1
|
Hu X, Lee S, Manohar M, Chen J. The fate of enterohemorrhagic Escherichia coli on alfalfa and fenugreek seeds and sprouts as affected by ascaroside #18 treatments. FOOD BIOSCI 2024; 58:103633. [PMID: 38525271 PMCID: PMC10956886 DOI: 10.1016/j.fbio.2024.103633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Alfalfa and fenugreek sprouts are healthy foods, but they are occasionally contaminated with bacterial pathogens and serve as vehicles for transmitting foodborne illnesses. This study examined the efficacy of ascaroside (ascr)#18 treatment for the control of enterohemorrhagic E. coli (EHEC) growth on sprouts. Commercial alfalfa and fenugreek seeds were decontaminated with 20,000 ppm of NaClO, and residual chlorine was neutralized with Dey-Engley broth. Decontaminated seeds were treated with 1 mM or 1 μM ascr#18, a plant immunity modulator, before being dried and mixed with sandy soil inoculated with E. coli F4546 or BAA-2326 at 104-105 CFU/g. The inoculated seeds were sprouted on 1% water agar at 25ºC for 7 days in the dark. Seed or sprout samples were collected on days 0, 1, 3, 5, and 7 for enumeration of bacterial populations. Data was fit into the general linear model and analyzed using Fisher's least significant different test of the statistical analysis software. Treatment with ascr#18 significantly (P ≤ 0.05) reduced the cell population of EHEC on sprouts. The mean EHEC populations in the 1 mM or 1 μM treatment groups were 3.31 or 1.56 log CFU/g lower compared to the control groups. Besides treatment, sprout seed type and sprouting time were also significant independent variables influencing the growth of EHEC, according to the results of type III error analysis. However, EHEC strain type was not a significant independent variable. The study suggests that ascr#18 could be potentially used to control EHEC contamination and improve the microbial safety of sprouts.
Collapse
Affiliation(s)
- Xueyan Hu
- Department of Food Science and Technology, The University of Georgia, Griffin, GA, 30223-1797, USA
| | - Seulgi Lee
- Department of Food Science and Technology, The University of Georgia, Griffin, GA, 30223-1797, USA
| | | | - Jinru Chen
- Department of Food Science and Technology, The University of Georgia, Griffin, GA, 30223-1797, USA
| |
Collapse
|
2
|
Gollop R, Kroupitski Y, Matz I, Chahar M, Shemesh M, Sela Saldinger S. Bacillus strain BX77: a potential biocontrol agent for use against foodborne pathogens in alfalfa sprouts. FRONTIERS IN PLANT SCIENCE 2024; 15:1287184. [PMID: 38313804 PMCID: PMC10834763 DOI: 10.3389/fpls.2024.1287184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024]
Abstract
Despite regulatory and technological measures, edible sprouts are still often involved in foodborne illness and are considered a high-risk food. The present study explored the potential of spore-forming Bacillus isolates to mitigate Salmonella and Escherichia coli contamination of alfalfa sprouts. Food-derived Bacillus strains were screened for antagonistic activity against S. enterica serovar Typhimurium SL1344 (STm) and enteropathogenic E. coli O55:H7. Over 4 days of sprouting, levels of STm and E. coli on contaminated seeds increased from 2.0 log CFU/g to 8.0 and 3.9 log CFU/g, respectively. Treatment of the contaminated seeds with the most active Bacillus isolate, strain BX77, at 7 log CFU/g seeds resulted in substantial reductions in the levels of STm (5.8 CFU/g) and E. coli (3.9 log CFU/g) in the sprouted seeds, compared to the control. Similarly, co-culturing STm and BX77 in sterilized sprout extract at the same ratio resulted in growth inhibition and killed the Salmonella. Confocal-microscopy experiments using seeds supplemented with mCherry-tagged Salmonella revealed massive colonization of the seed coat and the root tip of 4-day-old sprouted seeds. In contrast, very few Salmonella cells were observed in sprouted seeds grown with BX77. Ca-hypochlorite disinfection of seeds contaminated with a relatively high concentration of Salmonella (5.0 log CFU/g) or treated with BX77 revealed a mild inhibitory effect. However, disinfection followed by the addition of BX77 had a synergistic effect, with a substantial reduction in Salmonella counts (7.8 log CFU/g) as compared to untreated seeds. These results suggest that a combination of chemical and biological treatments warrants further study, toward its potential application as a multi-hurdle strategy to mitigate Salmonella contamination of sprouted alfalfa seeds.
Collapse
Affiliation(s)
- Rachel Gollop
- Department of Food Science, Institute for Postharvest and Food Science, The Volcani Institute, Agriculture Research Organization, Rishon LeZion, Israel
| | - Yulia Kroupitski
- Department of Food Science, Institute for Postharvest and Food Science, The Volcani Institute, Agriculture Research Organization, Rishon LeZion, Israel
| | - Ilana Matz
- Department of Food Science, Institute for Postharvest and Food Science, The Volcani Institute, Agriculture Research Organization, Rishon LeZion, Israel
| | - Madhvi Chahar
- Department of Food Science, Institute for Postharvest and Food Science, The Volcani Institute, Agriculture Research Organization, Rishon LeZion, Israel
- Current address: Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Moshe Shemesh
- Department of Food Science, Institute for Postharvest and Food Science, The Volcani Institute, Agriculture Research Organization, Rishon LeZion, Israel
| | - Shlomo Sela Saldinger
- Department of Food Science, Institute for Postharvest and Food Science, The Volcani Institute, Agriculture Research Organization, Rishon LeZion, Israel
| |
Collapse
|
3
|
Jeong S, Kim I, Kim BE, Jeong MI, Oh KK, Cho GS, Franz CMAP. Identification and Characterization of Antibiotic-Resistant, Gram-Negative Bacteria Isolated from Korean Fresh Produce and Agricultural Environment. Microorganisms 2023; 11:1241. [PMID: 37317216 DOI: 10.3390/microorganisms11051241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
The consumption of fresh produce and fruits has increased over the last few years as a result of increasing consumer awareness of healthy lifestyles. Several studies have shown that fresh produces and fruits could be potential sources of human pathogens and antibiotic-resistant bacteria. In this study, 248 strains were isolated from lettuce and surrounding soil samples, and 202 single isolates selected by the random amplified polymorphic DNA (RAPD) fingerprinting method were further characterized. From 202 strains, 184 (91.2%) could be identified based on 16S rRNA gene sequencing, while 18 isolates (8.9%) could not be unequivocally identified. A total of 133 (69.3%) and 105 (54.7%) strains showed a resistance phenotype to ampicillin and cefoxitin, respectively, while resistance to gentamicin, tobramycin, ciprofloxacin, and tetracycline occurred only at low incidences. A closer investigation of selected strains by whole genome sequencing showed that seven of the fifteen sequenced strains did not possess any genes related to acquired antibiotic resistance. In addition, only one strain possessed potentially transferable antibiotic resistance genes together with plasmid-related sequences. Therefore, this study indicates that there is a low possibility of transferring antibiotic resistance by potential pathogenic enterobacteria via fresh produce in Korea. However, with regards to public health and consumer safety, fresh produce should nevertheless be continuously monitored to detect the occurrence of foodborne pathogens and to hinder the transfer of antibiotic resistance genes potentially present in these bacteria.
