide D-CONGA-Q7 Eradicates Drug-Resistant E. coli by Disrupting Bacterial Cell Membranes. BIOLOGY 2025; 14:226. [PMID: 40136483 PMCID: PMC11940214 DOI: 10.3390/biology14030226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025]
Abstract
Escherichia coli (E. coli) is a zoonotic bacterium widespread in the environment, highly transmissible, and responsible for significant economic losses and millions of cases of illness annually. The rise of multidrug-resistant (MDR) strains has rendered last-line antibiotics such as polymyxin and meropenem ineffective, making the development of new antibiotics urgent. Although D-CONGA-Q7 has broad-spectrum bactericidal activity, its underlying mechanism remains poorly understood. In this study, we used in vitro and in vivo experiments to demonstrate that D-CONGA-Q7 effectively kills both antibiotic-sensitive and multidrug-resistant strains of E. coli. D-CONGA-Q7 disrupts the cell membranes of Gram-negative bacteria, and the treatment of E. coli strain LN175 with D-CONGA-Q7 resulted in a significant up-regulation of the Mlac gene, suggesting that D-CONGA-Q7 may interact with phospholipids in the cell membrane. Furthermore, in treating K88-induced bacterial enteritis in the small intestine, D-CONGA-Q7 significantly reduced intestinal inflammation. In conclusion, this study provides a novel approach to combat drug-resistant E. coli.
Collapse
Affiliation(s)
- Zonghan Jiang
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (Y.L.); (H.L.); (Y.F.)
| | - Leisheng Sun
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, China;
| | - Yuanyuan Li
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (Y.L.); (H.L.); (Y.F.)
| | - Haoyu Li
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (Y.L.); (H.L.); (Y.F.)
| | - Yu Fu
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (Y.L.); (H.L.); (Y.F.)
| | - Jiyun Li
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (Y.L.); (H.L.); (Y.F.)
| | - Zhiliang Sun
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (Y.L.); (H.L.); (Y.F.)
| |
Collapse
|
7
|
Huang Y, Liu C, Fu Z, Li C, Wu Y, Jia Q, Liu X, Kang Z, Li Y, Ni D, Wei Z, Ru Z, Peng Y, Liu X, Li Y, Xiao Z, Tang J, Wang Y, Yang X. The combination of RL-QN15 and OH-CATH30 promotes the repair of acne via the TLR2/NF-κB pathway. Eur J Pharmacol 2025; 989:177233. [PMID: 39740735 DOI: 10.1016/j.ejphar.2024.177233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/15/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Acne is a prevalent and chronic inflammatory skin disease, and its treatment remains a huge clinical challenge. In the present study, we evaluated the therapeutic potential of combining the peptides RL-QN15 and OH-CATH30 for the treatment of acne in mice. Results indicated that the topical application of RL-QN15 and OH-CATH30 significantly inhibited the proliferation of Propionibacterium acnes (P. acnes) and alleviated acne-induced edema. Furthermore, the combined treatment suppressed the overexpression of proinflammatory cytokines induced by P. acnes, including interleukin -1 beta (IL-1β), interleukin -6 (IL-6), interleukin -8 (IL-8), tumor necrosis factor-alpha (TNF-α) induced by P. acnes and facilitated collagen deposition, thereby effectively mitigating skin damage associated with acne. Mechanistically, the combination of RL-QN15 and OH-CATH30 inhibited the expression of toll-like receptor 2 (TLR2) and activation nuclear factor kappa-B (NF-κB) signaling pathway (phosphorylation of P65 and IκB) in both mice and RAW 264.7 cells. These results suggested that this combination may inhibit the excretion of inflammatory factors and facilitate the collagen deposition by TLR2/NF-κB signaling. Overall, our study demonstrates the potent therapeutic effects of the combined application of RL-QN15 and OH-CATH30, highlights the TLR2/NF-κB pathway as a key target in acne treatment, and provides a novel strategy for developing innovative acne therapeutics.
Collapse
Affiliation(s)
- Yubing Huang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Chengxing Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Chao Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Qiuye Jia
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Xue Liu
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zijian Kang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yuansheng Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Dan Ni
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ziqi Wei
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zeqiong Ru
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ying Peng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Xin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yun Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zhaoxun Xiao
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Jing Tang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan, 650500, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
8
|
Gonçalves R, Monges BE, Oshiro KGN, Cândido EDS, Pimentel JP, Franco OL, Cardoso MH. Advantages and Challenges of Using Antimicrobial Peptides in Synergism with Antibiotics for Treating Multidrug-Resistant Bacteria. ACS Infect Dis 2025; 11:323-334. [PMID: 39855154 PMCID: PMC11833863 DOI: 10.1021/acsinfecdis.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Multidrug-resistant bacteria (MDR) have become a global threat, impairing positive outcomes in many cases of infectious diseases. Treating bacterial infections with antibiotic monotherapy has become a huge challenge in modern medicine. Although conventional antibiotics can be efficient against many bacteria, there is still a need to develop antimicrobial agents that act against MDR bacteria. Bioactive peptides, particularly effective against specific types of bacteria, are recognized for their selective and effective action against microorganisms and, at the same time, are relatively safe and well tolerated. Therefore, a growing number of works have proposed the use of antimicrobial peptides (AMPs) in synergism with commercial antibiotics as an alternative therapeutic strategy. This review provides an overview of the critical parameters for using AMPs in synergism with antibiotics as well as addressing the strengths and weaknesses of this combination therapy using in vitro and in vivo models of infection. We also cover the challenges and perspectives of using this approach for clinical practice and the advantages of applying artificial intelligence strategies to predict the most promising combination therapies between AMPs and antibiotics.
Collapse
Affiliation(s)
- Regina
Meneses Gonçalves
- S-Inova
Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
| | - Bruna Estéfani
Dutra Monges
- S-Inova
Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
| | - Karen Garcia Nogueira Oshiro
- S-Inova
Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
| | - Elizabete de Souza Cândido
- S-Inova
Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
- Centro
de Análises Proteômicas e Bioquímicas, Programa
de Pós-Graduação em Ciências Genômicas
e Biotecnologia, Universidade Católica
de Brasília, Brasília, DF 71966700, Brazil
| | - João Pedro
Farias Pimentel
- S-Inova
Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
| | - Octávio Luiz Franco
- S-Inova
Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
- Centro
de Análises Proteômicas e Bioquímicas, Programa
de Pós-Graduação em Ciências Genômicas
e Biotecnologia, Universidade Católica
de Brasília, Brasília, DF 71966700, Brazil
| | - Marlon Henrique Cardoso
- S-Inova
Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
- Programa
de Pós-Graduação em Ciências Ambientais
e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
| |
Collapse
|
9
|
Xia W, Wu Z, Hou B, Cheng Z, Bi D, Chen L, Chen W, Yuan H, Koole LH, Qi L. Inactivation of antibiotic resistant bacteria by nitrogen-doped carbon quantum dots through spontaneous generation of intracellular and extracellular reactive oxygen species. Mater Today Bio 2025; 30:101428. [PMID: 39850241 PMCID: PMC11754679 DOI: 10.1016/j.mtbio.2024.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
The widespread antibiotic resistance has called for alternative antimicrobial agents. Carbon nanomaterials, especially carbon quantum dots (CQDs), may be promising alternatives due to their desirable physicochemical properties and potential antimicrobial activity, but their antimicrobial mechanism remains to be investigated. In this study, nitrogen-doped carbon quantum dots (N-CQDs) were synthesized to inactivate antibiotic-resistant bacteria and treat bacterial keratitis. N-CQDs synthesized via a facile hydrothermal approach displayed a uniform particle size of less than 10 nm, featuring a graphitic carbon structure and functional groups including -OH and -NH2. The N-CQDs demonstrated antimicrobial activity against Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus, which was both dose- and time-dependent, reducing the survival rate to below 1 %. The antimicrobial activity was confirmed by live/dead staining. In in vivo studies, the N-CQDs were more efficient in treating drug-resistant bacterial keratitis and reducing corneal damage compared to the common antibiotic levofloxacin. The N-CQDs were shown to generate intracellular and extracellular ROS, which potentially caused oxidative stress, membrane disruption, and cell death. This antimicrobial mechanism was supported by scanning and transmission electron microscopy, significant regulation of genes related to oxidative stress, and increased protein and lactate dehydrogenase leakage. This study has provided insight into the development, application, and mechanism of N-CQDs in antimicrobial applications.
Collapse
Affiliation(s)
- Weibo Xia
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, United States
| | - Zixia Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bingying Hou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhang Cheng
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, United States
| | - Dechuang Bi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Luya Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Heyang Yuan
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, United States
| | - Leo H. Koole
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lei Qi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
10
|
Zhang J, Luan L, Xu Y, Jiang S, Zhang W, Tian L, Ye W, Han J, Zhang C, Wang T, Meng Q. Development of novel broad-spectrum amphipathic antimicrobial peptides against multidrug-resistant bacteria through a rational combination strategy. J Adv Res 2025:S2090-1232(25)00048-7. [PMID: 39832719 DOI: 10.1016/j.jare.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION In recent years, cationic amphipathic antimicrobial peptides (AMPs) have shown great promise in combating antibiotic resistance on account of their distinctive membrane-disruptive mechanism. However, the clinical application of AMPs is restricted by their unsatisfactory stability and safety. Although attempts have been made to improve the stability and safety of AMPs, many of them are accompanied by a decline in their antimicrobial activity and bacterial selectivity. OBJECTIVES To develop AMPs with excellent and balanced antimicrobial activity, stability, and safety using a combination strategy. METHODS A series of sC184b-derived peptide analogues were designed by a combination strategy of subtly adjusting the charges, hydrophobic properties, and introducing specific unnatural amino acids in a well-balanced manner. The antimicrobial activity, cytotoxicity, hemolytic activity, stability, anti-biofilm activity, mechanism of action, synergistic effects, in vivo efficacy, and pharmacokinetics of the analogues were evaluated. RESULTS Among these analogues, P-α-02-B stood out for its broad-spectrum and potent antimicrobial activity, anti-biofilm activity, desirable bacterial selectivity, high plasma stability, and synergistic effect with antibiotic levofloxacin. P-α-02-B exhibited strong membrane disturbance effect, which could be explained by its rigid α-helical structure revealed by molecular dynamics simulations. More importantly, P-α-02-B showed favorable therapeutic efficacy in vivo, whether used alone or in combination with levofloxacin. CONCLUSION P-α-02-B is a promising antimicrobial agent for MDR bacterial infections, demonstrating the effectiveness of the combination strategy for AMP development.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Liang Luan
- Department of Laboratory Medical Center, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Youdong Xu
- National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing 102206, China
| | - Shuyuan Jiang
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Wenpeng Zhang
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Long Tian
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Weifeng Ye
- Center of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jiaqi Han
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Changhao Zhang
- Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China.
| | - Taoran Wang
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Qingbing Meng
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
11
|
He S, Li X, Wei Y, Zhang L, Wang J, Yang Z, Shan A. Cuminaldehyde Potentiates Antiproteolytic Peptide Efficacy via Parallel Pathways of Enhanced Inner Membrane-Damaging Activity and Inhibition of Bacterial Energy Metabolism. J Med Chem 2025; 68:776-791. [PMID: 39720941 DOI: 10.1021/acs.jmedchem.4c02700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Antimicrobial peptides (AMPs) offer potential as antibiotic alternatives, but high cost, off-site cytotoxicity, and poor stability limit their application. Combining AMPs with adjuvants holds promise in surmounting these limitations. Among potentiators, terpenoids account for the highest proportion, yet their potential to enhance the AMPs efficacy and underlying mechanism remain unclear. Hence, we investigated the potential of monoterpenoids to enhance the efficacy of antiproteolytic AMPs N1 (NalAArIILrWrFR). Cuminaldehyde potentiated N1 activity against all tested strains, with FICI from 0.375 to 0.094. N1/cuminaldehyde combination also worked synergistically against drug-resistant bacteria, exhibited a low incidence of resistance development, and was not synergistically toxic to eukaryotes. Furthermore, cuminaldehyde enhanced N1 stability in salts, serum, and proteases. Mechanistically, cuminaldehyde enhanced the inner-membrane-damaging activity of N1 and inhibited bacterial energy metabolism. Finally, cuminaldehyde enhanced the efficacy of N1 against ETEC K88-induced enteritis in mice. Collectively, cuminaldehyde may be a promising N1 adjuvant to combat bacterial infections and circumvent antibiotic resistance.
