1
|
Veronese P, Dodi I. Campylobacter jejuni/ coli Infection: Is It Still a Concern? Microorganisms 2024; 12:2669. [PMID: 39770871 PMCID: PMC11728820 DOI: 10.3390/microorganisms12122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Campylobacteriosis is a leading cause of infectious diarrhea and foodborne illness worldwide. Campylobacter infection is primarily transmitted through the consumption of contaminated food, especially uncooked meat, or untreated water; contact with infected animals or contaminated environments; poultry is the primary reservoir and source of human transmission. The clinical spectrum of Campylobacter jejuni/coli infection can be classified into two distinct categories: gastrointestinal and extraintestinal manifestations. Late complications are reactive arthritis, Guillain-Barré syndrome, and Miller Fisher syndrome. In the pediatric population, the 0-4 age group has the highest incidence of campylobacteriosis. Regarding the use of specific antimicrobial therapy, international guidelines agree in recommending it for severe intestinal infections. Host factors, including malnutrition, immunodeficiency, and malignancy, can also influence the decision to treat. The Centers for Disease Control and Prevention (CDC) has identified antibiotic resistance in Campylobacter as a 'significant public health threat' due to increasing resistance to FQs or macrolides. Although numerous vaccines have been proposed in recent years to reduce the intestinal colonization of poultry, none have shown sufficient efficacy to provide a definitive solution.
Collapse
Affiliation(s)
- Piero Veronese
- Pediatric Infectious Disease Unit, Barilla Children’s Hospital of Parma, 43126 Parma, Italy;
| | | |
Collapse
|
2
|
Giraudon E, Miendje Deyi VY, Martiny D. Assessing the Prevalence and Dynamics of Emerging Campylobacterales in Human Stool Samples in Brussels by Filtration Culture. Pathogens 2024; 13:475. [PMID: 38921773 PMCID: PMC11206970 DOI: 10.3390/pathogens13060475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Thermophilic C. jejuni/coli is reported to be the first bacterial cause of gastroenteritis worldwide and the most common zoonosis in Europe. Although non-jejuni/coli Campylobacter sp. are increasingly suspected to be responsible for diarrhoea or to be involved in inflammatory bowel disease, they remain poorly isolated due to their fastidious and non-thermophilic nature. Additionally, they are not targeted by commercial syndromic PCR assays. In this study, we present routine diagnostic results over 6 years (2017-2019 and 2021-2023) of Campylobacter sp. and related species, obtained by optimised culture from 51,065 stools by both 0.65 µm pore filtration on antibiotic-free agar, incubated in an H2-enriched atmosphere at 37 °C (also known as the Cape Town protocol), and the use of selective inhibitory Butzler medium incubated at 42 °C. This allowed the isolation of 16 Campylobacter species, 2 Aliarcobacter species, and 2 Helicobacter species, providing a completely different view of the epidemiology of Campylobacterales, in which C. jejuni/coli represents only 30.0% of all isolates, while C. concisus represents 44.4%. C. ureolyticus, representing only 5.5% of all Campylobacterales pre-COVID-19, represented 20.6% of all strains post-COVID-19 (218% increase; p < 0.05). At the same time, the proportions of C. jejuni, C. coli, and C. concisus decreased by 37, 53, and 28%, respectively (p < 0.05).
Collapse
Affiliation(s)
- Emmanuelle Giraudon
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Brussel Universitair Laboratorium (LHUB-ULB), Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium (D.M.)
- Belgium National Reference Center for Campylobacter (LHUB-ULB), 1000 Brussels, Belgium
| | - V. Y. Miendje Deyi
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Brussel Universitair Laboratorium (LHUB-ULB), Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium (D.M.)
- Belgium National Reference Center for Campylobacter (LHUB-ULB), 1000 Brussels, Belgium
| | - Delphine Martiny
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Brussel Universitair Laboratorium (LHUB-ULB), Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium (D.M.)
- Belgium National Reference Center for Campylobacter (LHUB-ULB), 1000 Brussels, Belgium
- Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium
| |
Collapse
|
3
|
Teksoy N, Ilktac M, Ongen B. Investigating the Significance of Non- jejuni/ coli Campylobacter Strains in Patients with Diarrhea. Healthcare (Basel) 2023; 11:2562. [PMID: 37761759 PMCID: PMC10530337 DOI: 10.3390/healthcare11182562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Campylobacter is one of the most commonly reported foodborne bacteria worldwide. Although Campylobacter jejuni and Campylobacter coli have been reported to be responsible for the great majority of campylobacteriosis, the burden of infections by species other than C. jejuni and C. coli have been increasing as a result of a transition to diagnostic test methods that enable the isolation of emerging species. The aim of the present study was to recover C. jejuni, C. coli, and emerging species from the stool samples of 500 patients with gastroenteritis and 100 healthy subjects via the use of a filtration method and culture techniques using Butzler agar and mCCDA under a microaerobic or hydrogen-enriched atmosphere, identify the species by multiplex PCR methods and assess the significance of emerging species in enteric diseases. Thirty-one (6.2%) Campylobacter spp. were isolated from the stool samples of diarrheic patients but none from healthy individuals. Of 31 isolates, 21 (67.8%), nine (29%), and one (3.2%) were identified as C. jejuni, C. coli, and Campylobacter concisus by multiplex PCR, respectively. The filtration method was superior to the culture technique using mCCDA under a microaerobic atmosphere. C. concisus was evaluated as the etiology of gastroenteritis as a result of laboratory and clinical evaluations. The present study was the first to indicate that emerging Campylobacter species are rarely detected and C. concisus is linked to acute gastroenteritis in Turkey where additional studies are warranted to clarify the significance of emerging species in gastroenteritis.
Collapse
Affiliation(s)
- Nermin Teksoy
- Medical Microbiology Department, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey; (N.T.); (B.O.)
| | - Mehmet Ilktac
- Faculty of Pharmacy, Eastern Mediterranean University, via Mersin 10 Turkey, Famagusta 99628, Cyprus
| | - Betigul Ongen
- Medical Microbiology Department, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey; (N.T.); (B.O.)
| |
Collapse
|
4
|
Mazzarelli A, Giancola ML, Fontana A, Piselli P, Binda E, Trivieri N, Mencarelli G, Marchioni L, Vulcano A, De Giuli C, Panebianco C, Villani A, Copetti M, Perri F, Fontana C, Nicastri E, Pazienza V. Gut microbiota composition in COVID-19 hospitalized patients with mild or severe symptoms. Front Microbiol 2022; 13:1049215. [PMID: 36560946 PMCID: PMC9763305 DOI: 10.3389/fmicb.2022.1049215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] Open
Abstract
Background and aimCOVID-19, the infectious disease caused by SARS-CoV-2 virus that has been causing a severe pandemic worldwide for more than 2 years, is characterized by a high heterogeneity of clinical presentations and evolution and, particularly, by a varying severity of respiratory involvement. This study aimed to analyze the diversity and taxonomic composition of the gut microbiota at hospital admission, in order to evaluate its association with COVID-19 outcome. In particular, the association between gut microbiota and a combination of several clinical covariates was analyzed in order to characterize the bacterial signature associate to mild or severe symptoms during the SARS-CoV-2 infection.Materials and methodsV3–V4 hypervariable region of 16S rRNA gene sequencing of 97 rectal swabs from a retrospective cohort of COVID-19 hospitalized patients was employed to study the gut microbiota composition. Patients were divided in two groups according to their outcome considering the respiratory supports they needed during hospital stay: (i) group “mild,” including 47 patients with a good prognosis and (ii) group “severe,” including 50 patients who experienced a more severe disease due to severe respiratory distress that required non-invasive or invasive ventilation. Identification of the clusters of bacterial population between patients with mild or severe outcome was assessed by PEnalized LOgistic Regression Analysis (PELORA).ResultsAlthough no changes for Chao1 and Shannon index were observed between the two groups a significant greater proportion of Campylobacterota and Actinobacteriota at phylum level was found in patients affected by SARS-CoV-2 infection who developed a more severe disease characterized by respiratory distress requiring invasive or non-invasive ventilation. Clusters have been identified with a useful early potential prognostic marker of the disease evolution.DiscussionMicroorganisms residing within the gut of the patients at hospital admission, were able to significantly discriminate the clinical evolution of COVID-19 patients, in particular who will develop mild or severe respiratory involvement. Our data show that patients affected by SARS-CoV-2 with mild or severe symptoms display different gut microbiota profiles which can be exploited as potential prognostic biomarkers paving also the way to new integrative therapeutic approaches.
Collapse
Affiliation(s)
- Antonio Mazzarelli
- National Institute for Infectious Diseases, INMI “Lazzaro Spallanzani”, IRCCS, Rome, Italy
| | - Maria Letizia Giancola
- National Institute for Infectious Diseases, INMI “Lazzaro Spallanzani”, IRCCS, Rome, Italy
| | - Andrea Fontana
- Biostatistic Unit, Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, FG, Italy
| | - Pierluca Piselli
- National Institute for Infectious Diseases, INMI “Lazzaro Spallanzani”, IRCCS, Rome, Italy
| | - Elena Binda
- Cancer Stem Cells Unit, Institute for Stem Cell Biologyl, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Nadia Trivieri
- Cancer Stem Cells Unit, Institute for Stem Cell Biologyl, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Gandino Mencarelli
- Cancer Stem Cells Unit, Institute for Stem Cell Biologyl, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Luisa Marchioni
- National Institute for Infectious Diseases, INMI “Lazzaro Spallanzani”, IRCCS, Rome, Italy
| | - Antonella Vulcano
- National Institute for Infectious Diseases, INMI “Lazzaro Spallanzani”, IRCCS, Rome, Italy
| | - Chiara De Giuli
- National Institute for Infectious Diseases, INMI “Lazzaro Spallanzani”, IRCCS, Rome, Italy
| | - Concetta Panebianco
- Division of Gastroenterology, Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, FG, Italy
| | - Annacandida Villani
- Division of Gastroenterology, Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, FG, Italy
| | - Massimiliano Copetti
- Biostatistic Unit, Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, FG, Italy
| | - Francesco Perri
- Division of Gastroenterology, Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, FG, Italy
| | - Carla Fontana
- National Institute for Infectious Diseases, INMI “Lazzaro Spallanzani”, IRCCS, Rome, Italy
| | - Emanuele Nicastri
- National Institute for Infectious Diseases, INMI “Lazzaro Spallanzani”, IRCCS, Rome, Italy,*Correspondence: Emanuele Nicastri,
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, FG, Italy,Valerio Pazienza,
| |
Collapse
|
5
|
Lobo de Sá FD, Schulzke JD, Bücker R. Diarrheal Mechanisms and the Role of Intestinal Barrier Dysfunction in Campylobacter Infections. Curr Top Microbiol Immunol 2021; 431:203-231. [PMID: 33620653 DOI: 10.1007/978-3-030-65481-8_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Campylobacter enteritis is the most common cause of foodborne bacterial diarrhea in humans. Although various studies have been performed to clarify the pathomechanism in Campylobacter infection, the mechanism itself and bacterial virulence factors are yet not completely understood. The purpose of this chapter is to (i) give an overview on Campylobacter-induced diarrheal mechanisms, (ii) illustrate underlying barrier defects, (iii) explain the role of the mucosal immune response and (iv) weigh preventive and therapeutic approaches. Our present knowledge of pathogenetic and diarrheal mechanisms of Campylobacter jejuni is explained in the first part of this chapter. In the second part, the molecular basis for the Campylobacter-induced barrier dysfunction is compared with that of other species in the Campylobacter genus. The bacteria are capable of overcoming the intestinal epithelial barrier. The invasion into the intestinal mucosa is the initial step of the infection, followed by a second step, the epithelial barrier impairment. The extent of the impairment depends on various factors, including tight junction dysregulation and epithelial apoptosis. The disturbed intestinal epithelium leads to a loss of water and solutes, the leak flux type of diarrhea, and facilitates the uptake of harmful antigens, the leaky gut phenomenon. The barrier dysfunction is accompanied by increased pro-inflammatory cytokine secretion, which is partially responsible for the dysfunction. Moreover, cytokines also mediate ion channel dysregulation (e.g., epithelial sodium channel, ENaC), leading to another diarrheal mechanism, which is sodium malabsorption. Future perspectives of Campylobacter research are the clarification of molecular pathomechanisms and the characterization of therapeutic and preventive compounds to combat and prevent Campylobacter infections.
