1
|
Wang J, Zhou T. Unveiling gut microbiota's role: Bidirectional regulation of drug transport for improved safety. Med Res Rev 2025; 45:311-343. [PMID: 39180410 DOI: 10.1002/med.22077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/20/2024] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
Drug safety is a paramount concern in the field of drug development, with researchers increasingly focusing on the bidirectional regulation of gut microbiota in this context. The gut microbiota plays a crucial role in maintaining drug safety. It can influence drug transport processes in the body through various mechanisms, thereby modulating their efficacy and toxicity. The main mechanisms include: (1) The gut microbiota directly interacts with drugs, altering their chemical structure to reduce toxicity and enhance efficacy, thereby impacting drug transport mechanisms, drugs can also change the structure and abundance of gut bacteria; (2) bidirectional regulation of intestinal barrier permeability by gut microbiota, promoting the absorption of nontoxic drugs and inhibiting the absorption of toxic components; (3) bidirectional regulation of the expression and activity of transport proteins by gut microbiota, selectively promoting the absorption of effective components or inhibiting the absorption of toxic components. This bidirectional regulatory role enables the gut microbiota to play a key role in maintaining drug balance in the body and reducing adverse reactions. Understanding these regulatory mechanisms sheds light on novel approaches to minimize toxic side effects, enhance drug efficacy, and ultimately improve drug safety. This review systematically examines the bidirectional regulation of gut microbiota in drug transportation from the aforementioned aspects, emphasizing their significance in ensuring drug safety. Furthermore, it offers a prospective outlook from the standpoint of enhancing therapeutic efficacy and reducing drug toxicity, underscoring the importance of further exploration in this research domain. It aims to provide more effective strategies for drug development and treatment.
Collapse
Affiliation(s)
- Jinyi Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
2
|
Biersack B. The Antifungal Potential of Niclosamide and Structurally Related Salicylanilides. Int J Mol Sci 2024; 25:5977. [PMID: 38892165 PMCID: PMC11172841 DOI: 10.3390/ijms25115977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Human mycoses cover a diverse field of fungal diseases from skin disorders to systemic invasive infections and pose an increasing global health problem based on ineffective treatment options, the hampered development of new efficient drugs, and the emergence of resistant fungal strains. Niclosamide is currently applied for the treatment of worm infections. Its mechanisms of action, which include the suppression of mitochondrial oxidative phosphorylation (also known as mitochondrial uncoupling), among others, has led to a repurposing of this promising anthelmintic drug for the therapy of further human diseases such as cancer, diabetes, and microbial infections. Given the urgent need to develop new drugs against fungal infections, the considerable antifungal properties of niclosamide are highlighted in this review. Its chemical and pharmacological properties relevant for drug development are also briefly mentioned, and the described mitochondria-targeting mechanisms of action add to the current arsenal of approved antifungal drugs. In addition, the activities of further salicylanilide-based niclosamide analogs against fungal pathogens, including agents applied in veterinary medicine for many years, are described and discussed for their feasibility as new antifungals for humans. Preliminary structure-activity relationships are determined and discussed. Various salicylanilide derivatives with antifungal activities showed increased oral bioavailabilities when compared with niclosamide. The simple synthesis of salicylanilide-based drugs also vouchsafes a broad and cost-effective availability for poorer patient groups. Pertinent literature is covered until 2024.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
3
|
Seo JI, Jin GW, Yoo HH. Pharmacokinetic considerations for enhancing drug repurposing opportunities of anthelmintics: Niclosamide as a case study. Biomed Pharmacother 2024; 173:116394. [PMID: 38461686 DOI: 10.1016/j.biopha.2024.116394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Recently, anthelmintics have showcased versatile therapeutic potential in addressing various diseases, positioning them as promising candidates for drug repurposing. However, challenges such as low bioavailability and a lack of a solid pharmacokinetic basis impede successful repurposing. To overcome these flaws, we aimed to investigate the key pharmacokinetic factors of anthelmintics mainly focusing on the absorption, distribution, and metabolism profiles by employing niclosamide (NIC) as a model drug. The intestinal permeability of NIC is significantly influenced by solubility and doesn't function as a substrate for efflux transporters. It showed high plasma protein binding. Also, the metabolism study indicated that NIC would have low metabolic stability by extensively undergoing the intestinal glucuronidation. Additionally, we investigated the CYP-mediated drug-drug interaction potential of NIC in both direct and time-dependent ways. NIC showed strong inhibitory effects on CYP1A2 and CYP2C8 and is not likely to become a time-dependent inhibitor. Our findings could contribute to the identification of essential factors in the pharmacokinetics of anthelmintics, potentially facilitating their repositioning.
Collapse
Affiliation(s)
- Jeong In Seo
- Pharmacomicrobiomics Research Center and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-Do, South Korea
| | - Geun-Woo Jin
- R&D Center CnPharm Co. LTD, Seoul 03759, South Korea
| | - Hye Hyun Yoo
- Pharmacomicrobiomics Research Center and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-Do, South Korea.
| |
Collapse
|
4
|
Wu C, Luo M, Xie D, Zhong S, Xu J, Lu D. Kinetic Characterization of Estradiol Glucuronidation by Liver Microsomes and Expressed UGT Enzymes: The Effects of Organic Solvents. Eur J Drug Metab Pharmacokinet 2024:10.1007/s13318-024-00888-2. [PMID: 38472634 DOI: 10.1007/s13318-024-00888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND AND OBJECTIVE In vitro glucuronidation of 17β-estradiol (estradiol) is often performed to assess the role of uridine 5'-diphospho-glucuronosyltransferase 1A1 (UGT1A1) in xenobiotic/drug metabolism. The objective of this study was to determine the effects of four commonly used organic solvents [i.e., dimethyl sulfoxide (DMSO), methanol, ethanol, and acetonitrile] on the glucuronidation kinetics of estradiol, which can be glucuronidated at C3 and C17 positions. METHODS The impacts of organic solvents on estradiol glucuronidation were determined by using expressed UGT enzymes and liver microsomes from both human and animals. RESULTS In human liver microsomes (HLM), methanol, ethanol, and acetonitrile significantly altered estradiol glucuronidation kinetics with increased Vmax (up to 2.6-fold) and CLmax (up to 2.8-fold) values. Altered estradiol glucuronidation in HLM was deduced to be attributed to the enhanced metabolic activities of UGT1A1 and UGT2B7, whose activities differ at the two glucuronidation positions. The effects of organic solvents on estradiol glucuronidation were glucuronidation position-, isozyme-, and solvent-specific. Furthermore, both ethanol and acetonitrile have a greater tendency to modify the glucuronidation activity of estradiol in animal liver microsomes. CONCLUSION Organic solvents such as methanol, ethanol, and acetonitrile showed great potential in adjusting the glucuronidation of estradiol. DMSO is the most suitable solvent due to its minimal influence on estradiol glucuronidation. Researchers should be cautious in selecting appropriate solvents to get accurate results when assessing the metabolism of a new chemical entity.
