1
|
Sleda MA, Pitafi ZF, Song W, Oldfield E, Moreno SNJ. Lipophilic bisphosphonates reduced cyst burden and ameliorated hyperactivity of mice chronically infected with Toxoplasma gondii. mBio 2024; 15:e0175624. [PMID: 39387586 PMCID: PMC11558998 DOI: 10.1128/mbio.01756-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/23/2024] [Indexed: 10/15/2024] Open
Abstract
The current treatments for toxoplasmosis are only active against fast-growing tachyzoites, present in acute infections, with little effect on slow-growing bradyzoites within tissue cysts, present in latent chronic infections. The mitochondrion of Toxoplasma gondii is essential for its survival, and one of the major anti-parasitic drugs, atovaquone, inhibits the mitochondrial electron transport chain at the coenzyme Q:cytochrome c oxidoreductase site. Coenzyme Q (also known as ubiquinone [UQ]) consists of a quinone head and a lipophilic, isoprenoid tail that anchors UQ to membranes. The synthesis of the isoprenoid unit is essential for cell growth and is inhibited by lipophilic bisphosphonates, which inhibit the parasite growth. In this work, we investigated the effect of lipophilic bisphosphonates on the chronic stages of T. gondii. We discovered that three lipophilic bisphosphonates (BPH-1218, BPH-1236, and BPH-1238), effective for the acute infection, were also effective in controlling the development of chronic stages. We showed effectiveness by testing them against in vitro cysts and in vivo derived tissue cysts and, most importantly, these compounds reduced the cyst burden in the brains of chronically infected mice. We monitored the activity of infected mice non-invasively and continuously with a novel device termed the CageDot. A decrease in activity accompanied the acute phase, but mice recovered to normal activity and showed signs of hyperactivity when the chronic infection was established. Moreover, treatment with atovaquone or BPH-1218 ameliorated the hyperactivity observed during the chronic infection.IMPORTANCETreatment for toxoplasmosis is challenged by a lack of effective drugs to eradicate the chronic stages. Most of the drugs currently used are poorly distributed to the central nervous system, and they trigger allergic reactions in a large number of patients. There is a compelling need for safe and effective treatments for toxoplasmosis. Bisphosphonates (BPs) are analogs of inorganic pyrophosphate and are used for the treatment of bone disorders. BPs target the isoprenoid pathway and are effective against several experimental parasitic infections. Some lipophilic BPs can specifically inhibit the mitochondrial activity of Toxoplasma gondii by interfering with the mechanism by which ubiquinone is inserted into the inner mitochondrial membrane. In this work, we present the effect of three lipophilic BPs against T. gondii chronic stages. We also present a new strategy for the monitoring of animal activity during disease and treatment that is non-invasive and continuous.
Collapse
Affiliation(s)
- Melissa A. Sleda
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Zaid F. Pitafi
- School of Electrical and Computer Engineering, University of Georgia, Athens, Georgia, USA
| | - WenZhan Song
- School of Electrical and Computer Engineering, University of Georgia, Athens, Georgia, USA
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | - Silvia N. J. Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Tripathi A, Donkin RW, Miracle JS, Murphy RD, Gentry MS, Patwardhan A, Sinai AP. Dynamics of amylopectin granule accumulation during the course of the chronic Toxoplasma infection is linked to intra-cyst bradyzoite replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610794. [PMID: 39282379 PMCID: PMC11398317 DOI: 10.1101/2024.09.02.610794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The contribution of amylopectin granules (AG), comprised of a branched chain storage homopolymer of glucose, to the maintenance and progression of the chronic Toxoplasma gondii infection has remained undefined. Here we describe the role of AG in the physiology of encysted bradyzoites by using a custom developed imaging-based application AmyloQuant that permitted quantification of relative levels of AG within in vivo derived tissue cysts during the initiation and maturation of the chronic infection. Our findings establish that AG are dynamic entities, exhibiting considerable heterogeneity among tissue cysts at all post infection time points examined. Quantification of relative AG levels within tissue cysts exposes a previously unrecognized temporal cycle defined by distinct phases of AG accumulation and utilization over the first 6 weeks of the chronic phase. This AG cycle is temporally coordinated with overall bradyzoite mitochondrial activity implicating amylopectin in the maintenance and progression of the chronic infection. In addition, the staging of AG accumulation and its rapid utilization within encysted bradyzoites was associated with a burst of coordinated replication. As such our findings suggest that AG levels within individual bradyzoites, and across bradyzoites within tissue cysts may represent a key component in the licensing of bradyzoite replication, intimately linking stored metabolic potential to the course of the chronic infection. This extends the impact of AG beyond the previously assigned role that focused exclusively on parasite transmission. These findings force a fundamental reassessment of the chronic Toxoplasma infection, highlighting the critical need to address the temporal progression of this crucial stage in the parasite life cycle.
Collapse
Affiliation(s)
- Aashutosh Tripathi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Ryan W. Donkin
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Joy S. Miracle
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Robert D. Murphy
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Matthew S. Gentry
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Abhijit Patwardhan
- F.Joseph Halcomb III, MD. Department of Biomedical Engineering, University of Kentucky College of Engineering, Lexington KY 40506, USA
| | - Anthony P. Sinai
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
3
|
Celik T, Altunisik E, Yar TM, Gul T, Kasko Arici Y, Karaman U. A new perspective on essential tremor: the potential etiologic role of Toxoplasma gondii and Toxocara spp. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-8. [PMID: 39287148 DOI: 10.1080/09603123.2024.2404480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Our aim was to examine the relationship between Toxoplasma gondii (T. gondii) and Toxocara infection and patients with essential tremor (ET). This study comprised a total of 174 participants, consisting of 99 patients with ET and 75 healthy controls. The presence of anti-T. gondii IgG and anti-Toxocara IgG antibodies was investigated using ELISA. The relationship between the severity of the disease and the seropositivity of T. gondii and Toxocara were examined. The seropositivity rate for anti-T. gondii IgG antibodies among patients and control groups were 43.4% and 12%, respectively (odds ratio [OR]: 5.63; 95% CI: 2.53-12.56). The patient group exhibited a higher seroprevalence of anti-Toxocara IgG antibodies (32.3%) compared with the control group (13.3%; OR: 3.10; 95% CI: 1.41-6.83; p = 0.004). This study suggests that T. gondii and Toxocara infections can contribute to the pathogenic mechanisms underlying ET and could be risk factors for ET.
Collapse
Affiliation(s)
- Tuncay Celik
- Faculty of Medicine, Department of Microbiology, Adiyaman University, Adiyaman, Turkey
| | - Erman Altunisik
- Faculty of Medicine, Department of Neurology, Adiyaman University, Adiyaman, Turkey
| | - Turkan Mutlu Yar
- Faculty of Medicine, Department of Parasitology, Ordu University, Ordu, Turkey
| | - Tuba Gul
- Faculty of Medicine, Department of Neurology, Ordu University, Ordu, Turkey
| | - Yeliz Kasko Arici
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, Ordu University, Ordu, Turkey
| | - Ulku Karaman
- Faculty of Medicine, Department of Parasitology, Ordu University, Ordu, Turkey
| |
Collapse
|
4
|
Xia J, Fu Y, Huang W, Uddin T, Sibley LD. Constitutive upregulation of transcription factors underlies permissive bradyzoite differentiation in a natural isolate of Toxoplasma gondii. mBio 2024; 15:e0064124. [PMID: 39150246 PMCID: PMC11389365 DOI: 10.1128/mbio.00641-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/28/2024] [Indexed: 08/17/2024] Open
Abstract
Toxoplasma gondii bradyzoites play a critical role in pathology due to their long-term persistence in intermediate hosts and their potential to reactivate, resulting in severe diseases in immunocompromised individuals. Currently, there is no effective treatment for eliminating bradyzoites. Hence, better in vitro models of T. gondii bradyzoite development would facilitate identification of therapeutic targets for bradyzoites. Herein, we characterized a natural isolate of T. gondii, called Tg68, which showed slower in vitro replication of tachyzoites, and permissive bradyzoite development under stress conditions in vitro. Transcriptional analysis revealed constitutive expression in Tg68 tachyzoites of the key regulators of bradyzoite development including BFD1, BFD2, and several AP2 factors. Consistent with this finding, Tg68 tachyzoites expressed high levels of bradyzoite-specific genes including BAG1, ENO1, and LDH2. Moreover, after stress-induced differentiation, Tg68 bradyzoites exhibited gene expression profiles of mature bradyzoites, even at early time points. These data suggest that Tg68 tachyzoites exist in a pre-bradyzoite stage primed to readily develop into mature bradyzoites under stress conditions in vitro. Tg68 presents a novel model for differentiation in vitro that will serve as a useful tool for the investigation of bradyzoite biology and the development of therapeutics. IMPORTANCE Toxoplasma gondii is a widespread protozoan that chronically infects ~30% of the world's population. T. gondii can differentiate between the fast-growing life stage that causes acute infection and the slow-growing stage that persists in the host for extended periods of time. The slow-growing stage cannot be eliminated by the host immune response or currently known antiparasitic drugs. Studies on the slow-growing stage have been limited due to the limitations of in vivo experiments and the challenges of in vitro manipulation. Here, we characterize a natural isolate of T. gondii, which constitutively expresses factors that drive development and that is permissive to convert to the slow-growing stage under stress conditions in vitro. The strain presents a novel in vitro model for studying the chronic phase of toxoplasmosis and identifying new therapeutic treatments for chronic infections.
Collapse
Affiliation(s)
- Jing Xia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yong Fu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wanyi Huang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Taher Uddin
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Wu W, Chen Q, Zou W, Chen J, Zhu D, Yang H, Ouyang L, Liu X, Peng H. Toxoplasma gondii bradyzoite-specific BAG1 is nonessential for cyst formation due to compensation by other heat-shock proteins. Parasit Vectors 2024; 17:322. [PMID: 39080770 PMCID: PMC11290284 DOI: 10.1186/s13071-024-06339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/30/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Toxoplasma gondii is an opportunistic pathogenic protozoan that infects all warm-blooded animals, including humans, and causes zoonotic toxoplasmosis. The bradyzoite antigen 1 (BAG1), known as heat-shock protein (HSP)30, is a specific antigen expressed during the early stage of T. gondii tachyzoite-bradyzoite conversion. METHODS A bag1 gene knockout strain based on the T. gondii type II ME49 was constructed and designated as ME49Δbag1. The invasion, proliferation, and cyst formation efficiency in the cell model and survival in the mouse model were compared between the ME49 and ME49Δbag1 strains after infection. Quantitative polymerase chain reaction (qPCR) was used to detect the transcriptional level of important genes, and western-blot was used to detect protein levels. RESULTS ME49Δbag1 displayed significantly inhibited cyst formation, although it was not completely blocked. During early differentiation induced by alkaline and starvation conditions in vitro, the proliferation of ME49Δbag1 was significantly accelerated relative to the ME49 strain. Meanwhile, the transcription of the HSP family and bradyzoite formation deficient 1 (bfd1) were significantly enhanced. The observed upregulation suggests a compensatory mechanism to counterbalance the impaired stress responses of T. gondii following bag1 knockout. On the other hand, the elevated transcription levels of several HSP family members, including HSP20, HSP21, HSP40, HSP60, HSP70, and HSP90, along with BFD1, implied the involvement of alternative regulatory factors in bradyzoite differentiation aside from BAG1. CONCLUSIONS The data suggested that when bag1 was absent, the stress response of T. gondii was partially compensated by increased levels of other HSPs, resulting in the formation of fewer cysts. This highlighted a complex regulatory network beyond BAG1 influencing the parasite's transformation into bradyzoites, emphasizing the vital compensatory function of HSPs in the T. gondii life cycle adaptation.