Collapse
Affiliation(s)
- Sunyoung Jeong
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
- College of Life Sciences and Biotechnology, Korea University, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ile Kim
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
- Department of Life Science, Handong Global University, 558 Handong-ro, Buk-gu, Pohang 37554, Republic of Korea
| | - Bo-Eun Kim
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju 55365, Republic of Korea
| | - Myeong-In Jeong
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju 55365, Republic of Korea
| | - Kwang-Kyo Oh
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju 55365, Republic of Korea
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| |
Collapse
|
4
|
Effects of sterilization methods on the survival of pathogenic bacteria in potting soil stored at various temperatures. Food Sci Biotechnol 2022; 32:111-120. [PMID: 36606091 PMCID: PMC9807724 DOI: 10.1007/s10068-022-01173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/02/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Fresh food products can be contaminated with pathogenic bacteria in various agricultural environments. Potting soil is sterilized by heat sterilization and then reused. This study evaluated the effects of three sterilization methods (non-sterilized, pasteurized, and sterilized) on the survival of pathogenic bacteria in potting soil during storage for 60 days at 5, 15, 25, and 35 °C. The reduction in Escherichia coli O157:H7, Salmonella Typhimurium, and Staphylococcus aureus in potting soil was higher at higher temperatures (25 and 35 °C) than at lower temperatures (5 and 15 °C). The population of pathogenic bacteria in pasteurized and sterilized potting soil was reduced below the detectable levels within 30 days at 35 °C. In contrast, the population of Bacillus cereus did not change in potting soil during storage for 60 days at all temperatures. These results indicate that sterilization and storage temperature of potting soil are critical factors influencing the survival of pathogenic bacteria.
Collapse
|
5
|
Coipan CE, Friesema IH, van den Beld MJC, Bosch T, Schlager S, van der Voort M, Frank C, Lang C, Fruth A, Franz E. Sporadic Occurrence of Enteroaggregative Shiga Toxin-Producing Escherichia coli O104:H4 Similar to 2011 Outbreak Strain. Emerg Infect Dis 2022; 28:1890-1894. [PMID: 35997633 PMCID: PMC9423916 DOI: 10.3201/eid2809.220037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We describe the recent detection of 3 Shiga toxin-producing enteroaggregative Escherichia coli O104:H4 isolates from patients and 1 from pork in the Netherlands that were genetically highly similar to isolates from the 2011 large-scale outbreak in Europe. Our findings stress the importance of safeguarding food supply production chains to prevent future outbreaks.
Collapse
|
6
|
Clavier B, Baptiste T, Zhadan A, Guiet A, Boucher F, Brezová V, Roques C, Corbel G. Understanding the bactericidal mechanism of Cu(OH) 2 nanorods in water through Mg-substitution: high production of toxic hydroxyl radicals by non-soluble particles. J Mater Chem B 2022; 10:779-794. [PMID: 35040839 DOI: 10.1039/d1tb02233d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To date, there is still a lack of definite knowledge regarding the toxicity of Cu(OH)2 nanoparticles towards bacteria. This study was aimed at shedding light on the role played by released cupric ions in the toxicity of nanoparticles. To address this issue, the bactericidal activity of Cu(OH)2 was at first evaluated in sterile water, a medium in which particles are not soluble. In parallel, an isovalent substitution of cupric ions by Mg2+ was attempted in the crystal structure of Cu(OH)2 nanoparticles to increase their solubility and determine the impact on the bactericidal activity. For the first time, mixed Cu1-xMgx(OH)2 nanorods (x ≤ 0.1) of about 15 nm in diameter and a few hundred nanometers in length were successfully prepared by a simple co-precipitation at room temperature in mixed alkaline (NaOH/Na2CO3) medium. For E. coli, 100% reduction of one million CFU per mL (6 log10) occurs after only 180 min on contact with both Cu(OH)2 and Cu0.9Mg0.1(OH)2 nanorods. The entire initial inoculum of S. aureus is also killed by Cu(OH)2 after 180 min (100% or 6 log10 reduction), while 0.01% of these bacteria stay alive on contact with Cu0.9Mg0.1(OH)2 (99.99% or 4 log10 reduction). The bactericidal performances of Cu(OH)2 and the magnesium-substituted counterparts (i.e. Cu1-xMgx(OH)2) are not linked to cupric ions they release in water since their mass concentrations after 180 min are much lower than minimal concentrations inhibiting the growth of E. coli and S. aureus. Finally, an EPR spin trapping study reveals how these nanorods kill bacteria in water: only the presence of hydrogen peroxide, a by-product of the normal metabolism of oxygen in aerobic bacteria, allows the Cu(OH)2 and its magnesium-substituted counterparts to produce a lethal amount of free radicals, the majority of which are the highly toxic HO˙.
Collapse
Affiliation(s)
- Batiste Clavier
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Téo Baptiste
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Antonii Zhadan
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Amandine Guiet
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Fabien Boucher
- Institut Universitaire de Technologie du Mans, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Vlasta Brezová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Christine Roques
- Laboratoire de Génie Chimique, UMR-5503 CNRS, Faculté de Pharmacie, Université Paul Sabatier - Toulouse III, 35, Chemin des Maraîchers, 31 062 Toulouse Cedex 4, France.,Centre Hospitalier Universitaire (CHU) de Toulouse, Institut Fédératif de Biologie (IFB), Laboratoire de Bactériologie et Hygiène, 330 Avenue de Grande Bretagne, 31059 Toulouse Cedex 9, France
| | - Gwenaël Corbel
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| |
Collapse
|
7
|
Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello H, Berendonk T, Cavaco LM, Gaze W, Schmitt H, Topp E, Guerra B, Liébana E, Stella P, Peixe L. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J 2021; 19:e06651. [PMID: 34178158 PMCID: PMC8210462 DOI: 10.2903/j.efsa.2021.6651] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs bla CTX -M, bla VIM, bla NDM, bla OXA -48-like, bla OXA -23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water. For all sectors, reducing the occurrence of faecal microbial contamination of fertilisers, water, feed and the production environment and minimising persistence/recycling of ARB within animal production facilities is a priority. Proper implementation of good hygiene practices, biosecurity and food safety management systems is very important. Potential AMR-specific interventions are in the early stages of development. Many data gaps relating to sources and relevance of transmission routes, diversity of ARB and ARGs, effectiveness of mitigation measures were identified. Representative epidemiological and attribution studies on AMR and its effective control in food production environments at EU level, linked to One Health and environmental initiatives, are urgently required.
Collapse
|
8
|
Control Measures of Pathogenic Microorganisms and Shelf-Life Extension of Fresh-Cut Vegetables. Foods 2021; 10:foods10030655. [PMID: 33808683 PMCID: PMC8003346 DOI: 10.3390/foods10030655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 01/04/2023] Open
Abstract
We investigated the combined effect of using slightly acidic electrolyzed water (SAEW), ultrasounds (US), and ultraviolet-C light-emitting diodes (UV-C LED; 275 nm) for decreasing pathogenic Escherichia coli and Staphylococcus aureus (SEA) in fresh-cut vegetables, including carrots, celery, paprika, and cabbage. Survival of pathogenic E. coli and SEA and quality properties of fresh-cut vegetables at 5 and 15 °C for 7 days were also investigated. When combined treatment (SAEW + US + UV-C LED) was applied to fresh-cut vegetables for 3 min, its microbial reduction effect was significantly higher (0.97~2.17 log CFU/g) than a single treatment (p < 0.05). Overall, the reduction effect was more significant for SEA than for pathogenic E. coli. At 5 °C, SAEW + US and SAEW + US + UV-C LED treatments reduced populations of pathogenic E. coli and SEA in all vegetables. At 15 °C, SAEW + US + UV-C LED treatment inhibited the growth of both pathogens in carrot and celery and extended the shelf life of fresh-cut vegetables by preventing color changes in all vegetables. Although the effects of treatments varied depending on the characteristics of the vegetables and pathogens, UV-C LED can be suggested as a new hurdle technology in fresh-cut vegetable industry.
