1
|
Shan J, Cheng R, Magaoya T, Duan Y, Chen C. Comparative Transcriptome Analysis of Cold Tolerance Mechanism in Honeybees ( Apis mellifera sinisxinyuan). INSECTS 2024; 15:790. [PMID: 39452366 PMCID: PMC11508713 DOI: 10.3390/insects15100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Honeybees are important pollinators worldwide that are closely related to agricultural production and ecological balance. The biological activities and geographical distribution of honeybees are strongly influenced by temperature. However, there is not much research on the cold tolerance of honeybees. The Apis mellifera sinisxinyuan, a kind of western honeybee, exhibits strong cold hardiness. Here, we determined that short-term temperature treatment could regulate the honeybee's cold tolerance ability by measuring the supercooling point of A. m. sinisxinyuan treated with different temperatures. Transcriptome data were analyzed between the treated and untreated honeybees. A total of 189 differentially expressed genes were identified. Among them, Abra, Pla1, rGC, Hr38, and Maf were differentially expressed in all comparisons. GO and KEGG analysis showed that the DEGs were enriched in molecular functions related to disease, signal transduction, metabolism, and the endocrine system's function. The main components involved were ribosomes, nucleosomes, proteases, and phosphokinases, among others. This study explored the formation and regulation mechanism of cold tolerance in honeybees, not only providing a theoretical basis for cultivating honeybees with excellent traits but also promoting research and practice on insect stress tolerance.
Collapse
Affiliation(s)
- Jinqiong Shan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (J.S.)
| | - Ruiyi Cheng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (J.S.)
| | | | - Yujie Duan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (J.S.)
| | - Chao Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (J.S.)
- Faculty of Agricultural Sciences and Food, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia
| |
Collapse
|
2
|
Inoue N, Gowda SGB, Gowda D, Sakurai T, Ikeda-Araki A, Bamai YA, Ketema RM, Kishi R, Chiba H, Hui SP. Determination of plasma lysophosphatidylethanolamines (lyso-PE) by LC-MS/MS revealed a possible relation between obesity and lyso-PE in Japanese preadolescent children: The Hokkaido study. Ann Clin Biochem 2024:45632241280352. [PMID: 39167494 DOI: 10.1177/00045632241280352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
BACKGROUND Lysophosphatidylethanolamines (lyso-PEs) are the partial hydrolysis products of phosphatidylethanolamine. Although lyso-PEs are important biomarkers in various diseases, their determination is limited by the lack of simple and efficient quantification methods. This study aims to develop an improved quantitative method for the determination of lyso-PEs and its application to an epidemiological study. METHODS Single reaction monitoring channels by collision-induced dissociation for seven lyso-PEs were established using liquid chromatography-tandem mass spectrometry. Plasma lyso-PEs were extracted with a single-phase method using an isotopically labelled internal standard for quantification. The proposed method was adopted to define lyso-PEs in plasma samples of children aged 9-12 years living in Sapporo, Japan. RESULTS The limit of detection and limit of quantification for each lyso-PE ranged between 0.001-0.015 and 0.002-0.031 pmol/μL, respectively. Recoveries were found to be > 91% for all the species. The analysis results of children's plasma showed that the total lyso-PE concentrations in boys (n = 181) and girls (n = 161) were 11.53 and 11.00 pmol/μL (median), respectively. Participants were further classified by the percentage of overweight and subgrouped as underweight (n = 12), normal range (n = 292), or overweight (n = 38). Interestingly, the reduction of lyso-PE 16:0 and increased lyso-PE 22:6 were observed in overweight children compared with normal range (Fold change: 0.909 and 1.174, respectively). CONCLUSIONS This study successfully established a simple quantitative method to determine lyso-PE concentrations. Furthermore, our method revealed the possible relation between plasma lyso-PEs and overweight status.
Collapse
Affiliation(s)
- Nao Inoue
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Siddabasave Gowda B Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Graduate School of Global Food Resources, Hokkaido University, Sapporo, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | - Atsuko Ikeda-Araki
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Rahel Mesfin Ketema
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Ryan M, Raby E, Whiley L, Masuda R, Lodge S, Nitschke P, Maker GL, Wist J, Holmes E, Wood FM, Nicholson JK, Fear MW, Gray N. Nonsevere Burn Induces a Prolonged Systemic Metabolic Phenotype Indicative of a Persistent Inflammatory Response Postinjury. J Proteome Res 2024; 23:2893-2907. [PMID: 38104259 PMCID: PMC11302432 DOI: 10.1021/acs.jproteome.3c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Indexed: 12/19/2023]
Abstract
Globally, burns are a significant cause of injury that can cause substantial acute trauma as well as lead to increased incidence of chronic comorbidity and disease. To date, research has primarily focused on the systemic response to severe injury, with little in the literature reported on the impact of nonsevere injuries (<15% total burn surface area; TBSA). To elucidate the metabolic consequences of a nonsevere burn injury, longitudinal plasma was collected from adults (n = 35) who presented at hospital with a nonsevere burn injury at admission, and at 6 week follow up. A cross-sectional baseline sample was also collected from nonburn control participants (n = 14). Samples underwent multiplatform metabolic phenotyping using 1H nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry to quantify 112 lipoprotein and glycoprotein signatures and 852 lipid species from across 20 subclasses. Multivariate data modeling (orthogonal projections to latent structures-discriminate analysis; OPLS-DA) revealed alterations in lipoprotein and lipid metabolism when comparing the baseline control to hospital admission samples, with the phenotypic signature found to be sustained at follow up. Univariate (Mann-Whitney U) testing and OPLS-DA indicated specific increases in GlycB (p-value < 1.0e-4), low density lipoprotein-2 subfractions (variable importance in projection score; VIP > 6.83e-1) and monoacyglyceride (20:4) (p-value < 1.0e-4) and decreases in circulating anti-inflammatory high-density lipoprotein-4 subfractions (VIP > 7.75e-1), phosphatidylcholines, phosphatidylglycerols, phosphatidylinositols, and phosphatidylserines. The results indicate a persistent systemic metabolic phenotype that occurs even in cases of a nonsevere burn injury. The phenotype is indicative of an acute inflammatory profile that continues to be sustained postinjury, suggesting an impact on systems health beyond the site of injury. The phenotypes contained metabolic signatures consistent with chronic inflammatory states reported to have an elevated incidence postburn injury. Such phenotypic signatures may provide patient stratification opportunities, to identify individual responses to injury, personalize intervention strategies, and improve acute care, reducing the risk of chronic comorbidity.
Collapse
Affiliation(s)
- Monique
J. Ryan
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Edward Raby
- Burns
Service of Western Australia, WA Department
of Health, Murdoch, Western Australia 6150, Australia
- Department
of Microbiology, PathWest Laboratory Medicine, Perth, Western Australia 6009, Australia
- Department
of Infectious Diseases, Fiona Stanley Hospital, Perth, Western Australia 6150, Australia
| | - Luke Whiley
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Reika Masuda
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Samantha Lodge
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Philipp Nitschke
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Garth L. Maker
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Julien Wist
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
- Chemistry
Department, Universidad del Valle, Cali 76001, Colombia
| | - Elaine Holmes
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
- Department
of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Fiona M. Wood
- Burns
Service of Western Australia, WA Department
of Health, Murdoch, Western Australia 6150, Australia
- Burn
Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
- Fiona
Wood Foundation, Perth, Western Australia 6150, Australia
| | - Jeremy K. Nicholson
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
- Institute
of Global Health Innovation, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Mark W. Fear
- Burn
Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
- Fiona
Wood Foundation, Perth, Western Australia 6150, Australia
| | - Nicola Gray
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| |
Collapse
|
4
|
Slijkhuis N, Razzi F, Korteland SA, Heijs B, van Gaalen K, Duncker DJ, van der Steen AFW, van Steijn V, van Beusekom HMM, van Soest G. Spatial lipidomics of coronary atherosclerotic plaque development in a familial hypercholesterolemia swine model. J Lipid Res 2024; 65:100504. [PMID: 38246237 PMCID: PMC10879031 DOI: 10.1016/j.jlr.2024.100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Coronary atherosclerosis is caused by plaque build-up, with lipids playing a pivotal role in its progression. However, lipid composition and distribution within coronary atherosclerosis remain unknown. This study aims to characterize lipids and investigate differences in lipid composition across disease stages to aid in the understanding of disease progression. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to visualize lipid distributions in coronary artery sections (n = 17) from hypercholesterolemic swine. We performed histology on consecutive sections to classify the artery segments and to investigate colocalization between lipids and histological regions of interest in advanced plaque, including necrotic core and inflammatory cells. Segments were classified as healthy (n = 6), mild (n = 6), and advanced disease (n = 5) artery segments. Multivariate data analysis was employed to find differences in lipid composition between the segment types, and the lipids' spatial distribution was investigated using non-negative matrix factorization (NMF). Through this process, MALDI-MSI detected 473 lipid-related features. NMF clustering described three components in positive ionization mode: triacylglycerides (TAG), phosphatidylcholines (PC), and cholesterol species. In negative ionization mode, two components were identified: one driven by phosphatidylinositol(PI)(38:4), and one driven by ceramide-phosphoethanolamine(36:1). Multivariate data analysis showed the association between advanced disease and specific lipid signatures like PC(O-40:5) and cholesterylester(CE)(18:2). Ether-linked phospholipids and LysoPC species were found to colocalize with necrotic core, and mostly CE, ceramide, and PI species colocalized with inflammatory cells. This study, therefore, uncovers distinct lipid signatures correlated with plaque development and their colocalization with necrotic core and inflammatory cells, enhancing our understanding of coronary atherosclerosis progression.
Collapse
Affiliation(s)
- Nuria Slijkhuis
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Francesca Razzi
- Department of Experimental Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands; Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Suze-Anne Korteland
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kim van Gaalen
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Dirk J Duncker
- Department of Experimental Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Department of Imaging Science and Technology, Delft University of Technology, Delft, The Netherlands
| | - Volkert van Steijn
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Heleen M M van Beusekom
- Department of Experimental Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Gijs van Soest
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands; Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Nogal A, Alkis T, Lee Y, Kifer D, Hu J, Murphy RA, Huang Z, Wang-Sattler R, Kastenmüler G, Linkohr B, Barrios C, Crespo M, Gieger C, Peters A, Price J, Rexrode KM, Yu B, Menni C. Predictive metabolites for incident myocardial infarction: a two-step meta-analysis of individual patient data from six cohorts comprising 7897 individuals from the COnsortium of METabolomics Studies. Cardiovasc Res 2023; 119:2743-2754. [PMID: 37706562 PMCID: PMC10757581 DOI: 10.1093/cvr/cvad147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 09/15/2023] Open
Abstract
AIMS Myocardial infarction (MI) is a major cause of death and disability worldwide. Most metabolomics studies investigating metabolites predicting MI are limited by the participant number and/or the demographic diversity. We sought to identify biomarkers of incident MI in the COnsortium of METabolomics Studies. METHODS AND RESULTS We included 7897 individuals aged on average 66 years from six intercontinental cohorts with blood metabolomic profiling (n = 1428 metabolites, of which 168 were present in at least three cohorts with over 80% prevalence) and MI information (1373 cases). We performed a two-stage individual patient data meta-analysis. We first assessed the associations between circulating metabolites and incident MI for each cohort adjusting for traditional risk factors and then performed a fixed effect inverse variance meta-analysis to pull the results together. Finally, we conducted a pathway enrichment analysis to identify potential pathways linked to MI. On meta-analysis, 56 metabolites including 21 lipids and 17 amino acids were associated with incident MI after adjusting for multiple testing (false discovery rate < 0.05), and 10 were novel. The largest increased risk was observed for the carbohydrate mannitol/sorbitol {hazard ratio [HR] [95% confidence interval (CI)] = 1.40 [1.26-1.56], P < 0.001}, whereas the largest decrease in risk was found for glutamine [HR (95% CI) = 0.74 (0.67-0.82), P < 0.001]. Moreover, the identified metabolites were significantly enriched (corrected P < 0.05) in pathways previously linked with cardiovascular diseases, including aminoacyl-tRNA biosynthesis. CONCLUSIONS In the most comprehensive metabolomic study of incident MI to date, 10 novel metabolites were associated with MI. Metabolite profiles might help to identify high-risk individuals before disease onset. Further research is needed to fully understand the mechanisms of action and elaborate pathway findings.
Collapse
Affiliation(s)
- Ana Nogal
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, Westminster Bridge Road, SE1 7EH London, UK
| | - Taryn Alkis
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, 1200 Pressler St, Suite E407, Houston, 77030 TX, USA
| | - Yura Lee
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, 1200 Pressler St, Suite E407, Houston, 77030 TX, USA
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Jie Hu
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Rachel A Murphy
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Zhe Huang
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Rui Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gabi Kastenmüler
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Birgit Linkohr
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Clara Barrios
- Department of Nephrology, Hospital del Mar, Institut Hospital del Mar d´Investigacions Mediques, Barcelona, Spain
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar, Institut Hospital del Mar d´Investigacions Mediques, Barcelona, Spain
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jackie Price
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Kathryn M Rexrode
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, 1200 Pressler St, Suite E407, Houston, 77030 TX, USA
| | - Cristina Menni
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, Westminster Bridge Road, SE1 7EH London, UK
| |
Collapse
|
6
|
Xu K, Saaoud F, Shao Y, Lu Y, Wu S, Zhao H, Chen K, Vazquez-Padron R, Jiang X, Wang H, Yang X. Early hyperlipidemia triggers metabolomic reprogramming with increased SAH, increased acetyl-CoA-cholesterol synthesis, and decreased glycolysis. Redox Biol 2023; 64:102771. [PMID: 37364513 PMCID: PMC10310484 DOI: 10.1016/j.redox.2023.102771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
To identify metabolomic reprogramming in early hyperlipidemia, unbiased metabolome was screened in four tissues from ApoE-/- mice fed with high fat diet (HFD) for 3 weeks. 30, 122, 67, and 97 metabolites in the aorta, heart, liver, and plasma, respectively, were upregulated. 9 upregulated metabolites were uremic toxins, and 13 metabolites, including palmitate, promoted a trained immunity with increased syntheses of acetyl-CoA and cholesterol, increased S-adenosylhomocysteine (SAH) and hypomethylation and decreased glycolysis. The cross-omics analysis found upregulation of 11 metabolite synthetases in ApoE‾/‾ aorta, which promote ROS, cholesterol biosynthesis, and inflammation. Statistical correlation of 12 upregulated metabolites with 37 gene upregulations in ApoE‾/‾ aorta indicated 9 upregulated new metabolites to be proatherogenic. Antioxidant transcription factor NRF2-/- transcriptome analysis indicated that NRF2 suppresses trained immunity-metabolomic reprogramming. Our results have provided novel insights on metabolomic reprogramming in multiple tissues in early hyperlipidemia oriented toward three co-existed new types of trained immunity.