Collapse
Affiliation(s)
- Weiling Wu
- Department of Anesthesiology, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Baiyun Branch, Nanfang Hospital, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Ministry of Education, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), 1023-1063 South Shatai Rd, Guangzhou, Guangdong, People's Republic of China, 510515
| | - Qiqi Chen
- Department of Anesthesiology, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Baiyun Branch, Nanfang Hospital, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Weihao Zou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Ministry of Education, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), 1023-1063 South Shatai Rd, Guangzhou, Guangdong, People's Republic of China, 510515
| | - Jiating Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Ministry of Education, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), 1023-1063 South Shatai Rd, Guangzhou, Guangdong, People's Republic of China, 510515
| | - Di Zhu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Ministry of Education, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), 1023-1063 South Shatai Rd, Guangzhou, Guangdong, People's Republic of China, 510515
| | - Huijing Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Ministry of Education, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), 1023-1063 South Shatai Rd, Guangzhou, Guangdong, People's Republic of China, 510515
| | - Lishan Ouyang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Ministry of Education, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), 1023-1063 South Shatai Rd, Guangzhou, Guangdong, People's Republic of China, 510515
| | - Xiaojun Liu
- Department of Anesthesiology, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Baiyun Branch, Nanfang Hospital, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Ministry of Education, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), 1023-1063 South Shatai Rd, Guangzhou, Guangdong, People's Republic of China, 510515.
| |
Collapse
|
6
|
Mares AM, Varlam CI, Iliuta FP, Lacau RM, Manea MC. A comprehensive assessment of toxoplasmosis and its dormant impact on psychotic disorders (Review). Biomed Rep 2024; 20:86. [PMID: 38665421 PMCID: PMC11040222 DOI: 10.3892/br.2024.1774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Toxoplasmosis is a pathological condition induced by the parasite, Toxoplasma gondii (T. gondii), which has a notable affinity for the cellular components of the central nervous system. Over the decades, the relationship between toxoplasmosis and the development of psychiatric disorders has generated profound interest within the scientific community. Whether considering immunocompetent or immunocompromised patients, epidemiological studies suggest that exposure to T. gondii may be associated with a higher risk of certain psychiatric disorders. However, there are extensive debates regarding the exact nature of this association and how T. gondii is involved in the pathogenesis of these disorders. Toxoplasmosis has long been considered an asymptomatic infection among immunocompetent patients. However, there appears to be an association between chronic brain infection with T. gondii and alterations in patient neuronal architecture, neurochemistry and behavior. The present review aimed to compile statements and pathophysiological hypotheses regarding the potential association between toxoplasmosis and psychotic disorders. Further research is necessary for understanding the potential relationship of T. gondii infection and psychotic disorders.
Collapse
Affiliation(s)
- Aliss Madalina Mares
- Department of Psychiatry and Psychology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 010221 Bucharest, Romania
| | - Corina Ioana Varlam
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Floris Petru Iliuta
- Department of Psychiatry and Psychology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 010221 Bucharest, Romania
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Radu Mihail Lacau
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Mihnea Costin Manea
- Department of Psychiatry and Psychology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 010221 Bucharest, Romania
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| |
Collapse
|
7
|
Alberione MP, González-Ruiz V, von Rohr O, Rudaz S, Soldati-Favre D, Izquierdo L, Kloehn J. N-acetylglucosamine supplementation fails to bypass the critical acetylation of glucosamine-6-phosphate required for Toxoplasma gondii replication and invasion. PLoS Pathog 2024; 20:e1011979. [PMID: 38900808 PMCID: PMC11218972 DOI: 10.1371/journal.ppat.1011979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/02/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
The cell surface of Toxoplasma gondii is rich in glycoconjugates which hold diverse and vital functions in the lytic cycle of this obligate intracellular parasite. Additionally, the cyst wall of bradyzoites, that shields the persistent form responsible for chronic infection from the immune system, is heavily glycosylated. Formation of glycoconjugates relies on activated sugar nucleotides, such as uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). The glucosamine-phosphate-N-acetyltransferase (GNA1) generates N-acetylglucosamine-6-phosphate critical to produce UDP-GlcNAc. Here, we demonstrate that downregulation of T. gondii GNA1 results in a severe reduction of UDP-GlcNAc and a concomitant drop in glycosylphosphatidylinositols (GPIs), leading to impairment of the parasite's ability to invade and replicate in the host cell. Surprisingly, attempts to rescue this defect through exogenous GlcNAc supplementation fail to completely restore these vital functions. In depth metabolomic analyses elucidate diverse causes underlying the failed rescue: utilization of GlcNAc is inefficient under glucose-replete conditions and fails to restore UDP-GlcNAc levels in GNA1-depleted parasites. In contrast, GlcNAc-supplementation under glucose-deplete conditions fully restores UDP-GlcNAc levels but fails to rescue the defects associated with GNA1 depletion. Our results underscore the importance of glucosamine-6-phosphate acetylation in governing T. gondii replication and invasion and highlight the potential of the evolutionary divergent GNA1 in Apicomplexa as a target for the development of much-needed new therapeutic strategies.
Collapse
Affiliation(s)
- María Pía Alberione
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-University of Barcelona, Barcelona, Spain
| | | | - Olivier von Rohr
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Fakhar M, Montazeri M, Nakhaei M, Soleymani M, Zakariaei Z, Abbasi A, Solaymani E. Potential Association Between Latent Toxoplasma gondii Infection and Suicide Attempts: A Case-Control Registry-Based Study. Foodborne Pathog Dis 2024; 21:360-365. [PMID: 38568136 DOI: 10.1089/fpd.2023.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Toxoplasma gondii is a ubiquitous parasitic protozoan that may be an important cause of neurological and psychiatric diseases. The purpose of this case-control registry-based study was to evaluate the prevalence of T. gondii infection and related risk factors among subjects who attempted suicide by drug use and a control group at the Iranian National Registry Center for Toxoplasmosis in Mazandaran Province, northern Iran. Baseline data were collected from participants using a questionnaire, and a blood sample was taken from each individual. The plasma was prepared for serological analysis, whereas the buffy coat was used for molecular analysis. Out of 282 individuals (147 cases with suicide attempters [SA] and 135 controls), 42.9% of patients and 16.3% of control subjects were positive for anti-Toxoplasma immunoglobin G (IgG), but all participants were negative for T. gondii DNA and anti-Toxoplasma immunoglobin M. Based on multiple logistic regressions, IgG seropositivity in SA in the age group of 20-30 years was 3.22 times higher than that in the control group (p < 0.001). These findings suggest that latent T. gondii infection among SA is significantly higher than that in healthy individuals, indicating a potential association between latent toxoplasmosis and SA at least in the studied area. Further research is needed to shed light on the potential association between T. gondii and suicide among different populations and areas of the world.
Collapse
Affiliation(s)
- Mahdi Fakhar
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis Research Center, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahbobeh Montazeri
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis Research Center, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Nakhaei
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis Research Center, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mostafa Soleymani
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis Research Center, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zakaria Zakariaei
- Toxicology and Forensic Medicine Division, Mazandaran Registry Center for Opioids Poisoning, Antimicrobial Resistance Research Centers, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Abbasi
- Department of Forensic Medicine, Azad University, Sari, Iran
| | - Eissa Solaymani
- Department of Infectious Diseases, School of Medicine, Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Nayeri T, Sarvi S, Daryani A. Effective factors in the pathogenesis of Toxoplasmagondii. Heliyon 2024; 10:e31558. [PMID: 38818168 PMCID: PMC11137575 DOI: 10.1016/j.heliyon.2024.e31558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is a cosmopolitan protozoan parasite in humans and animals. It infects about 30 % of the human population worldwide and causes potentially fatal diseases in immunocompromised hosts and neonates. For this study, five English-language databases (ScienceDirect, ProQuest, Web of Science, PubMed, and Scopus) and the internet search engine Google Scholar were searched. This review was accomplished to draw a global perspective of what is known about the pathogenesis of T. gondii and various factors affecting it. Virulence and immune responses can influence the mechanisms of parasite pathogenesis and these factors are in turn influenced by other factors. In addition to the host's genetic background, the type of Toxoplasma strain, the routes of transmission of infection, the number of passages, and different phases of parasite life affect virulence. The identification of virulence factors of the parasite could provide promising insights into the pathogenesis of this parasite. The results of this study can be an incentive to conduct more intensive research to design and develop new anti-Toxoplasma agents (drugs and vaccines) to treat or prevent this infection. In addition, further studies are needed to better understand the key agents in the pathogenesis of T. gondii.
Collapse
Affiliation(s)
- Tooran Nayeri
- Infectious and Tropical Diseases Research Center, Dezful University of Medical Sciences, Dezful, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
10
|
Bando H, Murata Y, Han Y, Sugi T, Fukuda Y, Bzik DJ, Fox BA, Kato K. Toxoplasma gondii chitinase-like protein TgCLP1 regulates the parasite cyst burden. Front Cell Infect Microbiol 2024; 14:1359888. [PMID: 38828265 PMCID: PMC11140023 DOI: 10.3389/fcimb.2024.1359888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
Toxoplasma, an important intracellular parasite of humans and animals, causes life-threatening toxoplasmosis in immunocompromised individuals. Although Toxoplasma secretory proteins during acute infection (tachyzoite, which divides rapidly and causes inflammation) have been extensively characterized, those involved in chronic infection (bradyzoite, which divides slowly and is surrounded by a cyst wall) remain uncertain. Regulation of the cyst wall is essential to the parasite life cycle, and polysaccharides, such as chitin, in the cyst wall are necessary to sustain latent infection. Toxoplasma secretory proteins during the bradyzoite stage may have important roles in regulating the cyst wall via polysaccharides. Here, we focused on characterizing the hypothetical T. gondii chitinase, chitinase-like protein 1 (TgCLP1). We found that the chitinase-like domain containing TgCLP1 is partially present in the bradyzoite microneme and confirmed, albeit partially, its previous identification in the tachyzoite microneme. Furthermore, although parasites lacking TgCLP1 could convert from tachyzoites to bradyzoites and make an intact cyst wall, they failed to convert from bradyzoites to tachyzoites, indicating that TgCLP1 is necessary for bradyzoite reactivation. Taken together, our findings deepen our understanding of the molecular basis of recrudescence and could contribute to the development of novel strategies for the control of toxoplasmosis.
Collapse
Affiliation(s)
- Hironori Bando
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
- Department of Parasitology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yuho Murata
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yongmei Han
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tatsuki Sugi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Fukuda
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
| | - David J. Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Barbara A. Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
11
|
Akcay G, Bahadir A, Tatar Y, Nuri Atalar M, Babur C, Taylan Ozkan A. Investigation of the effects of Toxoplasma gondii on behavioral and molecular mechanism in bradyzoite stage. Brain Res 2024; 1828:148762. [PMID: 38228258 DOI: 10.1016/j.brainres.2024.148762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Toxoplasma gondii is a single-celled parasite that causes a disease called toxoplasmosis. It can reach the central nervous system, but the mechanism of T. gondii disrupting the functioning of these brain regions occurs in bradyzoite stage of parasite, causing brain damage by forming tissue cysts in brain. In our study, the effects of T. gondii on locomotor activity, anxiety, learning and memory, and norepinephrine (NE), levodopa (L-DOPA), dopamine (DA) and 3,4-D-dihydroxyphenylacetic acid (DOPAC) catecholamines in amygdala, striatum, prefrontal cortex and hippocampus regions of the brain were investigated in bradyzoite stage. Twenty male Albino mice Mus musculus, 4-5 weeks old, weighing 20-25 g, were used. T. gondii inoculated to mice intraperitonealy with 48-50-hour passages of T. gondii RH Ankara strain. For intraperitoneal inoculation of mice 5x104 tachyzoites per mouse. No inoculation was made in control group (n: 20). Locomotor activity behavior in open field test (OFT), anxious behavior in elevated plus maze (EPM), and learning behavior in novel object recognition (NOR) tests were evaluated. NE, L-DOPA, DA and DOPAC were measured by HPLC in brain tissues of amygdala, striatum, prefrontal cortex and hippocampus. A decrease was observed in the locomotor activity, anxiety and learning values of the T. gondii group compared to the control group (p < 0.05). The heighten in NE and L-DOPA levels in amygdala tissue of T. gondii group compared to control group, an elevation in NE, L-DOPA, DA and DOPAC levels in striatum tissue, and an increase in levels of NE in prefrontal cortex tissue were detected in monoamine results. In hippocampus tissue, an increase was observed in DA levels, while a decrease was observed in NE, L-DOPA and DOPAC levels. In our study, it has been shown that T. gondii in bradyzoite stage reduces locomotor activity, causes learning and memory impairment, and has anxiogenic effects.
