1
|
Lafranconi M, Anderson J, Budinsky R, Corey L, Forsberg N, Klapacz J, LeBaron MJ. An integrated assessment of the 1,4-dioxane cancer mode of action and threshold response in rodents. Regul Toxicol Pharmacol 2023:105428. [PMID: 37277058 DOI: 10.1016/j.yrtph.2023.105428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
1,4-Dioxane is an environmental contaminant that has been shown to cause cancer in rodents after chronic high dose exposures. We reviewed and integrated information from recently published studies to update our understanding of the cancer mode of action of 1,4-dioxane. Tumor development in rodents from exposure to high doses of 1,4-dioxane is preceded by pre-neoplastic events including increased hepatic genomic signaling activity related to mitogenesis, elevation of Cyp2E1 activity and oxidative stress leading to genotoxicity and cytotoxicity. These events are followed by regenerative repair and proliferation and eventual development of tumors. Importantly, these events occur at doses that exceed the metabolic clearance of absorbed 1,4-dioxane in rats and mice resulting in elevated systemic levels of parent 1,4-dioxane. Consistent with previous reviews, we found no evidence of direct mutagenicity from exposure to 1,4-dioxane. We also found no evidence of CAR/PXR, AhR or PPARα activation resulting from exposure to 1,4-dioxane. This integrated assessment supports a cancer mode of action that is dependent on exceeding the metabolic clearance of absorbed 1,4-dioxane, direct mitogenesis, elevation of Cyp2E1 activity and oxidative stress leading to genotoxicity and cytotoxicity followed by sustained proliferation driven by regenerative repair and progression of heritable lesions to tumor development.
Collapse
|
2
|
Ning LJ, He AY, Li JM, Lu DL, Jiao JG, Li LY, Li DL, Zhang ML, Chen LQ, Du ZY. Mechanisms and metabolic regulation of PPARα activation in Nile tilapia (Oreochromis niloticus). Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1036-1048. [PMID: 27320014 DOI: 10.1016/j.bbalip.2016.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/30/2016] [Accepted: 06/10/2016] [Indexed: 11/28/2022]
Abstract
Although the key metabolic regulatory functions of mammalian peroxisome proliferator-activated receptor α (PPARα) have been thoroughly studied, the molecular mechanisms and metabolic regulation of PPARα activation in fish are less known. In the first part of the present study, Nile tilapia (Nt)PPARα was cloned and identified, and high mRNA expression levels were detected in the brain, liver, and heart. NtPPARα was activated by an agonist (fenofibrate) and by fasting and was verified in primary hepatocytes and living fish by decreased phosphorylation of NtPPARα and/or increased NtPPARα mRNA and protein expression. In the second part of the present work, fenofibrate was fed to fish or fish were fasted for 4weeks to investigate the metabolic regulatory effects of NtPPARα. A transcriptomic study was also performed. The results indicated that fenofibrate decreased hepatic triglyceride and 18C-series fatty acid contents but increased the catabolic rate of intraperitoneally injected [1-(14)C] palmitate in vivo, hepatic mitochondrial β-oxidation efficiency, the quantity of cytochrome b DNA, and carnitine palmitoyltransferase-1a mRNA expression. Fenofibrate also increased serum glucose, insulin, and lactate concentrations. Fasting had stronger hypolipidemic and gene regulatory effects than those of fenofibrate. Taken together, we conclude that: 1) liver is one of the main target tissues of the metabolic regulation of NtPPARα activation; 2) dephosphorylation is the basal NtPPARα activation mechanism rather than enhanced mRNA and protein expression; 3) activated NtPPARα has a hypolipidemic effect by increasing activity and the number of hepatic mitochondria; and 4) PPARα activation affects carbohydrate metabolism by altering energy homeostasis among nutrients.
Collapse
Affiliation(s)
- Li-Jun Ning
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - An-Yuan He
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Jia-Min Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Dong-Liang Lu
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Jian-Gang Jiao
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Ling-Yu Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Dong-Liang Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
3
|
Guo X, Liang XF, Fang L, Yuan X, Zhou Y, He S, Shen D. Effects of lipid-lowering pharmaceutical clofibrate on lipid and lipoprotein metabolism of grass carp (Ctenopharyngodon idellal Val.) fed with the high non-protein energy diets. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:331-343. [PMID: 25213789 DOI: 10.1007/s10695-014-9986-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 09/07/2014] [Indexed: 06/03/2023]
Abstract
This study investigated the effects of clofibrate treatment on blood lipids, hepatic enzyme activities and relative expression of genes involved in lipid metabolism of grass carp fed with high non-protein energy diets. For that purpose, five diets were formulated: a commercial-like diet (Control), a high-carbohydrate diet (HC), a high-fat diet (HF) and two diets identical to the HC and HF diets, but supplemented with 1.25 g kg(-1) clofibrate (HC + Clo and HF + Clo diets). Grass carp fed the HC and HF diet exhibited increases in blood lipids and body fat compared with the control group after 4 weeks. In the clofibrate treatment groups, there was a marked decrease in triacylglycerol and cholesterol concentrations of plasma, and total lipids of the whole body, mesentery adipose tissue and liver tissue. Fish treated with clofibrate exhibited increased hepatic acyl-CoA oxidase activity, but did not show any changes in carnitine palmitoyltransferase (CPT) I activity compared with HC and HF diets without clofibrate. Clofibrate treatment had no effect on peroxisome proliferator-activated receptor alpha and CPT I mRNA expression. However, there was an increase in lipoprotein lipase expression in the clofibrate-treated groups. In addition, the relative mRNA expression levels of hepatic de novo lipogenic enzymes (fatty acid synthetase and acetyl coenzyme-A carboxylase) were significantly higher in the fish fed the HC diet than those of other groups, and clofibrate inhibited this increase. These results suggest that clofibrate has the hypolipidaemic effects and affects lipid metabolism in grass carp.