Collapse
Affiliation(s)
- Keman Xu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ying Shao
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yifan Lu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Sheng Wu
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Medical Education and Data Science, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Kaifu Chen
- Computational Biology Program, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33125, USA
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
7
|
Dong W, Huang Y. Common Genetic Factors and Pathways in Alzheimer's Disease and Ischemic Stroke: Evidences from GWAS. Genes (Basel) 2023; 14:353. [PMID: 36833280 PMCID: PMC9957001 DOI: 10.3390/genes14020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) and ischemic stroke (IS) are common neurological disorders, and the comorbidity of these two brain diseases is often seen. Although AD and IS were regarded as two distinct disease entities, in terms of different etiologies and clinical presentation, recent genome-wide association studies (GWASs) revealed that there were common risk genes between AD and IS, indicating common molecular pathways and their common pathophysiology. In this review, we summarize AD and IS risk single nucleotide polymorphisms (SNPs) and their representative genes from the GWAS Catalog database, and find thirteen common risk genes, but no common risk SNPs. Furthermore, the common molecular pathways associated with these risk gene products are summarized from the GeneCards database and clustered into inflammation and immunity, G protein-coupled receptor, and signal transduction. At least seven of these thirteen genes can be regulated by 23 microRNAs identified from the TargetScan database. Taken together, the imbalance of these molecular pathways may give rise to these two common brain disorders. This review sheds light on the pathogenesis of comorbidity of AD and IS, and provides molecular targets for disease prevention, manipulation, and brain health maintenance.
Collapse
Affiliation(s)
- Wei Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yue Huang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Saaoud F, Liu L, Xu K, Cueto R, Shao Y, Lu Y, Sun Y, Snyder NW, Wu S, Yang L, Zhou Y, Williams DL, Li C, Martinez L, Vazquez-Padron RI, Zhao H, Jiang X, Wang H, Yang X. Aorta- and liver-generated TMAO enhances trained immunity for increased inflammation via ER stress/mitochondrial ROS/glycolysis pathways. JCI Insight 2023; 8:e158183. [PMID: 36394956 PMCID: PMC9870092 DOI: 10.1172/jci.insight.158183] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
Abstract
We determined whether gut microbiota-produced trimethylamine (TMA) is oxidized into trimethylamine N-oxide (TMAO) in nonliver tissues and whether TMAO promotes inflammation via trained immunity (TI). We found that endoplasmic reticulum (ER) stress genes were coupregulated with MitoCarta genes in chronic kidney diseases (CKD); TMAO upregulated 190 genes in human aortic endothelial cells (HAECs); TMAO synthesis enzyme flavin-containing monooxygenase 3 (FMO3) was expressed in human and mouse aortas; TMAO transdifferentiated HAECs into innate immune cells; TMAO phosphorylated 12 kinases in cytosol via its receptor PERK and CREB, and integrated with PERK pathways; and PERK inhibitors suppressed TMAO-induced ICAM-1. TMAO upregulated 3 mitochondrial genes, downregulated inflammation inhibitor DARS2, and induced mitoROS, and mitoTEMPO inhibited TMAO-induced ICAM-1. β-Glucan priming, followed by TMAO restimulation, upregulated TNF-α by inducing metabolic reprogramming, and glycolysis inhibitor suppressed TMAO-induced ICAM-1. Our results have provided potentially novel insights regarding TMAO roles in inducing EC activation and innate immune transdifferentiation and inducing metabolic reprogramming and TI for enhanced vascular inflammation, and they have provided new therapeutic targets for treating cardiovascular diseases (CVD), CKD-promoted CVD, inflammation, transplantation, aging, and cancer.
Collapse
Affiliation(s)
| | - Lu Liu
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Keman Xu
- Centers for Cardiovascular Research and
| | - Ramon Cueto
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ying Shao
- Centers for Cardiovascular Research and
| | - Yifan Lu
- Centers for Cardiovascular Research and
| | - Yu Sun
- Centers for Cardiovascular Research and
| | - Nathaniel W. Snyder
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Sheng Wu
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, Pennsylvania, USA
| | - David L. Williams
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Chuanfu Li
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Xiaohua Jiang
- Centers for Cardiovascular Research and
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Hong Wang
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Xiaofeng Yang
- Centers for Cardiovascular Research and
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Cao X, van Putten JPM, Wösten MMSM. Biological functions of bacterial lysophospholipids. Adv Microb Physiol 2023; 82:129-154. [PMID: 36948653 DOI: 10.1016/bs.ampbs.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lysophospholipids (LPLs) are lipid-derived metabolic intermediates in the cell membrane. The biological functions of LPLs are distinct from their corresponding phospholipids. In eukaryotic cells LPLs are important bioactive signaling molecules that regulate many important biological processes, but in bacteria the function of LPLs is still not fully defined. Bacterial LPLs are usually present in cells in very small amounts, but can strongly increase under certain environmental conditions. In addition to their basic function as precursors in membrane lipid metabolism, the formation of distinct LPLs contributes to the proliferation of bacteria under harsh circumstances or may act as signaling molecules in bacterial pathogenesis. This review provides an overview of the current knowledge of the biological functions of bacterial LPLs including lysoPE, lysoPA, lysoPC, lysoPG, lysoPS and lysoPI in bacterial adaptation, survival, and host-microbe interactions.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Zhang D, Lü J, Ren Z, Zhang X, Wu H, Sa R, Wang X, Wang Y, Lin Z, Zhang B. Potential cardiotoxicity induced by Euodiae Fructus: In vivo and in vitro experiments and untargeted metabolomics research. Front Pharmacol 2022; 13:1028046. [PMID: 36353487 PMCID: PMC9637925 DOI: 10.3389/fphar.2022.1028046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 09/16/2023] Open
Abstract
Background: Euodiae Fructus, a well-known herbal medicine, is widely used in Asia and has also gained in popularity in Western countries over the last decades. It has known side effects, which have been observed in clinical settings, but few studies have reported on its cardiotoxicity. Methods: In the present study, experiments using techniques of untargeted metabolomics clarify the hazardous effects of Euodiae Fructus on cardiac function and metabolism in rats in situations of overdosage and unsuitable syndrome differentiation. In vitro assays are conducted to observe the toxic effects of evodiamine and rutaecarpine, two main chemical constituents of Euodiae Fructus, in H9c2 and neonatal rat cardiomyocytes (NRCMs), with their signaling mechanisms analyzed accordingly. Results: The cardiac cytotoxicity of evodiamine and rutaecarpine in in vivo experiments is associated with remarkable alterations in lactate dehydrogenase, creatine kinase, and mitochondrial membrane potential; also with increased intensity of calcium fluorescence, decreased protein expression of the cGMP-PKG pathway in H9c2 cells, and frequency of spontaneous beat in NRCMs. Additionally, the results in rats with Yin deficiency receiving a high-dosage of Euodiae Fructus suggest obvious cardiac physiological dysfunction, abnormal electrocardiogram, pathological injuries, and decreased expression of PKG protein. At the level of endogenous metabolites, the cardiac side effects of overdose and irrational usage of Euodiae Fructus relate to 34 differential metabolites and 10 metabolic pathways involving among others, the purine metabolism, the glycerophospholipid metabolism, the glycerolipid metabolism, and the sphingolipid metabolism. Conclusion: These findings shed new light on the cardiotoxicity induced by Euodiae Fructus, which might be associated with overdose and unsuitable syndrome differentiation, that comes from modulating the cGMP-PKG pathway and disturbing the metabolic pathways of purine, lipid, and amino acid. Continuing research is needed to ensure pharmacovigilance for the safe administration of Chinese herbs in the future.
Collapse
Affiliation(s)
- Dan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jintao Lü
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixin Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Centre for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huanzhang Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rina Sa
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Gansu Provincial Hospital, Lanzhou, China
| | - Xiaofang Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Centre for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhijian Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Centre for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Centre for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Zhou M, Li C, Han X, Yu B, Yan XZ, Zhang Y, Yang XJ. Lipidomic analysis reveals altered lipid profiles of gingival tissues with periodontitis. J Clin Periodontol 2022; 49:1192-1202. [PMID: 35924763 DOI: 10.1111/jcpe.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/09/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
Abstract
AIM The role of lipids in periodontitis has not been well studied. Thus, this study aimed to explore periodontitis-associated lipid profile changes and identify differentially expressed lipid metabolites in gingival tissues. MATERIALS AND METHODS Gingival tissues from 38 patients with periodontitis (periodontitis group) and 38 periodontally healthy individuals (control group) were collected. A UHPLC-QTOF-MS-based non-targeted metabolomics platform was used to identify and compare the lipid profiles of the two groups. The distribution and expression of related proteins were subsequently analyzed via immunohistochemistry to further validate the identified lipids. RESULTS Lipid profiles significantly differed between the two groups, and 20 differentially expressed lipid species were identified. Lysophosphatidylcholines (lysoPCs), diacylglycerols (DGs), and phosphatidylethanolamines (PEs) were significantly upregulated, while triacylglycerols (TGs) were downregulated in the periodontitis group. Moreover, the staining intensity of ABHD5/CGI-58, secretory phospholipase A2 (sPLA2), and sPLA2-IIA was significantly stronger in the gingival tissues of patients with periodontitis than in those of healthy controls. CONCLUSIONS LysoPCs, DGs, and PEs were significantly upregulated, whereas TGs were downregulated in gingival tissues of patients with periodontitis. Correspondingly, the immunohistochemical staining of ABHD5/CGI-58, sPLA2, and sPLA2-IIA in gingival tissues was consistent with the downstream production of lipid classes (lysoPCs, TGs, and DGs).
Collapse
Affiliation(s)
- Min Zhou
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Chen Li
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xue Han
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Bohan Yu
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiang-Zhen Yan
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yan Zhang
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiao-Juan Yang
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
12
|
Cao X, van de Lest CH, Huang LZ, van Putten JP, Wösten MM. Campylobacter jejuni permeabilizes the host cell membrane by short chain lysophosphatidylethanolamines. Gut Microbes 2022; 14:2091371. [PMID: 35797141 PMCID: PMC9272830 DOI: 10.1080/19490976.2022.2091371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lysophospholipids (LPLs) are crucial for regulating epithelial integrity and homeostasis in eukaryotes, however the effects of LPLs produced by bacteria on host cells is largely unknown. The membrane of the human bacterial pathogen Campylobacter jejuni is rich in LPLs. Although C. jejuni possesses several virulence factors, it lacks traditional virulence factors like type III secretion systems, present in most enteropathogens. Here, we provide evidence that membrane lipids lysophosphatidylethanolamines (lysoPEs) of C. jejuni are able to lyse erythrocytes and are toxic for HeLa and Caco-2 cells. Lactate dehydrogenase (LDH) release assays and confocal microscopy revealed that lysoPE permeabilizes the cells. LysoPE toxicity was partially rescued by oxidative stress inhibitors, indicating that intracellular reactive oxygen species may contribute to the cell damage. Our results show that especially the short-chain lysoPEs (C:14) which is abundantly present in the C. jejuni membrane may be considered as a novel virulence factor.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | | | - Liane Z.X. Huang
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Jos P.M. van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Marc M.S.M. Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands,CONTACT Marc M.S.M. Wösten Department Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, Netherlands
| |
Collapse
|
13
|
Saud Z, Tyrrell VJ, Zaragkoulias A, Protty MB, Statkute E, Rubina A, Bentley K, White DA, Rodrigues PDS, Murphy RC, Köfeler H, Griffiths WJ, Alvarez-Jarreta J, Brown RW, Newcombe RG, Heyman J, Pritchard M, Mcleod RW, Arya A, Lynch CA, Owens D, Jenkins PV, Buurma NJ, O'Donnell VB, Thomas DW, Stanton RJ. The SARS-CoV2 envelope differs from host cells, exposes procoagulant lipids, and is disrupted in vivo by oral rinses. J Lipid Res 2022; 63:100208. [PMID: 35436499 PMCID: PMC9010312 DOI: 10.1016/j.jlr.2022.100208] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
The lipid envelope of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an essential component of the virus; however, its molecular composition is undetermined. Addressing this knowledge gap could support the design of antiviral agents as well as further our understanding of viral-host protein interactions, infectivity, pathogenicity, and innate immune system clearance. Lipidomics revealed that the virus envelope comprised mainly phospholipids (PLs), with some cholesterol and sphingolipids, and with cholesterol/phospholipid ratio similar to lysosomes. Unlike cellular membranes, procoagulant amino-PLs were present on the external side of the viral envelope at levels exceeding those on activated platelets. Accordingly, virions directly promoted blood coagulation. To investigate whether these differences could enable selective targeting of the viral envelope in vivo, we tested whether oral rinses containing lipid-disrupting chemicals could reduce infectivity. Products containing PL-disrupting surfactants (such as cetylpyridinium chloride) met European virucidal standards in vitro; however, components that altered the critical micelle concentration reduced efficacy, and products containing essential oils, povidone-iodine, or chlorhexidine were ineffective. This result was recapitulated in vivo, where a 30-s oral rinse with cetylpyridinium chloride mouthwash eliminated live virus in the oral cavity of patients with coronavirus disease 19 for at least 1 h, whereas povidone-iodine and saline mouthwashes were ineffective. We conclude that the SARS-CoV-2 lipid envelope i) is distinct from the host plasma membrane, which may enable design of selective antiviral approaches; ii) contains exposed phosphatidylethanolamine and phosphatidylserine, which may influence thrombosis, pathogenicity, and inflammation; and iii) can be selectively targeted in vivo by specific oral rinses.
Collapse
Affiliation(s)
- Zack Saud
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Victoria J Tyrrell
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Andreas Zaragkoulias
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Majd B Protty
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Evelina Statkute
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anzelika Rubina
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kirsten Bentley
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Daniel A White
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO, USA
| | - Harald Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | | | - Jorge Alvarez-Jarreta
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard William Brown
- ENT Department, Betsi Cadwaladr University Health Board, Wrexham Maelor Hospital, Wrexham, United Kingdom
| | - Robert G Newcombe
- Division of Population Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James Heyman
- Division of Surgery, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - Manon Pritchard
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Robert Wj Mcleod
- Division of Surgery, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - Arvind Arya
- ENT Department, Betsi Cadwaladr University Health Board, Wrexham Maelor Hospital, Wrexham, United Kingdom
| | - Ceri-Ann Lynch
- Anaesthetics and Critical Care Directorate, Cwm Taf University Health Board, Royal Glamorgan Hospital, Llantrisant, United Kingdom
| | - David Owens
- Division of Surgery, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - P Vince Jenkins
- Haemostasis Diagnosis and Research, University Hospital Wales, Cardiff, United Kingdom
| | - Niklaas J Buurma
- Physical Organic Chemistry Centre, School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - Valerie B O'Donnell
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | - David W Thomas
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff, United Kingdom.
| | - Richard J Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
14
|
Koschinsky ML, Boffa MB. Oxidized phospholipid modification of lipoprotein(a): Epidemiology, biochemistry and pathophysiology. Atherosclerosis 2022; 349:92-100. [DOI: 10.1016/j.atherosclerosis.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023]
|
15
|
O'Donnell VB. New appreciation for an old pathway: the Lands Cycle moves into new arenas in health and disease. Biochem Soc Trans 2022; 50:1-11. [PMID: 35225335 PMCID: PMC9022965 DOI: 10.1042/bst20210579] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
Abstract
The Lands Pathway is a fundamental biochemical process named for its discovery by William EM Lands and revealed in a series of seminal papers published in the Journal of Biological Chemistry between 1958-65. It describes the selective placement in phospholipids of acyl chains, by phospholipid acyltransferases. This pathway has formed a core component of our knowledge of phospholipid and also diglyceride metabolism in mammalian tissues for over 60 years now. Our understanding of how the Lands pathways are enzymatically mediated via large families of related gene products that display both substrate and tissue specificity has grown exponentially since. Recent studies building on this are starting to reveal key roles for the Lands pathway in specific scenarios, in particular inflammation, immunity and inflammation. This review will cover the Lands cycle from historical perspectives first, then present new information on how this important cycle forms a central regulatory node connecting fatty acyl and phospholipid metabolism and how its altered regulation may present new opportunities for therapeutic intervention in human disease.