Collapse
Affiliation(s)
- Guven Akcay
- Hitit University, Faculty of Medicine, Department of Biophysics, Çorum, Turkey.
| | - Anzel Bahadir
- Duzce University, Faculty of Medicine, Department of Biophysics, Düzce, Turkey
| | - Yakup Tatar
- TOBB University of Economics and Technology, Faculty of Medicine, Department of Physiology, Ankara, Turkey
| | - Mehmet Nuri Atalar
- Igdir University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Iğdır, Turkey
| | - Cahit Babur
- National Parasitology Reference Laboratory, General Directorate of Health, Ministry of Health of Turkey, Ankara, Turkey
| | - Aysegul Taylan Ozkan
- TOBB ETU University, Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkey
| |
Collapse
|
12
|
Memariani H, Memariani M, Ghasemian A. Quercetin as a Promising Antiprotozoan Phytochemical: Current Knowledge and Future Research Avenues. BIOMED RESEARCH INTERNATIONAL 2024; 2024:7632408. [PMID: 38456097 PMCID: PMC10919984 DOI: 10.1155/2024/7632408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/20/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Despite tremendous advances in the prevention and treatment of infectious diseases, only few antiparasitic drugs have been developed to date. Protozoan infections such as malaria, leishmaniasis, and trypanosomiasis continue to exact an enormous toll on public health worldwide, underscoring the need to discover novel antiprotozoan drugs. Recently, there has been an explosion of research into the antiprotozoan properties of quercetin, one of the most abundant flavonoids in the human diet. In this review, we tried to consolidate the current knowledge on the antiprotozoal effects of quercetin and to provide the most fruitful avenues for future research. Quercetin exerts potent antiprotozoan activity against a broad spectrum of pathogens such as Leishmania spp., Trypanosoma spp., Plasmodium spp., Cryptosporidium spp., Trichomonas spp., and Toxoplasma gondii. In addition to its immunomodulatory roles, quercetin disrupts mitochondrial function, induces apoptotic/necrotic cell death, impairs iron uptake, inhibits multiple enzymes involved in fatty acid synthesis and the glycolytic pathways, suppresses the activity of DNA topoisomerases, and downregulates the expression of various heat shock proteins in these pathogens. In vivo studies also show that quercetin is effective in reducing parasitic loads, histopathological damage, and mortality in animals. Future research should focus on designing effective drug delivery systems to increase the oral bioavailability of quercetin. Incorporating quercetin into various nanocarrier systems would be a promising approach to manage localized cutaneous infections. Nevertheless, clinical trials are needed to validate the efficacy of quercetin in treating various protozoan infections.
Collapse
Affiliation(s)
- Hamed Memariani
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Memariani
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
13
|
Xia J, Fu Y, Huang W, Sibley LD. Constitutive upregulation of transcription factors underlies permissive bradyzoite differentiation in a natural isolate of Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582596. [PMID: 38464000 PMCID: PMC10925318 DOI: 10.1101/2024.02.28.582596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Toxoplasma gondii bradyzoites play a critical role in pathology due to their long-term persistence in intermediate hosts and their potential to reactivate, resulting in severe diseases in immunocompromised individuals. Currently there is no effective treatment for eliminating bradyzoites. Hence, better in vitro models of T. gondii cyst development would facilitate identification of therapeutic targets for bradyzoites. Herein we characterized a natural isolate of T. gondii, called Tg68, which showed slower in vitro replication of tachyzoites, and permissive bradyzoite development under stress conditions in vitro. Transcriptional analysis revealed constitutive expression in Tg68 tachyzoites of the key regulators of bradyzoite development including BFD1, BFD2, and several AP2 factors. Consistent with this finding, Tg68 tachyzoites expressed high levels of bradyzoite-specific genes including BAG1, ENO1, and LDH2. Moreover, after stress induced differentiation, Tg68 bradyzoites exhibited gene expression profiles of mature bradyzoites, even at early time points. These data suggest that Tg68 tachyzoites exist in a pre-bradyzoite stage primed to readily develop into mature bradyzoites under stress conditions in vitro. Tg68 presents a novel model for differentiation in vitro that will serve as a useful tool for investigation of bradyzoite biology and development of therapeutics.
Collapse
Affiliation(s)
- Jing Xia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Yong Fu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Wanyi Huang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| |
Collapse
|
14
|
Fietz SA, Grochow T, Schares G, Töpfer T, Heilmann RM. Fulminant Pneumonia Due to Reactivation of Latent Toxoplasmosis in a Cat-A Case Report. Pathogens 2023; 13:7. [PMID: 38276153 PMCID: PMC10818954 DOI: 10.3390/pathogens13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Toxoplasma (T.) gondii is an obligate intracellular parasite with felids, including domestic cats, as definitive hosts. In immunocompetent individuals, T. gondii infection is usually asymptomatic. However, under immunosuppression, it may have severe pathological impacts, which often result from the reactivation of a chronic infection. In this case study, a 21-month-old female domestic shorthair cat-diagnosed with primary immune-mediated hemolytic anemia three months prior and treated with cyclosporine and prednisolone-presented with acute tachypnea, dyspnea, diarrhea, and anorexia. Thoracic radiography suggested severe pneumonia. Testing for Mycoplasma spp., Anaplasma spp., Ehrlichia spp., and lungworm infection was negative. Serology for T. gondii revealed seroconversion of IgG, but not of IgM, indicating previous exposure to T. gondii. The cat remained stable but tachypneic for three days, followed by an acute onset of dyspnea and clinical deterioration, after which euthanasia was elected. Numerous protozoa were present in a postmortem transtracheal bronchoalveolar lavage and fine-needle aspiration of the lung. Microsatellite typing classified the extracted DNA as T. gondii type II variant TgM-A. This case demonstrates that T. gondii reactivation, leading to fulminant pneumonia, can be a sequela of immunosuppressive treatment in cats and should, therefore, be considered as a differential diagnosis in immunosuppressed cats with acute-onset respiratory signs. Rapid diagnosis may prevent fatal consequences.
Collapse
Affiliation(s)
- Simone A. Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, College of Veterinary Medicine, Leipzig University, DE-04103 Leipzig, Germany; (S.A.F.); (T.G.)
| | - Thomas Grochow
- Institute of Veterinary Anatomy, Histology and Embryology, College of Veterinary Medicine, Leipzig University, DE-04103 Leipzig, Germany; (S.A.F.); (T.G.)
| | - Gereon Schares
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, DE-17493 Greifswald-Insel Riems, Germany;
| | - Tanja Töpfer
- Department for Small Animals, College of Veterinary Medicine, University of Leipzig, DE-04103 Leipzig, Germany;
| | - Romy M. Heilmann
- Department for Small Animals, College of Veterinary Medicine, University of Leipzig, DE-04103 Leipzig, Germany;
| |
Collapse
|
15
|
Grochow T, Beck B, Rentería-Solís Z, Schares G, Maksimov P, Strube C, Raqué L, Kacza J, Daugschies A, Fietz SA. Reduced neural progenitor cell count and cortical neurogenesis in guinea pigs congenitally infected with Toxoplasma gondii. Commun Biol 2023; 6:1209. [PMID: 38012384 PMCID: PMC10682419 DOI: 10.1038/s42003-023-05576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
Toxoplasma (T.) gondii is an obligate intracellular parasite with a worldwide distribution. Congenital infection can lead to severe pathological alterations in the brain. To examine the effects of toxoplasmosis in the fetal brain, pregnant guinea pigs are infected with T. gondii oocysts on gestation day 23 and dissected 10, 17 and 25 days afterwards. We show the neocortex to represent a target region of T. gondii and the parasite to infect neural progenitor cells (NPCs), neurons and astrocytes in the fetal brain. Importantly, we observe a significant reduction in neuron number at end-neurogenesis and find a marked reduction in NPC count, indicating that impaired neurogenesis underlies the neuronal decrease in infected fetuses. Moreover, we observe focal microglioses to be associated with T. gondii in the fetal brain. Our findings expand the understanding of the pathophysiology of congenital toxoplasmosis, especially contributing to the development of cortical malformations.
Collapse
Affiliation(s)
- Thomas Grochow
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Britta Beck
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Zaida Rentería-Solís
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Gereon Schares
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Pavlo Maksimov
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lisa Raqué
- Veterinary practice Raqué, Leipzig, Germany
| | - Johannes Kacza
- BioImaging Core Facility, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Arwid Daugschies
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany.
| |
Collapse
|
16
|
Alanazi AD, Alnomasy SF. Immunomodulatory, Antioxidant, and Anti-Inflammatory Activities of Green Synthesized Copper Nanoparticles for Treatment of Chronic Toxoplasma gondii Infection. Pharmaceuticals (Basel) 2023; 16:1574. [PMID: 38004439 PMCID: PMC10675508 DOI: 10.3390/ph16111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Nowadays, interest in the use of nanotechnology for medical purposes is increasing. The current experimental investigation is planned for the green synthesis, characterization, and efficacy of copper nanoparticles (CLN) against chronic Toxoplasma gondii infection. METHODS Green synthesis of CNP was performed using the Lupinus arcticus extract via the precipitation method. The effects of CNP on tachyzoites, infectivity rate, parasites inside THP-1 cells, nitric oxide (NO) triggering, iNOS, and IFN-γ expression genes were evaluated. Following toxoplasmosis in BALB/c mice via the T. gondii ME49 strain, mice received CNP at 5 and 10 mg/kg/day alone and combined with pyrimethamine (PYM) at 5 mg/kg for two weeks. CNP's in vivo effects were evaluated by analyzing the load and size of cysts, oxidant/antioxidant enzymes, and bradyzoite surface antigen 1 (BAG1) expression gene levels. RESULTS CNP displayed a circular shape ranging from 10 to 85 nm. The IC50 value of CNP and PYM against tachyzoites was 37.2 and 25.7 µg/mL, respectively, whereas the CC50 value of CNP and pyrimethamine against THP-1 cells was 491.4 μg/mL and 269.5 μg/mL, respectively. The rate of infectivity and parasite load among THP-1 cells exposed to CNP was obviously reduced (p < 0.05). CNP at the doses of 5 and 10 mg/kg predominantly along with PYM evidently (p < 0.05) reduced the number and size of the T. gondii cysts in the infected mice. The levels of NO, iNOS, and IFN-γ genes were remarkably (p < 0.001) boosted compared with the cells without treatment. CNP at the doses of 10 and 20 mg/kg drastically (p < 0.05) reduced the oxidative stress markers in the infected mice, whereas CNP significantly elevated the level of antioxidant factors. CNP also revealed no toxicity in the liver and kidney at the tested doses in healthy mice. CONCLUSIONS Our experimental study reported the beneficial effects of CNP principally along with existing chemical drugs against latent toxoplasmosis in mice, whereas the possible action mechanisms of CNP are controlling oxidative stress, refining antioxidant enzymes, and increasing the production of immunomodulatory cytokines with no toxicity to the function of vital organs. But, additional trials are required to confirm these results, as well as to clarify the accurate mechanisms and their toxicity.
Collapse
Affiliation(s)
- Abdullah D. Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi 11911, Saudi Arabia
| | - Sultan F. Alnomasy
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah 19257, Saudi Arabia;
| |
Collapse
|
17
|
Butterworth S, Kordova K, Chandrasekaran S, Thomas KK, Torelli F, Lockyer EJ, Edwards A, Goldstone R, Koshy AA, Treeck M. High-throughput identification of Toxoplasma gondii effector proteins that target host cell transcription. Cell Host Microbe 2023; 31:1748-1762.e8. [PMID: 37827122 DOI: 10.1016/j.chom.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
Intracellular pathogens and other endosymbionts reprogram host cell transcription to suppress immune responses and recalibrate biosynthetic pathways. This reprogramming is critical in determining the outcome of infection or colonization. We combine pooled CRISPR knockout screening with dual host-microbe single-cell RNA sequencing, a method we term dual perturb-seq, to identify the molecular mediators of these transcriptional interactions. Applying dual perturb-seq to the intracellular pathogen Toxoplasma gondii, we are able to identify previously uncharacterized effector proteins and directly infer their function from the transcriptomic data. We show that TgGRA59 contributes to the export of other effector proteins from the parasite into the host cell and identify an effector, TgSOS1, that is necessary for sustained host STAT6 signaling and thereby contributes to parasite immune evasion and persistence. Together, this work demonstrates a tool that can be broadly adapted to interrogate host-microbe transcriptional interactions and reveal mechanisms of infection and immune evasion.
