1
|
Aruwa CE, Sabiu S. Interplay of poultry-microbiome interactions - influencing factors and microbes in poultry infections and metabolic disorders. Br Poult Sci 2024; 65:523-537. [PMID: 38920059 DOI: 10.1080/00071668.2024.2356666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 06/27/2024]
Abstract
1. The poultry microbiome and its stability at every point in time, either free range or reared under different farming systems, is affected by several environmental and innate factors. The interaction of the poultry birds with their microbiome, as well as several inherent and extraneous factors contribute to the microbiome dynamics. A poor understanding of this could worsen poultry heath and result in disease/metabolic disorders.2. Many diseased states associated with poultry have been linked to dysbiosis state, where the microbiome experiences some perturbation. Dysbiosis itself is too often downplayed; however, it is considered a disease which could lead to more serious conditions in poultry. The management of interconnected factors by conventional and emerging technologies (sequencing, nanotechnology, robotics, 3D mini-guts) could prove to be indispensable in ensuring poultry health and welfare.3. Findings showed that high-throughput technological advancements enhanced scientific insights into emerging trends surrounding the poultry gut microbiome and ecosystem, the dysbiotic condition, and the dynamic roles of intrinsic and exogenous factors in determining poultry health. Yet, a combination of conventional, -omics based and other techniques further enhance characterisation of key poultry microbiome actors, their mechanisms of action, and roles in maintaining gut homoeostasis and health, in a bid to avert metabolic disorders and infections.4. In conclusion, there is an important interplay of innate, environmental, abiotic and biotic factors impacting on poultry gut microbiome homoeostasis, dysbiosis, and overall health. Associated infections and metabolic disorders can result from the interconnected nature of these factors. Emerging concepts (interkingdom or network signalling and neurotransmitter), and future technologies (mini-gut models, cobots) need to include these interactions to ensure accurate control and outcomes.
Collapse
Affiliation(s)
- C E Aruwa
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - S Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
2
|
Beterams A, Kirse A, Kreienbrock L, Stingl K, Bandick N, Reich F. Application of hot water and cold air to reduce bacterial contamination on broiler carcasses. Front Microbiol 2024; 15:1429756. [PMID: 39376704 PMCID: PMC11457684 DOI: 10.3389/fmicb.2024.1429756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Two physical treatments (heat via water bath and cold air) with various temperatures (20/70/75/80°C and - 80/-90°C) and exposure times (20, 30, 40 s) were carried out to identify a decontaminating effect on zoonotic pathogens on broiler carcasses. Subsequently, carcasses were analyzed for thermotolerant Campylobacter (C.), Salmonella, Escherichia (E.). coli and total colony count (TCC). Moreover, for the hot water treatment, qPCR with viable/dead differentiation (v-qPCR) was applied to detect viable but non-culturable cells (VBNC) of Campylobacter, referred to as intact but putatively infectious units (IPIU). Hot water immersion was tested on carcasses inoculated with C. jejuni and Salmonella, while cold air treatment was evaluated for naturally contaminated carcasses of broiler flocks colonized with Campylobacter. For hot water treatment, the statistically significant reducing effect was about 1 log10 CFU/ml for both Salmonella and Campylobacter for 70-80°C and 20/30 s treatments. The effect of heat treatment for Campylobacter was smaller when samples were analyzed with v-qPCR with reductions of 0.5-0.8 log10 IPIU/ml in mean. Cold air treatments at -90°C were effective in reducing the mean contamination level of Campylobacter by 0.4-0.5 log10 CFU/ml at all exposure times (p < 0.05). Hot water treatments showed a decreasing trend on TCC by 0.6-0.9 log10 CFU/ml (p < 0.05). TCC counts were not significantly affected by cold air treatment. For E. coli no statistically significant reductions were observed by hot water treatment. The cold air treatment at -90°C for 20 and 40 s led to a reduction of E. coli by 0.4 and 0.8 log10 CFU/ml (p < 0.05), respectively. Treatment of carcasses with higher bacterial levels tended to show higher reduction. The research demonstrated that the efficacy of physical treatments for decontamination of broiler carcasses was more pronounced for hot water immersion than for cold air exposure. In conclusion, the results shed light on the potential application of these physical treatments in practice to reduce the quantitative load of contaminating pathogens to enhance food safety in the broiler meat production.
Collapse
Affiliation(s)
- Anja Beterams
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Alina Kirse
- Institute of Biometry, Epidemiology and Information Processing (IBEI), WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Lothar Kreienbrock
- Institute of Biometry, Epidemiology and Information Processing (IBEI), WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Kerstin Stingl
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Niels Bandick
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Felix Reich
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
3
|
Sacristán C, Rodríguez A, Iglesias I, de la Torre A. Campylobacter assessment along the Spanish food chain: Identification of key points. Zoonoses Public Health 2024; 71:755-762. [PMID: 38982628 DOI: 10.1111/zph.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/05/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
AIMS Campylobacteriosis, caused by Campylobacter spp., is one of the most important foodborne zoonotic diseases in the world and a common cause of gastroenteritis. In the European Union, campylobacteriosis is considered the most common zoonotic disease, with over 10,000 cases in 2020 alone. This high occurrence highlights the need of more efficient surveillance methods and identification of key points. METHODS AND RESULTS Herein, we evaluated and identified key points of Campylobacter spp. occurrence along the Spanish food chain during 2015-2020, based on the following variables: product, stage and region. We analysed a dataset provided by the Spanish Agency for Food Safety and Nutrition using a machine learning algorithm (random forests). Campylobacter presence was influenced by the three selected explanatory variables, especially by product, followed by region and stage. Among the studied products, meat, especially poultry and sheep, presented the highest probability of occurrence of Campylobacter, where the bacterium was present in the initial, intermediate and final stages (e.g., wholesale, retail) of the food chain. The presence in final stages may represent direct consumer exposure to the bacteria. CONCLUSSIONS By using the random forest method, this study contributes to the identification of Campylobacter key points and the evaluation of control efforts in the Spanish food chain.
Collapse
Affiliation(s)
- Carlos Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Antonio Rodríguez
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
- Université Clermont Auververgne, INRAE, VetAgro Sup, UREP, Clermont-Ferrand, France
- INRAE, URP3F, Lusignan, France
| | - Irene Iglesias
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Ana de la Torre
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| |
Collapse
|
4
|
Willer T, Han Z, Pielsticker C, Rautenschlein S. In vitro investigations on interference of selected probiotic candidates with Campylobacter jejuni adhesion and invasion of primary chicken derived cecal and Caco-2 cells. Gut Pathog 2024; 16:30. [PMID: 38907359 PMCID: PMC11191211 DOI: 10.1186/s13099-024-00623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Campylobacter (C.) jejuni is one of the most important bacterial foodborne pathogens worldwide. Probiotics such as Lactobacillus or Bacillus species are considered one option for reducing the colonization rate and magnitude in poultry, the most frequent source of human infections. Due to the lack of suitable avian in vitro models such as chicken intestinal cell lines, especially those derived from the cecum, most in vitro studies on C. jejuni host interaction have been conducted with human intestinal cell lines. In this study, we compared C. jejuni-cell interactions between primary chicken cecal cells and the human intestinal cell line Caco-2, which is derived from colorectal adenocarcinoma, and investigated possible interfering effects of selected probiotic candidates. RESULTS We detected differences in adhesion and invasion between the two tested gut cell types and between different C. jejuni strains. The probiotic inhibition of C. jejuni adhesion and invasion of human and avian gut cells was affected by host cell type, investigated C. jejuni strain and time points of probiotic treatment. Additionally, our results suggest a possible correlation between C. jejuni invasion and the detected increase in IL-6 mRNA expression. CONCLUSIONS Our results indicate distinct differences between avian and human gut cells in their interaction with C. jejuni. Therefore, data obtained in one host species on C. jejuni-host interaction may not easily be transferrable to another one. The factors influencing the variable efficacy of probiotic intervention in chicken and human derived cells should be investigated further.
Collapse
Affiliation(s)
- Thomas Willer
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hanover, Germany
| | - Zifeng Han
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hanover, Germany
| | - Colin Pielsticker
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hanover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
5
|
Botta C, Buzzanca D, Chiarini E, Chiesa F, Rubiola S, Ferrocino I, Fontanella E, Rantsiou K, Houf K, Alessandria V. Microbial contamination pathways in a poultry abattoir provided clues on the distribution and persistence of Arcobacter spp. Appl Environ Microbiol 2024; 90:e0029624. [PMID: 38647295 PMCID: PMC11107157 DOI: 10.1128/aem.00296-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
The consumption of contaminated poultry meat is a significant threat for public health, as it implicates in foodborne pathogen infections, such as those caused by Arcobacter. The mitigation of clinical cases requires the understanding of contamination pathways in each food process and the characterization of resident microbiota in the productive environments, so that targeted sanitizing procedures can be effectively implemented. Nowadays these investigations can benefit from the complementary and thoughtful use of culture- and omics-based analyses, although their application in situ is still limited. Therefore, the 16S-rRNA gene-based sequencing of total DNA and the targeted isolation of Arcobacter spp. through enrichment were performed to reconstruct the environmental contamination pathways within a poultry abattoir, as well as the dynamics and distribution of this emerging pathogen. To that scope, broiler's neck skin and caeca have been sampled during processing, while environmental swabs were collected from surfaces after cleaning and sanitizing. Metataxonomic survey highlighted a negligible impact of fecal contamination and a major role of broiler's skin in determining the composition of the resident abattoir microbiota. The introduction of Arcobacter spp. in the environment was mainly conveyed by this source rather than the intestinal content. Arcobacter butzleri represented one of the most abundant species and was extensively detected in the abattoir by both metataxonomic and enrichment methods, showing higher prevalence than other more thermophilic Campylobacterota. In particular, Arcobacter spp. was recovered viable in the plucking sector with high frequency, despite the adequacy of the sanitizing procedure.IMPORTANCEOur findings have emphasized the persistence of Arcobacter spp. in a modern poultry abattoir and its establishment as part of the resident microbiota in specific environmental niches. Although the responses provided here are not conclusive for the identification of the primary source of contamination, this biogeographic assessment underscores the importance of monitoring Arcobacter spp. from the early stages of the production chain with the integrative support of metataxonomic analysis. Through such combined detection approaches, the presence of this pathogen could be soon regarded as hallmark indicator of food safety and quality in poultry slaughtering.
Collapse
Affiliation(s)
- Cristian Botta
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Davide Buzzanca
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Elisabetta Chiarini
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Francesco Chiesa
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - Selene Rubiola
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | | | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Kurt Houf
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Valentina Alessandria
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| |
Collapse
|
6
|
Pacholewicz E, Dame-Korevaar A, van der Most M, Ellen H, Bokma MH, Koene MGJ. Campylobacter presence on Dutch broiler farms and associated risk factors. Poult Sci 2024; 103:103568. [PMID: 38447312 PMCID: PMC11067780 DOI: 10.1016/j.psj.2024.103568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Campylobacter is the most reported zoonotic pathogen in humans in the European Union. Poultry is a major source of human infection with Campylobacter. Although many studies are done on the presence of Campylobacter in broilers and theoretically effective control measures are known, their relative importance at broiler farms remains poorly understood. Therefore, the aim of this study was to investigate the presence of Campylobacter on selected broiler farms in the Netherlands, to determine the moment of introduction, and associated risk factors. A longitudinal study on 25 broiler farms was carried out between June 2017 and December 2020. Fecal samples were collected weekly from 43 broiler houses. In total 497 flocks were sampled. Putative variables on flock and farm characteristics for a risk factor analysis were gathered through questionnaires. Risk factors associated with the presence of Campylobacter in a broiler flock were determined using regression models. In total 30% of the flocks included in the study were positive for Campylobacter. Factors associated with presence of Campylobacter at slaughter age included: season, mowing lawns and presence of agricultural side activities. While summer/autumn and mowing lawns were associated with an increase in Campylobacter presence in flocks, the farmer having agricultural side activities other than poultry production was associated with a decrease. Analysis of the age at which flocks first tested Campylobacter positive revealed that slower growing breeds became positive on average 1 wk later compared to regular growers. This study revealed a delayed introduction of Campylobacter in slower grower vs. regular grower broiler flocks reared indoors. In addition, it confirmed importance of season as major risk factor. The relevance of mowing and preceding positive flocks as risk factors needs further investigation.
