1
|
Gudžinskaitė I, Laužikė K, Pukalskas A, Samuolienė G. The Effect of Light Intensity during Cultivation and Postharvest Storage on Mustard and Kale Microgreen Quality. Antioxidants (Basel) 2024; 13:1075. [PMID: 39334734 PMCID: PMC11428605 DOI: 10.3390/antiox13091075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/30/2024] Open
Abstract
Microgreens are vegetable greens that are harvested early while they are still immature and have just developed cotyledons. One of the disadvantages and a challenge in production is that they exhibit a short shelf life and may be damaged easily. In seeking to prolong the shelf life, some pre- and postharvest interventions have been investigated. Here, kale and mustard microgreens were grown in a controlled-environment walk-in chamber at +21/17 °C, with ~65% relative air humidity, while maintaining the spectral composition of deep red 61%, blue 20%, white 15%, and far red 4% (150, 200, and 250 µmol m-2 s-1 photosynthetic photon flux density (PPFD)). Both microgreens seemed to exhibit specific and species-dependent responses. Higher PPFD during growth and storage in light conditions resulted in increased contents of TPC in both microgreens on D5. Additionally, 150 and 250 PPFD irradiation affected the α-tocopherol content by increasing it during postharvest storage in kale. On D0 150 for kale and 200 PPFD for mustard microgreens, β-carotene content increased. D5 for kale showed insignificant differences, while mustard responded with the highest β-carotene content, under 150 PPFD. Our findings suggest that both microgreens show beneficial outcomes when stored in light compared to dark and that mild photostress is a promising tool for nutritional value improvement and shelf-life prolongation.
Collapse
Affiliation(s)
- Ieva Gudžinskaitė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, LT-54333 Babtai, Lithuania
| | - Kristina Laužikė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, LT-54333 Babtai, Lithuania
| | - Audrius Pukalskas
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, LT-54333 Babtai, Lithuania
| | - Giedrė Samuolienė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, LT-54333 Babtai, Lithuania
| |
Collapse
|
2
|
Hammock HA, Kopsell DA, Sams CE. Application timing and duration of LED and HPS supplements differentially influence yield, nutrient bioaccumulation, and light use efficiency of greenhouse basil across seasons. FRONTIERS IN PLANT SCIENCE 2023; 14:1174823. [PMID: 38023892 PMCID: PMC10644351 DOI: 10.3389/fpls.2023.1174823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Three primary factors that impact plant growth and development are light quantity, quality, and duration. Commercial growers can manipulate these parameters using light-emitting diodes (LEDs) to optimize biomass yield and plant quality. There is significant potential to synergize supplemental lighting (SL) parameters with seasonal variation of ambient sunlight to optimize crop light use efficiency (LUE), which could increase biomass while reducing SL electricity costs. To determine the best lighting characteristics and durations for different crops, particularly for enhancing the yield and nutritional quality of high-value specialty crops produced in greenhouses during the winter, a thorough efficacy comparison of progressive incremental daily light integrals (DLIs) using LED and high-pressure sodium (HPS) sources is required. The purpose of this study was to compare the effects of differential application timing and DLIs of supplemental blue (B)/red (R) narrowband wavelengths from LED lighting systems and HPS lamps on greenhouse hydroponic basil (Ocimum basilicum var. 'Genovese') production. We assessed edible biomass, nutrient bioaccumulation, and LUE. Nine light treatments included: one non-supplemented natural light (NL) control, two end-of-day (EOD) HPS treatments applied for 6 h and 12 h, five EOD 20B/80R LED treatments applied for 3 h, 6 h, 9 h, 12 h, 18 h, and one continuous LED treatment (24 h). Each SL treatment provided 100 µmol·m-2·s-1. The DLI of the NL control averaged 9.9 mol·m-2·d-1 during the growth period (ranging from 4 to 20 mol·m-2·d-1). SL treatments and growing seasons significantly impacted biomass and nutrient bioaccumulation; some SL treatments had lower yields than the non-supplemented NL control. January growing season produced the lowest fresh mass (FM) and dry mass (DM) values compared to November, which had the highest. Mineral analyses revealed that both growing seasons and lighting types impacted macro and micronutrient accumulation. Additionally, the efficiency of each treatment in converting electrical energy into biomass varied greatly. EOD supplements using LED and HPS lighting systems both have merits for efficiently optimizing yield and nutrient accumulation in basil; however, biomass and nutrient tissue concentrations highly depend on seasonal variation in ambient sunlight in conjunction with a supplement's spectral quality, DLI, and application schedule.
Collapse
Affiliation(s)
| | | | - Carl E. Sams
- Department of Plant Sciences, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
3
|
Di Gioia F, Hong JC, Pisani C, Petropoulos SA, Bai J, Rosskopf EN. Yield performance, mineral profile, and nitrate content in a selection of seventeen microgreen species. FRONTIERS IN PLANT SCIENCE 2023; 14:1220691. [PMID: 37546245 PMCID: PMC10399459 DOI: 10.3389/fpls.2023.1220691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023]
Abstract
Introduction Originally regarded as garnish greens, microgreens are increasingly valued for their nutritional profile, including their mineral content. Methods A study was conducted under controlled environmental conditions utilizing a selection of seventeen microgreen species belonging to seven different botanical families to investigate the genetic variation of macro- and micro-minerals and nitrate (NO3 -) content. Plants were grown in a soilless system using a natural fiber mat as the substrate. After germination, microgreens were fertigated with a modified half-strength Hoagland solution prepared using deionized water and without adding microelements. At harvest (10 to 19 days after sowing, based on the species), yield components were measured and dry tissue samples were analyzed for the concentration of total nitrogen (N), NO3 -, P, K, Ca, Mg, S, Na, Fe, Zn, Mn, Cu, and B. Results and discussion Genotypic variations were observed for all of the examined parameters. Nitrogen and K were the principal macronutrients accounting for 38.4% and 33.8% of the total macro-minerals concentration, respectively, followed in order by Ca, P, S, and Mg. Except for sunflower (Helianthus annuus L.), all the tested species accumulated high (1,000-2,500 mg kg-1 FW) or very high (>2,500 mg kg-1 FW) NO3 - levels. Eight of the studied species had a K concentration above 300 mg 100 g-1 FW and could be considered as a good dietary source of K. On the other hand, scallion (Allium fistulosum L.), red cabbage (Brassica oleracea L. var. capitata), amaranth (Amaranthus tricolor L.), and Genovese basil (Ocinum basilicum L.) microgreens were a good source of Ca. Among micro-minerals, the most abundant was Fe followed by Zn, Mn, B, and Cu. Sunflower, scallion, and shiso (Perilla frutescens (L.) Britton) were a good source of Cu. Moreover, sunflower was a good source of Zn, whereas none of the other species examined could be considered a good source of Fe and Zn, suggesting that supplementary fertilization may be required to biofortify microgreens with essential microminerals. In conclusion, the tested microgreens can be a good source of minerals showing a high potential to address different dietary needs; however, their yield potential and mineral profile are largely determined by the genotype.
