1
|
Cidem A, Chang GRL, Yen CC, Chen MS, Yang SH, Chen CM. Lactoferrin targeting INTL1 receptor inhibits hepatocellular carcinoma progression via apoptosis and cell cycle signaling pathways. Sci Rep 2024; 14:31210. [PMID: 39732873 DOI: 10.1038/s41598-024-82514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes 90% of liver cancer cases and ranks as the third leading cause of cancer-related mortality, necessitating urgent development of alternative therapies. Lactoferrin (LF), a natural iron-binding glycoprotein with reported anticancer effects, is investigated for its potential in liver cancer treatment, an area with limited existing studies. This study focuses on evaluating LF's anti-liver cancer effects on HCC cells and assessing the preventive efficacy of oral LF administration in a murine model. Data showed that LF exerted anti-proliferative effects on HepG2, Hep3B, and SK-Hep1 cells while having no cytotoxicity on healthy liver cells (FL83B). Mechanistically, LF induces mitochondrial-mediated apoptosis and G0/G1 cell cycle arrest in HepG2 cells, associated with increased phosphorylation of p38 MAPK and JNK for apoptosis, and ERK phosphorylation for cell cycle arrest. Intelectin-1 (INTL1) is identified as the receptor facilitating LF endocytosis in HepG2 cells, and downregulation of INTL1 inhibits LF-induced signaling pathways. Notably, oral LF administration prevents HCC development in nude mice with orthotopic HepG2 cell injection. This study unveils the mechanistic basis of LF action in HepG2 cells, showcasing its potential in HCC prevention. Importantly, we report the novel identification of INTL1 as the LF receptor in HepG2 cells, providing valuable insights for future exploration of LF and its derivatives in liver cancer therapy.
Collapse
Affiliation(s)
- Abdulkadir Cidem
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd., Taichung, 402, Taiwan
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| | - Gary Ro-Lin Chang
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd., Taichung, 402, Taiwan
| | - Chih-Ching Yen
- Department of Internal Medicine, China Medical University Hospital, College of Health Care, China Medical University, Taichung, 404, Taiwan
| | - Ming-Shan Chen
- Department of Anesthesiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, 600, Taiwan
| | - Shang-Hsun Yang
- Department of Physiology, Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd., Taichung, 402, Taiwan.
- The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
- Center for General Educational, National Quemoy University, Kinmen, 892, Taiwan.
| |
Collapse
|
2
|
Wang K, Sun H, Wang J, Cui Z, Hou J, Lu F, Liu Y. Mechanism on microbial transglutaminase and Tremella fuciformis polysaccharide-mediated modification of lactoferrin: Development of functional food. Food Chem 2024; 454:139835. [PMID: 38815323 DOI: 10.1016/j.foodchem.2024.139835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Lactoferrin (LF) with various biological functions demonstrates great application potential. However, its application was restricted by its poor gelation and instability. The aim of this work was to explore the effect of microbial transglutaminase (MTGase) and Tremella fuciformis polysaccharide (TP) on the functional properties of LF. The formation of a self-supporting LF gel could be induced by MTGase through generating covalent crosslinks between the LF protein molecules. Meanwhile, TP was introduced into the gel system to improve the strength of LF-TP composite gels by enhancing non-covalent interactions such as hydrogen bond and electrostatic interactions during gel formation. Additionally, the LF-TP composite gel exhibited outstanding functional characteristics such as gastrointestinal digestive stability and antioxidant property. This work clarified the mechanism on MTGase and TP-mediated modification of lactoferrin, offered a novel strategy to increase the functional characteristics of LF, and enlarged the application range of LF and TP.
Collapse
Affiliation(s)
- Kangning Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hui Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiahui Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhihan Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiayi Hou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
3
|
Lee OYA, Wong ANN, Ho CY, Tse KW, Chan AZ, Leung GPH, Kwan YW, Yeung MHY. Potentials of Natural Antioxidants in Reducing Inflammation and Oxidative Stress in Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:751. [PMID: 38929190 PMCID: PMC11201162 DOI: 10.3390/antiox13060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic kidney disease (CKD) presents a substantial global public health challenge, with high morbidity and mortality. CKD patients often experience dyslipidaemia and poor glycaemic control, further exacerbating inflammation and oxidative stress in the kidney. If left untreated, these metabolic symptoms can progress to end-stage renal disease, necessitating long-term dialysis or kidney transplantation. Alleviating inflammation responses has become the standard approach in CKD management. Medications such as statins, metformin, and GLP-1 agonists, initially developed for treating metabolic dysregulation, demonstrate promising renal therapeutic benefits. The rising popularity of herbal remedies and supplements, perceived as natural antioxidants, has spurred investigations into their potential efficacy. Notably, lactoferrin, Boerhaavia diffusa, Amauroderma rugosum, and Ganoderma lucidum are known for their anti-inflammatory and antioxidant properties and may support kidney function preservation. However, the mechanisms underlying the effectiveness of Western medications and herbal remedies in alleviating inflammation and oxidative stress occurring in renal dysfunction are not completely known. This review aims to provide a comprehensive overview of CKD treatment strategies and renal function preservation and critically discusses the existing literature's limitations whilst offering insight into the potential antioxidant effects of these interventions. This could provide a useful guide for future clinical trials and facilitate the development of effective treatment strategies for kidney functions.
Collapse
Affiliation(s)
- On Ying Angela Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Alex Ngai Nick Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ching Yan Ho
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ka Wai Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Angela Zaneta Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China;
| | - Yiu Wa Kwan
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martin Ho Yin Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Hernández-Galdámez HV, Fattel-Fazenda S, Flores-Téllez TNJ, Aguilar-Chaparro MA, Mendoza-García J, Díaz-Fernández LC, Romo-Medina E, Sánchez-Pérez Y, Arellanes-Robledo J, De la Garza M, Villa-Treviño S, Piña-Vázquez C. Iron-saturated bovine lactoferrin: a promising chemopreventive agent for hepatocellular carcinoma. Food Funct 2024; 15:4586-4602. [PMID: 38590223 DOI: 10.1039/d3fo05184f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Hepatocellular carcinoma (HCC) is a tumor with minimal chance of cure due to underlying liver diseases, late diagnosis, and inefficient treatments. Thus, HCC treatment warrants the development of additional strategies. Lactoferrin (Lf) is a mammalian multifunctional iron-binding glycoprotein of the innate immune response and can be found as either a native low iron form (native-Lf) or a high iron form (holo-Lf). Bovine Lf (bLf), which shares many functions with human Lf (hLf), is safe for humans and has several anticancer activities, including chemotherapy boost in cancer. We found endogenous hLf is downregulated in HCC tumors compared with normal liver, and decreased hLf levels in HCC tumors are associated with shorter survival of HCC patients. However, the chemoprotective effect of 100% iron saturated holo-bLf on experimental hepatocarcinogenesis has not yet been determined. We aimed to evaluate the chemopreventive effects of holo-bLf in different HCC models. Remarkably, a single dose (200 mg kg-1) of holo-bLf was effective in preventing early carcinogenic events in a diethylnitrosamine induced HCC in vivo model, such as necrosis, ROS production, and the surge of facultative liver stem cells, and eventually, holo-bLf reduced the number of preneoplastic lesions. For an established HCC model, holo-bLf treatment significantly reduced HepG2 tumor burden in xenotransplanted mice. Finally, holo-bLf in combination with sorafenib, the advanced HCC first-line treatment, synergistically decreased HepG2 viability by arresting cells in the G0/G1 phase of the cell cycle. Our findings provide the first evidence suggesting that holo-bLf has the potential to prevent HCC or to be used in combination with treatments for established HCC.
Collapse
Affiliation(s)
| | - Samia Fattel-Fazenda
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Teresita N J Flores-Téllez
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | | | - Jonathan Mendoza-García
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Lidia C Díaz-Fernández
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Eunice Romo-Medina
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Yesennia Sánchez-Pérez
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, CDMX, Mexico
| | - Jaime Arellanes-Robledo
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica, Ciudad de México, México. Dirección de Cátedras, Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México, Mexico
| | - Mireya De la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| |
Collapse
|
5
|
Ashraf MF, Zubair D, Bashir MN, Alagawany M, Ahmed S, Shah QA, Buzdar JA, Arain MA. Nutraceutical and Health-Promoting Potential of Lactoferrin, an Iron-Binding Protein in Human and Animal: Current Knowledge. Biol Trace Elem Res 2024; 202:56-72. [PMID: 37059920 PMCID: PMC10104436 DOI: 10.1007/s12011-023-03658-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
Lactoferrin is a natural cationic iron-binding glycoprotein of the transferrin family found in bovine milk and other exocrine secretions, including lacrimal fluid, saliva, and bile. Lactoferrin has been investigated for its numerous powerful influences, including anticancer, anti-inflammatory, anti-oxidant, anti-osteoporotic, antifungal, antibacterial, antiviral, immunomodulatory, hepatoprotective, and other beneficial health effects. Lactoferrin demonstrated several nutraceutical and pharmaceutical potentials and have a significant impact on improving the health of humans and animals. Lactoferrin plays a critical role in keeping the normal physiological homeostasis associated with the development of pathological disorders. The current review highlights the medicinal value, nutraceutical role, therapeutic application, and outstanding favorable health sides of lactoferrin, which would benefit from more exploration of this glycoprotein for the design of effective medicines, drugs, and pharmaceuticals for safeguarding different health issues in animals and humans.
