1
|
Kuć-Szymanek A, Kubik-Machura D, Kościelecka K, Męcik-Kronenberg T, Radko L. Neurotoxicological Effects of Some Mycotoxins on Humans Health and Methods of Neuroprotection. Toxins (Basel) 2025; 17:24. [PMID: 39852977 PMCID: PMC11769516 DOI: 10.3390/toxins17010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Food contamination with mycotoxin-producing fungi increases the risk of many diseases, including neurological diseases closely related to the neurotoxicity of these toxins. Based on the latest literature data, we presented the association of common Fusarium mycotoxins with neurological diseases. Articles from 2001 to 2024 were analyzed. The mechanisms underlying the neurotoxicity of the described mycotoxins were presented. They are mainly related to the increase in oxidative stress in neuronal cells, which leads to higher levels of pro-inflammatory cytokines as IL-1β, IL-6 and TNF-α, enzymatic activity as GST, GPx, CAT and SOD and neurotransmitter dysfunction (5-HT, serotonin, dopamine and GABA). At the end of the article, based on the literature data, we attempted to present ways to mitigate mycotoxin neurotoxicity using mainly natural substances of plant origin. The data in this review focus on the Fusarium mycotoxins most frequently found in food and will be useful as comparative information for future studies. It is important to conduct further studies to mitigate the neurotoxic effects of Fusarium mycotoxins in order to reduce the development of diseases of the nervous system.
Collapse
Affiliation(s)
- Aleksandra Kuć-Szymanek
- Faculty of Medical and Health Sciences, University in Siedlce, Stanisława Konarskiego St. 2, 08-110 Siedlce, Poland;
| | - Daria Kubik-Machura
- Provincial Specialist Hospital No. 5 St. Barbara in Sosnowiec, Trauma Center, Plac Medyków St. 1, 41-200 Sosnowiec, Poland;
| | | | - Tomasz Męcik-Kronenberg
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, 3 Maja St. 13, 41-800 Zabrze, Poland;
- Collegium Medicum im. Dr. Władysław Biegański, Jan Długosz University, Wahington St. 4/8, 42-200 Czestochowa, Poland
| | - Lidia Radko
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wolynska St. 35, 60-637 Poznan, Poland
| |
Collapse
|
2
|
Huybrechts I, Jacobs I, Biessy C, Aglago EK, Jenab M, Claeys L, Zavadil J, Casagrande C, Nicolas G, Scelo G, Altieri A, Fervers B, Oswald IP, Vignard J, Chimera B, de Magistris MS, Masala G, Palli D, Padroni L, Castilla J, Jiménez-Zabala A, Frenoy P, Mancini FR, Ren X, Sonestedt E, Vineis P, Heath A, Werner M, Molina-Montes E, Dahm CC, Langmann F, Huerta JM, Brustad M, Skeie G, Schulze MB, Agudo A, Sieri S, Korenjak M, Gunter MJ, De Saeger S, De Boevre M. Associations between dietary mycotoxins exposures and risk of hepatocellular carcinoma in a European cohort. PLoS One 2024; 19:e0315561. [PMID: 39680546 PMCID: PMC11649147 DOI: 10.1371/journal.pone.0315561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Mycotoxins have been hypothesized to contribute to a diversity of adverse health effects in humans, even at low concentrations. Certain mycotoxins are established human carcinogens, whereas for others research suggests potential carcinogenic effects. The aim of this study was to determine the association between dietary exposure to mycotoxins and hepatobiliary cancers in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. EPIC questionnaire data were matched to mycotoxin food occurrence data compiled by the European Food Safety Authority to assess long-term dietary mycotoxin exposure (expressed as μg/kg body weight/day) and then relate them to the risk of hepatocellular carcinoma (HCC) (n = 255) and biliary tract cancers (n = 273). Analyses were conducted using multivariable Cox proportional hazards regression models to compute hazard ratios (HR) and 95% confidence intervals (95% CI). Key food groups contributing to mycotoxin exposure were cereals and cereal-based products, vegetables, non-alcoholic beverages (including fruit juices) and fruits. Estimated intake of deoxynivalenol (DON) and its derivatives was positively associated with HCC risk (HRT3vsT1: 1.90, 95% CI: 1.18-3.05, p-trend <0.01). No statistically significant associations were found for the other mycotoxins. Further research to confirm our observations and investigate potential underlying mechanisms of these compounds is warranted. These data may provide evidence of HCC risks associated with higher dietary intake levels of DON, which has not yet been classified as a human carcinogen.
Collapse
Affiliation(s)
- Inge Huybrechts
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
| | - Inarie Jacobs
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Carine Biessy
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Elom K. Aglago
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Mazda Jenab
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Liesel Claeys
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
- International Agency for Research on Cancer (IARC/WHO), Epigenomics and Mechanisms Branch, Lyon, France
| | - Jiri Zavadil
- International Agency for Research on Cancer (IARC/WHO), Epigenomics and Mechanisms Branch, Lyon, France
| | - Corinne Casagrande
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Genevieve Nicolas
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | | | | | - Isabelle P. Oswald
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Julien Vignard
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Bernadette Chimera
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | | | - Giovanna Masala
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Domenico Palli
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Lisa Padroni
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Jesús Castilla
- Instituto de Salud Pública de Navarra–IdiSNA, Pamplona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ana Jiménez-Zabala
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain
- BioGipuzkoa Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, San Sebastián, Spain
| | - Pauline Frenoy
- UVSQ, Inserm "Exposome, Heredity, Cancer and Health" Team, CESP U1018, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Francesca Romana Mancini
- UVSQ, Inserm "Exposome, Heredity, Cancer and Health" Team, CESP U1018, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Xuan Ren
- UVSQ, Inserm "Exposome, Heredity, Cancer and Health" Team, CESP U1018, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Emily Sonestedt
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Paolo Vineis
- Cancer Epidemiology and Prevention Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Alicia Heath
- Cancer Epidemiology and Prevention Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Mårten Werner
- Department of Public Health and Clinikal Medicine, Umeå University, Umeå, Sweden
| | - Esther Molina-Montes
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) ‘José Mataix’, Biomedical Research Centre, University of Granada, Granada, Spain
| | | | - Fie Langmann
- Dept. of Public Health, Aarhus University, Aarhus, Denmark
| | - José María Huerta
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council-IMIB, Murcia, Spain
| | - Magritt Brustad
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- The Public Dental Health Service Competence Centre of Northern Norway, Tromsø, Norway
| | - Guri Skeie
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology ‐ ICO, L’Hospitalet de Llobregat, Spain
- Nutrition and Cancer Group, Bellvitge Biomedical Research Institute ‐ IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michael Korenjak
- International Agency for Research on Cancer (IARC/WHO), Epigenomics and Mechanisms Branch, Lyon, France
| | - Marc J. Gunter
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
- Cancer Epidemiology and Prevention Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Sarah De Saeger
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
| | - Marthe De Boevre
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Zhao H, Peramuna T, Ajmal S, Wendt KL, Petrushenko ZM, Premachandra K, Cichewicz RH, Rybenkov VV. Inhibitor of Chromosome Segregation in Pseudomonas aeruginosa from Fungal Extracts. ACS Chem Biol 2024; 19:1387-1396. [PMID: 38843873 PMCID: PMC11197941 DOI: 10.1021/acschembio.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024]
Abstract
Chromosome segregation is an essential cellular process that has the potential to yield numerous targets for drug development. This pathway is presently underutilized partially due to the difficulties in the development of robust reporter assays suitable for high throughput screening. In bacteria, chromosome segregation is mediated by two partially redundant systems, condensins and ParABS. Based on the synthetic lethality of the two systems, we developed an assay suitable for screening and then screened a library of fungal extracts for potential inhibitors of the ParABS pathway, as judged by their enhanced activity on condensin-deficient cells. We found such activity in extracts of Humicola sp. Fractionation of the extract led to the discovery of four new analogues of sterigmatocystin, one of which, 4-hydroxy-sterigmatocystin (4HS), displayed antibacterial activity. 4HS induced the phenotype typical for parAB mutants including defects in chromosome segregation and cell division. Specifically, bacteria exposed to 4HS produced anucleate cells and were impaired in the assembly of the FtsZ ring. Moreover, 4HS binds to purified ParB in a ParS-modulated manner and inhibits its ParS-dependent CTPase activity. The data describe a small molecule inhibitor of ParB and expand the known spectrum of activities of sterigmatocystin to include bacterial chromosome segregation.
Collapse
Affiliation(s)
- Hang Zhao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Thilini Peramuna
- Natural
Products Discovery Group, Institute for Natural Products Applications
and Research Technologies, Department of Chemistry & Biochemistry,
Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Sidra Ajmal
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Karen L. Wendt
- Natural
Products Discovery Group, Institute for Natural Products Applications
and Research Technologies, Department of Chemistry & Biochemistry,
Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zoya M. Petrushenko
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Kaushika Premachandra
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Robert H. Cichewicz
- Natural
Products Discovery Group, Institute for Natural Products Applications
and Research Technologies, Department of Chemistry & Biochemistry,
Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Valentin V. Rybenkov
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
4
|
Wang W, Yuan Y, Ma Y, Wu R, He S, He L. Risk assessment of exposure to 12 kinds of mycotoxins through consumption of Pericarpium Citri Reticulatae collected from Three Gorges Reservoir area of China. Toxicon 2024; 243:107745. [PMID: 38718841 DOI: 10.1016/j.toxicon.2024.107745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
A method for simultaneous determination of 12 mycotoxins in Pericarpium Citri Reticulataeby HPLC-MS/MS was established to analyze the residues of mycotoxins, inwhich from Three Gorges Reservoir area of China, including AFB1, AFB2, AFG1, AFG2, T-2, FB1, FB2, FB3, ZEN, OTA, OTB and DON.In addition, a probabilistic assessment model based on Monte Carlo simulation method was established in combination with pollution data, and the health risk assessment was carried out by the exposure limit method (MOE).The results showed that the method with strong specificity, good linearity and accurate recovery was established and could be used for the determination of 12 mycotoxins in Pericarpium Citri Reticulatae.In general, the total pollution rate of different degrees of pollution in the 36 batches of Pericarpium Citri Reticulatae sampleswas 75 %. It should be noted thatthe proportion of positive samplescontaminated by one toxin was the highest (59.26 %), and the detection rate of FB3 in Pericarpium Citri Reticulataewas the highest (66.67%), followed by AFG1 (44.44 %), indicating that the medicinal material polluted by AFG1 and AFB3 alone or simultaneously was more serious. Specifically, the detection rate of mycotoxins in Chongqing was the highest (92.31%) on account of the high temperature and humidity in Chongqing, followed by Southeast of Sichuan (83.33%) and West of Hubei (45.45%).On the other hand, the MOE of AFB1 and AFB2 calculated were both greater than 10000, indicating that the health risk of AFB1 and AFB2 exposure caused by taking Pericarpium Citri Reticulatae was low, but the risk of high intake population was higher than that of conventional intake population, which needed to be paid attention to. This study can provide a reference for the safety assessment of clinical medication of Pericarpium Citri Reticulatae inThree Gorges Reservoir area.
Collapse
Affiliation(s)
- Wenting Wang
- Chongqing Wanzhou Food and Drug Inspection Institute, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404100, China
| | - Yuan Yuan
- Department of Pharmacy, University of Copenhagen, 999017, Denmark
| | - Yingjie Ma
- Chongqing Wanzhou Food and Drug Inspection Institute, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404100, China
| | - Rong Wu
- Chongqing Wanzhou Food and Drug Inspection Institute, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404100, China
| | - Shixin He
- Chongqing Wanzhou Food and Drug Inspection Institute, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404100, China
| | - Lingzhi He
- Chongqing Wanzhou Food and Drug Inspection Institute, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404100, China.
| |
Collapse
|
5
|
de Sá SVM, Sousa Monteiro C, Fernandes JO, Pinto E, Faria MA, Cunha SC. Evaluating the human neurotoxicity and toxicological interactions impact of co-occurring regulated and emerging mycotoxins. Food Res Int 2024; 184:114239. [PMID: 38609220 DOI: 10.1016/j.foodres.2024.114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
Mycotoxins can inflict harmful effects on diverse organs, and mounting evidence indicates their potential involvement in human neurodegenerative diseases. Given the common occurrence of these toxins in food, there is an increasing demand for a comprehensive assessment of their combined toxicity to enhance our understanding of their potential hazards. This research investigates mycotoxin exposure from widely consumed cereal-based products, including enniatin B (ENNB), sterigmatocystin (STG), aflatoxin B1 (AFB1), cyclopiazonic acid (CPZ), citrinin (CIT), and ochratoxin A (OTA). Employing the median-effect equation based on Chou and Talalay's mass-action law, we assessed their cytotoxicity in human SH-SY5Y neuronal cells. Notably, ENNB displayed the highest neurotoxicity (IC50 = 3.72 µM), followed by OTA (9.10 µM) and STG (9.99 µM). The combination of OTA + STG exhibited the highest toxicity (IC50 = 3.77 µM), while CPZ + CIT showed the least detrimental effect. Approximately 70 % of tested binary combinations displayed synergistic or additive effects, except for ENNB + STG, ENNB + AFB1, and CPZ + CIT, which showed antagonistic interactions. Intriguingly, the senary combination displayed moderate antagonism at the lowest exposure and moderate synergism at higher doses. OTA exhibited predominantly synergistic interactions, comprising approximately 90 %, a noteworthy finding considering its prevalence in food. Conversely, ENNB interactions tended to be antagonistic. The most remarkable synergy occurred in the STG and CIT combination, enabling a 50-fold reduction in CIT dosage for an equivalent toxic effect. These findings highlight the biological relevance of robust synergistic interactions, emphasizing the need to assess human exposure hazards accurately, particularly considering frequent mycotoxin co-occurrence in environmental and food settings.