Collapse
Affiliation(s)
- Xiaoze Guo
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Hubei Collaborative Innovation Center for Freshwater Aquaculture, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China,
| | | | | | | | | | | | | |
Collapse
|
4
|
In vitro inhibition of mouse and rat glutathione S-transferases by di(2-ethylhexyl) phthalate, mono(2-ethylhexyl) phthalate, 2-ethylhexanol, 2-ethylhexanoic acid and clofibric acid. Toxicol In Vitro 2012; 5:207-10. [PMID: 20732017 DOI: 10.1016/0887-2333(91)90019-a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/1990] [Revised: 11/06/1990] [Indexed: 11/22/2022]
Abstract
The in vitro inhibitory response of mouse and rat liver cytosolic glutathione S-transferase (GST) activities using the substrates 1,2-dichloro-4-nitrobenzene (DCNB) and 1,2-epoxy-3-(p-nitrophenoxy)propane (ENPP) was determined for the peroxisome proliferators di(2-ethylhexyl) phthalate (DEHP), mono(2-ethylhexyl) phthalate (MEHP), 2-ethylhexanol, 2-ethylhexanoic acid and clofibric acid. MEHP was a potent inhibitor of GST activities in both species, with IC(50)s for DCNB and ENPP of 0.34 and 0.10 mm in the mouse, and 0.32 and 0.88 mm in the rat, respectively. DEHP demonstrated substrate specificity; it inhibited the DCNB-transferase with IC(50)s of 1.05 and 0.55 mm in the mouse and rat, respectively. The other compounds were moderate to weak inhibitors. The inhibitory potency ranking of these compounds was qualitatively similar in both species. Quantitatively, the DCNB-transferase was more sensitive in rats, while ENPP-transferase was more sensitive in mice. The in vitro inhibition may explain, in part, decreases in GST activity seen in vivo following treatment with these compounds. The finding of low IC(50)s for the inhibition of GST activity(s) by MEHP and DEHP in the rat and mouse livers strongly suggests that further studies should be conducted to test for the potential of these compounds to inhibit human liver GST.
Collapse
|
5
|
Effect of Short- and Long-Term Treatment With Valproate on Carnitine Homeostasis in Humans. Ther Drug Monit 2012; 34:406-14. [DOI: 10.1097/ftd.0b013e3182608e2f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Gustavsson C, Soga T, Wahlström E, Vesterlund M, Azimi A, Norstedt G, Tollet-Egnell P. Sex-dependent hepatic transcripts and metabolites in the development of glucose intolerance and insulin resistance in Zucker diabetic fatty rats. J Mol Endocrinol 2011; 47:129-43. [PMID: 21673048 DOI: 10.1530/jme-11-0007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Male Zucker diabetic fatty (mZDF) rats spontaneously develop type 2 diabetes, whereas females only become diabetic when fed a diabetogenic high-fat diet (high-fat-fed female ZDF rat, HF-fZDF). The aim of this study was to investigate if differences in liver functions could provide clues to this sex difference. Non-diabetic obese fZDF rats were compared with either mZDF or HF-fZDF regarding hepatic molecular profiles, to single out those components that might be protective in the females. High-fat feeding in fZDF led to enhanced weight gain, increased blood glucose and insulin levels, reduced insulin sensitivity and a trend towards reduced glucose tolerance, indicative of a prediabetic state. mZDF rats were diabetic, with low levels of insulin, high levels of glucose, reduced insulin sensitivity and impaired glucose tolerance. Transcript profiling and capillary electrophoresis time-of-flight mass spectrometry were used to indentify hepatic transcripts and metabolites that might be related to this. Many diet-induced alterations in transcript and metabolite levels in female rats were towards a 'male-like' phenotype, including reduced lipogenesis, increased fatty acid (FA) oxidation and increased oxidative stress responses. Alterations detected at the level of hepatic metabolites, indicated lower capacity for glutathione (GSH) production in male rats, and higher GSH turnover in females. Taken together, this could be interpreted as if anabolic pathways involving lipogenesis and lipid output might limit the degree of FA oxidation and oxidative stress in female rats. Together with a greater capacity to produce GSH, these hepatic sex differences might contribute to the sex-different development of diabetes in ZDF rats.
Collapse
Affiliation(s)
- Carolina Gustavsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
7
|
Gustavsson C, Yassin K, Wahlström E, Cheung L, Lindberg J, Brismar K, Ostenson CG, Norstedt G, Tollet-Egnell P. Sex-different hepaticglycogen content and glucose output in rats. BMC BIOCHEMISTRY 2010; 11:38. [PMID: 20863371 PMCID: PMC2955586 DOI: 10.1186/1471-2091-11-38] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 09/23/2010] [Indexed: 02/08/2023]
Abstract
Background Genes involved in hepatic metabolism have a sex-different expression in rodents. To test whether male and female rat livers differ regarding lipid and carbohydrate metabolism, whole-genome transcript profiles were generated and these were complemented by measurements of hepatic lipid and glycogen content, fatty acid (FA) oxidation rates and hepatic glucose output (HGO). The latter was determined in perfusates from in situ perfusion of male and female rat livers. These perfusates were also analysed using nuclear magnetic resonance (NMR) spectroscopy to identify putative sex-differences in other liver-derived metabolites. Effects of insulin were monitored by analysis of Akt-phosphorylation, gene expression and HGO after s.c. insulin injections. Results Out of approximately 3 500 gene products being detected in liver, 11% were significantly higher in females, and 11% were higher in males. Many transcripts for the production of triglycerides (TG), cholesterol and VLDL particles were female-predominant, whereas genes for FA oxidation, gluconeogenesis and glycogen synthesis were male-predominant. Sex-differences in mRNA levels related to metabolism were more pronounced during mild starvation (12 h fasting), as compared to the postabsorptive state (4 h fasting). No sex-differences were observed regarding hepatic TG content, FA oxidation rates or blood levels of ketone bodies or glucose. However, males had higher hepatic glycogen content and higher HGO, as well as higher ratios of insulin to glucagon levels. Based on NMR spectroscopy, liver-derived lactate was also higher in males. HGO was inhibited by insulin in parallel with increased phosphorylation of Akt, without any sex-differences in insulin sensitivity. However, the degree of Thr172-phosphorylated AMP kinase (AMPK) was higher in females, indicating a higher degree of AMPK-dependent actions. Conclusions Taken together, males had higher ratios of insulin to glucagon levels, higher levels of glycogen, lower degree of AMPK phosphorylation, higher expression of gluconeogenic genes and higher hepatic glucose output. Possibly these sex-differences reflect a higher ability for the healthy male rat liver to respond to increased energy demands.