Collapse
Affiliation(s)
- Shiqi He
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xuefeng Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yingxin Wei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Licong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jiajun Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhanyi Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
12
|
Halder A, Pasupuleti R, Sivagnanam S, Das P, Mukherjee O. Boc-Protected Phenylalanine and Tryptophan-Based Dipeptides: A Broad Spectrum Anti-Bacterial Agent. Biopolymers 2025; 116:e23649. [PMID: 39718897 DOI: 10.1002/bip.23649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/26/2024]
Abstract
Dipeptides were constructed using hydrophobic amino acid residues following AMP prediction. After that Boc-modification was performed on the screened peptides and finally Boc-Phe-Trp-OMe and Boc-Trp-Trp-OMe were synthesized. Even though no inhibition zones were observed in agar well diffusion assays, minimum inhibitory concentration (MIC) analysis revealed anti-bacterial activity against both Gram-positive and Gram-negative bacteria, with MIC90 ranging from 230 to 400 μg/mL. The crystal violet assay confirmed the dipeptides' biofilm eradication and disruption capabilities. Furthermore, membrane permeabilization assays indicated outer and inner membrane permeabilization, while SEM analysis revealed the formation of fibril and spherical nanostructures, likely contributing to this effect. The peptides also exhibited resistance to protein adsorption, non-cytotoxicity, and non-hemolytic properties, making them promising broad-spectrum anti-bacterial agents with biofilm eradication and disruption potential. This study concludes that Boc-protected phenylalanine- and tryptophan-based dipeptides can self-assemble and can be used as broad-spectrum anti-bacterial agents. The self-assembly of these peptides offers a versatile platform for designing biomaterials with tailored properties and functionalities. Research exploring the anti-bacterial potential of Boc-protected dipeptides has been limited, prompting our investigation to shed light on this overlooked area. Our analysis of synthesized Boc-protected dipeptides revealed notable anti-bacterial activity, marking a significant advancement. This finding suggests that these dipeptides could emerge as potent, broad-spectrum anti-bacterial agents, addressing the urgent need for effective treatments against bacterial resistance and opening new avenues in therapy. This study not only enhances our understanding of these dipeptides but also highlights their potential as innovative and efficacious anti-bacterial agents, making a substantial impact in the clinical field.
Collapse
Affiliation(s)
- Arpita Halder
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | | | | | - Priyadip Das
- Department of Chemistry, SRMIST, Kattankulathur, Chennai, Tamil Nadu, India
| | - Oindrilla Mukherjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| |
Collapse
|
13
|
Haddad H, da Franca Rodrigues KA, Othman H, Veras LMC, Rodrigues RRL, Ouahchi I, Ouni B, Zaϊri A. In vitro Antileishmanial Activity and In silico Molecular Modeling Studies of Novel Analogs of Dermaseptins S4 and B2. Curr Pharm Biotechnol 2025; 26:276-288. [PMID: 39257149 DOI: 10.2174/0113892010296038240427050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Leishmaniasis is responsible for approximately 65,000 annual deaths. Various Leishmania species are the predominant cause of visceral, cutaneous, or mucocutaneous leishmaniasis, affecting millions worldwide. The lack of a vaccine, emergence of resistance, and undesirable side effects caused by antileishmanial medications have prompted researchers to look for novel therapeutic approaches to treat this disease. Antimicrobial peptides (AMPs) offer an alternative for promoting the discovery of new drugs. METHODS In this study, we detail the synthesis process and investigate the antileishmanial activity against Leishmania (Viannia) braziliensis for peptides belonging to the dermaseptin (DS) family and their synthetic analogs. The MTT assay was performed to investigate the cytotoxicity of these peptides on the murine macrophage cell line RAW 264.7. Subsequently, we performed molecular modeling analysis to explore the structure-function correlation of the derivatives interacting with the parasitic membrane. RESULTS All examined derivatives displayed concentration-dependent antileishmanial effect at low concentrations. Their effectiveness varied according to the peptide's proprieties. Notably, peptides with higher levels of charge demonstrated the most pronounced activities. Cytotoxicity assays showed that all the tested peptides were not cytotoxic compared to the tested conventional drug. The structure-function relationships demonstrated that the charged N-terminus could be responsible for the antileishmanial effect observed on promastigotes. CONCLUSION Collectively, these results propose that dermaseptins (DS) might offer potential as promising candidates for the development of effective antileishmanial therapies.
Collapse
Affiliation(s)
- Houda Haddad
- BIOLIVAL Laboratory, Higher Institute of Biotechnology of Monastir ISBM, University of Monastir, 5000 Monastir, Tunisia
- Biochemistry Department, Faculty of Medicine, University of Sousse, 4002 Sousse, Tunisia
| | | | - Houcemeddine Othman
- Laboratory of Cytogenetics and Reproductive Biology, CHU Farhat Hached, 4000 Sousse, Tunisia
| | - Leiz Maria Costa Veras
- Biodiversity and Biotechnology Research Center, BIOTEC, Federal University of Piauí, Parnaíba, PI, Brazil
| | - Raiza Raianne Luz Rodrigues
- Laboratory of Infectious Diseases, Ladic, Campus Ministro Reis Velloso, Federal University of Delta do Parnaíba, 64202-020, Brazil
| | - Ines Ouahchi
- Biodiversity Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, 4000 Sousse, Tunisia
| | - Bouraoui Ouni
- Pharmacology department, Faculty of Medicine, University of Sousse, 4002 Sousse, Tunisia
| | - Amira Zaϊri
- Biochemistry Department, Faculty of Medicine, University of Sousse, 4002 Sousse, Tunisia
| |
Collapse
|
14
|
de Oliveira SSS, Cherene MB, Taveira GB, de Oliveira Mello É, de Oliveira Carvalho A, Gomes VM. Plant Antimicrobial Peptides and Their Main Families and Roles: A Review of the Literature. Curr Issues Mol Biol 2024; 47:1. [PMID: 39852116 PMCID: PMC11840293 DOI: 10.3390/cimb47010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
Antimicrobial peptides (AMPs) are constituent molecules of the innate defense system and are naturally produced by all organisms. AMPs are characterized by a relatively low molecular weight (less than 10 kDa) and a variable number of cysteine residues that form disulfide bonds and contribute to the stabilization of the tertiary structure. In addition, there is a wide repertoire of antimicrobial agents against bacteria, viruses, fungi, and protozoa that can provide a large number of prototype peptides for study and biochemical manipulation. In this sense, plant AMPs stand out because they have a wide range of biological functions against microorganisms and potential applications in medicine and agriculture. Herein, we describe a mini-review of the principal AMP families, such as defensins, lipid transfer proteins (LTPs), thionins, heveins, and cyclotides. The objective of this work was to present the main discoveries regarding the biological activities of these plant AMP families, especially in the last 20 years. We also discuss the current knowledge of their biological activities, gene expression, and possible uses as antimicrobial molecules and in plant biotechnology.
Collapse
Affiliation(s)
| | | | | | | | | | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro 28013-602, Brazil; (S.S.S.d.O.); (M.B.C.); (G.B.T.); (É.d.O.M.); (A.d.O.C.)
| |
Collapse
|
15
|
Daneshi M, Borowicz PP, Hirchert MR, Entzie YL, Syring JG, King LE, Safain KS, Anas M, Reynolds LP, Ward AK, Dahlen CR, Crouse MS, Caton JS. Influence of maternal nutrition and one-carbon metabolites supplementation on bovine antimicrobial peptides in fetal and maternal tissues. Front Vet Sci 2024; 11:1505427. [PMID: 39720407 PMCID: PMC11666495 DOI: 10.3389/fvets.2024.1505427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
Introduction Maternal nutrition during pregnancy critically influences offspring development and immune function. One-carbon metabolites (OCM) are epigenetic modifiers that may modulate antimicrobial peptide (AMP) expression, which is vital for innate immunity. This study investigated the effects of maternal nutrient restriction and OCM supplementation on mRNA expression of AMP in fetal and maternal lung, mammary gland, and small intestine of beef cattle. Methods Twenty-nine crossbred Angus beef heifers were synchronized for estrus and artificially inseminated. They were assigned to one of four treatments in a 2 × 2 factorial design: nutritional plane [control (CON) vs. restricted (RES)] and OCM supplementation [without OCM (-OCM) or with OCM (+OCM)]. Heifers on the CON diet were fed to gain 0.45 kg/day, while RES heifers were fed to lose 0.23 kg/day. Treatments were applied from day 0 to 63 of gestation, after which all heifers were fed a common diet to gain 0.45 kg/day until day 161 of gestation, when samples were collected. Quantitative RT-qPCR was used to assess mRNA expression of AMP. Results Nutritional plane had no effect (p ≥ 0.24) on mRNA expression of AMP in either the fetus or dams. However, the mRNA expression of cathelicidin5 (CATHL5; p = 0.07) and bovine neutrophil β-defensin5 (BNBD5; p = 0.07) in the fetal lung and mammary gland, respectively, was lower in the +OCM groups compared to the -OCM groups. In the maternal small intestine, the expression of enteric β-defensin (EBD) was lower (p = 0.01) in the +OCM groups compared to the -OCM groups. Additionally, in the maternal lung, there was a tendency (p = 0.06) for an interaction in CATHL5 mRNA expression, with the RES + OCM group showing greater expression compared to the CON + OCM (p = 0.07) and RES - OCM (p = 0.08) groups. Discussion Our findings suggest that while restricted maternal nutrition did not affect mRNA expression of AMP, OCM supplementation modulated AMP expression in both fetal and maternal tissues. Further research is needed to elucidate the mechanisms underlying OCM's impact on AMP expression.
Collapse
Affiliation(s)
- Mojtaba Daneshi
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Pawel P. Borowicz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Mara R. Hirchert
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Yssi L. Entzie
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Jessica G. Syring
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Layla E. King
- Department of Agriculture and Natural Resources, University of Minnesota Crookston, Crookston, MN, United States
| | - Kazi Sarjana Safain
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Muhammad Anas
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Lawrence P. Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Alison K. Ward
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Carl R. Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Matthew S. Crouse
- United States Department of Agriculture, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Joel S. Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
16
|
Islam MM, Jung DE, Shin WS, Oh MH. Colistin Resistance Mechanism and Management Strategies of Colistin-Resistant Acinetobacter baumannii Infections. Pathogens 2024; 13:1049. [PMID: 39770308 PMCID: PMC11728550 DOI: 10.3390/pathogens13121049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
The emergence of antibiotic-resistant Acinetobacter baumannii (A. baumannii) is a pressing threat in clinical settings. Colistin is currently a widely used treatment for multidrug-resistant A. baumannii, serving as the last line of defense. However, reports of colistin-resistant strains of A. baumannii have emerged, underscoring the urgent need to develop alternative medications to combat these serious pathogens. To resist colistin, A. baumannii has developed several mechanisms. These include the loss of outer membrane lipopolysaccharides (LPSs) due to mutation of LPS biosynthetic genes, modification of lipid A (a constituent of LPSs) structure through the addition of phosphoethanolamine (PEtN) moieties to the lipid A component by overexpression of chromosomal pmrCAB operon genes and eptA gene, or acquisition of plasmid-encoded mcr genes through horizontal gene transfer. Other resistance mechanisms involve alterations of outer membrane permeability through porins, the expulsion of colistin by efflux pumps, and heteroresistance. In response to the rising threat of colistin-resistant A. baumannii, researchers have developed various treatment strategies, including antibiotic combination therapy, adjuvants to potentiate antibiotic activity, repurposing existing drugs, antimicrobial peptides, nanotechnology, photodynamic therapy, CRISPR/Cas, and phage therapy. While many of these strategies have shown promise in vitro and in vivo, further clinical trials are necessary to ensure their efficacy and widen their clinical applications. Ongoing research is essential for identifying the most effective therapeutic strategies to manage colistin-resistant A. baumannii. This review explores the genetic mechanisms underlying colistin resistance and assesses potential treatment options for this challenging pathogen.
Collapse
Affiliation(s)
- Md Minarul Islam
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea;
| | - Da Eun Jung
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea;
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Man Hwan Oh
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea;
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
17
|
Oh JW, Shin MK, Park HR, Kim S, Lee B, Yoo JS, Chi WJ, Sung JS. PA-Win2: In Silico-Based Discovery of a Novel Peptide with Dual Antibacterial and Anti-Biofilm Activity. Antibiotics (Basel) 2024; 13:1113. [PMID: 39766503 PMCID: PMC11672609 DOI: 10.3390/antibiotics13121113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The emergence and prevalence of antibiotic-resistant bacteria (ARBs) have become a serious global threat, as the morbidity and mortality associated with ARB infections are continuously rising. The activation of quorum sensing (QS) genes can promote biofilm formation, which contributes to the acquisition of drug resistance and increases virulence. Therefore, there is an urgent need to develop new antimicrobial agents to control ARB and prevent further development. Antimicrobial peptides (AMPs) are naturally occurring defense molecules in organisms known to suppress pathogens through a broad range of antimicrobial mechanisms. Methods: In this study, we utilized a previously developed deep-learning model to identify AMP candidates from the venom gland transcriptome of the spider Pardosa astrigera, followed by experimental validation. Results: PA-Win2 was among the top-scoring predicted peptides and was selected based on physiochemical features. Subsequent experimental validation demonstrated that PA-Win2 inhibits the growth of Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and multidrug-resistant P. aeruginosa (MRPA) strain CCARM 2095. The peptide exhibited strong bactericidal activity against P. aeruginosa, and MRPA CCARM 2095 through the depolarization of bacterial cytoplasmic membranes and alteration of gene expression associated with bacterial survival. In addition, PA-Win2 effectively inhibited biofilm formation and degraded pre-formed biofilms of P. aeruginosa. The gene expression study showed that the peptide treatment led to the downregulation of QS genes in the Las, Pqs, and Rhl systems. Conclusions: These findings suggest PA-Win2 as a promising drug candidate against ARB and demonstrate the potential of in silico methods in discovering functional peptides from biological data.