Collapse
Affiliation(s)
- Ewa Pacholewicz
- Department of Epidemiology, Bioinformatics and Animal models, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands.
| | - Anita Dame-Korevaar
- Department of Epidemiology, Bioinformatics and Animal models, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands
| | - Marleen van der Most
- Department of Bacteriology, Host Pathogen Interaction & Diagnostics Development, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands
| | - Hilko Ellen
- Wageningen Livestock Research, 6708, Wageningen, The Netherlands
| | - Martien H Bokma
- Wageningen Livestock Research, 6708, Wageningen, The Netherlands
| | - Miriam G J Koene
- Department of Bacteriology, Host Pathogen Interaction & Diagnostics Development, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands
| |
Collapse
|
7
|
Ssemanda JN, den Besten HMW, van Wagenberg CPA, Zwietering MH. Quantitative assessment of food safety interventions for Campylobacter spp. and Salmonella spp. along the chicken meat supply chain in Burkina Faso and Ethiopia. Int J Food Microbiol 2024; 415:110637. [PMID: 38422679 DOI: 10.1016/j.ijfoodmicro.2024.110637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Rural and small-scale chicken farming is a major source of income in most African countries, and chicken meat is an important source of nutrients. However, chicken meat can be contaminated with Campylobacter spp. and Salmonella spp., pathogens with a high reported burden of foodborne illnesses. Therefore, it is essential to control these pathogens in chicken meat. Quantitative microbial risk assessments (QMRA) can aid the development of effective food safety control measures and are currently lacking in chicken meat supply chains in the African context. In this study, we developed stochastic QMRA models for Salmonella spp. and Campylobacter spp. in the chicken meat supply chain in Burkina Faso and Ethiopia employing the modular process risk model in @Risk software. The study scope covered chicken farming, transport, slaughtering, consumer handling, and consumption. Effectiveness of candidate interventions was assessed against baseline models' outputs, which showed that the mean annual Campylobacter spp. risk estimates were 6482 cases of illness per 100,000 persons and 164 disability adjusted life years (DALYs) per 100,000 persons in Burkina Faso, and 12,145 cases and 272 DALYs per 100,000 persons in Ethiopia. For Salmonella spp., mean annual estimates were 2713 cases and 1212 DALYs per 100,000 persons in Burkina Faso, and 4745 cases and 432 DALYs per 100,000 persons in Ethiopia. Combining interventions (improved hand washing plus designated kitchen utensils plus improved cooking) resulted in 75 % risk reduction in Burkina Faso at restaurants and 93 to 94 % in Ethiopia at homes for both Salmonella spp. and Campylobacter spp. For Burkina Faso, adding good hygienic slaughter practices at the market to these combined interventions led to over 91 % microbial risk reduction. Interventions that involved multiple food safety actions in a particular step of the supply chain or combining different interventions from different steps of the supply chain resulted in more risk reduction than individual action interventions. Overall, this study demonstrates how diverse and scanty food supply chain information can be applied in QMRA to provide estimates that can be used to stimulate risk-based food safety action in African countries.
Collapse
Affiliation(s)
- James Noah Ssemanda
- Food Microbiology, Wageningen University & Research, 17, 6700 AA Wageningen, the Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, 17, 6700 AA Wageningen, the Netherlands
| | - Coen P A van Wagenberg
- Wageningen Economic Research, Wageningen University & Research, 2970, 2502 LS, The Hague, the Netherlands
| | - Marcel H Zwietering
- Food Microbiology, Wageningen University & Research, 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
8
|
Seyoum ET, Eguale T, Habib I, Oliveira CJB, Monte DFM, Yang B, Gebreyes WA, Alali WQ. Pre-Harvest Food Safety Challenges in Food-Animal Production in Low- and Middle-Income Countries. Animals (Basel) 2024; 14:786. [PMID: 38473171 DOI: 10.3390/ani14050786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Food safety remains a significant global public health concern, with the risk of unsafe food varying worldwide. The economies of several low- and middle-income countries (LMICs) heavily rely on livestock, posing a challenge to ensuring the production of safe food. This review discusses our understanding of pre-harvest critical issues related to food safety in LMICs, specifically focusing on animal-derived food. In LMICs, food safety regulations are weak and inadequately enforced, primarily concentrating on the formal market despite a substantial portion of the food sector being dominated by informal markets. Key critical issues at the farm level include animal health, a low level of good agriculture practices, and the misuse of antimicrobials. Effectively addressing foodborne diseases requires a comprehensive One Health framework. Unfortunately, the application of the One Health approach to tackle food safety issues is notably limited in LMICs. In conclusion, considering that most animal-source foods from LMICs are marketed through informal channels, food safety legislation and policies need to account for this context. Interventions aimed at reducing foodborne bacterial pathogens at the farm level should be scalable, and there should be strong advocacy for the proper implementation of pre-harvest interventions through a One Health approach.
Collapse
Affiliation(s)
- Eyasu T Seyoum
- Ohio State Global One Health, Addis Ababa 62347, Ethiopia
| | - Tadesse Eguale
- Ohio State Global One Health, Addis Ababa 62347, Ethiopia
| | - Ihab Habib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Department of Environmental Health, High Institute of Public Health, Alexandria University, Alexandria P.O. Box 21511, Egypt
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Celso J B Oliveira
- Ohio State Global One Health, Addis Ababa 62347, Ethiopia
- Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia 58397-000, PB, Brazil
| | - Daniel F M Monte
- Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia 58397-000, PB, Brazil
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Wondwossen A Gebreyes
- Ohio State Global One Health, Addis Ababa 62347, Ethiopia
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43214, USA
| | - Walid Q Alali
- Department of Biostatistics & Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
9
|
Marconi F, Sartoni M, Girardi C, Rossi A, Carrini M, Nuvoloni R, Pedonese F, Munaò G. Analysis of two cross-contamination cases of Campylobacter jejuni foodborne disease in fragile subjects in the territory of a Local Health Authority in Tuscany, Italy. Ital J Food Saf 2024; 13:12053. [PMID: 38577580 PMCID: PMC10993647 DOI: 10.4081/ijfs.2024.12053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/21/2023] [Indexed: 04/06/2024] Open
Abstract
Campylobacteriosis is the most reported foodborne disease in the European Union, with more than 100,000 confirmed cases annually. Human infection can be caused by a low infectious dose, and in fragile populations, the food disease can manifest itself in acute and severe forms. This study aims to analyze two cases of campylobacteriosis in fragile people caused by Campylobacter jejuni in 2023 in Tuscany and the actions of the Local Health Competent Authority. From the results of the related investigations, it was possible to attribute both cases of foodborne diseases to unsafe food management during preparation/administration. Given the peculiar characteristics of the etiological agent, it is necessary to focus the attention of the population, especially those who deal with fragile subjects, on the good hygiene practices to be followed both at home and in collective catering.
Collapse
Affiliation(s)
| | | | - Clara Girardi
- Department of Veterinary Sciences, University of Pisa
| | - Aurelio Rossi
- Department of Veterinary Sciences, University of Pisa
| | | | - Roberta Nuvoloni
- Department of Veterinary Sciences, University of Pisa
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa
| | - Francesca Pedonese
- Department of Veterinary Sciences, University of Pisa
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa
| | - Giovanni Munaò
- Veterinary Public Health and Food Safety Functional Unit, Local Health Competent Authority Toscana Centro, Firenze 2, Calenzano, Italy
| |
Collapse
|
10
|
Response to Questions Posed by the Food Safety and Inspection Service: Enhancing Salmonella Control in Poultry Products. J Food Prot 2024; 87:100168. [PMID: 37939849 DOI: 10.1016/j.jfp.2023.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 11/10/2023]
|
11
|
Nolte T, Spieß F, Jacobs AK, Kemper N, Visscher C. Process Hygiene Criterion for Campylobacter and Number of Campylobacter Enteritis Cases in Northwest Germany. Foods 2024; 13:281. [PMID: 38254584 PMCID: PMC10815233 DOI: 10.3390/foods13020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Campylobacteriosis is the most commonly reported bacterial foodborne disease in the European Union. Its transmission is often associated with the consumption of poultry meat. In 2018, Regulation (EC) No. 2017/1495 introduced a process hygiene criterion and with this, the testing requirements for Campylobacter. The results of microbiological testing for Campylobacter of chicken carcass neck skin samples from several slaughter lines in Northwest Germany collected by the food business operators and contamination levels (cfu/g Campylobacter) of these samples were analysed from 2018 to 2021. Classification into three different categories was made based on contamination levels. The proportion of highly contaminated (category three) neck samples (>1000 cfu/g) decreased from 2018 to 2021. Our analysis showed a relationship between the number of neck samples with high Campylobacter contamination levels (>1000 cfu/g) and human cases in Northwest Germany. Spearman's rank test (p < 0.01) showed a higher correlation in 2018 (0.66) and 2019 (0.58) compared to 2020 and 2021. Campylobacter enteritis cases in Northwest Germany stayed at a low level in 2020 and 2021. It remains unclear whether the decrease in reported Campylobacter enteritis cases is related to a decrease in Campylobacter levels on chicken carcasses or due to other reasons like underreporting during the COVID-19 pandemic, and therefore must be investigated in further analyses.
Collapse
Affiliation(s)
- Tobias Nolte
- Science and Innovation for Sustainable Poultry Production (WING), University of Veterinary Medicine Hannover, Foundation, D-49377 Vechta, Germany; (A.-K.J.); (N.K.); (C.V.)
| | - Fabian Spieß
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, D-30173 Hannover, Germany;
| | - Anne-Katrin Jacobs
- Science and Innovation for Sustainable Poultry Production (WING), University of Veterinary Medicine Hannover, Foundation, D-49377 Vechta, Germany; (A.-K.J.); (N.K.); (C.V.)
| | - Nicole Kemper
- Science and Innovation for Sustainable Poultry Production (WING), University of Veterinary Medicine Hannover, Foundation, D-49377 Vechta, Germany; (A.-K.J.); (N.K.); (C.V.)
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, D-30173 Hannover, Germany
| | - Christian Visscher
- Science and Innovation for Sustainable Poultry Production (WING), University of Veterinary Medicine Hannover, Foundation, D-49377 Vechta, Germany; (A.-K.J.); (N.K.); (C.V.)
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, D-30173 Hannover, Germany;
| |
Collapse
|
12
|
Suominen K, Häkkänen T, Ranta J, Ollgren J, Kivistö R, Perko-Mäkelä P, Salmenlinna S, Rimhanen-Finne R. Campylobacteriosis in Finland: Passive Surveillance in 2004-2021 and a Pilot Case-Control Study with Whole-Genome Sequencing in Summer 2022. Microorganisms 2024; 12:132. [PMID: 38257959 PMCID: PMC11154465 DOI: 10.3390/microorganisms12010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Campylobacteriosis causes a significant disease burden in humans worldwide and is the most common type of zoonotic gastroenteritis in Finland. To identify infection sources for domestic Campylobacter infections, we analyzed Campylobacter case data from the Finnish Infectious Disease Register (FIDR) in 2004-2021 and outbreak data from the National Food- and Waterborne Outbreak Register (FWO Register) in 2010-2021, and conducted a pilot case-control study (256 cases and 756 controls) with source attribution and patient sample analysis using whole-genome sequencing (WGS) in July-August 2022. In the FIDR, 41% of the cases lacked information on travel history. Based on the case-control study, we estimated that of all cases, 39% were of domestic origin. Using WGS, 22 clusters of two or more cases were observed among 185 domestic cases, none of which were reported to the FWO register. Based on this case-control study and source attribution, poultry is an important source of campylobacteriosis in Finland. More extensive sampling and comparison of patient, food, animal, and environmental isolates is needed to estimate the significance of other sources. In Finland, campylobacteriosis is more often of domestic origin than FIDR notifications indicate. To identify the domestic cases, travel information should be included in the FIDR notification, and to improve outbreak detection, all domestic patient isolates should be sequenced.
Collapse
Affiliation(s)
- Kristiina Suominen
- Department of Health Security, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00271 Helsinki, Finland; (T.H.); (J.O.); (S.S.); (R.R.-F.)
| | - Tessa Häkkänen
- Department of Health Security, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00271 Helsinki, Finland; (T.H.); (J.O.); (S.S.); (R.R.-F.)
| | - Jukka Ranta
- Risk Assessment Unit, Finnish Food Authority, Mustialankatu 3, 00790 Helsinki, Finland;
| | - Jukka Ollgren
- Department of Health Security, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00271 Helsinki, Finland; (T.H.); (J.O.); (S.S.); (R.R.-F.)