Collapse
|
9
|
Kruk M, Trząskowska M. Analysis of Biofilm Formation on the Surface of Organic Mung Bean Seeds, Sprouts and in the Germination Environment. Foods 2021; 10:foods10030542. [PMID: 33807767 PMCID: PMC7999400 DOI: 10.3390/foods10030542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to analyse the impact of sanitation methods on the formation of bacterial biofilms after disinfection and during the germination process of mung bean on seeds and in the germination environment. Moreover, the influence of Lactobacillus plantarum 299v on the growth of the tested pathogenic bacteria was evaluated. Three strains of Salmonella and E. coli were used for the study. The colony forming units (CFU), the crystal violet (CV), the LIVE/DEAD and the gram fluorescent staining, the light and the scanning electron microscopy (SEM) methods were used. The tested microorganisms survive in a small number. During germination after disinfection D2 (20 min H2O at 60 °C, then 15 min in a disinfecting mixture consisting of H2O, H2O2 and CH₃COOH), the biofilms grew most after day 2, but with the DP2 method (D2 + L. plantarum 299v during germination) after the fourth day. Depending on the method used, the second or fourth day could be a time for the introduction of an additional growth-limiting factor. Moreover, despite the use of seed disinfection, their germination environment could be favourable for the development of bacteria and, consequently, the formation of biofilms. The appropriate combination of seed disinfection methods and growth inhibition methods at the germination stage will lead to the complete elimination of the development of unwanted microflora and their biofilms.
Collapse
Affiliation(s)
- Marcin Kruk
- Faculty of Human Nutrition, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Monika Trząskowska
- Food Hygiene and Quality Management, Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
- Correspondence:
| |
Collapse
|
10
|
Multilocus Sequence Typing (MLST) and Whole Genome Sequencing (WGS) of Listeria monocytogenes and Listeria innocua. Methods Mol Biol 2021; 2220:89-103. [PMID: 32975768 DOI: 10.1007/978-1-0716-0982-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nucleotide sequence-based methods focusing on the single-nucleotide polymorphisms (SNPs) of Listeria monocytogenes and L. innocua housekeeping genes (multilocus sequence typing) and in the core genome (core genome MLST) facilitate the rapid and interlaboratory comparison in open accessible databases as provided by Institute Pasteur ( https://bigsdb.web.pasteur.fr/listeria/listeria.html ). Strains can be compared on a global level and help to track forward and trace backward pathogen contamination events in food processing facilities and in outbreak scenarios.
Collapse
|
11
|
Machado-Moreira B, Tiwari BK, Richards KG, Abram F, Burgess CM. Application of plasma activated water for decontamination of alfalfa and mung bean seeds. Food Microbiol 2020; 96:103708. [PMID: 33494890 DOI: 10.1016/j.fm.2020.103708] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Microbial contamination of fresh produce is a major public health concern, with the number of associated disease outbreaks increasing in recent years. The consumption of sprouted beans and seeds is of particular concern, as these foodstuffs are generally consumed raw, and are produced in conditions favourable for the growth of zoonotic pathogens, if present in seeds prior to sprouting or in irrigation water. This work aimed to evaluate the activity of plasma activated water (PAW) as a disinfecting agent for alfalfa (Medicago sativa) and mung bean (Vigna radiata) seeds, during seed soaking. Each seed type was inoculated with Escherichia coli O157, E. coli O104, Listeria monocytogenes or Salmonella Montevideo, and treated with PAW for different times. A combination of PAW and ultrasound treatment was also evaluated. The germination and growth rate of both seeds were assessed after PAW treatments. PAW was demonstrated to have disinfecting ability on sprouted seeds, with reductions of up to Log10 1.67 cfu/g in alfalfa seeds inoculated with E. coli O104, and a reduction of Log10 1.76 cfu/g for mung bean seeds inoculated with E. coli O157 observed. The germination and growth rate of alfalfa and mung bean sprouts were not affected by the PAW treatments. The combination of a PAW treatment and ultrasound resulted in increased antimicrobial activity, with a reduction of Log10 3.48 cfu/g of S. Montevideo in mung bean seeds observed. These results demonstrate the potential for PAW to be used for the inactivation of pathogenic microorganisms which may be present on sprouted seeds and beans, thereby providing greater assurance of produce safety.
Collapse
Affiliation(s)
- Bernardino Machado-Moreira
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland; Functional Environmental Microbiology, National University of Ireland Galway, Galway, Ireland
| | | | - Karl G Richards
- Teagasc Johnstown Castle Environmental Research Centre, Wexford, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, National University of Ireland Galway, Galway, Ireland
| | | |
Collapse
|
12
|
Bielaszewska M, Daniel O, Karch H, Mellmann A. Dissemination of the blaCTX-M-15 gene among Enterobacteriaceae via outer membrane vesicles. J Antimicrob Chemother 2020; 75:2442-2451. [DOI: 10.1093/jac/dkaa214] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
Bacterial outer membrane vesicles (OMVs) are an emerging source of antibiotic resistance transfer but their role in the spread of the blaCTX-M-15 gene encoding the most frequent CTX-M ESBL in Enterobacteriaceae is unknown.
Objectives
To determine the presence of blaCTX-M-15 and other antibiotic resistance genes in OMVs of the CTX-M-15-producing MDR Escherichia coli O104:H4 outbreak strain and the ability of these OMVs to spread these genes among Enterobacteriaceae under different conditions.
Methods
OMV-borne antibiotic resistance genes were detected by PCR; OMV-mediated transfer of blaCTX-M-15 and the associated blaTEM-1 was quantified under laboratory conditions, simulated intraintestinal conditions and under ciprofloxacin stress; resistance to antibiotics and the ESBL phenotype were determined by the CLSI disc diffusion methods and the presence of pESBL by plasmid profiling and Southern blot hybridization.
Results
E. coli O104:H4 OMVs carried blaCTX-M-15 and blaTEM-1 located on the pESBL plasmid, but not chromosomal antibiotic resistance genes. The OMVs transferred blaCTX-M-15, blaTEM-1 and the associated pESBL into Enterobacteriaceae of different species. The frequencies of the OMV-mediated transfer were significantly increased under simulated intraintestinal conditions and under ciprofloxacin stress when compared with laboratory conditions. The ‘vesiculants’ (i.e. recipients that received the blaCTX-M-15- and blaTEM-1-harbouring pESBL via OMVs) acquired resistance to cefotaxime, ceftazidime and cefpodoxime and expressed the ESBL phenotype. They were able to further spread pESBL and the blaCTX-M-15 and blaTEM-1 genes via OMVs.
Conclusions
OMVs are efficient vehicles for dissemination of the blaCTX-M-15 gene among Enterobacteriaceae and may contribute to blaCTX-M-15 transfer in the human intestine.
Collapse
Affiliation(s)
- Martina Bielaszewska
- National Reference Laboratory for E. coli and Shigellae, National Institute of Public Health, Šrobárova 48, 100 42 Prague, Czech Republic
- Institute for Hygiene, University of Muenster, Robert Koch Str. 41, 48149 Muenster, Germany
| | - Ondřej Daniel
- National Reference Laboratory for Salmonellae, National Institute of Public Health, Šrobárova 48, 100 42 Prague, Czech Republic
| | - Helge Karch
- Institute for Hygiene, University of Muenster, Robert Koch Str. 41, 48149 Muenster, Germany
| | - Alexander Mellmann
- Institute for Hygiene, University of Muenster, Robert Koch Str. 41, 48149 Muenster, Germany
| |
Collapse
|
13
|
Reid CJ, Blau K, Jechalke S, Smalla K, Djordjevic SP. Whole Genome Sequencing of Escherichia coli From Store-Bought Produce. Front Microbiol 2020; 10:3050. [PMID: 32063888 PMCID: PMC7000624 DOI: 10.3389/fmicb.2019.03050] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022] Open
Abstract
The role of agriculture in the transfer of drug resistant pathogens to humans is widely debated and poorly understood. Escherichia coli is a valuable indicator organism for contamination and carriage of antimicrobial resistance (AMR) in foods. Whilst whole genome sequences for E. coli from animals and associated meats are common, sequences from produce are scarce. Produce may acquire drug resistant E. coli from animal manure fertilizers, contaminated irrigation water and wildlife, particularly birds. Whole genome sequencing was used to characterize 120 tetracycline (TET) resistant E. coli from store-bought, ready-to-eat cilantro, arugula and mixed salad from two German cities. E. coli were recovered on the day of purchase and after 7 days of refrigeration. Cilantro was far more frequently contaminated with TET-resistant E. coli providing 102 (85%) sequenced strains. Phylogroup B1 dominated the collection (n = 84, 70%) with multi-locus sequence types B1-ST6186 (n = 37, 31%), C-ST165 (n = 17, 14%), B1-ST58 (n = 14, 12%), B1-ST641 (n = 8, 7%), and C-ST88 (n = 5, 4%) frequently identified. Notably, seven strains of diverse sequence type (ST) carried genetic indicators of ColV virulence plasmid carriage. A number of previously identified and novel integrons associated with insertion elements including IS26 were also identified. Storage may affect the lineages of E. coli isolated, however further studies are needed. Our study indicates produce predominantly carry E. coli with a commensal phylogroup and a variety of AMR and virulence-associated traits. Genomic surveillance of bacteria that contaminate produce should be a matter of public health importance in order to develop a holistic understanding of the environmental dimensions of AMR.