Collapse
Affiliation(s)
- Caimei Wu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Meixue Luo
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Dihao Xie
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Simin Zhong
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Jiahao Xu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Kang MJ, Kim MJ, Kim A, Koo TS, Lee KR, Chae YJ. Pharmacokinetic interactions of niclosamide in rats: Involvement of organic anion transporters 1 and 3 and organic cation transporter 2. Chem Biol Interact 2024; 390:110886. [PMID: 38280639 DOI: 10.1016/j.cbi.2024.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/30/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Niclosamide is an anthelmintic drug with a long history of use and is generally safe and well tolerated in humans. As the conventional dose of niclosamide results in a low but certain level in systemic circulation, drug interactions with concomitant drugs should be considered. We aimed to investigate the interaction between niclosamide and drug transporters, as such information is currently limited. Niclosamide inhibited the transport activity of OATP1B1, OATP1B3, OAT1, OAT3, and OCT2 in vitro. Among them, the inhibitory effects on OAT1, OAT3, and OCT2 were strong, with IC50 values of less than 1 μM. When 3 mg/kg of niclosamide was co-administered to rats, systemic exposure to furosemide (a substrate of OAT1/3) and metformin (a substrate of OCT2) increased, and the renal clearance (CLr) of the drugs significantly decreased. These results suggest that niclosamide inhibits renal transporters, OAT1/3 and OCT2, not only in vitro but also in vivo, resulting in increased systemic exposure to the substrates of the transporters by strongly blocking the urinary elimination pathway in rats. The findings of this study will support a meticulous understanding of the transporter-mediated drug interactions of niclosamide and consequently aid in effective and safe use of niclosamide.
Collapse
Affiliation(s)
- Min-Ji Kang
- College of Pharmacy, Woosuk University, Wanju, 55338, Republic of Korea
| | - Min Ju Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Aeran Kim
- College of Pharmacy, Woosuk University, Wanju, 55338, Republic of Korea
| | - Tae-Sung Koo
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kyeong-Ryoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; Department of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Yoon-Jee Chae
- College of Pharmacy, Woosuk University, Wanju, 55338, Republic of Korea; Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju, 55338, Republic of Korea.
| |
Collapse
|
6
|
Xu J, Xue Y, Bolinger AA, Li J, Zhou M, Chen H, Li H, Zhou J. Therapeutic potential of salicylamide derivatives for combating viral infections. Med Res Rev 2023; 43:897-931. [PMID: 36905090 PMCID: PMC10247541 DOI: 10.1002/med.21940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/09/2022] [Accepted: 02/26/2023] [Indexed: 03/12/2023]
Abstract
Since time immemorial human beings have constantly been fighting against viral infections. The ongoing and devastating coronavirus disease 2019 pandemic represents one of the most severe and most significant public health emergencies in human history, highlighting an urgent need to develop broad-spectrum antiviral agents. Salicylamide (2-hydroxybenzamide) derivatives, represented by niclosamide and nitazoxanide, inhibit the replication of a broad range of RNA and DNA viruses such as flavivirus, influenza A virus, and coronavirus. Moreover, nitazoxanide was effective in clinical trials against different viral infections including diarrhea caused by rotavirus and norovirus, uncomplicated influenza A and B, hepatitis B, and hepatitis C. In this review, we summarize the broad antiviral activities of salicylamide derivatives, the clinical progress, and the potential targets or mechanisms against different viral infections and highlight their therapeutic potential in combating the circulating and emerging viral infections in the future.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yu Xue
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jun Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Mingxiang Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
7
|
Fabelle NR, Oktavia FARH, Cha GS, Nguyen NA, Choi SK, Yun CH. Production of a major metabolite of niclosamide using bacterial cytochrome P450 enzymes. Enzyme Microb Technol 2023; 165:110210. [PMID: 36764029 DOI: 10.1016/j.enzmictec.2023.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Niclosamide has been proposed as a possible candidate for a Covid-19 drug. However, the metabolites of niclosamide are difficult to investigate because they are usually not available commercially or they are quite expensive in the commercial market. In this study, the major metabolite of niclosamide in human liver microsomes (HLMs) was confirmed to be 3-OH niclosamide. Because the production of 3-OH niclosamide using HLMs has a slow turnover rate, a new method of producing niclosamide metabolite with an easier and highly cost-efficient method was thus conducted. Bacterial CYP102A1 (BM3) is one of the bacterial cytochrome P450s (CYPs) from Bacillus megaterium that structurally show similar activities to human CYPs. Here, the BM3 mutants were used to produce niclosamide metabolites and the metabolites were analyzed using high-performance liquid chromatography and LC-mass spectrometry. Among a set of mutants tested here, BM3 M14 mutant was the most active in producing 3-OH niclosamide, the major metabolite of niclosamide. Comparing BM3 M14 and HLMs, BM3 M14 production of 3-OH niclosamide was 34-fold higher than that of HLMs. Hence, the engineering of BM3 can be a cost-efficient method to produce 3-OH niclosamide.
Collapse
Affiliation(s)
- Nabilla Rizkia Fabelle
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | | | - Gun Su Cha
- Namhae Garlic Research Institute, 2465-8 Namdaero, Gyeongsangnamdo 52430, Republic of Korea
| | - Ngoc Anh Nguyen
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Soo-Keun Choi
- Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong, Daejon 34141, Republic of Korea.
| | - Chul-Ho Yun
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea; School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea.
| |
Collapse
|
8
|
Lawrence M, Grayson P, Jeffrey J, Docker M, Garroway C, Wilson J, Manzon R, Wilkie M, Jeffries K. Transcriptomic impacts and potential routes of detoxification in a lampricide-tolerant teleost exposed to TFM and niclosamide. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY PART D: GENOMICS AND PROTEOMICS 2023; 46:101074. [PMID: 37028257 DOI: 10.1016/j.cbd.2023.101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Sea lamprey (Petromyzon marinus) control in the Laurentian Great Lakes of North America often relies on the application of 3-trifluoromethyl-4-nitrophenol (TFM) and niclosamide mixtures to kill larval sea lamprey. Selectivity of TFM against lampreys appears to be due to differential detoxification ability in these jawless fishes compared to bony fishes, particularly teleosts. However, the proximate mechanisms of tolerance to the TFM and niclosamide mixture and the mechanisms of niclosamide toxicity on its own are poorly understood, especially among non-target fishes. Here, we used RNA sequencing to identify specific mRNA transcripts and functional processes that responded to niclosamide or a TFM:niclosamide mixture in bluegill (Lepomis macrochirus). Bluegill were exposed to niclosamide or TFM:niclosamide mixture, along with a time-matched control group, and gill and liver tissues were sampled at 6, 12, and 24 h. We summarized the whole-transcriptome patterns through gene ontology (GO) term enrichment and through differential expression of detoxification genes. The niclosamide treatment resulted in an upregulation of several transcripts associated with detoxification (cyp, ugt, sult, gst), which may help explain the relatively high detoxification capacity in bluegill. Conversely, the TFM:niclosamide mixture resulted in an enrichment of processes related to arrested cell cycle and growth, and cell death alongside a diverse detoxification gene response. Detoxification of both lampricides likely involves the use of phase I and II biotransformation genes. Our findings strongly suggest that the unusually high tolerance of bluegill to lampricides is due to these animals having an inherently high capacity and flexible detoxification response to such compounds.