Collapse
Affiliation(s)
- Valerie B. O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4SN, U.K
| |
Collapse
|
16
|
Pigsborg K, Gürdeniz G, Rangel-Huerta OD, Holven KB, Dragsted LO, Ulven SM. Effects of changing from a diet with saturated fat to a diet with n-6 polyunsaturated fat on the serum metabolome in relation to cardiovascular disease risk factors. Eur J Nutr 2022; 61:2079-2089. [PMID: 34999928 PMCID: PMC9106625 DOI: 10.1007/s00394-021-02796-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/21/2021] [Indexed: 11/27/2022]
Abstract
Purpose Replacing saturated fatty acids (SFA) with polyunsaturated fatty acids (PUFA) is associated with a reduced risk of cardiovascular disease. Yet, the changes in the serum metabolome after this replacement is not well known. Therefore, the present study aims to identify the metabolites differentiating diets where six energy percentage SFA is replaced with PUFA and to elucidate the association of dietary metabolites with cardiometabolic risk markers. Methods In an 8-week, double-blind, randomized, controlled trial, 99 moderately hyper-cholesterolemic adults (25–70 years) were assigned to a control diet (C-diet) or an experimental diet (Ex-diet). Both groups received commercially available food items with different fatty acid compositions. In the Ex-diet group, products were given where SFA was replaced mostly with n-6 PUFA. Fasting serum samples were analysed by untargeted ultra-performance liquid chromatography high-resolution mass spectrometry (UPLC-HRMS). Pre-processed data were analysed by double cross-validated Partial Least-Squares Discriminant Analysis (PLS-DA) to detect features differentiating the two diet groups. Results PLS-DA differentiated the metabolic profiles of the Ex-diet and the C-diet groups with an area under the curve of 0.83. The Ex-diet group showed higher levels of unsaturated phosphatidylcholine plasmalogens, an unsaturated acylcarnitine, and a secondary bile acid. The C-diet group was characterized by odd-numbered phospholipids and a saturated acylcarnitine. The Principal Component analysis scores of the serum metabolic profiles characterizing the diets were significantly associated with low-density lipoprotein cholesterol, total cholesterol, and triglyceride levels but not with glycaemia. Conclusion The serum metabolic profiles confirmed the compliance of the participants based on their diet-specific metabolome after replacing SFA with mostly n-6 PUFA. The participants' metabolic profiles in response to the change in diet were associated with cardiovascular disease risk markers. This study was registered at clinicaltrials.gov as NCT 01679496 on September 6th 2012. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02796-6.
Collapse
Affiliation(s)
- Kristina Pigsborg
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark.
| | - Gözde Gürdeniz
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Kirsten B Holven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway.,Norwegian National Advisory Unit On Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Aker, Nydalen, PO Box 4959, 0424, Oslo, Norway
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - Stine M Ulven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Xu K, Shao Y, Saaoud F, Gillespie A, Drummer C, Liu L, Lu Y, Sun Y, Xi H, Tükel Ç, Pratico D, Qin X, Sun J, Choi ET, Jiang X, Wang H, Yang X. Novel Knowledge-Based Transcriptomic Profiling of Lipid Lysophosphatidylinositol-Induced Endothelial Cell Activation. Front Cardiovasc Med 2021; 8:773473. [PMID: 34912867 PMCID: PMC8668339 DOI: 10.3389/fcvm.2021.773473] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
To determine whether pro-inflammatory lipid lysophosphatidylinositols (LPIs) upregulate the expressions of membrane proteins for adhesion/signaling and secretory proteins in human aortic endothelial cell (HAEC) activation, we developed an EC biology knowledge-based transcriptomic formula to profile RNA-Seq data panoramically. We made the following primary findings: first, G protein-coupled receptor 55 (GPR55), the LPI receptor, is expressed in the endothelium of both human and mouse aortas, and is significantly upregulated in hyperlipidemia; second, LPIs upregulate 43 clusters of differentiation (CD) in HAECs, promoting EC activation, innate immune trans-differentiation, and immune/inflammatory responses; 72.1% of LPI-upregulated CDs are not induced in influenza virus-, MERS-CoV virus- and herpes virus-infected human endothelial cells, which hinted the specificity of LPIs in HAEC activation; third, LPIs upregulate six types of 640 secretomic genes (SGs), namely, 216 canonical SGs, 60 caspase-1-gasdermin D (GSDMD) SGs, 117 caspase-4/11-GSDMD SGs, 40 exosome SGs, 179 Human Protein Atlas (HPA)-cytokines, and 28 HPA-chemokines, which make HAECs a large secretory organ for inflammation/immune responses and other functions; fourth, LPIs activate transcriptomic remodeling by upregulating 172 transcription factors (TFs), namely, pro-inflammatory factors NR4A3, FOS, KLF3, and HIF1A; fifth, LPIs upregulate 152 nuclear DNA-encoded mitochondrial (mitoCarta) genes, which alter mitochondrial mechanisms and functions, such as mitochondrial organization, respiration, translation, and transport; sixth, LPIs activate reactive oxygen species (ROS) mechanism by upregulating 18 ROS regulators; finally, utilizing the Cytoscape software, we found that three mechanisms, namely, LPI-upregulated TFs, mitoCarta genes, and ROS regulators, are integrated to promote HAEC activation. Our results provide novel insights into aortic EC activation, formulate an EC biology knowledge-based transcriptomic profile strategy, and identify new targets for the development of therapeutics for cardiovascular diseases, inflammatory conditions, immune diseases, organ transplantation, aging, and cancers.
Collapse
Affiliation(s)
- Keman Xu
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Ying Shao
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Aria Gillespie
- Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Charles Drummer
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Lu Liu
- Departments of Cardiovascular Sciences, Metabolic Disease Research, Thrombosis Research, Philadelphia, PA, United States
| | - Yifan Lu
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Yu Sun
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Hang Xi
- Departments of Cardiovascular Sciences, Metabolic Disease Research, Thrombosis Research, Philadelphia, PA, United States
| | - Çagla Tükel
- Center for Microbiology & Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Domenico Pratico
- Alzheimer's Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xuebin Qin
- National Primate Research Center, Tulane University, Covington, LA, United States
| | - Jianxin Sun
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Eric T. Choi
- Surgery (Division of Vascular and Endovascular Surgery), Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
- Departments of Cardiovascular Sciences, Metabolic Disease Research, Thrombosis Research, Philadelphia, PA, United States
| | - Hong Wang
- Departments of Cardiovascular Sciences, Metabolic Disease Research, Thrombosis Research, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
- Departments of Cardiovascular Sciences, Metabolic Disease Research, Thrombosis Research, Philadelphia, PA, United States
| |
Collapse
|
18
|
Comparative lipid profiling of murine and human atherosclerotic plaques using high-resolution MALDI MSI. Pflugers Arch 2021; 474:231-242. [PMID: 34797426 PMCID: PMC8766400 DOI: 10.1007/s00424-021-02643-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/19/2021] [Accepted: 11/06/2021] [Indexed: 11/20/2022]
Abstract
The distribution of atherosclerotic lesions in the aorta and its branches of ApoE knockout (ApoE−/−) mice is like that of patients with atherosclerosis. By using high-resolution MALDI mass spectrometry imaging (MSI), we aimed at characterizing universally applicable physiological biomarkers by comparing the murine lipid marker profile with that of human atherosclerotic arteries. Therefore, the aorta or carotid artery of male ApoE−/− mice at different ages, human arteries with documented atherosclerotic changes originated from amputated limbs, and corresponding controls were analysed. Obtained data were subjected to multivariate statistical analysis to identify potential biomarkers. Thirty-one m/z values corresponding to individual lipid species of cholesterol esters, lysophosphatidylcholines, lysophosphatidylethanolamines, and cholesterol derivatives were found to be specific in aortic atherosclerotic plaques of old ApoE−/− mice. The lipid composition at related vessel positions of young ApoE−/− mice was more comparable with wild-type mice. Twenty-six m/z values of the murine lipid markers were found in human atherosclerotic peripheral arteries but also control vessels and showed a more patient-dependent diverse distribution. Extensive data analysis without marker preselection based on mouse data revealed lysophosphatidylcholine and glucosylated cholesterol species, the latter not being detected in the murine atherosclerotic tissue, as specific potential novel human atherosclerotic vessel markers. Despite the heterogeneous lipid profile of atherosclerotic peripheral arteries derived from human patients, we identified lipids specifically colocalized to atherosclerotic human tissue and plaques in ApoE−/− mice. These data highlight species-dependent differences in lipid profiles between peripheral artery disease and aortic atherosclerosis.
Collapse
|
19
|
Shao Y, Yang WY, Saaoud F, Drummer C, Sun Y, Xu K, Lu Y, Shan H, Shevach EM, Jiang X, Wang H, Yang X. IL-35 promotes CD4+Foxp3+ Tregs and inhibits atherosclerosis via maintaining CCR5-amplified Treg-suppressive mechanisms. JCI Insight 2021; 6:152511. [PMID: 34622804 PMCID: PMC8525592 DOI: 10.1172/jci.insight.152511] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Tregs play vital roles in suppressing atherogenesis. Pathological conditions reshape Tregs and increase Treg-weakening plasticity. It remains unclear how Tregs preserve their function and how Tregs switch into alternative phenotypes in the environment of atherosclerosis. In this study, we observed a great induction of CD4+Foxp3+ Tregs in the spleen and aorta of ApoE–/– mice, accompanied by a significant increase of plasma IL-35 levels. To determine if IL-35 devotes its role in the rise of Tregs, we generated IL-35 subunit P35–deficient (IL-35P35–deficient) mice on an ApoE–/– background and found Treg reduction in the spleen and aorta compared with ApoE–/– controls. In addition, our RNA sequencing data show the elevation of a set of chemokine receptor transcripts in the ApoE–/– Tregs, and we have validated higher CCR5 expression in ApoE–/– Tregs in the presence of IL-35 than in the absence of IL-35. Furthermore, we observed that CCR5+ Tregs in ApoE–/– have lower Treg-weakening AKT-mTOR signaling, higher expression of inhibitory checkpoint receptors TIGIT and PD-1, and higher expression of IL-10 compared with WT CCR5+ Tregs. In conclusion, IL-35 counteracts hyperlipidemia in maintaining Treg-suppressive function by increasing 3 CCR5-amplified mechanisms, including Treg migration, inhibition of Treg weakening AKT-mTOR signaling, and promotion of TIGIT and PD-1 signaling.
Collapse
Affiliation(s)
| | | | | | | | - Yu Sun
- Centers for Cardiovascular Research
| | - Keman Xu
- Centers for Cardiovascular Research
| | - Yifan Lu
- Centers for Cardiovascular Research
| | - Huimin Shan
- Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ethan M Shevach
- Laboratory of Immune System Biology, Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Xiaohua Jiang
- Centers for Cardiovascular Research.,Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Hong Wang
- Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Xiaofeng Yang
- Centers for Cardiovascular Research.,Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.,Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Lu Y, Nanayakkara G, Sun Y, Liu L, Xu K, Drummer C, Shao Y, Saaoud F, Choi ET, Jiang X, Wang H, Yang X. Procaspase-1 patrolled to the nucleus of proatherogenic lipid LPC-activated human aortic endothelial cells induces ROS promoter CYP1B1 and strong inflammation. Redox Biol 2021; 47:102142. [PMID: 34598017 PMCID: PMC8487079 DOI: 10.1016/j.redox.2021.102142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/20/2022] Open
Abstract
To determine the roles of nuclear localization of pro-caspase-1 in human aortic endothelial cells (HAECs) activated by proatherogenic lipid lysophosphatidylcholine (LPC), we examined cytosolic and nuclear localization of pro-caspase-1, identified nuclear export signal (NES) in pro-caspase-1 and sequenced RNAs. We made the following findings: 1) LPC increases nuclear localization of procaspase-1 in HAECs. 2) Nuclear pro-caspase-1 exports back to the cytosol, which is facilitated by a leptomycin B-inhibited mechanism. 3) Increased nuclear localization of pro-caspase-1 by a new NES peptide inhibitor upregulates inflammatory genes in oxidative stress and Th17 pathways; and SUMO activator N106 enhances nuclear localization of pro-caspase-1 and caspase-1 activation (p20) in the nucleus. 4) LPC plus caspase-1 enzymatic inhibitor upregulates inflammatory genes with hypercytokinemia/hyperchemokinemia and interferon pathways, suggesting a novel capsase-1 enzyme-independent inflammatory mechanism. 5) LPC in combination with NES inhibitor and caspase-1 inhibitor upregulate inflammatory gene expression that regulate Th17 activation, endotheli-1 signaling, p38-, and ERK- MAPK pathways. To examine two hallmarks of endothelial activation such as secretomes and membrane protein signaling, LPC plus NES inhibitor upregulate 57 canonical secretomic genes and 76 exosome secretomic genes, respectively, promoting four pathways including Th17, IL-17 promoted cytokines, interferon signaling and cholesterol biosynthesis. LPC with NES inhibitor also promote inflammation via upregulating ROS promoter CYP1B1 and 11 clusters of differentiation (CD) membrane protein pathways. Mechanistically, all the LPC plus NES inhibitor-induced genes are significantly downregulated in CYP1B1-deficient microarray, suggesting that nuclear caspase-1-induced CYP1B1 promotes strong inflammation. These transcriptomic results provide novel insights on the roles of nuclear caspase-1 in sensing DAMPs, inducing ROS promoter CYP1B1 and in regulating a large number of genes that mediate HAEC activation and inflammation. These findings will lead to future development of novel therapeutics for cardiovascular diseases (CVD), inflammations, infections, transplantation, autoimmune disease and cancers. (total words: 284).