Collapse
Affiliation(s)
- Cameron J. Reid
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Khald Blau
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Sven Jechalke
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Steven P. Djordjevic
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
14
|
Bergšpica I, Ozola A, Miltiņa E, Alksne L, Meistere I, Cibrovska A, Grantiņa-Ieviņa L. Occurrence of Pathogenic and Potentially Pathogenic Bacteria in Microgreens, Sprouts, and Sprouted Seeds on Retail Market in Riga, Latvia. Foodborne Pathog Dis 2020; 17:420-428. [PMID: 31895586 DOI: 10.1089/fpd.2019.2733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Microgreens and sprouts have been used for raw consumption for a long time and are generally viewed as a healthy food. However, several serious outbreaks of foodborne illness have been recorded in European countries, Japan, and North America. Many companies in Latvia nowadays are producing this type of products. The aim of this study was to characterize the incidence of Shiga toxin-producing Escherichia coli (STEC), Salmonella spp., and Listeria spp. in microgreens, sprouts, and seeds intended for domestic production of microgreens on retail market in Riga, Latvia, from January to April 2019. The background microflora was identified as well. A total of 45 samples were purchased, including fresh and processed sprouts, microgreens, baby greens, as well as seeds intended for domestic production of microgreens and sprouts. The samples were processed according to the methods set by the International Organization for Standardization (ISO)-ISO/TS 13136:2012 for STEC, ISO 6579-1:2017 for Salmonella spp., and ISO 11290-1:2017 for Listeria spp. Molecular detection of Salmonella spp. was also performed using real-time polymerase chain reaction. The typical and atypical colonies isolated from selective plates were identified with matrix-assisted laser desorption and ionization time-of-flight mass spectrometry. Listeria monocytogenes was not detected in any of the tested samples. However, the presence of Listeria innocua was detected in two (4.4%) of the samples. Three (6.7%) samples of dried sprouts were positive for the STEC virulence genes. Salmonella spp. was detected in one (2.2%) sample of common sunflower seeds. Altogether, 46 different background bacterial species were identified. The majority were environmental bacteria characteristic to soil, water, and plants, including coliform bacteria. The results provide evidence that microgreens and seeds available for Latvian consumers are generally safe, however, attention has to be paid to dried sprouts.
Collapse
Affiliation(s)
- Ieva Bergšpica
- Institute of Food Safety, Animal Health, and Environment "BIOR," Riga, Latvia
| | - Aija Ozola
- Institute of Food Safety, Animal Health, and Environment "BIOR," Riga, Latvia
| | - Elizabete Miltiņa
- Institute of Food Safety, Animal Health, and Environment "BIOR," Riga, Latvia
| | - Laura Alksne
- Institute of Food Safety, Animal Health, and Environment "BIOR," Riga, Latvia
| | - Irēna Meistere
- Institute of Food Safety, Animal Health, and Environment "BIOR," Riga, Latvia
| | - Alla Cibrovska
- Institute of Food Safety, Animal Health, and Environment "BIOR," Riga, Latvia
| | | |
Collapse
|
15
|
Iwu CD, Okoh AI. Preharvest Transmission Routes of Fresh Produce Associated Bacterial Pathogens with Outbreak Potentials: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4407. [PMID: 31717976 PMCID: PMC6888529 DOI: 10.3390/ijerph16224407] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
Disease outbreaks caused by the ingestion of contaminated vegetables and fruits pose a significant problem to human health. The sources of contamination of these food products at the preharvest level of agricultural production, most importantly, agricultural soil and irrigation water, serve as potential reservoirs of some clinically significant foodborne pathogenic bacteria. These clinically important bacteria include: Klebsiella spp., Salmonella spp., Citrobacter spp., Shigella spp., Enterobacter spp., Listeria monocytogenes and pathogenic E. coli (and E. coli O157:H7) all of which have the potential to cause disease outbreaks. Most of these pathogens acquire antimicrobial resistance (AR) determinants due to AR selective pressure within the agroecosystem and become resistant against most available treatment options, further aggravating risks to human and environmental health, and food safety. This review critically outlines the following issues with regards to fresh produce; the global burden of fresh produce-related foodborne diseases, contamination between the continuum of farm to table, preharvest transmission routes, AR profiles, and possible interventions to minimize the preharvest contamination of fresh produce. This review reveals that the primary production niches of the agro-ecosystem play a significant role in the transmission of fresh produce associated pathogens as well as their resistant variants, thus detrimental to food safety and public health.
Collapse
Affiliation(s)
- Chidozie Declan Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
16
|
Machado-Moreira B, Richards K, Brennan F, Abram F, Burgess CM. Microbial Contamination of Fresh Produce: What, Where, and How? Compr Rev Food Sci Food Saf 2019; 18:1727-1750. [PMID: 33336968 DOI: 10.1111/1541-4337.12487] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/07/2019] [Accepted: 07/10/2019] [Indexed: 01/02/2023]
Abstract
Promotion of healthier lifestyles has led to an increase in consumption of fresh produce. Such foodstuffs may expose consumers to increased risk of foodborne disease, as often they are not subjected to processing steps to ensure effective removal or inactivation of pathogenic microorganisms before consumption. Consequently, reports of ready-to-eat fruit and vegetable related disease outbreak occurrences have increased substantially in recent years, and information regarding these events is often not readily available. Identifying the nature and source of microbial contamination of these foodstuffs is critical for developing appropriate mitigation measures to be implemented by food producers. This review aimed to identify the foodstuffs most susceptible to microbial contamination and the microorganisms responsible for disease outbreaks from information available in peer-reviewed scientific publications. A total of 571 outbreaks were identified from 1980 to 2016, accounting for 72,855 infections and 173 deaths. Contaminated leafy green vegetables were responsible for 51.7% of reported outbreaks. Contaminated soft fruits caused 27.8% of infections. Pathogenic strains of Escherichia coli and Salmonella, norovirus, and hepatitis A accounted for the majority of cases. Large outbreaks resulted in particular biases such as the observation that contaminated sprouted plants caused 31.8% of deaths. Where known, contamination mainly occurred via contaminated seeds, water, and contaminated food handlers. There is a critical need for standardized datasets regarding all aspects of disease outbreaks, including how foodstuffs are contaminated with pathogenic microorganisms. Providing food business operators with this knowledge will allow them to implement better strategies to improve safety and quality of fresh produce.