Collapse
Affiliation(s)
- Soraia V M de Sá
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carolina Sousa Monteiro
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Eugénia Pinto
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Miguel A Faria
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Kos J, Radić B, Lešić T, Anić M, Jovanov P, Šarić B, Pleadin J. Climate Change and Mycotoxins Trends in Serbia and Croatia: A 15-Year Review. Foods 2024; 13:1391. [PMID: 38731762 PMCID: PMC11083470 DOI: 10.3390/foods13091391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This review examines the 15-year presence of mycotoxins in food from Serbia and Croatia to provide a comprehensive overview of trends. Encompassing the timeframe from 2009 to 2023, this study integrates data from both countries and investigates climate change patterns. The results from Serbia focus primarily on maize and milk and show a strong dependence of contamination on weather conditions. However, there is limited data on mycotoxins in cereals other than maize, as well as in other food categories. Conversely, Croatia has a broader spectrum of studies, with significant attention given to milk and maize, along with more research on other cereals, meat, and meat products compared to Serbia. Over the investigated 15-year period, both Serbia and Croatia have experienced notable shifts in climate, including fluctuations in temperature, precipitation, and humidity levels. These changes have significantly influenced agriculture, consequently affecting the occurrence of mycotoxins in various food products. The results summarized in this 15-year review indicate the urgent need for further research and action to address mycotoxins contamination in Serbian and Croatian food supply chains. This urgency is further emphasized by the changing climatic conditions and their potential to exacerbate public health and food safety risks associated with mycotoxins.
Collapse
Affiliation(s)
- Jovana Kos
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.R.); (P.J.); (B.Š.)
| | - Bojana Radić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.R.); (P.J.); (B.Š.)
| | - Tina Lešić
- Laboratory for Analytical Chemistry, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (T.L.); (J.P.)
| | - Mislav Anić
- Croatian Meteorological and Hydrological Service, Ravnice 48, 10000 Zagreb, Croatia;
| | - Pavle Jovanov
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.R.); (P.J.); (B.Š.)
| | - Bojana Šarić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.R.); (P.J.); (B.Š.)
| | - Jelka Pleadin
- Laboratory for Analytical Chemistry, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (T.L.); (J.P.)
| |
Collapse
|
7
|
de Sá SVM, Faria MA, Fernandes JO, Cunha SC. In Vitro Digestion and Intestinal Absorption of Mycotoxins Due to Exposure from Breakfast Cereals: Implications for Children's Health. Toxins (Basel) 2024; 16:205. [PMID: 38787057 PMCID: PMC11126104 DOI: 10.3390/toxins16050205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Breakfast cereals play a crucial role in children's diets, providing essential nutrients that are vital for their growth and development. Children are known to be more susceptible than adults to the harmful effects of food contaminants, with mycotoxins being a common concern in cereals. This study specifically investigated aflatoxin B1 (AFB1), enniatin B (ENNB), and sterigmatocystin (STG), three well-characterized mycotoxins found in cereals. The research aimed to address existing knowledge gaps by comprehensively evaluating the bioaccessibility and intestinal absorption of these three mycotoxins, both individually and in combination, when consumed with breakfast cereals and milk. The in vitro gastrointestinal method revealed patterns in the bioaccessibility of AFB1, ENNB, and STG. Overall, bioaccessibility increased as the food progressed from the stomach to the intestinal compartment, with the exception of ENNB, whose behavior differed depending on the type of milk. The ranking of overall bioaccessibility in different matrices was as follows: digested cereal > cereal with semi-skimmed milk > cereal with lactose-free milk > cereal with soy beverage. Bioaccessibility percentages varied considerably, ranging from 3.1% to 86.2% for AFB1, 1.5% to 59.3% for STG, and 0.6% to 98.2% for ENNB. Overall, the inclusion of milk in the ingested mixture had a greater impact on bioaccessibility compared to consuming the mycotoxins as a single compound or in combination. During intestinal transport, ENNB and STG exhibited the highest absorption rates when ingested together. This study highlights the importance of investigating the combined ingestion and transport of these mycotoxins to comprehensively assess their absorption and potential toxicity in humans, considering their frequent co-occurrence and the possibility of simultaneous exposure.
Collapse
Affiliation(s)
| | | | | | - Sara C. Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (S.V.M.d.S.); (M.A.F.); (J.O.F.)
| |
Collapse
|
8
|
Son YE, Park HS. Coordination of two regulators SscA and VosA in Aspergillus nidulans conidia. Fungal Genet Biol 2024; 171:103877. [PMID: 38447800 DOI: 10.1016/j.fgb.2024.103877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Airborne fungal spores are a major cause of fungal diseases in humans, animals, and plants as well as contamination of foods. Previous studies found a variety of regulators including VosA, VelB, WetA, and SscA for sporogenesis and the long-term viability in Aspergillus nidulans. To gain a mechanistic understanding of the complex regulatory mechanisms in asexual spores, here, we focused on the relationship between VosA and SscA using comparative transcriptomic analysis and phenotypic studies. The ΔsscA ΔvosA double-mutant conidia have lower spore viability and stress tolerance compared to the ΔsscA or ΔvosA single mutant conidia. Deletion of sscA or vosA affects chitin levels and mRNA levels of chitin biosynthetic genes in conidia. In addition, SscA and VosA are required for the dormant state of conidia and conidial germination by modulating the mRNA levels of the cytoskeleton and development-associated genes. Overall, these results suggest that SscA and VosA play interdependent roles in governing spore maturation, dormancy, and germination in A. nidulans.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
9
|
Zhao Y, Zeng R, Chen P, Huang C, Xu K, Huang X, Wang X. Transcriptomic and Proteomic Insights into the Effect of Sterigmatocystin on Aspergillus flavus. J Fungi (Basel) 2023; 9:1193. [PMID: 38132793 PMCID: PMC10745003 DOI: 10.3390/jof9121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Aspergillus flavus is an important fungus that produces aflatoxins, among which aflatoxin B1 (AFB1) is the most toxic and contaminates food and poses a high risk to human health. AFB1 interacts with another mycotoxin sterigmatocystin (STC), which is also a precursor of AFB1. Herein, we determined the effect of STC on AFB1 by evaluating A. flavus transcriptomic and proteomic profiles in the presence or absence of STC by RNA-seq and isobaric tagging, respectively. Overall, 3377 differentially expressed genes were identified by RNA-seq. These genes were mainly associated with the cellular component organisation and biosynthesis, the synthesis of valine, leucine, and isoleucine, and the synthesis of aflatoxin. Clustered genes responsible for AFB1 biosynthesis exhibited varying degrees of downregulation, and norB expression was completely suppressed in the experimental group. During proteomic analysis, 331 genes were differentially expressed in response to STC. These differentially expressed proteins were associated with cell parts and catalytic and antioxidant activities. Differentially expressed proteins predominantly participated in metabolic pathways associated with aflatoxin biosynthesis, glycolysis/gluconeogenesis, glutathione metabolism, and carbon metabolism. Notably, the upregulated and downregulated enzymes in carbohydrate and glutathione metabolisms may serve as potential gateways for inhibiting aflatoxin biosynthesis. Moreover, twelve proteins including seven downregulated ones involved in aflatoxin biosynthesis were identified; among them, AflG was the most downregulated, suggesting that it may be the key enzyme responsible for inhibiting aflatoxin synthesis. These findings provide novel insights into A. flavus control and the mechanisms regulating mycotoxin production.
Collapse
Affiliation(s)
- Yarong Zhao
- Institute of Quality Standard and Monitoring Technology for Agro-Product of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Z.); (R.Z.); (P.C.); (C.H.); (K.X.); (X.H.)
- Laboratory of Quality and Safety Risk Assessment for Agro-Product (Guangzhou), Ministry of Agriculture, Guangzhou 510640, China
| | - Rui Zeng
- Institute of Quality Standard and Monitoring Technology for Agro-Product of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Z.); (R.Z.); (P.C.); (C.H.); (K.X.); (X.H.)
- Laboratory of Quality and Safety Risk Assessment for Agro-Product (Guangzhou), Ministry of Agriculture, Guangzhou 510640, China
| | - Peirong Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Product of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Z.); (R.Z.); (P.C.); (C.H.); (K.X.); (X.H.)
- Laboratory of Quality and Safety Risk Assessment for Agro-Product (Guangzhou), Ministry of Agriculture, Guangzhou 510640, China
| | - Chulan Huang
- Institute of Quality Standard and Monitoring Technology for Agro-Product of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Z.); (R.Z.); (P.C.); (C.H.); (K.X.); (X.H.)
- Laboratory of Quality and Safety Risk Assessment for Agro-Product (Guangzhou), Ministry of Agriculture, Guangzhou 510640, China
| | - Kaihang Xu
- Institute of Quality Standard and Monitoring Technology for Agro-Product of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Z.); (R.Z.); (P.C.); (C.H.); (K.X.); (X.H.)
- Laboratory of Quality and Safety Risk Assessment for Agro-Product (Guangzhou), Ministry of Agriculture, Guangzhou 510640, China
| | - Xiaomei Huang
- Institute of Quality Standard and Monitoring Technology for Agro-Product of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Z.); (R.Z.); (P.C.); (C.H.); (K.X.); (X.H.)
- Laboratory of Quality and Safety Risk Assessment for Agro-Product (Guangzhou), Ministry of Agriculture, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Product of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Z.); (R.Z.); (P.C.); (C.H.); (K.X.); (X.H.)
- Laboratory of Quality and Safety Risk Assessment for Agro-Product (Guangzhou), Ministry of Agriculture, Guangzhou 510640, China
| |
Collapse
|
10
|
Zadravec M, Lešić T, Brnić D, Pleadin J, Kraak B, Jakopović Ž, Perković I, Vahčić N, Tkalec VJ, Houbraken J. Regional distribution and diversity of Aspergillus and Penicillium species on Croatian traditional meat products. Int J Food Microbiol 2023; 406:110404. [PMID: 37778241 DOI: 10.1016/j.ijfoodmicro.2023.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
Various factors, such as weather and production practices (e.g., environmental hygiene, process duration, raw material quality, ripening temperature, and relative humidity), in combination with the intrinsic product properties (e.g., pH, aw, salt content), significantly affect the growth of surface moulds. The aim of this study was to isolate and identify surface moulds retrieved from traditional meat products (TMPs) and correlate these data to the production region and production technology. The surface of 250 TMPs (dry-fermented sausages, n = 108; dry-cured meat products, n = 142) from five Croatian regions were sampled during a two-year period. Dry-fermented sausages had a significantly higher pH and a lower salt concentration when compared to dry-cured meat products. In total, 528 isolates were obtained, comprising 20 Penicillium and 17 Aspergillus species. The species most frequently isolated from the dry-fermented sausages were P. commune (32.4 %), A. proliferans (33 %), and P. solitum (14.8 %), while A. proliferans (52.1 %), P. commune (28.9 %) and P. citrinum (19.7 %) predominated in dry-cured meat products. Aspergillus predominated on the TMPs from southern Croatia, while Penicillium was prevalent on products from the other four regions, possibly due to differences in weather conditions. Seven potentially mycotoxigenic species (A. creber, A. flavus, A. niger, A. westerdijkiae, P. citrinum, P. commune, and P. nordicum) were isolated and identified. Regular monitoring of mould species and their toxigenic metabolites present on traditional meat products is of the utmost importance from the public health perspective, while the results of such a monitoring can prove beneficial for the tailoring of the production technology development.
Collapse
Affiliation(s)
- Manuela Zadravec
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | - Tina Lešić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | - Dragan Brnić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | - Jelka Pleadin
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | - Bart Kraak
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.
| | - Željko Jakopović
- Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Irena Perković
- Croatian Veterinary Institute, Veterinary Department Vinkovci, J. Kozarca 24, 32100 Vinkovci, Croatia.
| | - Nada Vahčić
- Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Vesna Jaki Tkalec
- Croatian Veterinary Institute, Veterinary Department Križevci, Ivana Zakmardija Dijankovečkog 10, 48260 Križevci, Croatia.