Collapse
Affiliation(s)
- Yifan Lu
- Centers of Cardiovascular Research, Inflammation Lung Research, USA
| | | | - Yu Sun
- Centers of Cardiovascular Research, Inflammation Lung Research, USA
| | - Lu Liu
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, USA
| | - Keman Xu
- Centers of Cardiovascular Research, Inflammation Lung Research, USA
| | - Charles Drummer
- Centers of Cardiovascular Research, Inflammation Lung Research, USA
| | - Ying Shao
- Centers of Cardiovascular Research, Inflammation Lung Research, USA
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Inflammation Lung Research, USA
| | - Eric T Choi
- Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Inflammation Lung Research, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, USA
| | - Hong Wang
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, USA
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Inflammation Lung Research, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, USA.
| |
Collapse
|
21
|
Sander CL, Sears AE, Pinto AF, Choi EH, Kahremany S, Gao F, Salom D, Jin H, Pardon E, Suh S, Dong Z, Steyaert J, Saghatelian A, Skowronska-Krawczyk D, Kiser PD, Palczewski K. Nano-scale resolution of native retinal rod disk membranes reveals differences in lipid composition. J Cell Biol 2021; 220:e202101063. [PMID: 34132745 PMCID: PMC8240855 DOI: 10.1083/jcb.202101063] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Photoreceptors rely on distinct membrane compartments to support their specialized function. Unlike protein localization, identification of critical differences in membrane content has not yet been expanded to lipids, due to the difficulty of isolating domain-specific samples. We have overcome this by using SMA to coimmunopurify membrane proteins and their native lipids from two regions of photoreceptor ROS disks. Each sample's copurified lipids were subjected to untargeted lipidomic and fatty acid analysis. Extensive differences between center (rhodopsin) and rim (ABCA4 and PRPH2/ROM1) samples included a lower PC to PE ratio and increased LC- and VLC-PUFAs in the center relative to the rim region, which was enriched in shorter, saturated FAs. The comparatively few differences between the two rim samples likely reflect specific protein-lipid interactions. High-resolution profiling of the ROS disk lipid composition gives new insights into how intricate membrane structure and protein activity are balanced within the ROS, and provides a model for future studies of other complex cellular structures.
Collapse
Affiliation(s)
- Christopher L. Sander
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Avery E. Sears
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Antonio F.M. Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA
| | - Elliot H. Choi
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Shirin Kahremany
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Fangyuan Gao
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Hui Jin
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Els Pardon
- Vlaams Instituut voor Biotechnologie–Vrije Universiteit Brussel Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Susie Suh
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Zhiqian Dong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Jan Steyaert
- Vlaams Instituut voor Biotechnologie–Vrije Universiteit Brussel Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
| | - Philip D. Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
- Research Service, VA Long Beach Healthcare System, Long Beach, CA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
- Department of Chemistry, University of California, Irvine, Irvine, CA
| |
Collapse
|
22
|
Chen L, Fang Z, Wang X, Sun X, Ge X, Cheng C, Hu H. G protein-coupled receptor 39 activation alleviates oxidized low-density lipoprotein-induced macrophage inflammatory response, lipid accumulation and apoptosis by inducing A20 expression. Bioengineered 2021; 12:4070-4080. [PMID: 34288802 PMCID: PMC8806696 DOI: 10.1080/21655979.2021.1952917] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptor 39 (GPR39) agonist weakens oxidized low-density lipoprotein (ox-LDL)-induced attachment of monocytes to vascular endothelial cells and thus alleviates atherosclerosis. This study looks at whether GPR39 protects macrophages against ox-LDL-induced inflammation and apoptosis and ameliorates lipid accumulation in atherosclerosis and investigates its mechanism. Following inducement of ox-LDL, the expression of GPR39 and tumor necrosis factor alpha-induced protein 3 (TNFAIP3, also known as A20) in Raw 264.7 cells was detected by RT-qPCR and western blotting. The viability of macrophages treated with GPR39 agonist was detected by a cell counting kit 8 kit. GPR39 and A20 expression in ox-LDL-challenged macrophages was assayed by RT-qPCR and western blot with or without GPR30 agonist. After transfection of small interfering RNA (siRNA)-A20, the expression of pro-inflammatory cytokine tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 and anti-inflammatory cytokine IL-10 as well as NF-κB p65 and COX2 was detected. Lipid accumulation was observed through Oil Red O Staining. Total cholesterol (TC) and free cholesterol (FC) in macrophages were detected by commercial kits. Lastly, macrophage apoptosis was observed through TUNEL, and apoptosis-related proteins were detected by western blotting . Results indicated that decreased expression of GPR39 and A20 was observed in ox-LDL-induced macrophages. GPR39 agonist significantly increased A20 expression in ox-LDL-treated macrophages. Furthermore, A20 interference reversed the inhibitory effect of GPR39 agonist on ox-LDL-induced inflammation, lipid accumulation, TC and FC overexpression as well as cell apoptosis. In conclusion, activating GPR39 alleviates ox-LDL-induced macrophage inflammation, lipid accumulation and apoptosis in an A20-dependent manner.
Collapse
Affiliation(s)
- Lu Chen
- Department of Vascular Surgery, Provincial Hospital Affiliated to Anhui Medical University, Hefei City, Anhui Province, China
| | - Zhengdong Fang
- Department of Vascular Surgery, The First Affiliated Hospital of USTC, Hefei City, Anhui Province, China
| | - Xiaotian Wang
- Department of Vascular Surgery, The First Affiliated Hospital of USTC, Hefei City, Anhui Province, China
| | - Xiaojie Sun
- Department of Vascular Surgery, The First Affiliated Hospital of USTC, Hefei City, Anhui Province, China
| | - Xinbao Ge
- Department of Vascular Surgery, The First Affiliated Hospital of USTC, Hefei City, Anhui Province, China
| | - Can Cheng
- Department of Vascular Surgery, The First Affiliated Hospital of USTC, Hefei City, Anhui Province, China
| | - Hejie Hu
- Department of Vascular Surgery, The First Affiliated Hospital of USTC, Hefei City, Anhui Province, China
| |
Collapse
|
23
|
Gray N, Lawler NG, Zeng AX, Ryan M, Bong SH, Boughton BA, Bizkarguenaga M, Bruzzone C, Embade N, Wist J, Holmes E, Millet O, Nicholson JK, Whiley L. Diagnostic Potential of the Plasma Lipidome in Infectious Disease: Application to Acute SARS-CoV-2 Infection. Metabolites 2021; 11:467. [PMID: 34357361 PMCID: PMC8306636 DOI: 10.3390/metabo11070467] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Improved methods are required for investigating the systemic metabolic effects of SARS-CoV-2 infection and patient stratification for precision treatment. We aimed to develop an effective method using lipid profiles for discriminating between SARS-CoV-2 infection, healthy controls, and non-SARS-CoV-2 respiratory infections. Targeted liquid chromatography-mass spectrometry lipid profiling was performed on discovery (20 SARS-CoV-2-positive; 37 healthy controls; 22 COVID-19 symptoms but SARS-CoV-2negative) and validation (312 SARS-CoV-2-positive; 100 healthy controls) cohorts. Orthogonal projection to latent structure-discriminant analysis (OPLS-DA) and Kruskal-Wallis tests were applied to establish discriminant lipids, significance, and effect size, followed by logistic regression to evaluate classification performance. OPLS-DA reported separation of SARS-CoV-2 infection from healthy controls in the discovery cohort, with an area under the curve (AUC) of 1.000. A refined panel of discriminant features consisted of six lipids from different subclasses (PE, PC, LPC, HCER, CER, and DCER). Logistic regression in the discovery cohort returned a training ROC AUC of 1.000 (sensitivity = 1.000, specificity = 1.000) and a test ROC AUC of 1.000. The validation cohort produced a training ROC AUC of 0.977 (sensitivity = 0.855, specificity = 0.948) and a test ROC AUC of 0.978 (sensitivity = 0.948, specificity = 0.922). The lipid panel was also able to differentiate SARS-CoV-2-positive individuals from SARS-CoV-2-negative individuals with COVID-19-like symptoms (specificity = 0.818). Lipid profiling and multivariate modelling revealed a signature offering mechanistic insights into SARS-CoV-2, with strong predictive power, and the potential to facilitate effective diagnosis and clinical management.
Collapse
Affiliation(s)
- Nicola Gray
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; (N.G.); (N.G.L.); (A.X.Z.); (M.R.); (S.H.B.); (B.A.B.); (J.W.); (E.H.)
- Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Nathan G. Lawler
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; (N.G.); (N.G.L.); (A.X.Z.); (M.R.); (S.H.B.); (B.A.B.); (J.W.); (E.H.)
- Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Annie Xu Zeng
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; (N.G.); (N.G.L.); (A.X.Z.); (M.R.); (S.H.B.); (B.A.B.); (J.W.); (E.H.)
| | - Monique Ryan
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; (N.G.); (N.G.L.); (A.X.Z.); (M.R.); (S.H.B.); (B.A.B.); (J.W.); (E.H.)
| | - Sze How Bong
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; (N.G.); (N.G.L.); (A.X.Z.); (M.R.); (S.H.B.); (B.A.B.); (J.W.); (E.H.)
| | - Berin A. Boughton
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; (N.G.); (N.G.L.); (A.X.Z.); (M.R.); (S.H.B.); (B.A.B.); (J.W.); (E.H.)
- Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Maider Bizkarguenaga
- Centro de Investigación Cooperativa en Biociencias—CIC bioGUNE, Precision Medicine and Metabolism Laboratory, Basque Research and Technology Alliance, Bizkaia Science and Technology Park, Building 800, 48160 Derio, Spain; (M.B.); (C.B.); (N.E.)
| | - Chiara Bruzzone
- Centro de Investigación Cooperativa en Biociencias—CIC bioGUNE, Precision Medicine and Metabolism Laboratory, Basque Research and Technology Alliance, Bizkaia Science and Technology Park, Building 800, 48160 Derio, Spain; (M.B.); (C.B.); (N.E.)
| | - Nieves Embade
- Centro de Investigación Cooperativa en Biociencias—CIC bioGUNE, Precision Medicine and Metabolism Laboratory, Basque Research and Technology Alliance, Bizkaia Science and Technology Park, Building 800, 48160 Derio, Spain; (M.B.); (C.B.); (N.E.)
| | - Julien Wist
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; (N.G.); (N.G.L.); (A.X.Z.); (M.R.); (S.H.B.); (B.A.B.); (J.W.); (E.H.)
- Chemistry Department, Universidad del Valle, Cali 76001, Colombia
| | - Elaine Holmes
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; (N.G.); (N.G.L.); (A.X.Z.); (M.R.); (S.H.B.); (B.A.B.); (J.W.); (E.H.)
- Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - Oscar Millet
- Centro de Investigación Cooperativa en Biociencias—CIC bioGUNE, Precision Medicine and Metabolism Laboratory, Basque Research and Technology Alliance, Bizkaia Science and Technology Park, Building 800, 48160 Derio, Spain; (M.B.); (C.B.); (N.E.)
| | - Jeremy K. Nicholson
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; (N.G.); (N.G.L.); (A.X.Z.); (M.R.); (S.H.B.); (B.A.B.); (J.W.); (E.H.)
- Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Institute of Global Health Innovation, Faculty Building South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - Luke Whiley
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; (N.G.); (N.G.L.); (A.X.Z.); (M.R.); (S.H.B.); (B.A.B.); (J.W.); (E.H.)
- Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| |
Collapse
|
24
|
Lysophosphatidylcholine induces oxidative stress in human endothelial cells via NOX5 activation - implications in atherosclerosis. Clin Sci (Lond) 2021; 135:1845-1858. [PMID: 34269800 DOI: 10.1042/cs20210468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The mechanisms involved in NOX5 activation in atherosclerotic processes are not completely understood. This study tested the hypothesis that lysophosphatidylcholine (LPC), a proatherogenic component of oxLDL, induces endothelial calcium influx, which drives NOX5-dependent reactive oxygen species (ROS) production, oxidative stress, and endothelial cell dysfunction. Approach: Human aortic endothelial cells (HAEC) were stimulated with LPC (10-5 M, for different time points). Pharmacological inhibition of NOX5 (Melittin, 10-7 M) and NOX5 gene silencing (siRNA) were used to determine the role of NOX5-dependent ROS production in endothelial oxidative stress induced by LPC. ROS production was determined by lucigenin assay and electron paramagnetic spectroscopy (EPR), calcium transients by Fluo4 fluorimetry, and NOX5 activity and protein expression by pharmacological assays and immunoblotting, respectively. RESULTS LPC increased ROS generation in endothelial cells at short (15 min) and long (4 h) stimulation times. LPC-induced ROS was abolished by a selective NOX5 inhibitor and by NOX5 siRNA. NOX1/4 dual inhibition and selective NOX1 inhibition only decreased ROS generation at 4 h. LPC increased HAEC intracellular calcium, important for NOX5 activation, and this was blocked by nifedipine and thapsigargin. Bapta-AM, selective Ca2+ chelator, prevented LPC-induced ROS production. NOX5 knockdown decreased LPC-induced ICAM-1 mRNA expression and monocyte adhesion to endothelial cells. CONCLUSION These results suggest that NOX5, by mechanisms linked to increased intracellular calcium, is key to early LPC-induced endothelial oxidative stress and pro-inflammatory processes. Since these are essential events in the formation and progression of atherosclerotic lesions, this study highlights an important role for NOX5 in atherosclerosis.
Collapse
|
25
|
G-protein-coupled receptors as therapeutic targets for glioblastoma. Drug Discov Today 2021; 26:2858-2870. [PMID: 34271165 DOI: 10.1016/j.drudis.2021.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumour in adults. Treatments include surgical resection, radiotherapy, and chemotherapy. Despite this, the prognosis remains poor, with an impacted quality of life during treatment coupled with brain tumour recurrence; thus, new treatments are desperately needed. In this review, we focus on recent advances in G-protein-coupled receptor (GPCR) targets. To date, the most promising targets are the chemokine, cannabinoid, and dopamine receptors, but future work should further examine the melanocortin receptor-4 (MC4R), adhesion, lysophosphatidic acid (LPA) and smoothened (Smo) receptors to initiate new drug-screening strategies and targeted delivery of safe and effective GBM therapies.