Collapse
Affiliation(s)
- Francesco Di Gioia
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | - Jason C. Hong
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | - Cristina Pisani
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Horticultural Research Laboratory, Fort Pierce, FL, United States
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Southeastern Fruit and Tree Nut Research Station, Byron, GA, United States
| | - Spyridon A. Petropoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Jihne Bai
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | - Erin N. Rosskopf
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| |
Collapse
|
4
|
Amitrano C, Paglialunga G, Battistelli A, De Micco V, Del Bianco M, Liuzzi G, Moscatello S, Paradiso R, Proietti S, Rouphael Y, De Pascale S. Defining growth requirements of microgreens in space cultivation via biomass production, morpho-anatomical and nutritional traits analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1190945. [PMID: 37538067 PMCID: PMC10394706 DOI: 10.3389/fpls.2023.1190945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023]
Abstract
During long-term manned missions to the Moon or Mars, the integration of astronauts' diet with fresh food rich in functional compounds, like microgreens, could strengthen their physiological defenses against the oxidative stress induced by the exposure to space factors. Therefore, the development of targeted cultivation practices for microgreens in space is mandatory, since the cultivation in small, closed facilities may alter plant anatomy, physiology, and resource utilization with species-specific responses. Here, the combined effect of two vapor pressure deficit levels (VPD: 0.14 and 1.71 kPa) and two light intensities (150 and 300 µmol photons m-2 s-1 PPFD) on two species for microgreen production (Brassica oleracea var. capitata f. sabauda 'Vertus' and Raphanus raphanistrum subsp. sativus 'Saxa'), was tested on biomass production per square meter, morpho-anatomical development, nutritional and nutraceutical properties. Microgreens were grown in fully controlled conditions under air temperature of 18/24°C, on coconut fiber mats, RGB light spectrum and 12 h photoperiod, till they reached the stage of first true leaves. At this stage microgreens were samples, for growth and morpho-anatomical analyses, and to investigate the biochemical composition in terms of ascorbic acid, phenols, anthocyanin, carotenoids, carbohydrates, as well as of anti-nutritional compounds, such as nitrate, sulfate, and phosphate. Major differences in growth were mostly driven by the species with 'Saxa' always presenting the highest fresh and dry weight as well as the highest elongation; however light intensity and VPDs influenced the anatomical development of microgreens, and the accumulation of ascorbic acid, carbohydrates, nitrate, and phosphate. Both 'Saxa' and 'Vertus' at low VPD (LV) and 150 PPFD increased the tissue thickness and synthetized high β-carotene and photosynthetic pigments. Moreover, 'Vertus' LV 150, produced the highest content of ascorbate, fundamental for nutritional properties in space environment. The differences among the treatments and their interaction suggested a relevant difference in resource use efficiency. In the light of the above, microgreens can be considered suitable for cultivation in limited-volume growth modules directly onboard, provided that all the environmental factors are combined and modulated according to the species requirements to enhance their growth and biomass production, and to achieve specific nutritional traits.
Collapse
Affiliation(s)
- Chiara Amitrano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | - Gabriele Paglialunga
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Porano, Terni, Italy
| | - Alberto Battistelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Porano, Terni, Italy
| | - Veronica De Micco
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | | | - Greta Liuzzi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | - Stefano Moscatello
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Porano, Terni, Italy
| | - Roberta Paradiso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | - Simona Proietti
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Porano, Terni, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| |
Collapse
|
5
|
Lanoue J, St. Louis S, Little C, Hao X. Continuous lighting can improve yield and reduce energy costs while increasing or maintaining nutritional contents of microgreens. FRONTIERS IN PLANT SCIENCE 2022; 13:983222. [PMID: 36247650 PMCID: PMC9564221 DOI: 10.3389/fpls.2022.983222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Microgreens represent a fast growing segment of the edible greens industry. They are prized for their colour, texture, and flavour. Compared to their mature counterparts, microgreens have much higher antioxidant and nutrient content categorizing them as a functional food. However, current production practices in plant factories with artificial light are energy intensive. Specifically, the lack of sunlight within the indoor structure means all of the light must be provided via energy consuming light fixtures, which is energy intensive and costly. Plant growth is usually increased with the total amount of light provided to the plants - daily light integral (DLI). Long photoperiods of low intensity lighting (greater than 18h) providing the desired/target DLI can reduce the capital costs for light fixtures and electricity costs. This is achieved by moving the electricity use from peak daytime hours (high price) to off-peak hours (low price) during the night in regions with time-based pricing scheme and lowering the electricity use for air conditioning, if plant growth is not compromised. However, lighting with photoperiods longer than tolerance thresholds (species/cultivar specific) usually leads to plant stress/damage. Therefore, we investigated the effects of continuous 24h white light (CL) at two DLIs (~14 and 21 mol m-2 d-1) on plant growth, yield, and antioxidant content on 4 types of microgreens - amaranth, collard greens, green basil, and purple basil to see if it compromises microgreen production. It was found that amaranth and green basil had larger fresh biomass when grown under CL compared to 16h when the DLIs were the same. In addition, purple basil had higher biomass at higher DLI, but was unaffected by photoperiods. Plants grown under the CL treatments had higher energy-use-efficiencies for lighting (10-42%) than plants grown under the 16h photoperiods at the same DLI. Notably, the electricity cost per unit of fresh biomass ($ g-1) was reduced (8-38%) in all microgreens studied when plants were grown under CL lighting at the same DLIs. Amaranth and collard greens also had higher antioxidant content. Taken together, growing microgreens under CL can reduce electricity costs and increase yield while maintaining or improving nutritional content.
Collapse
Affiliation(s)
| | | | | | - Xiuming Hao
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| |
Collapse
|
6
|
Xia J, Mattson N, Stelick A, Dando R. Sensory Evaluation of Common Ice Plant ( Mesembryanthemum crystallinum L.) in Response to Sodium Chloride Concentration in Hydroponic Nutrient Solution. Foods 2022; 11:2790. [PMID: 36140917 PMCID: PMC9497535 DOI: 10.3390/foods11182790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Common ice plant (Mesembryanthemum crystallinum L.) is a novel edible plant with a succulent and savory flavor. The plants display prominent epidermal bladder cells (EBCs) on the surface of the leaves that store water and sodium chloride (NaCl). The plants have high nutritional value and are adapted to saline soils. Previous research has determined the impact of NaCl on the growth and mineral content of ice plant, but as NaCl has an impact on a food's sensory properties, an interesting question is whether saline growth media can affect the plant's taste and texture, and if this alters consumers' sensory response to ice plant. The objective of this study was to evaluate the sensory aspects of ice plant, as well as consumer liking in response to increasing NaCl concentration in hydroponic nutrient solution. Four-week-old seedlings of ice plant were transplanted into deep water culture (DWC) hydroponic systems and treated with five NaCl concentrations (0 M [control], 0.05 M, 0.10 M, 0.20 M, and 0.40 M NaCl). Eight-week-old plants (after four weeks of NaCl treatment) were harvested, and the middle leaves of each plant were sampled for consumer testing. A total of 115 participants evaluated various flavor, texture, and appearance aspects of ice plant and provided their liking ratings. The consumers were able to discriminate differences in salt intensity from the plants based on NaCl treatment in the hydroponic nutrient solution. Low NaCl concentrations (0.05-0.10 M) did not have obvious adverse effect on consumer liking, which aligns with the result of previous research that 0.05-0.10 M NaCl could largely stimulate the growth of ice plant. NaCl concentrations higher than 0.20 M are not recommended from both a production and consumer perspective. With increased NaCl level in plant samples, the consumers detected more saltiness, sourness, and fishiness, less green flavor, and similar levels of bitterness and sweetness. NaCl treatment had no effects on leaf appearance and texture, and the consumers' overall liking was mainly determined by flavor. Overall, ice plant presents some unique attributes (salty and juicy) compared to other edible salad greens; however, consumer awareness of ice plant is very low, and purchase intent is relatively low as well. Consumers picture ice plant being used mainly in salads and in restaurants.