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.
| |
Collapse
|
11
|
Deligeorgakis C, Magro C, Skendi A, Gebrehiwot HH, Valdramidis V, Papageorgiou M. Fungal and Toxin Contaminants in Cereal Grains and Flours: Systematic Review and Meta-Analysis. Foods 2023; 12:4328. [PMID: 38231837 DOI: 10.3390/foods12234328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
Cereal grains serve as the cornerstone of global nutrition, providing a significant portion of humanity's caloric requirements. However, the presence of fungal genera, such Fusarium, Penicillium, Aspergillus, and Alternaria, known for their mycotoxin-producing abilities, presents a significant threat to human health due to the adverse effects of these toxins. The primary objective of this study was to identify the predominant fungal contaminants in cereal grains utilized in breadmaking, as well as in flour and bread. Moreover, a systematic review, including meta-analysis, was conducted on the occurrence and levels of mycotoxins in wheat flour from the years 2013 to 2023. The genera most frequently reported were Fusarium, followed by Penicillium, Aspergillus, and Alternaria. Among the published reports, the majority focused on the analysis of Deoxynivalenol (DON), which garnered twice as many reports compared to those focusing on Aflatoxins, Zearalenone, and Ochratoxin A. The concentration of these toxins, in most cases determined by HPLC-MS/MS or HPLC coupled with a fluorescence detector (FLD), was occasionally observed to exceed the maximum limits established by national and/or international authorities. The prevalence of mycotoxins in flour samples from the European Union (EU) and China, as well as in foods intended for infants, exhibited a significant reduction compared to other commercial flours assessed by a meta-analysis investigation.
Collapse
Affiliation(s)
- Christodoulos Deligeorgakis
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| | - Christopher Magro
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta
| | - Adriana Skendi
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| | | | - Vasilis Valdramidis
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, GR-15771 Athens, Greece
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| |
Collapse
|
12
|
Mastanjević K, Kovačević D, Nešić K, Krstanović V, Habschied K. Traditional Meat Products-A Mycotoxicological Review. Life (Basel) 2023; 13:2211. [PMID: 38004351 PMCID: PMC10671907 DOI: 10.3390/life13112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Traditional meat products are commonly produced in small family businesses. However, big industries are also involved in the production of this kind of product, especially since a growing number of consumers crave the traditional taste and aromas. The popularization of original and organic products has resulted in a return to traditional production methods. Traditional meat products are produced worldwide. However, in such (domesticated) conditions there is a potential danger for mycotoxin contamination. This review aims to present the sources of mycotoxins in traditional meat products, the most common mycotoxins related to such meat products, and future prospects regarding the suppression of their occurrence. Special attention should be paid to reducing the transfer of mycotoxins via the food chain from animal feed to animals to humans (stable-to-table principle), which is also described in this review. Other sources of mycotoxins (spices, environment, etc.) should also be monitored for mycotoxins in traditional production. The importance of monitoring and regulating mycotoxins in meat products, especially in traditional meat products, is slowly being recognized by the institutions and hopefully, in the future, can deliver legally regulated limits for such products. This is especially important since meat products are available to the general population and can seriously affect human health.
Collapse
Affiliation(s)
- Krešimir Mastanjević
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.M.); (D.K.); (V.K.)
| | - Dragan Kovačević
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.M.); (D.K.); (V.K.)
| | - Ksenija Nešić
- Food and Feed Department, Institute of Veterinary Medicine of Serbia, Smolućska 11, 11070 Beograd, Serbia;
| | - Vinko Krstanović
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.M.); (D.K.); (V.K.)
| | - Kristina Habschied
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.M.); (D.K.); (V.K.)
| |
Collapse
|
13
|
Penagos-Tabares F, Mahmood M, Khan MZU, Talha HMA, Sajid M, Rafique K, Naveed S, Faas J, Artavia JI, Sulyok M, Müller A, Krska R, Zebeli Q. Co-occurrence of mycotoxins and other fungal metabolites in total mixed rations of cows from dairy farms in Punjab, Pakistan. Mycotoxin Res 2023; 39:421-436. [PMID: 37665547 PMCID: PMC10635927 DOI: 10.1007/s12550-023-00502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
After India and the USA, Pakistan is the third country leading in global dairy production, a sector of very high socioeconomic relevance in Asia. Mycotoxins can affect animal health, reproduction and productivity. This study analysed a broad range of co-occurring mycotoxins and fungal secondary metabolites derived from Alternaria, Aspergillus, Fusarium, Penicillium and other fungal species. To complete this, a validated multi-metabolite liquid chromatography/electrospray ionization-tandem mass spectrometric (LC/ESI-MS/MS) method was employed, detecting 96 of > 500 tested secondary fungal metabolites. This first preliminary study demonstrated that total mixed rations (TMRs) (n = 30) from big commercial dairy cattle farms (> 200 lactating cows) in Punjab, Pakistan, presented ubiquitous contamination with mixtures of mycotoxins. The mean of mycotoxins per sample was 14, ranging from 11 to 20 mycotoxins among all TMR samples. Metabolites derived from other fungi and Fusarium spp. showed the highest levels, frequency and diversity among the detected fungal compounds. Among the most prevalent mycotoxins were Fusarium toxins like fumonisins B1 (FB1) (93%), B2 (FB2) (100%) and B3 (FB3) (77%) and others. Aflatoxin B1 (AFB1) was evidenced in 40% of the samples, and 7% exceeded the EU maximum limit for feeding dairy cattle (5 µg/kg at 88% dry matter). No other mycotoxin exceeds the EU guidance values (GVs). Additionally, we found that dietary ingredients like corn grain, soybean meal and canola meal were related to increased contamination of some mycotoxins (like FB1, FB2 and FB3) in TMR from the province of Punjab, Pakistan. Among typical forage sources, the content of maize silage was ubiquitous. Individually, the detected mycotoxins represented relatively low levels. However, under a realistic scenario, long-term exposure to multiple mycotoxins and other fungal secondary metabolites can exert unpredictable effects on animal health, reproduction and productivity. Except for ergot alkaloids (73%), all the groups of metabolites (i.e. derived from Alternaria spp., Aspergillus spp., Fusarium spp., Penicillium spp. and other fungi) occurred in 100% of the TMR samples. At individual levels, no other mycotoxins than AFB1 represented a considerable risk; however, the high levels of co-occurrence with several mycotoxins/metabolites suggest that long-term exposure should be considered because of their potential toxicological interactions (additive or synergistic effects).
Collapse
Affiliation(s)
- Felipe Penagos-Tabares
- Unit of Nutritional Physiology, Institute of Physiology, Pathophysiology, and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
- Department for Farm Animals and Veterinary Public Health, Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, 3430, Tulln, Austria.
| | - Mubarik Mahmood
- Department of Animal Sciences, University of Veterinary and Animal Sciences, Lahore, Subcampus Jhang, 12 km Chiniot Road, Jhang, 35200, Pakistan
| | - Muhammad Zafar Ullah Khan
- Agri-Food Research & Sustainable Solutions (ARASS), Private Limited F-1, IBL Market, Ghouri Block, Bahria Town, Lahore, 54000, Pakistan
| | - Hafiz Muhammad Amjad Talha
- Department of Animal Sciences, University of Veterinary and Animal Sciences, Lahore, Subcampus Jhang, 12 km Chiniot Road, Jhang, 35200, Pakistan
| | - Muhammad Sajid
- Department of Animal Sciences, University of Veterinary and Animal Sciences, Lahore, Subcampus Jhang, 12 km Chiniot Road, Jhang, 35200, Pakistan
| | - Kanwal Rafique
- Department of Animal Sciences, University of Veterinary and Animal Sciences, Lahore, Subcampus Jhang, 12 km Chiniot Road, Jhang, 35200, Pakistan
| | - Saima Naveed
- Department of Animal Nutrition, Ravi Campus, Pattoki, University of Veterinary and Animal Sciences, Lahore, 55300, Pakistan
| | - Johannes Faas
- DSM-BIOMIN Research Center, Technopark 1, 3430, Tulln an der Donau, Austria
| | | | - Michael Sulyok
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
| | - Anneliese Müller
- DSM-BIOMIN Research Center, Technopark 1, 3430, Tulln an der Donau, Austria
| | - Rudolf Krska
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Qendrim Zebeli
- Department for Farm Animals and Veterinary Public Health, Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| |
Collapse
|
14
|
Mihalache OA, De Boevre M, Dellafiora L, De Saeger S, Moretti A, Pinson-Gadais L, Ponts N, Richard-Forget F, Susca A, Dall’Asta C. The Occurrence of Non-Regulated Mycotoxins in Foods: A Systematic Review. Toxins (Basel) 2023; 15:583. [PMID: 37756008 PMCID: PMC10534703 DOI: 10.3390/toxins15090583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
The aim of this systematic review is to provide an update on the occurrence and co-occurrence of selected non-regulated mycotoxins and provide an overview of current regulations. Fifteen non-regulated mycotoxins were found in 19 food categories worldwide. On top of that, 38 different combinations of non-regulated mycotoxins were found, with mixtures varying from binary combinations up to 12 mycotoxins. Taking into consideration the amount of evidence regarding the prevalence and co-occurrence of non-regulated mycotoxins, future steps should be taken considering continuous monitoring, scientific exchange, and generation of high-quality data. To enhance data quality, guidelines outlining the minimum quality criteria for both occurrence data and metadata are needed. By doing so, we can effectively address concerns related to the toxicity of non-regulated mycotoxins. Furthermore, obtaining more data concerning the co-occurrence of both regulated and non-regulated mycotoxins could aid in supporting multiple chemical risk assessment methodologies. Implementing these steps could bolster food safety measures, promote evidence-based regulations, and ultimately safeguard public health from the potential adverse effects of non-regulated mycotoxins.
Collapse
Affiliation(s)
| | - Marthe De Boevre
- Center of Excellence in Mycotoxicology and Public Health, Ghent University, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (O.A.M.); (L.D.)
| | - Sarah De Saeger
- Center of Excellence in Mycotoxicology and Public Health, Ghent University, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
| | - Antonio Moretti
- ISPA-CNR—Institute of Sciences of Food Production, National Research Council, 70126 Bari, Italy; (A.M.); (A.S.)
| | - Laetitia Pinson-Gadais
- INRAE, UR1264 Mycology and Food Safety (MycSA), F-33882 Villenave d’Ornon, France; (L.P.-G.); (N.P.); (F.R.-F.)
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), F-33882 Villenave d’Ornon, France; (L.P.-G.); (N.P.); (F.R.-F.)
| | - Florence Richard-Forget
- INRAE, UR1264 Mycology and Food Safety (MycSA), F-33882 Villenave d’Ornon, France; (L.P.-G.); (N.P.); (F.R.-F.)
| | - Antonia Susca
- ISPA-CNR—Institute of Sciences of Food Production, National Research Council, 70126 Bari, Italy; (A.M.); (A.S.)
| | - Chiara Dall’Asta
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (O.A.M.); (L.D.)
| |
Collapse
|
15
|
Alonso-Jauregui M, López de Cerain A, Azqueta A, Rodriguez-Garraus A, Gil AG, González-Peñas E, Vettorazzi A. In Vivo Genotoxicity and Toxicity Assessment of Sterigmatocystin Individually and in Mixture with Aflatoxin B1. Toxins (Basel) 2023; 15:491. [PMID: 37624248 PMCID: PMC10467059 DOI: 10.3390/toxins15080491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Mycotoxins are natural food and feed contaminants produced by several molds. The primary mode of exposure in humans and animals is through mixtures. Aflatoxin B1 (AFB1) and sterigmatocystin (STER) are structurally related mycotoxins that share the same biosynthetic route. Few in vivo genotoxicity assays have been performed with STER. In the present genotoxicity study, Wistar rats were dosed orally with STER (20 mg/kg b.w.), AFB1 (0.25 mg/kg b.w.) or a mixture of both in an integrated micronucleus (bone marrow) and comet study (liver and kidney). STER was dosed at the highest feasible dose in corn oil. No increase in the percentage of micronuclei in bone marrow was observed at any condition. Slight DNA damage was detected in the livers of animals treated with AFB1 or the mixture (DNA strand breaks and Fpg (Formamidopyrimidine DNA glycosylase)-sensitive sites, respectively). Plasma, liver, and kidney samples were analyzed with LC-MS/MS demonstrating exposure to both mycotoxins. General toxicity parameters (organs absolute weight, biochemistry, and histopathology) were not altered either individually or in the mixture. The overall absence of individual genotoxicity did not allow us to set any type of interaction in the mixture. However, a possible toxicokinetic interaction was observed.