Collapse
Affiliation(s)
- Simon Butterworth
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Kristina Kordova
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | | | | | - Francesca Torelli
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Eloise J Lockyer
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Amelia Edwards
- Advanced Sequencing Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Robert Goldstone
- Advanced Sequencing Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Anita A Koshy
- BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA; Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA; Department of Neurology, University of Arizona, Tucson, AZ 85719, USA
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Cell Biology of Host-Pathogen Interaction Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal.
| |
Collapse
|
18
|
Mani R, Abdelaziz MH, Ochiai E, Sa Q, Fox BA, Bzik DJ, Suzuki Y. Dense granule protein 3 of Toxoplasma gondii plays a crucial role in the capability of the tissue cysts of the parasite to persist in the presence of anti-cyst CD8 + T cells during the chronic stage of infection. Front Immunol 2023; 14:1272221. [PMID: 37868957 PMCID: PMC10585165 DOI: 10.3389/fimmu.2023.1272221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Toxoplasma gondii establishes chronic infection by forming tissue cysts, and this chronic infection is one of the most common parasitic infections in humans. Our recent studies revealed that whereas CD8+ T cells of genetically resistant BALB/c mice have the capability to remove the tissue cysts of the parasite through their perforin-mediated activities, small portions of the cysts are capable of persisting in the presence of the anti-cyst CD8+ T cells. It is currently unknown how those small portions of the cysts resist or escape the T-cell immunity and persist in the hosts. In the present study, we discovered that the cysts, which persisted in the presence of the perforin-mediated CD8+ T-cell immunity, have significantly greater mRNA levels for four dense granule proteins, GRA1, GRA2, GRA3, and GRA7, and one rhoptry protein, ROP35, than the total population of the cysts present in the absence of the T cells. In addition, increased levels of mRNA for GRA1, GRA3, and ROP35 in the cysts significantly correlated with their successful persistence through the condition in which greater degrees of reduction of the cyst burden occurred through anti-cyst CD8+ T cells. In addition, GRA3-deficient T. gondii displayed significantly enhanced elimination of the cysts by anti-cyst CD8+ T cells when compared to the wild-type parasite. These results indicate that GRA3 is a key molecule that mediates in the capability of T. gondii cysts to persist by resisting or evading the anti-cyst activity of CD8+ T cells during the later stage of infection.
Collapse
Affiliation(s)
- Rajesh Mani
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Mohamed H. Abdelaziz
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Eri Ochiai
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Qila Sa
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Barbara A. Fox
- Deaprtment of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - David J. Bzik
- Deaprtment of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Yasuhiro Suzuki
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
19
|
Vanagas L, Muñoz D, Cristaldi C, Ganuza A, Nájera R, Bonardi MC, Turowski VR, Guzman F, Deng B, Kim K, Sullivan WJ, Angel SO. Histone variant H2B.Z acetylation is necessary for maintenance of Toxoplasma gondii biological fitness. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194943. [PMID: 37217032 PMCID: PMC10524646 DOI: 10.1016/j.bbagrm.2023.194943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Through regulation of DNA packaging, histone proteins are fundamental to a wide array of biological processes. A variety of post-translational modifications (PTMs), including acetylation, constitute a proposed histone code that is interpreted by "reader" proteins to modulate chromatin structure. Canonical histones can be replaced with variant versions that add an additional layer of regulatory complexity. The protozoan parasite Toxoplasma gondii is unique among eukaryotes in possessing a novel variant of H2B designated H2B.Z. The combination of PTMs and the use of histone variants are important for gene regulation in T. gondii, offering new targets for drug development. In this work, T. gondii parasites were generated in which the 5 N-terminal acetylatable lysines in H2B.Z were mutated to either alanine (c-Myc-A) or arginine (c-Myc-R). The c-Myc-A mutant displayed no phenotype over than a mild defect in its ability to kill mice. The c-Myc-R mutant presented an impaired ability to grow and an increase in differentiation to latent bradyzoites. The c-Myc-R mutant was also more sensitive to DNA damage, displayed no virulence in mice, and provided protective immunity against future infection. While nucleosome composition was unaltered, key genes were abnormally expressed during in vitro bradyzoite differentiation. Our results show that regulation of the N-terminal positive charge patch of H2B.Z is important for these processes. We also show that acetylated N-terminal H2B.Z interacts with some unique proteins compared to its unacetylated counterpart; the acetylated peptide pulled down proteins associated with chromosome maintenance/segregation and cell cycle, suggesting a link between H2B.Z acetylation status and mitosis.
Collapse
Affiliation(s)
- Laura Vanagas
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina.
| | - Daniela Muñoz
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina
| | - Constanza Cristaldi
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina
| | - Agustina Ganuza
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina
| | - Rosario Nájera
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina
| | - Mabel C Bonardi
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina
| | - Valeria R Turowski
- Laboratorio de Bioquímica y Biología Celular de Parásitos, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA Chascomús, Prov. Buenos Aires, Argentina
| | - Fanny Guzman
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaiso, Av. Universidad 330 Curauma, Valparaiso, Chile
| | - Bin Deng
- Department of Biology and VBRN, University of Vermont, VT, USA
| | - Kami Kim
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - William J Sullivan
- Department of Pharmacology and Toxicology, Indiana School of Medicine, Indianapolis, IN 46202, USA
| | - Sergio O Angel
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina.
| |
Collapse
|
20
|
Zamaniyan M, Fakhar M, Tabaripour R, Peivandi S, Keighobadi M, Ghasemi S, Montazeri M. Credible Serological Evidence of Latent Toxoplasma Infection Among Women with Primary Infertility: A Ten-Year Registry-Based Study. Acta Parasitol 2023; 68:400-405. [PMID: 36995510 DOI: 10.1007/s11686-023-00677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Some evidence reveled that chronic infection with Toxoplasma gondii (T. gondii) has recently been associated with infertility in human and experimental model. This baseline study aimed to investigate serological evidence of Toxoplasma infection among infertile women who admitted to the in vitro fertilization (IVF) clinic at Imam Khomeini Hospital, Mazandaran province, Sari, northern Iran. SUBJECTS AND METHODS In this retrospective (descriptive-analytical) study, all infertile women referred to the IVF clinic during 2010-2019 (10 years), constitute the study population. All data including demographic and some related characteristics were collected into a questionnaire and registered at the Iranian National Registry Center for Toxoplasmosis (INRCT) at the Mazandaran University of Medical Sciences, northern Iran. The existence of anti-Toxoplasma antibodies (IgG and IgM) was explored using a commercially available enzyme-linked immune sorbent assay (ELISA) kit (PishtazTeb, Iran), based on the manufacturer's protocol. RESULTS Of 520 infertile women, anti-T. gondii IgG, IgM and both IgG and IgM antibodies were detected among 342/520 (65.77%), 1/520 (0.19) and 4/520 (0.77) infertile women, respectively. Primary and secondary infertility was detected in 74.56% and 25.44% of IgG seropositive infertile women, respectively. Also, most of the IgG seropositive subjects had no history of abortion, polycystic ovary syndrome (PCO), fibroma, contraceptive use and varicocele in spouse as primary cause of infertility. Furthermore, serum levels of prolactin and antimullerian (AMH) hormones were normal in 81.29 and 80.12% of infertile women with anti- T. gondii IgG, respectively. There was also a statistically significant difference between the seroprevalence of Toxoplasma infection and these variables associated to primary infertility (P < 0.05). CONCLUSION According to the high prevalence (about two thirds) of chronic T. gondii infection among infertile women, particularly those with a history of abortion and primary infertility, it can be concluded that latent Toxoplasma infection pose a risk to infertile woman in the study area. Therefore, we advise that screening and treatment of Toxoplasma infection among infertile women must be favorably considered.
Collapse
Affiliation(s)
- Marzieh Zamaniyan
- Department of Obstetrics and Gynecology, Diabetes Research Center, Infertility Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Iranian National Registry Center for Toxoplasmosis (INRCT), Imam Khomeini Hospital, Mazandaran University of Medical Sciences, P.O Box: 48166-33131, Sari, Iran
| | - Mahdi Fakhar
- Iranian National Registry Center for Toxoplasmosis (INRCT), Imam Khomeini Hospital, Mazandaran University of Medical Sciences, P.O Box: 48166-33131, Sari, Iran.
| | - Rabeeh Tabaripour
- Iranian National Registry Center for Toxoplasmosis (INRCT), Imam Khomeini Hospital, Mazandaran University of Medical Sciences, P.O Box: 48166-33131, Sari, Iran
| | - Saloumeh Peivandi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoud Keighobadi
- Iranian National Registry Center for Toxoplasmosis (INRCT), Imam Khomeini Hospital, Mazandaran University of Medical Sciences, P.O Box: 48166-33131, Sari, Iran
| | - Samira Ghasemi
- Iranian National Registry Center for Toxoplasmosis (INRCT), Imam Khomeini Hospital, Mazandaran University of Medical Sciences, P.O Box: 48166-33131, Sari, Iran
| | - Mahbobeh Montazeri
- Iranian National Registry Center for Toxoplasmosis (INRCT), Imam Khomeini Hospital, Mazandaran University of Medical Sciences, P.O Box: 48166-33131, Sari, Iran.
| |
Collapse
|
21
|
Hensel ME, Landsgaard K, Wang W, Neupane S, Su C, Blue-McClendon A, Porter BF, Uzal FA, Rech R. Toxoplasmosis in ring-tailed lemurs (Lemur catta) and a peahen (Pavo cristatus) in a zoological collection caused by the common toxoplasma genotype in wild animals in the US. Vet Parasitol Reg Stud Reports 2023; 41:100876. [PMID: 37208075 DOI: 10.1016/j.vprsr.2023.100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
Toxoplasmosis is caused by the ubiquitous Apicomplexan protozoan Toxoplasma gondii. This pathogen affects domestic and wildlife species, but prosimians including ring-tailed lemurs (Lemur catta) are highly susceptible to infection with high mortality rates. Avian species are considered resistant to infection and are often used in surveillance efforts to determine genotypes of T. gondii present in geographical areas. This study describes the gross and histologic lesions of an outbreak of toxoplasmosis in a university-run zoological collection involving three ring-tailed lemurs and a peahen (Pavo cristatus). DNA was extracted from the liver of the lemurs and peahen to determine the genotype of T. gondii by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP), which revealed that all samples were ToxoDB PCR-RFLP genotype #5 (haplogroup 12) that is common in wildlife in North America.
Collapse
Affiliation(s)
- M E Hensel
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77845, United States of America; Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, United States of America
| | - K Landsgaard
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77845, United States of America
| | - W Wang
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, United States of America
| | - S Neupane
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77845, United States of America
| | - C Su
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, United States of America
| | - A Blue-McClendon
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| | - B F Porter
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77845, United States of America
| | - F A Uzal
- California Animal Health and Food Safety, University of California-Davis, San Bernardino, CA 92408, United States of America
| | - R Rech
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77845, United States of America.
| |
Collapse
|
22
|
Sena F, Cancela S, Bollati-Fogolín M, Pagotto R, Francia ME. Exploring Toxoplasma gondii´s Biology within the Intestinal Epithelium: intestinal-derived models to unravel sexual differentiation. Front Cell Infect Microbiol 2023; 13:1134471. [PMID: 37313339 PMCID: PMC10258352 DOI: 10.3389/fcimb.2023.1134471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/25/2023] [Indexed: 06/15/2023] Open
Abstract
A variety of intestinal-derived culture systems have been developed to mimic in vivo cell behavior and organization, incorporating different tissue and microenvironmental elements. Great insight into the biology of the causative agent of toxoplasmosis, Toxoplasma gondii, has been attained by using diverse in vitro cellular models. Nonetheless, there are still processes key to its transmission and persistence which remain to be elucidated, such as the mechanisms underlying its systemic dissemination and sexual differentiation both of which occur at the intestinal level. Because this event occurs in a complex and specific cellular environment (the intestine upon ingestion of infective forms, and the feline intestine, respectively), traditional reductionist in vitro cellular models fail to recreate conditions resembling in vivo physiology. The development of new biomaterials and the advances in cell culture knowledge have opened the door to a next generation of more physiologically relevant cellular models. Among them, organoids have become a valuable tool for unmasking the underlying mechanism involved in T. gondii sexual differentiation. Murine-derived intestinal organoids mimicking the biochemistry of the feline intestine have allowed the generation of pre-sexual and sexual stages of T. gondii for the first time in vitro, opening a window of opportunity to tackling these stages by "felinizing" a wide variety of animal cell cultures. Here, we reviewed intestinal in vitro and ex vivo models and discussed their strengths and limitations in the context of a quest for faithful models to in vitro emulate the biology of the enteric stages of T. gondii.