Collapse
Affiliation(s)
- Bernardino Machado-Moreira
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland.,Functional Environmental Microbiology, National Univ. of Ireland Galway, Galway, Ireland
| | - Karl Richards
- Teagasc Johnstown Castle Environmental Research Centre, Wexford, Ireland
| | - Fiona Brennan
- Teagasc Johnstown Castle Environmental Research Centre, Wexford, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, National Univ. of Ireland Galway, Galway, Ireland
| | | |
Collapse
|
17
|
Rotundo L, Amagliani G, Carloni E, Omiccioli E, Magnani M, Paoli G. Evaluation of PCR-based methods for the identification of enteroaggregative hemorrhagic Escherichia coli in sprouts. Int J Food Microbiol 2019; 291:59-64. [DOI: 10.1016/j.ijfoodmicro.2018.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 11/27/2022]
|
18
|
Boqvist S, Söderqvist K, Vågsholm I. Food safety challenges and One Health within Europe. Acta Vet Scand 2018; 60:1. [PMID: 29298694 PMCID: PMC5751857 DOI: 10.1186/s13028-017-0355-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022] Open
Abstract
This review discusses food safety aspects of importance from a One Health perspective, focusing on Europe. Using examples of food pathogen/food commodity combinations, spread of antimicrobial resistance in the food web and the risk of transmission of zoonotic pathogens in a circular system, it demonstrates how different perspectives are interconnected. The chosen examples all show the complexity of the food system and the necessity of using a One Health approach. Food safety resources should be allocated where they contribute most One Health benefits. Data on occurrence and disease burden and knowledge of source attribution are crucial in assessing costs and benefits of control measures. Future achievements in food safety, public health and welfare will largely be based on how well politicians, researchers, industry, national agencies and other stakeholders manage to collaborate using the One Health approach. It can be concluded that closer cooperation between different disciplines is necessary to avoid silo thinking when addressing important food safety challenges. The importance of this is often mentioned, but more proof of concept is needed by the research community.
Collapse
Affiliation(s)
- Sofia Boqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, PO Box 7036, 750 07 Uppsala, Sweden
| | - Karin Söderqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, PO Box 7036, 750 07 Uppsala, Sweden
| | - Ivar Vågsholm
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, PO Box 7036, 750 07 Uppsala, Sweden
| |
Collapse
|
19
|
Kampmeier S, Berger M, Mellmann A, Karch H, Berger P. The 2011 German Enterohemorrhagic Escherichia Coli O104:H4 Outbreak-The Danger Is Still Out There. Curr Top Microbiol Immunol 2018; 416:117-148. [PMID: 30062592 DOI: 10.1007/82_2018_107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are Shiga toxin (Stx) producing bacteria causing a disease characterized by bloody (or non-bloody) diarrhea, which might progress to hemolytic uremic syndrome (HUS). EHEC O104:H4 caused the largest ever recorded EHEC outbreak in Germany in 2011, which in addition showed the so far highest incidence rate of EHEC-related HUS worldwide. The aggressive outbreak strain carries an unusual combination of virulence traits characteristic to both EHEC-a chromosomally integrated Stx-encoding bacteriophage, and enteroaggregative Escherichia coli-pAA plasmid-encoded aggregative adherence fimbriae mediating its tight adhesion to epithelia cells. There are currently still open questions regarding the 2011 EHEC outbreak, e.g., with respect to the exact molecular mechanisms resulting in the hypervirulence of the strain, the natural reservoir of EHEC O104:H4, and suitable therapeutic strategies. Nevertheless, our knowledge on these issues has substantially expanded since 2011. Here, we present an overview of the epidemiological, clinical, microbiological, and molecular biological data available on the 2011 German EHEC O104:H4 outbreak.
Collapse
Affiliation(s)
| | - Michael Berger
- Institute of Hygiene, University of Münster, Münster, Germany
| | | | - Helge Karch
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Petya Berger
- Institute of Hygiene, University of Münster, Münster, Germany.
| |
Collapse
|
20
|
Selective and concurrent detection of viable Salmonella spp., E. coli, Staphylococcus aureus, E. coli O157:H7, and Shigella spp., in low moisture food products by PMA-mPCR assay with internal amplification control. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Bang J, Choi M, Jeong H, Lee S, Kim Y, Ryu JH, Kim H. Heat Tolerances of Salmonella, Cronobacter sakazakii, and Pediococcus acidilactici Inoculated into Galactooligosaccharide. J Food Prot 2017; 80:1123-1127. [PMID: 28581334 DOI: 10.4315/0362-028x.jfp-16-456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Food-grade galactooligosaccharide (GOS) with low water activity (aw of ca. 0.7) is used as an ingredient in various foods. We evaluated heat tolerances of Salmonella, Cronobacter sakazakii, and Pediococcus acidilactici at temperatures (70 to 85°C) used during the saturation process of GOS by comparing decimal reduction time (D-values) and thermal resistance constants (z-values). To determine the D- and z-values, GOS containing Salmonella (5.1 to 5.8 log CFU/g) or C. sakazakii (5.3 to 5.9 log CFU/g) was heat treated at 70, 77.5, or 85°C for up to 40, 25, or 15 s, respectively, and GOS containing P. acidilactici (6.1 to 6.5 log CFU/g) was heat treated at 70, 77.5, or 85°C for up to 150, 75, or 40 s, respectively. The D-values were calculated using a linear model for heating time versus microbial population for each bacterium. When the D-values for Salmonella, C. sakazakii, and P. acidilactici in GOS were compared, the thermal resistance of all bacteria decreased as the temperature increased. Among the three bacteria, P. acidilactici had higher D-values than did Salmonella and C. sakazakii. The z-values of Salmonella, C. sakazakii, and P. acidilactici were 30.10, 33.18, and 13.04°C, respectively. Overall order of thermal resistance was P. acidilactici > Salmonella ≈ C. sakazakii. These results will be useful for selecting appropriate heat treatment conditions for the decontamination of pathogenic microorganisms during GOS manufacturing.
Collapse
Affiliation(s)
- Jihyun Bang
- 1 Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Moonkak Choi
- 1 Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Haeseok Jeong
- 2 Technical Development Center, Ingredion Korea, Inc., 1346 Jungbudaero Bubal-eup, Icheon, Kyunggi, 17326, Republic of Korea
| | - Sangseob Lee
- 2 Technical Development Center, Ingredion Korea, Inc., 1346 Jungbudaero Bubal-eup, Icheon, Kyunggi, 17326, Republic of Korea
| | - Yoonbin Kim
- 1 Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jee-Hoon Ryu
- 1 Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hoikyung Kim
- 3 Department of Food and Nutrition, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
22
|
Comparison of gamma and electron beam irradiation in reducing populations of E. coli artificially inoculated on mung bean, clover and fenugreek seeds, and affecting germination and growth of seeds. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2016.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Antimicrobial effect of lauroyl arginate ethyl on Escherichia coli O157:H7 and Listeria monocytogenes on red oak leaf lettuce. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2802-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
McEvoy JDG. Emerging food safety issues: An EU perspective. Drug Test Anal 2016; 8:511-20. [DOI: 10.1002/dta.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/30/2015] [Indexed: 11/09/2022]
Affiliation(s)
- John D. G. McEvoy
- European Commission, Directorate-General for Health and Food Safety; Health and Food Audits and Analysis; Co Meath Ireland
| |
Collapse
|
25
|
Radosavljević V, Finke EJ, Belojević G. Analysis of Escherichia Coli O104:H4 Outbreak in Germany in 2011 Using Differentiation Method for Unusual Epidemiological Events. Cent Eur J Public Health 2016; 24:9-15. [PMID: 27070964 DOI: 10.21101/cejph.a4255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 09/12/2015] [Indexed: 11/15/2022]
Abstract
AIM The aim of the study was to further clarify the origin of Escherichia coli O104:H4 outbreak in Germany in 2011 (German Ec) as the likelihood of a deliberate act has not been excluded in previous analyses. METHODS We use an original and the most detailed scoring method so far, with 33 parameters pertaining to the source of infection/reservoir or possible perpetrator, pathogen or biological agent, transmission mechanism/factors or means/media of delivery, and population at risk or target. RESULTS Total scores for a deliberate or accidental epidemic indicate that the outbreak was more probably caused unintentionally, presumably due to technical accidents or hygienic shortcomings in the food chain. CONCLUSIONS The validity of the present assessment is limited by the lack of data on the reservoir of the pathogen, the source of infection, and the mode of food contamination. Conclusive evidences on these parameters are essential for the final clarification of the outbreak origin.