Collapse
Affiliation(s)
- Maria Alonso-Jauregui
- MITOX Research Group, Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.A.-J.); (A.L.d.C.); (A.A.); (A.R.-G.); (A.G.G.)
| | - Adela López de Cerain
- MITOX Research Group, Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.A.-J.); (A.L.d.C.); (A.A.); (A.R.-G.); (A.G.G.)
| | - Amaya Azqueta
- MITOX Research Group, Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.A.-J.); (A.L.d.C.); (A.A.); (A.R.-G.); (A.G.G.)
| | - Adriana Rodriguez-Garraus
- MITOX Research Group, Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.A.-J.); (A.L.d.C.); (A.A.); (A.R.-G.); (A.G.G.)
| | - Ana Gloria Gil
- MITOX Research Group, Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.A.-J.); (A.L.d.C.); (A.A.); (A.R.-G.); (A.G.G.)
| | - Elena González-Peñas
- MITOX Research Group, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
| | - Ariane Vettorazzi
- MITOX Research Group, Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.A.-J.); (A.L.d.C.); (A.A.); (A.R.-G.); (A.G.G.)
| |
Collapse
|
16
|
Abreu DCP, Vargas EA, Oliveira FADS, Uetanabaro APT, Pires PN, Bazzana MJF, Saczk AA. Study of co-occurrence of mycotoxins in cocoa beans in Brazil by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1049-1058. [PMID: 37505626 DOI: 10.1080/19440049.2023.2238838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023]
Abstract
In this study, 135 samples of cocoa beans collected in the Amazon and Atlantic Forest regions of Brazil were analysed to evaluate the possible co-occurrence of 34 mycotoxins. The results indicate that 42% of the cocoa samples exhibited quantifiable levels for 11 mycotoxins: aflatoxins (AFs) B1, B2 and G1; ochratoxin A; citrinin; cyclopiazonic acid; tenuazonic acid; paxilline; sterigmatocystin; zearalenone and fumonisin B2. Of the samples, 18% exhibited the co-occurrence of up to six mycotoxins. No toxins belonging to the groups of trichothecenes or ergot alkaloids were detected. Contingency analysis of the incidence of mycotoxins did not show significant differences between the two regions evaluated. Seven samples were contaminated with AFs, while only one contained ochratoxin A above 10 μg kg-1. The accuracy of the method was evaluated by proficiency testing for ochratoxin A, where satisfactory Z-scores were obtained.
Collapse
Affiliation(s)
| | - Eugenia Azevedo Vargas
- Laboratory of Quality Control and Food Safety, National Agricultural Laboratory of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Muñoz-Solano B, González-Peñas E. Biomonitoring of 19 Mycotoxins in Plasma from Food-Producing Animals (Cattle, Poultry, Pigs, and Sheep). Toxins (Basel) 2023; 15:toxins15040295. [PMID: 37104233 PMCID: PMC10144229 DOI: 10.3390/toxins15040295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Mycotoxins are of great concern in relation to food safety. When animals are exposed to them, health problems, economic losses in farms and related industries, and the carryover of these compounds to animal-derived foods can occur. Therefore, control of animal exposure is of great importance. This control may be carried out by analyzing raw material and/or feed or through the analysis of biomarkers of exposure in biological matrixes. This second approach has been chosen in the present study. Firstly, a methodology capable of analyzing mycotoxins and some derivatives (AFB1, OTA, ZEA, DON, 3- and 15-ADON, DOM-1, T-2, HT-2, AFM1, STER, NEO, DAS, FUS-X, AFB2, AFG1, AFG2, OTB, and NIV) by LC-MS/MS in human plasma, has been revalidated to be applied in animal plasma. Secondly, this methodology was used in 80 plasma samples obtained from animals dedicated to food production: cattle, pigs, poultry, and sheep (20 samples of each), with and without being treated with a mixture of β-glucuronidase-arylsulfatase to determine possible glucuronide and sulfate conjugates. Without enzymatic treatment, no mycotoxin was detected in any of the samples. Only one sample from poultry presented levels of DON and 3- and 15-ADON. With enzymatic treatment, only DON (1 sample) and STER were detected. The prevalence of STER was 100% of the samples, without significant differences among the four species; however, the prevalence and levels of this mycotoxin in the previously analyzed feed were low. This could be explained by the contamination of the farm environment. Animal biomonitoring can be a useful tool to assess animal exposure to mycotoxins. However, for these studies to be carried out and to be useful, knowledge must be increased on appropriate biomarkers for each mycotoxin in different animal species. In addition, adequate and validated analytical methods are needed, as well as knowledge of the relationships between the levels found in biological matrices and mycotoxin intake and toxicity.
Collapse
Affiliation(s)
- Borja Muñoz-Solano
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain
| | - Elena González-Peñas
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
18
|
Penagos-Tabares F, Sulyok M, Artavia JI, Flores-Quiroz SI, Garzón-Pérez C, Castillo-Lopez E, Zavala L, Orozco JD, Faas J, Krska R, Zebeli Q. Mixtures of Mycotoxins, Phytoestrogens, and Other Secondary Metabolites in Whole-Plant Corn Silages and Total Mixed Rations of Dairy Farms in Central and Northern Mexico. Toxins (Basel) 2023; 15:153. [PMID: 36828467 PMCID: PMC9965745 DOI: 10.3390/toxins15020153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Mycotoxins and endocrine disruptors such as phytoestrogens can affect cattle health, reproduction, and productivity. Most studies of mycotoxins in dairy feeds in Mexico and worldwide have been focused on a few (regulated) mycotoxins. In contrast, less known fungal toxins, phytoestrogens, and other metabolites have been neglected and underestimated. This study analyzed a broad spectrum (>800) of mycotoxins, phytoestrogens, and fungal, plant, and unspecific secondary metabolites in whole-plant corn silages (WPCSs) and total mixed rations (TMRs) collected from 19 Mexican dairy farms. A validated multi-metabolite liquid chromatography/electrospray ionization-tandem mass spectrometric (LC/ESI-MS/MS) method was used. Our results revealed 125 of >800 tested (potentially toxic) secondary metabolites. WPCSs/TMRs in Mexico presented ubiquitous contamination with mycotoxins, phytoestrogens, and other metabolites. The average number of mycotoxins per TMR was 24, ranging from 9 to 31. Fusarium-derived secondary metabolites showed the highest frequencies, concentrations, and diversity among the detected fungal compounds. The most frequently detected mycotoxins in TMRs were zearalenone (ZEN) (100%), fumonisin B1 (FB1) (84%), and deoxynivalenol (84%). Aflatoxin B1 (AFB1) and ochratoxin A (OTA), previously reported in Mexico, were not detected. All TMR samples tested positive for phytoestrogens. Among the investigated dietary ingredients, corn stover, sorghum silage, and concentrate proportions were the most correlated with levels of total mycotoxins, fumonisins (Fs), and ergot alkaloids, respectively.
Collapse
Affiliation(s)
- Felipe Penagos-Tabares
- Unit of Nutritional Physiology, Institute of Physiology, Pathophysiology, and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- FFoQSI GmbH—Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, 3430 Tulln, Austria
| | - Michael Sulyok
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| | | | - Samanta-Irais Flores-Quiroz
- Facultad de Estudios Superiores Cuautitlán, Cuautitlán, Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico
| | - César Garzón-Pérez
- Facultad de Estudios Superiores Cuautitlán, Cuautitlán, Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico
| | - Ezequías Castillo-Lopez
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Luis Zavala
- DSM-BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | | | - Johannes Faas
- DSM-BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - Rudolf Krska
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Qendrim Zebeli
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
19
|
Fabijanić I, Jurković M, Jakšić D, Piantanida I. Photoluminescent Gold/BSA Nanoclusters (AuNC@BSA) as Sensors for Red-Fluorescence Detection of Mycotoxins. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8448. [PMID: 36499945 PMCID: PMC9740986 DOI: 10.3390/ma15238448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The BSA-encapsulated gold nanoclusters (AuNC@BSA) have drawn considerable interest and demonstrated applications as biological sensors. In this study, we demonstrated that the red-emitting AuNC@BSA prepared using a modified procedure fully retained the binding of standard BSA-ligands (small molecule drugs), significantly improving fluorescence detection in some cases due to the red-emission property. Further, we showed that AuNC@BSA efficiently bind a series of aflatoxin-related mycotoxins as well as the aliphatic mycotoxin FB1, reporting interactions in the nanomolar range by instantaneous emission change at 680 nm. Such red emission detection is advantageous over current detection strategies for the same mycotoxins, based on complex mass spectrometry procedures or, eventually (upon chemical modification of the mycotoxin), by fluorescence detection in the UV range (<400 nm). The later technique yields fluorescence strongly overlapping with the intrinsic absorption and emission of biorelevant mixtures in which mycotoxins appear. Thus, here we present a new approach using the AuNC@BSA red fluorescence reporter for mycotoxins as a fast, cheap, and simple detection technique that offers significant advantages over currently available methods.
Collapse
Affiliation(s)
- Ivana Fabijanić
- Division of Organic Chemistry and Biochemistry, Laboratory for Biomolecular Interactions and Spectroscopy, Ruđer Bošković Institute, 10002 Zagreb, Croatia
| | - Marta Jurković
- Division of Organic Chemistry and Biochemistry, Laboratory for Biomolecular Interactions and Spectroscopy, Ruđer Bošković Institute, 10002 Zagreb, Croatia
| | - Daniela Jakšić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Laboratory for Biomolecular Interactions and Spectroscopy, Ruđer Bošković Institute, 10002 Zagreb, Croatia
| |
Collapse
|
20
|
Mycotoxins and Essential Oils-From a Meat Industry Hazard to a Possible Solution: A Brief Review. Foods 2022; 11:foods11223666. [PMID: 36429263 PMCID: PMC9688991 DOI: 10.3390/foods11223666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
The preservation of food supplies has been humankind's priority since ancient times, and it is arguably more relevant today than ever before. Food sustainability and safety have been heavily prioritized by consumers, producers, and government entities alike. In this regard, filamentous fungi have always been a health hazard due to their contamination of the food substrate with mycotoxins. Additionally, mycotoxins are proven resilient to technological processing. This study aims to identify the main mycotoxins that may occur in the meat and meat products "Farm to Fork" chain, along with their effect on the consumers' health, and also to identify effective methods of prevention through the use of essential oils (EO). At the same time, the antifungal and antimycotoxigenic potential of essential oils was considered in order to provide an overview of the subject. Targeting the main ways of meat products' contamination, the use of essential oils with proven in vitro or in situ efficacy against certain fungal species can be an effective alternative if all the associated challenges are addressed (e.g., application methods, suitability for certain products, toxicity).
Collapse
|
21
|
Oueslati S, Ben Yakhlef S, Vila-Donat P, Pallarés N, Ferrer E, Barba F, Berrada H. Multi-mycotoxin determination in coffee beans marketed in Tunisia and the associated dietary exposure assessment. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Claeys L, De Saeger S, Scelo G, Biessy C, Casagrande C, Nicolas G, Korenjak M, Fervers B, Heath AK, Krogh V, Luján-Barroso L, Castilla J, Ljungberg B, Rodriguez-Barranco M, Ericson U, Santiuste C, Catalano A, Overvad K, Brustad M, Gunter MJ, Zavadil J, De Boevre M, Huybrechts I. Mycotoxin Exposure and Renal Cell Carcinoma Risk: An Association Study in the EPIC European Cohort. Nutrients 2022; 14:3581. [PMID: 36079840 PMCID: PMC9460795 DOI: 10.3390/nu14173581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Mycotoxins have been suggested to contribute to a spectrum of adverse health effects in humans, including at low concentrations. The recognition of these food contaminants being carcinogenic, as co-occurring rather than as singularly present, has emerged from recent research. The aim of this study was to assess the potential associations of single and multiple mycotoxin exposures with renal cell carcinoma risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. METHODS Food questionnaire data from the EPIC cohort were matched to mycotoxin food occurrence data compiled by the European Food Safety Authority (EFSA) from European Member States to assess long-term dietary mycotoxin exposures, and to associate these with the risk of renal cell carcinoma (RCC, n = 911 cases) in 450,112 EPIC participants. Potential confounding factors were taken into account. Analyses were conducted using Cox's proportional hazards regression models to compute hazard ratios (HRs) and 95% confidence intervals (95% CIs) with mycotoxin exposures expressed as µg/kg body weight/day. RESULTS Demographic characteristics differed between the RCC cases and non-cases for body mass index, age, alcohol intake at recruitment, and other dietary factors. In addition, the mycotoxin exposure distributions showed that a large proportion of the EPIC population was exposed to some of the main mycotoxins present in European foods such as deoxynivalenol (DON) and derivatives, fumonisins, Fusarium toxins, Alternaria toxins, and total mycotoxins. Nevertheless, no statistically significant associations were observed between the studied mycotoxins and mycotoxin groups, and the risk of RCC development. CONCLUSIONS These results show an absence of statistically significant associations between long-term dietary mycotoxin exposures and RCC risk. However, these results need to be validated in other cohorts and preferably using repeated dietary exposure measurements. In addition, more occurrence data of, e.g., citrinin and fumonisins in different food commodities and countries in the EFSA database are a prerequisite to establish a greater degree of certainty.