Collapse
Affiliation(s)
- Florencia Sena
- Laboratory of Apicomplexan Biology, Institut Pasteur Montevideo, Montevideo, Uruguay
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Universidad de la República, Montevideo, Uruguay
| | - Saira Cancela
- Cell Biology Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
- Molecular, Cellular, and Animal Technology Program (ProTeMCA), Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Mariela Bollati-Fogolín
- Cell Biology Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
- Molecular, Cellular, and Animal Technology Program (ProTeMCA), Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Romina Pagotto
- Cell Biology Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - María E. Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur Montevideo, Montevideo, Uruguay
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
23
|
Kochanowsky JA, Chandrasekaran S, Sanchez JR, Thomas KK, Koshy AA. ROP16-mediated activation of STAT6 enhances cyst development of type III Toxoplasma gondii in neurons. PLoS Pathog 2023; 19:e1011347. [PMID: 37068104 PMCID: PMC10138205 DOI: 10.1371/journal.ppat.1011347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/27/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
Toxoplasma gondii establishes a long-lived latent infection in the central nervous system (CNS) of its hosts. Reactivation in immunocompromised individuals can lead to life threatening disease. Latent infection is driven by the ability of the parasite to convert from the acute-stage tachyzoite to the latent-stage bradyzoite which resides in long-lived intracellular cysts. While much work has focused on the parasitic factors that drive cyst development, the host factors that influence encystment are not well defined. Here we show that a polymorphic secreted parasite kinase (ROP16), that phosphorylates host cell proteins, mediates efficient encystment of T. gondii in a stress-induced model of encystment and primary neuronal cell cultures (PNCs) in a strain-specific manner. Using short-hairpin RNA (shRNA) knockdowns in human foreskin fibroblasts (HFFs) and PNCs from transgenic mice, we determined that ROP16's cyst enhancing abilities are mediated, in part, by phosphorylation-and therefore activation-of the host cell transcription factor STAT6. To test the role of STAT6 in vivo, we infected wild-type (WT) and STAT6KO mice, finding that, compared to WT mice, STAT6KO mice have a decrease in CNS cyst burden but not overall parasite burden or dissemination to the CNS. Finally, we found a similar ROP16-dependent encystment defect in human pluripotent stem cell-derived neurons. Together, these findings identify a host cell factor (STAT6) that T. gondii manipulates in a strain-specific manner to generate a favorable encystment environment.
Collapse
Affiliation(s)
- Joshua A. Kochanowsky
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | | | - Jacqueline R. Sanchez
- Postbaccalaureate Research Education Program, University of Arizona, Tucson, Arizona, United States of America
| | - Kaitlin K. Thomas
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Anita A. Koshy
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Neurology, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
24
|
Vanagas L, Muñoz D, Cristaldi C, Ganuza A, Nájera R, Bonardi MC, Turowski VR, Guzman F, Deng B, Kim K, Sullivan WJ, Angel SO. Histone variant H2B.Z acetylation is necessary for maintenance of Toxoplasma gondii biological fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528480. [PMID: 36824796 PMCID: PMC9949044 DOI: 10.1101/2023.02.14.528480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Through regulation of DNA packaging, histone proteins are fundamental to a wide array of biological processes. A variety of post-translational modifications (PTMs), including acetylation, constitute a proposed histone code that is interpreted by "reader" proteins to modulate chromatin structure. Canonical histones can be replaced with variant versions that add an additional layer of regulatory complexity. The protozoan parasite Toxoplasma gondii is unique among eukaryotes in possessing a novel variant of H2B designated H2B.Z. The combination of PTMs and the use of histone variants is important for gene regulation in T. gondii, offering new targets for drug development. In this work, T. gondii parasites were generated in which the 5 N-terminal acetylatable lysines in H2B.Z were mutated to either alanine (c-Myc-A) or arginine (c-Myc-R). c-Myc-A mutant only displayed a mild effect in its ability to kill mice. c-Myc-R mutant presented an impaired ability to grow and an increase in differentiation to latent bradyzoites. This mutant line was also more sensitive to DNA damage, displayed no virulence in mice, and provided protective immunity against future infection. While nucleosome composition was unaltered, key genes were abnormally expressed during in vitro bradyzoite differentiation. Our results show that the N-terminal positive charge patch of H2B.Z is important for these procceses. Pull down assays with acetylated N-terminal H2B.Z peptide and unacetylated one retrieved common and differential interactors. Acetylated peptide pulled down proteins associated with chromosome maintenance/segregation and cell cycle, opening the question of a possible link between H2B.Z acetylation status and mitosis.
Collapse
Affiliation(s)
- Laura Vanagas
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Daniela Muñoz
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Constanza Cristaldi
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Agustina Ganuza
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Rosario Nájera
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Mabel C. Bonardi
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Valeria R. Turowski
- Laboratorio de Bioquímica y Biología Celular de Parásitos, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Fanny Guzman
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaiso. Av. Universidad 330 Curauma, Valparaiso
| | - Bin Deng
- Department of Biology and VBRN, University of Vermont, Vermont, USA
| | - Kami Kim
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - William J. Sullivan
- Department of Pharmacology and Toxicology, Indiana School of Medicine, Indianapolis, Indiana 46202, USA
| | - Sergio O. Angel
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| |
Collapse
|
25
|
Place BC, Troublefield CA, Murphy RD, Sinai AP, Patwardhan AR. Machine learning based classification of mitochondrial morphologies from fluorescence microscopy images of Toxoplasma gondii cysts. PLoS One 2023; 18:e0280746. [PMID: 36730225 PMCID: PMC9894464 DOI: 10.1371/journal.pone.0280746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/07/2023] [Indexed: 02/03/2023] Open
Abstract
The mitochondrion is intimately linked to energy and overall metabolism and therefore the morphology of mitochondrion can be very informative for inferring the metabolic state of cells. In this study we report an approach for automatic classification of mitochondrial morphologies using supervised machine learning to efficiently classify them from a large number of cells at a time. Fluorescence microscopy images of the chronic encysted form of parasite Toxoplasma gondii were used for this development. Manually classifying these morphologies from the hundreds of parasites within typical tissue cysts is tedious and error prone. In addition, because of inherent biological heterogeneity in morphologies, there can be variability and lack of reproducibility in manual classification. We used image segmentation to detect mitochondrial shapes and used features extracted from them in a multivariate logistic regression model to classify the detected shapes into five morphological classes: Blobs, Tadpoles, Lasso/Donuts, Arcs, and Other. The detected shapes from a subset of images were first used to obtain consensus classification among expert users to obtain a labeled set. The model was trained using the labeled set from five cysts and its performance was tested on the mitochondrial morphologies from ten other cysts that were not used in training. Results showed that the model had an average overall accuracy of 87%. There was high degree of confidence in the classification of Blobs and Arcs (average F scores 0.91 and 0.73) which constituted the majority of morphologies (85%). Although the current development used microscopy images from tissue cysts of Toxoplasma gondii, the approach is adaptable with minor adjustments and can be used to automatically classify morphologies of organelles from a variety of cells.
Collapse
Affiliation(s)
- Brooke C. Place
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, United States of America
| | - Cortni A. Troublefield
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Robert D. Murphy
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Anthony P. Sinai
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Abhijit R. Patwardhan
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
26
|
Invasion of Toxoplasma gondii bradyzoites: Molecular dissection of the moving junction proteins and effective vaccination targets. Proc Natl Acad Sci U S A 2023; 120:e2219533120. [PMID: 36693095 PMCID: PMC9945962 DOI: 10.1073/pnas.2219533120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Toxoplasmosis is a neglected parasitic disease necessitating public health control. Host cell invasion by Toxoplasma occurs at different stages of the parasite's life cycle and is crucial for survival and establishment of infection. In tachyzoites, which are responsible for acute toxoplasmosis, invasion involves the formation of a molecular bridge between the parasite and host cell membranes, referred to as the moving junction (MJ). The MJ is shaped by the assembly of AMA1 and RON2, as part of a complex involving additional RONs. While this essential process is well characterized in tachyzoites, the invasion process remains unexplored in bradyzoites, which form cysts and are responsible for chronic toxoplasmosis and contribute to the dissemination of the parasite between hosts. Here, we show that bradyzoites invade host cells in an MJ-dependent fashion but differ in protein composition from the tachyzoite MJ, relying instead on the paralogs AMA2 and AMA4. Functional characterization of AMA4 reveals its key role for cysts burden during the onset of chronic infection, while being dispensable for the acute phase. Immunizations with AMA1 and AMA4, alone or in complex with their rhoptry neck respective partners RON2 and RON2L1, showed that the AMA1-RON2 pair induces strong protection against acute and chronic infection, while the AMA4-RON2L1 complex targets more selectively the chronic form. Our study provides important insights into the molecular players of bradyzoite invasion and indicates that invasion of cyst-forming bradyzoites contributes to cyst burden. Furthermore, we validate AMA-RON complexes as potential vaccine candidates to protect against toxoplasmosis.
Collapse
|
27
|
Pan M, Ge CC, Fan YM, Jin QW, Shen B, Huang SY. The determinants regulating Toxoplasma gondii bradyzoite development. Front Microbiol 2022; 13:1027073. [PMID: 36439853 PMCID: PMC9691885 DOI: 10.3389/fmicb.2022.1027073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular zoonotic pathogen capable of infecting almost all cells of warm-blooded vertebrates. In intermediate hosts, this parasite reproduces asexually in two forms, the tachyzoite form during acute infection that proliferates rapidly and the bradyzoite form during chronic infection that grows slowly. Depending on the growth condition, the two forms can interconvert. The conversion of tachyzoites to bradyzoites is critical for T. gondii transmission, and the reactivation of persistent bradyzoites in intermediate hosts may lead to symptomatic toxoplasmosis. However, the mechanisms that control bradyzoite differentiation have not been well studied. Here, we review recent advances in the study of bradyzoite biology and stage conversion, aiming to highlight the determinants associated with bradyzoite development and provide insights to design better strategies for controlling toxoplasmosis.
Collapse
Affiliation(s)
- Ming Pan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Ceng-Ceng Ge
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yi-Min Fan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qi-Wang Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
28
|
The beta subunit of AMP-activated protein kinase is critical for cell cycle progression and parasite development in Toxoplasma gondii. Cell Mol Life Sci 2022; 79:532. [DOI: 10.1007/s00018-022-04556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/30/2022] [Accepted: 09/10/2022] [Indexed: 11/03/2022]
|
29
|
Tan S, Tong WH, Vyas A. Impact of Plant-Based Foods and Nutraceuticals on Toxoplasma gondii Cysts: Nutritional Therapy as a Viable Approach for Managing Chronic Brain Toxoplasmosis. Front Nutr 2022; 9:827286. [PMID: 35284438 PMCID: PMC8914227 DOI: 10.3389/fnut.2022.827286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that mainly infects warm-blooded animals including humans. T. gondii can encyst and persist chronically in the brain, leading to a broad spectrum of neurological sequelae. Despite the associated health threats, no clinical drug is currently available to eliminate T. gondii cysts. In a continuous effort to uncover novel therapeutic agents for these cysts, the potential of nutritional products has been explored. Herein, we describe findings from in vitro and in vivo studies that support the efficacy of plant-based foods and nutraceuticals against brain cyst burden and cerebral pathologies associated with chronic toxoplasmosis. Finally, we discuss strategies to increase the translatability of preclinical studies and nutritional products to address whether nutritional therapy can be beneficial for coping with chronic T. gondii infections in humans.
Collapse
|
30
|
Lunghi M, Kloehn J, Krishnan A, Varesio E, Vadas O, Soldati-Favre D. Pantothenate biosynthesis is critical for chronic infection by the neurotropic parasite Toxoplasma gondii. Nat Commun 2022; 13:345. [PMID: 35039477 PMCID: PMC8764084 DOI: 10.1038/s41467-022-27996-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022] Open
Abstract
Coenzyme A (CoA) is an essential molecule acting in metabolism, post-translational modification, and regulation of gene expression. While all organisms synthesize CoA, many, including humans, are unable to produce its precursor, pantothenate. Intriguingly, like most plants, fungi and bacteria, parasites of the coccidian subgroup of Apicomplexa, including the human pathogen Toxoplasma gondii, possess all the enzymes required for de novo synthesis of pantothenate. Here, the importance of CoA and pantothenate biosynthesis for the acute and chronic stages of T. gondii infection is dissected through genetic, biochemical and metabolomic approaches, revealing that CoA synthesis is essential for T. gondii tachyzoites, due to the parasite's inability to salvage CoA or intermediates of the pathway. In contrast, pantothenate synthesis is only partially active in T. gondii tachyzoites, making the parasite reliant on its uptake. However, pantothenate synthesis is crucial for the establishment of chronic infection, offering a promising target for intervention against the persistent stage of T. gondii.