Collapse
|
9
|
Yang M, Wang AQ, Padilha EC, Shah P, Hagen NR, Ryu C, Shamim K, Huang W, Xu X. Use of physiological based pharmacokinetic modeling for cross-species prediction of pharmacokinetic and tissue distribution profiles of a novel niclosamide prodrug. Front Pharmacol 2023; 14:1099425. [PMID: 37113753 PMCID: PMC10126473 DOI: 10.3389/fphar.2023.1099425] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/13/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction: Niclosamide (Nc) is an FDA-approved anthelmintic drug that was recently identified in a drug repurposing screening to possess antiviral activity against SARS-CoV-2. However, due to the low solubility and permeability of Nc, its in vivo efficacy was limited by its poor oral absorption. Method: The current study evaluated a novel prodrug of Nc (PDN; NCATS-SM4705) in improving in vivo exposure of Nc and predicted pharmacokinetic profiles of PDN and Nc across different species. ADME properties of the prodrug were determined in humans, hamsters, and mice, while the pharmacokinetics (PK) of PDN were obtained in mice and hamsters. Concentrations of PDN and Nc in plasma and tissue homogenates were measured by UPLC-MS/MS. A physiologically based pharmacokinetic (PBPK) model was developed based on physicochemical properties, pharmacokinetic and tissue distribution data in mice, validated by the PK profiles in hamsters and applied to predict pharmacokinetic profiles in humans. Results: Following intravenous and oral administration of PDN in mice, the total plasma clearance (CLp) and volume of distribution at steady-state (Vdss) were 0.061-0.063 L/h and 0.28-0.31 L, respectively. PDN was converted to Nc in both liver and blood, improving the systemic exposure of Nc in mice and hamsters after oral administration. The PBPK model developed for PDN and in vivo formed Nc could adequately simulate plasma and tissue concentration-time profiles in mice and plasma profiles in hamsters. The predicted human CLp/F and Vdss/F after an oral dose were 2.1 L/h/kg and 15 L/kg for the prodrug respectively. The predicted Nc concentrations in human plasma and lung suggest that a TID dose of 300 mg PDN would provide Nc lung concentrations at 8- to 60-fold higher than in vitro IC50 against SARS-CoV-2 reported in cell assays. Conclusion: In conclusion, the novel prodrug PDN can be efficiently converted to Nc in vivo and improves the systemic exposure of Nc in mice after oral administration. The developed PBPK model adequately depicts the mouse and hamster pharmacokinetic and tissue distribution profiles and highlights its potential application in the prediction of human pharmacokinetic profiles.
Collapse
|
10
|
The challenge of repurposing niclosamide: Considering pharmacokinetic parameters, routes of administration, and drug metabolism. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Wang Z, Ren J, Du J, Wang H, Liu J, Wang G. Niclosamide as a Promising Therapeutic Player in Human Cancer and Other Diseases. Int J Mol Sci 2022; 23:16116. [PMID: 36555754 PMCID: PMC9782559 DOI: 10.3390/ijms232416116] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Niclosamide is an FDA-approved anthelmintic drug for the treatment of parasitic infections. However, over the past few years, increasing evidence has shown that niclosamide could treat diseases beyond parasitic diseases, which include metabolic diseases, immune system diseases, bacterial and viral infections, asthma, arterial constriction, myopia, and cancer. Therefore, we systematically reviewed the pharmacological activities and therapeutic prospects of niclosamide in human disease and cancer and summarized the related molecular mechanisms and signaling pathways, indicating that niclosamide is a promising therapeutic player in various human diseases, including cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| |
Collapse
|
12
|
Gupta DS, Bharate SS. Techniques for analytical estimation of COVID-19 clinical candidate, niclosamide in pharmaceutical and biomedical samples. SEPARATION SCIENCE PLUS 2022; 5:SSCP371. [PMID: 36249323 PMCID: PMC9538213 DOI: 10.1002/sscp.202200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/09/2022]
Abstract
Niclosamide is a well-known broad-spectrum antiparasitic drug used for human as well as veterinary tapeworm infections. Recently, it attracted attention as an antiviral agent for treating coronavirus disease 2019. It is administered orally in humans to treat tapeworm infections. Furthermore, it is a registered pesticide and molluscicide to control infections in the aquaculture industry. Its chronic environmental exposure has potential toxicities when such contaminated seafood is consumed. Therefore, monitoring its residual concentration in food products (seafood, water, water waste, etc.) and pharmaceuticals (active pharmaceutical ingredients, bulk drugs, and formulations) is imperative. The present review critically investigates the sophisticated techniques employed for analyzing niclosamide, its degradation products, and metabolites in various samples and matrices. The future scope for green analytical methods, green sample extraction and preparation is also deliberated.
Collapse
Affiliation(s)
- Deepank S. Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology ManagementSVKM's NMIMSV.L. Mehta Road, Vile Parle (W)Mumbai400056India
| | - Sonali S. Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology ManagementSVKM's NMIMSV.L. Mehta Road, Vile Parle (W)Mumbai400056India
| |
Collapse
|
13
|
Systematic identification of biomarker-driven drug combinations to overcome resistance. Nat Chem Biol 2022; 18:615-624. [PMID: 35332332 DOI: 10.1038/s41589-022-00996-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 02/11/2022] [Indexed: 02/06/2023]
Abstract
The ability to understand and predict variable responses to therapeutic agents may improve outcomes in patients with cancer. We hypothesized that the basal gene-transcription state of cancer cell lines, coupled with cell viability profiles of small molecules, might be leveraged to nominate specific mechanisms of intrinsic resistance and to predict drug combinations that overcome resistance. We analyzed 564,424 sensitivity profiles to identify candidate gene-compound pairs, and validated nine such relationships. We determined the mechanism of a novel relationship, in which expression of the serine hydrolase enzymes monoacylglycerol lipase (MGLL) or carboxylesterase 1 (CES1) confers resistance to the histone lysine demethylase inhibitor GSK-J4 by direct enzymatic modification. Insensitive cell lines could be sensitized to GSK-J4 by inhibition or gene knockout. These analytical and mechanistic studies highlight the potential of integrating gene-expression features with small-molecule response to identify patient populations that are likely to benefit from treatment, to nominate rational candidates for combinations and to provide insights into mechanisms of action.