Collapse
Affiliation(s)
- Liesel Claeys
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg 2092, South Africa
| | - Ghislaine Scelo
- Genomic Epidemiology Branch, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France
| | - Carine Biessy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France
| | - Corinne Casagrande
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France
| | - Genevieve Nicolas
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France
| | - Michael Korenjak
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France
| | - Beatrice Fervers
- Department Prevention Cancer Environment, Centre Léon Bérard, U1296 INSERM Radiation, Defense, Health and Environment, 28 Rue Laënnec, 69373 Lyon, France
| | - Alicia K. Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto dei Tumori di Milano, 1 Via Venezian, 20133 Milan, Italy
| | - Leila Luján-Barroso
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology—IDIBELL, Granvia de L-Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Spain
| | - Jesús Castilla
- Navarra Public Health Institute—IdiSNA, Leyre 15, 31003 Pamplona, Spain
- Centre for Biomedical Research in Epidemiology and Public Health (CIBERESP), C. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, SE-901 87 Umeå, Sweden
| | - Miguel Rodriguez-Barranco
- Centre for Biomedical Research in Epidemiology and Public Health (CIBERESP), C. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Andalusian School of Public Health (EASP), 4 Cta. del Observatorio, 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 15 Av. de Madrid, 18012 Granada, Spain
| | - Ulrika Ericson
- Department of Clinical Sciences in Malmö, Lund University, Jan Waldenströms gata 35, SE-214 28 Malmö, Sweden
| | - Carmen Santiuste
- Centre for Biomedical Research in Epidemiology and Public Health (CIBERESP), C. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Department of Epidemiology, Murcia Regional Heath Council, IMIB-Arrixaca, 11 Ronda de Levante, 30008 Murcia, Spain
| | - Alberto Catalano
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Kim Overvad
- Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark
| | - Magritt Brustad
- Department of Community Medicine, The Arctic University of Norway, Hansines veg 18, 9019 Tromsø, Norway
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Inge Huybrechts
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France
| |
Collapse
|
23
|
Mahata PK, Dass RS, Gunti L, Thorat PA. First report on the metabolic characterization of Sterigmatocystin production by select Aspergillus species from the Nidulantes section in Foeniculum vulgare. Front Microbiol 2022; 13:958424. [PMID: 36090109 PMCID: PMC9459157 DOI: 10.3389/fmicb.2022.958424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
Spices are typically grown in climates that support the growth of toxigenic fungi and the production of mycotoxins. The Aspergilli described in this study, as well as the sterigmatocystin (STC) detected, are causes for concern due to their potential to induce food poisoning. One of the most well-known producers of the carcinogenic STC is Aspergillus nidulans. This research explores the occurrence of STC-producing fungi in Foeniculum vulgare, a spice that is marketed in India and other parts of the world. This innovative study details the mycotoxigenic potential of five Aspergilli belonging to Section Nidulantes, namely Aspergillus latus (02 isolates), Emericella quadrilineata (02 isolates), and Aspergillus nidulans (01 isolate), with respect to STC contamination. These five isolates of Aspergilli were screened to produce STC on yeast extract sucrose (YES) medium in a controlled environment with regard to light, temperature, pH, and humidity, among other variables. The expression patterns of regulatory genes, namely, aflR, laeA, pacC, fluG, flbA, pksA, and mtfA were studied on the Czapek–Dox agar (CDA) medium. STC biosynthesis by the test isolates was done in potato dextrose broth (PDB) under optimum conditions, followed by the extraction and purification of the broth using ethyl acetate. High-performance liquid chromatography (HPLC) with an ultraviolet (UV) detector was utilized to detect compounds in eluted samples. F. vulgare contains Aspergilli that have been shown to have mycotoxigenic potential, which can accumulate in the spice during its active growth and thereby cause the elaboration of mycotoxins.
Collapse
|
24
|
Fliszár-Nyúl E, Faisal Z, Skaper R, Lemli B, Bayartsetseg B, Hetényi C, Gömbös P, Szabó A, Poór M. Interaction of the Emerging Mycotoxins Beauvericin, Cyclopiazonic Acid, and Sterigmatocystin with Human Serum Albumin. Biomolecules 2022; 12:biom12081106. [PMID: 36009000 PMCID: PMC9406214 DOI: 10.3390/biom12081106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022] Open
Abstract
Beauvericin (BEA), cyclopiazonic acid (CPA), and sterigmatocystin (STC) are emerging mycotoxins. They appear as contaminants in food and animal feed, leading to economic losses and health risks. Human serum albumin (HSA) forms stable complexes with certain mycotoxins, including ochratoxins, alternariol, citrinin, and zearalenone. HSA binding can influence the toxicokinetics of xenobiotics, and albumin can also be considered and applied as a relatively cheap affinity protein. Therefore, we examined the potential interactions of BEA, CPA, and STC with HSA employing fluorescence spectroscopy, ultracentrifugation, ultrafiltration, and molecular modeling. Spectroscopic and ultracentrifugation studies demonstrated the formation of low-affinity BEA–HSA (Ka ≈ 103 L/mol) and moderately strong CPA–HSA and STC–HSA complexes (Ka ≈ 104 L/mol). In ultrafiltration experiments, CPA slightly displaced each site marker (warfarin, naproxen, and camptothecin) tested, while BEA and STC did not affect significantly the albumin binding of these drugs. Modeling studies suggest that CPA occupies Sudlow’s site I, while STC binds to the Heme site (FA1) on HSA. Considering the interactions of CPA with the site markers, the CPA–HSA interaction may have toxicological importance.
Collapse
Affiliation(s)
- Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Zelma Faisal
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Renáta Skaper
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Beáta Lemli
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Department of Organic and Pharmacological Chemistry, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Green Chemistry Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Bayarsaikhan Bayartsetseg
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Patrik Gömbös
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary
| | - András Szabó
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-72-501-500 (ext. 28316)
| |
Collapse
|
25
|
Lindemann V, Schleiner T, Maier U, Fels H, Cramer B, Humpf HU. Analysis of mold and mycotoxins in naturally infested indoor building materials. Mycotoxin Res 2022; 38:205-220. [PMID: 35900668 PMCID: PMC9356937 DOI: 10.1007/s12550-022-00461-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 10/25/2022]
Abstract
Health issues of residents of mold-infested housing are reported on a regular basis, and reasons for the arising impairments can be manifold. One possible cause are the toxic secondary metabolite produced by indoor microfungi (mycotoxins). To enable a more thorough characterization of the exposure to mycotoxins in indoor environments, data on occurrence and quantities of mycotoxins is essential. In the presented study, 51 naturally mold-infested building material samples were analyzed applying a previously developed method based on ultra-high performance liquid chromatography (UHPLC) separation in combination with triple-quadrupole mass spectrometry (TQMS) detection. A total of 38 secondary metabolites derived from different indoor mold genera like Aspergillus, Fusarium, Penicillium, and Stachybotrys were analyzed, of which 16 were detectable in 28 samples. As both the spectrum of target analytes and the investigated sample matrices showed high chemical varieties, an alternative calibration approach was applied complementary to identify potentially emerging matrix effects during ionization and mass spectrometric detection. Overall, strong alterations of analyte signals were rare, and compensation of considerable matrix suppression/enhancement only had to be performed for certain samples. Besides mycotoxin determination and quantification, the presence of 18 different mold species was confirmed applying microbiological approaches in combination with macro- and microscopic identification according to DIN ISO 16000-17:2010-06. These results additionally highlight the diversity of mycotoxins potentially arising in indoor environments and leads to the assumption that indoor mycotoxin exposure stays an emerging topic of research, which has only just commenced.
Collapse
Affiliation(s)
- Viktoria Lindemann
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Tim Schleiner
- Umweltlabor ACB GmbH Münster, Albrecht-Thaer-Straße 14, 48147, Münster, Germany
| | - Ulrich Maier
- Umweltlabor ACB GmbH Münster, Albrecht-Thaer-Straße 14, 48147, Münster, Germany
| | - Hubert Fels
- Umweltlabor ACB GmbH Münster, Albrecht-Thaer-Straße 14, 48147, Münster, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany.
| |
Collapse
|
26
|
Penagos-Tabares F, Khiaosa-ard R, Schmidt M, Bartl EM, Kehrer J, Nagl V, Faas J, Sulyok M, Krska R, Zebeli Q. Cocktails of Mycotoxins, Phytoestrogens, and Other Secondary Metabolites in Diets of Dairy Cows in Austria: Inferences from Diet Composition and Geo-Climatic Factors. Toxins (Basel) 2022; 14:toxins14070493. [PMID: 35878231 PMCID: PMC9318294 DOI: 10.3390/toxins14070493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/11/2022] Open
Abstract
Dairy production is a pivotal economic sector of Austrian and European agriculture. Dietary toxins and endocrine disruptors of natural origin such as mycotoxins and phytoestrogens can affect animal health, reproduction, and productivity. This study characterized the profile of a wide spectrum of fungal, plant, and unspecific secondary metabolites, including regulated, emerging, and modified mycotoxins, phytoestrogens, and cyanogenic glucosides, in complete diets of lactating cows from 100 Austrian dairy farms. To achieve this, a validated multi-metabolite liquid chromatography/electrospray ionization−tandem mass spectrometric (LC/ESI−MS/MS) method was employed, detecting 155 of >800 tested metabolites. Additionally, the most influential dietary and geo-climatic factors related to the dietary mycotoxin contamination of Austrian dairy cattle were recognized. We evidenced that the diets of Austrian dairy cows presented ubiquitous contamination with mixtures of mycotoxins and phytoestrogens. Metabolites derived from Fusarium spp. presented the highest concentrations, were the most recurrent, and had the highest diversity among the detected fungal compounds. Zearalenone, deoxynivalenol, and fumonisin B1 were the most frequently occurring mycotoxins considered in the EU legislation, with detection frequencies >70%. Among the investigated dietary factors, inclusion of maize silage (MS) and straw in the diets was the most influential factor in contamination with Fusarium-derived and other fungal toxins and metabolites, and temperature was the most influential among the geo-climatic factors.
Collapse
Affiliation(s)
- Felipe Penagos-Tabares
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (M.S.); (E.-M.B.); (J.K.); (Q.Z.)
| | - Ratchaneewan Khiaosa-ard
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (M.S.); (E.-M.B.); (J.K.); (Q.Z.)
- Correspondence:
| | - Marlene Schmidt
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (M.S.); (E.-M.B.); (J.K.); (Q.Z.)
| | - Eva-Maria Bartl
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (M.S.); (E.-M.B.); (J.K.); (Q.Z.)
| | - Johanna Kehrer
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (M.S.); (E.-M.B.); (J.K.); (Q.Z.)
| | - Veronika Nagl
- DSM—BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (V.N.); (J.F.)
| | - Johannes Faas
- DSM—BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (V.N.); (J.F.)
| | - Michael Sulyok
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz-Strasse 20, 3430 Tulln, Austria; (M.S.); (R.K.)
| | - Rudolf Krska
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz-Strasse 20, 3430 Tulln, Austria; (M.S.); (R.K.)
- Institute for Global Food Security, School of Biological Sciences, University Road, Belfast BT7 1NN, UK
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (M.S.); (E.-M.B.); (J.K.); (Q.Z.)
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
27
|
The Occurrence of Five Unregulated Mycotoxins Most Important for Traditional Dry-Cured Meat Products. Toxins (Basel) 2022; 14:toxins14070476. [PMID: 35878214 PMCID: PMC9315684 DOI: 10.3390/toxins14070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 01/27/2023] Open
Abstract
This study investigated the occurrence of 5 unregulated mycotoxins in a total of 250 traditional dry-cured meat products sampled in 2020 and 2021 in five Croatian regions (eastern, northern, central, western, and southern). Aflatoxin B1 (AFB1), ochratoxin A (OTA), sterigmatocystin (STC), citrinin (CIT), and cyclopiazonic acid (CPA) concentrations were related to the geographical region of the product’s origin and to local weather. The results revealed the contamination of 27% of samples, namely, STC in 4% of samples in concentrations of up to 3.93 µg/kg, OTA in 10% of samples in concentrations of up to 4.81 µg/kg, and CPA in 13% of samples in concentrations of up to 335.5 µg/kg. No AFB1 or CIT contamination was seen. Although no statistically significant differences in concentrations of individual mycotoxins across the production regions were found, differences in mycotoxin occurrence were revealed. The eastern and western regions, with moderate climate, delivered the largest number of contaminated samples, while the southern region, often compared with subtropics, delivered the smallest, so that the determined mycotoxins were probably mainly produced by the Penicillium rather than the Aspergillus species. Due to the interaction of various factors that may affect mycotoxin biosynthesis during production, the detected concentrations cannot be related solely to the weather.
Collapse
|
28
|
Metabolism of versicolorin A, a genotoxic precursor of aflatoxin B1: Characterization of metabolites using in vitro production of standards. Food Chem Toxicol 2022; 167:113272. [PMID: 35803361 DOI: 10.1016/j.fct.2022.113272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022]
Abstract
The toxicity of mycotoxins containing bisfuranoid structures such as aflatoxin B1 (AFB1) depends largely on biotransformation processes. While the genotoxicity and mutagenicity of several bisfuranoid mycotoxins including AFB1 and sterigmatocystin have been linked to in vivo bioactivation of these molecules into reactive epoxide forms, the metabolites of genotoxic and mutagenic AFB1 precursor versicolorin A (VerA) have not yet been characterized. Because this molecule is not available commercially, our strategy was to produce a library of metabolites derived from the biotransformation of in-house purified VerA, following incubation with human liver S9 fractions, in presence of appropriate cofactors. The resulting chromatographic and mass-spectrometric data were used to identify VerA metabolites produced by intestinal cell lines as well as intestinal and liver tissues exposed ex vivo. In this way, we obtained a panel of metabolites suggesting the involvement of phase I (M + O) and phase II (glucuronide and sulfate metabolites) enzymes, the latter of which is implicated in the detoxification process. This first qualitative description of the metabolization products of VerA suggests bioactivation of the molecule into an epoxide form and provides qualitative analytic data to further conduct a precise metabolism study of VerA required for the risk assessment of this emerging mycotoxin.