Collapse
Affiliation(s)
| | - Dawood Zubair
- Iqraa Medical Complex, Johar Town Lahore, Punjab, Pakistan
| | | | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, 44519, Egypt.
| | - Shabbir Ahmed
- Faculty of Animal Husbandry & Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan
| | - Jameel Ahmed Buzdar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan.
| |
Collapse
|
6
|
Cutone A, Musci G, Bonaccorsi di Patti MC. Lactoferrin, the Moonlighting Protein of Innate Immunity. Int J Mol Sci 2023; 24:15888. [PMID: 37958871 PMCID: PMC10650585 DOI: 10.3390/ijms242115888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Lactoferrin (Lf), a naturally occurring glycoprotein involved in innate immunity, was first discovered in bovine milk [...].
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.M.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.M.)
| | | |
Collapse
|
7
|
Xiao J, Ma J, Khan MZ, Alugongo GM, Chen T, Liu S, Li S, Cao Z. Unlocking the potential of milk whey protein components in colorectal cancer prevention and therapy. Crit Rev Food Sci Nutr 2023; 64:12961-12998. [PMID: 37846905 DOI: 10.1080/10408398.2023.2258970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Extensive research from large prospective cohort studies and meta-analytical investigations over recent decades have consistently indicated that dairy foods have protective effects, reducing the risk of colorectal cancer. Most of the literature has explored the potential role of milk minerals and vitamins in managing colorectal cancer. Yet, there is a paucity of a comprehensive summary of the anticancer attributes of milk protein components and their underlying mechanisms of action. Recent advancements have spotlighted the potential of whey proteins, including β-lactoglobulin, α-lactalbumin, serum albumin, and lactoferrin, as promising candidates for both the prevention and treatment of colorectal cancer. Notably, whey proteins have demonstrated a more pronounced capacity for suppressing carcinogen-induced tumors when compared to casein. Their strong binding affinity enables them to serve as effective carriers for small molecules or drugs targeting colon cancer therapy. Furthermore, numerous studies have underscored the anti-inflammatory and antioxidant prowess of whey proteins in cancer prevention. Additionally, whey proteins have been shown to trigger apoptosis, hinder tumor cell proliferation, and impede metastasis. This comprehensive review, therefore, not only substantiates the significance of incorporating whey protein components into a balanced daily diet but also underscores their potential in safeguarding against the onset and progression of colorectal cancer.
Collapse
Affiliation(s)
- Jianxin Xiao
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- Faculty of Veterinary and Animal Sciences, University of Agriculture Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Gibson Maswayi Alugongo
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Ostrówka M, Duda-Madej A, Pietluch F, Mackiewicz P, Gagat P. Testing Antimicrobial Properties of Human Lactoferrin-Derived Fragments. Int J Mol Sci 2023; 24:10529. [PMID: 37445717 DOI: 10.3390/ijms241310529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Lactoferrin, an iron-binding glycoprotein, plays a significant role in the innate immune system, with antibacterial, antivirial, antifungal, anticancer, antioxidant and immunomodulatory functions reported. It is worth emphasizing that not only the whole protein but also its derived fragments possess antimicrobial peptide (AMP) activity. Using AmpGram, a top-performing AMP classifier, we generated three novel human lactoferrin (hLF) fragments: hLF 397-412, hLF 448-464 and hLF 668-683, predicted with high probability as AMPs. For comparative studies, we included hLF 1-11, previously confirmed to kill some bacteria. With the four peptides, we treated three Gram-negative and three Gram-positive bacterial strains. Our results indicate that none of the three new lactoferrin fragments have antimicrobial properties for the bacteria tested, but hLF 1-11 was lethal against Pseudomonas aeruginosa. The addition of serine protease inhibitors with the hLF fragments did not enhance their activity, except for hLF 1-11 against P. aeruginosa, which MIC dropped from 128 to 64 µg/mL. Furthermore, we investigated the impact of EDTA with/without serine protease inhibitors and the hLF peptides on selected bacteria. We stress the importance of reporting non-AMP sequences for the development of next-generation AMP prediction models, which suffer from the lack of experimentally validated negative dataset for training and benchmarking.
Collapse
Affiliation(s)
- Michał Ostrówka
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Filip Pietluch
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Paweł Mackiewicz
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Przemysław Gagat
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| |
Collapse
|
9
|
Ohradanova-Repic A, Praženicová R, Gebetsberger L, Moskalets T, Skrabana R, Cehlar O, Tajti G, Stockinger H, Leksa V. Time to Kill and Time to Heal: The Multifaceted Role of Lactoferrin and Lactoferricin in Host Defense. Pharmaceutics 2023; 15:1056. [PMID: 37111542 PMCID: PMC10146187 DOI: 10.3390/pharmaceutics15041056] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Lactoferrin is an iron-binding glycoprotein present in most human exocrine fluids, particularly breast milk. Lactoferrin is also released from neutrophil granules, and its concentration increases rapidly at the site of inflammation. Immune cells of both the innate and the adaptive immune system express receptors for lactoferrin to modulate their functions in response to it. On the basis of these interactions, lactoferrin plays many roles in host defense, ranging from augmenting or calming inflammatory pathways to direct killing of pathogens. Complex biological activities of lactoferrin are determined by its ability to sequester iron and by its highly basic N-terminus, via which lactoferrin binds to a plethora of negatively charged surfaces of microorganisms and viruses, as well as to mammalian cells, both normal and cancerous. Proteolytic cleavage of lactoferrin in the digestive tract generates smaller peptides, such as N-terminally derived lactoferricin. Lactoferricin shares some of the properties of lactoferrin, but also exhibits unique characteristics and functions. In this review, we discuss the structure, functions, and potential therapeutic uses of lactoferrin, lactoferricin, and other lactoferrin-derived bioactive peptides in treating various infections and inflammatory conditions. Furthermore, we summarize clinical trials examining the effect of lactoferrin supplementation in disease treatment, with a special focus on its potential use in treating COVID-19.
Collapse
Affiliation(s)
- Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Praženicová
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Laura Gebetsberger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tetiana Moskalets
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Rostislav Skrabana
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Ondrej Cehlar
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Gabor Tajti
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Vladimir Leksa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| |
Collapse
|
10
|
Chea C, Miyauchi M, Inubushi T, Okamoto K, Haing S, Takata T. Molecular Mechanisms of Inhibitory Effects of Bovine Lactoferrin on Invasion of Oral Squamous Cell Carcinoma. Pharmaceutics 2023; 15:pharmaceutics15020562. [PMID: 36839884 PMCID: PMC9958951 DOI: 10.3390/pharmaceutics15020562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/14/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
Lactoferrin (LF), an iron-binding glycoprotein, has been reported to have anticancer properties. However, the molecular mechanisms behind its anticancer effects on oral squamous cell carcinoma (OSCC) have not yet been elucidated. Therefore, we aimed to clarify the effects of LF on invasion of OSCC, and its underlying molecular mechanism. OSCC cell lines, HSC2 and HOC313, were treated with bovine LF (bLF). The effects of bLF on cell invasion were examined by a chamber migration assay, wound healing assay, and Boyden chamber method with a basement-membrane-analogue. Expression levels of MMP-1, MMP-3, and AP-1 were examined using RT-PCR, qRT-PCR, and western blotting. Roles of LRP1, a receptor of bLF, on cell invasion were analyzed using siLRP1 knockdown cells. Furthermore, to clarify the importance of LRP1 in invasion, the effects of bLF on tPA-induced invasion of OSCC cells were examined. The invasion assays showed that bLF suppressed invasion of the OSCC cells. Moreover, bLF down-regulated AP-1, and resulted in reductions of MMP-1 and MMP-3. With SiLRP1 knockdown, OSCC cells failed to induce their invasion, and bLF was not able to exert its effects on invasion. Furthermore, bLF remarkably inhibited tPA-induced cell invasion. These findings suggest the importance of LRP1 in bLF-suppressed invasion of OSCC cells via the reduction of AP-1 and MMP production.
Collapse
Affiliation(s)
- Chanbora Chea
- Department of Oral & Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- Correspondence: (C.C.); (T.T.); Tel.: +81-82-257-5632 (C.C. & T.T.)
| | - Mutsumi Miyauchi
- Department of Oral & Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Suita 565-0871, Japan
| | - Kana Okamoto
- Department of Oral & Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Sivmeng Haing
- Department of Oral & Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Takashi Takata
- Department of Oral & Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- Shunan University, 843-4-2 Gakuenndai Syunan, Yamaguchi 745-8566, Japan
- Correspondence: (C.C.); (T.T.); Tel.: +81-82-257-5632 (C.C. & T.T.)
| |
Collapse
|
11
|
Jańczuk A, Brodziak A, Czernecki T, Król J. Lactoferrin-The Health-Promoting Properties and Contemporary Application with Genetic Aspects. Foods 2022; 12:foods12010070. [PMID: 36613286 PMCID: PMC9818722 DOI: 10.3390/foods12010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of the study is to present a review of literature data on lactoferrin's characteristics, applications, and multiple health-promoting properties, with special regard to nutrigenomics and nutrigenetics. The article presents a new approach to food ingredients. Nowadays, lactoferrin is used as an ingredient in food but mainly in pharmaceuticals and cosmetics. In the European Union, bovine lactoferrin has been legally approved for use as a food ingredient since 2012. However, as our research shows, it is not widely used in food production. The major producers of lactoferrin and the few available food products containing it are listed in the article. Due to anti-inflammatory, antibacterial, antiviral, immunomodulatory, antioxidant, and anti-tumour activity, the possibility of lactoferrin use in disease prevention (as a supportive treatment in obesity, diabetes, as well as cardiovascular diseases, including iron deficiency and anaemia) is reported. The possibility of targeted use of lactoferrin is also presented. The use of nutrition genomics, based on the identification of single nucleotide polymorphisms in genes, for example, FTO, PLIN1, TRAP2B, BDNF, SOD2, SLC23A1, LPL, and MTHFR, allows for the effective stratification of people and the selection of the most optimal bioactive nutrients, including lactoferrin, whose bioactive potential cannot be considered without taking into account the group to which they will be given.
