1
|
Berntsen HF, Moldes-Anaya A, Bjørklund CG, Ragazzi L, Haug TM, Strandabø RAU, Verhaegen S, Paulsen RE, Ropstad E, Tasker RA. Perfluoroalkyl acids potentiate glutamate excitotoxicity in rat cerebellar granule neurons. Toxicology 2020; 445:152610. [PMID: 33027616 DOI: 10.1016/j.tox.2020.152610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022]
Abstract
Perfluoroalkyl acids (PFAAs) are persistent man-made chemicals, ubiquitous in nature and present in human samples. Although restrictions are being introduced, they are still used in industrial processes as well as in consumer products. PFAAs cross the blood-brain-barrier and have been observed to induce adverse neurobehavioural effects in humans and animals as well as adverse effects in neuronal in vitro studies. The sulfonated PFAA perfluorooctane sulfonic acid (PFOS), has been shown to induce excitotoxicity via the N-methyl-D-aspartate receptor (NMDA-R) in cultures of rat cerebellar granule neurons (CGNs). In the present study the aim was to further characterise PFOS-induced toxicity (1-60 μM) in rat CGNs, by examining interactions between PFOS and elements of glutamatergic signalling and excitotoxicity. Effects of the carboxylated PFAA, perfluorooctanoic acid (PFOA, 300-500 μM) on the same endpoints were also examined. During experiments in immature cultures at days in vitro (DIV) 8, PFOS increased both the potency and efficacy of glutamate, whereas in mature cultures at DIV 14 only increased potency was observed. PFOA also increased potency at DIV 14. PFOS-enhanced glutamate toxicity was further antagonised by the competitive NMDA-R antagonist 3-((R)-2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) at DIV 8. At DIV 8, PFOS also induced glutamate release (9-13 fold increase vs DMSO control) after 1-3 and 24 h exposure, whereas for PFOA a large (80 fold) increase was observed, but only after 24 h. PFOS and PFOA both also increased alanine and decreased serine levels after 24 h exposure. In conclusion, our results indicate that PFOS at concentrations relevant in an occupational setting, may be inducing excitotoxicity, and potentiation of glutamate signalling, via an allosteric action on the NMDA-R or by actions on other elements regulating glutamate release or NMDA-R function. Our results further support our previous findings that PFOS and PFOA at equipotent concentrations induce toxicity via different mechanisms of action.
Collapse
Affiliation(s)
- Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102, Oslo, Norway; National Institute of Occupational Health, P.O. Box 8149 Dep N-0033, Oslo, Norway.
| | - Angel Moldes-Anaya
- Research and Development (R&D) Section, PET Imaging Center, University Hospital of North Norway (UNN), Tromsø, Norway; Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Cesilie Granum Bjørklund
- Department of Production Animal Clinical Sciences NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102, Oslo, Norway
| | - Lorenzo Ragazzi
- Neurobiology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | | | | | - Steven Verhaegen
- Department of Production Animal Clinical Sciences NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102, Oslo, Norway
| | - Ragnhild Elisabeth Paulsen
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102, Oslo, Norway
| | - R Andrew Tasker
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PEI, Canada; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Alonso E, Vale C, Sasaki M, Fuwa H, Konno Y, Perez S, Vieytes MR, Botana LM. Calcium oscillations induced by gambierol in cerebellar granule cells. J Cell Biochem 2010; 110:497-508. [PMID: 20336695 DOI: 10.1002/jcb.22566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gambierol is a marine polyether ladder toxin derived from the dinoflagellate Gambierdiscus toxicus. To date, gambierol has been reported to act either as a partial agonist or as an antagonist of sodium channels or as a blocker of voltage-dependent potassium channels. In this work, we examined the cellular effect of gambierol on cytosolic calcium concentration, membrane potential and sodium and potassium membrane currents in primary cultures of cerebellar granule cells. We found that at concentrations ranging from 0.1 to 30 microM, gambierol-evoked [Ca(2+)]c oscillations that were dependent on the presence of extracellular calcium, irreversible and highly synchronous. Gambierol-evoked [Ca(2+)]c oscillations were completely eliminated by the NMDA receptor antagonist APV and by riluzole and delayed by CNQX. In addition, the K(+) channel blocker 4-aminopyridine (4-AP)-evoked cytosolic calcium oscillations in this neuronal system that were blocked by APV and delayed in the presence of CNQX. Electrophysiological recordings indicated that gambierol caused membrane potential oscillations, decreased inward sodium current amplitude and decreased also outward IA and IK current amplitude. The results presented here point to a common mechanism of action for gambierol and 4-AP and indicate that gambierol-induced oscillations in cerebellar neurons are most likely secondary to a blocking action of the toxin on voltage-dependent potassium channels and hyperpolarization of sodium current activation.