Collapse
|
29
|
Gützkow KL, Al Ayoubi C, Vasco LS, Rohn S, Maul R. Analysis of ochratoxin A, aflatoxin B1 and its biosynthetic precursors in cheese – Method development and market sample screening. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Overview of Recent Liquid Chromatography Mass Spectrometry-Based Methods for Natural Toxins Detection in Food Products. Toxins (Basel) 2022; 14:toxins14050328. [PMID: 35622576 PMCID: PMC9143482 DOI: 10.3390/toxins14050328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 01/25/2023] Open
Abstract
Natural toxins include a wide range of toxic metabolites also occurring in food and products, thus representing a risk for consumer health. In the last few decades, several robust and sensitive analytical methods able to determine their occurrence in food have been developed. Liquid chromatography mass spectrometry is the most powerful tool for the simultaneous detection of these toxins due to its advantages in terms of sensitivity and selectivity. A comprehensive review on the most relevant papers on methods based on liquid chromatography mass spectrometry for the analysis of mycotoxins, alkaloids, marine toxins, glycoalkaloids, cyanogenic glycosides and furocoumarins in food is reported herein. Specifically, a literature search from 2011 to 2021 was carried out, selecting a total of 96 papers. Different approaches to sample preparation, chromatographic separation and detection mode are discussed. Particular attention is given to the analytical performance characteristics obtained in the validation process and the relevant application to real samples.
Collapse
|
31
|
van den Brand AD, Bokkers BGH, te Biesebeek JD, Mengelers MJB. Combined Exposure to Multiple Mycotoxins: An Example of Using a Tiered Approach in a Mixture Risk Assessment. Toxins (Basel) 2022; 14:303. [PMID: 35622550 PMCID: PMC9145316 DOI: 10.3390/toxins14050303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023] Open
Abstract
Humans are exposed to mycotoxins on a regular basis. Exposure to a mixture of mycotoxins may, therefore, result in a combination of adverse effects, or trigger the same effects. This should be accounted for when assessing the combined risk of multiple mycotoxins. Here, we show the outcome of using different approaches in assessing the risks related to the combined exposure to mycotoxins. We performed a tiered approach using assessment groups with a common target organ (kidney, liver and haematologic system), or a common adverse effect (phenomenon) (reduced white blood cell count), to combine the exposure to mycotoxins. The combined exposure was calculated for the individuals in this assessment, using the Monte Carlo Risk Assessment (MCRA) tool. The risk related to this combined exposure was assessed using toxicological reference values, e.g., health based guidance values. We show that estimating the combined risk by adding the single compounds' risk distributions slightly overestimates the combined risk in the 95th percentile, as compared to combining the exposures at an individual level. We also show that relative potency factors can be used to refine the mixture risk assessment, as compared to ratios of toxicological reference values with different effect sizes and assessment factors.
Collapse
Affiliation(s)
- Annick D. van den Brand
- National Institute for Public Health and the Environment (RIVM), 3721 BA Bilthoven, The Netherlands; (B.G.H.B.); (J.D.t.B.); (M.J.B.M.)
| | | | | | | |
Collapse
|
32
|
Pandey AK, Samota MK, Sanches Silva A. Mycotoxins along the tea supply chain: A dark side of an ancient and high valued aromatic beverage. Crit Rev Food Sci Nutr 2022; 63:8672-8697. [PMID: 35452322 DOI: 10.1080/10408398.2022.2061908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACTSTea (Camellia sinensis L.) is a high valued beverage worldwide since ancient times; more than three billion cups of tea are consumed each day. Leaf extracts of the plant are used for food preservation, cosmetics, and medicinal purposes. Nevertheless, tea contaminated with mycotoxins poses a serious health threat to humans. Mycotoxin production by tea fungi is induced by a variety of factors, including poor processing methods and environmental factors such as high temperature and humidity. This review summarizes the studies published to date on mycotoxin prevalence, toxicity, the effects of climate change on mycotoxin production, and the methods used to detect and decontaminate tea mycotoxins. While many investigations in this domain have been carried out on the prevalence of aflatoxins and ochratoxins in black, green, pu-erh, and herbal teas, much less information is available on zearalenone, fumonisins, and Alternaria toxins. Mycotoxins in teas were detected using several methods; the most commonly used being the High-Performance Liquid Chromatography (HPLC) with fluorescence detection, followed by HPLC with tandem mass spectrometry, gas chromatography and enzyme-linked immunosorbent assay. Further, mycotoxins decontamination methods for teas included physical, chemical, and biological methods, with physical methods being most prevalent. Finally, research gaps and future directions have also been discussed.
Collapse
Affiliation(s)
- Abhay K Pandey
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, West Bengal, India
| | - Mahesh K Samota
- Horticulture Crop Processing Division, ICAR- Central Institute of Post Harvest Engineering & Technology, Ludhiana, Punjab, India
| | - Ana Sanches Silva
- Food Science, National Institute for Agricultural and Veterinary Research (INIAV), Oeiras, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
| |
Collapse
|
33
|
Profiles of Sterigmatocystin and Its Metabolites during Traditional Chinese Rice Wine Processing. BIOSENSORS 2022; 12:bios12040212. [PMID: 35448272 PMCID: PMC9028121 DOI: 10.3390/bios12040212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/02/2022]
Abstract
Mycotoxin pollution is widespread in cereal, which greatly threatens food security and human health. In this study, the migration and transformation of sterigmatocystin (STG) mycotoxin during the contaminated rice wine processing was systematically assessed. QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) coupled with ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UPLC−MS/MS) method was firstly established for STG analysis in rice wine. It was found that high levels of rice leaven caused a significant reduction in STG in the fermented rice and wine, which was mainly due to the adsorption of yeast cells and Rhizopus biological degradation. However, compared with rice, the levels of STG in separated fermented wine was significantly decreased by 88.6%, possibly attributed to its high log Kow (3.81) and low water solubility (1.44 mg/L). The metabolites of STG (i.e., monohydroxy STG) were identified in rice wine fermentation for the first time. Moreover, STG disturbed the metabolic profile rice wine composition mainly by glycine, serine and threonine metabolism, alanine, aspartate and glutamate metabolism, purine metabolism pathway, particularly with regard to eight amino acids and sixteen lipids. This study elucidated the STG migration and transformation mechanism during the rice wine processing. The finding provided new analytical method for mycotoxin exposure and pollutant in food production, which may support agricultural production and food security.
Collapse
|
34
|
Penagos-Tabares F, Khiaosa-Ard R, Schmidt M, Pacífico C, Faas J, Jenkins T, Nagl V, Sulyok M, Labuda R, Zebeli Q. Fungal species and mycotoxins in mouldy spots of grass and maize silages in Austria. Mycotoxin Res 2022; 38:117-136. [PMID: 35347677 PMCID: PMC9038934 DOI: 10.1007/s12550-022-00453-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022]
Abstract
Fungi and mycotoxins in silage can have detrimental consequences for both cattle and human health. This pilot study identified, via the routinary direct plating method, the dominant cultivable fungi in mouldy grass silages (GS) (n = 19) and maize silages (MS) (n = 28) from Austria. The profiles of regulated, modified, and emerging mycotoxins together with other fungal metabolites were analysed via LC-(ESI)MS/MS. Penicillium roqueforti, Saccharomyces spp., Geotrichum candidum, Aspergillus fumigatus and Monascus ruber were the most frequent fungal organisms identified. Other species including Mucor circinelloides, Fusarium spp. and Paecilomyces niveus were detected at lower frequencies. The presence of complex mixtures of toxic and potentially toxic compounds was evidenced by high levels and occurrences (≥ 50%) of Penicillium-produced compounds such as mycophenolic acid (MPA), roquefortines (ROCs), andrastins (ANDs) and marcfortine A. Mouldy silages contained toxins commonly produced by genus Fusarium (e.g. zearalenone (ZEN) and trichothecenes), Alternaria (like tenuazonic acid (TeA) and alternariol (AHO)) and Aspergillus (such as sterigmatocystin (STC)). Compared to those in GS, mouldy spots in MS presented significantly higher fungal counts and more diverse toxin profiles, in addition to superior levels of Fusarium spp., Penicillium spp. and total fungal metabolites. Generally, no correlation between mould counts and corresponding metabolites was detected, except for the counts of P. roqueforti, which were positively correlated with Penicillium spp. metabolites in mouldy MS. This study represents a first assessment of the fungal diversity in mouldy silage in Austria and highlights its potential role as a substantial contributor to contamination with complex mycotoxin mixtures in cattle diets.
Collapse
Affiliation(s)
- Felipe Penagos-Tabares
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Ratchaneewan Khiaosa-Ard
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.
| | - Marlene Schmidt
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Cátia Pacífico
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Johannes Faas
- BIOMIN Research Center, Technopark 1, 3430, Tulln a.d. Donau, Austria
| | - Timothy Jenkins
- BIOMIN Research Center, Technopark 1, 3430, Tulln a.d. Donau, Austria
| | - Veronika Nagl
- BIOMIN Research Center, Technopark 1, 3430, Tulln a.d. Donau, Austria
| | - Michael Sulyok
- Department IFA-Tulln, University of Natural Resources and Life Sciences (BOKU), Konrad Lorenzstrasse 20, 3430, Tulln, Austria
| | - Roman Labuda
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
- Research Platform Bioactive Microbial Metabolites (BiMM), 3430, Tulln a.d. Donau, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
- Department for Farm Animals and Veterinary Public Health, Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| |
Collapse
|
35
|
Kang YW, Baek SK, Choi M, Lee HJ, Koo YE. Occurrence and risk assessment of sterigmatocystin in agricultural products and processed foods in Korea. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:373-381. [PMID: 35020575 DOI: 10.1080/19440049.2021.1994156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Sterigmatocystin (STC), a carcinogenic mycotoxin, is known to be produced during the biosynthetic pathway of aflatoxin B1. STC in various foods was determined by LC-MS/MS and its risks were assessed. The analytical method was validated in different food categories, and the performance was acceptable based on the criteria of AOAC. A total 1,135 samples (613 agricultural products and 522 processed foods) were analysed, and STC was detected in 46 samples, indicating a detection rate of 4.1%. STC was found in the range of 0.08-10.07 ng/g, and the detection rates of STC were 3.9% in agricultural products and 4.2% in processed foods. The exposure to STC by average consumption of foods was estimated to 0.09 ng/kg b.w./day. The margin of exposure (MOE) approach was applied to assess the risk of STC, and MOE for the whole population was over 1 × 106. Exposure to STC from the consumption of foods distributed in Korea is unlikely to cause human health problems.
Collapse
Affiliation(s)
- Young Woon Kang
- Food Contaminants Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Su-Kyoung Baek
- Food Contaminants Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Minji Choi
- Food Contaminants Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Hwa Jeong Lee
- Food Contaminants Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Yong Eui Koo
- Food Contaminants Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| |
Collapse
|
36
|
Ezekiel CN, Abia WA, Braun D, Šarkanj B, Ayeni KI, Oyedele OA, Michael-Chikezie EC, Ezekiel VC, Mark BN, Ahuchaogu CP, Krska R, Sulyok M, Turner PC, Warth B. Mycotoxin exposure biomonitoring in breastfed and non-exclusively breastfed Nigerian children. ENVIRONMENT INTERNATIONAL 2022; 158:106996. [PMID: 34991256 DOI: 10.1016/j.envint.2021.106996] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
A multi-specimen, multi-mycotoxin approach involving ultra-sensitive LC-MS/MS analysis of breast milk, complementary food and urine was applied to examine mycotoxin co-exposure in 65 infants, aged 1-18 months, in Ogun state, Nigeria. Aflatoxin M1 was detected in breast milk (4/22 (18%)), while six other classes of mycotoxins were quantified; including dihydrocitrinone (6/22 (27%); range: 14.0-59.7 ng/L) and sterigmatocystin (1/22 (5%); 1.2 ng/L) detected for the first time. Seven distinct classes of mycotoxins including aflatoxins (9/42 (21%); range: 1.0-16.2 µg/kg) and fumonisins (12/42 (29%); range: 7.9-194 µg/kg) contaminated complementary food. Mycotoxins covering seven distinct classes with diverse structures and modes of action were detected in 64/65 (99%) of the urine samples, demonstrating ubiquitous exposure. Two aflatoxin metabolites (AFM1 and AFQ1) and FB1 were detected in 6/65 (9%), 44/65 (68%) and 17/65 (26%) of urine samples, respectively. Mixtures of mycotoxin classes were common, including 22/22 (100%), 14/42 (33%) and 56/65 (86%) samples having 2-6, 2-4, or 2-6 mycotoxins present, for breast milk, complementary food and urine, respectively. Aflatoxin and/or fumonisin was detected in 4/22 (18%), 12/42 (29%) and 46/65 (71%) for breast milk, complimentary foods and urine, respectively. Furthermore, the detection frequency, median concentrations and occurrence of mixtures were typically greater in urine of non-exclusively breastfed compared to exclusively breastfed infants. The study provides novel insights into mycotoxin co-exposures in early-life. Albeit a small sample set, it highlights transition to higher levels of infant mycotoxin exposure as complementary foods are introduced, providing impetus to mitigate during this critical early-life period and encourage breastfeeding.