Collapse
|
14
|
Abstract
Covering: March 2010 to December 2020. Previous review: Nat. Prod. Rep., 2011, 28, 705This review summarizes the latest progress and perspectives on the structural classification, biological activities and mechanisms, metabolism and pharmacokinetic investigations, biosynthesis, chemical synthesis and structural modifications, as well as future research directions of the promising natural withanolides. The literature from March 2010 to December 2020 is reviewed, and 287 references are cited.
Collapse
Affiliation(s)
- Gui-Yang Xia
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China. .,Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shi-Jie Cao
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Feng Qiu
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
15
|
Synthesis, antiviral activity, preliminary pharmacokinetics and structural parameters of thiazolide amine salts. Future Med Chem 2021; 13:1731-1741. [PMID: 34402654 DOI: 10.4155/fmc-2021-0055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: The thiazolides, typified by nitazoxanide, are an important class of anti-infective agents. A significant problem with nitazoxanide and its active circulating metabolite tizoxanide is their poor solubility. Results: We report the preparation and evaluation of a series of amine salts of tizoxanide and the corresponding 5-Cl thiazolide. These salts demonstrated improved aqueous solubility and absorption, as shown by physicochemical and in vivo measurements. They combine antiviral activity against influenza A virus with excellent cell safety indices. We also report the x-ray crystal structural data of the ethanolamine salt. Conclusion: The ethanol salt of thiazolide retains the activity of the parent together with an improved cell safety index, making it a good candidate for further evaluation.
Collapse
|
16
|
Jara MO, Warnken ZN, Sahakijpijarn S, Moon C, Maier EY, Christensen DJ, Koleng JJ, Peters JI, Hackman Maier SD, Williams Iii RO. Niclosamide inhalation powder made by thin-film freezing: Multi-dose tolerability and exposure in rats and pharmacokinetics in hamsters. Int J Pharm 2021; 603:120701. [PMID: 33989748 PMCID: PMC8112893 DOI: 10.1016/j.ijpharm.2021.120701] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
In this work, we have developed and tested a dry powder form of niclosamide made by thin-film freezing (TFF) and administered it by inhalation to rats and hamsters to gather data about its toxicology and pharmacokinetics. Niclosamide, a poorly water-soluble drug, is an interesting drug candidate because it was approved over 60 years ago for use as an anthelmintic medication, but recent studies demonstrated its potential as a broad-spectrum antiviral with pharmacological effect against SARS-CoV-2 infection. TFF was used to develop a niclosamide inhalation powder composition that exhibited acceptable aerosol performance with a fine particle fraction (FPF) of 86.0% and a mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD) of 1.11 µm and 2.84, respectively. This formulation not only proved to be safe after an acute three-day, multi-dose tolerability and exposure study in rats as evidenced by histopathology analysis, and also was able to achieve lung concentrations above the required IC90 levels for at least 24 h after a single administration in a Syrian hamster model. To conclude, we successfully developed a niclosamide dry powder inhalation that overcomes niclosamide’s limitation of poor oral bioavailability by targeting the drug directly to the primary site of infection, the lungs.
Collapse
Affiliation(s)
- Miguel O Jara
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Zachary N Warnken
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| | - Sawittree Sahakijpijarn
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Chaeho Moon
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Esther Y Maier
- Drug Dynamics Institute, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | - Jay I Peters
- UT- Health San Antonio Department of Medicine, Division of Pulmonary/Critical Care Medicine, San Antonio, TX 78229, USA
| | | | - Robert O Williams Iii
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| |
Collapse
|
17
|
Gao L, Lin Y, Wang S, Lin L, Lu D, Zhao Y, Xing H, Wu B. Chronotoxicity of Semen Strychni is associated with circadian metabolism and transport in mice. J Pharm Pharmacol 2021; 73:398-409. [PMID: 33793874 DOI: 10.1093/jpp/rgaa007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES We aimed to determine the circadian responses of mice to Semen Strychni and to investigate the role of pharmacokinetics in generating chronotoxicity. METHODS Total extract of Semen Strychni was administered by oral gavage to wild-type (WT) and Bmal1-/- (a circadian clock-deficient model) mice at different circadian time points for toxicity (including survival) and pharmacokinetic characterization. Nephrotoxicity and neurotoxicity were evaluated by measuring plasma creatinine and creatine kinase BB (CK-BB), respectively. Drug metabolism and transport assays were performed using liver/intestine microsomes and everted gut sacs, respectively. KEY FINDINGS Semen Strychni nephrotoxicity and neurotoxicity as well as animal survival displayed significant circadian rhythms (the highest level of toxicity was observed at ZT18 and the lowest level at ZT2 to ZT6). According to pharmacokinetic experiments, herb dosing at ZT18 generated higher plasma concentrations (and systemic exposure) of strychnine and brucine (two toxic constituents) compared with ZT6 dosing. This was accompanied by reduced formation of both dihydroxystrychnine and strychnine glucuronide (two strychnine metabolites) at ZT18. Bmal1 ablation sensitized mice to Semen Strychni-induced toxicity (with increased levels of plasma creatinine and CK-BB) and abolished the time dependency of toxicity. Metabolism of Semen Strychni (strychnine and brucine) in the liver and intestine microsomes of WT mice was more extensive at ZT6 than at ZT18. These time differences in hepatic and intestinal metabolism were lost in Bmal1-/- mice. Additionally, the intestinal efflux transport of Semen Strychni (strychnine and brucine) was more extensive at ZT6 than ZT18 in WT mice. However, the time-varying transport difference was abolished in Bmal1-/- mice. CONCLUSIONS Circadian responses of mice to Semen Strychni are associated with time-varying efflux transport and metabolism regulated by the circadian clock (Bmal1). Our findings may have implications for optimizing phytotherapy with Semen Strychni via timed delivery.
Collapse
Affiliation(s)
- Lu Gao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanke Lin
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Shuai Wang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Luomin Lin
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Danyi Lu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yue Zhao
- Institution of Laboratory Animal, Jinan University, Guangzhou, China
| | - Huijie Xing
- Institution of Laboratory Animal, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Coban O, Aytac Z, Yildiz ZI, Uyar T. Colon targeted delivery of niclosamide from β-cyclodextrin inclusion complex incorporated electrospun Eudragit® L100 nanofibers. Colloids Surf B Biointerfaces 2020; 197:111391. [PMID: 33129100 DOI: 10.1016/j.colsurfb.2020.111391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/03/2020] [Accepted: 09/28/2020] [Indexed: 01/06/2023]
Abstract
Electrospun nanofibers incorporated with inclusion complex (IC) of niclosamide (NIC) and hydroxypropyl-beta-cyclodextrin (HPβCD) (NIC-HPβCD-IC) was produced from pH-responsive polymer (Eudragit® L100, EUD), which disintegrates at pH values higher than 6, (EUD-NIC-HPβCD-IC-NF) for targeted delivery of NIC to the colon. Pristine EUD nanofibers (EUD-NF), only NIC loaded (EUD-NIC-NF) and physical mixture of NIC and HPβCD loaded EUD nanofibers (EUD-NIC-HPβCD-NF) were also produced as reference. SEM images revealed the bead-free and uniform morphology of nanofibers. XRD, TGA, and DSC were also performed for both NIC-HPβCD-IC and electrospun nanofibers and it was seen that there are some NIC molecules, which cannot make IC. Dissolution studies were carried out for 240 min at pH 1.2 and pH 7 simulating stomach and colon, respectively. EUD-NIC-NF released almost 53 % of NIC in 120 min, whereas EUD-NIC-HPβCD-NF (15 %) and EUD-NIC-HPβCD-IC-NF (8 %) released at most 15 % of NIC in 120 min. Then, remained NIC in the nanofibers released into the colon for the next 120 min. The slight difference in the release of NIC into stomach from EUD-NIC-HPβCD-NF and EUD-NIC-HPβCD-IC-NF might be due to the uncomplexed NIC molecules in EUD-NIC-HPβCD-IC-NF. More importantly, EUD-NIC-HPβCD-IC-NF was quite effective for preventing the release of NIC in the stomach in contrast to EUD-NIC-NF, which has already released more than half amount of NIC in 120 min. In conclusion, this study might open new areas for developing targeted delivery systems by the combination of nanofibers and CD-ICs for hydrophobic drugs such as NIC.