Collapse
Affiliation(s)
- Jin Wook Oh
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (J.W.O.); (M.K.S.); (H.-R.P.); (S.K.)
| | - Min Kyoung Shin
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (J.W.O.); (M.K.S.); (H.-R.P.); (S.K.)
| | - Hye-Ran Park
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (J.W.O.); (M.K.S.); (H.-R.P.); (S.K.)
| | - Sejun Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (J.W.O.); (M.K.S.); (H.-R.P.); (S.K.)
| | - Byungjo Lee
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea;
| | - Jung Sun Yoo
- Wildlife Quarantine Center, National Institute of Wildlife Disease Control and Prevention, Incheon 22382, Republic of Korea;
| | - Won-Jae Chi
- Species Diversity Research Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea;
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (J.W.O.); (M.K.S.); (H.-R.P.); (S.K.)
| |
Collapse
|
18
|
Wu Z, Cai Y, Han Y, Su Y, Zhang T, Wang X, Yan A, Wang L, Wu S, Wang G, Zhang Z. Development of α-Helical Antimicrobial Peptides with Imperfect Amphipathicity for Superior Activity and Selectivity. J Med Chem 2024; 67:19561-19572. [PMID: 39484706 DOI: 10.1021/acs.jmedchem.4c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The advancement of antimicrobial peptides (AMPs) as therapeutic agents is hindered by their poor selectivity. Recent evidence indicates that controlled disruption of the amphipathicity of α-helical AMPs may increase the selectivity. This study investigated the role of imperfect amphipathicity in optimizing AMPs with varied sequences to enhance their activity and selectivity. Among these, the lead peptide RI-18, characterized by an imperfectly amphipathic α-helical structure, demonstrated potent and broad-spectrum antibacterial activity without inducing hemolytic or cytotoxic effects. RI-18 effectively eliminated planktonic and biofilm-associated bacteria as well as persister cells and exhibited high bacterial plasma membrane affinity, inducing rapid membrane permeabilization and rupture. Notably, RI-18 significantly reduced bacterial loads without promoting bacterial resistance, highlighting its therapeutic potential. Overall, this study identified RI-18 as a promising antimicrobial candidate. The rational strategy of tuning imperfect amphipathicity to enhance the AMP activity and selectivity may facilitate the design and development of AMPs.
Collapse
Affiliation(s)
- Zhongxiang Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Ying Cai
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Yajun Han
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yunhan Su
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Tianyu Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Xingyu Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - An Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Liunan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Sijing Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Gan Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Zhiye Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| |
Collapse
|
19
|
Luo L, Cai Y, Su Y, Li C, Tian G, Wang X, Wu Z, Chen W, Zhang T, Zhang Z. Novel Tree Shrew-Derived Antimicrobial Peptide with Broad-Spectrum Antibacterial Activity. ACS OMEGA 2024; 9:45279-45288. [PMID: 39554445 PMCID: PMC11561621 DOI: 10.1021/acsomega.4c06857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
The number of cationic residues and net charge are critical for the activity of antimicrobial peptides (AMPs) due to their role in facilitating initial electrostatic interactions with negatively charged bacterial membranes. A cathelicidin AMP (TC-33) has been identified from the Chinese tree shrew in our previous work, which exhibited weak antimicrobial activity, likely due to its moderately cationic nature. In the current study, based on TC-33, we designed a novel AMP by peptide truncation and Glu substitutions to increase its net cationic charge from +4 to +8. The resulting peptide, TC-LAR-18, showed 4-128-fold enhanced antimicrobial activity relative to TC-33 without causing hemolysis and cytotoxicity within 100 μg/mL. TC-LAR-18 effectively eliminated both planktonic and biofilm-associated bacteria, demonstrating rapid bactericidal effects due to its ability to quickly penetrate and disrupt bacterial cell membranes with a low propensity to induce resistance. Notably, TC-LAR-18 provided substantial protection against skin bacterial infection in mice, underscoring its therapeutic potential. These findings not only highlight the importance of positively charged residues for the antibacterial activity of AMPs but also present a useful drug candidate for combating multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Lin Luo
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- Third
Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University
(Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Ying Cai
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Yunhan Su
- School
of Basic Medical Sciences, Kunming Medical
University, Kunming 650500, Yunnan, China
| | - Chenxi Li
- Third
Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University
(Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Gengzhou Tian
- Department
of Breast Surgery, First Affiliated Hospital
of Kunming Medical University, Kunming 650223, Yunnan, China
| | - Xingyu Wang
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- School
of Life Sciences, Yunnan University, Kunming 650500, China
| | - Zhongxiang Wu
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Wenlin Chen
- Third
Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University
(Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Tianyu Zhang
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Zhiye Zhang
- Institute
of Medical Biology, Chinese Academy of Medical
Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| |
Collapse
|
20
|
Datta M, Rajeev A, Chattopadhyay I. Application of antimicrobial peptides as next-generation therapeutics in the biomedical world. Biotechnol Genet Eng Rev 2024; 40:2458-2496. [PMID: 37036043 DOI: 10.1080/02648725.2023.2199572] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
Antimicrobial peptide (AMP), also called host defense peptide, is a part of the innate immune system in eukaryotic organisms. AMPs are also produced by prokaryotes in response to stressful conditions and environmental changes. They have a broad spectrum of activity against both Gram positive and Gram negative bacteria. They are also effective against viruses, fungi, parasites, and cancer cells. AMPs are cationic or amphipathic in nature, but in recent years cationic AMPs have attracted a lot of attention because cationic AMPs can easily interact with negatively charged bacterial and cancer cell membranes through electrostatic interaction. AMPs can also eradicate bacterial biofilms and have broad-spectrum activity against multidrug resistant (MDR) bacteria. Although the main target site for AMPs is the cell membrane, they can also disrupt bacterial cell walls, interfere with protein folding and inhibit enzymatic activity. In recent centuries antibiotics are gradually losing their potential because of the continuous rise of antibiotic resistant bacteria. Therefore, there is an urgent need to develop novel therapeutic approaches to treat MDR bacteria, and AMP is such an alternative treatment option over conventional antibiotics. Several communicable diseases like tuberculosis and non-communicable diseases such as cancer can be treated by using AMPs. One of the major advantages of using AMP is that it works with high specificity and does not cause any harm to normal tissue. AMPs can be modified to improve their efficacy. In this narrative review, we are focusing on the potential application of AMPs in medical science.
Collapse
Affiliation(s)
- Manjari Datta
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Ashwin Rajeev
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Indranil Chattopadhyay
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
21
|
Barbosa GG, de Santana CJC, Silva TL, Santana BCG, Paiva PMG, de Freitas GG, Brand GD, Júnior ORP, Castro MS, Napoleão TH. A new temporin with antibacterial activity and cytotoxicity from the skin secretion of Lithobates palmipes (Spix, 1824) (Amphibia: Ranidae) from Brazilian Atlantic Forest. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111041. [PMID: 39427973 DOI: 10.1016/j.cbpb.2024.111041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
This work investigated the peptide profile of skin secretion from Lithobates palmipes collected from the Brazilian Atlantic Forest. The secretion was submitted to reversed phase high-performance liquid chromatography (RP-HPLC) and the fractions were screened for antibacterial activity. RP-HPLC resulted in the separation of several peaks, among which 10 showed antibacterial activity and contained peptides of the ranatuerin, brevinin and temporin families. Fraction 6 was resubmitted to RP-HPLC and a novel peptide from temporin family (temporin-PMb) had its primary structure determined. Temporin-PMb and non-amidated temporin-PMb were synthesized, purified, and evaluated for antibacterial activity, hemolytic activity and cytotoxicity to keratinocytes and cancer cells. Temporin-PMb was active against Klebsiella pneumoniae, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa as well as against methicilin-resistant S. aureus (MRSA) and Acinetobacter baumannii. It was cytotoxic to human cervical adenocarcinoma cells (HeLa) and human mammary adenocarcinoma cells (MCF7) with IC50 of 32.4 and 24.1 μM, respectively. It was also toxic to human keratinocytes (HaCaT; IC50 of 25.0 μM) and showed hemolytic activity. The non-amidated form showed low hemolytic activity and lower HaCaT toxicity, but was only effective against E. coli, S. aureus MRSA, and A. baumanii. In conclusion, Atlantic Forest L. palmipes skin secretion contained different bioactive peptides, including a novel temporin with antibacterial effect and cytotoxicity towards human cancer cells. The amide group was responsible for the activities of the wild-type temporin-PMb. Peptide engineering studies are encouraged aiming at minimizing unwanted effects.
Collapse
Affiliation(s)
- Géssica Gomes Barbosa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Carlos José Correia de Santana
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Tulíbia Laurindo Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Gabriel Gonçalves de Freitas
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | | | - Osmindo Rodrigues Pires Júnior
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Mariana S Castro
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
22
|
Vladkova TG, Smani Y, Martinov BL, Gospodinova DN. Recent Progress in Terrestrial Biota Derived Antibacterial Agents for Medical Applications. Molecules 2024; 29:4889. [PMID: 39459256 PMCID: PMC11510244 DOI: 10.3390/molecules29204889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Conventional antibiotic and multidrug treatments are becoming less and less effective and the discovery of new effective and safe antibacterial agents is becoming a global priority. Returning to a natural antibacterial product is a relatively new current trend. Terrestrial biota is a rich source of biologically active substances whose antibacterial potential has not been fully utilized. The aim of this review is to present the current state-of-the-art terrestrial biota-derived antibacterial agents inspired by natural treatments. It summarizes the most important sources and newly identified or modified antibacterial agents and treatments from the last five years. It focuses on the significance of plant- animal- and bacteria-derived biologically active agents as powerful alternatives to antibiotics, as well as the advantages of utilizing natural antibacterial molecules alone or in combination with antibiotics. The main conclusion is that terrestrial biota-derived antibacterial products and substances open a variety of new ways for modern improved therapeutic strategies. New terrestrial sources of known antibacterial agents and new antibacterial agents from terrestrial biota were discovered during the last 5 years, which are under investigation together with some long-ago known but now experiencing their renaissance for the development of new medical treatments. The use of natural antibacterial peptides as well as combinational therapy by commercial antibiotics and natural products is outlined as the most promising method for treating bacterial infections. In vivo testing and clinical trials are necessary to reach clinical application.
Collapse
Affiliation(s)
- Todorka G. Vladkova
- Department of Polymer Engineering, University of Chemical Technology and Metallurgy, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria
| | - Younes Smani
- Andalusian Center of Developmental Biology, CSIC, Junta de Andalusia, University of Pablo de Olavide, 41013 Seville, Spain;
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, Junta de Andalusia, University of Pablo de Olavide, 41013 Seville, Spain
| | - Boris L. Martinov
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| | - Dilyana N. Gospodinova
- Faculty of Electrical Engineering, Technical University of Sofia, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| |
Collapse
|
23
|
Haddad H, Tangy F, Ouahchi I, Sahtout W, Ouni B, Zaïri A. Evaluation of the antiviral activity of new dermaseptin analogs against Zika virus. Biochem Biophys Rep 2024; 39:101747. [PMID: 38939125 PMCID: PMC11208914 DOI: 10.1016/j.bbrep.2024.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024] Open
Abstract
Zika virus represents the primary cause of infection during pregnancy and can lead to various neurological disorders such as microcephaly and Guillain-Barré syndrome affecting both children and adults. This infection is also associated with urological and nephrological problems. So far, evidence of mosquito-borne Zika virus infection has been reported in a total of 89 countries and territories. However, surveillance efforts primarily concentrate on outbreaks that this virus can cause, yet the measures implemented are typically limited. Currently, there are no specific treatments or vaccines designed for the prevention or treatment of Zika virus infection or its associated disease. The development of effective therapeutic agents presents an urgent need. Importantly, an alternative for advancing the discovery of new molecules could be dermaseptins, a family of antimicrobial peptides known for their potential antiviral properties. In this study, we carried out the synthesis of dermaseptins and their analogs and subsequently assessed the bioactivity tests against Zika virus (ZIKV PF13) of dermaseptins B2 and S4 and their derivatives. The cytotoxicity of these peptides was investigated on HMC3 cell line and HeLa cells by CellTiter-Glo® Luminescent Cell Viability Assay. Thereafter, we evaluated the antiviral activity caused by the action of our dermaseptins on the viral envelope using the Fluorescence Activated Cell Sorting (FACS). The cytotoxicity of our molecules was concentration-dependent at microgram concentrations Expect for dermaseptin B2 and its derivative which present no toxicity against HeLa and HMC3 cell lines. It was observed that all tested analogs from S4 family exhibited antiviral activity with low concentrations ranging from 3 to 12.5 μg/ml , unlike the native B2 and its derivative which increased the infectivity. Pre-incubating of dermaseptins with ZIKV PF13 before infection revealed that these derivatives inhibit the initial stages of virus infection. In summary, these results suggest that dermaseptins could serve as novel lead structures for the development of potent antiviral agents against Zika virus infections.