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790 Helsinki, Finland;
| | | | - Saara Salmenlinna
- Department of Health Security, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00271 Helsinki, Finland; (T.H.); (J.O.); (S.S.); (R.R.-F.)
| | - Ruska Rimhanen-Finne
- Department of Health Security, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00271 Helsinki, Finland; (T.H.); (J.O.); (S.S.); (R.R.-F.)
| |
Collapse
|
13
|
Gloanec N, Guyard-Nicodème M, Brunetti R, Quesne S, Keita A, Chemaly M, Dory D. Evaluation of Two Recombinant Protein-Based Vaccine Regimens against Campylobacter jejuni: Impact on Protection, Humoral Immune Responses and Gut Microbiota in Broilers. Animals (Basel) 2023; 13:3779. [PMID: 38136816 PMCID: PMC10741133 DOI: 10.3390/ani13243779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Campylobacter infections in humans are traced mainly to poultry products. While vaccinating poultry against Campylobacter could reduce the incidence of human infections, no vaccine is yet available on the market. In our previous study using a plasmid DNA prime/recombinant protein boost vaccine regimen, vaccine candidate YP437 induced partial protective immune responses against Campylobacter in broilers. In order to optimise vaccine efficacy, the vaccination protocol was modified using a protein prime/protein boost regimen with a different number of boosters. Broilers were given two or four intramuscular protein vaccinations (with the YP437 vaccine antigen) before an oral challenge by C. jejuni during a 42-day trial. The caecal Campylobacter load, specific systemic and mucosal antibody levels and caecal microbiota in the vaccinated groups were compared with their respective placebo groups and a challenge group (Campylobacter infection only). Specific humoral immune responses were induced, but no reduction in Campylobacter caecal load was observed in any of the groups (p > 0.05). Microbiota beta diversity analysis revealed that the bacterial composition of the groups was significantly different (p ≤ 0.001), but that vaccination did not alter the relative abundance of the main bacterial taxa residing in the caeca. The candidate vaccine was ineffective in inducing a humoral immune response and therefore did not provide protection against Campylobacter spp. infection in broilers. More studies are required to find new candidates.
Collapse
Affiliation(s)
- Noémie Gloanec
- GVB—Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (N.G.); (R.B.); (D.D.)
- HQPAP—Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (M.C.)
- Life Environmental Sciences Department, University of Rennes 1, 37500 Rennes, France
| | - Muriel Guyard-Nicodème
- HQPAP—Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (M.C.)
| | - Raphaël Brunetti
- GVB—Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (N.G.); (R.B.); (D.D.)
| | - Ségolène Quesne
- HQPAP—Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (M.C.)
| | - Alassane Keita
- SELEAC—Avian Breeding and Experimental Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France;
| | - Marianne Chemaly
- HQPAP—Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (M.C.)
| | - Daniel Dory
- GVB—Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (N.G.); (R.B.); (D.D.)
| |
Collapse
|
14
|
Soro AB, Ekhlas D, Shokri S, Yem MM, Li RC, Barroug S, Hannon S, Whyte P, Bolton DJ, Burgess CM, Bourke P, Tiwari BK. The efficiency of UV light-emitting diodes (UV-LED) in decontaminating Campylobacter and Salmonella and natural microbiota in chicken breast, compared to a UV pilot-plant scale device. Food Microbiol 2023; 116:104365. [PMID: 37689419 DOI: 10.1016/j.fm.2023.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/12/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023]
Abstract
This study investigated the combined effect of Ultraviolet (UV) light-emitting diode (LED) technology treatment with refrigerated storage of chicken breast meat over 7 days on Campylobacter jejuni, Salmonella enterica serovar Typhimurium, total viable counts (TVC) and total Enterobacteriaceae counts (TEC). An optimised UV-LED treatment at 280 nm for 6 min decreased inoculated S. Typhimurium and C. jejuni populations by 0.6-0.64 log CFU/g, and TVC and TEC population by 1-1.2 log CFU/g in chicken samples. During a 7-day storage at 4 °C, a 0.73 log reduction in C. jejuni was achieved compared with non-treated samples. Moreover, the UV-LED effectiveness to reduce TVC and TEC during refrigerated storage was compared with a conventional UV lamp and a similar efficiency was observed. The impact of UV-LED and UV lamp devices on the microbial community composition of chicken meat during storage was further examined using 16 S rRNA gene amplicon sequencing. Although similar bacterial reductions were observed for both technologies, the microbial communities were impacted differently. Treatment with the UV conventional lamp increased the proportion of Brochothrix spp. In meat samples, whilst Photobacterium spp. Levels were reduced.
Collapse
Affiliation(s)
- Arturo B Soro
- Foodborne Pathogens Unit, Department of Infectious Diseases in Humans, Sciensano, Juliette Wytsman 14, 1050, Ixelles, Brussels, Belgium; Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Daniel Ekhlas
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sajad Shokri
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland.
| | - Ming Ming Yem
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland.
| | - Rui Chao Li
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland.
| | - Soukaina Barroug
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland
| | - Shay Hannon
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Paul Whyte
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | - Paula Bourke
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland.
| | | |
Collapse
|
15
|
Lassen B, Takeuchi-Storm N, Henri C, Hald T, Sandberg M, Ellis-Iversen J. Analysis of reservoir sources of Campylobacter isolates to free-range broilers in Denmark. Poult Sci 2023; 102:103025. [PMID: 37672837 PMCID: PMC10485630 DOI: 10.1016/j.psj.2023.103025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Campylobacter is a common cause of food poisoning in many countries, with broilers being the main source. Organic and free-range broilers are more frequently Campylobacter-positive than conventionally raised broilers and may constitute a higher risk for human infections. Organic and free-range broilers may get exposed to Campylobacter from environmental reservoirs and livestock farms, but the relative importance of these sources is unknown. The aim of the study was to describe similarities and differences between the genetic diversity of the Campylobacter isolates collected from free-range/organic broilers with those isolated from conventional broilers and other animal hosts (cattle, pigs, and dogs) in Denmark to make inferences about the reservoir sources of Campylobacter to free-range broilers. The applied aggregated surveillance data consisted of sequenced Campylobacter isolates sampled in 2015 to 2017 and 2018 to 2021. The data included 1,102 isolates from free-range (n = 209), conventional broilers (n = 577), cattle (n = 261), pigs (n = 30), and dogs (n = 25). The isolates were cultivated from either fecal material (n = 434), food matrices (n = 569), or of nondisclosed origin (n = 99). Campylobacter jejuni (94.5%) dominated and subtyping analysis found 170 different sequence types (STs) grouped into 75 clonal complexes (CCs). The results suggest that CC-21 and CC-45 are the most frequent CCs found in broilers. The relationship between the CCs in the investigated sources showed that the different CCs were shared by most of the animals, but not pigs. The ST-profiles of free-range broilers were most similar to that of conventional broilers, dogs and cattle, in that order. The similarity was stronger between conventional broilers and cattle than between conventional and free-range broilers. The results suggest that cattle may be a plausible reservoir of C. jejuni for conventional and free-range broilers, and that conventional broilers are a possible source for free-range broilers or reflect a dominance of isolates adapted to the same host environment. Aggregated data provided valuable insight into the epidemiology of Campylobacter sources for free-range broilers, but time-limited sampling of isolates from different sources within a targeted area would hold a higher predictive value.
Collapse
Affiliation(s)
- Brian Lassen
- Research Group for Foodborne Pathogens and Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Nao Takeuchi-Storm
- Research Group for Food Microbiology and Hygiene, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Clémentine Henri
- Research Group for Foodborne Pathogens and Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tine Hald
- Research Group for Foodborne Pathogens and Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Marianne Sandberg
- Research Group for Foodborne Pathogens and Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
16
|
Messens W, Bover-Cid S, Hempen M, Lindqvist R, Nauta M, Skandamis PN, Stella P, Koutsoumanis K. Use of risk assessment and predictive microbiology in regulatory science related to the scientific opinions of the EFSA BIOHAZ Panel. Int J Food Microbiol 2023; 403:110302. [PMID: 37392608 DOI: 10.1016/j.ijfoodmicro.2023.110302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/22/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
EFSA's Panel on Biological Hazards (BIOHAZ Panel) deals with questions on biological hazards relating to food safety and food-borne diseases. This covers food-borne zoonoses, transmissible spongiform encephalopathies, antimicrobial resistance, food microbiology, food hygiene, animal-by products, and associated waste management issues. The scientific assessments are diverse and frequently the development of new methodological approaches is required to deal with a mandate. Among the many risk factors, product characteristics (pH, water activity etc.), time and temperature of processing and storage along the food supply chain are highly relevant for assessing the biological risks. Therefore, predictive microbiology becomes an essential element of the assessments. Uncertainty analysis is incorporated in all BIOHAZ scientific assessments, to meet the general requirement for transparency. Assessments should clearly and unambiguously state what sources of uncertainty have been identified and their impact on the conclusions of the assessment. Four recent BIOHAZ Scientific Opinions are presented to illustrate the use of predictive modelling and quantitative microbial risk assessment principles in regulatory science. The Scientific Opinion on the guidance on date marking and related food information, gives a general overview on the use of predictive microbiology for shelf-life assessment. The Scientific Opinion on the efficacy and safety of high-pressure processing of food provides an example of inactivation modelling and compliance with performance criteria. The Scientific Opinion on the use of the so-called 'superchilling' technique for the transport of fresh fishery products illustrates the combination of heat transfer and microbial growth modelling. Finally, the Scientific Opinion on the delayed post-mortem inspection in ungulates, shows how variability and uncertainty, were quantitatively embedded in assessing the probability of Salmonella detection on carcasses, via stochastic modelling and expert knowledge elicitation.
Collapse
Affiliation(s)
- Winy Messens
- Unit on Biological Hazards & Animal Health and Welfare (BIOHAW), European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy.
| | - Sara Bover-Cid
- IRTA-Food Safety and Functionality Programme, Finca Camps i Armet s/n, Monells, Spain.
| | - Michaela Hempen
- Unit on Biological Hazards & Animal Health and Welfare (BIOHAW), European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy.
| | | | | | | | - Pietro Stella
- Unit on Biological Hazards & Animal Health and Welfare (BIOHAW), European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy.
| | | |
Collapse
|
17
|
Reichelt B, Szott V, Stingl K, Roesler U, Friese A. Detection of Viable but Non-Culturable (VBNC)- Campylobacter in the Environment of Broiler Farms: Innovative Insights Delivered by Propidium Monoazide (PMA)-v-qPCR Analysis. Microorganisms 2023; 11:2492. [PMID: 37894150 PMCID: PMC10609165 DOI: 10.3390/microorganisms11102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Campylobacteriosis cases in humans are of global concern, with high prevalence rates in the poultry reservoir considered the most important source of infection. Research findings show Campylobacters' ability to enter a viable but non-culturable (VBNC) state, remaining "viable" but unable to grow on culture media. We explored the persistence of VBNC states in specific environments, particularly at broiler farms, as this state may lead to an underestimation of the present Campylobacter prevalence. For VBNC detection, a propidium monoazide PMA-dye viability qPCR (v-qPCR) was used in combination with cultivation methods. We examined samples collected from broiler farm barns and their surroundings, as well as chicken manure from experimental pens. In addition, the tenacity of culturable and VBNC-Campylobacter was studied in vitro in soil and water. In a total of three visits, Campylobacter was not detected either culturally or by v-qPCR (no Campylobacter DNA) in the environment of the broiler farms. In four visits, however, VBNC-Campylobacter were detected both inside and outside the barns. The overall prevalence in environmental samples was 15.9% for VBNC-Campylobacter, 62.2% for Campylobacter DNA, and 1.2% for culturable C. jejuni. In the experimental pens, no cultivable C. jejuni was detected in chicken manure after 24 h. Strikingly, "VBNC-Campylobacter" persisted even after 72 h. "VBNC-Campylobacter" were confirmed in barn surroundings and naturally contaminated chicken manure. Laboratory studies revealed that VBNC-Campylobacter can remain intact in soil for up to 28 days and in water for at least 63 days, depending on environmental conditions.