Collapse
Affiliation(s)
- Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria; University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria.
| | - Wilfred A Abia
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria; Queen's University Belfast, School of Biological Sciences, Institute for Global Food Security, University Road, Belfast BT7 1NN, Northern Ireland, UK; Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Dominik Braun
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, A-1090 Vienna, Austria
| | - Bojan Šarkanj
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria; Department of Food Technology, University North, Center Koprivnica, Trg dr. Zarka Dolinara 1, HR, 48000 Koprivnica, Croatia
| | - Kolawole I Ayeni
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | | | - Emmanuel C Michael-Chikezie
- Clifford University, Owerrinta (Ihie Campus), Abia State, Nigeria; Benjamin Carson (Snr.) School of Medicine, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | | | - Beatrice N Mark
- Department of Community Health, Babcock University Teaching Hospital, Ilishan Remo, Ogun State, Nigeria
| | - Chinonso P Ahuchaogu
- Department of Clinical Sciences, Babcock University Teaching Hospital, Ilishan Remo, Ogun State, Nigeria
| | - Rudolf Krska
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria; Queen's University Belfast, School of Biological Sciences, Institute for Global Food Security, University Road, Belfast BT7 1NN, Northern Ireland, UK
| | - Michael Sulyok
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Paul C Turner
- MIAEH, School of Public Health, University of Maryland, College Park, MD 20742, USA
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, A-1090 Vienna, Austria.
| |
Collapse
|
37
|
Urinary Biomarkers of Mycotoxin Induced Nephrotoxicity-Current Status and Expected Future Trends. Toxins (Basel) 2021; 13:toxins13120848. [PMID: 34941686 PMCID: PMC8708607 DOI: 10.3390/toxins13120848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
The intensifying world-wide spread of mycotoxigenic fungal species has increased the possibility of mycotoxin contamination in animal feed and the human food chain. Growing evidence shows the deleterious toxicological effects of mycotoxins from infants to adults, while large population-based screening programs are often missing to identify affected individuals. The kidney functions as the major excretory system, which makes it particularly vulnerable to nephrotoxic injury. However, few studies have attempted to screen for kidney injury biomarkers in large, mycotoxin-exposed populations. As a result, there is an urgent need to screen them with sensitive biomarkers for potential nephrotoxicity. Although a plethora of biomarkers have been tested to estimate the harmful effects of a wide spectrum of toxicants, β2-microglobulin (β2-MG) and N-acetyl-β-D-glucosaminidase (NAG) are currently the dominant biomarkers employed routinely in environmental toxicology research. Nevertheless, kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) are also emerging as useful and informative markers to reveal mycotoxin induced nephrotoxicity. In this opinion article we consider the nephrotoxic effects of mycotoxins, the biomarkers available to detect and quantify the kidney injuries caused by them, and to recommend biomarkers to screen mycotoxin-exposed populations for renal damage.
Collapse
|
38
|
Abstract
Documented cases of mycotoxin occurrence in meat products call for further research into potential contamination sources, especially given an ever more increasing consumption of these nutritionally rich products. These foodstuffs can be contaminated with mycotoxins through three pathways: contaminated spices and other raw materials, mycotoxin-producing moulds present on the surface of dry-cured meat products, and carry-over effect from farm animals exposed to contaminated feed. In order to establish meat products’ mycotoxin contamination more precisely, the concentrations of all mycotoxins of relevance for these products should be determined. This manuscript reviews data on major mycotoxins present in different types of meat products, and discusses the contamination pathways, contamination levels and control & preventative measures.
Collapse
|
39
|
Alonso-Jauregui M, Font M, González-Peñas E, López de Cerain A, Vettorazzi A. Prioritization of Mycotoxins Based on Their Genotoxic Potential with an In Silico-In Vitro Strategy. Toxins (Basel) 2021; 13:734. [PMID: 34679027 PMCID: PMC8540412 DOI: 10.3390/toxins13100734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Humans are widely exposed to a great variety of mycotoxins and their mixtures. Therefore, it is important to design strategies that allow prioritizing mycotoxins based on their toxic potential in a time and cost-effective manner. A strategy combining in silico tools (Phase 1), including an expert knowledge-based (DEREK Nexus®, Lhasa Limited, Leeds, UK) and a statistical-based platform (VEGA QSAR©, Mario Negri Institute, Milan, Italy), followed by the in vitro SOS/umu test (Phase 2), was applied to a set of 12 mycotoxins clustered according to their structure into three groups. Phase 1 allowed us to clearly classify group 1 (aflatoxin and sterigmatocystin) as mutagenic and group 3 (ochratoxin A, zearalenone and fumonisin B1) as non-mutagenic. For group 2 (trichothecenes), contradictory conclusions were obtained between the two in silico tools, being out of the applicability domain of many models. Phase 2 confirmed the results obtained in the previous phase for groups 1 and 3. It also provided extra information regarding the role of metabolic activation in aflatoxin B1 and sterigmatocystin mutagenicity. Regarding group 2, equivocal results were obtained in few experiments; however, the group was finally classified as non-mutagenic. The strategy used correlated with the published Ames tests, which detect point mutations. Few alerts for chromosome aberrations could be detected. The SOS/umu test appeared as a good screening test for mutagenicity that can be used in the absence and presence of metabolic activation and independently of Phase 1, although the in silico-in vitro combination gave more information for decision making.
Collapse
Affiliation(s)
- Maria Alonso-Jauregui
- Department of Pharmacology and Toxicology, Research Group MITOX, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (M.A.-J.); (A.L.d.C.)
| | - María Font
- Department of Pharmaceutical Technology and Chemistry, Research Group MITOX, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (M.F.); (E.G.-P.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Elena González-Peñas
- Department of Pharmaceutical Technology and Chemistry, Research Group MITOX, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (M.F.); (E.G.-P.)
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, Research Group MITOX, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (M.A.-J.); (A.L.d.C.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, Research Group MITOX, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (M.A.-J.); (A.L.d.C.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
40
|
Chalyy Z, Kiseleva M, Sedova I, Tutelyan V. Mycotoxins in herbal tea: transfer into the infusion. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mycotoxins are natural food contaminants, associated with adverse health effects due to acute intoxication and, what is much more common, chronic exposure. The most hazardous and widespread mycotoxins are subjected to regulation in food in most countries. Alongside with regulated, a wide list of mycotoxins is monitored in various foods. Traditionally mycotoxins in tea are determined in a dry sample, not taking into account their transfer rate into the infusion. This study was aimed at the determination of the transfer rate of several mycotoxins from naturally contaminated herbal tea samples into an infusion. Seven of the most contaminated samples were pre-selected during the monitoring of mycotoxins in Camellia sinensis and herbal tea available in the Russian Federation. Ochratoxin A (OTA), sterigmatocystin (STE), mycophenolic acid (MPA), tentoxin (TTX), alternariol (AOH), its methyl ether (AME), zearalenone (ZEN), enniatins A and B (ENN A and B), beauvericin (BEA) were detected in these samples in the range of several μg/kg to several mg/kg. HPLC-MS/MS was used for dry tea samples and their infusion analysis. Mycotoxin polarity and infusion pH (for analytes possessing carboxylic groups) appeared to be factors determining transfer rate. STE transferred into infusion at the average rate of 10%. Average transfer of Alternaria toxins varied from 73% (TTX) to 45% (AOH) and about 11% (AME). A third part of ZEN was detected in the infusion. Transfer of ENNs and BEA was low and did not exceed 7%. Infusion pH affected MPA transfer rate; it increased from 23% to 96% in the pH range from 5.5 to 6.3. 83% of OTA was detected in the infusion of a single contaminated sample. Consideration of the mycotoxin transfer rate to herbal tea infusions resulted in the change of the model herbal tea input into mean chronic dietary exposure for most studied mycotoxins.
Collapse
Affiliation(s)
- Z. Chalyy
- Federal Research Centre of Nutrition and Biotechnology, Ust’inskiy pr. 2/14, 109240 Moscow, Russian Federation
| | - M. Kiseleva
- Federal Research Centre of Nutrition and Biotechnology, Ust’inskiy pr. 2/14, 109240 Moscow, Russian Federation
| | - I. Sedova
- Federal Research Centre of Nutrition and Biotechnology, Ust’inskiy pr. 2/14, 109240 Moscow, Russian Federation
| | - V. Tutelyan
- Federal Research Centre of Nutrition and Biotechnology, Ust’inskiy pr. 2/14, 109240 Moscow, Russian Federation
- I.M. Sechenov First Moscow State Medical University, Trubetskaya str. 8/2, 119992 Moscow, Russian Federation
| |
Collapse
|
41
|
Zingales V, Torriero N, Zanella L, Fernández-Franzón M, Ruiz MJ, Esposito MR, Cimetta E. Development of an in vitro neuroblastoma 3D model and its application for sterigmatocystin-induced cytotoxicity testing. Food Chem Toxicol 2021; 157:112605. [PMID: 34634377 DOI: 10.1016/j.fct.2021.112605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
Given the increasing importance of establishing better risk assessments for mycotoxins, novel in vitro tools for the evaluation of their toxicity are mandatory. In this study, an in vitro 3D spheroid model from SH-SY5Y cells, a human neuroblastoma cell line, was developed, optimized and characterized to test the cytotoxic effects caused by the mycotoxin sterigmatocystin (STE). STE induced a concentration- and time-dependent cell viability decrease in spheroids. Spheroids displayed cell disaggregation after STE exposure, increasing in a dose-dependent manner and over time. STE also induced apoptosis as confirmed by immunofluorescence staining and Western blot. Following the decreased proliferation and increased apoptosis, STE cytostasis effects were observed by migration assays both in 2D and 3D cell culture. Increased ROS generation, as well as DNA damage were also observed. Taken together, these data highlight the cytotoxic properties of STE and suggest that cell culture models play a pivotal role in the toxicological risk assessment of mycotoxins. The evaluation of cytotoxicity in spheroids (3D) rather than monolayer cultures (2D) is expected to more accurately reflect in vivo-like cell behaviour.
Collapse
Affiliation(s)
- Veronica Zingales
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Valencia, Spain.
| | - Noemi Torriero
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP) - Lab NBTECH, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Luca Zanella
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padova, Italy
| | - Mónica Fernández-Franzón
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Valencia, Spain
| | - Maria-José Ruiz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Valencia, Spain
| | - Maria Rosaria Esposito
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP) - Lab NBTECH, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP) - Lab NBTECH, Corso Stati Uniti 4, 35127, Padova, Italy; Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative (CRIBI) - Viale G. Colombo 3, 35131, Padova, Italy
| |
Collapse
|
42
|
Zhao Y, Zeng R, Wang Q, Chen P, Liu X, Wang X. Aflatoxin B 1 and sterigmatocystin: method development and occurrence in tea. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2021; 15:31-37. [PMID: 34596493 DOI: 10.1080/19393210.2021.1984316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tea is one of the most popular beverage in the world and may be contaminated by fungi and mycotoxins during processing. To analyse aflatoxin B1 (AFB1) and sterigmatocystin (STC) in three types of tea, a simple, fast, sensitive and reliable method of these two myxotoxins was developed. Recoveries obtained ranged from 95.9% to 118.0% and the RSDs were between 0.3% and 11.2%. The range of LODs was 0.2-0.45 µg/kg for AFB1 and 0.04-0.12 µg/kg for STC. The range of LOQs was 0.67-1.73 µg/kg for AFB1 and 0.13-0.40 µg/kg for STC. The optimised procedure was applied to analyse 126 tea samples randomly collected from different markets in China. AFB1 was not detected, but STC was determined in 17 samples with concentrations ranging from 0.13 to 4.48 µg/kg. The detection rate of STC was 5%, 8.9% and 33.3% in black tea, green tea and Oolong tea, respectively.