Collapse
Affiliation(s)
- Fábia Daniela Lobo de Sá
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Roland Bücker
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| |
Collapse
|
6
|
Nattramilarasu PK, Lobo de Sá FD, Schulzke JD, Bücker R. Immune-Mediated Aggravation of the Campylobacter concisus-Induced Epithelial Barrier Dysfunction. Int J Mol Sci 2021; 22:ijms22042043. [PMID: 33669494 PMCID: PMC7922099 DOI: 10.3390/ijms22042043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Campylobacter concisus is a human-pathogenic bacterium of the gastrointestinal tract. This study aimed at the contribution of the mucosal immune system in the context of intestinal epithelial barrier dysfunction induced by C. concisus. As an experimental leaky gut model, we used in vitro co-cultures of colonic epithelial cell monolayers (HT-29/B6-GR/MR) with M1-macrophage-like THP-1 cells on the basal side. Forty-eight hours after C. concisus infection, the decrease in the transepithelial electrical resistance in cell monolayers was more pronounced in co-culture condition and 22 ± 2% (p < 0.001) higher than the monoculture condition without THP-1 cells. Concomitantly, we observed a reduction in the expression of the tight junction proteins occludin and tricellulin. We also detected a profound increase in 4 kDa FITC-dextran permeability in C. concisus-infected cell monolayers only in co-culture conditions. This is explained by loss of tricellulin from tricellular tight junctions (tTJs) after C. concisus infection. As an underlying mechanism, we observed an inflammatory response after C. concisus infection through pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) released from THP-1 cells in the co-culture condition. In conclusion, the activation of subepithelial immune cells exacerbates colonic epithelial barrier dysfunction by C. concisus through tricellulin disruption in tTJs, leading to increased antigen permeability (leaky gut concept).
Collapse
|
7
|
Liu F, Chen S, Luu LDW, Lee SA, Tay ACY, Wu R, Riordan SM, Lan R, Liu L, Zhang L. Analysis of complete Campylobacter concisus genomes identifies genomospecies features, secretion systems and novel plasmids and their association with severe ulcerative colitis. Microb Genom 2020; 6:mgen000457. [PMID: 33111662 PMCID: PMC7725323 DOI: 10.1099/mgen.0.000457] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Campylobacter concisus is an emerging enteric pathogen that is associated with several gastrointestinal diseases, such as inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC). Currently, only three complete C. concisus genomes are available and more complete C. concisus genomes are needed in order to better understand the genomic features and pathogenicity of this emerging pathogen. DNA extracted from 22 C. concisus strains were subjected to Oxford Nanopore genome sequencing. Complete genome assembly was performed using Nanopore genome data in combination with previously reported short-read Illumina data. Genome features of complete C. concisus genomes were analysed using bioinformatic tools. The enteric disease associations of C. concisus plasmids were examined using 239 C. concisus strains and confirmed using PCRs. Proteomic analysis was used to examine T6SS secreted proteins. We successfully obtained 13 complete C. concisus genomes in this study. Analysis of 16 complete C. concisus genomes (3 from public databases) identified multiple novel plasmids. pSma1 plasmid was found to be associated with severe UC. Sec-SRP, Tat and T6SS were found to be the main secretion systems in C. concisus and proteomic data showed a functional T6SS despite the lack of ClpV. T4SS was found in 25% of complete C. concisus genomes. This study also found that GS2 strains had larger genomes and higher GC content than GS1 strains and more often had plasmids. In conclusion, this study provides fundamental genomic data for understanding C. concisus plasmids, genomospecies features, evolution, secretion systems and pathogenicity.
Collapse
Affiliation(s)
- Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Siying Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Seul A. Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Alfred Chin Yen Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Ruochen Wu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
8
|
Aydin F, Abay M, Şahin O, Abay S, Karakaya E, Müştak İB, Müştak HK, Gümüşsoy KS, Kayman T. Species distribution, genetic diversity and antimicrobial susceptibility of Campylobacter isolates recovered from the preputial cavity of healthy rams in Turkey. J Appl Microbiol 2020; 129:1173-1184. [PMID: 32416023 DOI: 10.1111/jam.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/30/2022]
Abstract
AIMS Campylobacter sp. are important causes of reproductive disease in ruminants worldwide. Although healthy bulls are well-known carriers for infection of cows, the role of rams as a potential source for infecting ewes is unclear. This study aimed to determine prevalence, species distribution, genetic diversity and antimicrobial susceptibility profiles of Campylobacter sp. isolated from the preputial cavity of healthy rams. METHODS AND RESULTS The material of this prospective study comprised 191 swab samples taken from the preputial cavity of healthy rams. Enrichment and membrane filtration were employed for the isolation of Campylobacter. Presumptive isolates were confirmed as Campylobacter by phenotypic and molecular tests. 16S rRNA gene sequence analysis was used for the definitive identification of the isolates at species level, and genotyping was performed using pulsed-field gel electrophoresis (PFGE). The susceptibility of the Campylobacter sp. isolates to various antibiotics was determined by the disk diffusion test. In all, 27 of the 191 (14·13%) swab samples were found to be positive for Campylobacter sp. (28 isolates were recovered in total). Per phenotypic and genotypic analyses, one isolate was identified as Campylobacter mucosalis and the remaining 27 isolates were identified as Campylobacter sputorum bv. faecalis. The PFGE analysis of the C. sputorum biovar faecalis isolates produced 17 clusters and 24 different pulsotypes, indicating high genetic heterogeneity. All 28 isolates were found to be susceptible to all of the antibiotics tested. CONCLUSIONS Healthy rams may be an important reservoir of different Campylobacter species in the preputium. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrated for the first time that healthy rams can carry different Campylobacter sp. including genetically diverse C. sputorum bv. faecalis and C. mucosalis in the preputial cavity. Further investigation on the potential implication of this finding on sheep reproductive health (e.g. infectious infertility, and abortion) and overall epidemiology of Campylobacter may be warranted.
Collapse
Affiliation(s)
- F Aydin
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - M Abay
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - O Şahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - S Abay
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - E Karakaya
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - İ B Müştak
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - H K Müştak
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - K S Gümüşsoy
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - T Kayman
- Medical Microbiology Clinic, Şişli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
9
|
Nattramilarasu PK, Bücker R, Lobo de Sá FD, Fromm A, Nagel O, Lee IFM, Butkevych E, Mousavi S, Genger C, Kløve S, Heimesaat MM, Bereswill S, Schweiger MR, Nielsen HL, Troeger H, Schulzke JD. Campylobacter concisus Impairs Sodium Absorption in Colonic Epithelium via ENaC Dysfunction and Claudin-8 Disruption. Int J Mol Sci 2020; 21:ijms21020373. [PMID: 31936044 PMCID: PMC7013563 DOI: 10.3390/ijms21020373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022] Open
Abstract
The epithelial sodium channel (ENaC) can increase the colonic absorptive capacity for salt and water. Campylobacter concisus is a common pathogenic epsilonproteobacterium, causing enteritis and diarrhea. It can induce barrier dysfunction in the intestine, but its influence on intestinal transport function is still unknown. Therefore, our study aimed to characterize C. concisus effects on ENaC using the HT-29/B6-GR/MR (epithelial cell line HT-29/B6 transfected with glucocorticoid and mineralocorticoid receptors) cell model and mouse colon. In Ussing chambers, C. concisus infection inhibited ENaC-dependent Na+ transport as indicated by a reduction in amiloride-sensitive short circuit current (−55%, n = 15, p < 0.001). This occurred via down-regulation of β- and γ-ENaC mRNA expression and ENaC ubiquitination due to extracellular signal-regulated kinase (ERK)1/2 activation, predicted by Ingenuity Pathway Analysis (IPA). In parallel, C. concisus reduced the expression of the sealing tight junction (TJ) protein claudin-8 and induced claudin-8 redistribution off the TJ domain of the enterocytes, which facilitates the back leakage of Na+ ions into the intestinal lumen. In conclusion, C. concisus caused ENaC dysfunction via interleukin-32-regulated ERK1/2, as well as claudin-8-dependent barrier dysfunction—both of which contribute to Na+ malabsorption and diarrhea.
Collapse
Affiliation(s)
- Praveen Kumar Nattramilarasu
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Roland Bücker
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Fábia Daniela Lobo de Sá
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Anja Fromm
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Oliver Nagel
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - In-Fah Maria Lee
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Eduard Butkevych
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany
| | - Claudia Genger
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany
| | - Sigri Kløve
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany
| | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany
| | - Michal R. Schweiger
- Laboratory for Epigenetics and Tumour genetics, University Hospital Cologne and Centre for Molecular Medicine Cologne, 50931 Cologne, Germany
| | - Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, 9000 Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Hanno Troeger
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
- Correspondence:
| |
Collapse
|
10
|
Abstract
Campylobacter is among the four main causes of gastroenteritis worldwide and has increased in both developed and developing countries over the last 10 years. The vast majority of reported Campylobacter infections are caused by Campylobacter jejuni and, to a lesser extent, C. coli; however, the increasing recognition of other emerging Campylobacter pathogens is urgently demanding a better understanding of how these underestimated species cause disease, transmit, and evolve. In parallel to the enhanced clinical awareness of campylobacteriosis due to improved diagnostic protocols, the application of high-throughput sequencing has increased the number of whole-genome sequences available to dozens of strains of many emerging campylobacters. This has allowed for comprehensive comparative pathogenomic analyses for several species, such as C. fetus and C. concisus These studies have started to reveal the evolutionary forces shaping their genomes and have brought to light many genomic features related to pathogenicity in these neglected species, promoting the development of new tools and approaches relevant for clinical microbiology. Despite the need for additional characterization of genomic diversity in emerging campylobacters, the increasing body of literature describing pathogenomic studies on these species deserves to be discussed from an integrative perspective. This review compiles the current knowledge and highlights future work toward deepening our understanding about genome dynamics and the mechanisms governing the evolution of pathogenicity in emerging Campylobacter species, which is urgently needed to develop strategies to prevent or control the spread of these pathogens.