Collapse
Affiliation(s)
- Ozlem Coban
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Zeynep Aytac
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Zehra Irem Yildiz
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey; Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
19
|
Vliet SM, Dasgupta S, Volz DC. Niclosamide Induces Epiboly Delay During Early Zebrafish Embryogenesis. Toxicol Sci 2019; 166:306-317. [PMID: 30165700 DOI: 10.1093/toxsci/kfy214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Niclosamide is an antihelminthic drug used worldwide for the treatment of tapeworm infections. Recent drug repurposing screens have revealed that niclosamide exhibits diverse mechanisms of action and, as a result, demonstrates promise for a number of applications, including the treatment of cancer, bacterial infections, and Zika virus. As new applications of niclosamide will require non-oral delivery routes that may lead to exposure in utero, the objective of this study was to investigate the mechanism of niclosamide toxicity during early stages of embryonic development. Using zebrafish as a model, we found that niclosamide induced a concentration-dependent delay in epiboly progression during late-blastula and early-gastrula, an effect that was dependent on exposure during the maternal-to-zygotic transition-a period characterized by degradation of maternally derived transcripts, zygotic genome activation, and initiation of cell motility. Moreover, we found that niclosamide did not affect embryonic oxygen consumption, suggesting that oxidative phosphorylation-a well-established target for niclosamide within intestinal parasites-may not play a role in niclosamide-induced epiboly delay. However, mRNA-sequencing revealed that niclosamide exposure during blastula and early-gastrula significantly impacted the timing of zygotic genome activation as well as the abundance of cytoskeleton- and cell cycle regulation-specific transcripts. In addition, we found that niclosamide inhibited tubulin polymerization in vitro, suggesting that niclosamide-induced delays in epiboly progression may, in part, be driven by disruption of microtubule formation and cell motility within the developing embryo.
Collapse
Affiliation(s)
- Sara M Vliet
- Department of Environmental Sciences, University of California, Riverside, California 92521
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, California 92521
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, California 92521
| |
Collapse
|
20
|
Vliet SMF, Dasgupta S, Sparks NRL, Kirkwood JS, Vollaro A, Hur M, Zur Nieden NI, Volz DC. Maternal-to-zygotic transition as a potential target for niclosamide during early embryogenesis. Toxicol Appl Pharmacol 2019; 380:114699. [PMID: 31398420 DOI: 10.1016/j.taap.2019.114699] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/16/2019] [Accepted: 08/04/2019] [Indexed: 12/31/2022]
Abstract
Niclosamide is an antihelminthic drug used worldwide for the treatment of tapeworm infections. Recent drug repurposing screens have highlighted the broad bioactivity of niclosamide across diverse mechanisms of action. As a result, niclosamide is being evaluated for a range of alternative drug-repurposing applications, including the treatment of cancer, bacterial infections, and Zika virus. As new applications of niclosamide will require non-oral delivery routes that may lead to exposure in utero, it is important to understand the mechanism of niclosamide toxicity during early stages of embryonic development. Previously, we showed that niclosamide induces a concentration-dependent delay in epiboly progression in the absence of effects on oxidative phosphorylation - a well-established target for niclosamide. Therefore, the overall objective of this study was to further examine the mechanism of niclosamide-induced epiboly delay during zebrafish embryogenesis. Based on this study, we found that (1) niclosamide exposure during early zebrafish embryogenesis resulted in a decrease in yolk sac integrity with a concomitant decrease in the presence of yolk sac actin networks and increase in cell size; (2) within whole embryos, niclosamide exposure did not alter non-polar metabolites and lipids, but significantly altered amino acids specific to aminoacyl-tRNA biosynthesis; (3) niclosamide significantly altered transcripts related to translation, transcription, and mRNA processing pathways; and (4) niclosamide did not significantly alter levels of rRNA and tRNA. Overall, our findings suggest that niclosamide may be causing a systemic delay in embryonic development by disrupting the translation of maternally-supplied mRNAs, an effect that may be mediated through disruption of aminoacyl-tRNA biosynthesis.
Collapse
Affiliation(s)
- Sara M F Vliet
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA; Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Nicole R L Sparks
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA, USA
| | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Alyssa Vollaro
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Nicole I Zur Nieden
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
21
|
Fan X, Li H, Ding X, Zhang QY. Contributions of Hepatic and Intestinal Metabolism to the Disposition of Niclosamide, a Repurposed Drug with Poor Bioavailability. Drug Metab Dispos 2019; 47:756-763. [PMID: 31040114 DOI: 10.1124/dmd.119.086678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
Niclosamide, an antiparasitic, has been repositioned as a potential therapeutic drug for systemic diseases based on its antiviral, anticancer, and anti-infection properties. However, low bioavailability limits its in vivo efficacy. Our aim was to determine whether metabolic disposition by microsomal P450 enzymes in liver and intestine influences niclosamide's bioavailability in vivo, by comparing niclosamide metabolism in wild-type, liver-Cpr-null (LCN), and intestinal epithelium-Cpr-null (IECN) mice. In vitro stability of niclosamide in microsomal incubations was greater in the intestine than in liver in the presence of NADPH, but it was much greater in liver than in intestine in the presence of UDPGA. NADPH-dependent niclosamide metabolism and hydroxy-niclosamide formation were inhibited in hepatic microsomes of LCN mice, but not IECN mice, compared with wild-type mice. In intestinal microsomal reactions, hydroxy-niclosamide formation was not detected, but rates of niclosamide-glucuronide formation were ∼10-fold greater than in liver, in wild-type, LCN, and IECN mice. Apparent Km and V max values for microsomal niclosamide-glucuronide formation showed large differences between the two tissues, with the intestine having higher Km (0.47 μM) and higher V max (15.8) than the liver (0.09 μM and 0.75, respectively). In vivo studies in LCN mice confirmed the essential role of hepatic P450 in hydroxy-niclosamide formation; however, pharmacokinetic profiles of oral niclosamide were only minimally changed in LCN mice, compared with wild-type mice, and the changes seem to reflect the compensatory increase in hepatic UDP-glucuronosyltransferase activity. SIGNIFICANCE STATEMENT: These results suggest that efforts to increase the bioavailability of niclosamide by blocking its metabolism by P450 enzymes will unlikely be fruitful. In contrast, inhibition of niclosamide glucuronidation in both liver and intestine may prove effective for increasing niclosamide's bioavailability, thereby making it practical to repurpose this drug for treating systemic diseases.