Collapse
|
8
|
WRESDIYATI TUTIK, SINULINGGA TEGUHSURANTA, ZULFANEDI YOLI. Effect of Mamordica charantia L. Powder on Antioxidant Superoxide Dismutase in Liver and Kidney of Diabetic Rats. HAYATI JOURNAL OF BIOSCIENCES 2010. [DOI: 10.4308/hjb.17.2.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
9
|
Zungu M, Young ME, Stanley WC, Essop MF. Chronic treatment with the peroxisome proliferator-activated receptor alpha agonist Wy-14,643 attenuates myocardial respiratory capacity and contractile function. Mol Cell Biochem 2009; 330:55-62. [PMID: 19360380 DOI: 10.1007/s11010-009-0100-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 03/30/2009] [Indexed: 12/24/2022]
Abstract
We investigated whether chronic in vivo treatment with the peroxisome proliferator-activated receptor alpha agonist Wy-14,643 attenuates cardiac contractile function by impairing mitochondrial respiration. Wy-14,643 (25 mg kg(-1) day(-1)) was administered to Wistar rats by oral gavage for 14 consecutive days, after which ex vivo heart function, myocardial mitochondrial respiratory capacity, and metabolic gene expression were determined. Body and heart weights were not significantly altered following 14 days of Wy-14,643 administration. Heart perfusion studies showed significantly reduced systolic and developed pressures, while the rate pressure product declined by 36 +/- 2.6% (P < 0.01 vs. vehicle) after 14 days of Wy-14,643 treatment. State 3 mitochondrial respiration was lower in the Wy-14,643 group (P = 0.06 vs. vehicle). State 4 respiration and oligomycin-insensitive proton leak were significantly increased compared with matched controls. The rate of ADP phosphorylation was also decreased by 44.9 +/- 1.9% (P < 0.05 vs. vehicle). Pyruvate dehydrogenase kinase 4 (PDK4) and uncoupling protein 3 (UCP3) transcript levels were upregulated, while cytochrome oxidase II (COXII) expression was decreased following Wy-14,643 treatment. This study demonstrates that chronic in vivo Wy-14,643 administration impaired cardiac contractile function in parallel with decreased mitochondrial respiratory function and increased uncoupling.
Collapse
Affiliation(s)
- Makhosazane Zungu
- Hatter Heart Research Institute, Department of Medicine, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | | | | | | |
Collapse
|
10
|
Kinkead ER, Kimmel EC, Leahy HF, Flemming CD, Wall HG, Whitmire RE, Mattie DR. Subchronic Vapor Inhalation Toxicity Studies on 3.1 Oil in Male Fischer 344 Rats. Inhal Toxicol 2008. [DOI: 10.3109/08958379109145295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Involvement of PEG-carboxylate dehydrogenase and glutathione S-transferase in PEG metabolism by Sphingopyxis macrogoltabida strain 103. Appl Microbiol Biotechnol 2008; 81:473-84. [PMID: 18719904 DOI: 10.1007/s00253-008-1635-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/24/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
Abstract
Sphingopyxis terrae and the Sphingopyxis macrogoltabida strains 103 and 203 are able to degrade polyethylene glycol (PEG). They possess the peg operon, which is responsible for the conversion of PEG to PEG-carboxylate-coenzyme A (CoA). The upstream (3.0 kb) and downstream (6.5 kb) regions of the operon in strain 103 were cloned and sequenced. The structure was well conserved between S. macrogoltabida strain 203 and S. terrae, except that two sets of transposases are absent in strain 203. The downstream region contains the genes for PEG-carboxylate dehydrogenase (PCDH), glutathione S-transferase (GST), tautomerase, and a hypothetical protein. The genes for pcdh and gst were transcribed constitutively and monocistronically, indicating that their transcription is independent of the operon regulation. PCDH and GST were expressed in Escherichia coli and characterized biochemically. PCDH is a homotetramer of 64-kDa subunits and contains one molecule of flavin adenine dinucleotide per subunit. The enzyme dehydrogenates PEG-carboxylate to yield glyoxylate, suggesting that the enzyme is the third enzyme involved in PEG degradation. GST is a homodimer of 28-kDa subunits. GST activity was noncompetitively inhibited by acyl-CoA and PEG-carboxylate-CoA, suggesting the interaction of GST with them. The proposed role for GST is to buffer the toxicity of PEG-carboxylate-CoA.
Collapse
|
12
|
Hypolipidaemic effects of fenofibrate and fasting in the herbivorous grass carp ( Ctenopharyngodon idella) fed a high-fat diet. Br J Nutr 2008; 100:1200-12. [PMID: 18445306 DOI: 10.1017/s0007114508986840] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigated whether the hypolipidaemic effect of fenofibrate and fasting observed in most omnivorous mammals may also apply to herbivorous fish. Grass carp (Ctenopharyngodon idella) fed a high-fat (8 %) diet exhibited a marked increase in blood lipids and body fat after 6 weeks. They were then treated with fenofibrate (100 mg/kg body weight) in the same high-fat diet for 2 weeks, followed by fasting for 1 week. Plasma lipid concentration, body fat amount, fatty acid composition, plasma thiobarbituric acid-reactive substances and some parameters related to hepatic fatty acid oxidation were measured, and liver samples were stained for histological examination. Fenofibrate treatment decreased TAG and cholesterol concentrations in plasma, total lipids of the whole body and liver, and EPA and DHA contents in tissues. Further, a mobilisation of mesenteric fat concomitant with an increase in hepatic peroxisomal fatty acid oxidation and lipid peroxidation was observed. Compared with fenofibrate treatment, fasting decreased body weight and plasma TAG, but not plasma cholesterol. It also reduced the fat content of the whole body and increased the EPA and DHA contents in the liver and other tissues. Fatty acid oxidation was stimulated by fasting in mitochondria, but not in peroxisomes. These data suggest that fenofibrate and fasting regulate the lipid metabolism in grass carp through different metabolic pathways. The grass carp is moderately responsive to a fibrate derivative in comparison with the well-known excess responsiveness of the rat model, and so it could be used for the study of lipid abnormalities as a herbivorous model.
Collapse
|
13
|
An aqueous extract of Salacia oblonga root, a herb-derived peroxisome proliferator-activated receptor-alpha activator, by oral gavage over 28 days induces gender-dependent hepatic hypertrophy in rats. Food Chem Toxicol 2008; 46:2165-72. [PMID: 18397819 DOI: 10.1016/j.fct.2008.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 01/20/2008] [Accepted: 02/18/2008] [Indexed: 12/26/2022]
Abstract
Activation of peroxisome proliferator-activated receptor (PPAR)-alpha by natural and synthetic chemicals induces hepatic hypertrophy. An aqueous extract of Salacia oblonga root (SOW) is an Ayurvedic medicine with anti-diabetic and anti-obesity properties. In the present study, it was found that SOW (100, 300 and 900mg/kg, once daily by oral gavage over a 28 day period) elicited dose-related increases in liver weight (LW) by 1.6%, 13.4% and 42.5%, respectively, and in the ratio of LW to body weight by 8.8%, 16.7% and 40.2%, respectively, in male rats. These effects were less pronounced in females. SOW selectively increased liver mass in male rats but Sudan red staining was not different, which indicates that hepatic lipid accumulation was similar in both genders. However, SOW even at the highest dosage did not influence serum ALT and AST activities in male or female rats. Moreover, SOW was found to activate PPAR-alpha in human hepatoma-derived HepG2 cells, as evidenced by the upregulation of PPAR-alpha and acyl-CoA oxidase mRNA expression. Thus, SOW-dependent PPAR-alpha activation may precede the development of the gender difference in hepatic hypertrophy; this process may be influenced by sex hormone status.