Collapse
Affiliation(s)
- Houda Haddad
- BIOLIVAL Laboratory, LR14ES06, The Higher Institute of Biotechnology of Monastir ISBM, University of Monastir, Monastir, 5000, Tunisia
- Biochemistry Department, Faculty of Medicine, University of Sousse, Sousse, 4002, Tunisia
| | - Frédéric Tangy
- Institut Pasteur, Université Paris Cité, Vaccines-innovation Laboratory, 75015, Paris, France
| | - Ines Ouahchi
- Cytogenetics and Reproductive Biology department, Farhat Hached University Teaching Hospital, University of Sousse, 4000, Sousse, Tunisia
| | - Wissal Sahtout
- Nephrology Department, Sahloul University Hospital, University of Sousse, 4054, Sousse, Tunisia
- Research Laboratory LR12SP11, Biochemistry Department, Sahloul University Hospital, University of Sousse, 4054, Sousse, Tunisia
| | - Bouraoui Ouni
- Pharmacology Department, Faculty of Medicine, University of Sousse, 4002, ousse, Tunisia
| | - Amira Zaïri
- Biochemistry Department, Faculty of Medicine, University of Sousse, Sousse, 4002, Tunisia
| |
Collapse
|
24
|
Javed A, Oedairadjsingh T, Ludwig IS, Wood TM, Martin NI, Broere F, Weingarth MH, Veldhuizen EJA. Antimicrobial and immunomodulatory activities of porcine cathelicidin Protegrin-1. Mol Immunol 2024; 173:100-109. [PMID: 39094445 DOI: 10.1016/j.molimm.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Antimicrobial peptides (AMPs) are a promising alternative to antibiotics in the fight against multi-drug resistant and immune system-evading bacterial infections. Protegrins are porcine cathelicidins which have been identified in porcine leukocytes. Protegrin-1 is the best characterized family member and has broad antibacterial activity by interacting and permeabilizing bacterial membranes. Many host defense peptides (HDPs) like LL-37 or chicken cathelicidin 2 (CATH-2) have also been shown to have protective biological functions during infections. In this regard, it is interesting to study if Protegrin-1 has the immune modulating potential to suppress unnecessary immune activation by neutralizing endotoxins or by influencing the macrophage functionality in addition to its direct antimicrobial properties. This study showed that Protegrin-1 neutralized lipopolysaccharide- (LPS) and bacteria-induced activation of RAW macrophages by binding and preventing LPS from cell surface attachment. Furthermore, the peptide treatment not only inhibited bacterial phagocytosis by murine and porcine macrophages but also interfered with cell surface and intracellular bacterial survival. Lastly, Protegrin-1 pre-treatment was shown to inhibit the amastigote survival in Leishmania infected macrophages. These experiments describe an extended potential of Protegrin-1's protective role during microbial infections and add to the research towards clinical application of cationic AMPs.
Collapse
Affiliation(s)
- Ali Javed
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Utrecht University, the Netherlands; NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, the Netherlands
| | - Trishana Oedairadjsingh
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Utrecht University, the Netherlands
| | - Irene S Ludwig
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Utrecht University, the Netherlands
| | - Thomas M Wood
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, the Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, the Netherlands
| | - Femke Broere
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Utrecht University, the Netherlands
| | - Markus H Weingarth
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, the Netherlands
| | - Edwin J A Veldhuizen
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Utrecht University, the Netherlands.
| |
Collapse
|
25
|
Zhou Q, Li K, Wang K, Hong W, Chen J, Chai J, Yu L, Si Z, Li P. Fluoroamphiphilic polymers exterminate multidrug-resistant Gram-negative ESKAPE pathogens while attenuating drug resistance. SCIENCE ADVANCES 2024; 10:eadp6604. [PMID: 39196947 PMCID: PMC11352906 DOI: 10.1126/sciadv.adp6604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/23/2024] [Indexed: 08/30/2024]
Abstract
ESKAPE pathogens are a panel of most recalcitrant bacteria that could "escape" the treatment of antibiotics and exhibit high incidence of drug resistance. The emergence of multidrug-resistant (MDR) ESKAPE pathogens (particularly Gram-negative bacteria) accounts for high risk of mortality and increased resource utilization in health care. Worse still, there has been no new class of antibiotics approved for exterminating the Gram-negative bacteria for more than 50 years. Therefore, it is urgent to develop novel antibacterial agents with low resistance and potent killing efficacy against Gram-negative ESKAPE pathogens. Herein, we present a class of fluoropolymers by mimicking the amphiphilicity of cationic antimicrobial peptides. Our optimal fluoroamphiphilic polymer (PD45HF5) displayed selective antimicrobial ability for all MDR Gram-negative ESAKPE pathogens, low resistance, high in vitro cell selectivity, and in vivo curative efficacy. These findings implied great potential of fluoroamphiphilic cationic polymers as promising antibacterial agents against MDR Gram-negative ESKAPE bacteria and alleviating antibiotic resistance.
Collapse
Affiliation(s)
- Qian Zhou
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Kunpeng Li
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Kun Wang
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Weilin Hong
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Jingjie Chen
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Jin Chai
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Luofeng Yu
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Zhangyong Si
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo Cixi Institute of Biomedical Engineering, 1219 West Zhongguan Road, Ningbo 315201, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
| |
Collapse
|
26
|
Ortega-Balleza JL, Vázquez-Jiménez LK, Ortiz-Pérez E, Avalos-Navarro G, Paz-González AD, Lara-Ramírez EE, Rivera G. Current Strategy for Targeting Metallo-β-Lactamase with Metal-Ion-Binding Inhibitors. Molecules 2024; 29:3944. [PMID: 39203022 PMCID: PMC11356879 DOI: 10.3390/molecules29163944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Currently, antimicrobial resistance (AMR) is a serious health problem in the world, mainly because of the rapid spread of multidrug-resistant (MDR) bacteria. These include bacteria that produce β-lactamases, which confer resistance to β-lactams, the antibiotics with the most prescriptions in the world. Carbapenems are particularly noteworthy because they are considered the ultimate therapeutic option for MDR bacteria. However, this group of antibiotics can also be hydrolyzed by β-lactamases, including metallo-β-lactamases (MBLs), which have one or two zinc ions (Zn2+) on the active site and are resistant to common inhibitors of serine β-lactamases, such as clavulanic acid, sulbactam, tazobactam, and avibactam. Therefore, the design of inhibitors against MBLs has been directed toward various compounds, with groups such as nitrogen, thiols, and metal-binding carboxylates, or compounds such as bicyclic boronates that mimic hydrolysis intermediates. Other compounds, such as dipicolinic acid and aspergillomarasmin A, have also been shown to inhibit MBLs by chelating Zn2+. In fact, recent inhibitors are based on Zn2+ chelation, which is an important factor in the mechanism of action of most MBL inhibitors. Therefore, in this review, we analyzed the current strategies for the design and mechanism of action of metal-ion-binding inhibitors that combat MDR bacteria.
Collapse
Affiliation(s)
- Jessica L. Ortega-Balleza
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México 03940, Mexico
| | - Lenci K. Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México 03940, Mexico
| | - Eyra Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
| | - Guadalupe Avalos-Navarro
- Departamento de Ciencias Médicas y de la Vida, Instituto de Investigación en Genética Molecular, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47810, Mexico;
| | - Alma D. Paz-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
| | - Edgar E. Lara-Ramírez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
| |
Collapse
|
27
|
Thitirungreangchai T, Roytrakul S, Aunpad R. Deciphering the Intracellular Action of the Antimicrobial Peptide A11 via an In-Depth Analysis of Its Effect on the Global Proteome of Acinetobacter baumannii. ACS Infect Dis 2024; 10:2795-2813. [PMID: 39075773 PMCID: PMC11320580 DOI: 10.1021/acsinfecdis.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
The potential antimicrobial activity and low propensity to induce the development of bacterial resistance have rendered antimicrobial peptides (AMPs) as novel and ideal candidate therapeutic agents for the treatment of infections caused by drug-resistant pathogenic bacteria. The targeting of bacterial membranes by AMPs has been typically considered their sole mode of action; however, increasing evidence supports the existence of multiple and complementary functions of AMPs that result in bacterial death. An in-depth characterization of their mechanism of action could facilitate further research and development of AMPs with higher potency. The current study employs biophysics and proteomics approaches to unveil the mechanisms underlying the antibacterial activity of A11, a potential candidate AMP, against Acinetobacter baumannii, a leading cause of hospital-acquired infections (HAIs) and consequently, a serious global threat. A11 peptide was found to induce membrane depolarization to a high extent, as revealed by flow cytometry and electron microscopy analyses. The prompt intracellular penetration of A11 peptide, observed using confocal microscopy, was found to occur concomitantly with a very low degree of membrane lysis, suggesting that its mode of action predominantly involves a nonlytic killing mechanism. Quantitative proteomics analysis employed for obtaining insights into the mechanisms underlying the antimicrobial activity of A11 peptide revealed that it disrupted energy metabolism, interfered with protein homeostasis, and inhibited fatty acid synthesis that is essential for cell membrane integrity; all these impacted the cellular functions of A. baumannii. A11 treatment also impacted signal transduction associated with the regulation of biofilm formation, hindered the stress response, and influenced DNA repair processes; these are all crucial survival mechanisms of A. baumannii. Additionally, robust antibacterial activity was exhibited by A11 peptide against multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates of A. baumannii; moreover, A11 peptide exhibited synergy with levofloxacin and minocycline as well as low propensity for inducing resistance. Taken together, the findings emphasize the therapeutic potential of A11 peptide as an antibacterial agent against drug-resistant A. baumannii and underscore the need for further investigation.
Collapse
Affiliation(s)
- Thanit Thitirungreangchai
- Graduate
Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sittiruk Roytrakul
- Functional
Proteomics Technology Laboratory, National Center for Genetic Engineering
and Biotechnology, National Science and
Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand
| | - Ratchaneewan Aunpad
- Graduate
Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
28
|
Li C, Cai Y, Luo L, Tian G, Wang X, Yan A, Wang L, Wu S, Wu Z, Zhang T, Chen W, Zhang Z. TC-14, a cathelicidin-derived antimicrobial peptide with broad-spectrum antibacterial activity and high safety profile. iScience 2024; 27:110404. [PMID: 39092176 PMCID: PMC11292558 DOI: 10.1016/j.isci.2024.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
Cathelicidins, a major class of antimicrobial peptides (AMPs), hold considerable potential for antimicrobial drug development. In the present study, we identified a novel cathelicidin AMP (TC-33) derived from the Chinese tree shrew. Despite TC-33 demonstrating weak antimicrobial activity, the novel peptide TC-14, developed based on its active region, exhibited a 432-fold increase in antimicrobial activity over the parent peptide. Structural analysis revealed that TC-14 adopted an amphipathic α-helical conformation. The bactericidal mechanism of TC-14 involved targeting and disrupting the bacterial membrane, leading to rapid membrane permeabilization and rupture. Furthermore, TC-14 exhibited a high-safety profile, as evidenced by the absence of cytotoxic and hemolytic activities, as well as high biocompatibility and safety in vivo. Of note, its potent antimicrobial activity provided significant protection in a murine model of skin infection. Overall, this study presents TC-14 as a promising drug candidate for antimicrobial drug development.