Collapse
|
26
|
Shao Y, Saredy J, Xu K, Sun Y, Saaoud F, Drummer C, Lu Y, Luo JJ, Lopez-Pastrana J, Choi ET, Jiang X, Wang H, Yang X. Endothelial Immunity Trained by Coronavirus Infections, DAMP Stimulations and Regulated by Anti-Oxidant NRF2 May Contribute to Inflammations, Myelopoiesis, COVID-19 Cytokine Storms and Thromboembolism. Front Immunol 2021; 12:653110. [PMID: 34248940 PMCID: PMC8269631 DOI: 10.3389/fimmu.2021.653110] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
To characterize transcriptomic changes in endothelial cells (ECs) infected by coronaviruses, and stimulated by DAMPs, the expressions of 1311 innate immune regulatomic genes (IGs) were examined in 28 EC microarray datasets with 7 monocyte datasets as controls. We made the following findings: The majority of IGs are upregulated in the first 12 hours post-infection (PI), and maintained until 48 hours PI in human microvascular EC infected by middle east respiratory syndrome-coronavirus (MERS-CoV) (an EC model for COVID-19). The expressions of IGs are modulated in 21 human EC transcriptomic datasets by various PAMPs/DAMPs, including LPS, LPC, shear stress, hyperlipidemia and oxLDL. Upregulation of many IGs such as nucleic acid sensors are shared between ECs infected by MERS-CoV and those stimulated by PAMPs and DAMPs. Human heart EC and mouse aortic EC express all four types of coronavirus receptors such as ANPEP, CEACAM1, ACE2, DPP4 and virus entry facilitator TMPRSS2 (heart EC); most of coronavirus replication-transcription protein complexes are expressed in HMEC, which contribute to viremia, thromboembolism, and cardiovascular comorbidities of COVID-19. ECs have novel trained immunity (TI), in which subsequent inflammation is enhanced. Upregulated proinflammatory cytokines such as TNFα, IL6, CSF1 and CSF3 and TI marker IL-32 as well as TI metabolic enzymes and epigenetic enzymes indicate TI function in HMEC infected by MERS-CoV, which may drive cytokine storms. Upregulated CSF1 and CSF3 demonstrate a novel function of ECs in promoting myelopoiesis. Mechanistically, the ER stress and ROS, together with decreased mitochondrial OXPHOS complexes, facilitate a proinflammatory response and TI. Additionally, an increase of the regulators of mitotic catastrophe cell death, apoptosis, ferroptosis, inflammasomes-driven pyroptosis in ECs infected with MERS-CoV and the upregulation of pro-thrombogenic factors increase thromboembolism potential. Finally, NRF2-suppressed ROS regulate innate immune responses, TI, thrombosis, EC inflammation and death. These transcriptomic results provide novel insights on the roles of ECs in coronavirus infections such as COVID-19, cardiovascular diseases (CVD), inflammation, transplantation, autoimmune disease and cancers.
Collapse
Affiliation(s)
- Ying Shao
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jason Saredy
- Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Keman Xu
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yu Sun
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Charles Drummer
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yifan Lu
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jin J Luo
- Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jahaira Lopez-Pastrana
- Psychiatry and Behavioral Science, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Eric T Choi
- Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.,Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.,Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
27
|
Wu Y, Jiang L, Zhang H, Cheng S, Wen W, Xu L, Zhang F, Yang Y, Wang L, Chen J. Integrated analysis of microRNA and mRNA expression profiles in homozygous familial hypercholesterolemia patients and validation of atherosclerosis associated critical regulatory network. Genomics 2021; 113:2572-2582. [PMID: 34052320 DOI: 10.1016/j.ygeno.2021.05.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/07/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a rare, life-threatening genetic disorder characterized by an extremely elevated serum level of low-density lipoprotein cholesterol (LDL-C) and accelerated premature atherosclerotic cardiovascular diseases (ASCVD). However, the detailed mechanism of how the pathogenic mutations of HoFH trigger the acceleration of ASCVD is not well understood. Therefore, we performed high-throughput RNA and small RNA sequencing on the peripheral blood RNA samples of six HoFH patients and three healthy controls. The gene and miRNA expression differences were analyzed, and seven miRNAs and six corresponding genes were screened out through regulatory network analysis. Validation through quantitative PCR of genes and miRNAs from 52 HoFH patients and 20 healthy controls revealed that the expression levels of hsa-miR-486-3p, hsa-miR-941, and BIRC5 were significantly upregulated in HoFH, while ID1, PLA2G4C, and CACNA2D2 were downregulated. Spearman correlation analysis found that the levels of ID1, hsa-miR-941, and hsa-miR-486-3p were significantly correlated with additional ASCVD risk factors in HoFH patients. This study represents the first integrated analysis of transcriptome and miRNA expression profiles in patients with HoFH, a rare disease, and as a result, six differentially expressed miRNAs/genes that may be related to atherosclerosis in HoFH are reported. The miRNA-mRNA regulatory network may be the critical regulation mechanism by which ASCVD is accelerated in HoFH.
Collapse
Affiliation(s)
- Yue Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Atherosclerosis, Beijing AnZhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China.
| | - Long Jiang
- Department of Atherosclerosis, Beijing AnZhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China; Department of Cardiovascular, the Second Affiliated Hospital of Nanchang University, Nanchang 330006,China
| | - Huina Zhang
- Beijing AnZhen Hospital, Capital Medical University; Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Shitong Cheng
- Department of Laboratory Medicine, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Wenhui Wen
- Department of Atherosclerosis, Beijing AnZhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Liyuan Xu
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Feng Zhang
- Department of Laboratory Medicine, the Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Ya Yang
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Luya Wang
- Department of Atherosclerosis, Beijing AnZhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China.
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
28
|
Xue J, Allaband C, Zhou D, Poulsen O, Martino C, Jiang L, Tripathi A, Elijah E, Dorrestein PC, Knight R, Zarrinpar A, Haddad GG. Influence of Intermittent Hypoxia/Hypercapnia on Atherosclerosis, Gut Microbiome, and Metabolome. Front Physiol 2021; 12:663950. [PMID: 33897472 PMCID: PMC8060652 DOI: 10.3389/fphys.2021.663950] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023] Open
Abstract
Obstructive sleep apnea (OSA), a common sleep disorder characterized by intermittent hypoxia and hypercapnia (IHC), increases atherosclerosis risk. However, the contribution of intermittent hypoxia (IH) or intermittent hypercapnia (IC) in promoting atherosclerosis remains unclear. Since gut microbiota and metabolites have been implicated in atherosclerosis, we examined whether IH or IC alters the microbiome and metabolome to induce a pro-atherosclerotic state. Apolipoprotein E deficient mice (ApoE-/- ), treated with IH or IC on a high-fat diet (HFD) for 10 weeks, were compared to Air controls. Atherosclerotic lesions were examined, gut microbiome was profiled using 16S rRNA gene amplicon sequencing and metabolome was assessed by untargeted mass spectrometry. In the aorta, IC-induced atherosclerosis was significantly greater than IH and Air controls (aorta, IC 11.1 ± 0.7% vs. IH 7.6 ± 0.4%, p < 0.05 vs. Air 8.1 ± 0.8%, p < 0.05). In the pulmonary artery (PA), however, IH, IC, and Air were significantly different from each other in atherosclerotic formation with the largest lesion observed under IH (PA, IH 40.9 ± 2.0% vs. IC 20.1 ± 2.6% vs. Air 12.2 ± 1.5%, p < 0.05). The most differentially abundant microbial families (p < 0.001) were Peptostreptococcaceae, Ruminococcaceae, and Erysipelotrichaceae. The most differentially abundant metabolites (p < 0.001) were tauro-β-muricholic acid, ursodeoxycholic acid, and lysophosphoethanolamine (18:0). We conclude that IH and IC (a) modulate atherosclerosis progression differently in distinct vascular beds with IC, unlike IH, facilitating atherosclerosis in both aorta and PA and (b) promote an atherosclerotic luminal gut environment that is more evident in IH than IC. We speculate that the resulting changes in the gut metabolome and microbiome interact differently with distinct vascular beds.
Collapse
Affiliation(s)
- Jin Xue
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Celeste Allaband
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Biomedical Sciences Program, University of California, San Diego, San Diego, CA, United States
- Division of Gastroenterology, University of California, San Diego, San Diego, CA, United States
| | - Dan Zhou
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Orit Poulsen
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Cameron Martino
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Bioinformatics and Systems Biology Program, University of California, San Diego, San Diego, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, United States
| | - Lingjing Jiang
- Division of Biostatistics, University of California, San Diego, San Diego, CA, United States
| | - Anupriya Tripathi
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, United States
| | - Emmanuel Elijah
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, United States
- Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, San Diego, CA, United States
| | - Pieter C. Dorrestein
- Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, United States
- Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, San Diego, CA, United States
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, United States
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, San Diego, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, United States
- Division of Gastroenterology, VA San Diego, La Jolla, CA, United States
- Institute of Diabetes and Metabolic Health, University of California, San Diego, San Diego, CA, United States
| | - Gabriel G. Haddad
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Department of Neuroscience, University of California, San Diego, San Diego, CA, United States
- Rady Children’s Hospital, San Diego, CA, United States
| |
Collapse
|
29
|
Li X, Nakayama K, Goto T, Akamatsu S, Kobayashi T, Shimizu K, Ogawa O, Inoue T. A narrative review of urinary phospholipids: from biochemical aspect towards clinical application. Transl Androl Urol 2021; 10:1829-1849. [PMID: 33968673 PMCID: PMC8100843 DOI: 10.21037/tau-20-1263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As a newly emerged discipline, lipidomic studies have focused on the comprehensive characterization and quantification of lipids in a given biological system, which has remarkably advanced in recent years owing to the rapid development of analytical techniques, especially mass spectrometry. Among diverse lipid classes, phospholipids, which have fundamental roles in the formation of cellular membranes, signaling processes, and bioenergetics have gained momentum in several fields of research. The altered composition, concentration, spatial distribution, and metabolism of phospholipids in cells, tissues, and body fluids have been elucidated in various human diseases such as cancer, inflammation, as well as cardiovascular and metabolic disorders. Among the different kinds of phospholipid sources in the human body, urine has not been extensively investigated in recent years owing to the extremely low concentrations of phospholipids and high levels of salts and other contaminants, which can interfere with precise detection. However, with profound advances and rapid expansion in analytical methods, urinary phospholipids have attracted increasing attention in current biomedical research as urine is an easily available source for the discovery of noninvasive biomarkers. In this review, we provide an overview of urinary phospholipids, including their biochemical aspects and clinical applications, aimed at promoting this field of research.
Collapse
Affiliation(s)
- Xin Li
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Nakayama
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Goto
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Shimizu
- Clinical Research Center for Medical Equipment Development, Kyoto University Hospital, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
30
|
Circular RNAs are a novel type of non-coding RNAs in ROS regulation, cardiovascular metabolic inflammations and cancers. Pharmacol Ther 2020; 220:107715. [PMID: 33141028 DOI: 10.1016/j.pharmthera.2020.107715] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are a novel class of endogenous non-coding RNAs characterized by a covalently closed-loop structure generated through a special type of alternative splicing termed back-splicing. Currently, an increasing body of evidence has demonstrated that 1) majority of circRNAs are evolutionarily conserved across species, stable, and resistant to RNase R degradation, and often exhibit cell-specific, and tissue-specific/developmental-stage-specific expression and can be largely independent of the expression levels of the linear host gene-encoded linear RNAs; 2) the biogenesis of circRNAs via back-splicing is different from the canonical splicing of linear RNAs; 3) circRNA biogenesis is regulated by specific cis-acting elements and trans-acting factors; 4) circRNAs regulate biological and pathological processes by sponging miRNAs, binding to RNA-binding protein (RBP), regulators of splicing and transcription, modifiers of parental gene expression, and regulators of protein translation or being translated into peptides in various diseases; 5) circRNAs have been identified for their enrichment and stability in exosomes and detected in body fluids such as human blood, saliva, and cerebrospinal fluids, suggesting that these exo-circRNAs have potential applications as disease biomarkers and novel therapeutic targets; 6) several circRNAs are regulated by oxidative stress and mediate reactive oxygen species (ROS) production as well as promote ROS-induced cellular death, cell apoptosis, and inflammation; 7) circRNAs have also emerged as important regulators in atherosclerotic cardiovascular disease, metabolic disease, and cancers; 8) the potential mechanisms of several circRNAs have been described in diseases, hinting at their potential applications as novel therapeutic targets. In this highlight, we summarized the current understandings of the biogenesis and functions of circRNAs and their roles in ROS regulation and vascular inflammation-associated with cardiovascular and metabolic disease. (Word count: 272).
Collapse
|
31
|
Fu H, Sun Y, Shao Y, Saredy J, Cueto R, Liu L, Drummer C, Johnson C, Xu K, Lu Y, Li X, Meng S, Xue ER, Tan J, Jhala NC, Yu D, Zhou Y, Bayless KJ, Yu J, Rogers TJ, Hu W, Snyder NW, Sun J, Qin X, Jiang X, Wang H, Yang X. Interleukin 35 Delays Hindlimb Ischemia-Induced Angiogenesis Through Regulating ROS-Extracellular Matrix but Spares Later Regenerative Angiogenesis. Front Immunol 2020; 11:595813. [PMID: 33154757 PMCID: PMC7591706 DOI: 10.3389/fimmu.2020.595813] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL) 35 is a novel immunosuppressive heterodimeric cytokine in IL-12 family. Whether and how IL-35 regulates ischemia-induced angiogenesis in peripheral artery diseases are unrevealed. To fill this important knowledge gap, we used loss-of-function, gain-of-function, omics data analysis, RNA-Seq, in vivo and in vitro experiments, and we have made the following significant findings: i) IL-35 and its receptor subunit IL-12RB2, but not IL-6ST, are induced in the muscle after hindlimb ischemia (HLI); ii) HLI-induced angiogenesis is improved in Il12rb2-/- mice, in ApoE-/-/Il12rb2-/- mice compared to WT and ApoE-/- controls, respectively, where hyperlipidemia inhibits angiogenesis in vivo and in vitro; iii) IL-35 cytokine injection as a gain-of-function approach delays blood perfusion recovery at day 14 after HLI; iv) IL-35 spares regenerative angiogenesis at the late phase of HLI recovery after day 14 of HLI; v) Transcriptome analysis of endothelial cells (ECs) at 14 days post-HLI reveals a disturbed extracellular matrix re-organization in IL-35-injected mice; vi) IL-35 downregulates three reactive oxygen species (ROS) promoters and upregulates one ROS attenuator, which may functionally mediate IL-35 upregulation of anti-angiogenic extracellular matrix proteins in ECs; and vii) IL-35 inhibits human microvascular EC migration and tube formation in vitro mainly through upregulating anti-angiogenic extracellular matrix-remodeling proteins. These findings provide a novel insight on the future therapeutic potential of IL-35 in suppressing ischemia/inflammation-triggered inflammatory angiogenesis at early phase but sparing regenerative angiogenesis at late phase.