Collapse
Affiliation(s)
- Anna Jańczuk
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Aneta Brodziak
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
- Correspondence: ; Tel.: +48-8-1445-6836
| | - Tomasz Czernecki
- Department of Biotechnology, Microbiology and Human Nutrition, Dietitian Service, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Jolanta Król
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| |
Collapse
|
12
|
Rosa L, Cutone A, Conte MP, Campione E, Bianchi L, Valenti P. An overview on in vitro and in vivo antiviral activity of lactoferrin: its efficacy against SARS-CoV-2 infection. Biometals 2022; 36:417-436. [PMID: 35920949 PMCID: PMC9362590 DOI: 10.1007/s10534-022-00427-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022]
Abstract
Beyond the absolute and indisputable relevance and efficacy of anti-SARS-CoV-2 vaccines, the rapid transmission, the severity of infection, the absence of the protection on immunocompromised patients, the propagation of variants, the onset of infection and/or disease in vaccinated subjects and the lack of availability of worldwide vaccination require additional antiviral treatments. Since 1987, lactoferrin (Lf) is well-known to possess an antiviral activity related to its physico-chemical properties and to its ability to bind to both heparan sulfate proteoglycans (HSPGs) of host cells and/or surface components of viral particles. In the present review, we summarize in vitro and in vivo studies concerning the efficacy of Lf against DNA, RNA, enveloped and non-enveloped viruses. Recent studies have revealed that the in vitro antiviral activity of Lf is also extendable to SARS-CoV-2. In vivo, Lf oral administration in early stage of SARS-CoV-2 infection counteracts COVID-19 pathogenesis. In particular, the effect of Lf on SARS-CoV-2 entry, inflammatory homeostasis, iron dysregulation, iron-proteins synthesis, reactive oxygen formation, oxidative stress, gut-lung axis regulation as well as on RNA negativization, and coagulation/fibrinolysis balance will be critically reviewed. Moreover, the molecular mechanisms underneath, including the Lf binding to HSPGs and spike glycoprotein, will be disclosed and discussed. Taken together, present data not only support the application of the oral administration of Lf alone in asymptomatic COVID-19 patients or as adjuvant of standard of care practice in symptomatic ones but also constitute the basis for enriching the limited literature on Lf effectiveness for COVID-19 treatment.
Collapse
Affiliation(s)
- Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy.
| |
Collapse
|
13
|
Effect of bovine lactoferrin on recurrent urinary tract infections: in vitro and in vivo evidences. Biometals 2022; 36:491-507. [PMID: 35768747 DOI: 10.1007/s10534-022-00409-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) strains are the primary cause of urinary tract infections (UTIs). UPEC strains are able to invade, multiply and persisting in host cells. Therefore, UPEC strains are associated to recurrent UTIs requiring long-term antibiotic therapy. However, this therapy is suboptimal due to the increase of multidrug-resistant UPEC. The use of non-antibiotic treatments for managing UTIs is required. Among these, bovine lactoferrin (bLf), a multifunctional cationic glycoprotein, could be a promising tool because inhibits the entry into the host cells of several intracellular bacteria. Here, we demonstrate that 100 μg/ml bLf hinders the invasion of 2.0 ± 0.5 × 104 CFU/ml E. coli CFT073, prototype of UPEC, infecting 2.0 ± 0.5 × 105 cells/ml urinary bladder T24 epithelial cells. The highest protection (100%) is due to the bLf binding with host surface components even if an additional binding to bacterial surface components cannot be excluded. Of note, in the absence of bLf, UPEC survives and multiplies, while bLf significantly decreases bacterial intracellular survival. After these encouraging results, an observational survey on thirty-three patients affected by recurrent cystitis was performed. The treatment consisted in the oral administration of bLf alone or in combination with antibiotics and/or probiotics. After the observation period, a marked reduction of cystitis episodes was observed (p < 0.001) in all patients compared to the episodes occurred during the 6 months preceding the bLf-treatment. Twenty-nine patients did not report cystitis episodes (87.9%) whereas the remaining four (12.1%) experienced only one episode, indicating that bLf could be a worthwhile and safe treatment in counteracting recurrent cystitis.
Collapse
|
14
|
Kowalczyk P, Kaczyńska K, Kleczkowska P, Bukowska-Ośko I, Kramkowski K, Sulejczak D. The Lactoferrin Phenomenon-A Miracle Molecule. Molecules 2022; 27:2941. [PMID: 35566292 PMCID: PMC9104648 DOI: 10.3390/molecules27092941] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 01/11/2023] Open
Abstract
Numerous harmful factors that affect the human body from birth to old age cause many disturbances, e.g., in the structure of the genome, inducing cell apoptosis and their degeneration, which leads to the development of many diseases, including cancer. Among the factors leading to pathological processes, microbes, viruses, gene dysregulation and immune system disorders have been described. The function of a protective agent may be played by lactoferrin as a "miracle molecule", an endogenous protein with a number of favorable antimicrobial, antiviral, antioxidant, immunostimulatory and binding DNA properties. The purpose of this article is to present the broad spectrum of properties and the role that lactoferrin plays in protecting human cells at all stages of life.
Collapse
Affiliation(s)
- Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland;
| | - Patrycja Kleczkowska
- Maria Sklodowska-Curie, Medical Academy in Warsaw, Solidarności 12 St., 03-411 Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawinskiego 3c St., 02-106 Warsaw, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1 St., 15-089 Bialystok, Poland;
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
15
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Fernández Dumont A, Noriega Fernández E, Knutsen HK. Safety of Beta-lactoglobulin as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2022; 20:e07204. [PMID: 35422882 PMCID: PMC8990528 DOI: 10.2903/j.efsa.2022.7204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on beta-lactoglobulin (BLG) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF (≥ 90% w/w dry matter protein) consists of BLG as primary component (≥ 90% of total protein), which is equivalent to BLG present in bovine milk and whey protein isolate (WPI). The NF is produced from bovine whey by crystallisation under acidic or neutral conditions. The NF is proposed to be used as a food ingredient in isotonic and sport drinks, whey powder and milk-based drinks and similar products, and in food for special medical purposes as defined in Regulation (EU) No 609/2013. The target population is the general population. The highest daily intake of the NF was estimated for children of 3 to < 10 years of age as 667 mg/kg body weight (bw) per day. The NF presents proximate composition and content of essential amino acids similar to those in WPI. The Panel notes that the highest mean and highest 95th percentile daily protein intakes from the NF are below the protein population reference intakes for all population groups. Although a tolerable upper intake level has not been derived for protein, the protein intake from the NF may nevertheless further contribute to an already high dietary protein intake in Europe. The exposure to the reported minerals does not raise concerns. The Panel considers that the consumption of the NF is not nutritionally disadvantageous. No genotoxic concerns were identified from the standard in vitro test battery. No adverse effects were observed in the subchronic toxicity study, up to the highest dose tested, i.e. 1,000 mg NF/kg bw per day. The Panel concludes that the NF is safe under the proposed conditions of use.
Collapse
|
16
|
Wróbel K, Milewska AJ, Marczak M, Kozłowski R. Assessment of the Impact of Scientific Reports Published by EFSA and GIS on Functional Foods Newly Placed on the Market in Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4057. [PMID: 35409739 PMCID: PMC8998016 DOI: 10.3390/ijerph19074057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/13/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023]
Abstract
Dietary supplements are health-promoting products. The legal categorization of dietary supplements as foods does not raise concerns, but a general understanding of how they work in the human body seems to deviate from the official definition. Thus, it is necessary to establish effective methods of market control related to dietary supplements. This research aims at assessing the impact of recommendations by various food safety authorities on ingredients used in newly registered products. It probes how the proportions of utilized product ingredients were modified after the European Food Safety Authority (EFSA) and Chief Sanitary Inspector in Poland (GIS) published their recommendations. Research data on the composition of products comes from the Polish national register of dietary supplements and covers the period from 2012 to 28 November 2021. Note that 103,102 products were analysed for the presence of thirty-seven ingredients, and the joinpoint regression method was applied to assess changing trends related to the use of ingredients. As our research points out, most often, changes in the trend appeared in product ingredients for which the European Food Safety Authority and Chief Sanitary Inspector in Poland issued the recommendation of having the safest level of consumption. However, these changes seem to emerge randomly and should not be unquestionably considered as the result of the published recommendations.
Collapse
Affiliation(s)
- Kacper Wróbel
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-131 Lodz, Poland;
| | - Anna Justyna Milewska
- Department of Statistics and Medical Informatics, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Michał Marczak
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-131 Lodz, Poland;
| | - Remigiusz Kozłowski
- Centre for Security Technologies in Logistics, Faculty of Management, University of Lodz, 90-237 Lodz, Poland;
| |
Collapse
|
17
|
Artym J, Zimecki M. Antimicrobial and Prebiotic Activity of Lactoferrin in the Female Reproductive Tract: A Comprehensive Review. Biomedicines 2021; 9:biomedicines9121940. [PMID: 34944756 PMCID: PMC8699013 DOI: 10.3390/biomedicines9121940] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Women’s intimate health depends on several factors, such as age, diet, coexisting metabolic disorders, hormonal equilibrium, sexual activity, drug intake, contraception, surgery, and personal hygiene. These factors may affect the homeostasis of the internal environment of the genital tract: the vulva, vagina and cervix. This equilibrium is dependent on strict and complex mutual interactions between epithelial cells, immunocompetent cells and microorganisms residing in this environment. The microbiota of the genital tract in healthy women is dominated by several species of symbiotic bacteria of the Lactobacillus genus. The bacteria inhibit the growth of pathogenic microorganisms and inflammatory processes by virtue of direct and multidirectional antimicrobial action and, indirectly, by the modulation of immune system activity. For the homeostasis of the genital tract ecosystem, antimicrobial and anti-inflammatory peptides, as well as proteins secreted by mucus cells into the cervicovaginal fluid, have a fundamental significance. Of these, a multifunctional protein known as lactoferrin (LF) is one of the most important since it bridges innate and acquired immunity. Among its numerous properties, particular attention should be paid to prebiotic activity, i.e., exerting a beneficial action on symbiotic microbiota of the gastrointestinal and genital tract. Such activity of LF is associated with the inhibition of bacterial and fungal infections in the genital tract and their consequences, such as endometritis, pelvic inflammation, urinary tract infections, miscarriage, premature delivery, and infection of the fetus and newborns. The aim of this article is to review the results of laboratory as well as clinical trials, confirming the prebiotic action of LF on the microbiota of the lower genital tract.