Collapse
Affiliation(s)
- Daniela Costa
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Gregorio Iraola
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Center for Integrative Biology, Universidad Mayor, Santiago de Chile, Chile
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
11
|
Use of syringe filters to isolate Campylobacter species from stool samples. J Microbiol Methods 2018; 155:78-81. [DOI: 10.1016/j.mimet.2018.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/24/2022]
|
12
|
Liu F, Ma R, Wang Y, Zhang L. The Clinical Importance of Campylobacter concisus and Other Human Hosted Campylobacter Species. Front Cell Infect Microbiol 2018; 8:243. [PMID: 30087857 PMCID: PMC6066527 DOI: 10.3389/fcimb.2018.00243] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
Historically, Campylobacteriosis has been considered to be zoonotic; the Campylobacter species that cause human acute intestinal disease such as Campylobacter jejuni and Campylobacter coli originate from animals. Over the past decade, studies on human hosted Campylobacter species strongly suggest that Campylobacter concisus plays a role in the development of inflammatory bowel disease (IBD). C. concisus primarily colonizes the human oral cavity and some strains can be translocated to the intestinal tract. Genome analysis of C. concisus strains isolated from saliva samples has identified a bacterial marker that is associated with active Crohn's disease (one major form of IBD). In addition to C. concisus, humans are also colonized by a number of other Campylobacter species, most of which are in the oral cavity. Here we review the most recent advancements on C. concisus and other human hosted Campylobacter species including their clinical relevance, transmission, virulence factors, disease associated genes, interactions with the human immune system and pathogenic mechanisms.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
13
|
Liu F, Ma R, Tay CYA, Octavia S, Lan R, Chung HKL, Riordan SM, Grimm MC, Leong RW, Tanaka MM, Connor S, Zhang L. Genomic analysis of oral Campylobacter concisus strains identified a potential bacterial molecular marker associated with active Crohn's disease. Emerg Microbes Infect 2018; 7:64. [PMID: 29636463 PMCID: PMC5893538 DOI: 10.1038/s41426-018-0065-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 02/08/2023]
Abstract
Campylobacter concisus is an oral bacterium that is associated with inflammatory bowel disease (IBD) including Crohn's disease (CD) and ulcerative colitis (UC). C. concisus consists of two genomospecies (GS) and diverse strains. This study aimed to identify molecular markers to differentiate commensal and IBD-associated C. concisus strains. The genomes of 63 oral C. concisus strains isolated from patients with IBD and healthy controls were examined, of which 38 genomes were sequenced in this study. We identified a novel secreted enterotoxin B homologue, Csep1. The csep1 gene was found in 56% of GS2 C. concisus strains, presented in the plasmid pICON or the chromosome. A six-nucleotide insertion at the position 654-659 bp in csep1 (csep1-6bpi) was found. The presence of csep1-6bpi in oral C. concisus strains isolated from patients with active CD (47%, 7/15) was significantly higher than that in strains from healthy controls (0/29, P = 0.0002), and the prevalence of csep1-6bpi positive C. concisus strains was significantly higher in patients with active CD (67%, 4/6) as compared to healthy controls (0/23, P = 0.0006). Proteomics analysis detected the Csep1 protein. A csep1 gene hot spot in the chromosome of different C. concisus strains was found. The pICON plasmid was only found in GS2 strains isolated from the two relapsed CD patients with small bowel complications. This study reports a C. concisus molecular marker (csep1-6bpi) that is associated with active CD.
Collapse
Affiliation(s)
- Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Rena Ma
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Chin Yen Alfred Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Heung Kit Leslie Chung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Stephen M Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Michael C Grimm
- St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Rupert W Leong
- Concord Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Susan Connor
- Liverpool Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
14
|
Updating the genomic taxonomy and epidemiology of Campylobacter hyointestinalis. Sci Rep 2018; 8:2393. [PMID: 29403020 PMCID: PMC5799301 DOI: 10.1038/s41598-018-20889-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/25/2018] [Indexed: 12/24/2022] Open
Abstract
Campylobacter hyointestinalis is a member of an emerging group of zoonotic Campylobacter spp. that are increasingly identified in both gastric and non-gastric disease in humans. Here, we discovered C. hyointestinalis in three separate classes of New Zealand ruminant livestock; cattle, sheep and deer. To investigate the relevance of these findings we performed a systematic literature review on global C. hyointestinalis epidemiology and used comparative genomics to better understand and classify members of the species. We found that C. hyointestinalis subspecies hyointestinalis has an open pangenome, with accessory gene contents involved in many essential processes such as metabolism, virulence and defence. We observed that horizontal gene transfer is likely to have played an overwhelming role in species diversification, favouring a public-goods-like mechanism of gene ‘acquisition and resampling’ over a tree-of-life-like vertical inheritance model of evolution. As a result, simplistic gene-based inferences of taxonomy by similarity are likely to be misleading. Such genomic plasticity will also mean that local evolutionary histories likely influence key species characteristics, such as host-association and virulence. This may help explain geographical differences in reported C. hyointestinalis epidemiology and limits what characteristics may be generalised, requiring further genomic studies of C. hyointestinalis in areas where it causes disease.
Collapse
|
15
|
Wang Y, Liu F, Zhang X, Chung HKL, Riordan SM, Grimm MC, Zhang S, Ma R, Lee SA, Zhang L. Campylobacter concisus Genomospecies 2 Is Better Adapted to the Human Gastrointestinal Tract as Compared with Campylobacter concisus Genomospecies 1. Front Physiol 2017; 8:543. [PMID: 28824443 PMCID: PMC5541300 DOI: 10.3389/fphys.2017.00543] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 01/26/2023] Open
Abstract
Campylobacter concisus was previously shown to be associated with inflammatory bowel disease including Crohn's disease (CD) and ulcerative colitis (UC). C. concisus has two genomospecies (GS). This study systematically examined the colonization of GS1 and GS2 C. concisus in the human gastrointestinal tract. GS1 and GS2 specific polymorphisms in 23S rRNA gene were identified by comparison of the 23S rRNA genes of 49 C. concisus strains. Two newly designed PCR methods, based on the polymorphisms of 23S rRNA gene, were developed and validated. These PCR methods were used to detect and quantify GS1 and GS2 C. concisus in 56 oral and enteric samples collected from the gastrointestinal tract of patients with IBD and healthy controls. Meta-analysis of the composition of the isolated GS1 and GS2 C. concisus strains in previous studies was also conducted. The quantitative PCR methods revealed that there was more GS2 than GS1 C. concisus in samples collected from the upper and lower gastrointestinal tract of both patients with IBD and healthy controls, showing that GS2 C. concisus is better adapted to the human gastrointestinal tract. Analysis of GS1 and GS2 composition of isolated C. concisus strains in previous studies showed similar findings except that in healthy individuals a significantly lower GS2 than GS1 C. concisus strains were isolated from fecal samples, suggesting a potential difference in the C. concisus strains or the enteric environment between patients with gastrointestinal diseases and healthy controls. This study provides novel information regarding the adaptation of different genomospecies of C. concisus in the human gastrointestinal tract.
Collapse
Affiliation(s)
- Yiming Wang
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Xiang Zhang
- Clinical Research Center, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Heung Kit Leslie Chung
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South WalesSydney, NSW, Australia
| | - Michael C. Grimm
- St George and Sutherland Clinical School, University of New South WalesSydney, NSW, Australia
| | - Shu Zhang
- Clinical Research Center, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Rena Ma
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Seul A. Lee
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
16
|
Magana M, Chatzipanagiotou S, Burriel AR, Ioannidis A. Inquiring into the Gaps of Campylobacter Surveillance Methods. Vet Sci 2017; 4:E36. [PMID: 29056694 PMCID: PMC5644652 DOI: 10.3390/vetsci4030036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/07/2017] [Accepted: 07/17/2017] [Indexed: 01/20/2023] Open
Abstract
Campylobacter is one of the most common pathogen-related causes of diarrheal illnesses globally and has been recognized as a significant factor of human disease for more than three decades. Molecular typing techniques and their combinations have allowed for species identification among members of the Campylobacter genus with good resolution, but the same tools usually fail to proceed to subtyping of closely related species due to high sequence similarity. This problem is exacerbated by the demanding conditions for isolation and detection from the human, animal or water samples as well as due to the difficulties during laboratory maintenance and long-term storage of the isolates. In an effort to define the ideal typing tool, we underline the strengths and limitations of the typing methodologies currently used to map the broad epidemiologic profile of campylobacteriosis in public health and outbreak investigations. The application of both the old and the new molecular typing tools is discussed and an indirect comparison is presented among the preferred techniques used in current research methodology.
Collapse
Affiliation(s)
- Maria Magana
- Department of Biopathology and Clinical Microbiology, Aeginition Hospital, Athens Medical School, Athens 15772, Greece.
| | - Stylianos Chatzipanagiotou
- Department of Biopathology and Clinical Microbiology, Aeginition Hospital, Athens Medical School, Athens 15772, Greece.
| | - Angeliki R Burriel
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta 23100, Greece.
| | - Anastasios Ioannidis
- Department of Biopathology and Clinical Microbiology, Aeginition Hospital, Athens Medical School, Athens 15772, Greece.