Collapse
Affiliation(s)
- Benjamin Reichelt
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, 14163 Berlin, Germany; (B.R.)
| | - Vanessa Szott
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Kerstin Stingl
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, 14163 Berlin, Germany; (B.R.)
| | - Anika Friese
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, 14163 Berlin, Germany; (B.R.)
| |
Collapse
|
18
|
Guyard-Nicodème M, Anis N, Naguib D, Viscogliosi E, Chemaly M. Prevalence and Association of Campylobacter spp., Salmonella spp., and Blastocystis sp. in Poultry. Microorganisms 2023; 11:1983. [PMID: 37630543 PMCID: PMC10458391 DOI: 10.3390/microorganisms11081983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Poultry and poultry meat are considered the most important sources of human campylobacteriosis and salmonellosis. However, data about the occurrence of Campylobacter and Salmonella concomitantly with intestinal protozoa such as Blastocystis sp. in poultry remain very scarce. Therefore, this study aimed to investigate the presence and possible interactions between these three microorganisms in fecal samples from 214 chickens collected either on farms or from live bird markets in Egypt. The results obtained showed that Campylobacter spp., Salmonella spp., and Blastocystis sp. were present in 91.6% (196/214), 44.4% (95/214), and 18.2% (39/214) of tested samples, respectively, highlighting an active circulation of these microorganisms. Moreover, a significant positive correlation was reported between the occurrence of Campylobacter spp. and Blastocystis sp. together with a significant negative correlation between Blastocystis sp. and Salmonella spp. This study confirms the association reported previously between Blastocystis sp. and Campylobacter spp. while disclosing an association between Blastocystis sp. and Salmonella spp.; it also highlights the need to improve studies on the interactions between bacteria and eukaryotes in the gut microbiota of poultry.
Collapse
Affiliation(s)
- Muriel Guyard-Nicodème
- Unit for Hygiene and Quality of Poultry and Pork Products, Laboratory of Ploufragan-Plouzané-Niort, ANSES, F-22440 Ploufragan, France; (N.A.); (M.C.)
| | - Nagham Anis
- Unit for Hygiene and Quality of Poultry and Pork Products, Laboratory of Ploufragan-Plouzané-Niort, ANSES, F-22440 Ploufragan, France; (N.A.); (M.C.)
| | - Doaa Naguib
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France;
| | - Eric Viscogliosi
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France;
| | - Marianne Chemaly
- Unit for Hygiene and Quality of Poultry and Pork Products, Laboratory of Ploufragan-Plouzané-Niort, ANSES, F-22440 Ploufragan, France; (N.A.); (M.C.)
| |
Collapse
|
19
|
Ortega-Sanz I, Barbero-Aparicio JA, Canepa-Oneto A, Rovira J, Melero B. CamPype: an open-source workflow for automated bacterial whole-genome sequencing analysis focused on Campylobacter. BMC Bioinformatics 2023; 24:291. [PMID: 37474912 PMCID: PMC10357626 DOI: 10.1186/s12859-023-05414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND The rapid expansion of Whole-Genome Sequencing has revolutionized the fields of clinical and food microbiology. However, its implementation as a routine laboratory technique remains challenging due to the growth of data at a faster rate than can be effectively analyzed and critical gaps in bioinformatics knowledge. RESULTS To address both issues, CamPype was developed as a new bioinformatics workflow for the genomics analysis of sequencing data of bacteria, especially Campylobacter, which is the main cause of gastroenteritis worldwide making a negative impact on the economy of the public health systems. CamPype allows fully customization of stages to run and tools to use, including read quality control filtering, read contamination, reads extension and assembly, bacterial typing, genome annotation, searching for antibiotic resistance genes, virulence genes and plasmids, pangenome construction and identification of nucleotide variants. All results are processed and resumed in an interactive HTML report for best data visualization and interpretation. CONCLUSIONS The minimal user intervention of CamPype makes of this workflow an attractive resource for microbiology laboratories with no expertise in bioinformatics as a first line method for bacterial typing and epidemiological analyses, that would help to reduce the costs of disease outbreaks, or for comparative genomic analyses. CamPype is publicly available at https://github.com/JoseBarbero/CamPype .
Collapse
Affiliation(s)
- Irene Ortega-Sanz
- Department of Biotechnology and Food Science, University of Burgos, 09006, Burgos, Spain
| | | | | | - Jordi Rovira
- Department of Biotechnology and Food Science, University of Burgos, 09006, Burgos, Spain
| | - Beatriz Melero
- Department of Biotechnology and Food Science, University of Burgos, 09006, Burgos, Spain.
| |
Collapse
|
20
|
Harding-Crooks R, Smith D, Fanning S, Fox EM. Dissemination of carbapenemase-producing Enterobacteriaceae and associated resistance determinants through global food systems. Compr Rev Food Sci Food Saf 2023; 22:2706-2727. [PMID: 37083194 DOI: 10.1111/1541-4337.13159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/22/2023]
Abstract
Antimicrobial agents are a critical component of modern healthcare systems, fulfilling a core function in patient care and improving individual patient outcomes and consequently overall public health. However, the efficacy of antimicrobial interventions is being consistently eroded by the emergence and dissemination of various antimicrobial resistance (AMR) mechanisms. One highly valued class of antimicrobial compounds is carbapenems, which retain efficacy in treating most multidrug-resistant infections and are considered "last line" agents. Therefore, recent trends in proliferation of carbapenem resistance (CR) via dissemination of carbapenemase-encoding genes among members of the Enterobacteriaceae family pose a significant threat to public health. While much of the focus relating to this has been on nosocomial environments, community-acquired carbapenemase-producing Enterobacteriaceae (CPE) infections and their associated transmission routes are less well studied. Among these community-associated vectors, the role of food chains and contaminated foods is important, since Enterobacteriaceae occupy niches within these settings. This review examines foodborne CPE transmission by exploring how interactions within and between food, the food chain, and agriculture not only promote and disseminate CPE, but also create reservoirs of mobile genetic elements that may lead to further carbapenemase gene proliferation both within and between microbial communities. Additionally, recent developments regarding the global occurrence and molecular epidemiology of CPEs in food chains will be reviewed.
Collapse
Affiliation(s)
| | - Darren Smith
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Edward M Fox
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
21
|
Vohra P, Bremner A, Nicholls B, Chintoan-Uta C, Corona-Torres R, Stevens MP. Evaluation of N-glycan-decorated live attenuated Escherichia coli and outer membrane vesicles as vaccines against Campylobacter jejuni colonisation in chickens. Vaccine 2023:S0264-410X(23)00595-9. [PMID: 37277252 DOI: 10.1016/j.vaccine.2023.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 06/07/2023]
Abstract
Campylobacter jejuni is a leading global cause of bacterial gastroenteritis in humans, and poultry are a major reservoir. Glycoconjugate vaccines containing the conserved C. jejuni N-glycan have previously been reported to be effective at reducing caecal colonisation of chickens by C. jejuni. These include recombinant subunit vaccines, live E. coli strains expressing the N-glycan on the surface as well as outer membrane vesicles (OMVs) derived from these E. coli strains. In this study, we evaluated the efficacy of live E. coli expressing the C. jejuni N-glycan from a plasmid and glycosylated OMVs (G-OMVs) derived from them against colonisation by different C. jejuni strains. Despite the C. jejuni N-glycan being expressed on the surface of the live strain and the OMVs, no reduction in caecal colonisation by C. jejuni was observed and N-glycan-specific responses were not detected.
Collapse
Affiliation(s)
- Prerna Vohra
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom; Institute for Immunology and Infection Research, School of Biological Sciences, Charlotte Auerbach Road, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom.
| | - Abi Bremner
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - Bethany Nicholls
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - Cosmin Chintoan-Uta
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - Ricardo Corona-Torres
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - Mark P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| |
Collapse
|
22
|
Schorling E, Lick S, Steinberg P, Brüggemann DA. Health care utilizations and costs of Campylobacter enteritis in Germany: A claims data analysis. PLoS One 2023; 18:e0283865. [PMID: 37018288 PMCID: PMC10075411 DOI: 10.1371/journal.pone.0283865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/19/2023] [Indexed: 04/06/2023] Open
Abstract
OBJECTIVE The number of reported cases of Campylobacter enteritis (CE) remains on a high level in many parts of the world. The aim of this study was to analyze the health care utilizations and direct and indirect costs of CE and sequelae of patients insured by a large health insurance with 26 million members in Germany. METHODS Claims data of insurants with at least one CE diagnosis in 2017 (n = 13,150) were provided, of which 9,945 were included in the analysis of health care utilizations and costs. If medical services were not diagnosis-linked, CE-associated costs were estimated in comparison to up to three healthy controls per CE patient. Indirect costs were calculated by multiplying the work incapacities by the average labor costs. Total costs of CE in Germany were extrapolated by including all officially reported CE cases in 2017 using Monte Carlo simulations. RESULTS Insurants showed a lower rate of 56 CE diagnoses per 100,000 than German surveillance data for 2017, but with a similar age, gender and regional distribution. Of those CE cases, 6.3% developed post-infectious reactive arthritis, Guillain-Barré syndrome (GBS), inflammatory bowel disease (IBD) and/or irritable bowel syndrome (IBS). Health care utilizations differed depending on CE severity, age and gender. Average CE-specific costs per patient receiving outpatient care were € 524 (95% CI 495-560) over a 12-month period, whereas costs per hospitalized CE case amounted to € 2,830 (2,769-2,905). The analyzed partial costs of sequelae ranged between € 221 (IBS) and € 22,721 (GBS) per patient per 12 months. Total costs of CE and sequelae extrapolated to Germany 2017 ranged between € 74.25 and € 95.19 million, of which 10-30% were due to sequelae. CONCLUSION CE is associated with a substantial economic burden in Germany, also due to care-intensive long-lasting sequelae. However, uncertainties remain as to the causal relationship of IBD and IBS after CE.
Collapse
Affiliation(s)
- Elisabeth Schorling
- Department of Safety and Quality of Meat, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kulmbach, Bavaria, Germany
| | - Sonja Lick
- Department of Safety and Quality of Meat, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kulmbach, Bavaria, Germany
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Baden-Württemberg, Germany
| | - Dagmar Adeline Brüggemann
- Department of Safety and Quality of Meat, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kulmbach, Bavaria, Germany
| |
Collapse
|
23
|
Okoye JC, Holland A, Pitoulias M, Paschalis V, Piddubnyi A, Dufailu OA, Borén T, Oldfield NJ, Mahdavi J, Soultanas P. Ferric quinate (QPLEX) inhibits the interaction of major outer membrane protein (MOMP) with the Lewis b (Leb) antigen and limits Campylobacter colonization in broilers. Front Microbiol 2023; 14:1146418. [PMID: 36970690 PMCID: PMC10036597 DOI: 10.3389/fmicb.2023.1146418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Campylobacter jejuni colonizes hosts by interacting with Blood Group Antigens (BgAgs) on the surface of gastrointestinal epithelia. Genetic variations in BgAg expression affects host susceptibility to C. jejuni. Here, we show that the essential major outer membrane protein (MOMP) of C. jejuni NCTC11168 binds to the Lewis b (Leb) antigen on the gastrointestinal epithelia of host tissues and this interaction can be competitively inhibited by ferric quinate (QPLEX), a ferric chelate structurally similar to bacterial siderophores. We provide evidence that QPLEX competitively inhibits the MOMP-Leb interaction. Furthermore, we demonstrate that QPLEX can be used as a feed additive in broiler farming to significantly reduce C. jejuni colonization. Our results indicate that QPLEX can be a viable alternative to the preventative use of antibiotics in broiler farming to combat C. jejuni infections.