Collapse
Affiliation(s)
- Xiaoyu Fan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (X.F., X.D., Q.-Y.Z.); and Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (H.L.)
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (X.F., X.D., Q.-Y.Z.); and Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (H.L.)
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (X.F., X.D., Q.-Y.Z.); and Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (H.L.)
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (X.F., X.D., Q.-Y.Z.); and Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (H.L.)
| |
Collapse
|
22
|
Lu D, Dong D, Wu B. Highly selective N-glucuronidation of four piperazine-containing drugs by UDP-glucuronosyltransferase 2B10. Expert Opin Drug Metab Toxicol 2018; 14:989-998. [DOI: 10.1080/17425255.2018.1505862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Danyi Lu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Dong Dong
- College of Medicine, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| |
Collapse
|
23
|
Lu D, Dong D, Xie Q, Li Z, Wu B. Disposition of Mianserin and Cyclizine in UGT2B10-Overexpressing Human Embryonic Kidney 293 Cells: Identification of UGT2B10 as a Novel N-Glucosidation Enzyme and Breast Cancer Resistance Protein as an N-Glucoside Transporter. Drug Metab Dispos 2018; 46:970-979. [DOI: 10.1124/dmd.118.080804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/17/2018] [Indexed: 01/15/2023] Open
|
24
|
In Vitro Glucuronidation of Wushanicaritin by Liver Microsomes, Intestine Microsomes and Expressed Human UDP-Glucuronosyltransferase Enzymes. Int J Mol Sci 2017; 18:ijms18091983. [PMID: 28925930 PMCID: PMC5618632 DOI: 10.3390/ijms18091983] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 11/17/2022] Open
Abstract
Wushanicaritin, a natural polyphenol compound, exerts many biological activities. This study aimed to characterize wushanicaritin glucuronidation by pooled human liver microsomes (HLM), human intestine microsomes and individual uridine diphosphate-glucuronosyltransferase (UGT) enzyme. Glucuronidation rates were determined by incubating wushanicaritin with uridine diphosphoglucuronic acid-supplemented microsomes. Kinetic parameters were derived by appropriate model fitting. Reaction phenotyping, the relative activity factor (RAF) and activity correlation analysis were performed to identify the main UGT isoforms. Wushanicaritin glucuronidation in HLM was efficient with a high CLint (intrinsic clearance) value of 1.25 and 0.69 mL/min/mg for G1 and G2, respectively. UGT1A1 and 1A7 showed the highest activities with the intrinsic clearance (CLint) values of 1.16 and 0.38 mL/min/mg for G1 and G2, respectively. In addition, G1 was significantly correlated with β-estradiol glucuronidation (r = 0.847; p = 0.0005), while G2 was also correlated with chenodeoxycholic acid glucuronidation (r = 0.638, p = 0.026) in a bank of individual HLMs (n = 12). Based on the RAF approach, UGT1A1 contributed 51.2% for G1, and UGT1A3 contributed 26.0% for G2 in HLM. Moreover, glucuronidation of wushanicaritin by liver microsomes showed marked species difference. Taken together, UGT1A1, 1A3, 1A7, 1A8, 1A9 and 2B7 were identified as the main UGT contributors responsible for wushanicaritin glucuronidation.
Collapse
|
25
|
Lu D, Xie Q, Wu B. N-glucuronidation catalyzed by UGT1A4 and UGT2B10 in human liver microsomes: Assay optimization and substrate identification. J Pharm Biomed Anal 2017; 145:692-703. [PMID: 28803208 DOI: 10.1016/j.jpba.2017.07.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
N-glucuronidation is an important pathway for metabolism and disposition of tertiary amines in humans. This reaction is mainly catalyzed by the enzymes UGT1A4 and UGT2B10. However, the metabolic patterns of UGT1A4- and UGT2B10-mediated N-glucuronidation are not fully clear. In this study, we first optimized in vitro reaction conditions for N-glucuronidation by using specific substrates (i.e., trifluoperazine for UGT1A4, cotinine and amitriptyline for UGT2B10). Furthermore, we found that hepatic N-glucuronidation showed significant species differences. In addition, UGT1A4 and UGT2B10 were primarily responsible for N-glucuronidation of many tertiary amines, including asenapine, loxapine, clozapine, chlorpromazine, dothiepin, doxepin, mirtazapine, mianserin, chlorcyclizine, cyclizine, promethazine, cyclobenzaprine, imatinib, retrorsine, strychnine and brucine. In conclusion, this study provides an in vitro assay system for evaluating N-glucuronidation of amines. Also, UGT1A4- and UGT2B10-mediated N-glucuronidation might play significant roles in metabolism and detoxification of tertiary amines in humans.
Collapse
Affiliation(s)
- Danyi Lu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China; Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Qian Xie
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China.