Collapse
Affiliation(s)
- Jiaqi Xia
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | - Neil Mattson
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | - Alina Stelick
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Robin Dando
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
7
|
Zhang S, Guo X, Li J, Zhang Y, Yang Y, Zheng W, Xue X. Effects of light-emitting diode spectral combinations on growth and quality of pea sprouts under long photoperiod. FRONTIERS IN PLANT SCIENCE 2022; 13:978462. [PMID: 36161035 PMCID: PMC9490185 DOI: 10.3389/fpls.2022.978462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Pea sprouts have rich nutrition and are considered good for heart health. In this study, the kaspa peas and black-eyed peas were chosen to clarify the effect of different LED spectral combinations on the growth, yield, and nutritional quality of pea sprouts under long photoperiod (22 h light/2 h dark). The results showed that the two pea varieties responded differently to light spectral combinations. Black-eyed pea sprouts had higher plant height, fresh weight per plant, dry weight per plant, soluble sugar content, and lower malondialdehyde (MDA) content than kaspa peas under the same light treatment. Compared with white light, red-to-blue ratio of 2:1 significantly increased peroxidase (POD) and superoxide dismutase (SOD) activity, soluble sugar and soluble protein content of kaspa pea sprouts, and decreased MDA content of black-eyed pea sprouts. Blue light was negatively correlated with the plant height of pea sprouts and positively correlated with SOD activity, vitamin C, soluble sugar, and soluble protein content. Antioxidant capacity, yield, and nutritional quality of black-eyed pea sprouts were higher than those of kaspa pea sprouts under the same light treatment. Blue light improved the nutritional quality of pea sprouts. Compared with other light treatments, the red-to-blue ratio of 2:1 was more conducive to improving the antioxidant capacity and nutritional quality of pea sprouts under long photoperiod.
Collapse
Affiliation(s)
- Siqi Zhang
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaolei Guo
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Junyan Li
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yinghua Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Youming Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wengang Zheng
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
| | - Xuzhang Xue
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
| |
Collapse
|
8
|
Manipulation of the Phytochemical Profile of Tenderstem ® Broccoli Florets by Short Duration, Pre-Harvest LED Lighting. Molecules 2022; 27:molecules27103224. [PMID: 35630699 PMCID: PMC9144114 DOI: 10.3390/molecules27103224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Light quality has been reported to influence the phytochemical profile of broccoli sprouts/microgreens; however, few studies have researched the influence on mature broccoli. This is the first study to investigate how exposing a mature glasshouse grown vegetable brassica, Tenderstem® broccoli, to different light wavelengths before harvest influences the phytochemical content. Sixty broccoli plants were grown in a controlled environment glasshouse under ambient light until axial meristems reached >1 cm diameter, whereupon a third were placed under either green/red/far-red LED, blue LED, or remained in the original compartment. Primary and secondary spears were harvested after one and three weeks, respectively. Plant morphology, glucosinolate, carotenoid, tocopherol, and total polyphenol content were determined for each sample. Exposure to green/red/far-red light increased the total polyphenol content by up to 13% and maintained a comparable total glucosinolate content to the control. Blue light increased three of the four indole glucosinolates studied. The effect of light treatments on carotenoid and tocopherol content was inconclusive due to inconsistencies between trials, indicating that they are more sensitive to other environmental factors. These results have shown that by carefully selecting the wavelength, the nutritional content of mature broccoli prior to harvest could be manipulated according to demand.
Collapse
|
9
|
The Inclusion of Green Light in a Red and Blue Light Background Impact the Growth and Functional Quality of Vegetable and Flower Microgreen Species. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Microgreens are edible seedlings of vegetables and flowers species which are currently considered among the five most profitable crops globally. Light-emitting diodes (LEDs) have shown great potential for plant growth, development, and synthesis of health-promoting phytochemicals with a more flexible and feasible spectral manipulation for microgreen production in indoor farms. However, research on LED lighting spectral manipulation specific to microgreen production, has shown high variability in how these edible seedlings behave regarding their light environmental conditions. Hence, developing species-specific LED light recipes for enhancement of growth and valuable functional compounds is fundamental to improve their production system. In this study, various irradiance levels and wavelengths of light spectrum produced by LEDs were investigated for their effect on growth, yield, and nutritional quality in four vegetables (chicory, green mizuna, china rose radish, and alfalfa) and two flowers (french marigold and celosia) of microgreens species. Microgreens were grown in a controlled environment using sole-source light with different photosynthetic photon flux density (110, 220, 340 µmol m−2 s−1) and two different spectra (RB: 65% red, 35% blue; RGB: 47% red, 19% green, 34% blue). At harvest, the lowest level of photosynthetically active photon flux (110 µmol m−2 s−1) reduced growth and decreased the phenolic contents in almost all species. The inclusion of green wavelengths under the highest intensity showed positive effects on phenolic accumulation. Total carotenoid content and antioxidant capacity were in general enhanced by the middle intensity, regardless of spectral combination. Thus, this study indicates that the inclusion of green light at an irradiance level of 340 µmol m−2 s−1 in the RB light environment promotes the growth (dry weight biomass) and the accumulation of bioactive phytochemicals in the majority of the microgreen species tested.
Collapse
|
10
|
Supplemental UV-B Exposure Influences the Biomass and the Content of Bioactive Compounds in Linum usitatissimum L. Sprouts and Microgreens. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interest in the pre-harvest ultraviolet-B (UV-B) exposure of crops in indoor cultivation has grown consistently, though very little is known about its influence on the nutraceutical quality of microgreens. Flaxseeds constitute a valuable oilseed species, mostly appreciated for their nutritional properties and the presence of health-promoting compounds. Therefore, although scarcely studied, flaxseed sprouts and microgreens might constitute a high-quality food product to be included in a healthy diet. This study aims to unravel the effects of pre-harvest ultraviolet-B irradiation on the nutritional and nutraceutical quality of flaxseed sprouts and microgreens grown under artificial conditions. The UV-B irradiation decreased the biomass and stem length of microgreens. However, the content of total phenolics and flavonoids and the antioxidant capacity were strongly enhanced by the UV-B treatment in both sprouts and microgreens. Among photosynthetic pigments, chlorophyll a, violaxanthin, antheraxanthin, and lutein in sprouts were reduced by the treatment, while chlorophyll b increased in microgreens. In conclusion, our results showed that growing flaxseed sprouts and microgreens in controlled conditions with supplemental UV-B exposure might increase their nutritional and nutraceutical quality, as well as their antioxidant capacity, making them high-quality functional foods.
Collapse
|
11
|
Ebert AW. Sprouts and Microgreens-Novel Food Sources for Healthy Diets. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040571. [PMID: 35214902 PMCID: PMC8877763 DOI: 10.3390/plants11040571] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 05/09/2023]
Abstract
With the growing interest of society in healthy eating, the interest in fresh, ready-to-eat, functional food, such as microscale vegetables (sprouted seeds and microgreens), has been on the rise in recent years globally. This review briefly describes the crops commonly used for microscale vegetable production, highlights Brassica vegetables because of their health-promoting secondary metabolites (polyphenols, glucosinolates), and looks at consumer acceptance of sprouts and microgreens. Apart from the main crops used for microscale vegetable production, landraces, wild food plants, and crops' wild relatives often have high phytonutrient density and exciting flavors and tastes, thus providing the scope to widen the range of crops and species used for this purpose. Moreover, the nutritional value and content of phytochemicals often vary with plant growth and development within the same crop. Sprouted seeds and microgreens are often more nutrient-dense than ungerminated seeds or mature vegetables. This review also describes the environmental and priming factors that may impact the nutritional value and content of phytochemicals of microscale vegetables. These factors include the growth environment, growing substrates, imposed environmental stresses, seed priming and biostimulants, biofortification, and the effect of light in controlled environments. This review also touches on microgreen market trends. Due to their short growth cycle, nutrient-dense sprouts and microgreens can be produced with minimal input; without pesticides, they can even be home-grown and harvested as needed, hence having low environmental impacts and a broad acceptance among health-conscious consumers.