Collapse
Affiliation(s)
- E Alonso
- Facultad de Veterinaria, Departamento de Farmacología, Universidad de Santiago de Compostela, Lugo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Sarkanen JR, Nykky J, Siikanen J, Selinummi J, Ylikomi T, Jalonen TO. Cholesterol supports the retinoic acid-induced synaptic vesicle formation in differentiating human SH-SY5Y neuroblastoma cells. J Neurochem 2007; 102:1941-1952. [PMID: 17540009 DOI: 10.1111/j.1471-4159.2007.04676.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synaptic vesicle formation, vesicle activation and exo/endocytosis in the pre-synaptic area are central steps in neuronal communication. The formation and localization of synaptic vesicles in human SH-SY5Y neuroblastoma cells, differentiated with 12-o-tetradecanoyl-phorbol-13-acetate, dibutyryl cyclic AMP, all-trans-retinoic acid (RA) and cholesterol, was studied by fluorescence microscopy and immunocytochemical methods. RA alone or together with cholesterol, produced significant neurite extension and formation of cell-to-cell contacts. Synaptic vesicle formation was followed by anti-synaptophysin (SypI) and AM1-43 staining. SypI was only weakly detected, mainly in cell somata, before 7 days in vitro, after which it was found in neurites. Depolarization of the differentiated cells with high potassium solution increased the number of fluorescent puncta, as well as SypI and AM1-43 co-localization. In addition to increase in the number of synaptic vesicles, RA and cholesterol also increased the number and distribution of lysosome-associated membrane protein 2 labeled lysosomes. RA-induced Golgi apparatus fragmentation was partly avoided by co-treatment with cholesterol. The SH-SY5Y neuroblastoma cell line, differentiated by RA and cholesterol and with good viability in culture, is a valuable tool for basic studies of neuronal metabolism, specifically as a model for dopaminergic neurons.
Collapse
Affiliation(s)
- Jertta-Riina Sarkanen
- Cell Research Center, Medical School, University of Tampere, Tampere, FinlandDivision of Biochemistry, Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä, Jyväskylä, FinlandInstitute of Signal Processing, Tampere University of Technology, Tampere, FinlandDepartment of Clinical Chemistry, Tampere University Hospital, Tampere, Finland
| | - Jonna Nykky
- Cell Research Center, Medical School, University of Tampere, Tampere, FinlandDivision of Biochemistry, Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä, Jyväskylä, FinlandInstitute of Signal Processing, Tampere University of Technology, Tampere, FinlandDepartment of Clinical Chemistry, Tampere University Hospital, Tampere, Finland
| | - Jutta Siikanen
- Cell Research Center, Medical School, University of Tampere, Tampere, FinlandDivision of Biochemistry, Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä, Jyväskylä, FinlandInstitute of Signal Processing, Tampere University of Technology, Tampere, FinlandDepartment of Clinical Chemistry, Tampere University Hospital, Tampere, Finland
| | - Jyrki Selinummi
- Cell Research Center, Medical School, University of Tampere, Tampere, FinlandDivision of Biochemistry, Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä, Jyväskylä, FinlandInstitute of Signal Processing, Tampere University of Technology, Tampere, FinlandDepartment of Clinical Chemistry, Tampere University Hospital, Tampere, Finland
| | - Timo Ylikomi
- Cell Research Center, Medical School, University of Tampere, Tampere, FinlandDivision of Biochemistry, Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä, Jyväskylä, FinlandInstitute of Signal Processing, Tampere University of Technology, Tampere, FinlandDepartment of Clinical Chemistry, Tampere University Hospital, Tampere, Finland
| | - Tuula O Jalonen
- Cell Research Center, Medical School, University of Tampere, Tampere, FinlandDivision of Biochemistry, Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä, Jyväskylä, FinlandInstitute of Signal Processing, Tampere University of Technology, Tampere, FinlandDepartment of Clinical Chemistry, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