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta 23100, Greece.
| |
Collapse
|
17
|
Liu F, Ma R, Riordan SM, Grimm MC, Liu L, Wang Y, Zhang L. Azathioprine, Mercaptopurine, and 5-Aminosalicylic Acid Affect the Growth of IBD-Associated Campylobacter Species and Other Enteric Microbes. Front Microbiol 2017; 8:527. [PMID: 28424670 PMCID: PMC5372805 DOI: 10.3389/fmicb.2017.00527] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Abstract
Campylobacter concisus is a bacterium that is associated with inflammatory bowel disease (IBD). Immunosuppressive drugs including azathioprine (AZA) and mercaptopurine (MP), and anti-inflammatory drug such as 5-aminosalicylic acid (5-ASA) are commonly used to treat patients with IBD. This study aimed to examine the effects of AZA, MP, and 5-ASA on the growth of IBD-associated bacterial species and to identify bacterial enzymes involved in immunosuppressive drug metabolism. A total of 15 bacterial strains of five species including 11 C. concisus strains, Bacteroides fragilis, Bacteroides vulgatus, Enterococcus faecalis, and Escherichia coli were examined. The impact of AZA, MP, and 5-ASA on the growth of these bacterial species was examined quantitatively using a plate counting method. The presence of enzymes involved in AZA and MP metabolism in these bacterial species was identified using bioinformatics tools. AZA and MP significantly inhibited the growth of all 11 C. concisus strains. C. concisus strains were more sensitive to AZA than MP. 5-ASA showed inhibitory effects to some C. concisus strains, while it promoted the growth of other C. concisus strains. AZA and MP also significantly inhibited the growth of B. fragilis and B. vulgatus. The growth of E. coli was significantly inhibited by 200 μg/ml of AZA as well as 100 and 200 μg/ml of 5-ASA. Bacterial enzymes related to AZA and MP metabolism were found, which varied in different bacterial species. In conclusion, AZA and MP have inhibitory effects to IBD-associated C. concisus and other enteric microbes, suggesting an additional therapeutic mechanism of these drugs in the treatment of IBD. The strain dependent differential impact of 5-ASA on the growth of C. concisus may also have clinical implication given that in some cases 5-ASA medications were found to cause exacerbations of colitis.
Collapse
Affiliation(s)
- Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Rena Ma
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South WalesSydney, NSW, Australia
| | - Michael C. Grimm
- St George and Sutherland Clinical School, University of New South WalesSydney, NSW, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Yiming Wang
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
18
|
Ovesen S, Kirk KF, Nielsen HL, Nielsen H. Motility of Campylobacter concisus isolated from saliva, feces, and gut mucosal biopsies. APMIS 2017; 125:230-235. [PMID: 28116789 DOI: 10.1111/apm.12655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/29/2016] [Indexed: 11/30/2022]
Abstract
Campylobacter concisus is an emerging pathogen associated with gastrointestinal disorders such as gastroenteritis and inflammatory bowel diseases (IBD), but the species is also found in healthy subjects. The heterogeneous genome of C. concisus increases the likelihood of varying virulence between strains. Flagella motility is a crucial virulence factor for the well-recognized Campylobacter jejuni; therefore, this study aimed to analyze the motility of C. concisus isolated from saliva, gut biopsies, and feces of patients with IBD, gastroenteritis, and healthy subjects. The motility zones of 63 isolates from 52 patients were measured after microaerobic growth in soft-agar plates for 72 hours. The motility of C. concisus was significantly lower than that of Campylobacter jejuni and Campylobacter fetus subsp. fetus. The motility of C. concisus varied between isolates (4-22 mm), but there was no statistical significant difference between isolates from IBD patients and healthy subjects (p = 0.14). A tendency of a larger motility zones was observed for IBD gut mucosa isolates, although it did not reach statistical significance (p = 0.13), and no difference was found between oral or fecal isolates between groups. In conclusion, the varying motility of C. concisus could not be related to disease outcome or colonization sites.
Collapse
Affiliation(s)
- Sandra Ovesen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Karina Frahm Kirk
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
19
|
Bojanić K, Midwinter AC, Marshall JC, Rogers LE, Biggs PJ, Acke E. Isolation ofCampylobacterspp. from Client-Owned Dogs and Cats, and Retail Raw Meat Pet Food in the Manawatu, New Zealand. Zoonoses Public Health 2016; 64:438-449. [DOI: 10.1111/zph.12323] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Indexed: 01/27/2023]
Affiliation(s)
- K. Bojanić
- m EpiLab; Hopkirk Research Institute; Massey University; Palmerston North New Zealand
| | - A. C. Midwinter
- m EpiLab; Hopkirk Research Institute; Massey University; Palmerston North New Zealand
| | - J. C. Marshall
- m EpiLab; Hopkirk Research Institute; Massey University; Palmerston North New Zealand
| | - L. E. Rogers
- m EpiLab; Hopkirk Research Institute; Massey University; Palmerston North New Zealand
| | - P. J. Biggs
- m EpiLab; Hopkirk Research Institute; Massey University; Palmerston North New Zealand
| | - E. Acke
- Veterinary Teaching Hospital; Institute of Veterinary; Animal and Biomedical Sciences; Massey University; Palmerston North New Zealand
| |
Collapse
|
20
|
Liu F, Lee H, Lan R, Zhang L. Zonula occludens toxins and their prophages in Campylobacter species. Gut Pathog 2016; 8:43. [PMID: 27651834 PMCID: PMC5025632 DOI: 10.1186/s13099-016-0125-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 09/08/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND We previously showed that zonula occludens toxin (Zot) encoded by Campylobacter concisus zot (808T) gene has the potential to initiate inflammatory bowel disease. This Zot protein caused prolonged intestinal epithelial barrier damage, induced intestinal epithelial and macrophage production of tumor necrosis factor-α and enhanced the responses of macrophages to other microbes. In order to understand the potential virulence of Zot proteins in other Campylobacter species, in this study we examined their presence, similarities, motifs and prophages. METHODS The presence of Zot proteins in Campylobacter species was examined by searching for the Zot family domain in multiple protein databases. Walker A and Walker B motifs in Zot proteins were identified using protein sequence alignment. A phylogenetic tree based on Campylobacter zot genes was constructed using maximum-likelihood method. Campylobacter Zot proteins were compared using protein sequence alignment. The zot-containing prophages in Campylobacter species were identified and compared with known prophage proteins and other viral proteins using protein sequence alignment and protein BLAST. RESULTS Twelve Zot proteins were found in nine Campylobacter species/subspecies. Among these Campylobacter species, three species had two Zot proteins and the remaining six species/subspecies had one Zot protein. Walker A and Walker B motifs and a transmembrane domain were found in all identified Campylobacter Zot proteins. The twelve Campylobacter zot genes from the nine Campylobacter species/subspecies formed two clusters. The ZotCampyType_1 proteins encoded by Cluster 1 Campylobacter zot genes showed high similarities to each other. However, ZotCampyType_2 proteins encoded by Cluster 2 Campylobacter zot genes were more diverse. Furthermore, the zot-containing Campylobacter prophages were identified. CONCLUSION This study reports the identification of two types of Campylobacter Zot proteins. The high similarities of ZotCampyType_1 proteins suggest that they are likely to have similar virulence. ZotCampyType_2 proteins are less similar to each other and their virulent properties, if any, remain to be examined individually.
Collapse
Affiliation(s)
- Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, 2052 Australia
| | - Hoyul Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, 2052 Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, 2052 Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, 2052 Australia
| |
Collapse
|
21
|
Bojanić K, Midwinter AC, Marshall JC, Rogers LE, Biggs PJ, Acke E. Variation in the limit-of-detection of the ProSpecT Campylobacter microplate enzyme immunoassay in stools spiked with emerging Campylobacter species. J Microbiol Methods 2016; 127:236-241. [PMID: 27317896 DOI: 10.1016/j.mimet.2016.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 11/20/2022]
Abstract
Campylobacter enteritis in humans is primarily associated with C. jejuni/coli infection. The impact of other Campylobacter spp. is likely to be underestimated due to the bias of culture methods towards Campylobacter jejuni/coli diagnosis. Stool antigen tests are becoming increasingly popular and appear generally less species-specific. A review of independent studies of the ProSpecT® Campylobacter Microplate enzyme immunoassay (EIA) developed for C. jejuni/coli showed comparable diagnostic results to culture methods but the examination of non-jejuni/coli Campylobacter spp. was limited and the limit-of-detection (LOD), where reported, varied between studies. This study investigated LOD of EIA for Campylobacter upsaliensis, Campylobacter hyointestinalis and Campylobacter helveticus spiked in human stools. Multiple stools and Campylobacter isolates were used in three different concentrations (10(4)-10(9)CFU/ml) to reflect sample heterogeneity. All Campylobacter species evaluated were detectable by EIA. Multivariate analysis showed LOD varied between Campylobacter spp. and faecal consistency as fixed effects and individual faecal samples as random effects. EIA showed excellent performance in replicate testing for both within and between batches of reagents, in agreement between visual and spectrophotometric reading of results, and returned no discordance between the bacterial concentrations within independent dilution test runs (positive results with lower but not higher concentrations). This study shows how limitations in experimental procedures lead to an overestimation of consistency and uniformity of LOD for EIA that may not hold under routine use in diagnostic laboratories. Benefits and limitations for clinical practice and the influence on estimates of performance characteristics from detection of multiple Campylobacter spp. by EIA are discussed.
Collapse
Affiliation(s)
- Krunoslav Bojanić
- (m)EpiLab, Infectious Disease Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Anne Camilla Midwinter
- (m)EpiLab, Infectious Disease Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand.
| | - Jonathan Craig Marshall
- (m)EpiLab, Infectious Disease Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Lynn Elizabeth Rogers
- (m)EpiLab, Infectious Disease Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand; MedLab Central Limited, Palmerston North, New Zealand
| | - Patrick Jon Biggs
- (m)EpiLab, Infectious Disease Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Els Acke
- Veterinary Teaching Hospital, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
22
|
Mahendran V, Liu F, Riordan SM, Grimm MC, Tanaka MM, Zhang L. Examination of the effects of Campylobacter concisus zonula occludens toxin on intestinal epithelial cells and macrophages. Gut Pathog 2016; 8:18. [PMID: 27195022 PMCID: PMC4870807 DOI: 10.1186/s13099-016-0101-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/20/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Campylobacter concisus is a Gram-negative bacterium that is associated with inflammatory bowel disease (IBD). Some C. concisus strains carry zonula occludens toxin (zot) gene which has polymorphisms. This study investigated the effects of C. concisus Zot on intestinal epithelial cells and macrophages using cell line models. METHODS Campylobacter concisus zot (808T) gene, a polymorphism that is associated with active IBD, was cloned and expressed in Escherichia coli. The effects of C. concisus Zot on intestinal epithelial barrier were examined using Caco-2 cell model. Apoptosis induced by C. concisus Zot in Caco-2 cells was assessed by measuring the levels of caspase 3/7. The production of pro-inflammatory cytokines induced by C. concisus Zot in HT-29 cells and in THP-1 macrophage-like cells was measured using ELISA kits. Whether exposure to C. concisus Zot can affect the responses of macrophages to E. coli K12 was also investigated. RESULTS Campylobacter concisus Zot caused prolonged intestinal epithelial barrier damage, induced intestinal epithelial cell apoptosis, induced epithelial production of TNF-α and IL-8 and upregulated TNF-α in THP-1 macrophage-like cells. Pre-exposure to C. concisus Zot significantly enhanced the production of TNF-α and IL-8 as well as phagocytosis by THP-1 macrophage-like cells in response to E. coli K12. CONCLUSION This study suggests that C. concisus Zot may have enteric pathogenic potential by damaging intestinal epithelial barrier, inducing intestinal epithelial and macrophage production of proinflammatory cytokines in particular TNF-α and enhancing the responses of macrophages to other enteric bacterial species.