Collapse
Affiliation(s)
- Andreas W Ebert
- World Vegetable Center, 60 Yi-Min Liao, Shanhua, Tainan 74151, Taiwan
| |
Collapse
|
12
|
Light Intensity and Photoperiod Affect Growth and Nutritional Quality of Brassica Microgreens. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030883. [PMID: 35164148 PMCID: PMC8839875 DOI: 10.3390/molecules27030883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
Abstract
We explored the effects of different light intensities and photoperiods on the growth, nutritional quality and antioxidant properties of two Brassicaceae microgreens (cabbage Brassica oleracea L. and Chinese kale Brassica alboglabra Bailey). There were two experiments: (1) four photosynthetic photon flux densities (PPFD) of 30, 50, 70 or 90 μmoL·m-2·s-1 with red:blue:green = 1:1:1 light-emitting diodes (LEDs); (2) five photoperiods of 12, 14, 16, 18 or 20 h·d-1. With the increase of light intensity, the hypocotyl length of cabbage and Chinese kale microgreens shortened. PPFD of 90 μmol·m-2·s-1 was beneficial to improve the nutritional quality of cabbage microgreens, which had higher contents of chlorophyll, carotenoids, soluble sugar, soluble protein and vitamin C, as well as increased antioxidant capacity. The optimal PPFD for Chinese kale microgreens was 70 μmol·m-2·s-1. Increasing light intensity could increase the antioxidant capacity of cabbage and Chinese kale microgreens, while not significantly affecting glucosinolate (GS) content. The dry and fresh weight of cabbage and Chinese kale microgreens were maximized with a 14-h·d-1 photoperiod. The chlorophyll, carotenoid and soluble protein content in cabbage and Chinese kale microgreens were highest for a 16-h·d-1 photoperiod. The lowest total GS content was found in cabbage microgreens under a 12-h·d-1 photoperiod and in Chinese kale microgreens under 16-h·d-1 photoperiod. In conclusion, the photoperiod of 14~16 h·d-1, and 90 μmol·m-2·s-1 and 70 μmol·m-2·s-1 PPFD for cabbage and Chinese kale microgreens, respectively, were optimal for cultivation.
Collapse
|
13
|
Artés-Hernández F, Castillejo N, Martínez-Zamora L. UV and Visible Spectrum LED Lighting as Abiotic Elicitors of Bioactive Compounds in Sprouts, Microgreens and Baby Leaves. A Comprehensive Review Including Their Mode of Action. Foods 2022; 11:foods11030265. [PMID: 35159417 PMCID: PMC8834035 DOI: 10.3390/foods11030265] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
According to social demands, the agri-food industry must elaborate convenient safe and healthy foods rich in phytochemicals while minimising processing inputs like energy consumption. Young plants in their first stages of development represent great potential. Objective: This review summarises the latest scientific findings concerning the use of UV and visible spectrum LED lighting as green, sustainable, and low-cost technologies to improve the quality of sprouts, microgreens, and baby leaves to enhance their health-promoting compounds, focusing on their mode of action while reducing costs and energy. Results: These technologies applied during growing and/or after harvesting were able to improve physiological and morphological development of sprouted seeds while increasing their bioactive compound content without compromising safety and other quality attributes. The novelty is to summarise the main findings published in a comprehensive review, including the mode of action, and remarking on the possibility of its postharvest application where the literature is still scarce. Conclusions: Illumination with UV and/or different regions of the visible spectrum during growing and shelf life are good abiotic elicitors of the production of phytochemicals in young plants, mainly through the activation of specific photoreceptors and ROS production. However, we still need to understand the mechanistic responses and their dependence on the illumination conditions.
Collapse
|
14
|
Shibaeva TG, Sherudilo EG, Rubaeva AA, Titov AF. Continuous LED Lighting Enhances Yield and Nutritional Value of Four Genotypes of Brassicaceae Microgreens. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020176. [PMID: 35050064 PMCID: PMC8781578 DOI: 10.3390/plants11020176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 05/04/2023]
Abstract
The effect of continuous lighting (CL, 24 h) and light spectrum on growth and nutritional quality of arugula (Eruca sativa), broccoli (Brassica oleracea var. italic), mizuna (Brassica rapa. var. nipposinica), and radish (Raphanus sativus var. radicula) were investigated in growth chambers under light-emitting diode (LED) and fluorescent lighting. Microgreens were grown under four combinations of two photoperiods (16 h and 24 h) providing daily light integral (DLI) of 15.6 and 23.3 mol m-2 day-1, correspondingly) with two light spectra: LED lamps and fluorescent lamps (FLU). The results show that fresh and dry weights as well as leaf mass per area and robust index of harvested arugula, broccoli, mizuna, and radish seedlings were significantly higher under CL compared to 16 h photoperiod regardless of light quality. There were no visible signs of leaf photodamage. In all CL-treated plants higher chlorophyll a/b and carotenoid-to-chlorophyll ratios were observed in all plants except mizuna. CL treatment was beneficial for anthocyanin, flavonoid, and proline accumulation. Higher activities of antioxidant enzymes (catalase, superoxide dismutase, ascorbate peroxidase, and guaiacol peroxidase) were also observed in CL-treated plants. In most cases, the effects were more pronounced under LED lighting. These results indicate that plants under mild oxidative stress induced by CL accumulated more non-enzymatic antioxidants and increased the activities of antioxidant enzymes. This added nutritional value to microgreens that are used as functional foods providing health benefits. We suggest that for arugula, broccoli, mizuna, and radish, an LED CL production strategy is possible and can have economic and nutritional benefits.
Collapse
|
15
|
LED Illumination for High-Quality High-Yield Crop Growth in Protected Cropping Environments. PLANTS 2021; 10:plants10112470. [PMID: 34834833 PMCID: PMC8621602 DOI: 10.3390/plants10112470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/20/2021] [Accepted: 11/07/2021] [Indexed: 01/02/2023]
Abstract
Vegetables and herbs play a central role in the human diet due to their low fat and calory content and essential antioxidant, phytochemicals, and fiber. It is well known that the manipulation of light wavelengths illuminating the crops can enhance their growth rate and nutrient contents. To date, it has not been easy to generalize the effects of LED illumination because of the differences in the plant species investigated, the measured traits, the way wavelengths have been manipulated, and the plants’ growing environments. In order to address this gap, we undertook a quantitative review of LED manipulation in relation to plant traits, focusing on vegetables and herbs. Here, we use standardized measurements of biomass, antioxidant, and other quantitative characteristics together with the whole range of the photosynthetic photon flux density (PPFD). Overall, our review revealed support for the claims that the red and blue LED illumination is more reliable and efficient than full spectrum illumination and increases the plant’s biomass and nutritional value by enhancing the photosynthetic activity, antioxidant properties, phenolic, and flavonoids contents. Although LED illumination provides an efficient way to improve yield and modify plant properties, this study also highlights the broad range of responses among species, varieties traits, and the age of plant material.