Collapse
Affiliation(s)
- Chenxi Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Ying Cai
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Lin Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Gengzhou Tian
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Xingyu Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - An Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Liunan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Sijing Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Zhongxiang Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Tianyu Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Wenlin Chen
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Zhiye Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| |
Collapse
|
29
|
Chen X, Zhang B, He J, Rui X, He T, Zhang L, Bao J, Jing Y, Cao F. Exploration of Antimicrobial Peptides in the Treatment of Gentamicin-Resistant Klebsiella pneumoniae Infection. Infect Drug Resist 2024; 17:2591-2605. [PMID: 38953095 PMCID: PMC11215974 DOI: 10.2147/idr.s462653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction The emergence of multidrug-resistant Klebsiella pneumoniae (K. pneumoniae) and the decline of effective antibiotics lead to the urgent need for new antibacterial agents. The aim of this study is to investigate the therapeutic effect of antimicrobial peptides against gentamicin-resistant (RT) K. pneumoniae and to screen effective antimicrobial peptides. Methods In this study, the RT strains were induced by gradient gentamicin, and the RT strains were selected by detecting the expression levels of efflux pump genes, porin genes, and biofilm formation genes of the strains combined with their effects on the cells. Then the effects of four antimicrobial peptides on the efflux pump activity, biofilm formation level and cell condition after infection were detected to explore the effects of antimicrobial peptides on RT strains. Finally, the RT strain was used to induce a mouse model of pneumonia, and the four antimicrobial peptides were used to treat pneumonia mice for in vivo experiments. The pathological changes in lung tissues in each group were detected to explore the antimicrobial peptide with the most significant effect on the RT strain in vivo. Results The results showed that the minimal inhibitory concentrations of the RT strains (strain C and strain I) were significantly higher than those of the wild-type strain, and the expression of efflux pump, porin and biofilm formation genes was significantly increased. The antimicrobial peptides could effectively inhibit the biofilm formation and efflux pump protein function of the RT strains. In addition, the antimicrobial peptides showed promising antibacterial effects both in vitro and in vivo. Discussion Our study provided a theoretical basis for the treatment of gentamicin resistant K. pneumoniae infection with antimicrobial peptides, and found that KLA was significantly superior to LL37, Magainin I, KLA and Dermaseptin (10 μg/mL in cells, 50 μg in mice).
Collapse
Affiliation(s)
- Xiaochun Chen
- Department of Laboratory Medicine, Taizhou Second People’s Hospital, Taizhou, People’s Republic of China
| | - Benhong Zhang
- Department of Laboratory Medicine, Hangzhou Gongshu District Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, People’s Republic of China
| | - Jin He
- Department of Laboratory Medicine, Hangzhou Yuhang Jiamu Nursing Home, Hangzhou, People’s Republic of China
| | - Xiaohong Rui
- Department of Laboratory Medicine, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, People’s Republic of China
| | - Tian He
- Department of Laboratory Medicine, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, People’s Republic of China
| | - Lizhu Zhang
- Department of Research, Nanxin Pharm, Nanjing, People’s Republic of China
| | - Junfeng Bao
- Department of Laboratory Medicine, Wuxi Maternal and Child Health Care Hospital, Women’s Hospital of Jiangnan University, Wuxi, People’s Republic of China
| | - Yanfei Jing
- Department of Function, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, People’s Republic of China
| | - Futao Cao
- Department of Emergency, Jiangnan University Medical Center, Wuxi, People’s Republic of China
| |
Collapse
|
30
|
Velkova L, Dolashki A, Petrova V, Pisareva E, Kaynarov D, Kermedchiev M, Todorova M, Dolashka P. Antibacterial Properties of Peptide and Protein Fractions from Cornu aspersum Mucus. Molecules 2024; 29:2886. [PMID: 38930951 PMCID: PMC11206429 DOI: 10.3390/molecules29122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The discovery and investigation of new natural compounds with antimicrobial activity are new potential strategies to reduce the spread of antimicrobial resistance. The presented study reveals, for the first time, the promising antibacterial potential of two fractions from Cornu aspersum mucus with an MW < 20 kDa and an MW > 20 kDa against five bacterial pathogens-Bacillus cereus 1085, Propionibacterium acnes 1897, Salmonella enterica 8691, Enterococcus faecalis 3915, and Enterococcus faecium 8754. Using de novo sequencing, 16 novel peptides with potential antibacterial activity were identified in a fraction with an MW < 20 kDa. Some bioactive compounds in a mucus fraction with an MW > 20 kDa were determined via a proteomic analysis on 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and bioinformatics. High homology with proteins and glycoproteins was found, with potential antibacterial activity in mucus proteins named aspernin, hemocyanins, H-lectins, and L-amino acid oxidase-like protein, as well as mucins (mucin-5AC, mucin-5B, mucin-2, and mucin-17). We hypothesize that the synergy between the bioactive components determined in the composition of the fraction > 20 kDa are responsible for the high antibacterial activity against the tested pathogens in concentrations between 32 and 128 µg/mL, which is comparable to vancomycin, but without cytotoxic effects on model eukaryotic cells of Saccharomyces cerevisiae. Additionally, a positive effect, by reducing the levels of intracellular oxidative damage and increasing antioxidant capacity, on S. cerevisiae cells was found for both mucus extract fractions of C. aspersum. These findings may serve as a basis for further studies to develop a new antibacterial agent preventing the development of antibiotic resistance.
Collapse
Affiliation(s)
- Lyudmila Velkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Aleksandar Dolashki
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Ventsislava Petrova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (V.P.); (E.P.)
| | - Emiliya Pisareva
- Faculty of Biology, Sofia University, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (V.P.); (E.P.)
| | - Dimitar Kaynarov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Momchil Kermedchiev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Maria Todorova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
- Businesslab Ltd., Acad. G. Bonchev Str., bl. 4A, 1113 Sofia, Bulgaria
| | - Pavlina Dolashka
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| |
Collapse
|
31
|
Bahatheg G, Kuppusamy R, Yasir M, Bridge S, Mishra SK, Cranfield CG, StC Black D, Willcox M, Kumar N. Dimeric peptoids as antibacterial agents. Bioorg Chem 2024; 147:107334. [PMID: 38583251 DOI: 10.1016/j.bioorg.2024.107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Building upon our previous study on peptoid-based antibacterials which showed good activity against Gram-positive bacteria only, herein we report the synthesis of 34 dimeric peptoid compounds and the investigation of their activity against Gram-positive and Gram-negative pathogens. The newly designed peptoids feature a di-hydrophobic moiety incorporating phenyl, bromo-phenyl, and naphthyl groups, combined with variable lengths of cationic units such as amino and guanidine groups. The study also underscores the pivotal interplay between hydrophobicity and cationicity in optimizing efficacy against specific bacteria. The bromophenyl dimeric guanidinium peptoid compound 10j showed excellent activity against S. aureus 38 and E. coli K12 with MIC of 0.8 μg mL-1 and 6.2 μg mL-1, respectively. Further investigation into the mechanism of action revealed that the antibacterial effect might be attributed to the disruption of bacterial cell membranes, as suggested by tethered bilayer lipid membranes (tBLMs) and cytoplasmic membrane permeability studies. Notably, these promising antibacterial agents exhibited negligible toxicity against mammalian red blood cells. Additionally, the study explored the potential of 12 active compounds to disrupt established biofilms of S. aureus 38. The most effective biofilm disruptors were ethyl and octyl-naphthyl guanidinium peptoids (10c and 10 k). These compounds 10c and 10 k disrupted the established biofilms of S. aureus 38 with 51 % at 4x MIC (MIC = 17.6 μg mL-1 and 11.2 μg mL-1) and 56 %-58 % at 8x MIC (MIC = 35.2 μg mL-1 and 22.4 μg mL-1) respectively. Overall, this research contributes insights into the design principles of cationic dimeric peptoids and their antibacterial activity, with implications for the development of new antibacterial compounds.
Collapse
Affiliation(s)
- Ghayah Bahatheg
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia; Department of Chemistry, Faculty of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Rajesh Kuppusamy
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia; School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Muhammad Yasir
- School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Samara Bridge
- School of Life Sciences, University of Technology Sydney, PO Box 123, Ultimo 2007, Australia
| | - Shyam K Mishra
- School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Charles G Cranfield
- School of Life Sciences, University of Technology Sydney, PO Box 123, Ultimo 2007, Australia
| | - David StC Black
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Naresh Kumar
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|
32
|
Kravchenko SV, Domnin PA, Grishin SY, Zakhareva AP, Zakharova AA, Mustaeva LG, Gorbunova EY, Kobyakova MI, Surin AK, Poshvina DV, Fadeev RS, Azev VN, Ostroumova OS, Ermolaeva SA, Galzitskaya OV. Optimizing Antimicrobial Peptide Design: Integration of Cell-Penetrating Peptides, Amyloidogenic Fragments, and Amino Acid Residue Modifications. Int J Mol Sci 2024; 25:6030. [PMID: 38892216 PMCID: PMC11173194 DOI: 10.3390/ijms25116030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The escalating threat of multidrug-resistant pathogens necessitates innovative approaches to combat infectious diseases. In this study, we examined peptides R23FS*, V31KS*, and R44KS*, which were engineered to include an amyloidogenic fragment sourced from the S1 protein of S. aureus, along with one or two cell-penetrating peptide (CPP) components. We assessed the antimicrobial efficacy of these peptides in a liquid medium against various strains of both Gram-positive bacteria, including S. aureus (209P and 129B strains), MRSA (SA 180 and ATCC 43300 strains), and B. cereus (strain IP 5832), and Gram-negative bacteria such as P. aeruginosa (ATCC 28753 and 2943 strains) and E. coli (MG1655 and K12 strains). Peptides R23FS*, V31KS*, and R44KS* exhibited antimicrobial activity comparable to gentamicin and meropenem against all tested bacteria at concentrations ranging from 24 to 48 μM. The peptides showed a stronger antimicrobial effect against B. cereus. Notably, peptide R44KS* displayed high efficacy compared to peptides R23FS* and V31KS*, particularly evident at lower concentrations, resulting in significant inhibition of bacterial growth. Furthermore, modified peptides V31KS* and R44KS* demonstrated enhanced inhibitory effects on bacterial growth across different strains compared to their unmodified counterparts V31KS and R44KS. These results highlight the potential of integrating cell-penetrating peptides, amyloidogenic fragments, and amino acid residue modifications to advance the innovation in the field of antimicrobial peptides, thereby increasing their effectiveness against a broad spectrum of pathogens.
Collapse
Affiliation(s)
- Sergey V. Kravchenko
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (A.P.Z.); (D.V.P.)
| | - Pavel A. Domnin
- Biology Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Sergei Y. Grishin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (A.K.S.)
| | - Alena P. Zakhareva
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (A.P.Z.); (D.V.P.)
| | - Anastasiia A. Zakharova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.A.Z.); (O.S.O.)
| | - Leila G. Mustaeva
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.M.); (E.Y.G.); (V.N.A.)
| | - Elena Y. Gorbunova
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.M.); (E.Y.G.); (V.N.A.)
| | - Margarita I. Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
- Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630060 Novosibirsk, Russia
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (A.K.S.)
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.M.); (E.Y.G.); (V.N.A.)
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Darya V. Poshvina
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (A.P.Z.); (D.V.P.)
| | - Roman S. Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
| | - Viacheslav N. Azev
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.M.); (E.Y.G.); (V.N.A.)
| | - Olga S. Ostroumova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.A.Z.); (O.S.O.)
| | | | - Oxana V. Galzitskaya
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia;
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (A.K.S.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
| |
Collapse
|
33
|
Hao S, Shi W, Chen L, Kong T, Wang B, Chen S, Guo X. CATH-2-derived antimicrobial peptide inhibits multidrug-resistant Escherichia coli infection in chickens. Front Cell Infect Microbiol 2024; 14:1390934. [PMID: 38812753 PMCID: PMC11133627 DOI: 10.3389/fcimb.2024.1390934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/18/2024] [Indexed: 05/31/2024] Open
Abstract
Avian colibacillosis (AC), caused by infection with Escherichia coli (E. coli), is a major threat to poultry health, food safety and public health, and results in high mortality and significant economic losses. Currently, new drugs are urgently needed to replace antibiotics due to the continuous emergence and increasing resistance of multidrug-resistant (MDR) strains of E. coli caused by the irrational use of antibiotics in agriculture and animal husbandry. In recent years, antimicrobial peptides (AMPs), which uniquely evolved to protect the host, have emerged as a leading alternative to antibiotics in clinical settings. CATH-2, a member of the antimicrobial cathelicidin peptide family, has been reported to have antibacterial activity. To enhance the antimicrobial potency and reduce the adverse effects on animals, we designed five novel AMPs, named C2-1, C2-2, C2-3, C2-4 and C2-5, based on chicken CATH-2, the secondary structures of these AMPs were consistently α-helical and had an altered net charge and hydrophobicity compared to those of the CATH-2 (1-15) sequences. Subsequently, the antimicrobial activities of CATH-2 (1-15) and five designed peptides against MDR E. coli were evaluated in vitro. Specifically, C2-2 showed excellent antimicrobial activity against either the ATCC standard strain or veterinary clinical isolates of MDR E. coli, with concentrations ranging from 2-8 μg/mL. Furthermore, C2-2 maintained its strong antibacterial efficacy under high temperature and saline conditions, demonstrating significant stability. Similarly, C2-2 retained a high level of safety with no significant hemolytic activity on chicken mature red blood cells or cytotoxicity on chicken kidney cells over the concentration range of 0-64 μg/mL. Moreover, the administration of C2-2 improved the survival rate and reduced the bacterial load in the heart, liver and spleen during MDR E. coli infection in chickens. Additionally, pathological damage to the heart, liver and intestine was prevented when MDR E. coli infected chickens were treated with C2-2. Together, our study showed that C2-2 may be a promising novel therapeutic agent for the treatment of MDR E. coli infections and AC.