Collapse
Affiliation(s)
- Hangfei Fu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jason Saredy
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ramon Cueto
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Lu Liu
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Candice Johnson
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xinyuan Li
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Shu Meng
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Eric R Xue
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Judy Tan
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nirag C Jhala
- Department of Pathology & Laboratory Medicine Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States
| | - Jun Yu
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Thomas J Rogers
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Wenhui Hu
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nathaniel W Snyder
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Xuebin Qin
- National Primate Research Center, Tulane University, Covington, LA, United States
| | - Xiaohua Jiang
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
32
|
Cao J, Goossens P, Martin-Lorenzo M, Dewez F, Claes BSR, Biessen EAL, Heeren RMA, Balluff B. Atheroma-Specific Lipids in ldlr-/- and apoe-/- Mice Using 2D and 3D Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1825-1832. [PMID: 32872786 PMCID: PMC7472746 DOI: 10.1021/jasms.0c00070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Atherosclerosis is the major contributor to cardiovascular diseases. It is a spatially and temporally complex inflammatory disease, in which intravascular accumulation of a plethora of lipids is considered to play a crucial role. To date, both the composition and local distribution of the involved lipids have not been thoroughly mapped yet. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) enables analyzing and visualizing hundreds of lipid molecules within the plaque while preserving each lipid's specific location. In this study, we aim to identify and verify aortic plaque-specific lipids with high-spatial-resolution 2D and 3D MALDI-MSI common to high-fat-diet-fed low-density lipoprotein receptor deficient (ldlr-/-) mice and chow-fed apolipoprotein E deficient (apoe-/-) mice, the two most widely used animal models for atherosclerosis. A total of 11 lipids were found to be significantly and specifically colocalized to the plaques in both mouse models. These were identified and belong to one sphingomyelin (SM), three lysophosphatidic acids (LPA), four lysophosphatidylcholines (LPC), two lysophosphatidylethanolamines (LPE), and one lysophosphatidylinositol (LPI). While these lysolipids and SM 34:0;2 were characteristic of the atherosclerotic aorta plaque itself, LPI 18:0 was mainly localized in the necrotic core of the plaque.
Collapse
Affiliation(s)
- Jianhua Cao
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
| | - Pieter Goossens
- Maastricht UMC+, Pathology Department,
Cardiovascular Research Institute Maastricht (CARIM), 6202 AZ
Maastricht, The Netherlands
| | - Marta Martin-Lorenzo
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
- Immunology Department, IIS-Fundacion
Jimenez Diaz-UAM, 28040 Madrid, Spain
| | - Frédéric Dewez
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
- Mass Spectrometry Laboratory (MSLab),
University of Liège, B-4000 Liège,
Belgium
| | - Britt S. R. Claes
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
| | - Erik A. L. Biessen
- Maastricht UMC+, Pathology Department,
Cardiovascular Research Institute Maastricht (CARIM), 6202 AZ
Maastricht, The Netherlands
| | - Ron M. A. Heeren
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
| | - Benjamin Balluff
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
| |
Collapse
|
33
|
Sun Y, Lu Y, Saredy J, Wang X, Drummer Iv C, Shao Y, Saaoud F, Xu K, Liu M, Yang WY, Jiang X, Wang H, Yang X. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol 2020; 37:101696. [PMID: 32950427 PMCID: PMC7767745 DOI: 10.1016/j.redox.2020.101696] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are critical for the progression of cardiovascular diseases, inflammations and tumors. However, the mechanisms of how ROS sense metabolic stress, regulate metabolic pathways and initiate proliferation, inflammation and cell death responses remain poorly characterized. In this analytic review, we concluded that: 1) Based on different features and functions, eleven types of ROS can be classified into seven functional groups: metabolic stress-sensing, chemical connecting, organelle communication, stress branch-out, inflammasome-activating, dual functions and triple functions ROS. 2) Among the ROS generation systems, mitochondria consume the most amount of oxygen; and nine types of ROS are generated; thus, mitochondrial ROS systems serve as the central hub for connecting ROS with inflammasome activation, trained immunity and immunometabolic pathways. 3) Increased nuclear ROS production significantly promotes cell death in comparison to that in other organelles. Nuclear ROS systems serve as a convergent hub and decision-makers to connect unbearable and alarming metabolic stresses to inflammation and cell death. 4) Balanced ROS levels indicate physiological homeostasis of various metabolic processes in subcellular organelles and cytosol, while imbalanced ROS levels present alarms for pathological organelle stresses in metabolic processes. Based on these analyses, we propose a working model that ROS systems are a new integrated network for sensing homeostasis and alarming stress in metabolic processes in various subcellular organelles. Our model provides novel insights on the roles of the ROS systems in bridging metabolic stress to inflammation, cell death and tumorigenesis; and provide novel therapeutic targets for treating those diseases. (Word count: 246).
Collapse
Affiliation(s)
- Yu Sun
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Yifan Lu
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Jason Saredy
- Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xianwei Wang
- Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Charles Drummer Iv
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Ying Shao
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Fatma Saaoud
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Keman Xu
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Ming Liu
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - William Y Yang
- Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaohua Jiang
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA; Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA; Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
34
|
Wasserman AH, Venkatesan M, Aguirre A. Bioactive Lipid Signaling in Cardiovascular Disease, Development, and Regeneration. Cells 2020; 9:E1391. [PMID: 32503253 PMCID: PMC7349721 DOI: 10.3390/cells9061391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of death globally. Understanding and characterizing the biochemical context of the cardiovascular system in health and disease is a necessary preliminary step for developing novel therapeutic strategies aimed at restoring cardiovascular function. Bioactive lipids are a class of dietary-dependent, chemically heterogeneous lipids with potent biological signaling functions. They have been intensively studied for their roles in immunity, inflammation, and reproduction, among others. Recent advances in liquid chromatography-mass spectrometry techniques have revealed a staggering number of novel bioactive lipids, most of them unknown or very poorly characterized in a biological context. Some of these new bioactive lipids play important roles in cardiovascular biology, including development, inflammation, regeneration, stem cell differentiation, and regulation of cell proliferation. Identifying the lipid signaling pathways underlying these effects and uncovering their novel biological functions could pave the way for new therapeutic strategies aimed at CVD and cardiovascular regeneration.
Collapse
Affiliation(s)
- Aaron H. Wasserman
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Manigandan Venkatesan
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Aitor Aguirre
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
35
|
Meckelmann SW, Hawksworth JI, White D, Andrews R, Rodrigues P, O'Connor A, Alvarez-Jarreta J, Tyrrell VJ, Hinz C, Zhou Y, Williams J, Aldrovandi M, Watkins WJ, Engler AJ, Lo Sardo V, Slatter DA, Allen SM, Acharya J, Mitchell J, Cooper J, Aoki J, Kano K, Humphries SE, O'Donnell VB. Metabolic Dysregulation of the Lysophospholipid/Autotaxin Axis in the Chromosome 9p21 Gene SNP rs10757274. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e002806. [PMID: 32396387 PMCID: PMC7299226 DOI: 10.1161/circgen.119.002806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Common chromosome 9p21 single nucleotide polymorphisms (SNPs) increase coronary heart disease risk, independent of traditional lipid risk factors. However, lipids comprise large numbers of structurally related molecules not measured in traditional risk measurements, and many have inflammatory bioactivities. Here, we applied lipidomic and genomic approaches to 3 model systems to characterize lipid metabolic changes in common Chr9p21 SNPs, which confer ≈30% elevated coronary heart disease risk associated with altered expression of ANRIL, a long ncRNA. METHODS Untargeted and targeted lipidomics was applied to plasma from NPHSII (Northwick Park Heart Study II) homozygotes for AA or GG in rs10757274, followed by correlation and network analysis. To identify candidate genes, transcriptomic data from shRNA downregulation of ANRIL in HEK-293 cells was mined. Transcriptional data from vascular smooth muscle cells differentiated from induced pluripotent stem cells of individuals with/without Chr9p21 risk, nonrisk alleles, and corresponding knockout isogenic lines were next examined. Last, an in-silico analysis of miRNAs was conducted to identify how ANRIL might control lysoPL (lysophosphospholipid)/lysoPA (lysophosphatidic acid) genes. RESULTS Elevated risk GG correlated with reduced lysoPLs, lysoPA, and ATX (autotaxin). Five other risk SNPs did not show this phenotype. LysoPL-lysoPA interconversion was uncoupled from ATX in GG plasma, suggesting metabolic dysregulation. Significantly altered expression of several lysoPL/lysoPA metabolizing enzymes was found in HEK cells lacking ANRIL. In the vascular smooth muscle cells data set, the presence of risk alleles associated with altered expression of several lysoPL/lysoPA enzymes. Deletion of the risk locus reversed the expression of several lysoPL/lysoPA genes to nonrisk haplotype levels. Genes that were altered across both cell data sets were DGKA, MBOAT2, PLPP1, and LPL. The in-silico analysis identified 4 ANRIL-regulated miRNAs that control lysoPL genes as miR-186-3p, miR-34a-3p, miR-122-5p, and miR-34a-5p. CONCLUSIONS A Chr9p21 risk SNP associates with complex alterations in immune-bioactive phospholipids and their metabolism. Lipid metabolites and genomic pathways associated with coronary heart disease pathogenesis in Chr9p21 and ANRIL-associated disease are demonstrated.
Collapse
Affiliation(s)
- Sven W Meckelmann
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom.,Applied Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany (S.W.M.)
| | - Jade I Hawksworth
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Daniel White
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Robert Andrews
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Patricia Rodrigues
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Anne O'Connor
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Jorge Alvarez-Jarreta
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Victoria J Tyrrell
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Christine Hinz
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - You Zhou
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Julie Williams
- Division of Neuropsychiatric Genetics and Genomics and Dementia Research Institute at Cardiff, School of Medicine (J.W.), Cardiff University, United Kingdom
| | - Maceler Aldrovandi
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - William J Watkins
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Adam J Engler
- Department of Bioengineering, University of San Diego, La Jolla, CA (A.J.E.)
| | - Valentina Lo Sardo
- Department of Cellular and Molecular Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (V.L.S.)
| | - David A Slatter
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Stuart M Allen
- School of Computer Science and Informatics (S.M.A.), Cardiff University, United Kingdom
| | - Jay Acharya
- Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (J. Acharya, J.M., J.C., S.E.H.)
| | - Jacquie Mitchell
- Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (J. Acharya, J.M., J.C., S.E.H.)
| | - Jackie Cooper
- Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (J. Acharya, J.M., J.C., S.E.H.)
| | - Junken Aoki
- School of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (J. Aoki, K.K.)
| | - Kuniyuki Kano
- School of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (J. Aoki, K.K.)
| | | | - Valerie B O'Donnell
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| |
Collapse
|
36
|
Hao Y, Guo M, Feng Y, Dong Q, Cui M. Lysophospholipids and Their G-Coupled Protein Signaling in Alzheimer's Disease: From Physiological Performance to Pathological Impairment. Front Mol Neurosci 2020; 13:58. [PMID: 32351364 PMCID: PMC7174595 DOI: 10.3389/fnmol.2020.00058] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Lysophospholipids (LPLs) are bioactive signaling lipids that are generated from phospholipase-mediated hydrolyzation of membrane phospholipids (PLs) and sphingolipids (SLs). Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are two of the best-characterized LPLs which mediate a variety of cellular physiological responses via specific G-protein coupled receptor (GPCR) mediated signaling pathways. Considerable evidence now demonstrates the crucial role of LPA and S1P in neurodegenerative diseases, especially in Alzheimer’s disease (AD). Dysfunction of LPA and S1P metabolism can lead to aberrant accumulation of amyloid-β (Aβ) peptides, the formation of neurofibrillary tangles (NFTs), neuroinflammation and ultimately neuronal death. Summarizing LPA and S1P signaling profile may aid in profound health and pathological processes. In the current review, we will introduce the metabolism as well as the physiological roles of LPA and S1P in maintaining the normal functions of the nervous system. Given these pivotal functions, we will further discuss the role of dysregulation of LPA and S1P in promoting AD pathogenesis.
Collapse
Affiliation(s)
- Yining Hao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwei Feng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Wang Y, Pan W, Wang Y, Yin Y. The GPR55 antagonist CID16020046 protects against ox-LDL-induced inflammation in human aortic endothelial cells (HAECs). Arch Biochem Biophys 2020; 681:108254. [PMID: 31904362 DOI: 10.1016/j.abb.2020.108254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 11/28/2022]
Abstract
Atherosclerosis is a commonplace cardiovascular disease which affects most people in old age. While its causes are currently poorly understood, continuous study is being performed in order to elucidate both the pathogenesis and treatment of this insidious disease. Atherosclerosis is presently thought to be linked to several factors such as endothelial dysfunction, monocyte adhesion to the intima of the artery, and increased oxidative stress. Oxidized low-density lipoprotein (ox-LDL), colloquially known as the "bad cholesterol", is known to play a critical role in the previously mentioned atherosclerotic processes. In this study, our goal was to elucidate the role of the lysophospholipid receptor G protein-coupled receptor 55 (GPR55) and its antagonist, the cannabinoid CID16020046, in endothelial dysfunction. While their existence and especially their role in atherosclerosis has only semi-recently been elucidated, a growing body of research has begun to link their interaction to antiatherosclerosis. In our research, we found CID16020046 to have distinct atheroprotective properties such as anti-inflammation, antioxidant, and inhibition of monocyte attachment to endothelial cells. While there was previously a small body of research regarding the potential of cannabinoids to treat or prevent atherosclerosis, studies on the treatment potential of CID16020046 were even fewer. Thus, this study is one of the first to explore the effects of cannabinoids in atherosclerosis. Our findings in the present study provide a strong argument for the use of CID16020046 in the treatment of atherosclerosis as well as a basis for further experimentation using cannabinoids as therapy against atherosclerosis.
Collapse
Affiliation(s)
- Yaowen Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, 400010, China
| | - Wei Pan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, 400010, China; Department of Endocrinology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563006, China.
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, 400010, China.
| |
Collapse
|
38
|
Chei S, Song JH, Oh HJ, Lee K, Jin H, Choi SH, Nah SY, Lee BY. Gintonin-Enriched Fraction Suppresses Heat Stress-Induced Inflammation Through LPA Receptor. Molecules 2020; 25:molecules25051019. [PMID: 32106493 PMCID: PMC7179209 DOI: 10.3390/molecules25051019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/12/2023] Open
Abstract
Heat stress can be caused by various environmental factors. When exposed to heat stress, oxidative stress and inflammatory reaction occur due to an increase of reactive oxygen species (ROS) in the body. In particular, inflammatory responses induced by heat stress are common in muscle cells, which are the most exposed to heat stress and directly affected. Gintonin-Enriched Fraction (GEF) is a non-saponin component of ginseng, a glycolipoprotein. It is known that it has excellent neuroprotective effects, therefore, we aimed to confirm the protective effect against heat stress by using GEF. C2C12 cells were exposed to high temperature stress for 1, 12 and 15 h, and the expression of signals was analyzed over time. Changes in the expression of the factors that were observed under heat stress were confirmed at the protein level. Exposure to heat stress increases phosphorylation of p38 and extracellular signal-regulated kinase (ERK) and increases expression of inflammatory factors such as NLRP3 inflammasome through lysophosphatidic acid (LPA) receptor. Activated inflammatory signals also increase the secretion of inflammatory cytokines such as interleukin 6 (IL-6) and interleukin 18 (IL-18). Also, expression of glutathione reductase (GR) and catalase related to oxidative stress is increased. However, it was confirmed that the changes due to the heat stress were suppressed by the GEF treatment. Therefore, we suggest that GEF helps to protect heat stress in muscle cell and prevent tissue damage by oxidative stress and inflammation.