Collapse
|
16
|
Alrifai O, Mats L, Liu R, Hao X, Marcone MF, Tsao R. Effect of combined light-emitting diodes on the accumulation of glucosinolates in Brassica microgreens. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00072-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractAs of recent, microgreen vegetable production in controlled environments are being investigated for their bioactive properties. Phytochemicals like glucosinolates (GLS) are highly sensitive to varying spectral qualities of light, especially in leafy greens of Brassica where the responses are highly species-dependent. The accumulation of bioactive GLS were studied under 8 different treatments of combined amber (590 nm), blue (455 nm), and red (655 nm) light-emitting diodes (rbaLED). A semi-targeted metabolomics approach was carried out to profile common intact-GLS in microgreen extracts of Brassica by means of LC-HRMS/MS. Thirteen GLS were identified, among them were 8 aliphatic, 4 indolic and 1 aromatic GLS. Mass spectrometry data showed sinigrin had the highest average concentration and was highest in B. juncea, progoitrin was highest in B. rapa and glucobrassicin in R. sativus. The individual and total GLS in the microgreens of the present study were largely different under rbaLED; B. rapa microgreens contained the highest profile of total GLS, followed by R. sativus and B. juncea. Sinigrin was increased and gluconasturtiin was decreased under rbaLED lighting in most microgreens, glucoalyssin uniquely increased in R. sativus and decreased in B. rapa and glucobrassicin uniquely decreased in both B. rapa and B. juncea. The present study showed that rbaLED contributed to the altered profiles of GLS resulting in their significant modulation. Optimizing the light spectrum for improved GLS biosynthesis could lead to production of microgreens with targeted health-promoting properties.
Graphical Abstract
Collapse
|
17
|
Almaghrabi O, Almulaiky YQ. The influences of light-emitting diodes (LEDs) on the phenolic content and antioxidant enzymes of basil using a plant factory system. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We used two types of Ocimum basilicum plants and white light-emitting diode (LED) lights as controls (plant factory unit 1, PFU 1). We applied four composite LED light treatments, 125:125:125 white, red, blue (PFU 2), 0.0:250:125 white, red, blue (PFU 3), 125:125:57 white, red, blue (PFU 4) and 125:57:125 white, red, blue (PFU 5) to evaluate light quality effects on antioxidant capacity of O. basilicum plants. The results revealed that the composite lights of PFUs 2,3,4 and 5 were beneficial for the accumulation of flavonoids and glutathione but were not beneficial forthe proanthocyanidin content; the plants subjected to the PFUs 2,3,4 and 5 treatments had a higher laccase activity and proline content and a lower malondialdehyde (MDA) content, polyphenol oxidase activity and peroxidase activity than the control plants.Analysis via high-performance liquid chromatography revealed that protocatechuic acid, gentisic acid, chlorogenic acid, syringic acid, cinnamic acid, quercetin, apigenin, kaempferol, chrysin, p-hydroxybenzoic acid, p-coumaric acid, apigenin-7-glucoside, rutin, rosmarinic acid were the major phenolic components in the O. Basilicum extracts, and sufficient composite lighting of O. basilicum plants significantly enhanced these antioxidant concentrations. Our results indicate that the use of LEDs with different light qualities to irradiate O. basilicum significantly improved the antioxidant capacity which could be a beneficial for nutrition and health benefits.
Collapse
Affiliation(s)
- Omar Almaghrabi
- University of Jeddah, College of Science, Department of Biology, Jeddah, Saudi Arabia
| | - Yaaser Q. Almulaiky
- University of Jeddah, College of Science and Arts at Khulis, Department of Chemistry, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Applied Science, Taiz University, Taiz, Yemen
| |
Collapse
|
18
|
Huang JJ, D’Souza C, Zhou W. Light-Time-Biomass Response Model for Predicting the Growth of Choy Sum ( Brassica rapa var. parachinensis) in Soil-Based LED-Constructed Indoor Plant Factory for Efficient Seedling Production. FRONTIERS IN PLANT SCIENCE 2021; 12:623682. [PMID: 34163494 PMCID: PMC8215676 DOI: 10.3389/fpls.2021.623682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Little is known about how exactly light plays its role in the growth of choy sum (Brassica rapa var. parachinensis), a widely cultivated vegetable in Asia. By applying a commercial soil using black peat as major constituent with 17:10:14 ratio of NPK fertilizer in this study, the growth responses of choy sum seedling to progressively increasing white LED light intensity in an indoor plant factory were investigated, where positive enhancements were observed in choy sum morphology and growth including both dry and fresh mass accumulation under higher light intensity till 400 μmol/(m2⋅s), then a reduction occurred due to light oversaturation and overheat. In indoor plant factory, the inhomogeneous distribution phenomenon of illumination level was inevitably occurred in indoor farm racks generally. For accurately evaluating the productivity of choy sum grown on such racks, a light-time-biomass response model of choy sum seedling grown at the seedling stage was thus established for the first time, which could reliably predict the production outcome of this species in indoor farming practice under various lighting condition and duration. The robustness of the model was further tested by model variation test and sufficient robustness of this model was confirmed. The new insight obtained for the light-dependence of choy sum growth and the light-time-biomass response model can be used to efficiently direct its seedling production in indoor plant factories.
Collapse
Affiliation(s)
- Jim Junhui Huang
- Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Craig D’Souza
- Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Weibiao Zhou
- Environmental Research Institute, National University of Singapore, Singapore, Singapore
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Huang JJ, D'Souza C, Tan MQ, Zhou W. Light Intensity Plays Contrasting Roles in Regulating Metabolite Compositions in Choy Sum ( Brassica rapa var. parachinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5318-5331. [PMID: 33881316 DOI: 10.1021/acs.jafc.1c00155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Light intensity can be an efficient tool in regulating leafy vegetable quality and yet little is known mechanistically hitherto. In this study, choy sum metabolic responses to progressively increasing white light intensity were investigated in terms of its essential metabolites including chlorophylls, carotenoids, phenolic compounds, and glucosinolates. Significant enhancements were observed in choy sum's nutritional quality like the total phenolic content and antioxidant capacity under a high intensity of light. However, progoitrin was significantly increased by up to 7.54-fold under a low light intensity of 50 μmol/(m2·s) compared with high light intensity, presenting a unique virus/pest-prevention strategy of choy sum under poor growth status. Pearson's correlation analysis revealed a linear relationship between the light intensity and some metabolites. Principal component analysis further confirmed such contrasting roles of light intensity. The new knowledge gained about light-influenced choy sum metabolite levels can be critical in directing farmers in indoor farming practice for improving vegetable nutritional values.
Collapse
Affiliation(s)
- Jim Junhui Huang
- Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Republic of Singapore
| | - Craig D'Souza
- Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Republic of Singapore
| | - Magdalene Qiaohui Tan
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Republic of Singapore
| | - Weibiao Zhou
- Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Republic of Singapore
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Republic of Singapore
| |
Collapse
|
20
|
Jia N, Wang J, Wang Y, Ye W, Liu J, Jiang J, Sun J, Yan P, Wang P, Wang F, Fan B. The Light-Induced WD40-Repeat Transcription Factor DcTTG1 Regulates Anthocyanin Biosynthesis in Dendrobium candidum. FRONTIERS IN PLANT SCIENCE 2021; 12:633333. [PMID: 33815441 PMCID: PMC8010245 DOI: 10.3389/fpls.2021.633333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 05/26/2023]
Abstract
Dendrobium candidum is used as a traditional Chinese medicine and as a raw material in functional foods. D. candidum stems are green or red, and red stems are richer in anthocyanins. Light is an important environmental factor that induces anthocyanin accumulation in D. candidum. However, the underlying molecular mechanisms have not been fully unraveled. In this study, we exposed D. candidum seedlings to two different light intensities and found that strong light increased the anthocyanin content and the expression of genes involved in anthocyanin biosynthesis. Through transcriptome profiling and expression analysis, we identified a WD40-repeat transcription factor, DcTTG1, whose expression is induced by light. Yeast one-hybrid assays showed that DcTTG1 binds to the promoters of DcCHS2, DcCHI, DcF3H, and DcF3'H, and a transient GUS activity assay indicated that DcTTG1 can induce their expression. In addition, DcTTG1 complemented the anthocyanin deficiency phenotype of the Arabidopsis thaliana ttg1-13 mutant. Collectively, our results suggest that light promotes anthocyanin accumulation in D. candidum seedlings via the upregulation of DcTTG1, which induces anthocyanin synthesis-related gene expression.