Collapse
|
18
|
Campione E, Lanna C, Cosio T, Rosa L, Conte MP, Iacovelli F, Romeo A, Falconi M, Del Vecchio C, Franchin E, Lia MS, Minieri M, Chiaramonte C, Ciotti M, Nuccetelli M, Terrinoni A, Iannuzzi I, Coppeta L, Magrini A, Bernardini S, Sabatini S, Rosapepe F, Bartoletti PL, Moricca N, Di Lorenzo A, Andreoni M, Sarmati L, Miani A, Piscitelli P, Squillaci E, Valenti P, Bianchi L. Lactoferrin as Antiviral Treatment in COVID-19 Management: Preliminary Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010985. [PMID: 34682731 PMCID: PMC8535893 DOI: 10.3390/ijerph182010985] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 01/08/2023]
Abstract
Lactoferrin (Lf), a multifunctional cationic glycoprotein synthesized by exocrine glands and neutrophils, possesses an in vitro antiviral activity against SARS-CoV-2. Thus, we conducted an in vivo preliminary study to investigate the antiviral effect of oral and intranasal liposomal bovine Lf (bLf) in asymptomatic and mild-to-moderate COVID-19 patients. From April 2020 to June 2020, a total of 92 mild-to-moderate (67/92) and asymptomatic (25/92) COVID-19 patients were recruited and divided into three groups. Thirty-two patients (14 hospitalized and 18 in home-based isolation) received only oral and intranasal liposomal bLf; 32 hospitalized patients were treated only with standard of care (SOC) treatment; and 28, in home-based isolation, did not take any medication. Furthermore, 32 COVID-19 negative, untreated, healthy subjects were added for ancillary analysis. Liposomal bLf-treated COVID-19 patients obtained an earlier and significant (p < 0.0001) SARS-CoV-2 RNA negative conversion compared to the SOC-treated and untreated COVID-19 patients (14.25 vs. 27.13 vs. 32.61 days, respectively). Liposomal bLf-treated COVID-19 patients showed fast clinical symptoms recovery compared to the SOC-treated COVID-19 patients. In bLf-treated patients, a significant decrease in serum ferritin, IL-6, and D-dimers levels was observed. No adverse events were reported. These observations led us to speculate a potential role of bLf in the management of mild-to-moderate and asymptomatic COVID-19 patients.
Collapse
Affiliation(s)
- Elena Campione
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.L.); (T.C.); (L.B.)
- Correspondence:
| | - Caterina Lanna
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.L.); (T.C.); (L.B.)
| | - Terenzio Cosio
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.L.); (T.C.); (L.B.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, 00185 Rome, Italy; (L.R.); (M.P.C.); (P.V.)
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, 00185 Rome, Italy; (L.R.); (M.P.C.); (P.V.)
| | - Federico Iacovelli
- Structural Bioinformatics Group, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.I.); (A.R.); (M.F.)
| | - Alice Romeo
- Structural Bioinformatics Group, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.I.); (A.R.); (M.F.)
| | - Mattia Falconi
- Structural Bioinformatics Group, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.I.); (A.R.); (M.F.)
| | - Claudia Del Vecchio
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.D.V.); (E.F.)
| | - Elisa Franchin
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.D.V.); (E.F.)
| | - Maria Stella Lia
- Department of Experimental Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (M.S.L.); (M.M.); (A.T.)
| | - Marilena Minieri
- Department of Experimental Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (M.S.L.); (M.M.); (A.T.)
| | - Carlo Chiaramonte
- Department of Statistics, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Marco Ciotti
- Virology Unit, Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Marzia Nuccetelli
- Laboratory Medicine, Department of Experimental Medicine and Surgery, Tor Vergata University Hospital, 00133 Rome, Italy; (M.N.); (S.B.)
| | - Alessandro Terrinoni
- Department of Experimental Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (M.S.L.); (M.M.); (A.T.)
| | - Ilaria Iannuzzi
- Occupational Medicine Department, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.I.); (L.C.); (A.M.)
| | - Luca Coppeta
- Occupational Medicine Department, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.I.); (L.C.); (A.M.)
| | - Andrea Magrini
- Occupational Medicine Department, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.I.); (L.C.); (A.M.)
| | - Sergio Bernardini
- Laboratory Medicine, Department of Experimental Medicine and Surgery, Tor Vergata University Hospital, 00133 Rome, Italy; (M.N.); (S.B.)
| | | | | | | | - Nicola Moricca
- Villa dei Pini Hospital, 00042 Anzio, Italy; (S.S.); (N.M.)
| | - Andrea Di Lorenzo
- Infectious Disease Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (A.D.L.); (M.A.); (L.S.)
| | - Massimo Andreoni
- Infectious Disease Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (A.D.L.); (M.A.); (L.S.)
| | - Loredana Sarmati
- Infectious Disease Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (A.D.L.); (M.A.); (L.S.)
| | - Alessandro Miani
- Department of Environmental Sciences and Policy, University of Milan, 20133 Milan, Italy;
| | - Prisco Piscitelli
- UNESCO Chair on Health Education and Sustainable Development, University of Naples Federico II, 80131 Naples, Italy;
| | - Ettore Squillaci
- Department of Diagnostic and Molecular Imaging, Radiation Therapy and Interventional Radiology, University Hospital Tor Vergata, 00133 Rome, Italy;
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, 00185 Rome, Italy; (L.R.); (M.P.C.); (P.V.)
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.L.); (T.C.); (L.B.)
| |
Collapse
|
19
|
Development of Lactoferrin-Loaded Liposomes for the Management of Dry Eye Disease and Ocular Inflammation. Pharmaceutics 2021; 13:pharmaceutics13101698. [PMID: 34683990 PMCID: PMC8539938 DOI: 10.3390/pharmaceutics13101698] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Dry eye disease (DED) is a high prevalent multifactorial disease characterized by a lack of homeostasis of the tear film which causes ocular surface inflammation, soreness, and visual disturbance. Conventional ophthalmic treatments present limitations such as low bioavailability and side effects. Lactoferrin (LF) constitutes a promising therapeutic tool, but its poor aqueous stability and high nasolacrimal duct drainage hinder its potential efficacy. In this study, we incorporate lactoferrin into hyaluronic acid coated liposomes by the lipid film method, followed by high pressure homogenization. Pharmacokinetic and pharmacodynamic profiles were evaluated in vitro and ex vivo. Cytotoxicity and ocular tolerance were assayed both in vitro and in vivo using New Zealand rabbits, as well as dry eye and anti-inflammatory treatments. LF loaded liposomes showed an average size of 90 nm, monomodal population, positive surface charge and a high molecular weight protein encapsulation of 53%. Biopharmaceutical behaviour was enhanced by the nanocarrier, and any cytotoxic effect was studied in human corneal epithelial cells. Developed liposomes revealed the ability to reverse dry eye symptoms and possess anti-inflammatory efficacy, without inducing ocular irritation. Hence, lactoferrin loaded liposomes could offer an innovative nanotechnological tool as suitable approach in the treatment of DED.
Collapse
|
20
|
Ambulatory COVID-19 Patients Treated with Lactoferrin as a Supplementary Antiviral Agent: A Preliminary Study. J Clin Med 2021; 10:jcm10184276. [PMID: 34575388 PMCID: PMC8469309 DOI: 10.3390/jcm10184276] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2, an enveloped, single-stranded RNA virus causing COVID-19, exerts morbidity and mortality especially in elderly, obese individuals and those suffering from chronic conditions. In addition to the availability of vaccines and the limited efficacy of the first dose of vaccine against SARS-CoV-2 variants, there is an urgent requirement for the discovery and development of supplementary antiviral agents. Lactoferrin (Lf), a pleiotropic cationic glycoprotein of innate immunity, has been proposed as a safe treatment combined with other therapies in COVID-19 patients. Here, we present a small retrospective study on asymptomatic, paucisymptomatic, and moderate symptomatic COVID-19 Lf-treated versus Lf-untreated patients. The time required to achieve SARS-CoV-2 RNA negativization in Lf-treated patients (n = 82) was significantly lower (p < 0.001) compared to that observed in Lf-untreated ones (n = 39) (15 versus 24 days). A link among reduction in symptoms, age, and Lf treatment was found. The Lf antiviral activity could be explained through the interaction with SARS-CoV-2 spike, the binding with heparan sulfate proteoglycans of cells, and the anti-inflammatory activity associated with the restoration of iron homeostasis disorders, which favor viral infection/replication. Lf could be an important supplementary treatment in counteracting SARS-CoV-2 infection, as it is also safe and well-tolerated by all treated patients.