Collapse
Affiliation(s)
- Jennifer C. Okoye
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham, United Kingdom
| | - Alexandria Holland
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham, United Kingdom
| | - Matthaios Pitoulias
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham, United Kingdom
| | - Vasileios Paschalis
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham, United Kingdom
| | - Artem Piddubnyi
- Department Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- SUMEYA, The Ukrainian-Swedish Research Center, Sumy State University, Sumy, Ukraine
| | - Osman A. Dufailu
- Faculty of Engineering and Science, School of Science, University of Greenwich, London, United Kingdom
| | - Thomas Borén
- Department Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Neil J. Oldfield
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jafar Mahdavi
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham, United Kingdom
- Jafar Mahdavi,
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Panos Soultanas,
| |
Collapse
|
24
|
Eriksson D, Råhlén E, Bergenkvist E, Skarin M, Fernström LL, Rydén J, Hansson I. Survival of Campylobacter jejuni in frozen chicken meat and risks associated with handling contaminated chicken in the kitchen. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
25
|
Tryptanthrin Reduces Campylobacter jejuni Colonization in the Chicken Gut by a Bactericidal Mechanism. Appl Environ Microbiol 2023; 89:e0170122. [PMID: 36651742 PMCID: PMC9973028 DOI: 10.1128/aem.01701-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Campylobacter jejuni is a leading cause of foodborne bacterial gastroenteritis worldwide, and raw or undercooked chicken meat is considered the major source of human campylobacteriosis. In this study, we identified 36 compounds that showed inhibitory effects on C. jejuni growth at low concentrations by screening a chemical compound library. Three of the 36 compounds were herbal compounds, including tryptanthrin (TRP), an indoloquinazoline alkaloid. TRP has been reported to have a variety of biological properties, such as antimicrobial, anti-inflammatory, and antitumor activities, but there was previously no information about its anti-C. jejuni activity. We further conducted in vitro and in vivo experiments to evaluate the potential of TRP for the control of C. jejuni in chicken farms. The MIC of TRP for C. jejuni was much lower than that of 13 other herbal compounds that were previously reported to have anti-C. jejuni activities. Time-kill assays under growing and nongrowing conditions demonstrated that TRP has bactericidal activity against C. jejuni. In addition, TRP showed a narrow-spectrum antimicrobial effect against C. jejuni, and there was little potential for the development of TRP-resistant C. jejuni during serially passaged culture. In chick infection experiments, the administration of TRP in drinking water significantly reduced the cecal colonization of C. jejuni when TRP was used either before or after C. jejuni infection. These data suggest that TRP is effective for the control of C. jejuni in chicken farms. IMPORTANCE Campylobacter is a widespread pathogen in the food chain of chickens. Once chickens become infected, large numbers of Campylobacter cells are excreted in their feces. The development of an effective material for reducing the amount of Campylobacter in the chicken intestinal tract will make it possible to reduce the contamination of the food chain with Campylobacter and to produce safe and secure chicken meat. In the present study, in vivo experiments revealed that the use of an herbal compound, tryptanthrin, significantly reduced the number of Campylobacter cells in the chicken gut by a bactericidal mechanism. Furthermore, our in vitro experiments demonstrated that, compared with the other herbal compounds, tryptanthrin achieved antimicrobial activity against C. jejuni at the lowest concentration. The use of tryptanthrin may lead to the development of a novel control measure for reducing the colonization of C. jejuni in the food chain.
Collapse
|
26
|
Simultaneous Detection of Salmonella spp. and Quantification of Campylobacter spp. in a Real-Time Duplex PCR: Myth or Reality? Pathogens 2023; 12:pathogens12020338. [PMID: 36839610 PMCID: PMC9967202 DOI: 10.3390/pathogens12020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
In Europe, there is a process hygiene criterion for Salmonella and Campylobacter on broiler carcasses after chilling. The criterion gives indicative contamination values above which corrective actions are required by food business operators. The reference methods for verifying compliance with the criterion for Salmonella and Campylobacter are international standards EN ISO 6579-1 (2017) and EN ISO 10272-2 (2017), respectively. These methods are time-consuming and expensive for food business operators. Therefore, it would be advantageous to simultaneously detect Salmonella spp. and quantify Campylobacter in the same analysis, using the same sample after the pre-enrichment step for Salmonella recovery. A duplex PCR for Salmonella detection and Campylobacter spp. enumeration was developed. Considering the method as a whole, the LOD and LOQ for Campylobacter enumeration were slightly over the limit of 3 log CFU/g set by the process hygiene criterion. A comparison of the duplex PCR method developed with the ISO method on artificially contaminated bacterial suspensions and on naturally contaminated samples demonstrated a good correlation of the results for Campylobacter enumeration when the duplex PCR was performed on samples taken before or after the pre-enrichment step, but revealed a slight bias with a large standard deviation resulting in widely spaced limits of agreement.
Collapse
|
27
|
Poudel S, Jia L, Arick MA, Hsu CY, Thrash A, Sukumaran AT, Adhikari P, Kiess AS, Zhang L. In silico prediction and expression analysis of vaccine candidate genes of Campylobacter jejuni. Poult Sci 2023; 102:102592. [PMID: 36972674 PMCID: PMC10066559 DOI: 10.1016/j.psj.2023.102592] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Campylobacter jejuni (C. jejuni) is the most common food-borne pathogen that causes human gastroenteritis in the United States. Consumption of contaminated poultry products is considered as the major source of human Campylobacter infection. An effective vaccine would be a promising alternative to antibiotic supplements to curb C. jejuni colonization in poultry gastrointestinal (GI) tract. However, the genetic diversity among the C. jejuni isolates makes vaccine production more challenging. Despite many attempts, an effective Campylobacter vaccine is not yet available. This study aimed to identify suitable candidates to develop a subunit vaccine against C. jejuni, which could reduce colonization in the GI tract of the poultry. In the current study, 4 C. jejuni strains were isolated from retail chicken meat and poultry litter samples and their genomes were sequenced utilizing next-generation sequencing technology. The genomic sequences of C. jejuni strains were screened to identify potential antigens utilizing the reverse vaccinology approach. In silico genome analysis predicted 3 conserved potential vaccine candidates (phospholipase A [PldA], TonB dependent vitamin B12 transporter [BtuB], and cytolethal distending toxin subunit B [CdtB]) suitable for the development of a vaccine. Furthermore, the expression of predicted genes during host-pathogen interaction was analyzed by an infection study using an avian macrophage-like immortalized cell line (HD11). The HD11 was infected with C. jejuni strains, and the RT-qPCR assay was performed to determine the expression of the predicted genes. The expression difference was analyzed using ΔΔCt methods. The results indicate that all 3 predicted genes, PldA, BtuB, and CdtB, were upregulated in 4 tested C. jejuni strains irrespective of their sources of isolation. In conclusion, in silico prediction and gene expression analysis during host-pathogen interactions identified 3 potential vaccine candidates for C. jejuni.
Collapse
Affiliation(s)
- Sabin Poudel
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Linan Jia
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Mark A Arick
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Chuan-Yu Hsu
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Adam Thrash
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Anuraj T Sukumaran
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Pratima Adhikari
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Aaron S Kiess
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
28
|
Small Contaminations on Broiler Carcasses Are More a Quality Matter than a Food Safety Issue. Foods 2023; 12:foods12030522. [PMID: 36766051 PMCID: PMC9914796 DOI: 10.3390/foods12030522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/31/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Depending on the interpretation of the European Union (EU) regulations, even marginally visibly contaminated poultry carcasses could be rejected for human consumption due to food safety concerns. However, it is not clear if small contaminations actually increase the already present bacterial load of carcasses to such an extent that the risk for the consumers is seriously elevated. Therefore, the additional contribution to the total microbial load on carcasses by a small but still visible contamination with feces, grains from the crop, and drops of bile and grease from the slaughter line was determined using a Monte Carlo simulation. The bacterial counts (total aerobic plate count, Enterobacteriaceae, Escherichia coli, and Campylobacter spp.) were obtained from the literature and used as input for the Monte Carlo model with 50,000 iterations for each simulation. The Monte Carlo simulation revealed that the presence of minute spots of feces, bile, crop content, and slaughter line grease do not lead to a substantial increase of the already existing biological hazards present on the carcasses and should thus be considered a matter of quality rather than food safety.
Collapse
|
29
|
Liu JH, Lan CL, Yao GF, Kong NQ, Luo YW, Li CY, Bi SL. Comparison of pulsed-field gel electrophoresis and a novel amplified intergenic locus polymorphism method for molecular typing of Campylobacter jejuni. Arch Microbiol 2023; 205:49. [PMID: 36595076 DOI: 10.1007/s00203-022-03392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
Campylobacter is regarded as the leading cause of zoonotic diseases and Campylobacter jejuni (C. jejuni) is one of the predominant pathogenic species. To track C. jejuni infections, various genotyping methods have been used. In this study, amplified intergenic locus polymorphism (AILP) was used to type C. jejuni for the first time. To confirm its feasibility, pulsed-field gel electrophoresis (PFGE) was performed as a control, and the results obtained by the AILP and PFGE methods were compared. Fifty-one isolates were resolved into 34 and 29 different genotypes with Simpson's indices of 0.976 and 0.967 using the AILP and PFGE methods, respectively. The adjusted Rand coefficient of the two approaches was as high as 0.845. In summary, the data showed that the two genotyping methods were similar for discriminating isolates and were both appropriate methods to distinguish whether two isolates were indistinguishable, but the AILP was faster and less costly than PFGE. Therefore, the AILP is a reliable, rapid, and highly discriminative method to genotype C. jejuni collected from poultry meat, which is helpful to effectively monitor C. jejuni.
Collapse
Affiliation(s)
- Jin-Hong Liu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China
| | - Cheng-Lu Lan
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China
| | - Ge-Feng Yao
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China
| | - Nian-Qing Kong
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China
| | - Yong-Wen Luo
- School of South, China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Chu-Yi Li
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China
| | - Shui-Lian Bi
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China.
| |
Collapse
|
30
|
Taha-Abdelaziz K, Singh M, Sharif S, Sharma S, Kulkarni RR, Alizadeh M, Yitbarek A, Helmy YA. Intervention Strategies to Control Campylobacter at Different Stages of the Food Chain. Microorganisms 2023; 11:113. [PMID: 36677405 PMCID: PMC9866650 DOI: 10.3390/microorganisms11010113] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Campylobacter is one of the most common bacterial pathogens of food safety concern. Campylobacter jejuni infects chickens by 2-3 weeks of age and colonized chickens carry a high C. jejuni load in their gut without developing clinical disease. Contamination of meat products by gut contents is difficult to prevent because of the high numbers of C. jejuni in the gut, and the large percentage of birds infected. Therefore, effective intervention strategies to limit human infections of C. jejuni should prioritize the control of pathogen transmission along the food supply chain. To this end, there have been ongoing efforts to develop innovative ways to control foodborne pathogens in poultry to meet the growing customers' demand for poultry meat that is free of foodborne pathogens. In this review, we discuss various approaches that are being undertaken to reduce Campylobacter load in live chickens (pre-harvest) and in carcasses (post-harvest). We also provide some insights into optimization of these approaches, which could potentially help improve the pre- and post-harvest practices for better control of Campylobacter.
Collapse
Affiliation(s)
- Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Mankerat Singh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shreeya Sharma
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alexander Yitbarek
- Department of Animal Science, McGill University, Montreal, QC H9X 3V9, Canada
| | - Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
31
|
Silvan JM, Guerrero-Hurtado E, Gutierrez-Docio A, Prodanov M, Martinez-Rodriguez AJ. Olive Leaf as a Source of Antibacterial Compounds Active against Antibiotic-Resistant Strains of Campylobacter jejuni and Campylobacter coli. Antibiotics (Basel) 2022; 12:26. [PMID: 36671227 PMCID: PMC9854969 DOI: 10.3390/antibiotics12010026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Campylobacter spp. are the main cause of bacterial gastroenteritis worldwide, and broiler chicks are the main vector of transmission to humans. The high prevalence of Campylobacter in poultry meat and the increase of antibiotic resistant strains have raised the need to identify new antimicrobial agents. For this reason, the aim of the current study was to evaluate the antibacterial activity of two extracts of olive leaf against antibiotic-resistant Campylobacter strains (C. jejuni and C. coli) isolated from poultry food chain. The extracts of olive leaf (E1 and E2) were markedly different in their chemical compositions. While E1 was composed predominantly of highly hydrophilic compounds such as hydroxytyrosol and hydroxytyrosol glucosides (14,708 mg/100 g), E2 mainly contained moderately hydrophilic compounds, with oleuropein (20,471 mg/100 g) being prevalent. All Campylobacter strains exhibited similar antibiotic profiles, being resistant to ciprofloxacin and tetracycline. E1 showed strong antibacterial activity and reduced bacterial growth from 4.12 to 8.14 log CFU/mL, depending on the strain. Hydroxytyrosol was the main compound responsible, causing the inhibition of growth of Campylobacter strains at low concentrations (0.1-0.25 mg/mL). E2 demonstrated a lower antibacterial effect than E1, reducing growth from 0.52 to 2.49 log CFU/mL. The results of this study suggest that the optimization of the composition of olive-leaf extracts can provide improved treatment results against Campylobacter strains.