Collapse
|
14
|
Li C, Grillo MP, Badagnani I, Fife KL, Benet LZ. Differential Effects of Fibrates on the Metabolic Activation of 2-Phenylpropionic Acid in Rats. Drug Metab Dispos 2008; 36:682-7. [DOI: 10.1124/dmd.107.017764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Luci S, Giemsa B, Kluge H, Eder K. Clofibrate causes an upregulation of PPAR-α target genes but does not alter expression of SREBP target genes in liver and adipose tissue of pigs. Am J Physiol Regul Integr Comp Physiol 2007; 293:R70-7. [PMID: 17363680 DOI: 10.1152/ajpregu.00603.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effect of clofibrate treatment on expression of target genes of peroxisome proliferator-activated receptor (PPAR)-α and various genes of the lipid metabolism in liver and adipose tissue of pigs. An experiment with 18 pigs was performed in which pigs were fed either a control diet or the same diet supplemented with 5 g clofibrate/kg for 28 days. Pigs treated with clofibrate had heavier livers, moderately increased mRNA concentrations of various PPAR-α target genes in liver and adipose tissue, a higher concentration of 3-hydroxybutyrate, and markedly lower concentrations of triglycerides and cholesterol in plasma and lipoproteins than control pigs ( P < 0.05). mRNA concentrations of sterol regulatory element-binding proteins (SREBP)-1 and -2, insulin-induced genes ( Insig) -1 and Insig-2, and the SREBP target genes acetyl-CoA carboxylase, 3-methyl-3-hydroxyglutaryl-CoA reductase, and low-density lipoprotein receptor in liver and adipose tissue and mRNA concentrations of apolipoproteins A-I, A-II, and C-III in the liver were not different between both groups of pigs. In conclusion, this study shows that clofibrate treatment activates PPAR-α in liver and adipose tissue and has a strong hypotriglyceridemic and hypocholesterolemic effect in pigs. The finding that mRNA concentrations of some proteins responsible for the hypolipidemic action of fibrates in humans were not altered suggests that there were certain differences in the mode of action compared with humans. It is also shown that PPAR-α activation by clofibrate does not affect hepatic expression of SREBP target genes involved in synthesis of triglycerides and cholesterol homeostasis in liver and adipose tissue of pigs.
Collapse
Affiliation(s)
- Sebastian Luci
- Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Emil-Abderhalden-Strasse 26, D-06108 Halle/Saale, Germany
| | | | | | | |
Collapse
|
16
|
Ciana P, Biserni A, Tatangelo L, Tiveron C, Sciarroni AF, Ottobrini L, Maggi A. A Novel Peroxisome Proliferator-Activated Receptor Responsive Element-Luciferase Reporter Mouse Reveals Gender Specificity of Peroxisome Proliferator-Activated Receptor Activity in Liver. Mol Endocrinol 2007; 21:388-400. [PMID: 17158222 DOI: 10.1210/me.2006-0152] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is a growing interest in peroxisome proliferator-activated receptors (PPARs) as major players in the regulation of lipid and carbohydrate metabolism. Drugs targeting PPARs were in fact shown to have major relevance for the treatment of diseases associated with aging, such as arteriosclerosis and diabetes. However, a variety of toxic effects associated with PPAR ligand administration has been documented, including hepatocarcinogenesis, which may severely limit its therapeutic use. A better comprehension of the multiplicity of PPAR physiological functions is therefore mandatory for the development of novel, safer drugs. We here describe the generation of a novel transgenic mouse for the detection of the generalized activities of PPARs, the PPAR responsive element-Luc reporter mouse. In this model luciferase expression is under the control of a PPAR-inducible promoter in all target organs. By optical imaging and ex vivo analysis, we were able to demonstrate the remarkable gender specificity of the PPAR transcriptional activity in liver. In fact, in the liver of female PPAR responsive element-Luc, the PPAR reporter transgene is more than one order of magnitude less expressed, thus leading to the conclusion that the signaling in females is much less activated than in males. Diet or hormonal manipulations as demonstrated here by treatments with high-fat diet or gonad removal and hormone replacement do not influence this low activation. The extent of the gender difference in PPAR transcriptional activity and the ineffectiveness of hormone treatments or diet to significantly elevate liver PPAR activity in females led us to hypothesize that gender-specific epigenetic events occurring during development may affect PPAR signaling in the liver. This study sets the ground for understanding the differential susceptibility of the two genders to metabolic disorders; furthermore, the model generated provides a novel opportunity for the molecular characterization of PPAR activity in pathophysiological conditions.
Collapse
Affiliation(s)
- Paolo Ciana
- Center of Excellence on Neurodegenerative Diseases, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
König B, Koch A, Spielmann J, Hilgenfeld C, Stangl GI, Eder K. Activation of PPARα lowers synthesis and concentration of cholesterol by reduction of nuclear SREBP-2. Biochem Pharmacol 2007; 73:574-85. [PMID: 17126302 DOI: 10.1016/j.bcp.2006.10.027] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 10/23/2006] [Accepted: 10/26/2006] [Indexed: 11/22/2022]
Abstract
To elucidate the mechanisms underlying the cholesterol lowering effects of PPARalpha agonists we investigated key regulators of cholesterol synthesis and uptake in rats and in the rat hepatoma cell line Fao after treatment with the PPARalpha agonists clofibrate and WY 14,643, respectively. In rat liver as well as in Fao cells, PPARalpha activation led to a decrease of transcriptionally active nuclear SREBP-2. mRNA concentrations of the key regulators of SREBP processing, Insig-1 in rat liver and Insig-1 and Insig-2a in Fao cells, were increased upon PPARalpha activation. Thus we suggest, that the observed reduction of the amount of nuclear SREBP-2 was due to an inhibition of the processing of the precursor protein. Both, in rat liver and in Fao cells, mRNA concentrations of the SREBP-2 target genes HMG-CoA reductase (EC1.1.1.34) and LDL receptor were reduced after treatment with the PPARalpha agonists. Furthermore, treatment of Fao cells with WY 14,643 reduced cholesterol synthesis. As a result, the amount of total cholesterol in liver, plasma and lipoproteins of clofibrate treated rats and in WY 14,643 treated Fao cells was decreased compared to control animals and cells, respectively. In conclusion, we could show a novel link between PPARalpha and cholesterol metabolism by demonstrating that PPARalpha activation lowers cholesterol concentration by reducing the abundance of nuclear SREBP-2.