Collapse
|
21
|
Najmafshar A, Rostami M, Varshosaz J, Norouzian D, Samsam Shariat SZA. Enhanced antitumor activity of bovine lactoferrin through immobilization onto functionalized nano graphene oxide: an in vitro/ in vivo study. Drug Deliv 2021; 27:1236-1247. [PMID: 32812454 PMCID: PMC7470100 DOI: 10.1080/10717544.2020.1809558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study aims to improve the anticancer activity of bovine lactoferrin through enhancing its stability by immobilization onto graphene oxide. Bovine lactoferrin was conjugated onto graphene oxide and the conjugation process was confirmed by FT-IR, SDS-PAGE, and UV spectrophotometry. Physical characterization was performed by DLS analysis and atomic force microscopy. The cytotoxicity and cellular uptake of the final construct (CGO-PEG-bLF) was inspected on lung cancer TC-1 cells by MTT assay and flow cytometry/confocal microscopy. The anticancer mechanism of the CGO-PEG-bLF was studied by cell cycle analysis, apoptosis assay, and western blot technique. Finally, the anticancer activity of CGO-PEG-bLF was assessed in an animal model of lung cancer. Size and zeta potential of CGO-PEG-bLF was obtained in the optimum range. Compared with free bLF, more cytotoxic activity, cellular uptake and more survival time was obtained for CGO-PEG-bLF. CGO-PEG-bLF significantly inhibited tumor growth in the animal model. Cell cycle arrest and apoptosis were more induced by CGO-PEG-bLF. Moreover, exposure to CGO-PEG-bLF decreased the phospho-AKT and pro-Caspase 3 levels and increased the amount of cleaved caspase 3 in the treated cells. This study revealed the potential of CGO-PEG as a promising nanocarrier for enhancing the therapeutic efficacy of anticancer agents.
Collapse
Affiliation(s)
- Azam Najmafshar
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboubeh Rostami
- Department of Medicinal Chemistry, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Dariush Norouzian
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ziyae Aldin Samsam Shariat
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
22
|
Bukowska-Ośko I, Popiel M, Kowalczyk P. The Immunological Role of the Placenta in SARS-CoV-2 Infection-Viral Transmission, Immune Regulation, and Lactoferrin Activity. Int J Mol Sci 2021; 22:5799. [PMID: 34071527 PMCID: PMC8198160 DOI: 10.3390/ijms22115799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
A pandemic of acute respiratory infections, due to a new type of coronavirus, can cause Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) and has created the need for a better understanding of the clinical, epidemiological, and pathological features of COVID-19, especially in high-risk groups, such as pregnant women. Viral infections in pregnant women may have a much more severe course, and result in an increase in the rate of complications, including spontaneous abortion, stillbirth, and premature birth-which may cause long-term consequences in the offspring. In this review, we focus on the mother-fetal-placenta interface and its role in the potential transmission of SARS-CoV-2, including expression of viral receptors and proteases, placental pathology, and the presence of the virus in neonatal tissues and fluids. This review summarizes the current knowledge on the anti-viral activity of lactoferrin during viral infection in pregnant women, analyzes its role in the pathogenicity of pandemic virus particles, and describes the potential evidence for placental blocking/limiting of the transmission of the virus.
Collapse
Affiliation(s)
- Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 02-091Warsaw, Poland;
| | - Marta Popiel
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| |
Collapse
|
23
|
Cutone A, Ianiro G, Lepanto MS, Rosa L, Valenti P, Bonaccorsi di Patti MC, Musci G. Lactoferrin in the Prevention and Treatment of Intestinal Inflammatory Pathologies Associated with Colorectal Cancer Development. Cancers (Basel) 2020; 12:E3806. [PMID: 33348646 PMCID: PMC7766217 DOI: 10.3390/cancers12123806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
The connection between inflammation and cancer is well-established and supported by genetic, pharmacological and epidemiological data. The inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, have been described as important promoters for colorectal cancer development. Risk factors include environmental and food-borne mutagens, dysbalance of intestinal microbiome composition and chronic intestinal inflammation, with loss of intestinal epithelial barrier and enhanced cell proliferation rate. Therapies aimed at shutting down mucosal inflammatory response represent the foundation for IBDs treatment. However, when applied for long periods, they can alter the immune system and promote microbiome dysbiosis and carcinogenesis. Therefore, it is imperative to find new safe substances acting as both potent anti-inflammatory and anti-pathogen agents. Lactoferrin (Lf), an iron-binding glycoprotein essential in innate immunity, is generally recognized as safe and used as food supplement due to its multifunctionality. Lf possesses a wide range of immunomodulatory and anti-inflammatory properties against different aseptic and septic inflammatory pathologies, including IBDs. Moreover, Lf exerts anti-adhesive, anti-invasive and anti-survival activities against several microbial pathogens that colonize intestinal mucosa of IBDs patients. This review focuses on those activities of Lf potentially useful for the prevention/treatment of intestinal inflammatory pathologies associated with colorectal cancer development.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| |
Collapse
|
24
|
Griffiths J, Jenkins P, Vargova M, Bowler U, Juszczak E, King A, Linsell L, Murray D, Partlett C, Patel M, Berrington J, Embleton N, Dorling J, Heath PT, McGuire W, Oddie S. Enteral lactoferrin to prevent infection for very preterm infants: the ELFIN RCT. Health Technol Assess 2019; 22:1-60. [PMID: 30574860 DOI: 10.3310/hta22740] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Infections acquired in hospital are an important cause of morbidity and mortality in very preterm infants. Several small trials have suggested that supplementing the enteral diet of very preterm infants with lactoferrin, an antimicrobial protein processed from cow's milk, prevents infections and associated complications. OBJECTIVE To determine whether or not enteral supplementation with bovine lactoferrin (The Tatua Cooperative Dairy Company Ltd, Morrinsville, New Zealand) reduces the risk of late-onset infection (acquired > 72 hours after birth) and other morbidity and mortality in very preterm infants. DESIGN Randomised, placebo-controlled, parallel-group trial. Randomisation was via a web-based portal and used an algorithm that minimised for recruitment site, weeks of gestation, sex and single versus multiple births. SETTING UK neonatal units between May 2014 and September 2017. PARTICIPANTS Infants born at < 32 weeks' gestation and aged < 72 hours at trial enrolment. INTERVENTIONS Eligible infants were allocated individually (1 : 1 ratio) to receive enteral bovine lactoferrin (150 mg/kg/day; maximum 300 mg/day) or sucrose (British Sugar, Peterborough, UK) placebo (same dose) once daily from trial entry until a postmenstrual age of 34 weeks. Parents, caregivers and outcome assessors were unaware of group assignment. OUTCOMES Primary outcome - microbiologically confirmed or clinically suspected late-onset infection. Secondary outcomes - microbiologically confirmed infection; all-cause mortality; severe necrotising enterocolitis (NEC); retinopathy of prematurity (ROP); bronchopulmonary dysplasia (BPD); a composite of infection, NEC, ROP, BPD and mortality; days of receipt of antimicrobials until 34 weeks' postmenstrual age; length of stay in hospital; and length of stay in intensive care, high-dependency and special-care settings. RESULTS Of 2203 enrolled infants, primary outcome data were available for 2182 infants (99%). In the intervention group, 316 out of 1093 (28.9%) infants acquired a late-onset infection versus 334 out of 1089 (30.7%) infants in the control group [adjusted risk ratio (RR) 0.95, 95% confidence interval (CI) 0.86 to 1.04]. There were no significant differences in any secondary outcomes: microbiologically confirmed infection (RR 1.05, 99% CI 0.87 to 1.26), mortality (RR 1.05, 99% CI 0.66 to 1.68), NEC (RR 1.13, 99% CI 0.68 to 1.89), ROP (RR 0.89, 99% CI 0.62 to 1.28), BPD (RR 1.01, 99% CI 0.90 to 1.13), or a composite of infection, NEC, ROP, BPD and mortality (RR 1.01, 99% CI 0.94 to 1.08). There were no differences in the number of days of receipt of antimicrobials, length of stay in hospital, or length of stay in intensive care, high-dependency or special-care settings. There were 16 reports of serious adverse events for infants in the lactoferrin group and 10 for infants in the sucrose group. CONCLUSIONS Enteral supplementation with bovine lactoferrin does not reduce the incidence of infection, mortality or other morbidity in very preterm infants. FUTURE WORK Increase the precision of the estimates of effect on rarer secondary outcomes by combining the data in a meta-analysis with data from other trials. A mechanistic study is being conducted in a subgroup of trial participants to explore whether or not lactoferrin supplementation affects the intestinal microbiome and metabolite profile of very preterm infants. TRIAL REGISTRATION Current Controlled Trials ISRCTN88261002. FUNDING This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 22, No. 74. See the NIHR Journals Library website for further project information. This trial was also sponsored by the University of Oxford, Oxford, UK. The funder provided advice and support and monitored study progress but did not have a role in study design or data collection, analysis and interpretation.