Collapse
Affiliation(s)
- Matteo Lunghi
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Emmanuel Varesio
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
- Mass Spectrometry Core Facility (MZ 2.0), University of Geneva, 1211, Geneva, Switzerland
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
- Protein and peptide purification platform, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland.
| |
Collapse
|
31
|
Insights into the biochemical features and immunogenic epitopes of common bradyzoite markers of the ubiquitous Toxoplasma gondii. INFECTION GENETICS AND EVOLUTION 2021; 95:105037. [PMID: 34390868 DOI: 10.1016/j.meegid.2021.105037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/16/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022]
Abstract
The widespread distribution of Toxoplasma gondii (T. gondii) infection and its harsh outcomes in pregnant women and immunocompromised patients lead researchers towards vaccination strategies. The present in silico investigation was done to reveal biophysical properties and immunogenic epitopes of six bradyzoite markers for rational vaccine design in future. For this purpose, different web servers were used to predict antigenicity, allergenicity, solubility, physicochemical properties, post-translational modification sites (PTMs), the presence of signal peptide and transmembrane domains. Moreover, the secondary and tertiary structures of the proteins were revealed followed by refinement and validation. Finally, NetCTL server was used to predict cytotoxic T-lymphocyte (CTL) epitopes, with subsequent immunogenicity analysis. Also, IEDB server was utilized to predict helper T-lymphocyte (HTL) epitopes, followed by IFN-γ and IL-4 induction, antigenicity and population coverage analysis. As well, several linear antigenic B-cell epitopes were found, with good water solubility and without allergenicity. Totally, these proteins showed appropriate antigenicity, abundant PTMs as well as many CTL, HTL and B-cell epitopes, which could be directed for future vaccination studies in the context of multi-epitope vaccine design.
Collapse
|
32
|
Grochow T, Beck B, Rentería-Solís Z, Schares G, Maksimov P, Strube C, Seeger J, Raqué L, Ulrich R, Daugschies A, Fietz SA. Establishment and validation of a guinea pig model for human congenital toxoplasmosis. Parasit Vectors 2021; 14:389. [PMID: 34362413 PMCID: PMC8344189 DOI: 10.1186/s13071-021-04890-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/23/2021] [Indexed: 11/28/2022] Open
Abstract
Background Toxoplasma gondii is an obligate intracellular parasite with a worldwide distribution. Congenital infection in humans and animals may lead to severe symptoms in the offspring, especially in the brain. A suitable animal model for human congenital toxoplasmosis is currently lacking. The aim of this study is to establish and validate the guinea pig as a model for human congenital toxoplasmosis by investigating the impact of the T. gondii infection dose, the duration of infection and the gestational stage at infection on the seroconversion, survival rate of dams, fate of the offspring, T. gondii DNA loads in various offspring tissues and organs and the integrity of the offspring brain. Methods Pregnant guinea pigs were infected with three different doses (10, 100, 500 oocysts) of T. gondii strain ME49 at three different time points during gestation (15, 30, 48 days post-conception). Serum of dams was tested for the presence of T. gondii antibodies using immunoblotting. T. gondii DNA levels in the dam and offspring were determined by qPCR. Offspring brains were examined histologically. Results We found the survival rate of dams and fate of the offspring to be highly dependent on the T. gondii infection dose with an inoculation of 500 oocysts ending lethally for all respective offspring. Moreover, both parameters differ depending on the gestational stage at infection with infection in the first and third trimester of gestation resulting in a high offspring mortality rate. The duration of infection was found to substantially impact the seroconversion rate of dams with the probability of seroconversion exceeding 50% after day 20 post-infection. Furthermore, the infection duration of dams influenced the T. gondii DNA loads in the offspring and the integrity of offspring brain. Highest DNA levels were found in the offspring brain of dams infected for ≥ 34 days. Conclusion This study contributes to establishing the guinea pig as a suitable model for human congenital toxoplasmosis and thus lays the foundation for using the guinea pig as a suitable animal model to study scientific questions of high topicality and clinical significance, which address the pathogenesis, diagnosis, therapy and prognosis of congenital toxoplasmosis. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04890-4.
Collapse
Affiliation(s)
- Thomas Grochow
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.,Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Britta Beck
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.,Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Zaida Rentería-Solís
- Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gereon Schares
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Pavlo Maksimov
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Johannes Seeger
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Lisa Raqué
- Veterinary Practice Raqué, Leipzig, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Arwid Daugschies
- Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
33
|
Lyu C, Yang X, Yang J, Hou L, Zhou Y, Zhao J, Shen B. Role of amylopectin synthesis in Toxoplasma gondii and its implication in vaccine development against toxoplasmosis. Open Biol 2021; 11:200384. [PMID: 34129780 PMCID: PMC8205521 DOI: 10.1098/rsob.200384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous pathogen infecting one-third of the global population. A significant fraction of toxoplasmosis cases is caused by reactivation of existing chronic infections. The encysted bradyzoites during chronic infection accumulate high levels of amylopectin that is barely present in fast-replicating tachyzoites. However, the physiological significance of amylopectin is not fully understood. Here, we identified a starch synthase (SS) that is required for amylopectin synthesis in T. gondii. Genetic ablation of SS abolished amylopectin production, reduced tachyzoite proliferation, and impaired the recrudescence of bradyzoites to tachyzoites. Disruption of the parasite Ca2+-dependent protein kinase 2 (CDPK2) was previously shown to cause massive amylopectin accumulation and bradyzoite death. Therefore, the Δcdpk2 mutant is thought to be a vaccine candidate. Notably, deleting SS in a Δcdpk2 mutant completely abolished starch accrual and restored cyst formation as well as virulence in mice. Together these results suggest that regulated amylopectin production is critical for the optimal growth, development and virulence of Toxoplasma. Not least, our data underscore a potential drawback of the Δcdpk2 mutant as a vaccine candidate as it may regain full virulence by mutating amylopectin synthesis genes like SS.
Collapse
Affiliation(s)
- Congcong Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Key Laboratory of Preventive Medicine in Hubei Province, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xuke Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Key Laboratory of Preventive Medicine in Hubei Province, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jichao Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Key Laboratory of Preventive Medicine in Hubei Province, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Lun Hou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Key Laboratory of Preventive Medicine in Hubei Province, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Key Laboratory of Preventive Medicine in Hubei Province, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Key Laboratory of Preventive Medicine in Hubei Province, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Hubei Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, People's Republic of China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Key Laboratory of Preventive Medicine in Hubei Province, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
34
|
Guo H, Gao Y, N'Da DD, Xuan X. In vitro anti-Toxoplasma gondii efficacy of synthesised benzyltriazole derivatives. ACTA ACUST UNITED AC 2021; 88:e1-e8. [PMID: 34212734 PMCID: PMC8252180 DOI: 10.4102/ojvr.v88i1.1898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022]
Abstract
Toxoplasma gondii, an obligate intracellular parasite, is the aetiological agent of toxoplasmosis, a disease that affects approximately 25% – 30% of the world’s population. At present, no safe and effective vaccine exists for the prevention of toxoplasmosis. Current treatment options for toxoplasmosis are active only against tachyzoites and may also cause bone marrow toxicity. To contribute to the global search for novel agents for the treatment of toxoplasmosis, we herein report the in vitro activities of previously synthesised benzyltriazole derivatives. The effects of these compounds against T. gondii in vitro were evaluated by using a expressing green fluorescent protein (GFP) type I strain parasite (RH-GFP) and a type II cyst-forming strain of parasite (PruΔku80Δhxgprt). The frontline antitubercular drug isoniazid, designated as Frans J. Smit -isoniazid (FJS-INH), was also included in the screening as a preliminary test in view of future repurposing of this agent. Of the compounds screened, FJS-302, FJS-303, FJS-403 and FJS-INH demonstrated > 80% parasite growth inhibition with IC50 values of 5.6 µg/mL, 6.8 µg/µL, 7.0 µg/mL and 19.8 µg/mL, respectively. FJS-302, FJS-303 and FJS-403 inhibited parasite invasion and replication, whereas, sulphadiazine (SFZ), the positive control, was only effective against parasite replication. In addition, SFZ induced bradyzoite differentiation in vitro, whilst FJS-302, FJS-303 and FJS-403 did not increase the bradyzoite number. These results indicate that FJS-302, FJS-303 and FJS-403 have the potential to act as a viable source of antiparasitic therapeutic agents.
Collapse
Affiliation(s)
- Huanping Guo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro.
| | | | | | | |
Collapse
|
35
|
Quintana JF, Zoltner M, Field MC. Evolving Differentiation in African Trypanosomes. Trends Parasitol 2021; 37:296-303. [PMID: 33309505 DOI: 10.1016/j.pt.2020.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Differentiation is a central aspect of the parasite life cycle and encompasses adaptation to both host and environment. If we accept that evolution cannot anticipate an organism's needs as it enters a new environment, how do parasite differentiation pathways arise? The transition between vertebrate and insect stage African trypanosomes is probably one of the better studied and involves a cell-cycle arrested or 'stumpy' form that activates metabolic pathways advantageous to the parasite in the insect host. However, a range of stimuli and stress conditions can trigger similar changes, leading to formation of stumpy-like cellular states. We propose that the origin and optimisation of this differentiation program represents repurposing of a generic stress response to gain considerable gain-of-fitness associated with parasite transmission.
Collapse
Affiliation(s)
- Juan F Quintana
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK; School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic.
| |
Collapse
|
36
|
Elsheikha HM, Marra CM, Zhu XQ. Epidemiology, Pathophysiology, Diagnosis, and Management of Cerebral Toxoplasmosis. Clin Microbiol Rev 2021; 34:e00115-19. [PMID: 33239310 PMCID: PMC7690944 DOI: 10.1128/cmr.00115-19] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toxoplasma gondii is known to infect a considerable number of mammalian and avian species and a substantial proportion of the world's human population. The parasite has an impressive ability to disseminate within the host's body and employs various tactics to overcome the highly regulatory blood-brain barrier and reside in the brain. In healthy individuals, T. gondii infection is largely tolerated without any obvious ill effects. However, primary infection in immunosuppressed patients can result in acute cerebral or systemic disease, and reactivation of latent tissue cysts can lead to a deadly outcome. It is imperative that treatment of life-threatening toxoplasmic encephalitis is timely and effective. Several therapeutic and prophylactic regimens have been used in clinical practice. Current approaches can control infection caused by the invasive and highly proliferative tachyzoites but cannot eliminate the dormant tissue cysts. Adverse events and other limitations are associated with the standard pyrimethamine-based therapy, and effective vaccines are unavailable. In this review, the epidemiology, economic impact, pathophysiology, diagnosis, and management of cerebral toxoplasmosis are discussed, and critical areas for future research are highlighted.
Collapse
Affiliation(s)
- Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Christina M Marra
- Departments of Neurology and Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, People's Republic of China
| |
Collapse
|
37
|
Menard KL, Bu L, Denkers EY. Transcriptomics analysis of Toxoplasma gondii-infected mouse macrophages reveals coding and noncoding signatures in the presence and absence of MyD88. BMC Genomics 2021; 22:130. [PMID: 33622246 PMCID: PMC7903719 DOI: 10.1186/s12864-021-07437-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is a globally distributed protozoan parasite that establishes life-long asymptomatic infection in humans, often emerging as a life-threatening opportunistic pathogen during immunodeficiency. As an intracellular microbe, Toxoplasma establishes an intimate relationship with its host cell from the outset of infection. Macrophages are targets of infection and they are important in early innate immunity and possibly parasite dissemination throughout the host. Here, we employ an RNA-sequencing approach to identify host and parasite transcriptional responses during infection of mouse bone marrow-derived macrophages (BMDM). We incorporated into our analysis infection with the high virulence Type I RH strain and the low virulence Type II strain PTG. Because the well-known TLR-MyD88 signaling axis is likely of less importance in humans, we examined transcriptional responses in both MyD88+/+ and MyD88-/- BMDM. Long noncoding (lnc) RNA molecules are emerging as key regulators in infection and immunity, and were, therefore, included in our analysis. RESULTS We found significantly more host genes were differentially expressed in response to the highly virulent RH strain rather than with the less virulent PTG strain (335 versus 74 protein coding genes for RH and PTG, respectively). Enriched in these protein coding genes were subsets associated with the immune response as well as cell adhesion and migration. We identified 249 and 83 non-coding RNAs as differentially expressed during infection with RH and PTG strains, respectively. Although the majority of these are of unknown function, one conserved lncRNA termed mir17hg encodes the mir17 microRNA gene cluster that has been implicated in down-regulating host cell apoptosis during T. gondii infection. Only a minimal number of transcripts were differentially expressed between MyD88 knockout and wild type cells. However, several immune genes were among the differences. While transcripts for parasite secretory proteins were amongst the most highly expressed T. gondii genes during infection, no differentially expressed parasite genes were identified when comparing infection in MyD88 knockout and wild type host BMDM. CONCLUSIONS The large dataset presented here lays the groundwork for continued studies on both the MyD88-independent immune response and the function of lncRNAs during Toxoplasma gondii infection.