| |
Collapse
|
26
|
Zhang B, Chen X, Zhang R, Zheng F, Du S, Zhang X. Metabolite Profiling, Pharmacokinetics, and In Vitro Glucuronidation of Icaritin in Rats by Ultra-Performance Liquid Chromatography Coupled with Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:1073607. [PMID: 28785509 PMCID: PMC5529662 DOI: 10.1155/2017/1073607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Icaritin is a naturally bioactive flavonoid with several significant effects. This study aimed to clarify the metabolite profiling, pharmacokinetics, and glucuronidation of icaritin in rats. An ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) assay was developed and validated for qualitative and quantitative analysis of icaritin. Glucuronidation rates were determined by incubating icaritin with uridine diphosphate glucuronic acid- (UDPGA-) supplemented microsomes. Kinetic parameters were derived by appropriate model fitting. A total of 30 metabolites were identified or tentatively characterized in rat biosamples based on retention times and characteristic fragmentations, following proposed metabolic pathway which was summarized. Additionally, the pharmacokinetics parameters were investigated after oral administration of icaritin. Moreover, icaritin glucuronidation in rat liver microsomes was efficient with CLint (the intrinsic clearance) values of 1.12 and 1.56 mL/min/mg for icaritin-3-O-glucuronide and icaritin-7-O-glucuronide, respectively. Similarly, the CLint values of icaritin-3-O-glucuronide and icaritin-7-O-glucuronide in rat intestine microsomes (RIM) were 1.45 and 0.86 mL/min/mg, respectively. Taken altogether, dehydrogenation at isopentenyl group and glycosylation and glucuronidation at the aglycone were main biotransformation process in vivo. The general tendency was that icaritin was transformed to glucuronide conjugates to be excreted from rat organism. In conclusion, these results would improve our understanding of metabolic fate of icaritin in vivo.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaoli Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Rui Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Fangfang Zheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shuzhang Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
27
|
Oberlin KE, Nichols AJ, Rosa R, Dejman A, Mattiazzi A, Guerra G, Elgart GW, Abbo LM. Phaeohyphomycosis due toExophialainfections in solid organ transplant recipients: Case report and literature review. Transpl Infect Dis 2017; 19. [DOI: 10.1111/tid.12723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/18/2017] [Accepted: 02/19/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Kate E. Oberlin
- Department of Dermatology and Cutaneous Surgery; Jackson Health System/University of Miami Miller School of Medicine; Miami FL USA
| | - Anna J. Nichols
- Department of Dermatology and Cutaneous Surgery; Jackson Health System/University of Miami Miller School of Medicine; Miami FL USA
| | - Rossana Rosa
- Department of Medicine; Division of Infectious Diseases; Jackson Health System/University of Miami Miller School of Medicine; Miami FL USA
| | - Adriana Dejman
- Department of Medicine; Division of Nephrology; University of Miami Miller School of Medicine; Miami FL USA
| | - Adela Mattiazzi
- Department of Medicine; Division of Nephrology; University of Miami Miller School of Medicine; Miami FL USA
| | - Giselle Guerra
- Department of Medicine; Division of Nephrology; University of Miami Miller School of Medicine; Miami FL USA
| | - George W. Elgart
- Department of Dermatology and Cutaneous Surgery; Jackson Health System/University of Miami Miller School of Medicine; Miami FL USA
| | - Lilian M. Abbo
- Department of Medicine; Division of Infectious Diseases; Jackson Health System/University of Miami Miller School of Medicine; Miami FL USA
| |
Collapse
|
28
|
Cancer nanotheranostics: A review of the role of conjugated ligands for overexpressed receptors. Eur J Pharm Sci 2017; 104:273-292. [DOI: 10.1016/j.ejps.2017.04.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
|
29
|
Wang L, Hong X, Yao Z, Dai Y, Zhao G, Qin Z, Wu B, Gonzalez FJ, Yao X. Glucuronidation of icaritin by human liver microsomes, human intestine microsomes and expressed UDP-glucuronosyltransferase enzymes: identification of UGT1A3, 1A9 and 2B7 as the main contributing enzymes. Xenobiotica 2017; 48:357-367. [PMID: 28443723 DOI: 10.1080/00498254.2017.1323139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1. Icaritin is a natural flavonoid with anti-osteoporosis activity. This study aimed to characterize icaritin glucuronidation by pooled human liver microsomes (HLM) and pooled human intestine microsomes (HIM), and to determine the contribution of individual UDP-glucuronosyltrans-ferase (UGT) enzyme to icaritin glucuronidation. 2. Glucuronidation rates were determined by incubating icaritin with uridine diphosphate glucuronic acid (UDPGA)-supplemented microsomes. Kinetic parameters were derived by appropriate model fitting. Relative activity factors and activity correlation analysis were performed to identify main UGT isoforms. 3. UGT1A3, 1A7, 1A8, 1A9 and 2B7 were mainly responsible for catalyzing the formation of two glucuronides (G1 and G2). Icaritin 3-O-glucuronidation (G1) was significantly correlated with Chenodeoxycholic acid (CDCA) glucuronidation (r = 0.787, p = 0.002), propofol glucuronidation (r = 0.661, p = 0.019) and Zidovudine (AZT) glucuronidation (r = 0.805, p = 0.002). Similarly, icaritin 7-O-glucuronidation (G2) was also correlated with CDCA glucuronidation (r = 0.640, p = 0.025), propofol glucuronidation (r = 0.592, p = 0.043) and AZT glucuronidation (r = 0.661, p = 0.019). In addition, UGT1A3, 1A9 and 2B7 contributed 37.5, 33.8 and 21.3% for G1 in pooled HLM, respectively. Also, UGT1A3, 1A9 and 2B7 contributed 34.3, 20.0 and 8.6% for G2 in pooled HLM, respectively. 4. Icaritin was subjected to significant glucuronidation, wherein UGT1A3, 1A7, 1A8, 1A9 and 2B7 were main contributing enzymes.
Collapse
Affiliation(s)
- Li Wang
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China
| | - Xiaodan Hong
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China
| | - Zhihong Yao
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China
| | - Yi Dai
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China
| | - Guoping Zhao
- c Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou , P.R. China , and
| | - Zifei Qin
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China.,c Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou , P.R. China , and
| | - Baojian Wu
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China.,c Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou , P.R. China , and
| | - Frank J Gonzalez
- d Laboratory of Metabolism , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Xinsheng Yao
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China.,c Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou , P.R. China , and
| |
Collapse
|
30
|
Lu D, Wang S, Xie Q, Guo L, Wu B. Transcriptional Regulation of Human UDP-Glucuronosyltransferase 2B10 by Farnesoid X Receptor in Human Hepatoma HepG2 Cells. Mol Pharm 2017; 14:2899-2907. [PMID: 28267333 DOI: 10.1021/acs.molpharmaceut.6b01103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Little is known about transcriptional regulators of UDP-glucuronosyltransferase 2B10 (UGT2B10), an enzyme known to glucuronidate many chemicals and drugs such as nicotine and tricyclic antidepressants. Here, we uncovered that UGT2B10 was transcriptionally regulated by farnesoid X receptor (FXR), the bile acid sensing nuclear receptor. GW4064 and chenodeoxycholic acid (two specific FXR agonists) treatment of HepG2 cells led to a significant increase in the mRNA level of UGT2B10. The treated cells also showed enhanced glucuronidation activities toward amitriptyline (an UGT2B10 probe substrate). In reporter gene assays, the extent of UGT2B10 activation by the FXR agonists was positively correlated with the amount of cotransfected FXR. Consistently, knockdown of FXR by shRNA attenuated the induction effect on UGT2B10 expression. Furthermore, a combination of electrophoretic mobility shift assay and chromatin immunoprecipitation showed that the FXR receptor trans-activated UGT2B10 through its specific binding to the -209- to -197-bp region (an IR1 element) of the UGT2B10 promoter. In summary, our results for the first time established FXR as a transcriptional regulator of human UGT2B10.