Collapse
Affiliation(s)
- Shihao Hao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Wenhui Shi
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Liujun Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Tianyou Kong
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Bin Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Shuming Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Xiaomin Guo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
34
|
He Y, Ruan S, Liang G, Hao J, Zhou X, Li Z, Mu L, Wu J, Yang H. A Nonbactericidal Anionic Antimicrobial Peptide Provides Prophylactic and Therapeutic Efficacies against Bacterial Infections in Mice by Immunomodulatory-Antithrombotic Duality. J Med Chem 2024; 67:7487-7503. [PMID: 38688020 DOI: 10.1021/acs.jmedchem.4c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Although bactericidal cationic antimicrobial peptides (AMPs) have been well characterized, less information is available about the antibacterial properties and mechanisms of action of nonbactericidal AMPs, especially nonbactericidal anionic AMPs. Herein, a novel anionic antimicrobial peptide (Gy-CATH) with a net charge of -4 was identified from the skin of the frog Glyphoglossus yunnanensis. Gy-CATH lacks direct antibacterial effects but exhibits significantly preventive and therapeutic capacities in mice that are infected with Staphylococcus aureus, Enterobacteriaceae coli, methicillin-resistant Staphylococcus aureus (MRSA), or carbapenem-resistant E. coli (CREC). In vitro and in vivo investigations proved the regulation of Gy-CATH on neutrophils and macrophages involved in the host immune defense against infection. Moreover, Gy-CATH significantly reduced the extent of pulmonary fibrin deposition and prevented thrombosis in mice, which was attributed to the regulatory role of Gy-CATH in physiological anticoagulants and platelet aggregation. These findings show that Gy-CATH is a potential candidate for the treatment of bacterial infection.
Collapse
Affiliation(s)
- Yanmei He
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Shimei Ruan
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Guozhu Liang
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jing Hao
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Xiaoyan Zhou
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Zhuorui Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Lixian Mu
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| |
Collapse
|
35
|
Mehraj I, Hamid A, Gani U, Iralu N, Manzoor T, Saleem Bhat S. Combating Antimicrobial Resistance by Employing Antimicrobial Peptides: Immunomodulators and Therapeutic Agents against Infectious Diseases. ACS APPLIED BIO MATERIALS 2024; 7:2023-2035. [PMID: 38533844 DOI: 10.1021/acsabm.3c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The rising prevalence of multiple-drug-resistant pathogens poses a formidable challenge to conventional antimicrobial treatments. The inability of potent antibiotics to combat these "superbugs" underscores the pressing need for alternative therapeutic agents. Antimicrobial peptides (AMPs) represent an alternative class of antibiotics. AMPs are essential immunomodulatory molecules that are found in various organisms. They play a pivotal role in managing microbial ecosystems and bolstering innate immunity by targeting and eliminating invading microorganisms. AMPs also have applications in the agriculture sector by combating animal as well as plant pathogens. AMPs can be exploited for the targeted therapy of various diseases and can also be used in drug-delivery systems. They can be used in synergy with current treatments like antibiotics and can potentially lead to a lower required dosage. AMPs also have huge potential in wound healing and regenerative medicine. Developing AMP-based strategies with improved safety, specificity, and efficacy is crucial in the battle against alarming global microbial resistance. This review will explore AMPs' increasing applicability, their mode of antimicrobial activity, and various delivery systems enhancing their stability and efficacy.
Collapse
Affiliation(s)
- Insha Mehraj
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Aflaq Hamid
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Ubaid Gani
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Nulevino Iralu
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| |
Collapse
|
36
|
Yang L, Gao Y, Zhang J, Tian C, Lin F, Song D, Zhou L, Peng J, Guo G. Antimicrobial peptide DvAMP combats carbapenem-resistant Acinetobacter baumannii infection. Int J Antimicrob Agents 2024; 63:107106. [PMID: 38325724 DOI: 10.1016/j.ijantimicag.2024.107106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB), an important opportunistic pathogen, is a major cause of healthcare-associated infections. The polymyxins (colistin and polymyxin B) are the last line of defense in the treatment of CRAB infections, and there is an urgent need to develop novel alternative therapeutic strategies. In this study, we found that the antimicrobial peptide DvAMP exhibited satisfactory antibacterial and antibiofilm activity against CRAB. In addition, DvAMP showed tolerable stability in salt ions and serum and exhibited low toxicity in vivo. Investigation of the underlying mechanism demonstrated that DvAMP disrupts cell membrane structural integrity and specifically binds to exogenous lipopolysaccharides (LPS) and phospholipids (PG/CL), resulting in increased membrane permeability and dissipating proton motive force (PMF), further reducing intracellular ATP levels and inducing ROS accumulation, leading to bacterial death. Furthermore, DvAMP therapy efficiently improved survival rates and decreased the bacterial load in the lungs of mice in a mouse pneumonia model, showing that DvAMP administration reduced CRAB susceptibility to lung infection. These results indicate that the peptide DvAMP is a promising alternative therapeutic agent to combat CRAB infection.
Collapse
Affiliation(s)
- Longbing Yang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China; Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Yongfei Gao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Jin Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China; School of Public Health, Guizhou Medical University, Guiyang, China
| | - Chunren Tian
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Fei Lin
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Dongxu Song
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China; Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Luoxiong Zhou
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China; School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jian Peng
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China; Translational Medicine Research Center, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
37
|
Lombardo GP, Miller A, Aragona M, Messina E, Fumia A, Kuciel M, Alesci A, Pergolizzi S, Lauriano ER. Immunohistochemical Characterization of Langerhans Cells in the Skin of Three Amphibian Species. BIOLOGY 2024; 13:210. [PMID: 38666822 PMCID: PMC11048468 DOI: 10.3390/biology13040210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
The amphibian taxon includes three orders that present different morphological characteristics: Anura, Caudata, and Apoda. Their skin has a crucial role: it acts as an immune organ constituting a physical, chemical, immunological, and microbiological barrier to pathogen insult and conducts essential physiological processes. Amphibians have developed specialized features to protect the vulnerable skin barrier, including a glandular network beneath the skin surface that can produce antimicrobial and toxic substances, thus contributing to the defense against pathogens and predators. This study aims to characterize Langerhans cells in the skin of Lithobates catesbeianus (order: Anura; Shaw, 1802), Amphiuma means (order: Caudata; Garden, 1821), and Typhlonectes natans (order: Apoda; Fischer, 1880) with the following antibodies: Langerin/CD207 (c-type lectin), Major Histocompatibility Complex (MHC)II, and Toll-like receptor (TLR)2 (expressed by different types of DCs). Our results showed Langerhans cells positive for Langerin CD/207 in the epidermis of the three species; moreover, some antigen-presenting cells (APCs) in the connective tissue expressed TLR2 and MHCII. The distribution of the Langerhans cells is very similar in the three amphibians examined, despite their different habitats. A greater knowledge of the amphibian immune system could be useful to better understand the phylogeny of vertebrates and to safeguard amphibians from population declines. Furthermore, the similarities between amphibians' and human skin concerning immunological features may be useful in both biology and translational medicine.
Collapse
Affiliation(s)
- Giorgia Pia Lombardo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| | - Anthea Miller
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy;
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy;
| | - Emmanuele Messina
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy;
| | - Michał Kuciel
- Poison Information Centre, Department of Toxicology and Environmental Disease, Faculty of Medicine, Jagellonian University, Kopernika 15, 30-501 Krakòw, Poland;
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| |
Collapse
|
38
|
Vieira APGC, de Souza AN, Lima WG, Brito JCM, Simião DC, Gonçalves LVR, Cordeiro LPB, de Oliveira Scoaris D, Fernandes SOA, Resende JM, Bechinger B, Verly RM, de Lima ME. The Synthetic Peptide LyeTx I mn∆K, Derived from Lycosa erythrognatha Spider Toxin, Is Active against Methicillin-Resistant Staphylococcus aureus (MRSA) In Vitro and In Vivo. Antibiotics (Basel) 2024; 13:248. [PMID: 38534683 PMCID: PMC10967519 DOI: 10.3390/antibiotics13030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
The urgent global health challenge posed by methicillin-resistant Staphylococcus aureus (MRSA) infections demands effective solutions. Antimicrobial peptides (AMPs) represent promising tools of research of new antibacterial agents and LyeTx I mn∆K, a short synthetic peptide based on the Lycosa erythrognatha spider venom, is a good representative. This study focused on analyzing the antimicrobial activities of LyeTx I mn∆K, including minimum inhibitory and bactericidal concentrations, synergy and resensitization assays, lysis activity, the effect on biofilm, and the bacterial death curve in MRSA. Additionally, its characterization was conducted through isothermal titration calorimetry, dynamic light scattering, calcein release, and finally, efficacy in a mice wound model. The peptide demonstrates remarkable efficacy against planktonic cells (MIC 8-16 µM) and biofilms (>30% of inhibition) of MRSA, and outperforms vancomycin in terms of rapid bactericidal action and anti-biofilm effects. The mechanism involves significant membrane damage. Interactions with bacterial model membranes, including those with lysylphosphatidylglycerol (LysylPOPG) modifications, highlight the versatility and selectivity of this compound. Also, the peptide has the ability to sensitize resistant bacteria to conventional antibiotics, showing potential for combinatory therapy. Furthermore, using an in vivo model, this study showed that a formulated gel containing the peptide proved superior to vancomycin in treating MRSA-induced wounds in mice. Together, the results highlight LyeTx I mnΔK as a promising prototype for the development of effective therapeutic strategies against superficial MRSA infections.
Collapse
Affiliation(s)
- Ana Paula Gonçalves Coelho Vieira
- Faculdade de Saúde Santa Casa de Belo Horizonte, Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Belo Horizonte 30150-240, Brazil; (A.P.G.C.V.); (W.G.L.); (L.V.R.G.)
| | - Amanda Neves de Souza
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)—Campus JK, Diamantina 39100-000, Brazil;
- Institut de Chimie, Centre National de la Recherche Scientifique, UMR7177, Université de Strasbourg, 67070 Strasbourg, France;
| | - William Gustavo Lima
- Faculdade de Saúde Santa Casa de Belo Horizonte, Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Belo Horizonte 30150-240, Brazil; (A.P.G.C.V.); (W.G.L.); (L.V.R.G.)
| | | | - Daniela Carolina Simião
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia—Campus Pampulha, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (D.C.S.); (S.O.A.F.)
| | - Lucas Vinícius Ribeiro Gonçalves
- Faculdade de Saúde Santa Casa de Belo Horizonte, Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Belo Horizonte 30150-240, Brazil; (A.P.G.C.V.); (W.G.L.); (L.V.R.G.)
| | - Lídia Pereira Barbosa Cordeiro
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.P.B.C.); (J.M.R.)
| | | | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia—Campus Pampulha, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (D.C.S.); (S.O.A.F.)
| | - Jarbas Magalhães Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.P.B.C.); (J.M.R.)
| | - Burkhard Bechinger
- Institut de Chimie, Centre National de la Recherche Scientifique, UMR7177, Université de Strasbourg, 67070 Strasbourg, France;
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Rodrigo Moreira Verly
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)—Campus JK, Diamantina 39100-000, Brazil;
| | - Maria Elena de Lima
- Faculdade de Saúde Santa Casa de Belo Horizonte, Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Belo Horizonte 30150-240, Brazil; (A.P.G.C.V.); (W.G.L.); (L.V.R.G.)
| |
Collapse
|
39
|
Cai Y, Wang X, Zhang T, Yan A, Luo L, Li C, Tian G, Wu Z, Wang X, Shen D, Han Y, Zhang Z. Rational Design of a Potent Antimicrobial Peptide Based on the Active Region of a Gecko Cathelicidin. ACS Infect Dis 2024; 10:951-960. [PMID: 38315114 DOI: 10.1021/acsinfecdis.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The emergence of multidrug-resistant (MDR) bacteria presents a significant challenge to public health, increasing the risk of infections that are resistant to current antibiotic treatment. Antimicrobial peptides (AMPs) offer a promising alternative to conventional antibiotics in the prevention of MDR bacterial infections. In the present study, we identified a novel cathelicidin AMP from Gekko japonicus, which exhibited broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with minimal inhibitory concentrations ranging from 2.34 to 4.69 μg/mL. To improve its potential therapeutic application, a series of peptides was synthesized based on the active region of the gecko-derived cathelicidin. The lead peptide (RH-16) showed an antimicrobial activity comparable to that of the parent peptide. Structural characterization revealed that RH-16 adopted an amphipathic α-helical conformation. Furthermore, RH-16 demonstrated neither hemolytic nor cytotoxic activity but effectively killed a wide range of clinically isolated, drug-resistant bacteria. The antimicrobial activity of RH-16 was attributed to the nonspecific targeting of bacterial membranes, leading to rapid bacterial membrane permeabilization and rupture. RH-16 also retained its antibacterial activity in plasma and exhibited mild toxicity in vivo. Notably, RH-16 offered robust protection against skin infection in a murine model. Therefore, this newly identified cathelicidin AMP may be a strong candidate for future pharmacological development targeting multidrug resistance. The use of a rational design approach for isolating the minimal antimicrobial unit may accelerate the transition of natural AMPs to clinically applicable antibacterial agents.