Collapse
Affiliation(s)
- Yarong Zhao
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou), Ministry of Agriculture, Guangzhou, China
| | - Rui Zeng
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou), Ministry of Agriculture, Guangzhou, China
| | - Qiongshan Wang
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Peirong Chen
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou), Ministry of Agriculture, Guangzhou, China
| | - Xiangxiang Liu
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou), Ministry of Agriculture, Guangzhou, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou), Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
43
|
Leite M, Freitas A, Silva AS, Barbosa J, Ramos F. Maize food chain and mycotoxins: A review on occurrence studies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Muñoz-Tebar N, González-Navarro EJ, López-Díaz TM, Santos JA, de Elguea-Culebras GO, García-Martínez MM, Molina A, Carmona M, Berruga MI. Biological Activity of Extracts from Aromatic Plants as Control Agents against Spoilage Molds Isolated from Sheep Cheese. Foods 2021; 10:1576. [PMID: 34359446 PMCID: PMC8303263 DOI: 10.3390/foods10071576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to assess the antifungal and antioxidant activity of essential oils and ethanolic extracts from distilled solid by-products from aromatic plants (Artemisia dracunculus, Hyssopus officinalis, Lavandula stoechas, Origanum vulgare and Satureja montana) against 14 fungi strains isolated from sheep cheese and identified at species level using DNA barcoding based on β-tubulin sequence analysis. In addition, capacity of fungi to produce ochratoxin A, patulin, cyclopiazonic acid and sterigmatocystin was analyzed. Of the isolates, 85.7% belonged to Penicillium (P. commune/biforme, P. crustosum) and 14.3% to Aspergillus (A. puulaauensis and A. jensenii), the first time that these Aspergillus species have been found in sheep's cheese. All P. commune isolates were producers of cyclopiazonic acid, and the two Aspergillus strains produced sterigmatocystin, but the others did not produce any tested mycotoxin. Among the essential oils tested, oregano, savory and tarragon had a significant antifungal activity against all the isolated strains, but no ethanolic extract showed antifungal activity. By contrast, ethanolic extracts showed great potential as antioxidants. The identification of new molds in cheese will help the dairy industry to know more about those molds affecting the sector, and the use of aromatic plants in the control of fungal spoilage could be a suitable alternative to chemical preservatives used in the agri-food industry.
Collapse
Affiliation(s)
- Nuria Muñoz-Tebar
- Food Quality Research Group, Institute for Regional Development (IDR), Universidad de Castilla-La Mancha, 02071 Albacete, Spain; (N.M.-T.); (E.J.G.-N.); (A.M.); (M.C.)
| | - Emilio J. González-Navarro
- Food Quality Research Group, Institute for Regional Development (IDR), Universidad de Castilla-La Mancha, 02071 Albacete, Spain; (N.M.-T.); (E.J.G.-N.); (A.M.); (M.C.)
| | - Teresa María López-Díaz
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (T.M.L.-D.); (J.A.S.)
| | - Jesús A. Santos
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (T.M.L.-D.); (J.A.S.)
| | | | - M. Mercedes García-Martínez
- Catedra de Química Agrícola, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain;
| | - Ana Molina
- Food Quality Research Group, Institute for Regional Development (IDR), Universidad de Castilla-La Mancha, 02071 Albacete, Spain; (N.M.-T.); (E.J.G.-N.); (A.M.); (M.C.)
| | - Manuel Carmona
- Food Quality Research Group, Institute for Regional Development (IDR), Universidad de Castilla-La Mancha, 02071 Albacete, Spain; (N.M.-T.); (E.J.G.-N.); (A.M.); (M.C.)
| | - María Isabel Berruga
- Food Quality Research Group, Institute for Regional Development (IDR), Universidad de Castilla-La Mancha, 02071 Albacete, Spain; (N.M.-T.); (E.J.G.-N.); (A.M.); (M.C.)
| |
Collapse
|
45
|
Zokaityte E, Lele V, Starkute V, Zavistanaviciute P, Klupsaite D, Bartkevics V, Pugajeva I, Bērziņa Z, Gruzauskas R, Sidlauskiene S, Juodeikiene G, Santini A, Bartkiene E. The influence of combined extrusion and fermentation processes on the chemical and biosafety parameters of wheat bran. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Şen L. A small field search on the effects of hand sorting process on aflatoxins and sterigmatocystin occurrence in raw hazelnut kernels. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Levent Şen
- Food Engineering Department, Engineering Faculty Giresun University Giresun Turkey
| |
Collapse
|
47
|
Dabelić S, Kifer D, Jakšić D, Kopjar N, Klarić MŠ. Sterigmatocystin, 5-Methoxysterigmatocistin, and Their Combinations Are Cytotoxic and Genotoxic to A549 and Hepg2 Cells and Provoke Phosphorylation of Chk2, but Not Fancd2 Checkpoint Proteins. Toxins (Basel) 2021; 13:464. [PMID: 34209435 PMCID: PMC8309960 DOI: 10.3390/toxins13070464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 11/19/2022] Open
Abstract
Sterigmatocystin (STC) and 5-methoxysterigmatocystin (5-M-STC) are structurally related mycotoxins with cytotoxic and genotoxic properties. In the present study, we hypothesized that DNA damage induced by non-cytotoxic concentrations of single and combined mycotoxins could alter the phosphorylation of the checkpoint proteins Chk2 and FANCD2 (ELISA) in HepG2 and A549 cells. The cytotoxic potential (MTT test) of single and combined STC and 5-M-STC, the nature of their interaction (additivity, antagonism, or synergy) and DNA damage level (alkaline comet assay) in HepG2 and A549 cells were also investigated. All experiments were performed after 24 h of mycotoxin treatment. 5-M-STC was 10-folds more cytotoxic than STC to both HepG2 and A549 cells. Both mycotoxins are genotoxic to HepG2 and A549 cells by inducing both double and single DNA strand breaks that activate Chk2 (especially in HepG2 cells) but not the FANCD2 protein. STC exerted higher genotoxic potential than 5-M-STC in HepG2 and A549 cells when both toxins were applied individually at the same concentration. Dual combinations of non-cytotoxic mycotoxin concentrations showed additive to antagonizing cytotoxic and genotoxic effects. The absence and low activation of checkpoint proteins during prolonged exposure to non-cytotoxic concentrations of STC and 5-M-STC could support cell proliferation and carcinogenesis.
Collapse
Affiliation(s)
- Sanja Dabelić
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia;
| | - Domagoj Kifer
- Department of Biophysics, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia;
| | - Daniela Jakšić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia;
| | - Nevenka Kopjar
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia;
| | - Maja Šegvić Klarić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
48
|
Penagos-Tabares F, Khiaosa-ard R, Nagl V, Faas J, Jenkins T, Sulyok M, Zebeli Q. Mycotoxins, Phytoestrogens and Other Secondary Metabolites in Austrian Pastures: Occurrences, Contamination Levels and Implications of Geo-Climatic Factors. Toxins (Basel) 2021; 13:460. [PMID: 34209232 PMCID: PMC8310091 DOI: 10.3390/toxins13070460] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022] Open
Abstract
Pastures are key feed sources for dairy production and can be contaminated with several secondary metabolites from fungi and plants with toxic or endocrine-disrupting activities, which possess a risk for the health, reproduction and performance of cattle. This exploratory study aimed to determine the co-occurrences and concentrations of a wide range of mycotoxins, phytoestrogens and other secondary metabolites in grazing pastures. Representative samples of pastures were collected from 18 Austrian dairy farms (one sample per farm) between April to October 2019. After sample preparation (drying and milling) the pastures were subjected to multi-metabolite analysis using LC-MS/MS. In total, 68 metabolites were detected, including regulated zearalenone and deoxynivalenol (range: 2.16-138 and 107-505 μg/kg on a dry matter (DM) basis, respectively), modified (3-deoxynivalenol-glucoside, HT-2-glucoside) and emerging Fusarium mycotoxins (e.g., enniatins), ergot alkaloids and Alternaria metabolites along with phytoestrogens and other metabolites. Aflatoxins, fumonisins, T-2 toxin, HT-2 toxin and ochratoxins were not detected. Of the geo-climatic factors and botanical diversity investigated, the environment temperature (average of 2 pre-sampling months and the sampling month) was the most influential factor. The number of fungal metabolites linearly increased with increasing temperatures and temperatures exceeding 15 °C triggered an exponential increment in the concentrations of Fusarium and Alternaria metabolites and ergot alkaloids. In conclusion, even though the levels of regulated mycotoxins detected were below the EU guidance levels, the long-term exposure along with co-occurrence with modified and emerging mycotoxins might be an underestimated risk for grazing and forage-fed livestock. The one-year preliminary data points out a dominant effect of environmental temperature in the diversity and contamination level of fungal metabolites in pastures.
Collapse
Affiliation(s)
- Felipe Penagos-Tabares
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (Q.Z.)
| | - Ratchaneewan Khiaosa-ard
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (Q.Z.)
| | - Veronika Nagl
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (V.N.); (J.F.); (T.J.)
| | - Johannes Faas
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (V.N.); (J.F.); (T.J.)
| | - Timothy Jenkins
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (V.N.); (J.F.); (T.J.)
| | - Michael Sulyok
- Department IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenzstrasse 20, 3430 Tulln, Austria;
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (Q.Z.)
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
49
|
Pustjens A, Castenmiller J, te Biesebeek J, de Rijk T, van Dam R, Boon P. Dietary exposure to mycotoxins of 1- and 2-year-old children from a Dutch Total Diet Study. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In 2017, a Total Diet Study was conducted in the Netherlands in which mycotoxins were analysed in foods and beverages consumed by 1- and 2-year-old children. These mycotoxins were aflatoxins, Alternaria toxins, citrinin, ergot alkaloids, fumonisins, ochratoxin A, patulin, sterigmatocystin, trichothecenes, and zearalenone. Long-term exposure was calculated by combining concentrations in foods and beverages with consumed amounts of these products. Analysed foods and beverages with a concentration below the detection limit that could contain the mycotoxin, were assigned a concentration equal to half this limit value. To assess if the exposure could result in a possible health risk, the high long-term exposure (95th percentile) was compared with a health-based guidance value (HBGV) or a margin of exposure (MOE) was calculated. Exposure to aflatoxins, Alternaria toxins, ochratoxin A and T-2/HT-2 sum may pose a health concern. Foods that contributed most to the exposure of these mycotoxins were bread, biscuits, breakfast cereals, chocolates, dried fruit, follow-on formula and fruit juices.
Collapse
Affiliation(s)
- A.M. Pustjens
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - J.J.M. Castenmiller
- Netherlands Food and Consumer Product Safety Authority (NVWA), P.O. Box 43006, 3540 AA Utrecht, the Netherlands
| | - J.D. te Biesebeek
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3729 Bilthoven, the Netherlands
| | - T.C. de Rijk
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - R.C.J. van Dam
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - P.E. Boon
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3729 Bilthoven, the Netherlands
| |
Collapse
|
50
|
Sasazaki N, Uno S, Kokushi E, Toda K, Hasunuma H, Matsumoto D, Miyashita A, Yamato O, Okawa H, Ohtani M, Fink-Gremmels J, Taniguchi M, Takagi M. Mitigation of sterigmatocystin exposure in cattle by difructose anhydride III feed supplementation and detection of urinary sterigmatocystin and serum amyloid A concentrations. Arch Anim Breed 2021; 64:257-264. [PMID: 34189253 PMCID: PMC8223015 DOI: 10.5194/aab-64-257-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/18/2021] [Indexed: 11/25/2022] Open
Abstract
We evaluated the effects of supplementing cattle feed with difructose anhydride III (DFA III) by measuring urinary sterigmatocystin (STC) concentrations using 20 Japanese Black cattle aged 9–10 months from one herd. DFA III was supplemented for 2 weeks for 10 animals, and non-treated animals served as controls. The natural STC concentration in the dietary feed was 0.06 mgkg-1 (mixture of roughage and concentrate) at the beginning of the study (Day 0). The urine STC concentration was measured using liquid chromatography with tandem mass spectrometry 1 d prior to DFA III administration, 9 and 14 d thereafter, and 9 d following supplementation cessation, concomitant with the measurement of serum amyloid A (SAA). The number of heifers in which STC was detected in the urine was low (10 %) in the DFA III group compared to that (60 %) in the control group on Day 9. After 9 d following supplementation cessation (Day 23), STC concentrations were significantly lower (P=0.032) in the DFA III group than in the control group, although there was no difference in the number of heifers in which urinary STC was detected or in SAA concentrations between the two groups. Our findings demonstrate the effect of DFA III on reducing the urinary concentration of STC in Japanese Black cattle.
Collapse
Affiliation(s)
- Naoya Sasazaki
- Joint Graduate School of Veterinary Sciences, Yamaguchi University, Yamaguchi 753-8515, Japan.,Shepherd Central Livestock Clinic, Kagoshima 899-1611, Japan
| | - Seiich Uno
- Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Emiko Kokushi
- Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Katsuki Toda
- Shepherd Central Livestock Clinic, Kagoshima 899-1611, Japan
| | | | | | - Ayaka Miyashita
- Shiiba Village Office Livestock Clinic, Shiiba 883-1601, Japan
| | - Osamu Yamato
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0062, Japan
| | | | - Masayuki Ohtani
- Nippon Beet Sugar Manufacturing Co., Ltd., Obihiro 080-0835, Japan
| | - Johanna Fink-Gremmels
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht, the Netherlands
| | - Masayasu Taniguchi
- Joint Graduate School of Veterinary Sciences, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Mitsuhiro Takagi
- Joint Graduate School of Veterinary Sciences, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|