Collapse
Affiliation(s)
- Bettina König
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, D-06108 Halle (Saale), Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Dunn SE, Ousman SS, Sobel RA, Zuniga L, Baranzini SE, Youssef S, Crowell A, Loh J, Oksenberg J, Steinman L. Peroxisome proliferator-activated receptor (PPAR)alpha expression in T cells mediates gender differences in development of T cell-mediated autoimmunity. ACTA ACUST UNITED AC 2007; 204:321-30. [PMID: 17261635 PMCID: PMC2118721 DOI: 10.1084/jem.20061839] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Peroxisome proliferator–activated receptor (PPAR)α is a nuclear receptor that mediates gender differences in lipid metabolism. PPARα also functions to control inflammatory responses by repressing the activity of nuclear factor κB (NF-κB) and c-jun in immune cells. Because PPARα is situated at the crossroads of gender and immune regulation, we hypothesized that this gene may mediate sex differences in the development of T cell–mediated autoimmune disease. We show that PPARα is more abundant in male as compared with female CD4+ cells and that its expression is sensitive to androgen levels. Genetic ablation of this gene selectively removed the brake on NF-κB and c-jun activity in male T lymphocytes, resulting in higher production of interferon γ and tumor necrosis factor (but not interleukin 17), and lower production of T helper (Th)2 cytokines. Upon induction of experimental autoimmune encephalomyelitis, male but not female PPARα−/− mice developed more severe clinical signs that were restricted to the acute phase of disease. These results suggest that males are less prone to develop Th1-mediated autoimmunity because they have higher T cell expression of PPARα.
Collapse
Affiliation(s)
- Shannon E Dunn
- Department of Neurology and Neurological Studies, and 2Department of Pathology, Stanford University Medical Center, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Robertson LW, Berberian I, Borges T, Chen LC, Chow CK, Glauert HP, Filser JG, Thomas H. Suppression of peroxisomal enzyme activities and cytochrome P450 4A isozyme expression by congeneric polybrominated and polychlorinated biphenyls. PPAR Res 2007; 2007:15481. [PMID: 18274624 PMCID: PMC2220027 DOI: 10.1155/2007/15481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 08/10/2007] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to determine the effects of PCBs and PBBs on peroxisome proliferator-activated receptor-alpha-(PPARalpha-) associated enzyme activities or protein levels. Male Sprague-Dawley rats were administered a single IP injection (150 mu mol/kg) of either 3,3',4,4'-tetrabromobiphenyl, 3,3',4,4'-tetrachlorobiphenyl, 3,3',5,5'-tetrabromobiphenyl, 2',3,3',4,5-pentachlorobiphenyl, 3,3',4,4',5-pentachlorobiphenyl, 2,2',3,3',5,5'-hexachlorobiphenyl, or 3,3',4,4',5,5'-hexabromobiphenyl in corn oil (10 ml/kg). One week later, the activities of catalase, peroxisomal fatty acyl-CoA oxidase, and peroxisomal beta-oxidation as well as cytochrome P450 4A (CYP4A) protein content were determined in subcellular liver fractions. None of the peroxisomal enzyme activities were significantly increased by any of the halogenated biphenyl congeners tested. Except for minor (approx. 25%) increases in the total CYP4A content following treatment with 2,2',3,3',5,5'-hexachlorobiphenyl and 3,3',5,5'-tetrabromobiphenyl, CYP4A protein contents were not increased by any treatment. The two Ah receptor agonists, 3,3',4,4'-tetrabromobiphenyl and 3,3',4,4',5-pentachlorobiphenyl, significantly diminished the liver content of CYP4A proteins and activities of the peroxisomal enzymes studied. Since a range of congeners with different biologic and toxicologic activities were selected for this study, it may be concluded that the polyhalogenated biphenyls do not induce peroxisome proliferation in the male rat, but rather certain members of this class of compounds down regulate peroxisome-associated enzymes. Since PCBs and PBBs do not increase enzyme activities and expression of proteins associated with PPARalpha, these agents are therefore exerting their carcinogenic and promoting activities by some other mechanism.
Collapse
Affiliation(s)
- Larry W Robertson
- Graduate Center for Toxicology, University of Kentucky, Funkhouser Building, Lexington, KY, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Du ZY, Demizieux L, Degrace P, Gresti J, Moindrot B, Liu YJ, Tian LX, Cao JM, Clouet P. Alteration of 20:5n-3 and 22:6n-3 fat contents and liver peroxisomal activities in fenofibrate-treated rainbow trout. Lipids 2005; 39:849-55. [PMID: 15669760 DOI: 10.1007/s11745-004-1306-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fish easily accumulate n-3 PUFA of exogenous origin, but the underlying mechanisms are not well established in the whole animal. This study was undertaken to investigate whether this feature was physiologically associated with mitochondrial and peroxisomal capacities that differentially affect FA oxidation. For this purpose, peroxisomal FA oxidation was increased by treating rainbow trout with fenofibrate, which strongly stimulates the peroxisome proliferator-activated receptor-a in rodents. Diets containing EPA and DHA, with or without fenofibrate added, were administered to male trout for 12 d. After treatment, neither liver hypertrophy nor accumulation of fat was apparent within the liver and muscle cells. However, fenofibrate treatment decreased the contents of EPA and DHA in the liver, white muscle, and intraperitoneal fat tissue, which represented (per whole body) at least 280 mg less than in controls. Carnitine-dependent palmitate oxidation rates, expressed per gram of liver, were slightly increased by fenofibrate when measured from tissue homogenates and were unchanged when calculated from isolated mitochondria, relative to control fish. The treatment altered neither carnitine palmitoyltransferase I activity rates, expressed per gram of liver, nor the sensitivity of the enzyme to malonyl-CoA inhibition, but did increase the malonyl-CoA content (+45%). Meanwhile, fenofibrate increased (by about 30%) the peroxisome-related activities, i.e., catalase, carnitine-independent palmitate oxidation, acyl-CoA oxidase, and the peroxisomal FA-oxidizing system, relative to the control group. The data strongly suggest that the induction of peroxisomal activities, some of which being able to oxidize very long chain FA, was responsible for the lower contents of EPA and DHA in the body lipids of fenofibrate-treated trout.