4
|
Linne ML, Jalonen TO. Properties and roles of BKCa channels in cultured cerebellar granule neuron: Experimental and simulation studies. Neurocomputing 2006. [DOI: 10.1016/j.neucom.2005.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Osorio N, Alcaraz G, Padilla F, Couraud F, Delmas P, Crest M. Differential targeting and functional specialization of sodium channels in cultured cerebellar granule cells. J Physiol 2005; 569:801-16. [PMID: 16210352 PMCID: PMC1464263 DOI: 10.1113/jphysiol.2005.097022] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The ion channel dynamics that underlie the complex firing patterns of cerebellar granule (CG) cells are still largely unknown. Here, we have characterized the subcellular localization and functional properties of Na+ channels that regulate the excitability of CG cells in culture. As evidenced by RT-PCR and immunocytochemical analysis, morphologically differentiated CG cells expressed Nav1.2 and Nav1.6, though both subunits appeared to be differentially regulated. Nav1.2 was localized at most axon initial segments (AIS) of CG cells from 8 days in vitro DIV 8 to DIV 15. At DIV 8, Nav1.6 was found uniformly throughout somata, dendrites and axons with occasional clustering in a subset of AIS. Accumulation of Nav1.6 at most AIS was evident by DIV 13-14, suggesting it is developmentally regulated at AIS. The specific contribution of these differentially distributed Na+ channels has been assessed using a combination of methods that allowed discrimination between functionally compartmentalized Na+ currents. In agreement with immunolocalization, we found that fast activating-fully inactivating Na+ currents predominate at the AIS membrane and in the somatic plasma membrane.
Collapse
Affiliation(s)
- Nancy Osorio
- Laboratoire de Neurophysiologie Cellulaire, CNRS UMR 6150, IFR Jean Roche, Faculté de Médecine, Boulevard Pierre Dramard, 13916, Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
6
|
Mezghani-Abdelmoula S, Chevalier S, Lesouhaitier O, Orange N, Feuilloley MGJ, Cazin L. Pseudomonas fluorescens lipopolysaccharide inhibits both delayed rectifier and transient A-type K+ channels of cultured rat cerebellar granule neurons. Brain Res 2003; 983:185-92. [PMID: 12914979 DOI: 10.1016/s0006-8993(03)03055-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pseudomonas fluorescens is a Gram-negative bacillus closely related to the pathogen P. aeruginosa known to provoke infectious disorders in the central nervous system (CNS). The endotoxin lipopolysaccharide (LPS) expressed by the bacteria is the first infectious factor that can interact with the plasma membrane of host cells. In the present study, LPS extracted from P. fluorescens MF37 was examined for its actions on delayed rectifier and A-type K(+) channels, two of the main types of voltage-activated K(+) channels involved in the action potential firing. Current recordings were performed in cultured rat cerebellar granule neurons at days 7 or 8, using the whole-cell patch-clamp technique. A 3-h incubation with LPS (200 ng/ml) markedly depressed both the delayed rectifier (I(KV)) and transient A-type (I(A)) K(+) currents evoked by depolarizations above 0 and -40 mV, respectively. The percent decrease of I(KV) and I(A) ( approximately 30%) did not vary with membrane potential, suggesting that inhibition of both types of K(+) channels by LPS was voltage-insensitive. The endotoxin did neither modify the steady-state voltage-dependent activation properties of I(KV) and I(A) nor the steady-state inactivation of I(A). The present results suggest that, by inhibiting I(KV) and I(A), LPS applied extracellulary increases the action potential firing in cerebellar granule neurons. It is concluded that P. fluorescens MF37 may provoke in the CNS disorders associated with sever alterations of membrane ionic channel functions.