Collapse
Affiliation(s)
- Vladan Radosavljević
- Military Academy, University of Defense, Belgrade, Serbia.,Medical Corps Headquarters, Army of Serbia, Belgrade, Serbia
| | - Ernst Jürgen Finke
- Specialist in Microbiology, Virology and Infection Epidemiology, Munich, Germany
| | - Goran Belojević
- Institute of Hygiene and Medical Ecology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
26
|
Gulesen R, Levent B, Demir T, Akgeyik M, Kuran S. Characterization of Shiga Toxin-Producing Escherichia coli Isolated from Humans between 2011 and 2014. Jpn J Infect Dis 2016; 69:390-4. [DOI: 10.7883/yoken.jjid.2015.346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Revasiye Gulesen
- Public Health Institution of Turkey. National Reference Laboratory
| | - Belkis Levent
- Public Health Institution of Turkey. National Reference Laboratory
| | - Tulin Demir
- Public Health Institution of Turkey. National Reference Laboratory
- Ahi Evran University, Research and Training Hospital, Microbiology Department
| | - Mesut Akgeyik
- Public Health Institution of Turkey. National Reference Laboratory
| | - Sibel Kuran
- Public Health Institution of Turkey. National Reference Laboratory
| |
Collapse
|
27
|
Patrignani F, Siroli L, Serrazanetti DI, Gardini F, Lanciotti R. Innovative strategies based on the use of essential oils and their components to improve safety, shelf-life and quality of minimally processed fruits and vegetables. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.03.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Martinez B, Stratton J, Bianchini A, Wegulo S, Weaver G. Transmission of Escherichia coli O157:H7 to internal tissues and its survival on flowering heads of wheat. J Food Prot 2015; 78:518-24. [PMID: 25719875 DOI: 10.4315/0362-028x.jfp-14-298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Escherichia coli O157:H7 is a human pathogen that can cause bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. E. coli O157:H7 illnesses are mainly associated with undercooked beef; however, in recent years, outbreaks have been linked to fresh produce, such as spinach, lettuce, and sprouts. In 2009, flour was implicated as the contamination source in an outbreak involving consumption of raw cookie dough that resulted in 77 illnesses. The objectives of this research were to determine (i) whether E. coli O157:H7 could be translocated into the internal tissues of wheat (Triticum aestivum) seedlings from contaminated seed, soil, or irrigation water and (ii) whether the bacterium could survive on flowering wheat heads. The levels of contamination of kanamycin-resistant E. coli O157:H7 strains in seed, soil, and irrigation water were 6.88 log CFU/g, 6.60 log CFU/g, and 6.76 log CFU/ml, respectively. One hundred plants per treatment were sown in pot trays with 50 g of autoclaved soil or purposely contaminated soil, watered every day with 5 ml of water, and harvested 9 days postinoculation. In a fourth experiment, flowering wheat heads were spray inoculated with water containing 4.19 log CFU/ml E. coli O157:H7 and analyzed for survival after 15 days, near the harvest period. To detect low levels of internalization, enrichment procedures were performed and Biotecon real-time PCR detection assays were used to determine the presence of E. coli O157:H7 in the wheat, using a Roche Applied Science LightCycler 2.0 instrument. The results showed that internalization was possible using contaminated seed, soil, and irrigation water in wheat seedlings, with internalization rates of 2, 5, and 10%, respectively. Even though the rates were low, to our knowledge this is the first study to demonstrate the ability of this strain to reach the phylloplane in wheat. In the head contamination experiment, all samples tested positive, showing the ability of E. coli O157:H7 to survive on the wheat head.
Collapse
Affiliation(s)
- Bismarck Martinez
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Jayne Stratton
- Department of Food Science and Technology, The Food Processing Center, University of Nebraska, Lincoln, Nebraska 68588, USA.
| | - Andréia Bianchini
- Department of Food Science and Technology, The Food Processing Center, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Stephen Wegulo
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Glen Weaver
- ConAgra Foods, 11-340 ConAgra Drive, Omaha, Nebraska 68137, USA
| |
Collapse
|
29
|
Curtis D, Hill A, Wilcock A, Charlebois S. Foodborne and Waterborne Pathogenic Bacteria in Selected Organisation for Economic Cooperation and Development (OECD) Countries. J Food Sci 2014; 79:R1871-6. [DOI: 10.1111/1750-3841.12646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/08/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Dennis Curtis
- Dept. of Food Science; Univ. of Guelph; Guelph ON Canada N1G2W1
| | - Arthur Hill
- Dept. of Food Science; Univ. of Guelph; Guelph ON Canada N1G2W1
| | - Anne Wilcock
- Dept. of Marketing and Consumer Studies; Univ. of Guelph; Guelph ON Canada N1G2W1
| | - Sylvain Charlebois
- Dept. of Marketing and Consumer Studies; Univ. of Guelph; Guelph ON Canada N1G2W1
| |
Collapse
|
30
|
De Rauw K, Vincken S, Garabedian L, Levtchenko E, Hubloue I, Verhaegen J, Craeghs J, Glupczynski Y, Mossong J, Piérard D. Enteroaggregative Shiga toxin-producing Escherichia coli of serotype O104:H4 in Belgium and Luxembourg. New Microbes New Infect 2014; 2:138-43. [PMID: 25356363 PMCID: PMC4184478 DOI: 10.1002/nmi2.58] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/26/2014] [Accepted: 07/04/2014] [Indexed: 11/29/2022] Open
Abstract
In 2011, a large outbreak of infections caused by Shiga toxin-producing Escherichia coli (STEC) O104:H4 occurred in Germany. This exceptionally virulent strain combined virulence factors of enteroaggregative E. coli (EAggEC) and STEC. After the outbreak only a few sporadic cases of infection with this rare serotype were reported, most of which were related to travel to the Middle East or North Africa. Here we describe two cases of enteroaggregative STEC (Agg-STEC) O104:H4 infection that occurred in Belgium in 2012 and 2013 respectively. In both cases travel in a Mediterranean country preceded the infection. The first strain was isolated from the stool of a 42-year-old woman presenting bloody diarrhoea, who had travelled to Tunisia the week before. The second case involves a 14-year-old girl who, upon her return from Turkey to Belgium, suffered from an episode of bloody diarrhoea and haemolytic uraemic syndrome. Extended typing of the isolates with pulsed field gel electrophoresis revealed that the strains were closely related, though not exactly the same as the 2011 outbreak strain. This report supports the previously made hypothesis that Agg-STEC has a human reservoir and might be imported by travellers coming from an area where the pathogen is endemic. Furthermore, it emphasizes the concern that these bacteria may cause future outbreaks as evenly virulent O104:H4 isolates seem to be widespread.