Collapse
Affiliation(s)
- Sungwoo Chei
- Department of Biomedical Sciences, CHA University, Seongnam-si 13488, Gyeonggi-do, Korea; (S.C.); (J.-H.S.); (H.-J.O.); (K.L.); (H.J.)
| | - Ji-Hyeon Song
- Department of Biomedical Sciences, CHA University, Seongnam-si 13488, Gyeonggi-do, Korea; (S.C.); (J.-H.S.); (H.-J.O.); (K.L.); (H.J.)
| | - Hyun-Ji Oh
- Department of Biomedical Sciences, CHA University, Seongnam-si 13488, Gyeonggi-do, Korea; (S.C.); (J.-H.S.); (H.-J.O.); (K.L.); (H.J.)
| | - Kippeum Lee
- Department of Biomedical Sciences, CHA University, Seongnam-si 13488, Gyeonggi-do, Korea; (S.C.); (J.-H.S.); (H.-J.O.); (K.L.); (H.J.)
| | - Heegu Jin
- Department of Biomedical Sciences, CHA University, Seongnam-si 13488, Gyeonggi-do, Korea; (S.C.); (J.-H.S.); (H.-J.O.); (K.L.); (H.J.)
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (S.-H.C.); (S.-Y.N.)
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (S.-H.C.); (S.-Y.N.)
| | - Boo-Yong Lee
- Department of Biomedical Sciences, CHA University, Seongnam-si 13488, Gyeonggi-do, Korea; (S.C.); (J.-H.S.); (H.-J.O.); (K.L.); (H.J.)
- Correspondence: ; Tel.: +82-31-881-7155
| |
Collapse
|
39
|
Alatibi KI, Wehbe Z, Spiekerkoetter U, Tucci S. Sex-specific perturbation of complex lipids in response to medium-chain fatty acids in very long-chain acyl-CoA dehydrogenase deficiency. FEBS J 2020; 287:3511-3525. [PMID: 31971349 DOI: 10.1111/febs.15221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/28/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022]
Abstract
Very-long-chain acyl-CoA dehydrogenase deficiency (VLCAD) is the most common defect of long-chain fatty acid β-oxidation. The recommended treatment includes the application of medium-chain triacylglycerols (MCTs). However, long-term treatment of VLCAD-/- mice resulted in the development of a sex-specific metabolic syndrome due to the selective activation of the ERK/mTORc1 signalling in females and ERK/peroxisome proliferator-activated receptor gamma pathway in males. In order to investigate a subsequent sex-specific effect of MCT on the lipid composition of the cellular membranes, we performed lipidomic analysis, SILAC-based quantitative proteomics and gene expression in fibroblasts from WT and VLCAD-/- mice of both sexes. Treatment with octanoate (C8) affected the composition of complex lipids resulting in a sex-specific signature of the molecular profile. The content of ceramides and sphingomyelins in particular differed significantly under control conditions and increased markedly in cells from mutant female mice but remained unchanged in cells from mutant males. Moreover, we observed a specific upregulation of biosynthesis of plasmalogens only in male mice, whereas in females C8 led to the accumulation of higher concentration of phosphatidylcholines and lysophosphatidylcholines. Our data on membrane lipids in VLCAD after supplementation with C8 provide evidence of a sex-specific lipid perturbation. We hypothesize a likely C8-induced pro-inflammatory response contributing to the development of a severe metabolic syndrome in female VLCAD-/- mice on long-term MCT supplementation.
Collapse
Affiliation(s)
- Khaled I Alatibi
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Germany
| | - Zeinab Wehbe
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Pediatrics and Adolescent Medicine, Center for Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Sara Tucci
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
40
|
Li X, Fang P, Sun Y, Shao Y, Yang WY, Jiang X, Wang H, Yang X. Anti-inflammatory cytokines IL-35 and IL-10 block atherogenic lysophosphatidylcholine-induced, mitochondrial ROS-mediated innate immune activation, but spare innate immune memory signature in endothelial cells. Redox Biol 2019; 28:101373. [PMID: 31731100 PMCID: PMC6920093 DOI: 10.1016/j.redox.2019.101373] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/28/2019] [Accepted: 11/03/2019] [Indexed: 12/15/2022] Open
Abstract
It has been shown that anti-inflammatory cytokines interleukin-35 (IL-35) and IL-10 could inhibit acute endothelial cell (EC) activation, however, it remains unknown if and by what pathways IL-35 and IL-10 could block atherogenic lipid lysophosphatidylcholine (LPC)-induced sustained EC activation; and if mitochondrial reactive oxygen species (mtROS) can differentiate mediation of EC activation from trained immunity (innate immune memory). Using RNA sequencing analyses, biochemical assays, as well as database mining approaches, we compared the effects of IL-35 and IL-10 in LPC-treated human aortic ECs (HAECs). Principal component analysis revealed that both IL-35 and IL-10 could similarly and partially reverse global transcriptome changes induced by LPC. Gene set enrichment analyses showed that while IL-35 and IL-10 could both block acute EC activation, characterized by upregulation of cytokines/chemokines and adhesion molecules, IL-35 is more potent than IL-10 in suppressing innate immune signatures upregulated by LPC. Surprisingly, LPC did not induce the expression of trained tolerance itaconate pathway enzymes but induced trained immunity enzyme expressions; and neither IL-35 nor IL-10 was found to affect LPC-induced trained immunity gene signatures. Mechanistically, IL-35 and IL-10 could suppress mtROS, which partially mediate LPC-induced EC activation and innate immune response. Therefore, anti-inflammatory cytokines could reverse mtROS-mediated acute and innate immune trans-differentiation responses in HAECs, but it could spare metabolic reprogramming and trained immunity signatures, which may not fully depend on mtROS. Our characterizations of anti-inflammatory cytokines in blocking mtROS-mediated acute and prolonged EC activation, and sparing trained immunity are significant for designing novel strategies for treating cardiovascular diseases, other inflammatory diseases, and cancers.
Collapse
Affiliation(s)
- Xinyuan Li
- Centers for Inflammation, Translational & Clinical Lung Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Pu Fang
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Yu Sun
- Centers for Inflammation, Translational & Clinical Lung Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Ying Shao
- Centers for Inflammation, Translational & Clinical Lung Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - William Y Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Xiaohua Jiang
- Centers for Inflammation, Translational & Clinical Lung Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA; Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Centers for Inflammation, Translational & Clinical Lung Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA; Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
41
|
Lu Y, Sun Y, Drummer C, Nanayakkara GK, Shao Y, Saaoud F, Johnson C, Zhang R, Yu D, Li X, Yang WY, Yu J, Jiang X, Choi ET, Wang H, Yang X. Increased acetylation of H3K14 in the genomic regions that encode trained immunity enzymes in lysophosphatidylcholine-activated human aortic endothelial cells - Novel qualification markers for chronic disease risk factors and conditional DAMPs. Redox Biol 2019; 24:101221. [PMID: 31153039 PMCID: PMC6543097 DOI: 10.1016/j.redox.2019.101221] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
To test our hypothesis that proatherogenic lysophosphatidylcholine (LPC) upregulates trained immunity pathways (TIPs) in human aortic endothelial cells (HAECs), we conducted an intensive analyses on our RNA-Seq data and histone 3 lysine 14 acetylation (H3K14ac)-CHIP-Seq data, both performed on HAEC treated with LPC. Our analysis revealed that: 1) LPC induces upregulation of three TIPs including glycolysis enzymes (GE), mevalonate enzymes (ME), and acetyl-CoA generating enzymes (ACE); 2) LPC induces upregulation of 29% of 31 histone acetyltransferases, three of which acetylate H3K14; 3) LPC induces H3K14 acetylation (H3K14ac) in the genomic DNA that encodes LPC-induced TIP genes (79%) in comparison to that of in LPC-induced effector genes (43%) including ICAM-1; 4) TIP pathways are significantly different from that of EC activation effectors including adhesion molecule ICAM-1; 5) reactive oxygen species generating enzyme NOX2 deficiency decreases, but antioxidant transcription factor Nrf2 deficiency increases, the expressions of a few TIP genes and EC activation effector genes; and 6) LPC induced TIP genes(81%) favor inter-chromosomal long-range interactions (CLRI, trans-chromatin interaction) while LPC induced effector genes (65%) favor intra-chromosomal CLRIs (cis-chromatin interaction). Our findings demonstrated that proatherogenic lipids upregulate TIPs in HAECs, which are a new category of qualification markers for chronic disease risk factors and conditional DAMPs and potential mechanisms for acute inflammation transition to chronic ones. These novel insights may lead to identifications of new cardiovascular risk factors in upregulating TIPs in cardiovascular cells and novel therapeutic targets for the treatment of metabolic cardiovascular diseases, inflammation, and cancers. (total words: 245).
Collapse
Affiliation(s)
- Yifan Lu
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yu Sun
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Charles Drummer
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Gayani K Nanayakkara
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ying Shao
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Fatma Saaoud
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Candice Johnson
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ruijing Zhang
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xinyuan Li
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - William Y Yang
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Jun Yu
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaohua Jiang
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Eric T Choi
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Division of Vascular & Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
42
|
Li A, Sun Y, Drummer C, Lu Y, Yu D, Zhou Y, Li X, Pearson SJ, Johnson C, Yu C, Yang WY, Mastascusa K, Jiang X, Sun J, Rogers T, Hu W, Wang H, Yang X. Increasing Upstream Chromatin Long-Range Interactions May Favor Induction of Circular RNAs in LysoPC-Activated Human Aortic Endothelial Cells. Front Physiol 2019; 10:433. [PMID: 31057422 PMCID: PMC6482593 DOI: 10.3389/fphys.2019.00433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/28/2019] [Indexed: 01/10/2023] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs that form covalently closed continuous loops, and act as gene regulators in physiological and disease conditions. To test our hypothesis that proatherogenic lipid lysophosphatidylcholine (LPC) induce a set of circRNAs in human aortic endothelial cell (HAEC) activation, we performed circRNA analysis by searching our RNA-Seq data from LPC-activated HAECs, and found: (1) LPC induces significant modulation of 77 newly characterized cirRNAs, among which 47 circRNAs (61%) are upregulated; (2) 34 (72%) out of 47 upregulated circRNAs are upregulated when the corresponding mRNAs are downregulated, suggesting that the majority of circRNAs are upregulated presumably via LPC-induced “abnormal splicing” when the canonical splicing for generation of corresponding mRNAs is suppressed; (3) Upregulation of 47 circRNAs is temporally associated with mRNAs-mediated LPC-upregulated cholesterol synthesis-SREBP2 pathway and LPC-downregulated TGF-β pathway; (4) Increase in upstream chromatin long-range interaction sites to circRNA related genes is associated with preferred circRNA generation over canonical splicing for mRNAs, suggesting that shifting chromatin long-range interaction sites from downstream to upstream may promote induction of a list of circRNAs in lysoPC-activated HAECs; (5) Six significantly changed circRNAs may have sponge functions for miRNAs; and (6) 74% significantly changed circRNAs contain open reading frames, suggesting that putative short proteins may interfere with the protein interaction-based signaling. Our findings have demonstrated for the first time that a new set of LPC-induced circRNAs may contribute to homeostasis in LPC-induced HAEC activation. These novel insights may lead to identifications of new therapeutic targets for treating metabolic cardiovascular diseases, inflammations, and cancers.
Collapse
Affiliation(s)
- Angus Li
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Yu Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States
| | - Xinyuan Li
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Simone J Pearson
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Candice Johnson
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Catherine Yu
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | - William Y Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Kevin Mastascusa
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Philadelphia University - Thomas Jefferson University, Philadelphia, PA, United States
| | - Thomas Rogers
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Wenhui Hu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
43
|
Yan Y, Du Z, Chen C, Li J, Xiong X, Zhang Y, Jiang H. Lysophospholipid profiles of apolipoprotein E-deficient mice reveal potential lipid biomarkers associated with atherosclerosis progression using validated UPLC-QTRAP-MS/MS-based lipidomics approach. J Pharm Biomed Anal 2019; 171:148-157. [PMID: 30999225 DOI: 10.1016/j.jpba.2019.03.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 01/19/2023]
Abstract
Lysophospholipids (Lyso-PLs) are lipid-derived signaling molecules which were demonstrated to have a strong correlation with the progression of atherosclerosis. In this study, we investigated the influence of high-fat diet on Lyso-PL profiles of atherosclerosis-prone apolipoprotein E-deficient (ApoE-/-) mice and wild type C57BL/6 J mice to find out the potential biomarkers associated with atherosclerosis. Firstly, the quantitative profiling method for Lyso-PLs based on ultra-performance liquid chromatography-quadrupole linear ion trap mass spectrometry (UPLC-QTRAP-MS/MS) was established and validated. Secondly, this method was utilized to quantify 169 targeted Lyso-PLs in plasma samples of ApoE-/- mice and wild type C57BL/6 J mice collected at different time points. Finally, 12 of 37 differential Lyso-PLs were identified as more reliable biomarkers by integrating static metabolomics and time-dependent analyses, among which Lyso-PC/15:0, 18:1/Lyso-PI, 22:5/Lyso-PI and 22:4/Lyso-PI were highly correlated with TCand LDL-C levels. Meanwhile, we found that the Lyso-PL profiles of ApoE-/- mice and C57BL/6 J mice were distinguished by altered metabolism of different Lyso-PLs classes, while C57BL/6 J mice fed with high-fat diet and normal diet were discriminated by the content differences of Lyso-PLs with same fatty acid composition. In conclusion, these results provided detailed changes of Lyso-PL profiles associated with atherosclerosis and the differential Lyso-PLs with reasonable change trends may serve as promising biomarkers for atherosclerosis progression.
Collapse
Affiliation(s)
- Yingfei Yan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Zhifeng Du
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jiaxin Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Xiong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Department of Pharmacy, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
44
|
Plasma lipidomic profiling in murine mutants of Hermansky-Pudlak syndrome reveals differential changes in pro- and anti-atherosclerotic lipids. Biosci Rep 2019; 39:BSR20182339. [PMID: 30710063 PMCID: PMC6379572 DOI: 10.1042/bsr20182339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is characterized by the accumulation of lipid-rich plaques in the arterial wall. Its pathogenesis is very complicated and has not yet been fully elucidated. It is known that dyslipidemia is a major factor in atherosclerosis. Several different Hermansky-Pudlak syndrome (HPS) mutant mice have been shown either anti-atherosclerotic or atherogenic phenotypes, which may be mainly attributed to corresponding lipid perturbation. To explore the effects of different HPS proteins on lipid metabolism and plasma lipid composition, we analyzed the plasma lipid profiles of three HPS mutant mice, pa (Hps9 -/-), ru (Hps6 -/-), ep (Hps1 -/-), and wild-type (WT) mice. In pa and ru mice, some pro-atherosclerotic lipids, e.g. ceramide (Cer) and diacylglycerol (DAG), were down-regulated whereas triacylglycerol (TAG) containing docosahexaenoic acid (DHA) (22:6) fatty acyl was up-regulated when compared with WT mice. Several pro-atherosclerotic lipids including phosphatidic acid (PA), lysophosphatidylserine (LPS), sphingomyelin (SM), and cholesterol (Cho) were up-regulated in ep mice compared with WT mice. The lipid droplets in hepatocytes showed corresponding changes in these mutants. Our data suggest that the pa mutant resembles the ru mutant in its anti-atherosclerotic effects, but the ep mutant has an atherogenic effect. Our findings may provide clues to explain why different HPS mutant mice exhibit distinct anti-atherosclerotic or atherogenic effects after being exposed to high-cholesterol diets.