Collapse
Affiliation(s)
- Sana Mezghani-Abdelmoula
- Laboratory of Cold Microbiology, UPRES 2123, University of Rouen, 55 Rue Saint Germain, 27000, Evreux, France
| | | | | | | | | | | |
Collapse
|
7
|
Galdzicki Z, Siarey R, Pearce R, Stoll J, Rapoport SI. On the cause of mental retardation in Down syndrome: extrapolation from full and segmental trisomy 16 mouse models. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 35:115-45. [PMID: 11336779 DOI: 10.1016/s0926-6410(00)00074-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Down syndrome (DS, trisomy 21, Ts21) is the most common known cause of mental retardation. In vivo structural brain imaging in young DS adults, and post-mortem studies, indicate a normal brain size after correction for height, and the absence of neuropathology. Functional imaging with positron emission tomography (PET) shows normal brain glucose metabolism, but fewer significant correlations between metabolic rates in different brain regions than in controls, suggesting reduced functional connections between brain circuit elements. Cultured neurons from Ts21 fetuses and from fetuses of an animal model for DS, the trisomy 16 (Ts16) mouse, do not differ from controls with regard to passive electrical membrane properties, including resting potential and membrane resistance. On the other hand, the trisomic neurons demonstrate abnormal active electrical and biochemical properties (duration of action potential and its rates of depolarization and repolarization, altered kinetics of active Na(+), Ca(2+) and K(+) currents, altered membrane densities of Na(+) and Ca(2+) channels). Another animal model, the adult segmental trisomy 16 mouse (Ts65Dn), demonstrates reduced long-term potentiation and increased long-term depression (models for learning and memory related to synaptic plasticity) in the CA1 region of the hippocampus. Evidence suggests that the abnormalities in the trisomy mouse models are related to defective signal transduction pathways involving the phosphoinositide cycle, protein kinase A and protein kinase C. The phenotypes of DS and its mouse models do not involve abnormal gene products due to mutations or deletions, but result from altered expression of genes on human chromosome 21 or mouse chromosome 16, respectively. To the extent that the defects in signal transduction and in active electrical properties, including synaptic plasticity, that are found in the Ts16 and Ts65Dn mouse models, are found in the brain of DS subjects, we postulate that mental retardation in DS results from such abnormalities. Changes in timing and synaptic interaction between neurons during development can lead to less than optimal functioning of neural circuitry and signaling then and in later life.
Collapse
Affiliation(s)
- Z Galdzicki
- Section on Brain Physiology and Metabolism, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
8
|
Díaz-Trelles R, Novelli A, Puia G, Fernández-Sánchez MT. Terfenadine prevents NMDA receptor-dependent and -independent toxicity following sodium channel activation. Brain Res 1999; 842:478-81. [PMID: 10526146 DOI: 10.1016/s0006-8993(99)01828-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Exposure of cultured cerebellar neurons to terfenadine prevented the N-methyl-D-aspartate (NMDA) receptor-mediated early appearance (30 min) of toxicity signs induced by the voltage sensitive sodium channel (VSSC) activator veratridine. Delayed neurotoxicity by veratridine (24 h) occurring independently from NMDA receptor activation was also prevented by terfenadine. Terfenadine did not protect from excitotoxicity following direct exposure of neurons to glutamate. Our results suggest that terfenadine may modulate endogenous glutamate release following activation of VSSCs.
Collapse
Affiliation(s)
- R Díaz-Trelles
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, E-33071, Oviedo, Spain
| | | | | | | |
Collapse
|
9
|
Abstract
Dissociated primary cell cultures were derived from the cochlear nuclei (CN) of postnatal rats using standard techniques. Cultured cells differentiated morphologically, but their dendritic profiles were generally less specialized than those of CN cells in vivo. Physiologically, cultured cells could be divided into three classes: tonic, phasic and non-spiking cells, which differed in many of their fundamental biophysical properties. The percentage of cultured cells that spiked repetitively increased over time to a maximum of 85% at 6 days. However, the percentage of cells that produced action potentials decreased with time in culture, from 91% during the first 8 days to less than 40% after 9 days. CN cells were successfully cultured in both serum-supplemented and serum-free (Neurobasal) media. More neurons survived at low plating densities in Neurobasal than in medium containing serum, although neuronal survival was similar at higher densities. Few neurons raised in the serum-free medium were spontaneously active; other response properties were similar to those of cells grown in the presence of serum. Although differentiation of CN cells in culture did not completely mirror the in vivo developmental pattern, these experiments demonstrate that primary culture represents a viable method for the in vitro study of CN neurons.