Collapse
Affiliation(s)
- Ning Jia
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment on Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jingjing Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yajuan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment on Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wei Ye
- Institute of Medicinal Plant Sciences, Sanming Academy of Agricultural Sciences, Sanming, China
| | - Jiameng Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment on Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jinlan Jiang
- Institute of Medicinal Plant Sciences, Sanming Academy of Agricultural Sciences, Sanming, China
| | - Jing Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment on Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Peipei Yan
- Institute of Medicinal Plant Sciences, Sanming Academy of Agricultural Sciences, Sanming, China
| | - Peiyu Wang
- Institute of Medicinal Plant Sciences, Sanming Academy of Agricultural Sciences, Sanming, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment on Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment on Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
21
|
Jung WS, Chung IM, Hwang MH, Kim SH, Yu CY, Ghimire BK. Application of Light-Emitting Diodes for Improving the Nutritional Quality and Bioactive Compound Levels of Some Crops and Medicinal Plants. Molecules 2021; 26:1477. [PMID: 33803168 PMCID: PMC7963184 DOI: 10.3390/molecules26051477] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Light is a key factor that affects phytochemical synthesis and accumulation in plants. Due to limitations of the environment or cultivated land, there is an urgent need to develop indoor cultivation systems to obtain higher yields with increased phytochemical concentrations using convenient light sources. Light-emitting diodes (LEDs) have several advantages, including consumption of lesser power, longer half-life, higher efficacy, and wider variation in the spectral wavelength than traditional light sources; therefore, these devices are preferred for in vitro culture and indoor plant growth. Moreover, LED irradiation of seedlings enhances plant biomass, nutrient and secondary metabolite levels, and antioxidant properties. Specifically, red and blue LED irradiation exerts strong effects on photosynthesis, stomatal functioning, phototropism, photomorphogenesis, and photosynthetic pigment levels. Additionally, ex vitro plantlet development and acclimatization can be enhanced by regulating the spectral properties of LEDs. Applying an appropriate LED spectral wavelength significantly increases antioxidant enzyme activity in plants, thereby enhancing the cell defense system and providing protection from oxidative damage. Since different plant species respond differently to lighting in the cultivation environment, it is necessary to evaluate specific wavebands before large-scale LED application for controlled in vitro plant growth. This review focuses on the most recent advances and applications of LEDs for in vitro culture organogenesis. The mechanisms underlying the production of different phytochemicals, including phenolics, flavonoids, carotenoids, anthocyanins, and antioxidant enzymes, have also been discussed.
Collapse
Affiliation(s)
- Woo-Suk Jung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| | - Myeong Ha Hwang
- Interdisciplinary Program in Smart Science, Kangwon National University, Chuncheon 200-701, Korea; (M.H.H.); (C.Y.Y.)
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| | - Chang Yeon Yu
- Interdisciplinary Program in Smart Science, Kangwon National University, Chuncheon 200-701, Korea; (M.H.H.); (C.Y.Y.)
| | - Bimal Kumar Ghimire
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| |
Collapse
|
22
|
Fertilization and Pre-Sowing Seed Soaking Affect Yield and Mineral Nutrients of Ten Microgreen Species. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7020014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microgreens, vegetable or herb seedlings consumed at a young growth stage, are considered to be a functional food with high concentrations of mineral nutrients and healthy beneficial bioactive compounds. The production of microgreens has been increasing in recent years. Vegetable growers are interested in growing microgreens as a new specialty crop due to their high market value, popularity, and short production cycles. However, there is a lack of research-based crop-specific recommendations for cultural practices including fertilization, pre-sowing seed treatments, and their effects on nutritional facts of microgreens. Ten microgreen species were evaluated for their shoot growth and mineral nutrient concentrations as affected by one-time post-emergence fertilization and pre-sowing seed soaking in two repeated experiments, from November 2018 to January 2019, in a greenhouse. The microgreen species varied in fresh and dry shoot weights, shoot height, visual rating, as well as macro- and micro-nutrient concentrations. Fertilization with a general-purpose soluble fertilizer (20-20-20 with micronutrients) at a rate of 100 mg·L−1 nitrogen (N) increased fresh shoot weight, and macro- and micro-nutrient concentrations in one or both experiments, with the exception of decreasing concentrations of calcium (Ca), magnesium (Mg), and manganese (Mn). Seed soaking consistently decreased fresh or dry shoot weight and nutrient concentrations when there was a significant effect.
Collapse
|
23
|
Walters KJ, Lopez RG, Behe BK. Leveraging Controlled-Environment Agriculture to Increase Key Basil Terpenoid and Phenylpropanoid Concentrations: The Effects of Radiation Intensity and CO 2 Concentration on Consumer Preference. FRONTIERS IN PLANT SCIENCE 2021; 11:598519. [PMID: 33597958 PMCID: PMC7883826 DOI: 10.3389/fpls.2020.598519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/05/2020] [Indexed: 05/29/2023]
Abstract
Altering the radiation intensity in controlled environments can influence volatile organic compound (VOC) biosynthetic pathways, including those of terpenoids and phenylpropanoids. In turn, the concentrations of these compounds can have a profound effect on flavor and sensory attributes. Because sweet basil (Ocimum basilicum) is a popular culinary herb, our objectives were to (1) determine the extent radiation intensity and carbon dioxide (CO2) concentration influence seedling terpenoid and phenylpropanoid concentrations; (2) determine if differences in phenylpropanoid and terpenoid concentrations influence consumer preference; and (3) characterize consumer preferences to better inform production and marketing strategies. "Nufar" sweet basil was grown with CO2 concentrations of 500 or 1,000 μmol ⋅ mol-1 under sole-source radiation intensities of 100, 200, 400, or 600 μmol ⋅ m-2 ⋅ s-1 with a 16 h photoperiod to create daily light integrals of 6, 12, 23, and 35 mol ⋅ m-2 ⋅ d-1. After 2 weeks, concentrations of the terpenoids 1,8 cineole and linalool and the phenylpropanoids eugenol and methyl chavicol were quantified, and consumer sensory panel evaluations were conducted to quantify preferences. Overall, increasing radiation intensity from 100 to 600 μmol ⋅ m-2 ⋅ s-1 increased 1,8 cineole, linalool, and eugenol concentrations 2. 4-, 8. 8-, and 3.3-fold, respectively, whereas CO2 concentration did not influence VOCs. Contrary to our hypothesis, increased VOC concentrations were not correlated with consumer preference. However, overall liking was correlated with aftertaste and flavor. The conclusion that consumer preference is dependent on flavor can be drawn. However, increasing VOC concentrations to increase flavor did not improve flavor preference. Many consumer sensory preference characteristics (favorable preference for aftertaste, bitterness/sweetness, color, flavor, overall liking, and texture) were correlated with basil grown under a radiation intensity of 200 μmol ⋅ m-2 ⋅ s-1. This led us to determine that consumers prefer to detect the characteristic basil flavor made up of 1,8 cineole, eugenol, and linalool, which was not as prevalent in basil grown under 100 μmol ⋅ m-2 ⋅ s-1, but too high in basil grown under 400 and 600 μmol ⋅ m-2 ⋅ s-1, which led to lower consumer preference.