Collapse
|
45
|
Wepy JA, Galligan JJ, Kingsley PJ, Xu S, Goodman MC, Tallman KA, Rouzer CA, Marnett LJ. Lysophospholipases cooperate to mediate lipid homeostasis and lysophospholipid signaling. J Lipid Res 2018; 60:360-374. [PMID: 30482805 DOI: 10.1194/jlr.m087890] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
Lysophospholipids (LysoPLs) are bioactive lipid species involved in cellular signaling processes and the regulation of cell membrane structure. LysoPLs are metabolized through the action of lysophospholipases, including lysophospholipase A1 (LYPLA1) and lysophospholipase A2 (LYPLA2). A new X-ray crystal structure of LYPLA2 compared with a previously published structure of LYPLA1 demonstrated near-identical folding of the two enzymes; however, LYPLA1 and LYPLA2 have displayed distinct substrate specificities in recombinant enzyme assays. To determine how these in vitro substrate preferences translate into a relevant cellular setting and better understand the enzymes' role in LysoPL metabolism, CRISPR-Cas9 technology was utilized to generate stable KOs of Lypla1 and/or Lypla2 in Neuro2a cells. Using these cellular models in combination with a targeted lipidomics approach, LysoPL levels were quantified and compared between cell lines to determine the effect of losing lysophospholipase activity on lipid metabolism. This work suggests that LYPLA1 and LYPLA2 are each able to account for the loss of the other to maintain lipid homeostasis in cells; however, when both are deleted, LysoPL levels are dramatically increased, causing phenotypic and morphological changes to the cells.
Collapse
Affiliation(s)
- James A Wepy
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - James J Galligan
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Philip J Kingsley
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Shu Xu
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Michael C Goodman
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Keri A Tallman
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Carol A Rouzer
- Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Lawrence J Marnett
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146 .,Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| |
Collapse
|
46
|
SssP1, a Streptococcus suis Fimbria-Like Protein Transported by the SecY2/A2 System, Contributes to Bacterial Virulence. Appl Environ Microbiol 2018; 84:AEM.01385-18. [PMID: 30030221 DOI: 10.1128/aem.01385-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus suis is an important Gram-positive pathogen in the swine industry and is an emerging zoonotic pathogen for humans. In our previous work, we found a virulent S. suis strain, CZ130302, belonging to a novel serotype, Chz, to be associated with acute meningitis in piglets. However, its underlying mechanisms of pathogenesis remain poorly understood. In this study, we sequenced and analyzed the complete genomes of three Chz serotype strains, including strain CZ130302 and two avirulent strains, HN136 and AH681. By genome comparison, we found two putative genomic islands (GIs) uniquely encoded in strain CZ130302 and designated them 50K GI and 58K GI. In mouse infection model, the deletion of 50K and 58K GIs caused 270-fold and 3-fold attenuation of virulence, respectively. Notably, we identified a complete SecY2/A2 system, coupled with its secretory protein SssP1 encoded in the 50K GI, which contributed to the pathogenicity of strain CZ130302. Immunogold electron microscopy and immunofluorescence analyses indicated that SssP1 could form fimbria-like structures that extend outward from the bacterial cell surface. The sssP1 mutation also attenuated bacterial adherence in human laryngeal epithelial (HEp-2) cells and human brain microvessel endothelial cells (HBMECs) compared with the wild type. Furthermore, we showed that two analogous Ig-like subdomains of SssP1 have sialic acid binding capacities. In conclusion, our results revealed that the 50K GI and the inside SecY2/A2 system gene cluster are related to the virulence of strain CZ130302, and we clarified a new S. suis pathogenesis mechanism mediated by the secretion protein SssP1.IMPORTANCE Streptococcus suis is an important zoonotic pathogen. Here, we managed to identify key factors to clarify the virulence of S. suis strain CZ130302 from a novel serotype, Chz. Notably, it was shown that a fimbria-like structure was significantly connected to the pathogenicity of the CZ130302 strain by comparative genomics analysis and animal infection assays. The mechanisms of how the CZ130302 strain constructs these fimbria-like structures in the cell surface by genes encoding and production transport were subsequently elucidated. Biosynthesis of the fimbria-like structure was achieved by the production of SssP1 glycoproteins, and its construction was dependent on the SecA2/Y2 secretion system. This study identified a visible fimbria-like protein, SssP1, participating in adhesion to host cells and contributing to the virulence in S. suis These findings will promote a better understanding of the pathogenesis of S. suis.
Collapse
|
47
|
Li X, Wang L, Fang P, Sun Y, Jiang X, Wang H, Yang XF. Lysophospholipids induce innate immune transdifferentiation of endothelial cells, resulting in prolonged endothelial activation. J Biol Chem 2018; 293:11033-11045. [PMID: 29769317 DOI: 10.1074/jbc.ra118.002752] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/18/2018] [Indexed: 12/18/2022] Open
Abstract
Innate immune cells express danger-associated molecular pattern (DAMP) receptors, T-cell costimulation/coinhibition receptors, and major histocompatibility complex II (MHC-II). We have recently proposed that endothelial cells can serve as innate immune cells, but the molecular mechanisms involved still await discovery. Here, we investigated whether human aortic endothelial cells (HAECs) could be transdifferentiated into innate immune cells by exposing them to hyperlipidemia-up-regulated DAMP molecules, i.e. lysophospholipids. Performing RNA-seq analysis of lysophospholipid-treated HAECs, we found that lysophosphatidylcholine (LPC) and lysophosphatidylinositol (LPI) regulate largely distinct gene programs as revealed by principal component analysis. Metabolically, LPC up-regulated genes that are involved in cholesterol biosynthesis, presumably through sterol regulatory element-binding protein 2 (SREBP2). By contrast, LPI up-regulated gene transcripts critical for the metabolism of glucose, lipids, and amino acids. Of note, we found that LPC and LPI both induce adhesion molecules, cytokines, and chemokines, which are all classic markers of endothelial cell activation, in HAECs. Moreover, LPC and LPI shared the ability to transdifferentiate HAECs into innate immune cells, including induction of potent DAMP receptors, such as CD36 molecule, T-cell costimulation/coinhibition receptors, and MHC-II proteins. The induction of these innate-immunity signatures by lysophospholipids correlated with their ability to induce up-regulation of cytosolic calcium and mitochondrial reactive oxygen species. In conclusion, lysophospholipids such as LPC and LPI induce innate immune cell transdifferentiation in HAECs. The concept of prolonged endothelial activation, discovered here, is relevant for designing new strategies for managing cardiovascular diseases.
Collapse
Affiliation(s)
- Xinyuan Li
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and.,Departments of Pharmacology, Microbiology, and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Luqiao Wang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and.,Department of Cardiovascular Medicine, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, China
| | - Pu Fang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and.,Departments of Pharmacology, Microbiology, and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Yu Sun
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and.,Departments of Pharmacology, Microbiology, and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Xiaohua Jiang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and.,Departments of Pharmacology, Microbiology, and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Hong Wang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and.,Departments of Pharmacology, Microbiology, and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Xiao-Feng Yang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and .,Departments of Pharmacology, Microbiology, and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140 and
| |
Collapse
|
48
|
Shao Y, Nanayakkara G, Cheng J, Cueto R, Yang WY, Park JY, Wang H, Yang X. Lysophospholipids and Their Receptors Serve as Conditional DAMPs and DAMP Receptors in Tissue Oxidative and Inflammatory Injury. Antioxid Redox Signal 2018; 28:973-986. [PMID: 28325059 PMCID: PMC5849278 DOI: 10.1089/ars.2017.7069] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: We proposed lysophospholipids (LPLs) and LPL-G-protein-coupled receptors (GPCRs) as conditional danger-associated molecular patterns (DAMPs) and conditional DAMP receptors as a paradigm shift to the widely accepted classical DAMP and DAMP receptor model. Recent Advances: The aberrant levels of LPLs and GPCRs activate pro-inflammatory signal transduction pathways, trigger innate immune response, and lead to tissue oxidative and inflammatory injury. Critical Issues: Classical DAMP model specifies only the endogenous metabolites that are released from damaged/dying cells as DAMPs, but fails to identify elevated endogenous metabolites secreted from viable/live cells during pathologies as DAMPs. The current classification of DAMPs also fails to clarify the following concerns: (i) Are molecules, which bind to pattern recognition receptors (PRRs), the only DAMPs contributing to inflammation and tissue injury? (ii) Are all DAMPs acting only via classical PRRs during cellular stress? To answer these questions, we reviewed the molecular characteristics and signaling mechanisms of LPLs, a group of endogenous metabolites and their specific receptors and analyzed the significant progress achieved in characterizing oxidative stress mechanisms of LPL mediated tissue injury. Future Directions: Further LPLs and LPL-GPCRs may serve as potential therapeutic targets for the treatment of pathologies induced by sterile inflammation. Antioxid. Redox Signal. 28, 973-986.
Collapse
Affiliation(s)
- Ying Shao
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Gayani Nanayakkara
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Jiali Cheng
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ramon Cueto
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - William Y Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Joon-Young Park
- Department of Kinesiology, College of Public Health, Temple University, Philadelphia, Pennsylvania
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Xiaofeng Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Li X, Shao Y, Sha X, Fang P, Kuo YM, Andrews AJ, Li Y, Yang WY, Maddaloni M, Pascual DW, Luo JJ, Jiang X, Wang H, Yang X. IL-35 (Interleukin-35) Suppresses Endothelial Cell Activation by Inhibiting Mitochondrial Reactive Oxygen Species-Mediated Site-Specific Acetylation of H3K14 (Histone 3 Lysine 14). Arterioscler Thromb Vasc Biol 2018; 38:599-609. [PMID: 29371247 DOI: 10.1161/atvbaha.117.310626] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE IL-35 (interleukin-35) is an anti-inflammatory cytokine, which inhibits immune responses by inducing regulatory T cells and regulatory B cells and suppressing effector T cells and macrophages. It remains unknown whether atherogenic stimuli induce IL-35 and whether IL-35 inhibits atherogenic lipid-induced endothelial cell (EC) activation and atherosclerosis. EC activation induced by hyperlipidemia stimuli, including lysophosphatidylcholine is considered as an initiation step for monocyte recruitment and atherosclerosis. In this study, we examined the expression of IL-35 during early atherosclerosis and the roles and mechanisms of IL-35 in suppressing lysophosphatidylcholine-induced EC activation. APPROACH AND RESULTS Using microarray and ELISA, we found that IL-35 and its receptor are significantly induced during early atherosclerosis in the aortas and plasma of ApoE (apolipoprotein E) knockout mice-an atherosclerotic mouse model-and in the plasma of hypercholesterolemic patients. In addition, we found that IL-35 suppresses lysophosphatidylcholine-induced monocyte adhesion to human aortic ECs. Furthermore, our RNA-sequencing analysis shows that IL-35 selectively inhibits lysophosphatidylcholine-induced EC activation-related genes, such as ICAM-1 (intercellular adhesion molecule-1). Mechanistically, using flow cytometry, mass spectrometry, electron spin resonance analyses, and chromatin immunoprecipitation-sequencing analyses, we found that IL-35 blocks lysophosphatidylcholine-induced mitochondrial reactive oxygen species, which are required for the induction of site-specific H3K14 (histone 3 lysine 14) acetylation, increased binding of proinflammatory transcription factor AP-1 in the promoter of ICAM-1, and induction of ICAM-1 transcription in human aortic EC. Finally, IL-35 cytokine therapy suppresses atherosclerotic lesion development in ApoE knockout mice. CONCLUSIONS IL-35 is induced during atherosclerosis development and inhibits mitochondrial reactive oxygen species-H3K14 acetylation-AP-1-mediated EC activation.
Collapse
Affiliation(s)
- Xinyuan Li
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Ying Shao
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Xiaojin Sha
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Pu Fang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Yin-Ming Kuo
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Andrew J Andrews
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Yafeng Li
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - William Y Yang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Massimo Maddaloni
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - David W Pascual
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Jin J Luo
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Xiaohua Jiang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Hong Wang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.)
| | - Xiaofeng Yang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), Department of Pharmacology (X.L., Y.S., X.S., P.F., Y.L., W.Y.Y., X.J., H.W., X.Y.), and Department of Neurology (J.J.L.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville (M.M., D.W.P.).
| |
Collapse
|
50
|
Michalczyk A, Budkowska M, Dołęgowska B, Chlubek D, Safranow K. Lysophosphatidic acid plasma concentrations in healthy subjects: circadian rhythm and associations with demographic, anthropometric and biochemical parameters. Lipids Health Dis 2017; 16:140. [PMID: 28732508 PMCID: PMC5521143 DOI: 10.1186/s12944-017-0536-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/13/2017] [Indexed: 01/01/2023] Open
Abstract
Background Lysophosphatidic acid (LPA) is a bioactive lipid with a wide biological activity. Previous studies have shown its potential usefulness as a diagnostic marker for ovarian cancer. The aim of the study was to investigate which factors may influence plasma LPA concentrations in healthy subjects and to propose reference values. Methods The study group consisted of 100 healthy subjects. From all of them the blood samples were taken at 7 a.m. (fasting state). From 40 volunteers additional blood samples were taken at 2 p.m., at 8 p.m. and at 2 a.m. next morning. Concentrations of LPA were measured in plasma samples using enzyme-linked immunosorbent assay. Results Analysis of samples from 100 healthy volunteers showed significant influence of sex and age on plasma LPA. The reference range for the plasma LPA concentration corrected for age and sex, determined at 2.5–97.5 percentile interval is 0.14–1.64 μM. LPA correlates positively with BMI, serum total cholesterol, triacylglycerols, uric acid and negatively with estimated glomerular filtration rate and serum albumin. Concentration of LPA at 2 a.m. was lower than at 2 p.m. There were not any significant differences between plasma LPA at 7 a.m. and any other time of the day. Conclusions Plasma LPA is associated with demographic, anthropometric and biochemical parameters. It seems that LPA concentrations have no specific circadian rhythm and the time of donation and fasting state have marginal effect on plasma LPA. These findings may be helpful in future incorporation of LPA as a diagnostic marker.
Collapse
Affiliation(s)
- Anna Michalczyk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland.
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| |
Collapse
|