Collapse
Affiliation(s)
- Vikneswari Mahendran
- />School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW 2052 Australia
| | - Fang Liu
- />School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW 2052 Australia
| | - Stephen M. Riordan
- />Gastrointestinal and Liver Unit, The Prince of Wales Hospital, Sydney, Australia
- />Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052 Australia
| | - Michael C. Grimm
- />St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW 2052 Australia
| | - Mark M. Tanaka
- />School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW 2052 Australia
| | - Li Zhang
- />School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW 2052 Australia
| |
Collapse
|
23
|
Mahendran V, Octavia S, Demirbas OF, Sabrina S, Ma R, Lan R, Riordan SM, Grimm MC, Zhang L. Delineation of genetic relatedness and population structure of oral and enteric Campylobacter concisus strains by analysis of housekeeping genes. MICROBIOLOGY (READING, ENGLAND) 2015; 161:1600-1612. [PMID: 26002953 DOI: 10.1099/mic.0.000112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Campylobacter concisus is an oral bacterium that has been shown to be associated with inflammatory bowel disease (IBD). In this study we examined clusters of oral C. concisus strains isolated from patients with IBD and healthy controls by analysing six housekeeping genes. In addition, we investigated the population structure of C. concisus strains. Whether oral and enteric strains form distinct clusters based on the sequences of these housekeeping genes was also investigated. The oral C. concisus strains were found to contain two genomospecies, which belong to the two genomospecies previously found in enteric C. concisus strains. C. concisus clusters formed based on the sequences of a single aspA gene were the same as that formed by using previously reported MLST schemes. The analysis of combined oral and enteric C. concisus strains found that enteric C. concisus strains did not form distinct clusters. Genetic structure analysis identified five subpopulations of C. concisus and showed that genetic recombination between C. concisus strains was common. However, genetic recombination was significantly less in oral strains isolated from patients with IBD than from healthy individuals. Previously reported oral and enteric intestinal epithelial invasive C. concisus strains were in cluster II and subpopulation III. Furthermore, this study shows that there are no distinct enteric C. concisus strain clusters or subpopulations.
Collapse
Affiliation(s)
- Vikneswari Mahendran
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Omer Faruk Demirbas
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Sheryl Sabrina
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Rena Ma
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Stephen M Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, Sydney, Australia
| | - Michael C Grimm
- St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
24
|
Zhang L, Lee H, Grimm MC, Riordan SM, Day AS, Lemberg DA. Campylobacter concisus and inflammatory bowel disease. World J Gastroenterol 2014; 20:1259-1267. [PMID: 24574800 PMCID: PMC3921508 DOI: 10.3748/wjg.v20.i5.1259] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/07/2013] [Accepted: 12/12/2013] [Indexed: 02/06/2023] Open
Abstract
Investigation of the possible role of Campylobacter concisus (C. concisus) in inflammatory bowel disease (IBD) is an emerging research area. Despite the association found between C. concisus and IBD, it has been difficult to explain how C. concisus, a bacterium that is commonly present in the human oral cavity, may contribute to the development of enteric diseases. The evidence presented in this review shows that some C. concisus strains in the oral cavity acquired zonula occludens toxin (zot) gene from a virus (prophage) and that C. concisus Zot shares conserved motifs with both Vibrio cholerae Zot receptor binding domain and human zonulin receptor binding domain. Both Vibrio cholerae Zot and human zonulin are known to increase intestinal permeability by affecting the tight junctions. Increased intestinal permeability is a feature of IBD. Based on these data, we propose that a primary barrier function defect caused by C. concisus Zot is a mechanism by which zot-positive C. concisus strains may trigger the onset and relapse of IBD.
Collapse
|
25
|
Mahendran V, Tan YS, Riordan SM, Grimm MC, Day AS, Lemberg DA, Octavia S, Lan R, Zhang L. The prevalence and polymorphisms of zonula occluden toxin gene in multiple Campylobacter concisus strains isolated from saliva of patients with inflammatory bowel disease and controls. PLoS One 2013; 8:e75525. [PMID: 24086553 PMCID: PMC3781098 DOI: 10.1371/journal.pone.0075525] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/13/2013] [Indexed: 01/01/2023] Open
Abstract
Campylobacterconcisus is an oral bacterium. A number of studies detected a significantly higher prevalence of C. concisus in the intestinal tract of patients with inflammatory bowel disease (IBD) as compared to controls. The prevalence of zonula occluden toxin (zot) gene, which encodes a toxin known to increase intestinal permeability, in oral C. concisus strains is unknown. Increased intestinal permeability is a feature of IBD. A total of 56 oral C. concisus strains isolated from 19 patients with IBD and 20 controls were examined (some individuals were colonized with multiple strains). A filtration method was used for isolation of C. concisus from saliva samples. SDS-PAGE was used to define strains. PCR was used to amplify zot from C. concisus strains. Positive PCR products were sequenced and the nucleotides and amino acids were compared. Of the 56 oral C. concisus strains examined, 17 strains (30.4%) were positive for zot. The prevalence of zot-positive oral C. concisus strains was 54.5% in patients with active IBD, which was not significantly different from that in healthy controls (40%). Polymorphisms of C. concisus zot were revealed. zot (808T) , zot (350-351AC) and zot (Multiple) were detected only in patients with IBD, but not in healthy controls. Both zot (808T) and zot (Multiple) alleles resulted in substitution of valine at position 270, which occurred in 36.4% of patients with active IBD but not in healthy controls (P = 0.011). Furthermore, the prevalence of multiple oral C. concisus strains in patients with active IBD was significantly higher than that in healthy controls (P = 0.013). This is the first study reporting the prevalence of zot in human oral C. concisus strains and the polymorphisms of C. concisus zot gene. The data suggest that the possible role of C. concisus strains containing specific polymorphic forms of zot gene in human IBD should be investigated.
Collapse
Affiliation(s)
- Vikneswari Mahendran
- The School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Ye Sing Tan
- The School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, the Prince of Wales Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Michael C. Grimm
- St George Clinical School, University of New South Wales, Sydney, Australia
| | - Andrew S. Day
- Department of Gastroenterology, Sydney Children’s Hospital, Sydney, Australia
- Department of Paediatrics, University of Otago, Christchurch, New Zealand
- School of Women’s and Children’s Health, University of New South Wales, Sydney, Australia
| | - Daniel A. Lemberg
- Department of Gastroenterology, Sydney Children’s Hospital, Sydney, Australia
| | - Sophie Octavia
- The School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Ruiting Lan
- The School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Li Zhang
- The School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
26
|
Jay-Russell MT, Bates A, Harden L, Miller WG, Mandrell RE. Isolation of Campylobacter from Feral Swine (Sus scrofa) on the Ranch Associated with the 2006 Escherichia coli O157:H7 Spinach Outbreak Investigation in California. Zoonoses Public Health 2012; 59:314-9. [DOI: 10.1111/j.1863-2378.2012.01465.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Kaakoush NO, Mitchell HM. Campylobacter concisus - A new player in intestinal disease. Front Cell Infect Microbiol 2012; 2:4. [PMID: 22919596 PMCID: PMC3417403 DOI: 10.3389/fcimb.2012.00004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/17/2012] [Indexed: 12/12/2022] Open
Abstract
Over the last decade Campylobacter concisus, a highly fastidious member of the Campylobacter genus has been described as an emergent pathogen of the human intestinal tract. Historically, C. concisus was associated with the human oral cavity and has been linked with periodontal lesions, including gingivitis and periodontitis, although currently its role as an oral pathogen remains contentious. Evidence to support the role of C. concisus in acute intestinal disease has come from studies that have detected or isolated C. concisus as sole pathogen in fecal samples from diarrheic patients. C. concisus has also been associated with chronic intestinal disease, its prevalence being significantly higher in children with newly diagnosed Crohn’s disease (CD) and adults with ulcerative colitis than in controls. Further C. concisus has been isolated from biopsy specimens of patients with CD. While such studies support the role of C. concisus as an intestinal pathogen, its isolation from healthy individuals, and failure of some studies to show a significant difference in C. concisus prevalence in subjects with diarrhea and healthy controls has raised contention as to its role in intestinal disease. Such findings could argue against the role of C. concisus in intestinal disease, however, the fact that C. concisus strains are genetically diverse raises the possibility that differences exist in their pathogenic potential. Evidence to support this view comes from studies showing strain specific differences in the ability of C. concisus to attach to and invade cells and produce virulence factors, including toxins and hemolytic phospholipase A. Further, sequencing of the genome of a C. concisus strain isolated from a child with CD (UNSWCD) and comparison of this with the only other fully sequenced strain (BAA-1457) would suggest that major differences exist in the genetic make-up of this species which could explain different outcomes of C. concisus infection.
Collapse
Affiliation(s)
- Nadeem Omar Kaakoush
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales Sydney, NSW, Australia
| | | |
Collapse
|
28
|
Kovach Z, Kaakoush NO, Lamb S, Zhang L, Raftery MJ, Mitchell H. Immunoreactive proteins of Campylobacter concisus, an emergent intestinal pathogen. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2011; 63:387-396. [PMID: 22092566 DOI: 10.1111/j.1574-695x.2011.00864.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/09/2011] [Accepted: 08/23/2011] [Indexed: 12/13/2022]
Abstract
Campylobacter concisus is an emerging pathogen of the human gastrointestinal tract. Recently, a significantly higher prevalence of C. concisus DNA and higher levels of antibodies specific to C. concisus was detected in children with Crohn's disease when compared with controls. The aim of this study was to identify C. concisus immunoreactive antigens. Proteins from C. concisus were separated using two-dimensional gel electrophoresis, and sera from 10 C. concisus-positive children with Crohn's disease were employed for immunoprobing. The patients' sera reacted with 69 spots, which corresponded to 31 proteins identified by mass spectrometry. The proteins were functionally classified as involved in chemotaxis, signal transduction, flagellar motility, surface binding and membrane protein assembly. Although the individual patients' sera reacted to different sets of proteins, common antigens that were recognized by all patients were flagellin B, ATP synthase F1 alpha subunit, and outer membrane protein 18. Cross-reactivity between proteins of the Campylobacter genus was tested using patients' sera absorbed with Campylobacter showae, Campylobacter jejuni and Campylobacter ureolyticus. Most of the C. concisus immunoreactive proteins identified in this study showed cross-reactivity with other species except for three antigens. In conclusion, this study has identified C. concisus proteins that are immunoreactive within patients with Crohn's disease.