Collapse
|
24
|
Effects of Light-Emitting Diodes on the Accumulation of Phenolic Compounds and Glucosinolates in Brassica juncea Sprouts. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae6040077] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent improvements in light-emitting diode (LED) technology afford an excellent opportunity to investigate the relationship between different light sources and plant metabolites. Accordingly, the goal of the present study was to determine the effect of different LED (white, blue, and red) treatments on the contents of glucosinolates (glucoiberin, gluconapin, sinigrin, gluconasturtiin, 4-methoxyglucobrassicin, 4-hydroxyglucobrassicin, glucobrassicin, and neoglucobrassicin) and phenolic compounds (4-hydroxybenzonate, catechin, chlorogenic acid, caffeate, gallate, sinapate, and quercetin) in Brassica juncea sprouts. The sprouts were grown in a growth chamber at 25 °C under irradiation with white, blue, or red LED with a flux rate of 90 μmol·m−2·s−1 and a long-day photoperiod (16 h light/8 h dark cycle). Marked differences in desulfoglucosinolate contents were observed in response to treatment with different LEDs and different treatment durations. In addition, the highest total desulfoglucosinolate content was observed in response to white LED light treatment, followed by treatment with red LED light, and then blue LED light. Among the individual desulfoglucosinolates identified in the sprouts, sinigrin exhibited the highest content, which was observed after three weeks of white LED light treatment. The highest total phenolic contents were recorded after one week of white and blue LED light treatment, whereas blue LED irradiation increased the production of most of the phenolic compounds identified, including 4-hydroxybenzonate, gallate, sinapate, caffeate, quercetin, and chlorogenic acid. The production of phenolics decreased gradually with increasing duration of LED light treatment, whereas anthocyanin accumulation showed a progressive increase during the treatment. These findings indicate that white LED light is appropriate for glucosinolate accumulation, whereas blue LED light is effective in increasing the production of phenolic compounds in B. juncea sprouts.
Collapse
|
25
|
Wojdyło A, Nowicka P, Tkacz K, Turkiewicz IP. Sprouts vs. Microgreens as Novel Functional Foods: Variation of Nutritional and Phytochemical Profiles and Their In Vitro Bioactive Properties. Molecules 2020; 25:molecules25204648. [PMID: 33053861 PMCID: PMC7587365 DOI: 10.3390/molecules25204648] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of the study was to analyze potential health-promoting and nutritional components (polyphenols, L-ascorbic acid, carotenoids, chlorophylls, amino acids, organic acid, sugars, ash and pectins) of selected sprouts (radish, lentil, black medick, broccoli, sunflower, leek, beetroot, mung beans) and microgreens (kale, radish, beetroot, green peas, amaranth). Moreover, antioxidant capacity (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), ferric reducing ability of plasma (FRAP), and oxygen radical absorbance capacity (ORAC)), in vitro anti-diabetic potential (inhibition of α-amylase and α-glucosidase), and anti-obesity (pancreatic lipase) and anti-cholinergic (acetylcholinesterase and butyrylcholinesterase) activity were evaluated. The results of this study show that sprouts are effective in antioxidant capacity as a result of a high content of polyphenols and L-ascorbic acid. Additionally, sprouts are better sources of amino acids, pectins and sugars than microgreens. Microgreens were characterized by high content of carotenoids and chlorophylls, and organic acid, without any sugars, exhibiting higher anti-diabetic and anti-cholinergic activity than sprouts. Some selected sprouts (broccoli, radish, lentil) and microgreens (radish, amaranths, kale) should be used daily as superfoods or functional food.
Collapse
|
26
|
Zafar H, Gul FZ, Mannan A, Zia M. ZnO NPs reveal distinction in toxicity under different spectral lights: An in vitro experiment on Brassica nigra (Linn.) Koch. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Bian Z, Wang Y, Zhang X, Li T, Grundy S, Yang Q, Cheng R. A Review of Environment Effects on Nitrate Accumulation in Leafy Vegetables Grown in Controlled Environments. Foods 2020; 9:E732. [PMID: 32503134 PMCID: PMC7353485 DOI: 10.3390/foods9060732] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Excessive accumulation of nitrates in vegetables is a common issue that poses a potential threat to human health. The absorption, translocation, and assimilation of nitrates in vegetables are tightly regulated by the interaction of internal cues (expression of related genes and enzyme activities) and external environmental factors. In addition to global food security, food nutritional quality is recognized as being of strategic importance by most governments and other agencies. Therefore, the identification and development of sustainable, innovative, and inexpensive approaches for increasing vegetable production and concomitantly reducing nitrate concentration are extremely important. Under controlled environmental conditions, optimal fertilizer/nutrient element management and environmental regulation play vital roles in producing vegetables with low nitrate content. In this review, we present some of the recent findings concerning the effects of environmental factors (e.g., light, temperature, and CO2) and fertilizer/nutrient solution management strategies on nitrate reduction in vegetables grown under controlled environments and discuss the possible molecular mechanisms. We also highlight several perspectives for future research to optimize the yield and nutrition quality of leafy vegetables grown in controlled environments.
Collapse
Affiliation(s)
- Zhonghua Bian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.B.); (T.L.); (Q.Y.)
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK; (Y.W.); (S.G.)
| | - Yu Wang
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK; (Y.W.); (S.G.)
| | - Xiaoyan Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.B.); (T.L.); (Q.Y.)
| | - Steven Grundy
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK; (Y.W.); (S.G.)
| | - Qichang Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.B.); (T.L.); (Q.Y.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Ruifeng Cheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.B.); (T.L.); (Q.Y.)
| |
Collapse
|
28
|
Yield and Quality Characteristics of Brassica Microgreens as Affected by the NH 4:NO 3 Molar Ratio and Strength of the Nutrient Solution. Foods 2020; 9:foods9050677. [PMID: 32466141 PMCID: PMC7278818 DOI: 10.3390/foods9050677] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/02/2023] Open
Abstract
Microgreens are gaining more and more interest, but little information is available on the effects of the chemical composition of the nutrient solution on the microgreen yield. In this study, three Brassica genotypes (B. oleracea var. italica, B. oleracea var. botrytis, and Brassica rapa L. subsp. sylvestris L. Janch. var. esculenta Hort) were fertigated with three modified strength Hoagland nutrient solutions (1/2, 1/4, and 1/8 strength) or with three modified half-strength Hoagland nutrient solutions with three different NH4:NO3 molar ratios (5:95, 15:85, and 25:75). Microgreen yields and content of inorganic ions, dietary fiber, proteins, α-tocopherol, and β-carotene were evaluated. Micro cauliflower showed the highest yield, as well as a higher content of mineral elements and α-tocopherol (10.4 mg 100 g-1 fresh weight (FW)) than other genotypes. The use of nutrient solution at half strength gave both a high yield (0.23 g cm-2) and a desirable seedling height. By changing the NH4:NO3 molar ratio in the nutrient solution, no differences were found on yield and growing parameters, although the highest β-carotene content (6.3 mg 100 g-1 FW) was found by using a NH4:NO3 molar ratio of 25:75. The lowest nitrate content (on average 6.8 g 100 g-1 dry weight) was found in micro broccoli and micro broccoli raab by using a nutrient solution with NH4:NO3 molar ratios of 25:75 and 5:95, respectively. Micro cauliflower fertigated with a NH4:NO3 molar ratio of 25:75 showed the highest dry matter (9.8 g 100 g-1 FW) and protein content (4.2 g 100 g-1 FW).