Collapse
Affiliation(s)
- K De Rauw
- National Reference Centre for STEC/VTEC, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB)Brussels, Belgium
- Department of Microbiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB)Brussels, Belgium
| | - S Vincken
- Department of Internal Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB)Brussels, Belgium
| | - L Garabedian
- Department of Pediatric Nephrology, Universitair Ziekenhuis Leuven, Katholieke Universiteit Leuven (KUL)Leuven, Belgium
| | - E Levtchenko
- Department of Pediatric Nephrology, Universitair Ziekenhuis Leuven, Katholieke Universiteit Leuven (KUL)Leuven, Belgium
| | - I Hubloue
- Department of Emergency, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB)Brussels, Belgium
| | - J Verhaegen
- Department of Microbiology, Universitair Ziekenhuis Leuven, Katholieke Universiteit Leuven (KUL)Leuven, Belgium
| | - J Craeghs
- Department of Microbiology, Algemeen Ziekenhuis VesaliusTongeren, Belgium
| | - Y Glupczynski
- National Reference Centre ESBL and carbapenemase-producing Enterobacteriaceae, CHU Dinant-Godinne|UCL Namur, Université Catholique de Louvain (UCL)Yvoir, Belgium
| | - J Mossong
- Surveillance & Epidemiology of Infectious Diseases, National Health LaboratoryDudelange, Luxembourg
| | - D Piérard
- National Reference Centre for STEC/VTEC, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB)Brussels, Belgium
- Department of Microbiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB)Brussels, Belgium
| |
Collapse
|
31
|
|
32
|
Miko A, Delannoy S, Fach P, Strockbine NA, Lindstedt BA, Mariani-Kurkdjian P, Reetz J, Beutin L. Genotypes and virulence characteristics of Shiga toxin-producing Escherichia coli O104 strains from different origins and sources. Int J Med Microbiol 2013; 303:410-21. [DOI: 10.1016/j.ijmm.2013.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/07/2013] [Accepted: 05/20/2013] [Indexed: 02/03/2023] Open
|
33
|
Markland SM, Shortlidge KL, Hoover DG, Yaron S, Patel J, Singh A, Sharma M, Kniel KE. Survival of pathogenic Escherichia coli on basil, lettuce, and spinach. Zoonoses Public Health 2013; 60:563-71. [PMID: 23280331 DOI: 10.1111/zph.12033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Indexed: 11/28/2022]
Abstract
The contamination of lettuce, spinach and basil with pathogenic E. coli has caused numerous illnesses over the past decade. E. coli O157:H7, E. coli O104:H4 and avian pathogenic E. coli (APECstx- and APECstx+) were inoculated on basil plants and in promix substrate using drip and overhead irrigation. When overhead inoculated with 7 log CFU/ml of each strain, E. coli populations were significantly (P = 0.03) higher on overhead-irrigated plants than on drip-irrigated plants. APECstx-, E. coli O104:H4 and APECstx+ populations were recovered on plants at 3.6, 2.3 and 3.1 log CFU/g at 10 dpi (days post-inoculation), respectively. E. coli O157:H7 was not detected on basil after 4 dpi. The persistence of E. coli O157:H7 and APECstx- were similar when co-inoculated on lettuce and spinach plants. On spinach and lettuce, E. coli O157:H7 and APEC populations declined from 5.7 to 6.1 log CFU/g and 4.5 log CFU/g, to undetectable at 3 dpi and 0.6-1.6 log CFU/g at 7 dpi, respectively. The detection of low populations of APEC and E. coli O104:H4 strains 10 dpi indicates these strains may be more adapted to environmental conditions than E. coli O157:H7. This is the first reported study of E. coli O104:H4 on a produce commodity.
Collapse
Affiliation(s)
- S M Markland
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gemmell ME, Schmidt S. Is the microbiological quality of the Msunduzi River (KwaZulu-Natal, South Africa) suitable for domestic, recreational, and agricultural purposes? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:6551-6562. [PMID: 23608984 DOI: 10.1007/s11356-013-1710-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/01/2013] [Indexed: 06/02/2023]
Abstract
As little is known about the potential risks associated with the use of microbiologically contaminated river water for recreation, irrigation, or domestic purposes, the Msunduzi River in Pietermaritzburg (KwaZulu-Natal, South Africa) was evaluated. In addition to pH, temperature, and chemical oxygen demand, quantitative and qualitative microbiological analyses were performed monthly for 13 months. These included aerobic plate counts, counts of aerobic and anaerobic sporeformers, most probable numbers for total and faecal coliforms and Escherichia coli and the detection of Salmonella spp., Staphylococcus aureus, and intestinal enterococci. Presumptive E. coli and S. aureus from river water samples were confirmed using PCR and additionally matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS) for E. coli. Aerobic plate counts were above the South African Department of Water Affairs recommended guideline level for domestic use of 100 cfu/ml for all 13 months assessed. Faecal coliform (up to 63,000 MPN/100 ml) and E. coli (up to 7,900 MPN/100 ml) levels regularly exceeded stipulated limits for safe irrigation, domestic and recreational use. The presence of Salmonella spp., S. aureus, and intestinal enterococci frequently coincided with faecal coliform and E. coli levels above 1,000 MPN/100 ml. This illustrates the value of using guideline values for faecal coliforms and E. coli as indicators for the presence of potential pathogens. PCR and MALDI-TOF MS confirmation of E. coli were in agreement, thereby demonstrating the potential of MALDI-TOF MS as a suitable alternative. These data demonstrate that potential health risks are associated with using Msunduzi River water for irrigation and recreational or domestic purposes.
Collapse
Affiliation(s)
- Megan E Gemmell
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| | | |
Collapse
|
35
|
Andersson MG, Tomuzia K, Löfström C, Appel B, Bano L, Keremidis H, Knutsson R, Leijon M, Lövgren SE, De Medici D, Menrath A, van Rotterdam BJ, Wisselink HJ, Barker GC. Separated by a common language: awareness of term usage differences between languages and disciplines in biopreparedness. Biosecur Bioterror 2013; 11 Suppl 1:S276-85. [PMID: 23971818 PMCID: PMC3752503 DOI: 10.1089/bsp.2012.0083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
Preparedness for bioterrorism is based on communication between people in organizations who are educated and trained in several disciplines, including law enforcement, health, and science. Various backgrounds, cultures, and vocabularies generate difficulties in understanding and interpretating terms and concepts, which may impair communication. This is especially true in emergency situations, in which the need for clarity and consistency is vital. The EU project AniBioThreat initiated methods and made a rough estimate of the terms and concepts that are crucial for an incident, and a pilot database with key terms and definitions has been constructed. Analysis of collected terms and sources has shown that many of the participating organizations use various international standards in their area of expertise. The same term often represents different concepts in the standards from different sectors, or, alternatively, different terms were used to represent the same or similar concepts. The use of conflicting terminology can be problematic for decision makers and communicators in planning and prevention or when handling an incident. Since the CBRN area has roots in multiple disciplines, each with its own evolving terminology, it may not be realistic to achieve unequivocal communication through a standardized vocabulary and joint definitions for words from common language. We suggest that a communication strategy should include awareness of alternative definitions and ontologies and the ability to talk and write without relying on the implicit knowledge underlying specialized jargon. Consequently, cross-disciplinary communication skills should be part of training of personnel in the CBRN field. In addition, a searchable repository of terms and definitions from relevant organizations and authorities would be a valuable addition to existing glossaries for improving awareness concerning bioterrorism prevention planning.
Collapse
|
36
|
Technical specifications on harmonised epidemiological indicators for biological hazards to be covered by meat inspection of bovine animals. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
37
|
Weiser AA, Gross S, Schielke A, Wigger JF, Ernert A, Adolphs J, Fetsch A, Müller-Graf C, Käsbohrer A, Mosbach-Schulz O, Appel B, Greiner M. Trace-back and trace-forward tools developed ad hoc and used during the STEC O104:H4 outbreak 2011 in Germany and generic concepts for future outbreak situations. Foodborne Pathog Dis 2013; 10:263-9. [PMID: 23268760 PMCID: PMC3698685 DOI: 10.1089/fpd.2012.1296] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Shiga toxin-producing Escherichia coli O104:H4 outbreak in Germany in 2011 required the development of appropriate tools in real-time for tracing suspicious foods along the supply chain, namely salad ingredients, sprouts, and seeds. Food commodities consumed at locations identified as most probable site of infection (outbreak clusters) were traced back in order to identify connections between different disease clusters via the supply chain of the foods. A newly developed relational database with integrated consistency and plausibility checks was used to collate these data for further analysis. Connections between suppliers, distributors, and producers were visualized in network graphs and geographic projections. Finally, this trace-back and trace-forward analysis led to the identification of sprouts produced by a horticultural farm in Lower Saxony as vehicle for the pathogen, and a specific lot of fenugreek seeds imported from Egypt as the most likely source of contamination. Network graphs have proven to be a powerful tool for summarizing and communicating complex trade relationships to various stake holders. The present article gives a detailed description of the newly developed tracing tools and recommendations for necessary requirements and improvements for future foodborne outbreak investigations.