Collapse
Affiliation(s)
- Zhen-yu Du
- Université de Bourgogne, 21000 Dijon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nannelli A, De Rubertis A, Longo V, Gervasi PG. Effects of dioxane on cytochrome P450 enzymes in liver, kidney, lung and nasal mucosa of rat. Arch Toxicol 2004; 79:74-82. [PMID: 15490126 DOI: 10.1007/s00204-004-0590-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 06/14/2004] [Indexed: 01/09/2023]
Abstract
The effect of acute and chronic dioxane administration on hepatic, renal, pulmonary and nasal mucosa P450 enzymes and liver toxicity were investigated in male rats. The acute treatment consisted of two doses (2 g/kg) of dioxane given for 2 days by gavage, whereas the chronic treatment consisted of 1.5% of dioxane in drinking water for 10 days. Both the acute and chronic dioxane treatments induced cytochrome P450 2B1/2- and P450 2E1-dependent microsomal monooxygenase activities (pentoxyresorufin O-depentylase and p-nitrophenol hydroxylase) in the liver, whereas in the kidney and nasal mucosa, only the 2E1 marker activities were enhanced. In addition in the liver, an induction of 2alpha-testosterone hydroxylase (associated with the constitutive and hormone-dependent P450 2C11) was also revealed, whereas the hepatic P450 4A-dependent omega-lauric acid hydroxylase was not enhanced by any dioxane treatment. These inductions were mostly confirmed by western blot analysis of liver, kidney and nasal mucosa microsomes. In the lung, no alteration of P450 activities was observed. To assess the mechanism of 2E1 induction, the hepatic, renal and nasal mucosa 2E1 mRNA levels were also examined. Following two kinds of dioxane administration, in the liver the 2E1 induction was not accompanied by a significant alteration of 2E1 mRNA levels, while both in the kidney and nasal mucosa the 2E1 mRNA increased about 2- to 3-fold, indicating an organ-specific regulation of this P450 isoform. Furthermore, dioxane was unable to alter the plasma alanine aminotransferase activity and hepatic glutathione (GSH) content, examined as an index of toxicity, when it was administered into rats with P450 2B1/2 and 2E1 preinduced by phenobarbital or fasting pretreatment. These results support the lack of or a poor formation of reactive and toxic intermediates during the biotrasformation of this solvent, even when its metabolism was enhanced by P450 inducers. The chronic administration of dioxane was also unable to induce the palmitoyl CoA oxidase, a marker of peroxisome proliferation, excluding this as a way to explain its toxicity. Thus, although the mechanism of dioxane carcinogenicity remains unclear, the present results suggest that the induction of 2E1 following a prolonged administration of dioxane might provide oxygen radical species, and thereby contribute to its organ-specific toxicity.
Collapse
Affiliation(s)
- A Nannelli
- Area della Ricerca CNR, Istituto di Fisiologia Clinica, via Moruzzi 1, 56100 Pisa, Italy
| | | | | | | |
Collapse
|
22
|
Jalouli M, Carlsson L, Améen C, Lindén D, Ljungberg A, Michalik L, Edén S, Wahli W, Oscarsson J. Sex difference in hepatic peroxisome proliferator-activated receptor alpha expression: influence of pituitary and gonadal hormones. Endocrinology 2003; 144:101-9. [PMID: 12488335 DOI: 10.1210/en.2002-220630] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR) alpha is a nuclear receptor that is mainly expressed in tissues with a high degree of fatty acid oxidation such as liver, heart, and skeletal muscle. Unsaturated fatty acids, their derivatives, and fibrates activate PPARalpha. Male rats are more responsive to fibrates than female rats. We therefore wanted to investigate if there is a sex difference in PPARalpha expression. Male rats had higher levels of hepatic PPARalpha mRNA and protein than female rats. Fasting increased hepatic PPARalpha mRNA levels to a similar degree in both sexes. Gonadectomy of male rats decreased PPARalpha mRNA expression to similar levels as in intact and gonadectomized female rats. Hypophysectomy increased hepatic PPARalpha mRNA and protein levels. The increase in PPARalpha mRNA after hypophysectomy was more pronounced in females than in males. GH treatment decreased PPARalpha mRNA and protein levels, but the sex-differentiated secretory pattern of GH does not determine the sex-differentiated expression of PPARalpha. The expression of PPARalpha mRNA in heart or soleus muscle was not influenced by gender, gonadectomy, hypophysectomy, or GH treatment. In summary, pituitary-dependent hormones specifically regulate hepatic PPARalpha expression. Sex hormones regulate the sex difference in hepatic PPARalpha levels, but not via the sexually dimorphic GH secretory pattern.
Collapse
Affiliation(s)
- Masoumeh Jalouli
- Department of Physiology and Pharmacology, Göteborg University, Göteborg S-405 30, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yu XX, Odle J, Drackley JK. Differential induction of peroxisomal beta-oxidation enzymes by clofibric acid and aspirin in piglet tissues. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1553-61. [PMID: 11641128 DOI: 10.1152/ajpregu.2001.281.5.r1553] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisomal beta-oxidation (POX) of fatty acids is important in lipid catabolism and thermogenesis. To investigate the effects of peroxisome proliferators on peroxisomal and mitochondrial beta-oxidation in piglet tissues, newborn pigs (1-2 days old) were allowed ad libitum access to milk replacer supplemented with 0.5% clofibric acid (CA) or 1% aspirin for 14 days. CA increased ratios of liver weight to body weight (P < 0.07), kidney weight to body weight (P < 0.05), and heart weight to body weight (P < 0.001). Aspirin decreased daily food intake and final body weight but increased the ratio of heart weight to body weight (P < 0.01). In liver, activities of POX, fatty acyl-CoA oxidase (FAO), total carnitine palmitoyltransferase (CPT), and catalase were 2.7-, 2.2-, 1.5-fold, and 33% greater, respectively, for pigs given CA than for control pigs. In heart, these variables were 2.2-, 4.1-, 1.9-, and 1.8-fold greater, respectively, for pigs given CA than for control pigs. CA did not change these variables in either kidney or muscle, except that CPT activity was increased approximately 110% (P < 0.01) in kidney. Aspirin increased only hepatic FAO and CPT activities. Northern blot analysis revealed that CA increased the abundance of catalase mRNA in heart by approximately 2.2-fold. We conclude that 1) POX and CPT in newborn pigs can be induced by peroxisomal proliferators with tissue specificity and 2) the relatively smaller induction of POX in piglets (compared with that in young or adult rodents) may be related to either age or species differences.