Collapse
Affiliation(s)
- Kayla L Menard
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, USA.
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Eric Y Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
38
|
Loh FK, Nathan S, Chow SC, Fang CM. Immunogenicity and protection efficacy of enhanced fitness recombinant Salmonella Typhi monovalent and bivalent vaccine strains against acute toxoplasmosis. Pathog Glob Health 2021; 115:392-404. [PMID: 33525974 DOI: 10.1080/20477724.2021.1881369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The proficiency of Salmonella Typhi to induce cell-mediated immunity has allowed its exploitation as a live vector against the obligate intracellular protozoan Toxoplasma gondii. T. gondii vaccine research is of great medical value due to the lack of a suitable toxoplasmosis vaccine. In the present work, we integrated T. gondii antigen into a growth-dependent chromosome locus guaBA of S. Typhi CVD910 strain to form recombinant S. Typhi monovalent CVD910-SAG1 expressed T. gondii SAG1 antigen and monovalent CVD910-GRA2 expressed T. gondii GRA2 antigen. Furthermore, a low-copy stabilized recombinant plasmid encoding SAG1 antigen was transformed into CVD910-GRA2 to form bivalent CVD910-GS strain. An osmolarity-regulated promoter was also incorporated to control the gene transcription, whereas clyA export protein was included to translocate the antigen out of the cytoplasm. Both CVD910-GRA2 and CVD910-GS displayed healthy growth fitness and readily expressed the encoded T. gondii antigens. When administered in vivo, CVD910-GS successfully induced both humoral and cellular immunity in the immunized BALB/c mice, and extended mice survival against virulent T. gondii. In particular, the mice immunized with bivalent CVD910-GS presented the highest titers of IgG, percentages of CD4+ T, CD8+ T, B cells and memory T cells, and total IgG+ memory B cells as compared to the CVD910-GRA2 and control strains. The CVD910-GS group also generated mixed Th1/Th2 cytokine profile with secretions of IFN-ɣ, IL-2 and IL-10. This study demonstrated the importance of enhancing live vector fitness to sustain heterologous antigen expression for eliciting robust immune responses and providing effective protection against pathogen.
Collapse
Affiliation(s)
- Fei-Kean Loh
- Division of Biomedical Sciences, School of Pharmacy, the University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Sheila Nathan
- Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Sek-Chuen Chow
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, the University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| |
Collapse
|
39
|
Tomasina R, Francia ME. The Structural and Molecular Underpinnings of Gametogenesis in Toxoplasma gondii. Front Cell Infect Microbiol 2020; 10:608291. [PMID: 33365279 PMCID: PMC7750520 DOI: 10.3389/fcimb.2020.608291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/04/2020] [Indexed: 01/18/2023] Open
Abstract
Toxoplasma gondii is a widely prevalent protozoan parasite member of the phylum Apicomplexa. It causes disease in humans with clinical outcomes ranging from an asymptomatic manifestation to eye disease to reproductive failure and neurological symptoms. In farm animals, and particularly in sheep, toxoplasmosis costs the industry millions by profoundly affecting their reproductive potential. As do all the parasites in the phylum, T. gondii parasites go through sexual and asexual replication in the context of an heteroxenic life cycle involving members of the Felidae family and any warm-blooded vertebrate as definitive and intermediate hosts, respectively. During sexual replication, merozoites differentiate into female and male gametes; their combination gives rise to a zygotes which evolve into sporozoites that encyst and are shed in cat's feces as environmentally resistant oocysts. During zygote formation T. gondii parasites are diploid providing the parasite with a window of opportunity for genetic admixture making this a key step in the generation of genetic diversity. In addition, oocyst formation and shedding are central to dissemination and environmental contamination with infectious parasite forms. In this minireview we summarize the current state of the art on the process of gametogenesis. We discuss the unique structures of macro and microgametes, an insight acquired through classical techniques, as well as the more recently attained molecular understanding of the routes leading up to these life forms by in vitro and in vivo systems. We pose a number of unanswered questions and discuss these in the context of the latest findings on molecular cues mediating stage switching, and the implication for the field of newly available in vitro tools.
Collapse
Affiliation(s)
- Ramiro Tomasina
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María E Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Department of Parasitology and Mycology, School of Medicine, Universidad de la Republica, Montevideo, Uruguay
| |
Collapse
|
40
|
Sokol-Borrelli SL, Coombs RS, Boyle JP. A Comparison of Stage Conversion in the Coccidian Apicomplexans Toxoplasma gondii, Hammondia hammondi, and Neospora caninum. Front Cell Infect Microbiol 2020; 10:608283. [PMID: 33344268 PMCID: PMC7744739 DOI: 10.3389/fcimb.2020.608283] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/06/2020] [Indexed: 01/31/2023] Open
Abstract
Stage conversion is a critical life cycle feature for several Apicomplexan parasites as the ability to switch between life forms is critical for replication, dissemination, pathogenesis and ultimately, transmission to a new host. In order for these developmental transitions to occur, the parasite must first sense changes in their environment, such as the presence of stressors or other environmental signals, and then respond to these signals by initiating global alterations in gene expression. As our understanding of the genetic components required for stage conversion continues to broaden, we can better understand the conserved mechanisms for this process and unique components and their contribution to pathogenesis by comparing stage conversion in multiple closely related species. In this review, we will discuss what is currently known about the mechanisms driving stage conversion in Toxoplasma gondii and its closest relatives Hammondia hammondi and Neospora caninum. Work by us and others has shown that these species have some important differences in the way that they (1) progress through their life cycle and (2) respond to stage conversion initiating stressors. To provide a specific example of species-specific complexities associated with stage conversion, we will discuss our recent published and unpublished work comparing stress responses in T. gondii and H. hammondi.
Collapse
Affiliation(s)
| | | | - Jon P. Boyle
- University of Pittsburgh, Department of Biological Sciences, Kenneth P. Dietrich School of Arts and Sciences, Pittsburgh, PA, United States
| |
Collapse
|
41
|
Aye KM, Nagayasu E, Nyunt MH, Zaw NN, Thant KZ, Kyaw MP, Maruyama H. Seroprevalence of toxoplasmosis among reproductive-aged women in Myanmar and evaluation of luciferase immunoprecipitation system assay. BMC Infect Dis 2020; 20:906. [PMID: 33256616 PMCID: PMC7706230 DOI: 10.1186/s12879-020-05650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUNDS Primary infection with Toxoplasma gondii during pregnancy can pose serious health problems for the fetus. However, the epidemiological status of toxoplasmosis among reproductive-aged population in Myanmar is largely unknown. Although luciferase immunoprecipitation system (LIPS) assays for serodiagnosis of toxoplasmosis was developed mostly using mouse infection model, had not been tested by using field-derived human samples. METHODS A total of 251 serum samples were collected from reproductive-aged women, residing in Shwegyin township, Bago region, Myanmar and analyzed with a commercial ELISA kit, as well as in-house LIPS assays. RESULTS The overall seroprevalence for Toxoplasma gondii infection by the commercial ELISA was 11.5%. No clear risk factor was identified except for being in the younger age group (15-30 years old). Overall, LIPS assays showed low sensitivity when the commercial ELSA was used as a reference test. CONCLUSION We identified the epidemiological situation of toxoplasmosis in some rural communities in Myanmar. The data obtained here will serve as a primary information for the effort to reduce toxoplasmosis in this region. Although looked promising in the previous experiments with mouse infection model, we found that the reported LIPS procedures need further improvements to increase the sensitivities.
Collapse
Affiliation(s)
- Khin Myo Aye
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar.,Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Kiyotake, Japan
| | - Eiji Nagayasu
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Kiyotake, Japan.
| | - Myat Htut Nyunt
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Ni Ni Zaw
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Kyaw Zin Thant
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Myat Phone Kyaw
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Haruhiko Maruyama
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Kiyotake, Japan
| |
Collapse
|
42
|
Deshmukh AS, Gurupwar R, Mitra P, Aswale K, Shinde S, Chaudhari S. Toxoplasma gondii induces robust humoral immune response against cyst wall antigens in chronically infected animals and humans. Microb Pathog 2020; 152:104643. [PMID: 33232762 DOI: 10.1016/j.micpath.2020.104643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/01/2023]
Abstract
Toxoplasma gondii differentiation from proliferating tachyzoites into latent bradyzoites is central to pathogenesis and transmission. Strong humoral immune response has been reported against tachyzoite antigens, however, antibody-mediated response towards bradyzoite antigens is poorly characterized. This work aimed to study the humoral immune response towards bradyzoite and associated cyst wall antigens particularly CST1. The immunoreactivity of 404 goats, 88 sheep and 92 human sera to recombinant (CST1 and SRS9) and native proteins of encysted bradyzoite along with well-established tachyzoite antigens (SAG1 and GRA7) was determined using ELISA, Western blot and immunofluorescence analysis (IFA). ELISA results revealed nearly 50% of sera contain T. gondii specific antibodies. Results were further validated using Western blot and IFA. T. gondii positive sera predominantly recognized the cyst wall besides the known tachyzoite surface antigens. The presence of CST1 antibodies in seropositive samples were in line with the staining patterns which were consistent with CST localization. Notably, T. gondii IgM- IgG+ sera recognize the cyst wall whereas IgM + IgG-sera recognize tachyzoite antigens indicating acute infection consistent with presence of parasite DNA. The study demonstrates a strong humoral response against bradyzoite associated cyst wall antigens across naturally infected animals and humans. CST1 emerged as a key immunomodulatory antigen which may have direct implications for clinical immunodiagnostics.
Collapse
Affiliation(s)
- Abhijit S Deshmukh
- Molecular Parasitology Laboratory, DBT- National Institute of Animal Biotechnology, Hyderabad, India.
| | - Rajkumar Gurupwar
- Molecular Parasitology Laboratory, DBT- National Institute of Animal Biotechnology, Hyderabad, India
| | - Pallabi Mitra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Kalyani Aswale
- Molecular Parasitology Laboratory, DBT- National Institute of Animal Biotechnology, Hyderabad, India
| | - Shilpshri Shinde
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Nagpur, India
| | - Sandeep Chaudhari
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Nagpur, India
| |
Collapse
|
43
|
Metabolite salvage and restriction during infection - a tug of war between Toxoplasma gondii and its host. Curr Opin Biotechnol 2020; 68:104-114. [PMID: 33202353 DOI: 10.1016/j.copbio.2020.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/28/2020] [Indexed: 02/03/2023]
Abstract
The apicomplexans, including the coccidian pathogen Toxoplasma gondii, are obligate intracellular parasites whose growth and development are intricately linked to the metabolism of their host. T. gondii depends on its host for the salvage of energy sources, building blocks, vitamins and cofactors to survive and replicate. Additionally, host metabolites directly impact on the parasite life cycle development by triggering or halting differentiation. Although T. gondii infects a wide range of host cells, it has evolved to modulate and maximally exploit its host's metabolism. In return the host has developed strategies to restrict parasite access to metabolites. Here we discuss recent findings which have shed light on the battle over metabolites between T. gondii and its host.
Collapse
|
44
|
Taggart PL, Caraguel CGB, McAllister MM. Fractional seroprevalence rates in common prey species can cause more than half of feral cats to be exposed to Toxoplasma gondii annually. Vet Parasitol 2020; 288:109306. [PMID: 33221602 DOI: 10.1016/j.vetpar.2020.109306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 11/18/2022]
Abstract
Rodents comprise a major component of cat (Felis catus) diets in many ecosystems, and life cycle diagrams of Toxoplasma gondii typically depict small rodents as quintessential intermediate hosts. Counter-intuitively, small rodents often experience a lower T. gondii seroprevalence than do larger sympatric mammals. This observation has repeatedly caused confusion about the relative importance of small rodents to the ecology of T. gondii. To address this confusion, we modified the Reed-Frost epidemic model to develop a simple binomial equation to model T. gondii transmission from prey to feline predators. This equation takes into account variations in prey seroprevalence and the frequency with which they are consumed by felids. Even when T. gondii seroprevalence in prey is < 1%, computation reveals that the risk of feline exposure to T. gondii can easily exceed 50 % annually. For example, if cats eat an average of 1 mouse per day, a seroprevalence of 0.2 % (1/500) in mice will cause 51.9 % of cats to be exposed to T. gondii annually. Our simple equation demonstrates that both prey seroprevalence and the rate at which prey are consumed are of approximately equal importance to the ecology of T. gondii. When inferring the importance of various prey species to the ecology of T. gondii, researchers must consider the predation and dietary habits of felids from within their study system. Our simple binomial equation could also be used to predict T. gondii exposure rates of humans or other carnivorous animals from various dietary sources or be applied to other predator-prey parasite life cycles.