Collapse
Affiliation(s)
- Jose Manuel Silvan
- Microbiology and Food Biocatalysis Group (MICROBIO), Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL, CSIC-UAM), Autonomous University of Madrid, 28049 Madrid, Spain
| | - Esperanza Guerrero-Hurtado
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), Autonomous University of Madrid, 28049 Madrid, Spain
| | - Alba Gutierrez-Docio
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), Autonomous University of Madrid, 28049 Madrid, Spain
| | - Marin Prodanov
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), Autonomous University of Madrid, 28049 Madrid, Spain
| | - Adolfo J. Martinez-Rodriguez
- Microbiology and Food Biocatalysis Group (MICROBIO), Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL, CSIC-UAM), Autonomous University of Madrid, 28049 Madrid, Spain
| |
Collapse
|
32
|
Dzianach PA, Pérez-Reche FJ, Strachan NJC, Forbes KJ, Dykes GA. The Use of Interdisciplinary Approaches to Understand the Biology of Campylobacter jejuni. Microorganisms 2022; 10:2498. [PMID: 36557751 PMCID: PMC9786101 DOI: 10.3390/microorganisms10122498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Campylobacter jejuni is a bacterial pathogen recognised as a major cause of foodborne illness worldwide. While Campylobacter jejuni generally does not grow outside its host, it can survive outside of the host long enough to pose a health concern. This review presents an up-to-date description and evaluation of biological, mathematical, and statistical approaches used to understand the behaviour of this foodborne pathogen and suggests future avenues which can be explored. Specifically, the incorporation of mathematical modelling may aid the understanding of C. jejuni biofilm formation both outside and inside the host. Predictive studies may be improved by the introduction of more standardised protocols for assessments of disinfection methods and by assessment of novel physical disinfection strategies as well as assessment of the efficiency of plant extracts on C. jejuni eradication. A full description of the metabolic pathways of C. jejuni, which is needed for the successful application of metabolic models, is yet to be achieved. Finally, a shift from animal models (except for those that are a source of human campylobacteriosis) to human-specific data may be made possible due to recent technological advancements, and this may lead to more accurate predictions of human infections.
Collapse
Affiliation(s)
- Paulina A. Dzianach
- Geospatial Health and Development, Telethon Kids Institute, Perth 6009, Australia
| | | | - Norval J. C. Strachan
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Ken J. Forbes
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Gary A. Dykes
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
33
|
Benites C, Anampa D, Torres D, Avalos I, Rojas M, Conte C, Lázaro C. Prevalence, Tetracycline Resistance and Tet(O) Gene Identification in Pathogenic Campylobacter Strains Isolated from Chickens in Retail Markets of Lima, Peru. Antibiotics (Basel) 2022; 11:1580. [PMID: 36358237 PMCID: PMC9686565 DOI: 10.3390/antibiotics11111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Background: In this study, we aimed to estimate the prevalence, tetracycline resistance and presence of Tet(O) in Campylobacter strains isolated from chicken in markets of Lima, Peru. Methods: A total of 250 chicken samples were obtained from traditional markets (skin, n = 120) and supermarkets (meat, n = 130). Samples were subjected to microbiological assays for identification of Campylobacter spp. according to ISO 10272-2017, and the isolates were then submitted to species identification by PCR. Phenotypic resistance to tetracyclines was assessed by the Kirby−Bauer test, and the presence of the Tet(O) gene was determined by PCR. Results: A significantly higher prevalence (p < 0.0001) of Campylobacter coli in skin samples from traditional markets (97.5%) than in meat samples from supermarkets (36.2%) was observed. On the other hand, Campylobacter jejuni was confirmed only in 3.1% of meat samples. All Campylobacter species isolated from skin and meat samples were phenotypically resistant to tetracyclines; however, the presence of the Tet(O) gene in C. coli was identified in 76.9% and 66.0% of skin and meat samples, no significant statistical difference (p = 0.1488) was found between these prevalence. All C. jejuni isolated from chicken meat samples from supermarkets were positive for Tet(O) gene. Conclusions: This study confirms the high prevalence of C. coli isolated from chicken sold in traditional markets and supermarkets in Lima, Peru, and in more than 70% of these strains, phenotypic resistance to tetracyclines could be linked with expression of the Tet(O) gene. It is necessary to evaluate other genes involved in resistance to tetracyclines and other groups of antibiotics in campylobacter strains isolated from chicken meat.
Collapse
Affiliation(s)
- Christian Benites
- Laboratorio de Farmacología y Toxicología Veterinaria, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Apartado 03-5137, Peru
| | - Diego Anampa
- Laboratorio de Farmacología y Toxicología Veterinaria, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Apartado 03-5137, Peru
| | - Domingo Torres
- Laboratorio de Farmacología y Toxicología Veterinaria, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Apartado 03-5137, Peru
| | - Ivette Avalos
- Laboratorio de Inmunología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Apartado 03-5137, Peru
| | - Miguel Rojas
- Laboratorio de Inmunología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Apartado 03-5137, Peru
| | - Carlos Conte
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - César Lázaro
- Laboratorio de Farmacología y Toxicología Veterinaria, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Apartado 03-5137, Peru
| |
Collapse
|
34
|
Knipper AD, Ghoreishi N, Crease T. Prevalence and concentration of Campylobacter in faeces of dairy cows: A systematic review and meta-analysis. PLoS One 2022; 17:e0276018. [PMID: 36240215 PMCID: PMC9565387 DOI: 10.1371/journal.pone.0276018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022] Open
Abstract
The consumption of raw milk from dairy cows has caused multiple food-borne outbreaks of campylobacteriosis in the European Union (EU) since 2011. Cross-contamination of raw milk through faeces is an important vehicle for transmission of Campylobacter to consumers. This systematic review and meta-analysis, aimed to summarize data on the prevalence and concentration of Campylobacter in faeces of dairy cows. Suitable scientific articles published up to July 2021 were identified through a systematic literature search and subjected to screening and quality assessment. Fifty-three out of 1338 identified studies were eligible for data extraction and 44 were further eligible for meta-analysis. The pooled prevalence was calculated in two different meta-analytic models: a simple model based on one average prevalence estimate per study and a multilevel meta-analytic model that included all prevalence outcomes reported in each study (including different subgroups of e.g. health status and age of dairy cows). The results of the two models were significantly different with a pooled prevalence estimate of 29%, 95% CI [23-36%] and 51%, 95% CI [44-57%], respectively. The effect of sub-groups on prevalence were analyzed with a multilevel mixed-effect model which showed a significant effect of the faecal collection methods and Campylobacter species on the prevalence. A meta-analysis on concentration data could not be performed due to the limited availability of data. This systematic review highlights important data gaps and limitations in current studies and variation of prevalence outcomes between available studies. The included studies used a variety of methods for sampling, data collection and analysis of Campylobacter that added uncertainty to the pooled prevalence estimates. Nevertheless, the performed meta-analysis improved our understanding of Campylobacter prevalence in faeces of dairy cows and is considered a valuable basis for the further development of quantitative microbiological risk assessment models for Campylobacter in (raw) milk and food products thereof.
Collapse
Affiliation(s)
- Anna-Delia Knipper
- German Federal Institute for Risk Assessment (BfR), Department Biological Safety, Junior Research Group Supply Chain Models, Berlin, Germany
| | - Narges Ghoreishi
- German Federal Institute for Risk Assessment (BfR), Department Exposure, Unit of Epidemiology, Statistics and Exposure Modelling, Berlin, Germany
| | - Tasja Crease
- German Federal Institute for Risk Assessment (BfR), Department Biological Safety, Junior Research Group Supply Chain Models, Berlin, Germany
| |
Collapse
|
35
|
Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello‐Rodríguez H, Dohmen W, Magistrali CF, Padalino B, Tenhagen B, Threlfall J, García‐Fierro R, Guerra B, Liébana E, Stella P, Peixe L. Transmission of antimicrobial resistance (AMR) during animal transport. EFSA J 2022; 20:e07586. [PMID: 36304831 PMCID: PMC9593722 DOI: 10.2903/j.efsa.2022.7586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The transmission of antimicrobial resistance (AMR) between food-producing animals (poultry, cattle and pigs) during short journeys (< 8 h) and long journeys (> 8 h) directed to other farms or to the slaughterhouse lairage (directly or with intermediate stops at assembly centres or control posts, mainly transported by road) was assessed. Among the identified risk factors contributing to the probability of transmission of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), the ones considered more important are the resistance status (presence of ARB/ARGs) of the animals pre-transport, increased faecal shedding, hygiene of the areas and vehicles, exposure to other animals carrying and/or shedding ARB/ARGs (especially between animals of different AMR loads and/or ARB/ARG types), exposure to contaminated lairage areas and duration of transport. There are nevertheless no data whereby differences between journeys shorter or longer than 8 h can be assessed. Strategies that would reduce the probability of AMR transmission, for all animal categories include minimising the duration of transport, proper cleaning and disinfection, appropriate transport planning, organising the transport in relation to AMR criteria (transport logistics), improving animal health and welfare and/or biosecurity immediately prior to and during transport, ensuring the thermal comfort of the animals and animal segregation. Most of the aforementioned measures have similar validity if applied at lairage, assembly centres and control posts. Data gaps relating to the risk factors and the effectiveness of mitigation measures have been identified, with consequent research needs in both the short and longer term listed. Quantification of the impact of animal transportation compared to the contribution of other stages of the food-production chain, and the interplay of duration with all risk factors on the transmission of ARB/ARGs during transport and journey breaks, were identified as urgent research needs.
Collapse
|
36
|
Bio-responsive composite liposomes against Campylobacter jejuni in vitro and its application in chicken preservation. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Habib I, Mohamed MYI, Lakshmi GB, Khan M, Li D. Quantification of Campylobacter contamination on chicken carcasses sold in retail markets in the United Arab Emirates. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2022. [DOI: 10.1186/s40550-022-00095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Campylobacter is among the leading causes of foodborne zoonotic disease worldwide, with chicken meat accounting for the majority of human illnesses. This baseline study generates the first quantitative data for Campylobacter contamination in the United Arab Emirates chicken meat. Such data will help inform risk analysis and develop evidence-based food safety management.
Methods
For a year, chilled whole chicken carcasses (n = 315) belonging to seven different companies were collected from retail supermarkets. According to standard methods, Campylobacter enumeration was achieved by a direct plating in all chicken samples, and isolates were confirmed using multiplex PCR.
Results
Campylobacter spp. were recovered from 28.6% (90/315) of the samples. Campylobacter enumeration results indicated that 71.4% of the tested samples were contaminated with < 1 log10 CFU (colony-forming units)/g, and 7% were contaminated with ≥3 log10 CFU/g. The mean Campylobacter concentration was 2.70 log10 CFU/g, with a standard deviation of 0.41 log10 CFU/g. Campylobacter counts varied significantly in relation to the sourcing chicken processing companies. Six out of the seven surveyed companies provided Campylobacter positive samples. Moreover, significantly higher (p-value< 0.0001) counts were found to be associated with smaller size chicken carcasses (weighted 600–700 g; compared to the other categories, 800 g and 900–1000 g). Interestingly, C. coli was present in 83% of the positive samples, while C. jejuni was only detected in 6.4% of the samples. Compared with studies from other countries utilizing the same enumeration method, the UAE chicken appears to have a lower prevalence but a higher Campylobacter count per gram of carcasses. Higher Campylobacter counts were significantly associated with smaller carcasses, and C. coli was the dominant species detected in this study’s samples.
Conclusion
These results add to our understanding of the local, regional and global epidemiology of Campylobacter in chicken meat. Outputs of the current study may aid in developing a risk assessment of Campylobacter in the UAE, a country among the biggest per capita consumption markets for chicken meat worldwide.