Collapse
Affiliation(s)
- X X Yu
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
24
|
Orellana B M, Guajardo V, Araya J, Thieleman L, Rodrigo R. Oxidative stress, microsomal and peroxisomal fatty acid oxidation in the liver of rats treated with acetone. Comp Biochem Physiol C Toxicol Pharmacol 2001; 128:503-9. [PMID: 11301292 DOI: 10.1016/s1532-0456(01)00171-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Parameters of oxidative stress, microsomal cytochrome P450 activity and peroxisomal fatty acid oxidation were studied in liver of rats following acetone (1% v/v) consumption for 7 days. Acetone treatment increased the activity of catalase and decreased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GTPx), but did not significantly modify the liver content of malondialdehyde (MDA) and reduced glutathione. Also, acetone increased the total content of cytochrome P450, the microsomal lauric acid hydroxylation, aminopyrine N-demethylation and the peroxisomal beta-oxidation of palmitoyl CoA. These effects were similar to those found previously in starved and ethanol-treated rats, supporting the hypothesis that ketone bodies would be the common inducer of microsomal and peroxisomal fatty acid oxidation in these metabolic states.
Collapse
Affiliation(s)
- M Orellana B
- ICBM Programa de Farmacología Molecular y Clínica, Facultad de Medicina, Universidad de Chile, Santiago 7 70086, Casilla, Chile.
| | | | | | | | | |
Collapse
|
25
|
Rodríguez C, Cabrero A, Roglans N, Adzet T, Sánchez RM, Vázquez M, Ciudad CJ, Laguna JC. Differential induction of stearoyl-CoA desaturase and acyl-CoA oxidase genes by fibrates in HepG2 cells. Biochem Pharmacol 2001; 61:357-64. [PMID: 11172741 DOI: 10.1016/s0006-2952(00)00557-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We studied whether two typical effects of fibrates, induction of stearoyl-CoA desaturase (EC 1.14.99.5) and peroxisome proliferation, are related. The effect of bezafibrate on the activity and mRNA of stearoyl-CoA desaturase and acyl-CoA oxidase in the liver and epididymal white adipose tissue of male Sprague-Dawley rats was determined. The same parameters were measured in HepG2 cells, a cell line resistant to peroxisome proliferation, following incubation with ciprofibrate. Bezafibrate increased the hepatic mRNA levels (14.5-fold on day 7) and activity (9.3-fold on day 15) of acyl-CoA oxidase. Stearoyl-CoA desaturase mRNA levels were transiently increased (2.7-fold on day 7), while its activity remained increased at the end of the treatment (2.4-fold). In white adipose tissue, bezafibrate increased the mRNA (5-fold) and activity (1.9-fold) of acyl-CoA oxidase, while stearoyl-CoA desaturase was not modified. Ciprofibrate addition to HepG2 cells cultured in 7% fetal bovine serum (FBS) only increased the stearoyl-CoA desaturase mRNA (1.9-fold). When cells were cultured in 0.5% FBS, ciprofibrate increased acyl-CoA oxidase mRNA (2.2-fold), while the increase in stearoyl-CoA desaturase mRNA was identical (1.9-fold). Further, its activity was also increased (1.5-fold). Incubation of HepG2 cells in the presence of cycloheximide did not alter the capacity of ciprofibrate to induce stearoyl-CoA desaturase mRNA, whereas the presence of actinomycin abolished the induction. In addition, preincubation of HepG2 cells with ciprofibrate increased the rate of stearoyl-CoA desaturase mRNA degradation. The results presented in this study suggest that fibrates induce stearoyl-CoA desaturase activity and mRNA levels independently of peroxisome proliferation.
Collapse
Affiliation(s)
- C Rodríguez
- Unidad de Farmacología y Farmacognosia, Facultad de Farmacia, Universidad de Barcelona, 08028, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Katsutani N, Sekido T, Aoki T, Sagami F. Hepatic drug metabolizing enzymes induced by clofibrate in rasH2 mice. Toxicol Lett 2000; 115:223-9. [PMID: 10814892 DOI: 10.1016/s0378-4274(00)00195-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hepatic drug metabolizing enzyme activities were determined, after treatment with clofibrate, in transgenic mice carrying human c-Ha-ras (rasH2 mice). Changes in the drug metabolizing enzyme activities in these mice by gene integration were also evaluated. Male and female rasH2 mice (Tg) and the litter mates not carrying the gene (non-Tg) received orally 500 mg/kg of clofibrate or the vehicle for 12 consecutive days. Liver homogenate and microsomes were prepared and the contents and activities of cytochrome P450 (CYP), cytochrome b5 content and enzyme activities related to peroxisome proliferation were determined. Relative liver weights, CYP4A and activities of catalase and carnitine palmitoyl transferase increased to the same extent in Tg and non-Tg mice treated with clofibrate. In Tg and non-Tg groups that received vehicle, contents and activities of CYP and cytchrome b5 contents were comparable. It was concluded that gene integration did not alter drug metabolizing enzymes and responses to clofibrate.
Collapse
Affiliation(s)
- N Katsutani
- Department of Developmental Safety Assessment Research, Eisai Company, Gifu, Japan.
| | | | | | | |
Collapse
|
27
|
Martin JC, Joffre F, Siess MH, Vernevaut MF, Collenot P, Genty M, Sébédio JL. Cyclic fatty acid monomers from heated oil modify the activities of lipid synthesizing and oxidizing enzymes in rat liver. J Nutr 2000; 130:1524-30. [PMID: 10827204 DOI: 10.1093/jn/130.6.1524] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cyclic fatty acid monomers purified from a heated linseed oil were given for 2 wk to adult rats as triacylglycerol at two dose levels, i.e., 0.1 and 1 g/100 g diet, to determine their effect on some aspects of lipid metabolism. Indirect evidence of a peroxisome proliferator-like effect was observed, as determined by an elevation of some characteristic enzyme activities, such as peroxisomal acyl-CoA oxidase, and the microsomal omega- but also (omega-1)-laurate hydroxylase (CYP4A1 and CYP2E1, respectively). The dietary cyclic fatty acids induced a coordinated regulation between the activities of the lipogenic enzymes studied (Delta9-desaturase, phosphatidate phosphohydrolase) and peroxisomal oxidation, but not with mitochondrial beta-oxidation. The dose-dependent decrease of Delta9-desaturase activity (P < 0.05) with cyclic fatty acid monomer intake was accompanied by a similar decrease of the monounsaturated fatty acid level in liver. The increase in the gamma-linolenic acid level also suggested an increase in Delta6-desaturase activity with cyclic fatty acid intake (P < 0.05). In addition, our results strongly suggested that the altered liver levels of eicosapentaenoic and arachidonic acids were due to the peroxisomal retroconversion process in rats fed cyclic acids. Finally, an effect of these cyclic compounds on the carbohydrate metabolism cannot be disregarded because they decreased liver glycogen concentration. We conclude that cyclic fatty acid monomers affect different aspects of lipid metabolism, including a phenotypic peroxisome proliferator response. This provides the ground for further studies investigating the biochemical pathways that underlie the nutritional effect of such molecules.