Collapse
|
29
|
Samuolienė G, Brazaitytė A, Viršilė A, Miliauskienė J, Vaštakaitė-Kairienė V, Duchovskis P. Nutrient Levels in Brassicaceae Microgreens Increase Under Tailored Light-Emitting Diode Spectra. FRONTIERS IN PLANT SCIENCE 2019; 10:1475. [PMID: 31798616 PMCID: PMC6868063 DOI: 10.3389/fpls.2019.01475] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/23/2019] [Indexed: 05/22/2023]
Abstract
To increase the nutritional value and levels of essential minerals in vegetable food, microgreens are promising targets. The metabolic processes of microgreens can be managed with different cultivation techniques, which include manipulating the properties of light derived by light-emitting diodes (LEDs). In this study Brassicaceae microgreens (kohlrabi Brassica oleracea var. gongylodes, broccoli Brassica oleracea, and mizuna Brassica rapa var. Japonica) were cultivated under different light spectral quality, and the metabolic changes insoluble sugars (hexoses and sucrose), ascorbic acid, β-carotene, and contents of non-heme iron (Fe) and its connection with magnesium (Mg) or calcium (Ca) levels were monitored. Plants grew under the primary LED light spectrum (the combination of blue light at 447 nm, red at 638 and 665 nm, and far-red at 731 nm) or supplemented with LED green light at 520 nm, yellow at 595 nm, or orange at 622 nm. The photoperiod was 16 h, and a total PPFD of 300 µmol m-2 s-1 was maintained. Under supplemental yellow light at 595 nm, the content of soluble carbohydrates increased significantly in mizuna and broccoli. Under all supplemental light components, β-carotene accumulated in mizuna, and ascorbic acid accumulated significantly in kohlrabi. Under supplemental orange light at 622 nm, Fe, Mg, and Ca contents increased significantly in all microgreens. The accumulation of Fe was highly dependent on promoters and inhibitors of Fe absorption, as demonstrated by the very strong positive correlations between Fe and Ca and between Fe and Mg in kohlrabi and broccoli, and the strong negative correlations between Fe and β-carotene and between Fe and soluble carbohydrates in kohlrabi. Thus, the metabolic changes that occurred in treated microgreens led to increases in the contents of essential nutrients. Therefore, selected supplemental LED wavelengths can be used in the cultivation of Brassicaceae microgreens to preserve and increase the contents of specific nutritionally valuable metabolites.
Collapse
|
30
|
Lobiuc A, Vasilache V, Pintilie O, Stoleru T, Burducea M, Oroian M, Zamfirache MM. Blue and Red LED Illumination Improves Growth and Bioactive Compounds Contents in Acyanic and Cyanic Ocimum basilicum L. Microgreens. Molecules 2017; 22:molecules22122111. [PMID: 29189746 PMCID: PMC6150032 DOI: 10.3390/molecules22122111] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 11/16/2022] Open
Abstract
Microgreens are an excellent source of health-maintaining compounds, and the accumulation of these compounds in plant tissues may be stimulated by exogenous stimuli. While light quality effects on green basil microgreens are known, the present paper aims at improving the quality of acyanic (green) and cyanic (red) basil microgreens with different ratios of LED blue and red illumination. Growth, assimilatory and anthocyanin pigments, chlorophyll fluorescence, total phenolic, flavonoids, selected phenolic acid contents and antioxidant activity were assessed in microgreens grown for 17 days. Growth of microgreens was enhanced with predominantly blue illumination, larger cotyledon area and higher fresh mass. The same treatment elevated chlorophyll a and anthocyanin pigments contents. Colored light treatments decreased chlorophyll fluorescence ΦPSII values significantly in the green cultivar. Stimulation of phenolic synthesis and free radical scavenging activity were improved by predominantly red light in the green cultivar (up to 1.87 fold) and by predominantly blue light in the red cultivar (up to 1.73 fold). Rosmarinic and gallic acid synthesis was higher (up to 15- and 4-fold, respectively, compared to white treatment) in predominantly blue illumination. Red and blue LED ratios can be tailored to induce superior growth and phenolic contents in both red and green basil microgreens, as a convenient tool for producing higher quality foods.
Collapse
Affiliation(s)
- Andrei Lobiuc
- Faculty of Food Engineering, Stefan Cel Mare University, Universitatii Street 13, 720229 Suceava, Romania.
- CERNESIM Research Center, Alexandru Ioan Cuza University, Carol I Boulevard 20A, 700506 Iasi, Romania.
| | - Viorica Vasilache
- Interdisciplinary Research Department-Field Science, Alexandru Ioan Cuza University, Lascar Catargi 54, 700107 Iasi, Romania.
| | - Olga Pintilie
- Faculty of Chemistry, Alexandru Ioan Cuza University, Carol I Boulevard 20A, 700506 Iasi, Romania.
| | - Toma Stoleru
- Faculty of Biology, Alexandru Ioan Cuza University, Carol I Boulevard 20A, 700506 Iasi, Romania.
| | - Marian Burducea
- Faculty of Biology, Alexandru Ioan Cuza University, Carol I Boulevard 20A, 700506 Iasi, Romania.
| | - Mircea Oroian
- Faculty of Food Engineering, Stefan Cel Mare University, Universitatii Street 13, 720229 Suceava, Romania.
| | | |
Collapse
|
31
|
Vaštakaitė V, Viršilė A, Brazaitytė A, Samuolienė G, Jankauskienė J, Novičkovas A, Duchovskis P. Pulsed Light-Emitting Diodes for a Higher Phytochemical Level in Microgreens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6529-6534. [PMID: 28618783 DOI: 10.1021/acs.jafc.7b01214] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A novel research of pulsed light-emitting diode (LED) lighting versus continuous lighting was conducted by analyzing phytochemical levels in microgreens. Red pak choi (Brassica rapa var. chinensis), mustard (Brassica juncea L.), and tatsoi (Brassica rapa var. rosularis) were grown indoors under HPS lamps supplemented with monochromatic (455, 470, 505, 590, and 627 nm) LEDs [total photosynthetic photon flux density (PPFD) of 200 ± 10 μmol m-2 s-1, for 16 h day-1]. For pulsed light treatments, the frequencies at 2, 32, 256, and 1024 Hz with a duty cycle of 50% monochromatic LEDs were applied. The results were compared to those under the continuous light (0 Hz) condition in terms of total phenolic content, anthocyanins, and antiradical activity (DPPH). The summarized data suggested that pulsed light affected accumulation of secondary metabolites both positive and negative in microgreens. The significant differences in the response of phytochemicals between pulsed light at several frequencies and continuous light were determined. The most positive effects of 2, 256, and 1024 Hz for total phenolic compounds in mustard under all wavelength LEDs were achieved. The LED frequencies at 2 and 32 Hz were the most suitable for accumulation of anthocyanins in red pak choi and tatsoi. The highest antiradical activity under the treatments of 32, 256, and 1024 Hz in mustard and under the 2 Hz frequency in red pak choi and tatsoi was determined.
Collapse
Affiliation(s)
- Viktorija Vaštakaitė
- Laboratory of Plant Physiology, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry , Kaunas Street 30, LT-54333 Babtai, Kaunas District, Lithuania
| | - Akvilė Viršilė
- Laboratory of Plant Physiology, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry , Kaunas Street 30, LT-54333 Babtai, Kaunas District, Lithuania
| | - Aušra Brazaitytė
- Laboratory of Plant Physiology, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry , Kaunas Street 30, LT-54333 Babtai, Kaunas District, Lithuania
| | - Giedrė Samuolienė
- Laboratory of Plant Physiology, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry , Kaunas Street 30, LT-54333 Babtai, Kaunas District, Lithuania
| | - Julė Jankauskienė
- Laboratory of Plant Physiology, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry , Kaunas Street 30, LT-54333 Babtai, Kaunas District, Lithuania
| | - Algirdas Novičkovas
- Institute of Applied Research, Vilnius University , Saulėtekio Alėja 9, Building III, LT-10222 Vilnius, Lithuania
| | - Pavelas Duchovskis
- Laboratory of Plant Physiology, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry , Kaunas Street 30, LT-54333 Babtai, Kaunas District, Lithuania
| |
Collapse
|