Collapse
Affiliation(s)
- James Griffiths
- National Perinatal Epidemiology Unit, University of Oxford, Oxford, UK
| | - Paula Jenkins
- National Perinatal Epidemiology Unit, University of Oxford, Oxford, UK
| | - Monika Vargova
- National Perinatal Epidemiology Unit, University of Oxford, Oxford, UK
| | - Ursula Bowler
- National Perinatal Epidemiology Unit, University of Oxford, Oxford, UK
| | - Edmund Juszczak
- National Perinatal Epidemiology Unit, University of Oxford, Oxford, UK
| | - Andrew King
- National Perinatal Epidemiology Unit, University of Oxford, Oxford, UK
| | - Louise Linsell
- National Perinatal Epidemiology Unit, University of Oxford, Oxford, UK
| | - David Murray
- National Perinatal Epidemiology Unit, University of Oxford, Oxford, UK
| | | | | | - Janet Berrington
- Newcastle Neonatal Service, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Nicholas Embleton
- Newcastle Neonatal Service, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | | | - Paul T Heath
- St George's, University of London and St George's University Hospitals NHS Trust, London, UK
| | - William McGuire
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Sam Oddie
- Bradford Institute for Health Research, Bradford, UK
| |
Collapse
|
25
|
Enteral lactoferrin supplementation for very preterm infants: a randomised placebo-controlled trial. Lancet 2019; 393:423-433. [PMID: 30635141 PMCID: PMC6356450 DOI: 10.1016/s0140-6736(18)32221-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Infections acquired in hospital are an important cause of morbidity and mortality in very preterm infants. Several small trials have suggested that supplementing the enteral diet of very preterm infants with lactoferrin, an antimicrobial protein processed from cow's milk, prevents infections and associated complications. The aim of this large randomised controlled trial was to collect data to enhance the validity and applicability of the evidence from previous trials to inform practice. METHODS In this randomised placebo-controlled trial, we recruited very preterm infants born before 32 weeks' gestation in 37 UK hospitals and younger than 72 h at randomisation. Exclusion criteria were presence of a severe congenital anomaly, anticipated enteral fasting for longer than 14 days, or no realistic prospect of survival. Eligible infants were randomly assigned (1:1) to receive either enteral bovine lactoferrin (150 mg/kg per day; maximum 300 mg/day; lactoferrin group) or sucrose (same dose; control group) once daily until 34 weeks' postmenstrual age. Web-based randomisation minimised for recruitment site, gestation (completed weeks), sex, and single versus multifetal pregnancy. Parents, caregivers, and outcome assessors were unaware of group assignment. The primary outcome was microbiologically confirmed or clinically suspected late-onset infection (occurring >72 h after birth), which was assessed in all participants for whom primary outcome data was available by calculating the relative risk ratio with 95% CI between the two groups. The trial is registered with the International Standard Randomised Controlled Trial Number 88261002. FINDINGS We recruited 2203 participants between May 7, 2014, and Sept 28, 2017, of whom 1099 were assigned to the lactoferrin group and 1104 to the control group. Four infants had consent withdrawn or unconfirmed, leaving 1098 infants in the lactoferrin group and 1101 in the sucrose group. Primary outcome data for 2182 infants (1093 [99·5%] of 1098 in the lactoferrin group and 1089 [99·0] of 1101 in the control group) were available for inclusion in the modified intention-to-treat analyses. 316 (29%) of 1093 infants in the intervention group acquired a late-onset infection versus 334 (31%) of 1089 in the control group. The risk ratio adjusted for minimisation factors was 0·95 (95% CI 0·86-1·04; p=0·233). During the trial there were 16 serious adverse events for infants in the lactoferrin group and 10 for infants in the control group. Two events in the lactoferrin group (one case of blood in stool and one death after intestinal perforation) were assessed as being possibly related to the trial intervention. INTERPRETATION Enteral supplementation with bovine lactoferrin does not reduce the risk of late-onset infection in very preterm infants. These data do not support its routine use to prevent late-onset infection and associated morbidity or mortality in very preterm infants. FUNDING UK National Institute for Health Research Health Technology Assessment programme (10/57/49).
Collapse
|
26
|
Nozari S, Fathi Maroufi N, Nouri M, Paytakhti Oskouei M, Shiralizade J, Yekani F, Mamipour M, Faridvand Y. Decreasing serum homocysteine and hypocholesterolemic effects of Bovine lactoferrin in male rat fed with high-cholesterol diet. J Cardiovasc Thorac Res 2018; 10:203-208. [PMID: 30680078 PMCID: PMC6335985 DOI: 10.15171/jcvtr.2018.35] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/30/2018] [Indexed: 12/23/2022] Open
Abstract
Introduction:
Lipid metabolism disorder or hyperlipidemia is known as a risk factor for
cardiovascular disease, the increase in serum homocysteine and leptin are associated with
atherosclerotic disease. The purpose of the present study was to examine the effects of bovine
lactoferrin (bLF) on serum homocysteine (Hcy), apolipoproteinA-I (ApoA-I) and B (ApoB),
leptin and lipid profile changes in high-cholesterol-diet (HCD) fed rats.
Methods: The Healthy Adult Sprague-Dawley (SD) male rats were randomly assigned into three
experimental groups. Each group consisted of eleven male rats including control group, HCD
rats and hypercholesterolemic rats, which were treated with bLF (HCD+bLF). bLF was given by
gavage (200 mg/kg/d). After 4 weeks of feeding and overnight fasting, total blood samples were
collected.
Results: The results showed the elevated level of Hcy, leptin, total cholesterol, low density
lipoprotein cholesterol (LDL-C), ApoB and decrease in ApoA-I in non-treated HCD group
compared to the control rats. Administration of bLF significantly ameliorated the Hcy and
leptin levels with decrease in LDL-C and total cholesterol in rats fed with a high-cholesterol diet.
bLF also tended to increase low serum concentration of ApoA-I and high density lipoprotein
cholesterol (HDL-C) in HCD rats. Meanwhile, upon bLF-treated rats, there was a significant
decrease in ApoB in HCD group.
Conclusion: The findings indicated that bLF can improve the alteration of serum Hcy, leptin,
apolipproteins and lipid changes in male rats fed with high-cholesterol diet. So, bLF can counteract
with HCD elicited hyper-homocysteinemia and hyper-leptinemia, suggesting it to have the useful
therapeutic potential in patients with atherosclerosis and lipid disorder.
Collapse
Affiliation(s)
- Samira Nozari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute (SCARM), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute (SCARM), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirhamid Paytakhti Oskouei
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Shiralizade
- Department of Biochemistry, Faculty of Biology, Payam-e-Noor University of Mashhad, Mashhad, Iran
| | - Farshid Yekani
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mina Mamipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Faridvand
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute (SCARM), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Wronkowska M, Juśkiewicz J, Zduńczyk Z, Warechowski J, Soral-Śmietana M, Jadacka M. Effect of high added-value components of acid whey on the nutritional and physiological indices of rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Assessment of Binding Interaction between Bovine Lactoferrin and Tetracycline Hydrochloride: Multi-Spectroscopic Analyses and Molecular Modeling. Molecules 2018; 23:molecules23081900. [PMID: 30061508 PMCID: PMC6222819 DOI: 10.3390/molecules23081900] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023] Open
Abstract
In this paper, the interaction between bovine lactoferrin (bLf) and tetracycline hydrochloride (TCH) was researched by microscale thermophoresis (MST), multi-spectroscopic methods, and molecular docking techniques. Normal fluorescence results showed that TCH effectively quenched the intrinsic fluorescence of bLf via static quenching. Moreover, MST confirmed that the combination force between bLf and TCH was very strong. Thermodynamic parameters and molecular docking further revealed that electrostatic forces, van der Waals, and hydrogen bonding forces played vital roles in the interaction between bLf and TCH. The binding distance and energy transfer efficiency between TCH and bLf were 2.81 nm and 0.053, respectively. Moreover, the results of circular dichroism spectra (CD), ultraviolet visible (UV-vis) absorption spectra, fluorescence Excitation-Emission Matrix (EEM) spectra, and molecular docking verified bLf indeed combined with TCH, and caused the changes of conformation of bLf. The influence of TCH on the functional changes of the protein was studied through the analysis of the change of the bLf surface hydrophobicity and research of the binding forces between bLf and iron ion. These results indicated that change in the structure and function of bLf were due to the interaction between bLf and TCH.
Collapse
|
29
|
Turck D, Bresson JL, Burlingame B, Dean T, Fairweather-Tait S, Heinonen M, Hirsch-Ernst KI, Mangelsdorf I, McArdle HJ, Naska A, Neuhäuser-Berthold M, Nowicka G, Pentieva K, Sanz Y, Siani A, Sjödin A, Stern M, Tomé D, Vinceti M, Willatts P, Engel KH, Marchelli R, Pöting A, Poulsen M, Schlatter JR, Amundsen M, van Loveren H. Safety of Whey basic protein isolates as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2018; 16:e05360. [PMID: 32625992 PMCID: PMC7009730 DOI: 10.2903/j.efsa.2018.5360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on whey basic protein isolate as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is obtained by ion exchange chromatography of skimmed cow's milk. The applicant intends to market the NF in infant and follow-on formulae and meal replacement beverages, dietary foods for special medical purposes and as food supplements. The highest estimated intake of the NF based on the proposed uses and use levels would be 24.8 mg/kg body weight (bw) per day in infants and 27.8 in toddlers. The information provided on composition, specifications, production process and stability of the NF do not raise safety concerns. Taking into account the composition of the NF and the intended use levels, the Panel considers that the consumption of the NF is not nutritionally disadvantageous. The Panel considers that there is no concern with respect to genotoxicity. The no observed adverse effect level (NOAEL) of a subchronic 13-week rat study was 2000 mg/kg bw per day. Considering the source, the production process and nature of the NF, the Panel considers the margin of exposure (MOE) of 154 to be sufficient for the adult population (on a high-estimated intake of 13 mg/kg bw). For infants and toddlers, the MOE would be at least 81 and 72, respectively. Taking into account the composition of the NF, its source, the history of consumption of the main components of the NF, the production process and that the NOAEL in a subchronic rat study was the highest dose tested the Panel considers that also the MOE for infants and toddlers are sufficient. The Panel concludes that the novel food ingredient, whey basic protein isolate, is safe under the proposed uses and use levels.