Collapse
|
38
|
Baptista E, Borges A, Aymerich T, Alves SP, da Gama LT, Fernandes H, Fernandes MJ, Fraqueza MJ. Pulsed Light Application for Campylobacter Control on Poultry Meat and Its Effect on Colour and Volatile Profile. Foods 2022; 11:2848. [PMID: 36140975 PMCID: PMC9498210 DOI: 10.3390/foods11182848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Campylobacter on poultry meat needs to be controlled to reduce the risk of infection caused by the consumption of chicken meat. Pulsed light (PL) application on poultry meat was studied to control Campylobacter spp. The effect of this technology was evaluated regarding poultry meat colour and volatile compound changes. Two breast sample groups were prepared: inoculated with Campylobacter (107 bacteria of Campylobacter jejuni strains) and not inoculated. Samples were submitted to PL, five pulses/s of 300 ms, 1 Hz, and 1 J/cm2 in the apparatus, PL Tecum unit (Claranor). A response surface experimental design was applied regarding the factors of voltage (1828 to 3000 W) and distance to the source UV lamp (2.6 to 5.4 cm). The binomial factorial treatment (voltage and distance) with PL induced different energy doses (fluence J/cm2) received by samples, 2.82 to 9.67 J/cm2. Poultry meat pulsed light treated had a significant decrease of Enterobacteriaceae counts. The treatments applied were unable to reduce 1 log Campylobacter cfu/g of poultry meat. The poultry meat PL treated became slightly light, redder, and yellower than those not treated. PL can decrease the proportion of aldehydes on total volatiles in meat, particularly on those associated with chicken-like, chicken skin-like, and sweet odour notes in fresh poultry meat. Further studies of PL with higher energy doses will be necessary to confirm if there are Campylobacter reductions and about poultry meat treated under storage to evaluate if volatile compounds can affect the flavour of PL-treated meat samples.
Collapse
Affiliation(s)
- Esther Baptista
- CIISA—Centre for Interdisciplinary Research in Animal Health, AL4AnimalS—Associate Laboratory for Animal and Science, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, Polo Universitário do Alto da Ajuda, 1300-477 Lisbon, Portugal
| | - Ana Borges
- CIISA—Centre for Interdisciplinary Research in Animal Health, AL4AnimalS—Associate Laboratory for Animal and Science, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, Polo Universitário do Alto da Ajuda, 1300-477 Lisbon, Portugal
| | - Teresa Aymerich
- IRTA—Institut de Recerca i Tecnologia Agroalimentàries, 17121 Monells, Spain
| | - Susana P. Alves
- CIISA—Centre for Interdisciplinary Research in Animal Health, AL4AnimalS—Associate Laboratory for Animal and Science, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, Polo Universitário do Alto da Ajuda, 1300-477 Lisbon, Portugal
| | - Luís Telo da Gama
- CIISA—Centre for Interdisciplinary Research in Animal Health, AL4AnimalS—Associate Laboratory for Animal and Science, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, Polo Universitário do Alto da Ajuda, 1300-477 Lisbon, Portugal
| | - Helena Fernandes
- CIISA—Centre for Interdisciplinary Research in Animal Health, AL4AnimalS—Associate Laboratory for Animal and Science, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, Polo Universitário do Alto da Ajuda, 1300-477 Lisbon, Portugal
| | - Maria José Fernandes
- CIISA—Centre for Interdisciplinary Research in Animal Health, AL4AnimalS—Associate Laboratory for Animal and Science, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, Polo Universitário do Alto da Ajuda, 1300-477 Lisbon, Portugal
| | - Maria João Fraqueza
- CIISA—Centre for Interdisciplinary Research in Animal Health, AL4AnimalS—Associate Laboratory for Animal and Science, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, Polo Universitário do Alto da Ajuda, 1300-477 Lisbon, Portugal
| |
Collapse
|
39
|
Greene G, Koolman L, Whyte P, Burgess CM, Lynch H, Coffey A, Lucey B, O’Connor L, Bolton D. An Investigation of the Effect of Water Additives on Broiler Growth and the Caecal Microbiota at Harvest. Pathogens 2022; 11:pathogens11080932. [PMID: 36015051 PMCID: PMC9412471 DOI: 10.3390/pathogens11080932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Campylobacter is the most common foodborne pathogen in developed countries and most cases are associated with poultry. This study investigated the effect of three anti-Campylobacter water additives on broiler growth and on the caecal microbiota at harvest using 16S rRNA amplicon sequencing. Mixtures of organic acids (OA) and essential oils (EO) were administered to broilers for the entirety of the production cycle (35 d) and medium-chain fatty acids (MCFA) for 5 d immediately before harvest, under commercial conditions. Bird weight gain was significantly (p < 0.001) reduced in broilers receiving the OA and EO treatments. While this was most likely due to reduced water intake and corresponding lower feed consumption, changes to the caecal microbiota may also have contributed. Firmicutes made up over 75% of the bacteria regardless of sample type, while the minor phyla included Bacteroidetes, Actinobacteria, Melainabacteria, and Proteobacteria. There were no significant (p > 0.05) differences in the alpha diversity as measured using ACE, Chao1, and Shannon indices, except for control (water) versus MCFA and OA versus MCFA, using the Wilcox test. In contrast, there was a significant (p < 0.05) difference in beta diversity when the treated were compared to the untreated control and main flock samples, while linear discriminant analysis effect size (LeFSe) identified three OTUs that were present in the control but absent in the treated birds. It was concluded that the water additives tested adversely affected broiler performance, which may, at least in part, be due to changes in the caecal microbiota, assuming that the altered microbiota at day 35 is indicative of a change throughout the production cycle.
Collapse
Affiliation(s)
- Genevieve Greene
- Teagasc Food Research Centre, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Leonard Koolman
- Teagasc Food Research Centre, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | | | - Helen Lynch
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
- Department of Agriculture, Food and the Marine, Backweston, Celbridge, W23 X3PH Kildare, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland
| | - Lisa O’Connor
- Food Safety Authority of Ireland, George’s Dock, Dublin 1, D01 P2V6 Dublin, Ireland
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland
- Correspondence: ; Tel.: +353-(1)-8059539
| |
Collapse
|
40
|
Rapid Oxford Nanopore Technologies MinION Sequencing Workflow for Campylobacter jejuni Identification in Broilers on Site—A Proof-of-Concept Study. Animals (Basel) 2022; 12:ani12162065. [PMID: 36009653 PMCID: PMC9405271 DOI: 10.3390/ani12162065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/04/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
Campylobacter is recognised as one of the most important foodborne bacteria, with a worldwide health and socioeconomic impact. This bacterium is one of the most important zoonotic players in poultry, where efficient and fast detection methods are required. Current official culture methods for Campylobacter enumeration in poultry usually include >44 h of culture and >72 h for identification, thus requiring at least five working shifts (ISO/TS 10272-2:2017). Here, we have assembled a portable sequencing kit composed of the Bento Lab and the MinION and developed a workflow for on-site farm use that is able to detect and report the presence of Campylobacter from caecal samples in less than five hours from sampling time, as well as the relationship of Campylobacter with other caecal microbes. Beyond that, our workflow may offer a cost-effective and practical method of microbiologically monitoring poultry at the farm. These results would demonstrate the possibility of carrying out rapid on-site screening to monitor the health status of the poultry farm/flock during the production chain.
Collapse
|
41
|
Urdaneta S, Lorca-Oró C, Dolz R, López-Soria S, Cerdà-Cuéllar M. In a warm climate, ventilation, indoor temperature and outdoor relative humidity have significant effects on Campylobacter spp. colonization in chicken broiler farms which can occur in only 2 days. Food Microbiol 2022; 109:104118. [DOI: 10.1016/j.fm.2022.104118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
|
42
|
Anis N, Bonifait L, Quesne S, Baugé L, Yassine W, Guyard-Nicodème M, Chemaly M. Survival of Campylobacter jejuni Co-Cultured with Salmonella spp. in Aerobic Conditions. Pathogens 2022; 11:812. [PMID: 35890056 PMCID: PMC9323934 DOI: 10.3390/pathogens11070812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022] Open
Abstract
Campylobacter and Salmonella are responsible for the two major foodborne zoonotic diseases in Europe; poultry is the main infection source. Campylobacter cannot grow under aerobic conditions, but can show aerobic survival when co-cultured with other microorganisms; however, its interaction with Salmonella has not been studied yet. In this study, these two bacteria were co-cultured under controlled aerobic conditions. Different concentrations and strains of C. jejuni were incubated with or without different Salmonella serotypes (10 CFU) at 37 °C for 16 h. C. jejuni did not grow after incubation with or without Salmonella. The survival of C. jejuni was observed only for the highest initial concentration of 6 log CFU/mL with or without Salmonella. However, its survival was significantly higher when co-cultured with Salmonella. No survival was observed at lower concentrations. C. jejuni survival was positively affected by the presence of Salmonella but depended on the Salmonella serotype, the C. jejuni strain and the initial concentration. On the other hand, the Salmonella enumerations were not affected by C. jejuni. Our results suggest potential interactions between Salmonella and C. jejuni that require further investigations for a clearer understanding of their behavior in natural habitats.
Collapse
Affiliation(s)
- Nagham Anis
- Unit for Hygiene and Quality of Poultry and Pork Products, Laboratory of Ploufragan-Plouzané-Niort, ANSES, 22440 Ploufragan, France; (N.A.); (L.B.); (S.Q.); (L.B.); (M.C.)
| | - Laetitia Bonifait
- Unit for Hygiene and Quality of Poultry and Pork Products, Laboratory of Ploufragan-Plouzané-Niort, ANSES, 22440 Ploufragan, France; (N.A.); (L.B.); (S.Q.); (L.B.); (M.C.)
| | - Ségolène Quesne
- Unit for Hygiene and Quality of Poultry and Pork Products, Laboratory of Ploufragan-Plouzané-Niort, ANSES, 22440 Ploufragan, France; (N.A.); (L.B.); (S.Q.); (L.B.); (M.C.)
| | - Louise Baugé
- Unit for Hygiene and Quality of Poultry and Pork Products, Laboratory of Ploufragan-Plouzané-Niort, ANSES, 22440 Ploufragan, France; (N.A.); (L.B.); (S.Q.); (L.B.); (M.C.)
| | - Wissam Yassine
- Faculty of Sciences, Lebanese University, Beirut 10999, Lebanon;
| | - Muriel Guyard-Nicodème
- Unit for Hygiene and Quality of Poultry and Pork Products, Laboratory of Ploufragan-Plouzané-Niort, ANSES, 22440 Ploufragan, France; (N.A.); (L.B.); (S.Q.); (L.B.); (M.C.)
| | - Marianne Chemaly
- Unit for Hygiene and Quality of Poultry and Pork Products, Laboratory of Ploufragan-Plouzané-Niort, ANSES, 22440 Ploufragan, France; (N.A.); (L.B.); (S.Q.); (L.B.); (M.C.)
| |
Collapse
|
43
|
Hankel J, Gibson T, Skov J, Andersen KB, Dargatz M, Kappel A, Thiemann F, Curtis B, Chuppava B, Visscher C. Monitoring of Campylobacter jejuni in a chicken infection model by measuring specific volatile organic compounds and by qPCR. Sci Rep 2022; 12:11725. [PMID: 35821260 PMCID: PMC9276820 DOI: 10.1038/s41598-022-15863-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/30/2022] [Indexed: 01/23/2023] Open
Abstract
Campylobacter is one of the leading bacterial foodborne pathogens worldwide. Poultry is the host species with this pathogen with the highest clinical impact. Flocks become colonised with Campylobacter, which leads to contamination of product entering the food-chain. Rapid and reliable Campylobacter detection methods could support controls to minimize the risks of contamination within the food-chain, which would easier enable the implementation of a logistical slaughter schedule or other control options. The present study evaluates current and emerging C. jejuni detection technologies on air samples in a unique study set-up of pre-defined C. jejuni prevalences. Both non-invasive detection technologies on air samples by subsequent measuring of volatile organic compounds (VOCs) or by qPCR detected the C. jejuni presence and could additionally distinguish between the number of present C. jejuni-positive birds in the study set-up. Nevertheless, electrostatic air samplers diagnosed fewer birds as C. jejuni-positive compared to the cultivation-based method. By measuring the VOCs, it was possible to detect the presence of two positive birds in the room. This apparent high sensitivity still needs to be verified in field studies. Techniques, such as these promising methods, that can facilitate C. jejuni surveillance in poultry flocks are desirable to reduce the risk of infection for humans.
Collapse
Affiliation(s)
- Julia Hankel
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Timothy Gibson
- RoboScientific Ltd, Espace North, 181 Wisbech Road, Littleport, CB6 1RA, Cambridgeshire, UK
| | - Julia Skov
- AeroCollect A/S, Park Alle 345, 2605, Brøndby, Denmark
| | | | - Michelle Dargatz
- Evonik Operations GmbH, Nutrition & Care, Rodenbacher Chaussee 4, 63457, Hanau-Wolfgang, Germany
| | - Andreas Kappel
- Evonik Operations GmbH, Nutrition & Care, Rodenbacher Chaussee 4, 63457, Hanau-Wolfgang, Germany
| | - Frank Thiemann
- Evonik Operations GmbH, Nutrition & Care, Rodenbacher Chaussee 4, 63457, Hanau-Wolfgang, Germany
| | - Ben Curtis
- RoboScientific Ltd, Espace North, 181 Wisbech Road, Littleport, CB6 1RA, Cambridgeshire, UK
| | - Bussarakam Chuppava
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany.