Collapse
Affiliation(s)
- Patrick L Taggart
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia; Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange, NSW, 2800 Australia.
| | - Charles G B Caraguel
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - Milton M McAllister
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| |
Collapse
|
45
|
Mitra P, Deshmukh AS, Choudhury C. Molecular chaperone function of stress inducible Hsp70 is critical for intracellular multiplication of Toxoplasma gondii. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118898. [PMID: 33157166 DOI: 10.1016/j.bbamcr.2020.118898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/27/2022]
Abstract
Intracellular pathogens like Toxoplasma gondii often target proteins and pathways critical for host cell survival and stress response. Molecular chaperones encoded by the evolutionary conserved Heat shock proteins (Hsps) maintain proteostasis and are vital to cell survival following exposure to any form of stress. A key protein of this family is Hsp70, an ATP-driven molecular chaperone, which is stress inducible and often indiscernible in normal cells. Role of this protein with respect to intracellular survival and multiplication of protozoan parasite like T. gondii remains to be examined. We find that T. gondii infection upregulates expression of host Hsp70. Hsp70 selective inhibitor 2-phenylethynesulfonamide (PES) attenuates intracellular T. gondii multiplication. Biotinylated PES confirms selective interaction of this small molecule inhibitor with Hsp70. We show that PES acts by disrupting Hsp70 chaperone function which leads to dysregulation of host autophagy. Silencing of host Hsp70 underscores its importance for intracellular multiplication of T. gondii, however, attenuation achieved using PES is not completely attributable to host Hsp70 indicating the presence of other intracellular targets of PES in infected host cells. We find that PES is also able to target T. gondii Hsp70 homologue which was shown using PES binding assay. Detailed molecular docking analysis substantiates PES targeting of TgHsp70 in addition to host Hsp70. While establishing the importance of protein quality control in infection, this study brings to the fore a unique opportunity of dual targeting of host and parasite Hsp70 demonstrating how structural conservation of these proteins may be exploited for therapeutic design.
Collapse
Affiliation(s)
- Pallabi Mitra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| | | | - Chinmayee Choudhury
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Research and Education, Chandigarh, India
| |
Collapse
|
46
|
Gunderson EL, Vogel I, Chappell L, Bulman CA, Lim KC, Luo M, Whitman JD, Franklin C, Choi YJ, Lefoulon E, Clark T, Beerntsen B, Slatko B, Mitreva M, Sullivan W, Sakanari JA. The endosymbiont Wolbachia rebounds following antibiotic treatment. PLoS Pathog 2020; 16:e1008623. [PMID: 32639986 PMCID: PMC7371230 DOI: 10.1371/journal.ppat.1008623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/20/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Antibiotic treatment has emerged as a promising strategy to sterilize and kill filarial nematodes due to their dependence on their endosymbiotic bacteria, Wolbachia. Several studies have shown that novel and FDA-approved antibiotics are efficacious at depleting the filarial nematodes of their endosymbiont, thus reducing female fecundity. However, it remains unclear if antibiotics can permanently deplete Wolbachia and cause sterility for the lifespan of the adult worms. Concerns about resistance arising from mass drug administration necessitate a careful exploration of potential Wolbachia recrudescence. In the present study, we investigated the long-term effects of the FDA-approved antibiotic, rifampicin, in the Brugia pahangi jird model of infection. Initially, rifampicin treatment depleted Wolbachia in adult worms and simultaneously impaired female worm fecundity. However, during an 8-month washout period, Wolbachia titers rebounded and embryogenesis returned to normal. Genome sequence analyses of Wolbachia revealed that despite the population bottleneck and recovery, no genetic changes occurred that could account for the rebound. Clusters of densely packed Wolbachia within the worm's ovarian tissues were observed by confocal microscopy and remained in worms treated with rifampicin, suggesting that they may serve as privileged sites that allow Wolbachia to persist in worms while treated with antibiotic. To our knowledge, these clusters have not been previously described and may be the source of the Wolbachia rebound.
Collapse
Affiliation(s)
- Emma L. Gunderson
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Ian Vogel
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Laura Chappell
- Dept. of Molecular, Cell and Developmental Biology; University of California, Santa Cruz; Santa Cruz, California, United States of America
| | - Christina A. Bulman
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - K. C. Lim
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Mona Luo
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Jeffrey D. Whitman
- Dept. of Laboratory Medicine; University of California, San Francisco; San Francisco, California, United States of America
| | - Chris Franklin
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Young-Jun Choi
- Division of Infectious Diseases; Washington University School of Medicine, St. Louis; St. Louis, Missouri, United States of America
| | - Emilie Lefoulon
- Molecular Parasitology Division; New England BioLabs; Ipswich, Massachusetts, United States of America
| | - Travis Clark
- Veterinary Pathobiology; University of Missouri-Columbia; Columbia, Missouri, United States of America
| | - Brenda Beerntsen
- Veterinary Pathobiology; University of Missouri-Columbia; Columbia, Missouri, United States of America
| | - Barton Slatko
- Molecular Parasitology Division; New England BioLabs; Ipswich, Massachusetts, United States of America
| | - Makedonka Mitreva
- Division of Infectious Diseases; Washington University School of Medicine, St. Louis; St. Louis, Missouri, United States of America
| | - William Sullivan
- Dept. of Molecular, Cell and Developmental Biology; University of California, Santa Cruz; Santa Cruz, California, United States of America
| | - Judy A. Sakanari
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| |
Collapse
|
47
|
The Bradyzoite: A Key Developmental Stage for the Persistence and Pathogenesis of Toxoplasmosis. Pathogens 2020; 9:pathogens9030234. [PMID: 32245165 PMCID: PMC7157559 DOI: 10.3390/pathogens9030234] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous parasitic protist found in a wide variety of hosts, including a large proportion of the human population. Beyond an acute phase which is generally self-limited in immunocompetent individuals, the ability of the parasite to persist as a dormant stage, called bradyzoite, is an important aspect of toxoplasmosis. Not only is this stage not eliminated by current treatments, but it can also reactivate in immunocompromised hosts, leading to a potentially fatal outcome. Yet, despite its critical role in the pathology, the bradyzoite stage is relatively understudied. One main explanation is that it is a considerably challenging model, which essentially has to be derived from in vivo sources. However, recent progress on genetic manipulation and in vitro differentiation models now offers interesting perspectives for tackling key biological questions related to this particularly important developmental stage.
Collapse
|
48
|
Guevara RB, Fox BA, Bzik DJ. Succinylated Wheat Germ Agglutinin Colocalizes with the Toxoplasma gondii Cyst Wall Glycoprotein CST1. mSphere 2020; 5:e00031-20. [PMID: 32132158 PMCID: PMC7056803 DOI: 10.1128/msphere.00031-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/16/2020] [Indexed: 11/20/2022] Open
Abstract
The glycosylated mucin domain of the Toxoplasma gondii cyst wall glycoprotein CST1 is heavily stained by Dolichos biflorus agglutinin, a lectin that binds to N-acetylgalactosamine. The cyst wall is also heavily stained by the chitin binding lectin succinylated wheat germ agglutinin (s-WGA), which selectively binds to N-acetylglucosamine-decorated structures. Here, we tracked the localization of N-acetylglucosamine-decorated structures that bind to s-WGA in immature and mature in vitro cysts. s-WGA localization was observed at the cyst periphery 6 h after the differentiation of the tachyzoite-stage parasitophorous vacuole. By day 1 and at all later times after differentiation, s-WGA was localized in a continuous staining pattern at the cyst wall. Coinciding with the maturation of the cyst matrix by day 3 of cyst development, s-WGA also localized in a continuous matrix pattern inside the cyst. s-WGA localized in both the outer and inner layer regions of the cyst wall and in a continuous matrix pattern inside mature 7- and 10-day-old cysts. In addition, s-WGA colocalized in the cyst wall with CST1, suggesting that N-acetylglucosamine- and N-acetylgalactosamine-decorated molecules colocalized in the cyst wall. In contrast to CST1, GRA4, and GRA6, the relative accumulation of the molecules that bind s-WGA in the cyst wall was not dependent on the expression of GRA2. Our results suggest that GRA2-dependent and GRA2-independent mechanisms regulate the trafficking and accumulation of glycosylated molecules that colocalize in the cyst wall.IMPORTANCE Chronic Toxoplasma gondii infection is maintained in the central nervous system by thick-walled cysts. If host immunity wanes, cysts recrudesce and cause severe and often lethal toxoplasmic encephalitis. Currently, there are no therapies to eliminate cysts, and little biological information is available regarding cyst structure(s). Here, we investigated cyst wall molecules recognized by succinylated wheat germ agglutinin (s-WGA), a lectin that specifically binds to N-acetylglucosamine-decorated structures. N-Acetylglucosamine regulates cell signaling and plays structural roles at the cell surface in many organisms. The cyst wall and cyst matrix were heavily stained by s-WGA in mature cysts and were differentially stained during cyst development. The relative accumulation of molecules that bind to s-WGA in the cyst wall was not dependent on the expression of GRA2. Our findings suggest that glycosylated cyst wall molecules gain access to the cyst wall via GRA2-dependent and GRA2-independent mechanisms and colocalize in the cyst wall.
Collapse
Affiliation(s)
- Rebekah B Guevara
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Barbara A Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David J Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
49
|
Abstract
Toxoplasma gondii, a member of the Apicomplexa, is known for its ability to infect an impressive range of host species. It is a common human infection that causes significant morbidity in congenitally infected children and immunocompromised patients. This parasite can be transmitted by bradyzoites, a slowly replicating life stage found within intracellular tissue cysts, and oocysts, the sexual life cycle stage that develops in domestic cats and other Felidae. T. gondii bradyzoites retain the capacity to revert back to the quickly replicating tachyzoite life stage, and when the host is immune compromised unrestricted replication can lead to significant tissue destruction. Bradyzoites are refractory to currently available Toxoplasma treatments. Improving our understanding of bradyzoite biology is critical for the development of therapeutic strategies to eliminate latent infection. This chapter describes a commonly used protocol for the differentiation of T. gondii tachyzoites into bradyzoites using human foreskin fibroblast cultures and a CO2-limited alkaline cell media, which results in a high proportion of differentiated bradyzoites for further study. Also described are methods for purifying tissue cysts from chronically infected mouse brain using isopycnic centrifugation and a recently developed approach for measuring bradyzoite viability.
Collapse
|
50
|
Masatani T, Oyamada S, Inoue R, Tsujio M, Hatai H, Matsui T, Matsuo T. In vivo characterization of a Toxoplasma gondii strain TgCatJpTy1/k-3 isolated from a stray cat in Japan. Parasitol Int 2019; 74:101995. [PMID: 31634629 DOI: 10.1016/j.parint.2019.101995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/15/2019] [Accepted: 09/22/2019] [Indexed: 11/26/2022]
Abstract
The Toxoplasma gondii strain TgCatJpTy1/k-3 (K-3), isolated from a stray cat in Tokyo, Japan, is categorized as a type II genotype. Since the K-3 strain is empirically known to form relatively larger cysts and exhibit weak pathogenesis in a mouse, it could serve as a useful model organism to study chronic T. gondii infection in the host. However, a detailed biological characterization of this strain had not been performed. In this study, we thoroughly assessed the K-3 strain in vivo using a mouse model. Tests indicated that pathogenicity of the K-3 strain was lower than that of the PLK strain, a clonal laboratory strain with a moderately pathogenic type II genotype. Further, cyst sizes of the K-3 strain were significantly larger than those of the PLK strain. Interestingly, K-3 cyst sizes in T. gondii-resistant ICR mice were larger than those in T. gondii-susceptible C57BL/6N mice. Our study suggests that the K-3 strain is suitable to study T. gondii cystogenesis and chronic infection, which are currently difficult to analyze using cell-adopted T. gondii strains.
Collapse
Affiliation(s)
- Tatsunori Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Shohei Oyamada
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Ryota Inoue
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Masashi Tsujio
- Laboratory of Anatomy, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Hitoshi Hatai
- Laboratory of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Toshihiro Matsui
- Seisen University, Higashi Gotanda, Shinagawa-ku, Tokyo 141-8642, Japan
| | - Tomohide Matsuo
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|