Collapse
Affiliation(s)
- Ying Cai
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Xingyu Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Tianyu Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - An Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Lin Luo
- Third Department of Breast Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan 650118, China
| | - Chenxi Li
- Third Department of Breast Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan 650118, China
| | - Gengzhou Tian
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650223, China
| | - Zhongxiang Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Xi Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Dong Shen
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Yajun Han
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhiye Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| |
Collapse
|
40
|
Nazarian-Firouzabadi F, Torres MDT, de la Fuente-Nunez C. Recombinant production of antimicrobial peptides in plants. Biotechnol Adv 2024; 71:108296. [PMID: 38042311 PMCID: PMC11537283 DOI: 10.1016/j.biotechadv.2023.108296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Classical plant breeding methods are limited in their ability to confer disease resistance on plants. However, in recent years, advancements in molecular breeding and biotechnological have provided new approaches to overcome these limitations and protect plants from disease. Antimicrobial peptides (AMPs) constitute promising agents that may be able to protect against infectious agents. Recently, peptides have been recombinantly produced in plants at scale and low cost. Because AMPs are less likely than conventional antimicrobials to elicit resistance of pathogenic bacteria, they open up exciting new avenues for agricultural applications. Here, we review recent advances in the design and production of bioactive recombinant AMPs that can effectively protect crop plants from diseases.
Collapse
Affiliation(s)
- Farhad Nazarian-Firouzabadi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, P.O. Box, 465, Khorramabad, Iran.
| | - Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
41
|
Tiwari K, Patel P, Mondal AH, Mukhopadhyay K. Interaction with lipopolysaccharide is key to efficacy of tryptophan- and arginine-rich α-melanocyte-stimulating hormone analogs against Gram-negative bacteria. Future Microbiol 2024; 19:195-211. [PMID: 38126934 DOI: 10.2217/fmb-2023-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/20/2023] [Indexed: 12/23/2023] Open
Abstract
Aim: In order to search for novel antibacterial therapeutics against Gram-negative bacteria, the antibacterial efficacies and mechanism of action of tryptophan- and arginine-rich α-melanocyte-stimulating hormone analogs were investigated. Materials & methods: We performed a killing assay to determine their efficacy; fluorescence, microscopic studies were used to understand their mechanism and peptide-lipopolysaccharide interaction. A checkerboard assay was used to find the effective combination of peptide and antibiotics. Results: Ana-peptides displayed good killing activity against Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Their strong interaction with lipopolysaccharide damaged the bacterial membranes and led to their subsequent death. Ana-5, the highest cationic and hydrophobic analog, emerged as the most potent peptide, showing synergistic action with rifampicin and erythromycin. Conclusion: Ana-5 can be presented as an important therapeutic candidate against bacterial infections.
Collapse
Affiliation(s)
- Kanchan Tiwari
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priya Patel
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Aftab H Mondal
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
42
|
Jalalifar S, Razavi S, Mirzaei R, Irajian G, Pooshang Bagheri K. A hope for ineffective antibiotics to return to treatment: investigating the anti-biofilm potential of melittin alone and in combination with penicillin and oxacillin against multidrug resistant-MRSA and -VRSA. Front Microbiol 2024; 14:1269392. [PMID: 38370578 PMCID: PMC10870424 DOI: 10.3389/fmicb.2023.1269392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/27/2023] [Indexed: 02/20/2024] Open
Abstract
Background The emergence and rapid spread of multi-drug resistant (MDR) bacterial strains, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant S. aureus (VRSA), have posed a significant challenge to the medical community due to their ability to form biofilm and develop resistance to common antibiotics. Traditional antibiotics that were once effective in treating bacterial infections are now becoming increasingly ineffective, leading to severe consequences for patient outcomes. This concerning situation has called for urgent research to explore alternative treatment strategies. Recent studies have shown that antimicrobial peptides (AMPs) hold promise as effective agents against biofilm-associated drug-resistant infections as well as to enhance the efficacy of conventional antibiotics. Accordingly, we aimed to investigate the antimicrobial and antibiofilm effects of melittin AMP, both alone and in combination with penicillin and oxacillin, against biofilm-forming MDR-MRSA and -VRSA. Methods In this study, we investigated the kinetics of biofilm formation and assessed various parameters related to the antimicrobial and antibiofilm efficacy of melittin and antibiotics, both alone and in combination, against MDR-MRSA and -VRSA. The antimicrobial parameters included the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Fractional Inhibitory Concentration Index (FICi), Fractional Bactericidal Concentration Index (FBCi), and the antibiofilm activity of melittin and antibiotics indicated by the Minimum Biofilm Inhibitory Concentration (MBIC), Minimal Biofilm Eradication Concentration (MBEC), Fractional Biofilm Inhibitory Concentration Index (FBICi), and Fractional Biofilm Eradication Concentration Index (FBECi). Results The MIC results showed that all S. aureus isolates were resistant to penicillin (≥0.25 μg/mL), and 66% of isolates were resistant to oxacillin. The geometric means of the MIC values for penicillin, oxacillin, and melittin were 19.02, 16, and 1.62 μg/ml, respectively, and the geometric means of the MBC values for penicillin, oxacillin, and melittin were 107.63, 49.35, and 5.45 μg/ml, respectively. The study revealed that the combination indexes of melittin-penicillin and melittin-oxacillin, as determined by FIC values against all isolates, were 0.37 and 0.03, respectively. Additionally, melittin-penicillin and melittin-oxacillin exhibited combination indexes based on FBC values against all isolates at 1.145 and 0.711, respectively. Besides, melittin inhibited the biofilm formation of all S. aureus isolates, with MBIC values ranging from 10 to 1.25 μg/mL, and MBEC values ranging from 40 to 10 μg/mL. Generally, the combination indexes of melittin-penicillin and melittin-oxacillin, determined using FBIC values against all isolates, were 0.23 and 0.177, respectively. Moreover, melittin-penicillin and melittin-oxacillin typically had combination indexes based on FBEC values against all isolates at 5 and 2.97, respectively. Conclusion In conclusion, our study provides evidence that melittin is effective against both planktonik and biofilm forms of MRSA and VRSA and exhibits significant synergistic effects when combined with antibiotics. These results suggest that melittin and antibiotics could be a potential candidate for further investigation for in vivo infections caused by MDR S. aureus. Furthermore, melittin has the potential to restore the efficacy of penicillin and oxacillin antibiotics in the treatment of MDR infections. Applying AMPs, like melittin, to revive beta-lactam antibiotics against MRSA and VRSA is an innovative approach against antibiotic-resistant bacteria. Further research is needed to optimize dosage and understand melittin mechanism and interactions with beta-lactam antibiotics for successful clinical applications.
Collapse
Affiliation(s)
- Saba Jalalifar
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab., Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Gholamreza Irajian
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab., Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
43
|
Haddad H, Mejri R, de Araujo AR, Zaïri A. Evaluation of the Antibacterial Activity of New Dermaseptin Derivatives against Acinetobacter baumannii. Pharmaceuticals (Basel) 2024; 17:171. [PMID: 38399385 PMCID: PMC10892451 DOI: 10.3390/ph17020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Nosocomial infections represent one of the biggest health problems nowadays. Acinetobacter baumannii is known as an opportunistic pathogen in humans, affecting people with compromised immune systems, and is becoming increasingly important as a hospital-derived infection. It is known that in recent years, more and more bacteria have become multidrug-resistant (MDR) and, for this reason, the development of new drugs is a priority. However, these products must not affect the human body, and therefore, cytotoxicity studies are mandatory. In this context, antimicrobial peptides with potential antibacterial proprieties could be an alternative. In this research, we describe the synthesis and the bioactivity of dermaseptins and their derivatives against Acinetobacter baumannii. The cytotoxicity of these compounds was investigated on the HEp-2 cell line by MTT cell viability assay. Thereafter, we studied the morphological alterations caused by the action of one of the active peptides on the bacterial membrane using atomic force microscopy (AFM). The cytotoxicity of dermaseptins was concentration-dependent at microgram concentrations. It was observed that all tested analogs exhibited antibacterial activity with Minimum Inhibitory Concentrations (MICs) ranging from 3.125 to 12.5 μg/mL and Minimum Bactericidal Concentrations (MBCs) ranging from 6.25 to 25 μg/mL. Microscopic images obtained by AFM revealed morphological changes on the surface of the treated bacteria caused by K4S4(1-16), as well as significant surface alterations. Overall, these findings demonstrate that dermaseptins might constitute new lead structures for the development of potent antibacterial agents against Acinetobacter baumannii infections.
Collapse
Affiliation(s)
- Houda Haddad
- BIOLIVAL Laboratory, LR14ES06, The Higher Institute of Biotechnology of Monastir ISBM, University of Monastir, Monastir 5000, Tunisia;
- Biochemistry Department, LR18ES47, Faculty of Medicine, University of Sousse, Sousse 4002, Tunisia;
| | - Radhia Mejri
- Biochemistry Department, LR18ES47, Faculty of Medicine, University of Sousse, Sousse 4002, Tunisia;
| | - Alyne Rodrigues de Araujo
- Biodiversity and Biotechnology Research Center, BIOTEC, Federal University of Piauí, Parnaíba 64202-020, PI, Brazil;
| | - Amira Zaïri
- Biochemistry Department, LR18ES47, Faculty of Medicine, University of Sousse, Sousse 4002, Tunisia;
| |
Collapse
|
44
|
Zhang Z, Xu Q, Wang Y, Qu S, Tan J, Tang Y, Li P, Zheng X. Exploiting the synergistic antibacterial activity of shikimic acid and ceftiofur against methicillin-resistant Staphylococcus aureus. World J Microbiol Biotechnol 2024; 40:78. [PMID: 38253730 DOI: 10.1007/s11274-023-03876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024]
Abstract
Efforts to curtail the escalating health threat posed by methicillin-resistant Staphylococcus aureus (MRSA), a formidable superbug, necessitate the development of innovative treatment strategies. Leveraging potential compounds from natural sources in tandem with antibiotics has emerged as a promising approach against MRSA. These strategies should enhance the antibiotic efficacy, reduce dosage and toxicity, and bypass MRSA resistance. In this study, we used a checkerboard assay to illustrate the significant synergistic anti-MRSA effect of shikimic acid (SA), a naturally occurring compound, and ceftiofur (CF). Time-kill curves further revealed that a combination of 1/4 of the minimum inhibitory concentration (MIC) of SA and 1/8 MIC of the sodium CF eradicated MRSA within 2 h, with no noticeable toxicity observed with these concentrations. In vivo experiments confirmed that this combination therapy demonstrated robust antimicrobial activity against MRSA-induced bacteremia in mice, significantly reducing bacterial loads in the kidneys, liver, and spleen, attenuating inflammatory cell infiltration, and alleviating pathological damage. This study not only offers a compelling strategy, capitalizing on the synergistic potential of SA and CF, to rapidly address antibiotic resistance but also contributes significantly to the refinement of antimicrobial therapeutic strategies.
Collapse
Affiliation(s)
- Zhuohui Zhang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Qianqian Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Shiyin Qu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Junjie Tan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Yulong Tang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Pishun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China.
| | - Xiaofeng Zheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
45
|
Lu H, Chai J, Xu Z, Wu J, He S, Liao H, Huang P, Huang X, Chen X, Jiang H, Qu S, Xu X. Cath-KP, a novel peptide derived from frog skin, prevents oxidative stress damage in a Parkinson's disease model. Zool Res 2024; 45:108-124. [PMID: 38114437 PMCID: PMC10839659 DOI: 10.24272/j.issn.2095-8137.2023.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/11/2023] [Indexed: 12/21/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition that results in dyskinesia, with oxidative stress playing a pivotal role in its progression. Antioxidant peptides may thus present therapeutic potential for PD. In this study, a novel cathelicidin peptide (Cath-KP; GCSGRFCNLFNNRRPGRLTLIHRPGGDKRTSTGLIYV) was identified from the skin of the Asiatic painted frog ( Kaloula pulchra). Structural analysis using circular dichroism and homology modeling revealed a unique αββ conformation for Cath-KP. In vitro experiments, including free radical scavenging and ferric-reducing antioxidant analyses, confirmed its antioxidant properties. Using the 1-methyl-4-phenylpyridinium ion (MPP +)-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, Cath-KP was found to penetrate cells and reach deep brain tissues, resulting in improved MPP +-induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1 (Sirt1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation. Both focal adhesion kinase (FAK) and p38 were also identified as regulatory elements. In the MPTP-induced PD mice, Cath-KP administration increased the number of tyrosine hydroxylase (TH)-positive neurons, restored TH content, and ameliorated dyskinesia. To the best of our knowledge, this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress. These findings expand the known functions of cathelicidins, and hold promise for the development of therapeutic agents for PD.