Collapse
|
38
|
Demographic/socio-economic factors and dietary habits determining consumer exposure to foodborne bacterial hazards in Turkey through the consumption of meat. Food Secur 2013. [DOI: 10.1007/s12571-012-0231-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Conrad CC, Gilroyed BH, McAllister TA, Reuter T. Synthesis of O-serogroup specific positive controls and real-time PCR standards for nine clinically relevant non-O157 STECs. J Microbiol Methods 2012; 91:52-6. [DOI: 10.1016/j.mimet.2012.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/05/2012] [Accepted: 07/05/2012] [Indexed: 10/28/2022]
|
40
|
Auvray F, Dilasser F, Bibbal D, Kérourédan M, Oswald E, Brugère H. French cattle is not a reservoir of the highly virulent enteroaggregative Shiga toxin-producing Escherichia coli of serotype O104:H4. Vet Microbiol 2012; 158:443-5. [DOI: 10.1016/j.vetmic.2012.02.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 11/26/2022]
|
41
|
Spread of a distinct Stx2-encoding phage prototype among Escherichia coli O104:H4 strains from outbreaks in Germany, Norway, and Georgia. J Virol 2012; 86:10444-55. [PMID: 22811533 DOI: 10.1128/jvi.00986-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Shiga toxin 2 (Stx2)-producing Escherichia coli (STEC) O104:H4 caused one of the world's largest outbreaks of hemorrhagic colitis and hemolytic uremic syndrome in Germany in 2011. These strains have evolved from enteroaggregative E. coli (EAEC) by the acquisition of the Stx2 genes and have been designated enteroaggregative hemorrhagic E. coli. Nucleotide sequencing has shown that the Stx2 gene is carried by prophages integrated into the chromosome of STEC O104:H4. We studied the properties of Stx2-encoding bacteriophages which are responsible for the emergence of this new type of E. coli pathogen. For this, we analyzed Stx bacteriophages from STEC O104:H4 strains from Germany (in 2001 and 2011), Norway (2006), and the Republic of Georgia (2009). Viable Stx2-encoding bacteriophages could be isolated from all STEC strains except for the Norwegian strain. The Stx2 phages formed lysogens on E. coli K-12 by integration into the wrbA locus, resulting in Stx2 production. The nucleotide sequence of the Stx2 phage P13374 of a German STEC O104:H4 outbreak was determined. From the bioinformatic analyses of the prophage sequence of 60,894 bp, 79 open reading frames were inferred. Interestingly, the Stx2 phages from the German 2001 and 2011 outbreak strains were found to be identical and closely related to the Stx2 phages from the Georgian 2009 isolates. Major proteins of the virion particles were analyzed by mass spectrometry. Stx2 production in STEC O104:H4 strains was inducible by mitomycin C and was compared to Stx2 production of E. coli K-12 lysogens.
Collapse
|
42
|
GLASS KATHLEENA, KASPAR CHARLESW, SINDELAR JEFFREYJ, MILKOWSKI ANDREWL, LOTZ BRIANM, KANG JIHUN, FAITH NANCYG, ENACHE ELENA, KATAOKA AI, HENRY CRAIG. Validation of Pepperoni Process for Control of Shiga Toxin–Producing Escherichia coli. J Food Prot 2012; 75:838-46. [DOI: 10.4315/0362-028x.jfp-11-486] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this study was to compare the survival of non-O157 Shiga toxin–producing Escherichia coli (STEC) with E. coli O157:H7 during pepperoni production. Pepperoni batter was inoculated with 7 log CFU/g of a seven-strain STEC mixture, including strains of serotypes O26, O45, O103, O111, O121, O145, and O157. Sausages were fermented to pH ≤4.8, heated at 53.3°C for 1 h, and dried for up to 20 days. STEC strains were enumerated at designated intervals on sorbitol MacConkey (SMAC) and Rainbow (RA) agars; enrichments were completed in modified EC (mEC) broth and nonselective tryptic soy broth (TSB). When plated on SMAC, total E. coli populations decreased 2.6 to 3.5 log after the 1-h heating step at 53.3°C, and a 4.9- to 5-log reduction was observed after 7 days of drying. RA was more sensitive in recovering survivors; log reductions on it were 1.9 to 2.6, 3.8 to 4.2, and 4.6 to 5.3 at the end of cook, and at day 7 and day 14 of drying, respectively. When numbers were less than the limit of detection by direct plating on days 14 and 20 of drying (representing a 5-log kill), no more than one of three samples in each experiment was positive by enrichment with mEC broth; however, STEC strains were recovered in TSB enrichment. Freezing the 7-day dried sausage for 2 to 3 weeks generated an additional 1- to 1.5-log kill. Confirmation by PCR revealed that O103 and O157 had the greatest survival during pepperoni productions, but all serotypes except O111 and O121 were occasionally recovered during drying. This study suggests that non-O157 STEC strains have comparable or less ability than E. coli O157 to survive the processing steps involved in the manufacture of pepperoni. Processes suitable for control of E. coli O157 will similarly inactivate the other STEC strains tested in this study.
Collapse
Affiliation(s)
- KATHLEEN A. GLASS
- 1University of Wisconsin-Madison, Food Research Institute, 1550 Linden Drive, Madison, Wisconsin 53706
| | - CHARLES W. KASPAR
- 1University of Wisconsin-Madison, Food Research Institute, 1550 Linden Drive, Madison, Wisconsin 53706
| | - JEFFREY J. SINDELAR
- 1University of Wisconsin-Madison, Food Research Institute, 1550 Linden Drive, Madison, Wisconsin 53706
| | - ANDREW L. MILKOWSKI
- 1University of Wisconsin-Madison, Food Research Institute, 1550 Linden Drive, Madison, Wisconsin 53706
| | - BRIAN M. LOTZ
- 1University of Wisconsin-Madison, Food Research Institute, 1550 Linden Drive, Madison, Wisconsin 53706
| | - JIHUN KANG
- 1University of Wisconsin-Madison, Food Research Institute, 1550 Linden Drive, Madison, Wisconsin 53706
| | - NANCY G. FAITH
- 1University of Wisconsin-Madison, Food Research Institute, 1550 Linden Drive, Madison, Wisconsin 53706
| | - ELENA ENACHE
- 2Grocery Manufacturers Association, 1350 I Street N.W., Suite 300, Washington, D.C. 20005, USA
| | - AI KATAOKA
- 2Grocery Manufacturers Association, 1350 I Street N.W., Suite 300, Washington, D.C. 20005, USA
| | - CRAIG HENRY
- 2Grocery Manufacturers Association, 1350 I Street N.W., Suite 300, Washington, D.C. 20005, USA
| |
Collapse
|
43
|
Ingram D, Callahan M, Ferguson S, Hoover D, Shelton D, Millner P, Camp M, Patel J, Kniel K, Sharma M. Use of zero-valent iron biosand filters to reduce Escherichia coli O157:H12 in irrigation water applied to spinach plants in a field setting. J Appl Microbiol 2012; 112:551-60. [DOI: 10.1111/j.1365-2672.2011.05217.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Scientific Opinion on the risk posed by Shiga toxin-producingEscherichia coli(STEC) and other pathogenic bacteria in seeds and sprouted seeds. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2424] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|