Collapse
|
30
|
Guedes JP, Pereira CS, Rodrigues LR, Côrte-Real M. Bovine Milk Lactoferrin Selectively Kills Highly Metastatic Prostate Cancer PC-3 and Osteosarcoma MG-63 Cells In Vitro. Front Oncol 2018; 8:200. [PMID: 29915723 PMCID: PMC5994723 DOI: 10.3389/fonc.2018.00200] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer and osteosarcoma are the second most common type of cancer affecting men and the fifth most common malignancy among adolescents, respectively. The use of non-toxic natural or natural-derived products has been one of the current strategies for cancer therapy, owing to the reduced risks of induced-chemoresistance development and the absence of secondary effects. In this perspective, lactoferrin (Lf), a natural protein derived from milk, emerges as a promising anticancer agent due to its well-recognized cytotoxicity and anti-metastatic activity. Here, we aimed to ascertain the potential activity of bovine Lf (bLf) against highly metastatic cancer cells. The bLf effect on prostate PC-3 and osteosarcoma MG-63 cell lines, both displaying plasmalemmal V-ATPase, was studied and compared with the breast cancer MDA-MB-231 and the non-tumorigenic BJ-5ta cell lines. Cell proliferation, cell death, intracellular pH, lysosomal acidification, and extracellular acidification rate were evaluated. Results show that bLf inhibits proliferation, induces apoptosis, intracellular acidification, and perturbs lysosomal acidification only in highly metastatic cancer cell lines. By contrast, BJ-5ta cells are insensitive to bLf. Overall, our results establish a common mechanism of action of bLf against highly metastatic cancer cells exhibiting plasmalemmal V-ATPase. This study opens promising perspectives for further research on the anticancer role of Lf, which ultimately will contribute to its safer and more rational application in the human therapy of these life-threatening cancers.
Collapse
Affiliation(s)
- Joana P Guedes
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Center of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Cátia S Pereira
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Center of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Lígia R Rodrigues
- Center of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
31
|
Kieckens E, Rybarczyk J, Cox E, Vanrompay D. Antibacterial and immunomodulatory activities of bovine lactoferrin against Escherichia coli O157:H7 infections in cattle. Biometals 2018; 31:321-330. [PMID: 29442205 DOI: 10.1007/s10534-018-0082-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/06/2018] [Indexed: 12/27/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a zoonotic pathogen that causes food-borne disease in humans ranging from watery diarrhea to bloody diarrhea and severe hemorrhagic colitis, renal failure and hemolytic uremic syndrome. Cattle, the most important source of E. coli O157:H7 transmission to humans, harbor the bacteria in their gastrointestinal tract without showing clinical symptoms. Prevention of E. coli O157:H7 infections in ruminants could diminish the public health risk. However, there is no specific treatment available nor a vaccine or a therapeutic agent which completely prevents E. coli O157:H7 infections in cattle. This paper provides an overview of latest research data on eradicating enterohemorrhagic E. coli O157:H7 in ruminants by use of bovine lactoferrin administration. The article provides insights into the anti-microbial and immunomodulatory activities of bovine lactoferrin against E. coli O157:H7 infections in cattle.
Collapse
Affiliation(s)
- Evelien Kieckens
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Joanna Rybarczyk
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
32
|
Molecular mechanism of inhibitory effects of bovine lactoferrin on the growth of oral squamous cell carcinoma. PLoS One 2018; 13:e0191683. [PMID: 29381751 PMCID: PMC5790278 DOI: 10.1371/journal.pone.0191683] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background Lactoferrin (LF), a member of the transferrin family, recently has been demonstrated to have anticancer effects on various cancers including oral squamous cell carcinoma (OSCC). However, little is known about the underlying mechanisms of its effects on OSCC. Therefore, we aimed to investigate the mechanism of the suppressive effects of bovine LF (bLF) on the growth of OSCC cells. Methods In the current study, HSC2, HSC3, HSC4 and normal human oral keratinocytes (RT7) cell lines were tested with bLF 1, 10, and 100 μg/ml. The effects and detail mechanisms of bLF on proliferation and apoptosis of cells were investigated using flow cytometry and western blotting. Results We found that bLF (1, 10, and 100 μg/ml) induced activation of p53, a tumor suppressor gene, is associated with the induction of cell cycle arrest in G1/S phase and apoptosis in OSCC. Moreover, bLF downregulated the phosphorylation of Akt and activated suppressor of cytokine signaling 3 (SOCS3), thereby attenuating multiple signaling pathways including mTOR/S6K and JAK/STAT3. Interestingly, we revealed that bLF exerted its effect selectively against HSC3 but not on RT7 via different effects on the phosphorylation status of NF-κB and Akt. Conclusion This is the first report showing that bLF selectively suppresses proliferation through mTOR/S6K and JAK/STAT3 pathways and induction of apoptosis in OSCC. This study provides important new findings, which might be useful in the prevention and treatment of OSCC.
Collapse
|
33
|
Franco I, Pérez MD, Conesa C, Calvo M, Sánchez L. Effect of technological treatments on bovine lactoferrin: An overview. Food Res Int 2017; 106:173-182. [PMID: 29579916 DOI: 10.1016/j.foodres.2017.12.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 01/11/2023]
Abstract
Lactoferrin (LF) is a multifunctional protein that exerts important activities in the neonate through its presence in milk, and also in other external mucosas, acting as a defense protein of innate immunity. The addition of bovine LF to infant formula and also to other functional products and cosmetics has increased during the last decades. Consequently, it is essential to know the effect that the technological processes, necessary to elaborate those products, have on LF activity. In this study, we have revised the effect of classical treatments on lactoferrin structure and activity, such as heat treatment or drying, and also of emerging technologies, like high pressure or pulsed electric field. The results of the studies included in this review indicate that LF stability is dependent on its level of iron-saturation and on the characteristics of the treatment media. Furthermore, the studies revised here reveal that the non-thermal treatments are interesting alternatives to the traditional ones, as they protect better the structure and activity of lactoferrin. It is also clear the need for research on LF encapsulation by different ways, to protect its properties before it reaches the intestine. All this knowledge would allow designing processes less harmful for LF, thus maintaining all its functionality.
Collapse
Affiliation(s)
- Indira Franco
- Departamento de Ciencias Naturales, Facultad de Ciencias y Tecnología, Universidad Tecnológica de Panamá, Campus Metropolitano Víctor Levi Sasso, Panamá, Panamá
| | - María Dolores Pérez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Celia Conesa
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Miguel Calvo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Miguel Servet, 177, 50013 Zaragoza, Spain.
| |
Collapse
|
34
|
Wen Y, He Q, Ma D, Hou Q, Zhang H, Kwok LY. An intact gut microbiota may be required for lactoferrin-driven immunomodulation in rats. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
35
|
Constable A, Mahadevan B, Pressman P, Garthoff JA, Meunier L, Schrenk D, Speijers G, O’Sullivan A, Hayes AW. An integrated approach to the safety assessment of food additives in early life. TOXICOLOGY RESEARCH AND APPLICATION 2017. [DOI: 10.1177/2397847317707370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During the development of international standards by the Codex Alimentarius Commission, infant foods and their constituent ingredients are subject to rigorous risk analysis and are strictly regulated by many authorities. Various jurisdictions have approved only a limited number of additives specifically with regard to infant foods to fulfill specific technical requirements of quality. As part of the approval process, a rigorous safety assessment is essential to confirm that the use of additives does not pose any health risk for the consumer. An acceptable daily intake (ADI) may be derived from the toxicological databases. However, the ADI may not be applicable to infants because of the possible developmental sensitivities and potentially high exposure scenarios, leading to possible lower margins of safety than would often be determined for adult populations. There is interest in defining better food safety assessment approaches for pre-weaned infants aged less than 12–16 weeks. To confirm safe use in infants, we reviewed the suitability of the existing safety databases of six additives with historical uses in infant nutrition products. To determine further toxicity testing strategies, it is necessary to understand whether the chemical used in the additives is identical to endogenous physiological metabolites and/or whether immature organs of infants are targets of toxicity. Combined with an in-depth review of the existing relevant toxicological and nutritional studies, this integrated approach will facilitate decision-making. We propose a decision tree as a tool within this approach to help guide appropriate data requirements and identify data gaps. In cases of reasonable uncertainty, studies of targeted juvenile should be considered to investigate the safe use levels in food products.
Collapse
Affiliation(s)
| | | | - Peter Pressman
- Division of Medicine, Public Health & Nutrition, The Daedalus Foundation, Alexandria, VA, USA
| | | | - Leo Meunier
- Danone Food Safety Center, Uppsalalaan, Utrecht, The Netherlands
| | - Dieter Schrenk
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Gerrit Speijers
- General Health Effects Toxicology Safety Food (GETS), Nieuwegein, The Netherlands
| | - Aaron O’Sullivan
- Danone Trading Medical BV, Schiphol Boulevard, Schiphol Airport, The Netherlands
| | - A Wallace Hayes
- Harvard University, Boston, MA, USA and Michigan State University, East Lansing, MI, USA
| |
Collapse
|
36
|
Alexander DB, Iigo M, Abdelgied M, Ozeki K, Tanida S, Joh T, Takahashi S, Tsuda H. Bovine lactoferrin and Crohn's disease: a case study. Biochem Cell Biol 2016; 95:133-141. [PMID: 28165294 DOI: 10.1139/bcb-2016-0107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A 22-year-old male suffering from abdominal pain, repeated diarrhea, and weight loss visited the Digestive Disease Department of Nagoya City University Hospital on 19 December 2011. He was hospitalized and diagnosed with Crohn's colitis. His Crohn's Disease Activity Index (CDAI) was 415. Treatment by granulocyte apheresis, mesalazine, and adalimumab was started. His CDAI was 314 on 30 December and 215 on 5 January. A colonoscopic examination on 19 January showed almost complete remission in the transverse colon and marked remission in the rectum. Mesalazine therapy was stopped on 28 February, and the patient was instructed to self-inject 40 mg of adalimumab every other week. His CDAI was 50 on 10 April, indicating clinical remission. His last self-injection of adalimumab was on 24 April 2012, and he started taking 1 g of bovine lactoferrin (bLF) daily. His CDAI was 35 on 8 January 2013. He continued taking 1 g of bLF daily without any other treatment for Crohn's disease. Laboratory blood tests on 7 September 2015 showed no sign of disease recurrence, and a colonoscopic examination on 23 October 2015 showed almost complete mucosal healing. This case indicates that ingestion of bLF to maintain Crohn's disease in a remissive state should be further explored.