Collapse
Affiliation(s)
- J L Fitzakerley
- Center for Hearing Sciences and Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
10
|
Becherer U, Rodeau JL, Feltz A. Resting potential of rat cerebellar granule cells during early maturation in vitro. JOURNAL OF NEUROBIOLOGY 1997; 32:11-21. [PMID: 8989659 DOI: 10.1002/(sici)1097-4695(199701)32:1<11::aid-neu2>3.0.co;2-h] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The survival of rat cerebellar granule cells maintained in vitro is enhanced by a KCl-enriched medium. This effect is classically interpreted as resulting from a higher cytosolic calcium concentration. This implies the presence of voltage-dependent Ca2+ channels and a membrane potential that can respond to changes in external K+. Since previous studies cast a doubt on these two conditions, we reinvestigated the resting membrane potential and Ca2+ influxes in rat cerebellar granule neurones during the first week in vitro using a fluorescence imaging approach. Membrane potential was assessed with the fluorescent dye bis-oxonol, and intracellular free calcium with Fura-2. Resting potential was shown to progressively decrease from -40 mV at the first day in vitro to -60 mV at day 7. At all times in culture, as early as day 0, cells were depolarized when external KCl concentration was increased from 5 to 30 mM. This depolarization resulted in an increased cytosolic calcium concentration due to Ca2+ influx through L-type and N-type voltage-activated Ca2+ channels, functional at day 0. Gross estimations of the permeabilities of Na+ and Cl- were obtained at various times in culture by measuring the changes in resting potential brought about by a reduction of their external concentration. A progressive increase of the relative permeability to K+ ions seems to underlie the evolution of the resting potential with time.
Collapse
Affiliation(s)
- U Becherer
- Laboratoire de Neurobiologie Cellulaire (UPR 9009 CNRS), Strasbourg, France
| | | | | |
Collapse
|
11
|
Watkins CS, Mathie A. A non-inactivating K+ current sensitive to muscarinic receptor activation in rat cultured cerebellar granule neurons. J Physiol 1996; 491 ( Pt 2):401-12. [PMID: 8866863 PMCID: PMC1158734 DOI: 10.1113/jphysiol.1996.sp021224] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Whole-cell recordings were made from cultured cerebellar granule neurons using perforated patch clamp techniques. The primary cultures were prepared using 6- to 9-day-old Sprague-Dawley rats. 2. Neurons in culture for less than 48 h possessed resting membrane potentials of -29 mV. However, neurons in culture for 7 days had much more hyperpolarized resting membrane potentials (-89 mV). Over the same period, these neurons developed an additional component of outward current. 3. This non-inactivating current was activated by depolarization, exhibited outward rectification and reversed close to the potassium equilibrium potential. The kinetics of activation and deactivation were very rapid. 4. Muscarine ((+)-muscarine chloride) reversibly inhibited the current with an EC50 of 0.17 microM. The inhibition by muscarine was unaffected by pre-incubation for 17-20 h with 120 micrograms ml-1 pertussis toxin. 5. The current and its inhibition by muscarine were unaffected by 100 microM Cd2+. In Ca(2+)-free conditions, the current was significantly larger than in 0.5 mM Ca2+, but inhibition by 10 microM muscarine was significantly reduced. 6. The standing outward current was not obviously affected by 50 microM 5-HT, 50 microM noradrenaline, 50 microM 2-chloroadenosine or 5 mM tetraethylammonium. It was reduced by 10 microM La3+, 10 microM Zn2+ and 1 mM Ba2+. 7. Muscarinic agonists increased the input resistance of neurons and shifted the zero current level in the depolarized direction when voltage clamped. This enhanced excitability was evident under current clamp, where 10 microM muscarine depolarized granule neurons such that action potentials became evident.