Collapse
Affiliation(s)
- Zsuzsanna Kovach
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
A growing number of Campylobacter species other than C. jejuni and C. coli have been recognized as emerging human and animal pathogens. Although C. jejuni continues to be the leading cause of bacterial gastroenteritis in humans worldwide, advances in molecular biology and development of innovative culture methodologies have led to the detection and isolation of a range of under-recognized and nutritionally fastidious Campylobacter spp., including C. concisus, C. upsaliensis and C. ureolyticus. These emerging Campylobacter spp. have been associated with a range of gastrointestinal diseases, particularly gastroenteritis, IBD and periodontitis. In some instances, infection of the gastrointestinal tract by these bacteria can progress to life-threatening extragastrointestinal diseases. Studies have shown that several emerging Campylobacter spp. have the ability to attach to and invade human intestinal epithelial cells and macrophages, damage intestinal barrier integrity, secrete toxins and strategically evade host immune responses. Members of the Campylobacter genus naturally colonize a wide range of hosts (including pets, farm animals and wild animals) and are frequently found in contaminated food products, which indicates that these bacteria are at risk of zoonotic transmission to humans. This Review presents the latest information on the role and clinical importance of emerging Campylobacter spp. in gastrointestinal health and disease.
Collapse
Affiliation(s)
- Si Ming Man
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| |
Collapse
|
30
|
Kaakoush NO, Deshpande NP, Wilkins MR, Raftery MJ, Janitz K, Mitchell H. Comparative analyses of Campylobacter concisus strains reveal the genome of the reference strain BAA-1457 is not representative of the species. Gut Pathog 2011; 3:15. [PMID: 21992484 PMCID: PMC3219677 DOI: 10.1186/1757-4749-3-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/13/2011] [Indexed: 12/25/2022] Open
Abstract
Background Several studies have shown that significant genotypic heterogeneity exists among Campylobacter concisus strains. Recently, the genome of C. concisus UNSWCD, isolated from a patient with Crohn's disease, was sequenced. Results In this study, comparative analyses were performed between strain UNSWCD and BAA-1457, isolated from a patient with acute gastroenteritis. Searches between C. concisus UNSWCD and BAA-1457 showed that 76% of genes were homologues, whereas those between C. jejuni strains showed 90-91% to be homologues, indicating substantial variation exists within these two C. concisus genomes. More specific bidirectional homology searches identified 1593 genes that are shared between these strains, and 115 and 281 genes unique to UNSWCD and BAA-1457, respectively. Significantly, differences in the type of flagellin glycosylation pathways between the two strains were identified and confirmed by PCR. The protein profiles of UNSWCD, BAA-1457 and a further six strains of C. concisus were compared and analyzed bioinformatically, and this differentiated the strains into four clades. BAA-1457 was found to be highly divergent (average similarity: 56.8%) from the other seven strains (mean average similarity ± standard deviation: 64.7 ± 1.7%). Furthermore, searches for homologues of the 1593 proteins found to be common between UNSWCD and BAA-1457 were conducted against all available bacterial genomes, and 18 proteins were found to be unique to C. concisus, of which 6 were predicted to be secreted, and may represent good markers for detection of this species. Conclusions This study has elucidated several features that may be responsible for the heterogeneity that exists among C. concisus strains, and has determined that the strain BAA-1457 is genetically atypical to other C. concisus strains and is not a good candidate reference strain.
Collapse
Affiliation(s)
- Nadeem O Kaakoush
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | |
Collapse
|
31
|
Sequencing and validation of the genome of a Campylobacter concisus reveals intra-species diversity. PLoS One 2011; 6:e22170. [PMID: 21829448 PMCID: PMC3146479 DOI: 10.1371/journal.pone.0022170] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 06/16/2011] [Indexed: 01/31/2023] Open
Abstract
Campylobacter concisus is an emerging pathogen of the human gastrointestinal tract. Its role in different diseases remains a subject of debate; this may be due to strain to strain genetic variation. Here, we sequence and analyze the genome of a C. concisus from a biopsy of a child with Crohn's disease (UNSWCD); the second such genome for this species. A 1.8 Mb genome was assembled with paired-end reads from a next-generation sequencer. This genome is smaller than the 2.1 Mb C. concisus reference BAA-1457. While 1593 genes were conserved across UNSWCD and BAA-1457, 138 genes from UNSWCD and 281 from BAA-1457 were unique when compared against the other. To further validate the genome assembly and annotation, comprehensive shotgun proteomics was performed. This confirmed 78% of open reading frames in UNSWCD and, importantly, provided evidence of expression for 217 proteins previously defined as 'hypothetical' in Campylobacter. Substantial functional differences were observed between the UNSWCD and the reference strain. Enrichment analysis revealed differences in membrane proteins, response to stimulus, molecular transport and electron carriers. Synteny maps for the 281 genes not present in UNSWCD identified seven functionally associated gene clusters. These included one associated with the CRISPR family and another which encoded multiple restriction endonucleases; these genes are all involved in resistance to phage attack. Many of the observed differences are consistent with UNSWCD having adapted to greater surface interaction with host cells, as opposed to BAA-1457 which may prefer a free-living environment.
Collapse
|
32
|
Siembieda JL, Miller WA, Byrne BA, Ziccardi MH, Anderson N, Chouicha N, Sandrock CE, Johnson CK. Zoonotic pathogens isolated from wild animals and environmental samples at two California wildlife hospitals. J Am Vet Med Assoc 2011; 238:773-83. [DOI: 10.2460/javma.238.6.773] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Kalischuk LD, Inglis GD. Comparative genotypic and pathogenic examination of Campylobacter concisus isolates from diarrheic and non-diarrheic humans. BMC Microbiol 2011; 11:53. [PMID: 21406111 PMCID: PMC3068073 DOI: 10.1186/1471-2180-11-53] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/15/2011] [Indexed: 12/13/2022] Open
Abstract
Background Campylobacter concisus is an emerging enteric pathogen, yet it is commonly isolated from feces and the oral cavities of healthy individuals. This genetically complex species is comprised of several distinct genomospecies which may vary in pathogenic potential. Results We compared pathogenic and genotypic properties of C. concisus fecal isolates from diarrheic and healthy humans residing in the same geographic region. Analysis of amplified fragment length polymorphism (AFLP) profiles delineated two main clusters. Isolates assigned to AFLP cluster 1 belonged to genomospecies A (based on genomospecies-specific differences in the 23S rRNA gene) and were predominantly isolated from healthy individuals. This cluster also contained a reference oral strain. Isolates assigned to this cluster induced greater expression of epithelial IL-8 mRNA and more frequently contained genes coding for the zonnula occludins toxin and the S-layer RTX. Furthermore, isolates from healthy individuals induced greater apoptotic DNA fragmentation and increased metabolic activity than those from diarrheic individuals, and isolates assigned to genomospecies A (of which the majority were from healthy individuals) exhibited higher haemolytic activity compared to genomospecies B isolates. In contrast, AFLP cluster 2 was predominated by isolates belonging to genomospecies B and those from diarrheic individuals. Isolates from this cluster displayed greater mean epithelial invasion and translocation than cluster 1 isolates. Conclusion Two main genetically distinct clusters (i.e., genomospecies) were identified among C. concisus fecal isolates from healthy and diarrheic individuals. Strains within these clusters differed with respect to clinical presentation and pathogenic properties, supporting the hypothesis that pathogenic potential varies between genomospecies. ALFP cluster 2 isolates were predominantly from diarrheic patients, and exhibited higher levels of epithelial invasion and translocation, consistent with known roles for these factors in diarrhoeal disease. Conversely, isolates from healthy humans and AFLP cluster 1 or genomospecies A (which were predominantly isolated from healthy humans) exhibited increased haemolytic ability, apoptotic DNA fragmentation, IL-8 induction, and/or carriage of toxin genes. Given that this cluster contains an oral reference strain, it is possible that some of the AFLP cluster 1 isolates are periodontal pathogens and may cause disease, albeit via a different mechanism than those from AFLP cluster 2.
Collapse
Affiliation(s)
- Lisa D Kalischuk
- Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | | |
Collapse
|
34
|
Enteric campylobacteria and RNA viruses associated with healthy and diarrheic humans in the Chinook health region of southwestern Alberta, Canada. J Clin Microbiol 2010; 49:209-19. [PMID: 21106791 DOI: 10.1128/jcm.01220-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The presence of Campylobacter species and enteric RNA viruses in stools from diarrheic (n = 442) and healthy (n = 58) humans living in southwestern Alberta was examined (May to October 2005). A large number of diarrheic individuals who were culture negative for C. jejuni (n = 54) or C. coli (n = 19) were PCR positive for these taxa. Overall detection rates for C. jejuni and C. coli in diarrheic stools were 29% and 5%, respectively. In contrast, 3% and 0% of stools from healthy humans were positive for these taxa, respectively. Infection with C. jejuni was endemic over the study period. However, there was no difference in infection rates between individuals living in urban or rural locations. Stools from a large number of diarrheic (74%) and healthy (88%) individuals were positive for Campylobacter DNA. The prevalence rates of C. concisus, C. curvus, C. fetus, C. gracilis, C. helveticus, C. hominis, C. hyointestinalis, C. mucosalis, C. showae, C. sputorum, and C. upsaliensis DNA were either not significantly different or were significantly lower in stools from diarrheic than from healthy individuals. No C. lanienae or C. lari DNA was detected. Stools from 4% and 0% of diarrheic and healthy humans, respectively, were positive for rotavirus, sapovirus, or norovirus (GI/GII). Our results showed a high prevalence of diarrheic individuals living in southwestern Alberta who were infected by C. jejuni and, to a lesser extent, by C. coli. However, other Campylobacter species, norovirus, rotavirus, sapovirus, and bovine enteric calicivirus were either inconsequential pathogens during the study period or are not pathogens at all.