Collapse
Affiliation(s)
| | - Masaaki Iigo
- a Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| | - Mohamed Abdelgied
- a Nanotoxicology Project, Nagoya City University, Nagoya, Japan.,b Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,c Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Keiji Ozeki
- d Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoshi Tanida
- d Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Joh
- d Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Takahashi
- b Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Tsuda
- a Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| |
Collapse
|
37
|
Mayeur S, Spahis S, Pouliot Y, Levy E. Lactoferrin, a Pleiotropic Protein in Health and Disease. Antioxid Redox Signal 2016; 24:813-36. [PMID: 26981846 DOI: 10.1089/ars.2015.6458] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SIGNIFICANCE Lactoferrin (Lf) is a nonheme iron-binding glycoprotein strongly expressed in human and bovine milk and it plays many functions during infancy such as iron homeostasis and defense against microorganisms. In humans, Lf is mainly expressed in mucosal epithelial and immune cells. Growing evidence suggests multiple physiological roles for Lf after weaning. RECENT ADVANCES The aim of this review is to highlight the recent advances concerning multifunctional Lf activities. CRITICAL ISSUES First, we will provide an overview of the mechanisms related to Lf intrinsic synthesis or intestinal absorption as well as its interaction with a wide spectrum of mammalian receptors and distribution in organs and cell types. Second, we will discuss the large variety of its physiological functions such as iron homeostasis, transportation, immune regulation, oxidative stress, inflammation, and apoptosis while specifying the mechanisms of action. Third, we will focus on its recent physiopathology implication in metabolic disorders, including obesity, type 2 diabetes, and cardiovascular diseases. Additional efforts are necessary before suggesting the potential use of Lf as a diagnostic marker or as a therapeutic tool. FUTURE DIRECTIONS The main sources of Lf in human cardiometabolic disorders should be clarified to identify new perspectives for future research and develop new strategies using Lf in therapeutics. Antioxid. Redox Signal. 24, 813-836.
Collapse
Affiliation(s)
- Sylvain Mayeur
- 1 Research Centre, CHU Ste-Justine, Université de Montréal , Montreal, Canada .,2 Institute of Nutraceuticals and Functional Foods (INAF) , Université Laval, Quebec, Canada
| | - Schohraya Spahis
- 1 Research Centre, CHU Ste-Justine, Université de Montréal , Montreal, Canada .,2 Institute of Nutraceuticals and Functional Foods (INAF) , Université Laval, Quebec, Canada .,3 Department of Nutrition, Université de Montréal , Montreal, Canada
| | - Yves Pouliot
- 3 Department of Nutrition, Université de Montréal , Montreal, Canada
| | - Emile Levy
- 1 Research Centre, CHU Ste-Justine, Université de Montréal , Montreal, Canada .,2 Institute of Nutraceuticals and Functional Foods (INAF) , Université Laval, Quebec, Canada .,3 Department of Nutrition, Université de Montréal , Montreal, Canada
| |
Collapse
|
38
|
Kieckens E, Rybarczyk J, Barth SA, Menge C, Cox E, Vanrompay D. Effect of lactoferrin on release and bioactivity of Shiga toxins from different Escherichia coli O157:H7 strains. Vet Microbiol 2016; 202:29-37. [PMID: 27039884 DOI: 10.1016/j.vetmic.2016.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 11/30/2022]
Abstract
Prevention of enterohemorrhagic Escherichia coli (EHEC) O157:H7 infections and of their severe clinical sequelae in humans remain to be a current challenge. Administration of bovine lactoferrin (bLF) proved to be effective in clearing EHEC from the bovine intestine, an important EHEC reservoir, suggesting that bLF may also be beneficial in human application against EHEC infections. To estimate the biological safety of this approach, we analyzed the effects of bLF on the main EHEC virulence factor, Shiga toxin (Stx). We quantified the release of Stx 1 and 2 from two O157:H7 EHEC strains (Stx1+Stx2+ and Stx2+ producing, respectively) cultured in the presence of bLF using ELISA assays and assessed cytotoxic effects of bLF and co-cultured EHEC on Vero cells. Effects of bLF on the stability of Stx2 were investigated using western blotting. ELISA results indicate a bLF concentration-dependent decrease of active, cell-free Stx2, but not Stx1 in EHEC cultures. High concentrations (100 and 50mg/ml) of bLF resulted in significantly reduced (p<0.05) metabolic activity rates of Vero cells, whereas a concentration of 10mg/ml bLF was considered non-toxic for Vero cells. At concentrations of 1 or 0.1mg/ml, bLF mitigated the verocytotoxicity of EHEC strains in a co-culture model up to 48h after inoculation. When only colonizing bacteria were taken into account, cytotoxicity could be significantly reduced by 10 and 1mg/ml bLF during 48h. This effect of bLF at least partly results from degradation of the Stx2 receptor-binding B-subunit.
Collapse
Affiliation(s)
- E Kieckens
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - J Rybarczyk
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 654, 9000 Gent, Belgium
| | - S A Barth
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| | - C Menge
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| | - E Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - D Vanrompay
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 654, 9000 Gent, Belgium
| |
Collapse
|
39
|
Gibbons JA, Kanwar JR, Kanwar RK. Iron-free and iron-saturated bovine lactoferrin inhibit survivin expression and differentially modulate apoptosis in breast cancer. BMC Cancer 2015; 15:425. [PMID: 25998617 PMCID: PMC4440599 DOI: 10.1186/s12885-015-1441-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/15/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Iron binding, naturally occurring protein bovine lactoferrin (bLf) has attracted attention as a safe anti-cancer agent capable of inducing apoptosis. Naturally, bLf exists partially saturated (15-20%) with Fe(3+) however, it has been demonstrated that manipulating the saturation state can enhance bLf's anti-cancer activities. METHODS Apo-bLf (Fe(3+) free) and Fe-bLf (>90% Fe(3+) Saturated) were therefore, tested in MDA-MB-231 and MCF-7 human breast cancer cells in terms of cytotoxicity, proliferation, migration and invasion. Annexin-V Fluos staining was also employed in addition to apoptotic protein arrays and Western blotting to determine the specific mechanism of bLf-induced apoptosis with a key focus on p53 and inhibitor of apoptosis proteins (IAP), specifically survivin. RESULTS Apo-bLf induced significantly greater cytotoxicity and reduction in cell proliferation in both cancer cells showing a time and dose dependent effect. Importantly, no cytotoxicity was detected in normal MCF-10-2A cells. Both forms of bLf significantly reduced cell invasion in cancer cells. Key apoptotic molecules including p53, Bcl-2 family proteins, IAP members and their inhibitors were significantly modulated by both forms of bLf, though differentially in each cell line. Most interestingly, both Apo-bLf and Fe-bLf completely inhibited the expression of survivin protein (key IAP), after 48 h at 30 and 40 nM in cancer cells. CONCLUSIONS The capacity of these forms of bLf to target survivin expression and modulation of apoptosis demonstrates an exciting potential for bLf as an anti-cancer therapeutic in the existing void of survivin inhibitors, with a lack of successful inhibitors in the clinical management of cancer.
Collapse
Affiliation(s)
- Jessica A Gibbons
- Nanomedicine - Laboratory for Immunology and Molecular Biomedical Research, Molecular and Medical Research Facility, School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia.
| | - Jagat R Kanwar
- Nanomedicine - Laboratory for Immunology and Molecular Biomedical Research, Molecular and Medical Research Facility, School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia.
| | - Rupinder K Kanwar
- Nanomedicine - Laboratory for Immunology and Molecular Biomedical Research, Molecular and Medical Research Facility, School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
40
|
Novel approaches to improve the intrinsic microbiological safety of powdered infant milk formula. Nutrients 2015; 7:1217-44. [PMID: 25685987 PMCID: PMC4344585 DOI: 10.3390/nu7021217] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/29/2015] [Indexed: 02/07/2023] Open
Abstract
Human milk is recognised as the best form of nutrition for infants. However; in instances where breast-feeding is not possible, unsuitable or inadequate, infant milk formulae are used as breast milk substitutes. These formulae are designed to provide infants with optimum nutrition for normal growth and development and are available in either powdered or liquid forms. Powdered infant formula is widely used for convenience and economic reasons. However; current manufacturing processes are not capable of producing a sterile powdered infant formula. Due to their immature immune systems and permeable gastro-intestinal tracts, infants can be more susceptible to infection via foodborne pathogenic bacteria than other age-groups. Consumption of powdered infant formula contaminated by pathogenic microbes can be a cause of serious illness. In this review paper, we discuss the current manufacturing practices present in the infant formula industry, the pathogens of greatest concern, Cronobacter and Salmonella and methods of improving the intrinsic safety of powdered infant formula via the addition of antimicrobials such as: bioactive peptides; organic acids; probiotics and prebiotics.
Collapse
|
41
|
Alexander DB, Iigo M, Hamano H, Kozu T, Saito Y, Saito D, Kakizoe T, Xu J, Yamauchi K, Takase M, Suzui M, Tsuda H. An ancillary study of participants in a randomized, placebo-controlled trial suggests that ingestion of bovine lactoferrin promotes expression of interferon alpha in the human colon. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
42
|
|