Collapse
Affiliation(s)
- Huanpeng Lu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zijian Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Songzhe He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hang Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Peng Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xi Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Haishan Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shaogang Qu
- Department of Neurology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341001, China
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China. E-mail:
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China. E-mail:
| |
Collapse
|
46
|
Lima WG, Brito JCM, Verly RM, de Lima ME. Jelleine, a Family of Peptides Isolated from the Royal Jelly of the Honey Bees ( Apis mellifera), as a Promising Prototype for New Medicines: A Narrative Review. Toxins (Basel) 2024; 16:24. [PMID: 38251241 PMCID: PMC10819630 DOI: 10.3390/toxins16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
The jelleine family is a group of four peptides (jelleines I-IV) originally isolated from the royal jelly of honey bee (Apis mellifera), but later detected in some honey samples. These oligopeptides are composed of 8-9 amino acid residues, positively charged (+2 to +3 at pH 7.2), including 38-50% of hydrophobic residues and a carboxamide C-terminus. Jelleines, generated by processing of the C-terminal region of major royal jelly proteins 1 (MRJP-1), play an important biological role in royal jelly conservation as well as in protecting bee larvae from potential pathogens. Therefore, these molecules present numerous benefits for human health, including therapeutic purposes as shown in preclinical studies. In this review, we aimed to evaluate the biological effects of jelleines in addition to characterising their toxicities and stabilities. Jelleines I-III have promising antimicrobial activity and low toxicity (LD50 > 1000 mg/Kg). However, jelleine-IV has not shown relevant biological potential. Jelleine-I, but not the other analogues, also has antiparasitic, healing, and pro-coagulant activities in addition to indirectly modulating tumor cell growth and controlling the inflammatory process. Although it is sensitive to hydrolysis by proteases, the addition of halogens increases the chemical stability of these molecules. Thus, these results suggest that jelleines, especially jelleine-I, are a potential target for the development of new, effective and safe therapeutic molecules for clinical use.
Collapse
Affiliation(s)
- William Gustavo Lima
- Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Faculdade de Saúde da Santa Casa de Belo Horizonte, Avenida dos Andradas, 2688, Santa Efigênia, Belo Horizonte 30110-005, MG, Brazil;
| | - Julio Cesar Moreira Brito
- Fundação Ezequiel Dias (FUNED), Rua Conde Pereira Carneiro, 8, Gameleira, Belo Horizonte 30510-010, MG, Brazil;
| | - Rodrigo Moreira Verly
- Departamento de Química, Faculdade de Ciências Exatas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rodovia MGT 367, 5000, Auto da Jacuba, Diamantina 39100-000, MG, Brazil;
| | - Maria Elena de Lima
- Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Faculdade de Saúde da Santa Casa de Belo Horizonte, Avenida dos Andradas, 2688, Santa Efigênia, Belo Horizonte 30110-005, MG, Brazil;
| |
Collapse
|
47
|
Grover P, Thakur K, Bhardwaj M, Mehta L, Raina SN, Rajpal VR. Phytotherapeutics in Cancer: From Potential Drug Candidates to Clinical Translation. Curr Top Med Chem 2024; 24:1050-1074. [PMID: 38279745 DOI: 10.2174/0115680266282518231231075311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024]
Abstract
Annually, a significant number of individuals succumb to cancer, an anomalous cellular condition characterized by uncontrolled cellular proliferation and the emergence of highly perilous tumors. Identifying underlying molecular mechanism(s) driving disease progression has led to various inventive therapeutic approaches, many of which are presently under pre-clinical and/or clinical trials. Over the recent years, numerous alternative strategies for addressing cancer have also been proposed and put into practice. This article delineates the modern therapeutic drugs employed in cancer treatment and their associated toxicity. Due to inherent drug toxicity associated with most modern treatments, demand rises for alternative therapies and phytochemicals with minimal side effects and proven efficacy against cancer. Analogs of taxol, Vinca alkaloids like vincristine and vinblastine, and podophyllotoxin represent a few illustrative examples in this context. The phytochemicals often work by modifying the activity of molecular pathways that are thought to be involved in the onset and progression of cancer. The principal objective of this study is to provide an overview of our current understanding regarding the pharmacologic effects and molecular targets of the active compounds found in natural products for cancer treatment and collate information about the recent advancements in this realm. The authors' interest in advancing the field of phytochemical research stems from both the potential of these compounds for use as drugs as well as their scientific validity. Accordingly, the significance of herbal formulations is underscored, shedding light on anticancer phytochemicals that are sought after at both pre-clinical and clinical levels, with discussion on the opportunities and challenges in pre-clinical and clinical cancer studies.
Collapse
Affiliation(s)
- Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | | | - Monika Bhardwaj
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, 180001, India
| | - Lovekesh Mehta
- Amity Institute of Pharmacy, Amity University, Noida, 201301, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, Noida, 201301, India
| | - Vijay Rani Rajpal
- Department of Botany, Hansraj College, Delhi University, Delhi, 110007, India
| |
Collapse
|
48
|
Zhang Z, Chen Y, Gao J, Yang M, Zhang D, Wang L, Zhang T, Cao Q, Mwangi J, He C, Li Y, Liu X, Jiang X, Kamau PM, Lai R. Orientational Nanoconjugation with Gold Endows Marked Antimicrobial Potential and Drugability of Ultrashort Dipeptides. NANO LETTERS 2023; 23:11874-11883. [PMID: 38097378 PMCID: PMC10755742 DOI: 10.1021/acs.nanolett.3c03909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Antibiotic resistance is a global threat. Antimicrobial peptides (AMPs) are highly desirable to treat multidrug-resistant pathogen infection. However, few AMPs are clinically available, due to high cost, instability, and poor selectivity. Here, ultrashort AMPs (2-3 residues with an N-terminal cysteine) are designed and assembled as gold nanoparticles. Au-S conjugation and ultrashort size restrict nonspecific reactions and peptide orientation, thus concentrating positively charged residues on the surface. The nanostructured assemblies enormously enhance antimicrobial abilities by 1000-6000-fold and stability. One representative (Au-Cys-Arg-NH2, Au_CR) shows selective antibacterial activity against Staphylococcus aureus with 10 nM minimal inhibitory concentration. Au_CR has comparable or better in vivo antimicrobial potency than vancomycin and methicillin, with low propensity to induce resistance, little side effects, and high stability (17.5 h plasma half-life). Au_CR acts by inducing collapse of membrane potential and rupture of the bacterial membrane. The report provides insights for developing AMP-metal nanohybrids, particularly tethering nonspecific reactions and AMP orientation on the metal surface.
Collapse
Affiliation(s)
- Zhiye Zhang
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yaoyao Chen
- Department
of Zoology, College of Life Sciences, Nanjing
Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jinai Gao
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School
of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
| | - Min Yang
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming
College of Life Science, University of Chinese
Academy of Sciences, Kunming 650204, Yunnan, China
| | - Dengdeng Zhang
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Department
of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Le Wang
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Tianyu Zhang
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine
(HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Qiqi Cao
- Department
of Zoology, College of Life Sciences, Nanjing
Agricultural University, Nanjing 210095, Jiangsu, China
| | - James Mwangi
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming
College of Life Science, University of Chinese
Academy of Sciences, Kunming 650204, Yunnan, China
| | - Chenglu He
- Department
of Clinical Laboratory, First Affiliated
Hospital of Kunming Medical College, Kunming 650032, Yunnan, China
| | - Ya Li
- Department
of Clinical Laboratory, First Affiliated
Hospital of Kunming Medical College, Kunming 650032, Yunnan, China
| | - Xiangsheng Liu
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine
(HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Xingyu Jiang
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Peter Muiruri Kamau
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming
College of Life Science, University of Chinese
Academy of Sciences, Kunming 650204, Yunnan, China
| | - Ren Lai
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School
of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
49
|
Zhao Q, Yang N, Gu X, Li Y, Teng D, Hao Y, Lu H, Mao R, Wang J. High-Yield Preparation of American Oyster Defensin (AOD) via a Small and Acidic Fusion Tag and Its Functional Characterization. Mar Drugs 2023; 22:8. [PMID: 38276646 PMCID: PMC10821286 DOI: 10.3390/md22010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The marine peptide, American oyster defensin (AOD), is derived from Crassostrea virginica and exhibits a potent bactericidal effect. However, recombinant preparation has not been achieved due to the high charge and hydrophobicity. Although the traditional fusion tags such as Trx and SUMO shield the effects of target peptides on the host, their large molecular weight (12-20 kDa) leads to the yields lower than 20% of the fusion protein. In this study, a short and acidic fusion tag was employed with a compact structure of only 1 kDa. Following 72 h of induction in a 5 L fermenter, the supernatant exhibited a total protein concentration of 587 mg/L. The recombinant AOD was subsequently purified through affinity chromatography and enterokinase cleavage, resulting in the final yield of 216 mg/L and a purity exceeding 93%. The minimum inhibitory concentrations (MICs) of AOD against Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus galactis ranged from 4 to 8 μg/mL. Moreover, time-killing curves indicated that AOD achieved a bactericidal rate of 99.9% against the clinical strain S. epidermidis G-81 within 0.5 h at concentrations of 2× and 4× MIC. Additionally, the activity of AOD was unchanged after treatment with artificial gastric fluid and intestinal fluid for 4 h. Biocompatibility testing demonstrated that AOD, at a concentration of 128 μg/mL, exhibited a hemolysis rate of less than 0.5% and a cell survival rate of over 83%. Furthermore, AOD's in vivo therapeutic efficacy against mouse subcutaneous abscess revealed its capability to restrain bacterial proliferation and reduce bacterial load, surpassing that of antibiotic lincomycin. These findings indicate AOD's potential for clinical usage.
Collapse
Affiliation(s)
- Qingyi Zhao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xinxi Gu
- Enzyme Engineering Laboratory, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yuanyuan Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Haiqiang Lu
- Enzyme Engineering Laboratory, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
50
|
da Silva Gebara R, da Silva MS, Calixto SD, Simão TLBV, Zeraik AE, Lassounskaia E, Muzitano MF, Petretski JH, Gomes VM, de Oliveira Carvalho A. Antifungal, Antimycobacterial, Protease and α‒Amylase Inhibitory Activities of a Novel Serine Bifunctional Protease Inhibitor from Adenanthera pavonina L. Seeds. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10194-z. [PMID: 38117407 DOI: 10.1007/s12602-023-10194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Antifungal resistance poses a significant challenge to disease management, necessitating the development of novel drugs. Antimicrobial peptides offer potential solutions. This study focused on extraction and characterization of peptides from Adenanthera pavonina seeds with activity against Candida species, Mycobacterium tuberculosis, proteases, and α-amylases. Peptides were extracted in phosphate buffer and heated at 90°C for 10 min to create a peptide rich heated fraction (PRHF). After confirming antimicrobial activity and the presence of peptides, the PRHF underwent ion exchange chromatography, yielding retained and non-retained fractions. These fractions were evaluated for antimicrobial activity and cytotoxicity against murine macrophages. The least toxic and most active fraction underwent reversed-phase chromatography, resulting in ten fractions. These fractions were tested for peptides and antimicrobial activity. The most active fraction was rechromatographed on a reversed-phase column, resulting in two fractions that were assessed for antimicrobial activity. The most active fraction revealed a single band of approximately 6 kDa and was tested for inhibitory effects on proteases and α-amylases. Thermal stability experiments were conducted on the 6 kDa peptide at different temperatures followed by reassessment of antifungal activity and circular dichroism. The 6 kDa peptide inhibited yeasts, M. tuberculosis, human salivary and Tenebrio molitor larvae intestine α-amylases, and proteolytic activity from fungal extracts, and thus named ApPI. Remarkably, ApPI retained antifungal activity and conformation after heating and is primarily composed of α-helices. ApPI is a thermally stable serine protease/α-amylase inhibitor from A. pavonina seeds, offering promise as a foundational molecule for innovative therapeutic agents against fungal infections and tuberculosis.
Collapse
Affiliation(s)
- Rodrigo da Silva Gebara
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Marciele Souza da Silva
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Sanderson Dias Calixto
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Thatiana Lopes Biá Ventura Simão
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Ana Eliza Zeraik
- Laboratório de Química e Função de Proteinas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Elena Lassounskaia
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Michelle Frazão Muzitano
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Macaé, 27933-378, RJ, Brazil
| | - Jorge Hudson Petretski
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil.
| |
Collapse
|