Collapse
|
35
|
Lynch Ó, Cagney C, McDowell D, Duffy G. A method for the growth and recovery of 17 species of Campylobacter and its subsequent application to inoculated beef. J Microbiol Methods 2010; 83:1-7. [DOI: 10.1016/j.mimet.2010.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/28/2010] [Accepted: 06/07/2010] [Indexed: 11/28/2022]
|
36
|
Hochel I, Slavíčková D, Viochna D, Škvor J, Steinhauserová I. Detection ofCampylobacterspecies in foods by indirect competitive ELISA using hen and rabbit antibodies. FOOD AGR IMMUNOL 2007. [DOI: 10.1080/09540100701666857] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Macfarlane S, Furrie E, Macfarlane GT, Dillon JF. Microbial colonization of the upper gastrointestinal tract in patients with Barrett's esophagus. Clin Infect Dis 2007; 45:29-38. [PMID: 17554697 DOI: 10.1086/518578] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 03/12/2007] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Barrett's esophagus (BE) is a complication of chronic gastroesophageal reflux disease, in which patients are at greatly increased risk of esophageal dysplasia and adenocarcinoma. Over the past 2 decades, there has been an increase in the incidence of both BE and adenocarcinoma; however, the involvement of microorganisms in BE is uncertain. The aim of this study was to characterize microbial communities in esophageal aspirate specimens and on distal esophageal mucosal samples from patients with BE. METHODS Biopsy and aspirate specimens were obtained by endoscopic examination from 7 patients with BE and 7 control subjects without BE. Samples were cultured under aerobic, anaerobic, and microaerophilic conditions for yeasts and bacteria, including Helicobacter pylori. Bacterial isolates were identified by 16S ribosomal RNA gene sequencing. Fluorescence microscopic examination was also used to determine the spatial localization of these organisms on mucosal surfaces. Significant colonization was detected in 6 patients with BE and in 4 control subjects. RESULTS Overall, 46 bacterial species belonging to 16 genera were detected, with 10 species being common in both groups. Both aspirate and biopsy samples from patients with BE contained complex populations of bacteria. Uniquely, high levels of Campylobacter species (Campylobacter concisus and Campylobacter rectus), which have been linked to enteritis, periodontal infections, and tumor formation in animals, were found in 4 (57%) of 7 patients with BE but in none of the control subjects. Microscopic examination revealed that bacteria on mucosal biofilms often occurred in microcolonies. CONCLUSIONS The occurrence of nitrate-reducing Campylobacter species in patients with BE may suggest that there is a link in either the initiation, maintenance, or exacerbation of disease processes leading to adenocarcinoma formation.
Collapse
Affiliation(s)
- Sandra Macfarlane
- Dundee University Gut Group, Ninewells Hospital Medical School, Dundee, United Kingdom.
| | | | | | | |
Collapse
|
38
|
|
39
|
Aabenhus R, On SLW, Siemer BL, Permin H, Andersen LP. Delineation of Campylobacter concisus genomospecies by amplified fragment length polymorphism analysis and correlation of results with clinical data. J Clin Microbiol 2005; 43:5091-6. [PMID: 16207968 PMCID: PMC1248439 DOI: 10.1128/jcm.43.10.5091-5096.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter concisus has been as frequently isolated from human diarrhea as the important enteropathogen Campylobacter jejuni, but it also occurs in the feces of healthy individuals. The role of C. concisus in human disease has been difficult to determine, since the species comprises at least two phenotypically indistinguishable but genetically distinct taxa (i.e., genomospecies) that may vary in pathogenicity. We examined 62 C. concisus strains by amplified fragment length polymorphism (AFLP) profiling and correlated the results with clinical data. All C. concisus strains gave unique AFLP profiles, and numerical analysis of these data distributed the strains among four clusters. The clustering was of taxonomic significance: two clusters contained, respectively, the type strain (of oral origin) and a reference strain (from diarrhea) of each of the known genomospecies. Genomospecies 2 strains were more frequently isolated from immunocompetent patients and/or patients without concomitant infections that presented with fever, chronic diarrhea, and gut inflammation than was genomospecies 1, clustering with the type strain of oral origin. Bloody diarrhea was recorded only with C. concisus genomospecies 2 infections. We identified two additional C. concisus genomospecies: genomospecies 3 comprised a single strain from an immunocompetent patient, and genomospecies 4 contained five isolates from severely immunodeficient patients, i.e., organ transplantation recipients or those with hematological malignancies. All genomospecies 4 strains were of the same protein profile group and failed to react with a C. concisus species-specific PCR assay based on 23S rRNA gene sequences: the taxonomic position of this group requires closer investigation. Campylobacter concisus is genetically and taxonomically diverse and contains at least four distinct genomospecies that may exhibit differences in their spectra of virulence potential.
Collapse
Affiliation(s)
- Rune Aabenhus
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
40
|
Aabenhus R, Permin H, Andersen LP. Characterization and subgrouping of Campylobacter concisus strains using protein profiles, conventional biochemical testing and antibiotic susceptibility. Eur J Gastroenterol Hepatol 2005; 17:1019-24. [PMID: 16148545 DOI: 10.1097/00042737-200510000-00003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE To characterize and subgroup clinical strains of Campylobacter concisus isolated from patients with gastrointestinal disease. METHODS A total of 109 C. concisus isolates from 98 patients obtained between June 1997 and December 1998 were analysed using protein profiles, conventional biochemical tube tests, ApiCampy, and susceptibility patterns by Neosensitabs and E-test. RESULTS Two groups were identified by using protein profiles. One resembled the ATCC 33237 type strain of oral origin, and a second group differing from it, particularly in the high molecular weight zone. Considerable diversity exists in the lower molecular range of the gels, also within assigned subgroups. Biochemical testing showed differences between the groups in the ability to reduce nitrate, ApiCampy testing also yielded differences between the two assigned groups, although reactions were highly heterogeneous. Resistance to erythromycin, ciprofloxacin, ampicillin, ceftriaxone and tetracycline occurred in 3%, 13%, 7%, 11% and 0% of the isolates when using Neosensitabs. The E-test yielded comparable results 7%, 5%, 0%, 2% and 3%, respectively. CONCLUSION Results indicate that C. concisus can be assigned to two broad groups based on differences in protein profiles. No distinct phenotypic marker was identified. Susceptibility patterns are not suitable for discrimination between the two assigned groups. Further studies using a polyphasic approach including the application of genetic methods are needed to assess the complex taxonomy of this potential pathogen.
Collapse
Affiliation(s)
- Rune Aabenhus
- Department of Clinical Microbiology, National University Hospital (Rigshospitalet), Denmark
| | | | | |
Collapse
|
41
|
Engberg J, Bang DD, Aabenhus R, Aarestrup FM, Fussing V, Gerner-Smidt P. Campylobacter concisus: an evaluation of certain phenotypic and genotypic characteristics. Clin Microbiol Infect 2005; 11:288-95. [PMID: 15760425 DOI: 10.1111/j.1469-0691.2005.01111.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The clinical relevance of Campylobacter concisus in gastrointestinal disease has not been determined definitively. This study investigated the phenotypic and genotypic characteristics of 39 C. concisus isolates from Danish patients with diarrhoea, three isolates from healthy individuals and the type strain. A cytolethal distending toxin (CDT)-like effect on Vero cells was observed in 35 (90%) isolates from patients with diarrhoea, in all three isolates from healthy individuals and in the type strain. Analysis of SDS-PAGE protein profiles and PCR amplification of 23S rDNA assigned the isolates into two distinct, but discordant groups. Automated ribotyping (RiboPrinting) identified 34 distinct patterns among the 43 isolates, but cluster analysis did not separate isolates from patients with diarrhoea from isolates from healthy patients. Random amplified polymorphic DNA (RAPD) analysis with three primers identified 37 unique profiles, but requires further evaluation. The isolates obtained from healthy carriers were distinguished by cluster analysis from the isolates obtained from patients with diarrhoea. All the isolates were susceptible to 11 antimicrobial agents tested. Overall, there was considerable variability between the C. concisus isolates, but there were no clear phenotypic or genotypic differences between isolates from patients with diarrhoea and isolates from healthy carriers. Further evidence is needed to support the possible role of C. concisus as a human enteric pathogen.
Collapse
Affiliation(s)
- J Engberg
- Unit of Gastrointestinal Infections, Statens Serum Institut, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
42
|
Wieland B, Regula G, Danuser J, Wittwer M, Burnens AP, Wassenaar TM, Stärk KDC. Campylobacter spp. in Dogs and Cats in Switzerland: Risk Factor Analysis and Molecular Characterization with AFLP. ACTA ACUST UNITED AC 2005; 52:183-9. [PMID: 16000114 DOI: 10.1111/j.1439-0450.2005.00843.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A 1-year cross-sectional study was carried out to determine the prevalence, risk factors for carriage, and genetic diversity of Campylobacter spp. in healthy dogs and cats in Switzerland. Veterinary practitioners collected samples from 1268 animals (all ages) presented for vaccination. The prevalence of Campylobacter spp. in 634 dogs and 596 cats that were eligible for the study was 41.2% (confidence interval 95%: 37.3-45.1%) and 41.9% (CI 95%: 37.9-46%), respectively. Risk factors identified for carriage of Campylobacter jejuni were found to be different from risk factors for C. upsaliensis/C. helveticus. Young animals (< or =3 years) had significantly higher odds of carrying C. upsaliensis/C. helveticus than older animals (OR 1.8-3.3), whereas for C. jejuni carriage, the age was not a risk factor. Amplified fragment length polymorphism (AFLP) genotyping revealed heterogeneity among C. jejuni strains and was found to clearly separate C. helveticus from C. upsaliensis. It was shown that cats more often carry C. helveticus with an estimated prevalence of 28.2%, whereas dogs mainly are carrying C. upsaliensis.
Collapse
Affiliation(s)
- B Wieland
- Federal Veterinary Office, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
43
|
Lentzsch P, Rieksneuwöhner B, Wieler LH, Hotzel H, Moser I. High-resolution genotyping of Campylobacter upsaliensis strains originating from three continents. J Clin Microbiol 2004; 42:3441-8. [PMID: 15297481 PMCID: PMC497571 DOI: 10.1128/jcm.42.8.3441-3448.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ninety-six Campylobacter upsaliensis strains that originated from Australia, Canada, and Europe (Germany) and that were isolated from humans, dogs, and cats were serotyped for their heat-stable surface antigens. All of them were genotyped by enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR) profiling, and 83 strains were genotyped by macrorestriction analysis with the endonuclease XhoI. Eighty-four percent of the strains belonged to five different serotypes (serotypes OI, OII, OIII, OIV, and OVI), with the proportions of strains in each serotype being comparable among the groups of strains from all three continents. Two serotypes, OIII and OIV, were prevalent at rates of 35 to 40%. Serotypes OI, OII, and OVI were detected at rates of 1.5 to 15%. Between 10 and 17.7% of the strains did not react with the available antisera. Analysis of the ERIC-PCR profiles revealed two distinct genotypic clusters, which represented the German and the non-European strains, respectively. XhoI macrorestriction yielded two genotypic clusters; one of them contained 80.2% of the German strains and 34.6% of the non-European strains, and the second cluster consisted of 65.4% of the non-European strains and 19.8% of the German strains. Fourteen strains from all three continents were analyzed for their 16S rRNA gene sequences. Only two minor variations were detected in four of the strains. In conclusion, C. upsaliensis has undergone diverging processes of genome arrangement on different continents during evolution without segregating into different subspecies.