Collapse
Affiliation(s)
- C S Watkins
- Department of Pharmacology, Royal Free Hospital School of Medicine, London, UK
| | | |
Collapse
|
12
|
Linne ML, Jalonen TO, Saransaari P, Oja SS. Taurine-induced single-channel currents in cultured rat cerebellar granule cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 403:455-62. [PMID: 8915383 DOI: 10.1007/978-1-4899-0182-8_49] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M L Linne
- Tampere Brain Research Center, Medical School, University of Tampere, Finland
| | | | | | | |
Collapse
|
13
|
Stewart RR, Bossu JL, Muzet M, Dupont JL, Feltz A. Voltage-activated ionic currents in differentiating rat cerebellar granule neurons cultured from the external germinal layer. JOURNAL OF NEUROBIOLOGY 1995; 28:419-32. [PMID: 8592103 DOI: 10.1002/neu.480280403] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The electrical properties of the precursor cells of the external germinal layer of rat cerebellum were assessed during their differentiation in control medium (Dulbecco's modified Eagle's medium) supplemented or not with either basic fibroblast growth factor (bFGF) or 25 mM potassium chloride (KCl). Resting potential was shown to be -10 mV in all three conditions 3 hours after plating [days in vitro (DIV)0]. By DIV 5, it reached -63 mV for cells cultured in 25 mM KCl but only -28 mV in control and bFGF media. The main voltage-sensitive ionic current measured at DIV 0 under all conditions was a composite IK consisting in a sustained K+ current blocked by tetraethylammonium (IK(TEA)), plus a rapidly activating and inactivating TEA-insensitive IK(A). Both currents increased with time in all conditions, but after 5 days IK(A) became dominant in terms of density. IK(TEA) is likely an IK(Ca), since it was blocked by 67% in 1 mM TEA. On DIV 0, INa and ICa were absent or small in amplitude. By DIV 3, 80% of the cells had currents able to generate a spike. Interestingly, ICa mean amplitude and current density measured at -10 mV in control condition on DIV 1 was significantly larger than those recorded in bFGF and 25 mM KCl. The order of appearance of the ionic currents, IK, ICa, and INa, leads directly to fast spike activity allowing for poor calcium entry. Firing rate likely depends on IK(A), which increased during the first 6 days of development but could be differentially regulated by bFGF.
Collapse
Affiliation(s)
- R R Stewart
- Laboratoire de Neurobiologie Cellulaire, UPR CNRS 9009 associée à l'Université Louis Pasteur, Strasbourg, France
| | | | | | | | | |
Collapse
|
14
|
Mjaatvedt AE, Cabin DE, Cole SE, Long LJ, Breitwieser GE, Reeves RH. Assessment of a mutation in the H5 domain of Girk2 as a candidate for the weaver mutation. Genome Res 1995; 5:453-63. [PMID: 8808466 DOI: 10.1101/gr.5.5.453] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A mutation in the GIRK2 inwardly rectifying K+ channel was mapped recently to the region of mouse chromosome 16 containing the wv gene and shown to occur in mutant but not in wild-type mice. We demonstrate tight linkage of the Girk2 mutation to the wv phenotype and refine the localization of the weaver (wv) gene on recombinational and physical maps. This linkage between Girk2 and wv has existed since at least 1988 in descendants of the original mutation maintained in C57BL/6 animals. Girk2 is shown to be transcribed in brain before the first recognized manifestation of the wv phenotype and in cultures of granule cells (GCs) isolated from cerebellum at postnatal day 8. Wild-type GCs grown in this culture system display an important developmental property--the ability to extend neurites. However, no inwardly rectifying K+ current is detected in GCs cultured from either wv/wv or +/+ cerebellum under a variety of conditions that activate related channels in other tissues. This suggests that if the Girk2 mutation is responsible for the wv phenotype, it does not act by altering these electrical properties of developing GCs.
Collapse
Affiliation(s)
- A E Mjaatvedt
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
15
|
Holliday J, Parsons K, Curry J, Lee SY, Gruol DL. Cerebellar granule neurons develop elevated calcium responses when treated with interleukin-6 in culture. Brain Res 1995; 673:141-8. [PMID: 7757467 DOI: 10.1016/0006-8993(94)01417-g] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In humans, elevated levels of cytokines are associated with several diseases (including HIV infection and Down Syndrome) that result in developmental abnormalities. Overexpression of interleukin-6 (IL-6) in the central nervous system has been shown to cause extensive neuronal abnormality in mice that becomes more evident with maturation. However, it is difficult to separate direct effects of IL-6 on the developing neurons of an intact animal from indirect effects involving effects on other cell types that possess cytokine receptors, such as microglia and astrocytes. We have found that IL-6 treatment of rat cerebellar granule neurons developing in the absence of other cell types in culture results in the persistence of large, depolarization or neurotransmitter-induced calcium transients, that are normally observed only in immature neurons. The cause of this appears to be the persistence of a calcium-induced calcium release (CICR) component of the calcium response to stimulation. This basic abnormality in neuronal development may contribute to the developmental abnormalities associated with human syndromes that involve elevated cytokine levels.