Collapse
Affiliation(s)
- Danyi Lu
- Division of Pharmaceutics, College of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shuai Wang
- Division of Pharmaceutics, College of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Qian Xie
- Division of Pharmaceutics, College of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lianxia Guo
- Division of Pharmaceutics, College of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Baojian Wu
- Division of Pharmaceutics, College of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
31
|
Vollmer M, Klingebiel M, Rohn S, Maul R. Alamethicin for using in bioavailability studies? - Re-evaluation of its effect. Toxicol In Vitro 2016; 39:111-118. [PMID: 27940284 DOI: 10.1016/j.tiv.2016.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 11/24/2022]
Abstract
A major pathway for the elimination of drugs is the biliary and renal excretion following the formation of more hydrophilic secondary metabolites such as glucuronides. For in vitro investigations of the phase II metabolism, hepatic microsomes are commonly used in the combination with the pore-forming peptide alamethicin, also to give estimates for the in vivo situation. Thus, alamethicin may represent a neglected parameter in the characterization of microsomal in vitro assays. In the present study, the influence of varying alamethicin concentrations on glucuronide formation of selected phenolic compounds was investigated systematically. A correlation between the alamethicin impact and the lipophilicity of the investigated substrates was analyzed as well. Lipophilicity was determined by the logarithm of the octanol-water partition coefficient. For every substrate, a distinct alamethicin concentration could be detected leading to a maximal glucuronidation activity. Further increase of the alamethicin application led to negative effects. The differences between the maximum depletion rates with and without alamethicin addition varied between 2.7% and 18.2% depending on the substrate. A dependence on the lipophilicity could not be confirmed. Calculation of the apparent intrinsic clearance led to a more than 2-fold increase using the most effective alamethicin concentration compared to the alamethicin free control.
Collapse
Affiliation(s)
- Maren Vollmer
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| | - Mirko Klingebiel
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| | - Ronald Maul
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| |
Collapse
|
32
|
Sun H, Liu H, Zhao H, Wang Y, Li YL, Ye WC, Wu B. Pharmacokinetic characterization of anhuienoside C and its deglycosylated metabolites in rats. Xenobiotica 2016; 47:885-893. [DOI: 10.1080/00498254.2016.1241452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Hua Sun
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China,
- Department of Pharmacology and Chemical Biology, College of Pharmacy, Henan University, Kaifeng, China
| | - Hui Liu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China, and
| | - Huinan Zhao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China, and
| | - Ying Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China, and
| | - Yao-lan Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China, and
| | - Wen-cai Ye
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China, and
| | - Baojian Wu
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China,
| |
Collapse
|
33
|
Lu XF, Zhan J, Zhou Y, Bi KS, Chen XH. Use of a semi-physiological pharmacokinetic model to investigate the influence of itraconazole on tacrolimus absorption, distribution and metabolism in mice. Xenobiotica 2016; 47:752-762. [PMID: 27533047 DOI: 10.1080/00498254.2016.1226003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. The aim of this study was to investigate the influence of itraconazole (ITCZ) on tacrolimus absorption, distribution and metabolism by developing a semi-physiological pharmacokinetic model of tacrolimus in mice. 2. Mice were randomly divided into four groups, namely control group (CG, taking 3 mg kg-1 tacrolimus only), low-dose group (LDG, taking tacrolimus with 12.5 mg kg-1 ITCZ), medium-dose group (MDG, taking tacrolimus with 25 mg kg-1 ITCZ) and high-dose group (HDG, taking tacrolimus with 50 mg kg-1 ITCZ). 3. Liver clearance (CLli) decreased significantly (**p < 0.01) in LDG (35.3%), MDG (45.2%) and HDG (58.7%) mice compared to CG mice. With respect to gut clearance (CLgu), significant (**p < 0.01) decrease was also revealed in LDG (35.9%), MDG (50.2%) and HDG (64.6%) mice. A significant (**p < 0.01) higher tacrolimus brain-to-blood partition coefficient (Kt,br) was found in MDG (25.3%) and HDG (55.9%) mice than in CG mice. Moreover, a significant (*p < 0.05) increase (16.3%) was found in the absorption rate constant (Ka) in HDG mice compared to CG mice. There was a significant (**p < 0.01) association between ITCZ dose and the change in CLgu (ΔCLgu, r= -0.790), the change in CLli (ΔCLli, r= -0.787) and the change in Kt,br (ΔKt,br, r = 0.727), while the association between ITCZ dose and the change in Ka (ΔKa) was not significant (p > 0.05). 4. These findings could be useful in predicting the efficacy and toxicity of tacrolimus, and drug-drug interaction of ITCZ and tarcolimus in human.
Collapse
Affiliation(s)
- Xue-Feng Lu
- a Department of Pharmaceutical Analysis , School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , China
| | - Jian Zhan
- b Department of Pharmaceutics , School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , China , and
| | - Yang Zhou
- c Department of Measurement and Control , School of Physics, Liaoning University , Shenyang , China
| | - Kai-Shun Bi
- a Department of Pharmaceutical Analysis , School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , China
| | - Xiao-Hui Chen
- a Department of Pharmaceutical Analysis , School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|
34
|
Lu D, Liu H, Ye W, Wang Y, Wu B. Structure- and isoform-specific glucuronidation of six curcumin analogs. Xenobiotica 2016; 47:304-313. [PMID: 27324181 DOI: 10.1080/00498254.2016.1193264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. In the present study, we aimed to characterize the glucuronidation of six curcumin analogs (i.e. RAO-3, RAO-8, RAO-9, RAO-18, RAO-19, and RAO-23) derived from galangal using human liver microsomes (HLM) and twelve expressed UGT enzymes. 2. Formation of glucuronide was confirmed using high-resolution mass spectrometry. Single glucuronide metabolite was generated from each of six curcumin analogs. The fragmentation patterns were analyzed and were found to differ significantly between alcoholic and phenolic glucuronides. 3. All six curcumin analogs except one (RAO-23) underwent significant glucuronidation in HLM and expressed UGT enzymes. In general, the methoxy group (close to the phenolic hydroxyl group) enhanced the glucuronidation liability of the curcumin analogs. 4. UGT1A9 and UGT2B7 were primarily responsible for the glucuronidation of two alcoholic analogs (RAO-3 and RAO-18). By contrast, UGT1A9 and four UGT2Bs (UGT2B4, 2B7, 2B15 and 2B17) played important roles in conjugating three phenolic analogs (RAO-8, RAO-9, and RAO-19). Interestingly, the conjugated double bonds system (in the aliphatic chain) was crucial to the substrate selectivity of gastrointestinal UGTs (i.e. UGT1A7, 1A8 and 1A10). 5. In conclusion, glucuronidation of six curcumin analogs from galangal were structure- and isoform-specific. The knowledge should be useful in identifying a curcumin analog with improved metabolic property.
Collapse
Affiliation(s)
- Danyi Lu
- a Division of Pharmaceutics , College of Pharmacy, Jinan University , Guangzhou , China and
| | - Hui Liu
- b Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University , Guangzhou , China
| | - Wencai Ye
- b Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University , Guangzhou , China
| | - Ying Wang
- b Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University , Guangzhou , China
| | - Baojian Wu
- a Division of Pharmaceutics , College of Pharmacy, Jinan University , Guangzhou , China and
| |
Collapse
|