Collapse
Affiliation(s)
- P Lentzsch
- Centre for Agricultural Landscape and Land Use Research, Müncheberg, Germany
| | | | | | | | | |
Collapse
|
44
|
Hald B, Pedersen K, Wainø M, Jørgensen JC, Madsen M. Longitudinal study of the excretion patterns of thermophilic Campylobacter spp. in young pet dogs in Denmark. J Clin Microbiol 2004; 42:2003-12. [PMID: 15131162 PMCID: PMC404596 DOI: 10.1128/jcm.42.5.2003-2012.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Campylobacter excretion patterns of 26 domestic pet dogs were described in a longitudinal study. The dogs entered the study between 3 and 8 months of age and were monitored until 2 years of age. They were tested monthly for Campylobacter carriage in stool samples that were cultured on the Campylobacter-selective media CAT and modified CCDA agar at 37 and 42 degrees C. This study comprised 366 fecal swab samples, of which 278 (76.2%) were found to be Campylobacter positive, with the following distribution of species: 75.0% Campylobacter upsaliensis, 19.4% Campylobacter jejuni, 2.1% Campylobacter lari, 0.7% Campylobacter coli, and 2.8% Campylobacter spp. Isolates were typed by pulsed-field gel electrophoresis (PFGE) to elucidate the strain excretion pattern. All study dogs excreted Campylobacter spp. during the study period. At 3 months of age, 60% of the dogs carried Campylobacter, increasing to nearly 100% carriers at 1 year of age, whereafter the carriage rate decreased to 67% at 24 months of age. The PFGE types showed that individual dogs were often colonized by unique strains of C. upsaliensis for several months, up to 21 months or longer. These C. upsaliensis strains were either clonal (or underwent concurrent minor mutative changes) or independent strains. In contrast, the excreted C. jejuni isolates were much more diverse and, in most cases, only seen in one sample from each dog. A high degree of diversity among different dogs was seen. We conclude that young domestic pet dogs excreted Campylobacter spp. during the majority of their puppyhood and adolescent period. In general C. upsaliensis strains were excreted for months, with short-term interruptions by or cocolonization with other transitory Campylobacter spp., predominantly C. jejuni. C. jejuni was more prevalent in dogs between 3 months and 1 year of age than in dogs between 1 and 2 years of age.
Collapse
Affiliation(s)
- Birthe Hald
- Department of Poultry, Fish, and Fur Animals, Danish Institute for Food and Veterinary Research, DK-8200 Arhus N, Denmark.
| | | | | | | | | |
Collapse
|
45
|
Istivan TS, Coloe PJ, Fry BN, Ward P, Smith SC. Characterization of a haemolytic phospholipase A2 activity in clinical isolates of Campylobacter concisus. J Med Microbiol 2004; 53:483-493. [PMID: 15150326 DOI: 10.1099/jmm.0.45554-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A membrane-bound, haemolytic phospholipase A(2) (PLA(2)) activity was detected in clinical strains of Campylobacter concisus isolated from children with gastroenteritis. The clinical strains were assigned into two molecular groups (genomospecies) based on PCR amplification of their 23S rDNA. This calcium-dependent, heat-stable, haemolytic PLA(2) activity was detected in strains from both genomospecies. A crude haemolysin extract (CHE) was initially prepared from cellular outer-membrane proteins of these isolates and was further fractionated by ultrafiltration. The haemolytic activity of the extracted fraction (R30) was retained by ultrafiltration using a 30 kDa molecular mass cut-off filter, and was designated haemolysin extract (HE). Both CHE and HE had PLA(2) activity and caused stable vacuolating and cytolytic effects on Chinese hamster ovary cells in tissue culture. Primers for the conserved region of pldA gene (phospholipase A gene) from Campylobacter coli amplified a gene region of 460 bp in all tested isolates, confirming the presence of a homologous PLA gene sequence in C. concisus. The detection of haemolytic PLA(2) activity in C. concisus indicates the presence of a potential virulence factor in this species and supports the hypothesis that C. concisus is a possible opportunistic pathogen.
Collapse
Affiliation(s)
- Taghrid S Istivan
- Department of Biotechnology and Environmental Biology, RMIT University, PO Box 71, Bundoora, Victoria 3083, Australia 2Microbiology Department, Royal Children's Hospital, Melbourne, Australia 3School of Health Sciences, Deakin University, Melbourne, Australia
| | - Peter J Coloe
- Department of Biotechnology and Environmental Biology, RMIT University, PO Box 71, Bundoora, Victoria 3083, Australia 2Microbiology Department, Royal Children's Hospital, Melbourne, Australia 3School of Health Sciences, Deakin University, Melbourne, Australia
| | - Benjamin N Fry
- Department of Biotechnology and Environmental Biology, RMIT University, PO Box 71, Bundoora, Victoria 3083, Australia 2Microbiology Department, Royal Children's Hospital, Melbourne, Australia 3School of Health Sciences, Deakin University, Melbourne, Australia
| | - Peter Ward
- Department of Biotechnology and Environmental Biology, RMIT University, PO Box 71, Bundoora, Victoria 3083, Australia 2Microbiology Department, Royal Children's Hospital, Melbourne, Australia 3School of Health Sciences, Deakin University, Melbourne, Australia
| | - Stuart C Smith
- Department of Biotechnology and Environmental Biology, RMIT University, PO Box 71, Bundoora, Victoria 3083, Australia 2Microbiology Department, Royal Children's Hospital, Melbourne, Australia 3School of Health Sciences, Deakin University, Melbourne, Australia
| |
Collapse
|
46
|
Mooney A, Byrne C, Clyne M, Johnson-Henry K, Sherman P, Bourke B. Invasion of human epithelial cells by Campylobacter upsaliensis. Cell Microbiol 2004; 5:835-47. [PMID: 14531898 DOI: 10.1046/j.1462-5822.2003.00325.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Few data exist on the interaction of Campylobacter upsaliensis with host cells, and the potential for this emerging enteropathogen to invade epithelial cells has not been explored. We have characterized the ability of C. upsaliensis to invade both cultured epithelial cell lines and primary human small intestinal cells. Epithelial cell lines of intestinal origin appeared to be more susceptible to invasion than non-intestinal-derived cells. Of three bacterial isolates studied, a human clinical isolate, CU1887, entered cells most efficiently. Although there was a trend towards more efficient invasion of Caco-2 cells by C. upsaliensis CU1887 at lower initial inocula, actual numbers of intracellular organisms increased with increasing multiplicity of infection and with prolonged incubation period. Confocal microscopy revealed C. upsaliensis within primary human small intestinal cells. Both Caco-2 and primary cells in non-confluent areas of the infected monolayers were substantially more susceptible to infection than confluent cells. The specific cytoskeletal inhibitors cytochalasin B, cytochalasin D and vinblastine attenuated invasion of Caco-2 cells in a concentration-dependent manner, providing evidence for both microtubule- and microfilament-dependent uptake of C. upsaliensis. Electron microscopy revealed the presence of organisms within Caco-2 cell cytoplasmic vacuoles. C. upsaliensis is capable of invading epithelial cells and appears to interact with host cell cytoskeletal structures in order to gain entry to the intracellular environment. Entry into cultured primary intestinal cells ex vivo provides strong support for the role of host cell invasion during human enteric C. upsaliensis infection.
Collapse
Affiliation(s)
- Adele Mooney
- Department of Paediatrics, The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, The Children's Research Centre, Our Lady's Hospital for Sick Children, Crumlin, Dublin 12, Ireland
| | | | | | | | | | | |
Collapse
|
47
|
Bhavsar SP, Baserisalehi M, Kapadnis BP. EFFECT OF GAMMA RADIATION ON SURVIVAL OF CAMPYLOBACTERS IN VARIOUS FOOD SAMPLES. Indian J Med Microbiol 2004. [DOI: 10.1016/s0255-0857(21)02949-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Johnson JR. Dedicated catheter lumens for parenteral nutrition. Clin Infect Dis 2003; 36:1625-6; author reply 1626. [PMID: 12802769 DOI: 10.1086/375087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
49
|
Labarca JA, Sturgeon J, Borenstein L, Salem N, Harvey SM, Lehnkering E, Reporter R, Mascola L. Campylobacter upsaliensis: Another pathogen for consideration in the United States. Clin Infect Dis 2002; 34:E59-60. [PMID: 12015708 DOI: 10.1086/340266] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2001] [Revised: 12/12/2001] [Indexed: 11/03/2022] Open
Abstract
While evaluating quinolone resistance in a sample of Campylobacter isolates recovered from patients with campylobacteriosis in Los Angeles County, California, in 1998, we discovered that the second most frequently isolated species was Campylobacter upsaliensis (6 [4%] of 155 isolates). The ability of laboratories to recover this species may be dependent on the culture conditions and the media used. Three dogs living in the households of 2 of these 6 patients had C. upsaliensis isolated in their stool specimens.
Collapse
Affiliation(s)
- Jaime A Labarca
- Acute Communicable Disease Control Unit, Los Angeles County Department of Health Services, Los Angeles, CA, 90012, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Engvall EO, Brändström B, Gunnarsson A, Mörner T, Wahlström H, Fermér C. Validation of a polymerase chain reaction/restriction enzyme analysis method for species identification of thermophilic campylobacters isolated from domestic and wild animals. J Appl Microbiol 2002; 92:47-54. [PMID: 11849327 DOI: 10.1046/j.1365-2672.2002.01491.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To compare and evaluate a polymerase chain reaction/restriction enzyme analysis (PCR/REA) method with standard phenotypic tests for the identification and differentiation of the thermophilic campylobacters Campylobacter jejuni, C. coli, C. lari and C. upsaliensis. METHODS AND RESULTS One hundred and eighty-two presumptive thermophilic campylobacters from 12 different animal species were tested by a recently published PCR/REA and standard phenotypic tests. By PCR/REA, 95% of the isolates were clearly identified as either one of the four thermophilic Campylobacter species or as not belonging to this group of organisms at all. By standard phenotyping, 174 of the 182 isolates were initially identified as either C. jejuni, C. coli, C. lari or C. upsaliensis. Additional genotypic tests and phenotyping showed that 52 of these identifications were either incorrect or unreliable. Of the C. jejuni isolates, 19% were identified as C. coli by initial phenotyping and 27 sheep isolates phenotyped as C. coli or C. lari were, in fact, arcobacters. CONCLUSIONS The PCR/REA was more reliable than standard phenotyping for the identification of thermophilic campylobacters from different animals. SIGNIFICANCE AND IMPACT OF THE STUDY Routinely used phenotypic tests often resulted in unreliable identifications, requiring additional testing. The PCR/REA, however, gave unequivocal results and was considered useful for the routine identification of thermophilic campylobacters from different animals.
Collapse
Affiliation(s)
- E O Engvall
- National Veterinary Institute, SE-751 89 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|