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| |
Collapse
|
44
|
Chicken Skin Decontamination of Thermotolerant Campylobacter spp. and Hygiene Indicator Escherichia coli Assessed by Viability Real-Time PCR. Pathogens 2022; 11:pathogens11060706. [PMID: 35745559 PMCID: PMC9230925 DOI: 10.3390/pathogens11060706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Thermotolerant Campylobacter spp. are fecal contaminants of chicken meat with serious implications for human health. E. coli is considered as hygiene indicator since, in contrast to Campylobacter. spp., the bacterium is generally present in the avian gut. Stress exposure may transiently cease bacterial division. Therefore, colony forming units (CFU) may underestimate the infection risk of pathogens. We developed a viability real-time PCR (v-qPCR) for the quantification of viable E. coli targeting the uidA gene, encoding β-glucuronidase, which is usually detected for phenotypic species identification. The short- and long-term effects of decontaminating chicken skin on the survival of both C. jejuni and an ESBL-producing E. coli were evaluated by CFU and v-qPCR. The results showed that freezing and storage in cool conditions are potentially underestimated by CFU but not by v-qPCR. The effect of treatment with peroxyacetic acid on survival was consistently detected by CFU and v-qPCR. v-qPCR analysis detected bacterial survival upon the application of lactic acid, which awaits further analysis. Interestingly, both bacteria showed similar kinetics of inactivation upon the application of reduction strategies, suggesting that E. coli might be a complementary hygiene indicator. We conclude that v-qPCR can improve food safety under the consideration of some limitations.
Collapse
|
45
|
Goddard MR, O'Brien S, Williams N, Guitian J, Grant A, Cody A, Colles F, Buffet JC, Adlen E, Stephens A, Godfray HCJ, Maiden MCJ. A restatement of the natural science evidence base regarding the source, spread and control of Campylobacter species causing human disease. Proc Biol Sci 2022; 289:20220400. [PMID: 35703046 PMCID: PMC9198779 DOI: 10.1098/rspb.2022.0400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Food poisoning caused by Campylobacter (campylobacteriosis) is the most prevalent bacterial disease associated with the consumption of poultry, beef, lamb and pork meat and unpasteurized dairy products. A variety of livestock industry, food chain and public health interventions have been implemented or proposed to reduce disease prevalence, some of which entail costs for producers and retailers. This paper describes a project that set out to summarize the natural science evidence base relevant to campylobacteriosis control in as policy-neutral terms as possible. A series of evidence statements are listed and categorized according to the nature of the underlying information. The evidence summary forms the appendix to this paper and an annotated bibliography is provided in the electronic supplementary material.
Collapse
Affiliation(s)
- Matthew R. Goddard
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK
| | - Sarah O'Brien
- School of Natural and Environmental Sciences, Ground floor, Agriculture Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, Wirral CH64 7TE, UK
| | - Nicola Williams
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, Wirral CH64 7TE, UK
| | - Javier Guitian
- Veterinary Epidemiology, Economics and Public Health, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK
| | - Andrew Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Alison Cody
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Frances Colles
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Jean-Charles Buffet
- Oxford Martin School, University of Oxford, 34 Broad Street, Oxford OX1 3BD, UK
| | - Ella Adlen
- Oxford Martin School, University of Oxford, 34 Broad Street, Oxford OX1 3BD, UK
| | - Andrea Stephens
- Oxford Martin School, University of Oxford, 34 Broad Street, Oxford OX1 3BD, UK
| | - H. Charles J. Godfray
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK,Oxford Martin School, University of Oxford, 34 Broad Street, Oxford OX1 3BD, UK
| | - Martin C. J. Maiden
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| |
Collapse
|
46
|
Mota-Gutierrez J, Lis L, Lasagabaster A, Nafarrate I, Ferrocino I, Cocolin L, Rantsiou K. Campylobacter spp. prevalence and mitigation strategies in the broiler production chain. Food Microbiol 2022; 104:103998. [DOI: 10.1016/j.fm.2022.103998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
|
47
|
Horvat A, Luning PA, DiGennaro C, Rommens E, van Daalen E, Koene M, Jalali MS. The impacts of biosecurity measures on Campylobacter contamination in broiler houses and slaughterhouses in the Netherlands: A simulation modelling approach. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Gonzalez V, Juck G, Sutzko M, Muldoon MT. Validation of RapidChek® Campylobacter Test System for the Detection of C. jejuni, C. coli, and C. lari in Poultry Samples: AOAC Performance Tested MethodSM 052201. J AOAC Int 2022; 105:1652-1662. [DOI: 10.1093/jaoacint/qsac064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/14/2022]
Abstract
Abstract
Background
Campylobacter is one of the leading causes of human bacterial gastroenteritis worldwide. Campylobacter infections are most often associated with the consumption of raw milk, undercooked poultry, and contaminated water.
Objective
The RapidChek®Campylobacter test system (PTM number 052201) was validated for the detection of Campylobacter jejuni, C. coli, and C. lari in raw ground chicken, chicken carcass rinse, and turkey carcass sponges.
Methods
The method uses a proprietary enrichment medium. Following aerobic enrichment, an immunochromatographic test strip is inserted into the tube containing the enrichment, developed for 20 min, and interpreted. Campylobacter-inoculated food samples were tested by the method, as well as the USDA/FSIS cultural reference method; Isolation and Identification of Campylobacter jejuni/coli/lari from Poultry Rinse, Sponge and Raw Product Samples MLG 41.04. The candidate method was also confirmed by an alternative cultural method. The RapidChek method was tested with 50 Campylobacter strains comprised of C. jejuni, C. coli, and C. lari, and 30 non-target strains.
Results
A total of 80 low-level spiked samples were tested by both methods in the study. The candidate method yielded 49 presumptive positives: all presumptive results were confirmed culturally. The reference method produced a total of 41 confirmed positive results. No difference between the alternate confirmation method and reference confirmation method was observed. Probability of detection analysis demonstrated no significant differences in the number of positive samples detected by the candidate method and cultural reference method. The RapidChek method detected all 50 Campylobacter strains and none of the 30 non-target strains, including Campylobacter spp. other than C. jejuni, C. coli, and C. lari.
Conclusion
The candidate method performed as well as the reference method in the detection of C. jejuni, C. coli, and C. lari in raw ground chicken, chicken carcass rinse, and turkey carcass sponges.
Highlights
Aerobic enrichment of selected matrixes for 48 h yielded reliable presumptive results for Campylobacter.
Collapse
Affiliation(s)
| | - Gregory Juck
- Romer Labs, Inc. , 130 Sandy Drive , Newark, DE 19713, USA
| | | | - Mark T Muldoon
- Romer Labs, Inc. , 130 Sandy Drive , Newark, DE 19713, USA
| |
Collapse
|
49
|
Lynch H, Franklin-Hayes P, Koolman L, Egan J, Gutierrez M, Byrne W, Golden O, Bolton D, Reid P, Coffey A, Lucey B, O'Connor L, Unger K, Whyte P. Prevalence and levels of Campylobacter in broiler chicken batches and carcasses in Ireland in 2017-2018. Int J Food Microbiol 2022; 372:109693. [PMID: 35490507 DOI: 10.1016/j.ijfoodmicro.2022.109693] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/11/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
Abstract
In 2008, an EU wide baseline survey of broilers revealed a high Campylobacter prevalence. To assist with industry-wide controls, updated data were required. The primary objective of this study was to establish up-to-date data on Campylobacter carriage and carcass contamination in Irish broilers. Monthly samples were collected from the three largest broiler processing plants in Ireland over a twelve-month period. Samples were taken from both first and final thin birds (partial and full depopulation) from 358 batches of broilers. From each batch, a composite sample of 10 caecal contents (n = 358) and 5 neck skins (n = 1790) were collected and numbers of Campylobacter in each sample were determined. Of the 1790 neck skin samples tested, 53% were Campylobacter positive. Campylobacter was detected in the caecal contents of 66% of all batches tested. Depopulation and/or age had a significant effect on Campylobacter prevalence with 67% of final thin broilers yielding Campylobacter-positive neck skin samples in contrast to 38% of first thin broilers that yielded positive neck skin samples (P ≤ 0.002). A significant seasonal variation was observed in the rate of Campylobacter-positive caecal samples with higher prevalence seen in July (85%) than the colder months of November (61%), December (50%), January (61%) March (57%) and April (59%). Neck skin samples were 7 times more likely to be Campylobacter positive if the caecal contents from the same batch were positive (odds ratio = 7.1; P ≤ 0.0001). The decrease in Campylobacter prevalence observed in neck skin and caecal contents demonstrates the improvements and progress made in reducing prevalences of this important enteropathogen in the Irish poultry industry since the 2008 EU baseline survey. It also provides further supporting data on the impact of thinning, the processing environment and season on Campylobacter prevalence.
Collapse
Affiliation(s)
- Helen Lynch
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; National Reference Laboratory Campylobacter, Backweston Campus, Celbridge, Ireland.
| | - Peter Franklin-Hayes
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - John Egan
- National Reference Laboratory Campylobacter, Backweston Campus, Celbridge, Ireland
| | - Montserrat Gutierrez
- National Reference Laboratory Campylobacter, Backweston Campus, Celbridge, Ireland
| | - William Byrne
- National Reference Laboratory Campylobacter, Backweston Campus, Celbridge, Ireland
| | - Olwen Golden
- National Reference Laboratory Campylobacter, Backweston Campus, Celbridge, Ireland
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Paula Reid
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Kilian Unger
- Department of Agriculture, Food and the Marine, Kildare St, Dublin 2, Ireland
| | - Paul Whyte
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
50
|
Effects of Common Litter Management Practices on the Prevalence of Campylobacter jejuni in Broilers. Animals (Basel) 2022; 12:ani12070858. [PMID: 35405847 PMCID: PMC8996994 DOI: 10.3390/ani12070858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 01/08/2023] Open
Abstract
Simple Summary The bacterium Campylobacter is a significant cause of foodborne illness, causing over one million cases per year in the United States. Campylobacter is naturally found in chickens and can contaminate chicken products; therefore, strategies to lower Campylobacter presence in chickens are important to public health. Commercial chickens are raised in houses with bedding material, or litter, covering the floor. Litter can become contaminated with Campylobacter, which in turn will then colonize the birds. In some countries, after a flock of chickens is harvested, the litter is treated and reused for the next flock, which could spread Campylobacter. The goal of this study was to observe if reusing contaminated litter could indeed spread Campylobacter and to determine if common litter treatments were able to prevent contamination of the next flock. To determine this, previously used litter contaminated with Campylobacter was composted and treated with sodium bisulfate. A flock was raised on this litter and tested for Campylobacter for 42 days. No Campylobacter was detected in any of these samples, indicating that re-used litter is not a probable source for Campylobacter contamination of chickens. Abstract Campylobacter is an important foodborne pathogen and is naturally found in chickens. During broiler production, litter can become contaminated with Campylobacter when birds defecate, and this litter, in some countries, is typically reused for the next flock, potentially causing cross-contamination. The goal of this experiment was to observe if reusing contaminated litter could spread Campylobacter between flocks and to observe if common litter treatments could prevent this cross-contamination. To determine this, a flock of birds was inoculated with Campylobacter jejuni and allowed to naturally contaminate the litter for 42 days. After grow-out, birds were terminated, and litter was given five treatments: uninoculated fresh litter, untreated re-used litter, composted re-used litter, re-used litter treated with sodium bisulfate (45 kg/305 m2), and re-used litter composted and treated with sodium bisulfate (45 kg/305 m2). A second flock was placed on the litter, grown for 42 days, and tested for C. jejuni prevalence. Following inoculation of the first flock, high prevalence of C. jejuni was observed; however, after a 19-day down-time between flocks, no C. jejuni was detected in any samples from the second flock. These results indicate that re-used litter was not a significant reservoir for cross-contamination of broilers when provided a significant down-time between flocks.
Collapse
|