Collapse
Affiliation(s)
- J Holliday
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
16
|
Zegarra-Moran O, Moran O. Properties of the transient potassium currents in cerebellar granule cells. Exp Brain Res 1994; 98:298-304. [PMID: 8050515 DOI: 10.1007/bf00228417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Macroscopic potassium currents were studied in cell-attached and inside-out patches from rat cerebellar granule cells. They were related with transient IA type potassium channels. Currents activated rapidly at potentials higher than -40 mV and did not inactivate completely. The magnitude of the current diminished when the membrane patches were excised. No differences in the activation and inactivation properties were found between patches in the integral cells and cell free membrane patches. A biophysical description of the currents is presented.
Collapse
Affiliation(s)
- O Zegarra-Moran
- Laboratorio di Genetica Molecolare, Istituto G. Gaslini, Genoa, Italy
| | | |
Collapse
|
17
|
Zona C, Ragozzino D, Ciotti MT, Mercanti D, Avoli M, Brancati A, Calissano P. Sodium, calcium and late potassium currents are reduced in cerebellar granule cells cultured in the presence of a protein complex conferring resistance to excitatory amino acids. Eur J Neurosci 1993; 5:1479-84. [PMID: 8287194 DOI: 10.1111/j.1460-9568.1993.tb00215.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Whole-cell, patch-clamp recordings were used to study voltage-gated currents generated by cerebellar granule cells that were cultured in medium containing either 10% fetal calf serum (hereafter termed S + granules) or neurite outgrowth and adhesion complex (NOAC, hereafter called NOAC granules). NOAC is a protein complex found in rabbit serum that renders granules resistant to the excitotoxic action of excitatory amino acids. During depolarizing commands both S+ and NOAC granules generated Na+ and Ca2+ inward currents and an early and a late K+ outward currents. However, Na+ and Ca2+ inward currents and late outward K+ currents recorded in NOAC granules were smaller than those seen in S+ granules. Furthermore, although of similar amplitude, early K+ currents displayed different kinetics in the two types of neurons. Thus, these data demonstrate that the electrophysiological properties of cerebellar granules, and probably of other neuronal populations, depend upon serum components and raise the possibility that an analogous modulation might be operative in vivo, and play a role in development, synaptic plasticity or neuropathological processes.
Collapse
Affiliation(s)
- C Zona
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, II Università degli Studi di Roma Tor Vergata, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Fernández MT, Zitko V, Gascón S, Torreblanca A, Novelli A. Neurotoxic effect of okadaic acid, a seafood-related toxin, on cultured cerebellar neurons. Ann N Y Acad Sci 1993; 679:260-9. [PMID: 8099773 DOI: 10.1111/j.1749-6632.1993.tb18306.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M T Fernández
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Spain
| | | | | | | | | |
Collapse
|
19
|
Moran O, Lin F, Zegarra-Moran O, Sciancalepore M. Voltage dependent calcium channels in cerebellar granule cell primary cultures. EUROPEAN BIOPHYSICS JOURNAL : EBJ 1991; 20:157-64. [PMID: 1720735 DOI: 10.1007/bf01561138] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Voltage activated calcium channels were studied in rat cerebellar granule cells in primary culture. Macroscopic currents, carried by 20mM Ba2+, were measured in the whole-cell configuration. Slowly inactivating macroscopic currents, with a maximum value at a membrane potential around 5 mV, were recorded between the 1st and the 4th day in culture. These currents were completely blocked by 5mM Co2+, partially blocked by 10 microM nifedipine, and increased by 2 to 5 microM BAY K-8644. Two types of channels, in the presence of 80 mM Ba2+, were identified by single channel recording in cell-attached patches. The first type, which was dihydropyridine agonist sensitive, had a conductance of 18 pS, a half activation potential of more than 10 mV and did not inactivate. This type of channel was the only type found during the first four days in culture, although it was also present up to the 11th day. The second type of channel was dihydropyridine insensitive, had a conductance of 10 pS, a half activation potential less than -15 mV, and displayed voltage dependent inactivation. This second type of channel was found in cells for more than four days in culture.
Collapse
Affiliation(s)
- O Moran
- Laboratorio di Neurofisiologia, Scuola internazionale Superiore di Studi Avanzati, Trieste, Italy
| | | | | | | |
Collapse
|