Collapse
Affiliation(s)
- J C Martin
- Unité de Nutrition Lipidique, Institut National de la Recherche Agronomique, 21034 Dijon Cédex, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Reo NV, Adinehzadeh M. NMR spectroscopic analyses of liver phosphatidylcholine and phosphatidylethanolamine biosynthesis in rats exposed to peroxisome proliferators-A class of nongenotoxic hepatocarcinogens. Toxicol Appl Pharmacol 2000; 164:113-26. [PMID: 10764624 DOI: 10.1006/taap.2000.8901] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferators (PPs) are commercial/industrial chemicals that display tumor promoter activity in rodents. The mechanism is not completely understood, and our ability to predict tumorigenicity a priori is even less developed. Wy-14,643, perfluorooctanoic acid (PFOA), and di(2-ethylhexyl)phthalate (DEHP) are strong, moderate, and weak tumor promoters, respectively, while perfluorodecanoic acid (PFDA) lacks promoter activity. This investigation examined the effects of these PPs on the biosyntheses of phosphatidylcholine (PtdC) and phosphatidylethanolamine (PtdE) in rat liver. After exposure to PPs, rats were administered [1-(13)C]choline + [2-(13)C]ethanolamine and liver extracts were analyzed by (31)P and (13)C NMR. The ratio of choline-derived to ethanolamine-derived phospholipids, R(c/e), was significantly affected by all PPs (p < 0. 05). R(c/e) values were in the order Wy-14,643 > PFOA > DEHP > control > PFDA. The amounts of PtdC derived via the CDP-choline pathway versus PtdE-N-methyltransferase (PEMT) activity was 71 vs 29% in controls. This distribution was significantly affected by treatments with Wy-14,643 (95 vs 5%), DEHP (87 vs 13%), and PFDA (39 vs 61%) (p < 0.02). Data suggest that Wy-14,643, PFOA, and DEHP cause a preference for choline and the CDP-choline pathway for biosynthesis of PtdC. Additionally, Wy-14,643 and DEHP inhibited the PEMT pathway. In contrast, PFDA-treated rats showed a preference for ethanolamine, and PtdC was predominately synthesized through the PEMT pathway. These data corroborate studies by Vance and co-workers which suggest that the pathways for PtdC biosynthesis are important for hepatocarcinogenesis. Further studies to evaluate the potential of these measurements as a biomarker for PP-associated tumorigenesis is warranted.
Collapse
Affiliation(s)
- N V Reo
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45429, USA.
| | | |
Collapse
|
29
|
Hong JT, Glauert HP. Effect of extracellular matrix on the expression of peroxisome proliferation associated genes in cultured rat hepatocytes. Toxicol In Vitro 2000; 14:177-84. [PMID: 10793296 DOI: 10.1016/s0887-2333(00)00009-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to determine whether the extracellular matrix used in hepatocyte culture would alter gene expression induced by the peroxisome proliferator ciprofibrate (CIP). We compared the activities and mRNA levels of two enzymes associated with peroxisome proliferation-fatty acyl-CoA oxidase (FAO), the first enzyme in the peroxisomal beta-oxidation pathway, and lauric acid hydroxylase (LAH), which represents the activity of the cytochrome P450 4A subfamily-in rat hepatocytes cultured on different plates: plastic, collagen-coated, thin and thick Matrigel, and collagen gel plates. CIP increased FAO activity about fivefold in collagen gel plates and sixfold in thick Matrigel plates compared to a fourfold increase in other plates; LAH was increased about threefold in thin Matrigel plates and fourfold in thick Matrigel and collagen gel plates compared to only a twofold increase in plastic and collagen-coated plates. The mRNA level for FAO was highest in hepatocytes cultured on collagen gel and Matrigel plates compared to those cultured on plastic and collagen-coated plates. The P-450 4A1 mRNA expression, however, was highest in the collagen gel plates, with lower expression in the thick Matrigel, collagen-coated and plastic plates. DNA synthesis and the DNA binding activity of the transcription factor AP-1 were also examined in response to epidermal growth factor (EGF) and CIP. Without the addition of EGF, DNA synthesis was significantly higher on collagen-coated plates than on collagen gel plates. The DNA binding activity of AP-1 was also induced after 24 hr culture in collagen-coated plates, whereas it was not detected in collagen gel plates. After the addition of EGF, the DNA binding activity of AP-1 was increased in both collagen-coated plates and collagen gel plates. CIP did not increase the DNA binding activity of AP-1 in either plate. These results demonstrate that components of the extracellular matrix influence the induction of peroxisome proliferator-induced enzyme activities and mRNA levels by CIP, with the highest induction seen in collagen gel and thick Matrigel plates. Furthermore, the induction of cell proliferation and AP-1 DNA binding activity are influenced by the extracellular matrix.
Collapse
Affiliation(s)
- J T Hong
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| | | |
Collapse
|
30
|
Martin JC, Grégoire S, Siess MH, Genty M, Chardigny JM, Berdeaux O, Juanéda P, Sébédio JL. Effects of conjugated linoleic acid isomers on lipid-metabolizing enzymes in male rats. Lipids 2000; 35:91-8. [PMID: 10695929 DOI: 10.1007/s11745-000-0499-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Male weanling Wistar rats (n = 15), weighing 200-220 g, were allocated for 6 wk to diets containing 1% (by weight) of conjugated linoleic acid (CLA), either as the 9c,11 t-isomer, the 10t,12c-isomer, or as a mixture containing 45% of each of these isomers. The five rats of the control group received 1% of oleic acid instead. Selected enzyme activities were determined in different tissues after cellular subfractionation. None of the CLA-diet induced a hepatic peroxisome-proliferation response, as evidenced by a lack of change in the activity of some characteristic enzymes [i.e., acyl-CoA oxidase, CYP4A1, but also carnitine palmitoyltransferase-I (CPT-I)] or enzyme affected by peroxisome-proliferators (glutathione S-transferase). In addition to the liver, the activity of the rate-limiting beta-oxidation enzyme in mitochondria, CPT-I, did not change either in skeletal muscle or in heart. Conversely, its activity increased more than 30% in the control value in epididymal adipose tissue of the animals fed the CLA-diets containing the 10t,12c-isomer. Conversely, the activity of phosphatidate phosphohydrolase, a rate-limiting enzyme in glycerolipid neosynthesis, remained unchanged in adipose tissue. Kinetic studies conducted on hepatic CPT-I and peroxisomal acyl-CoA oxidase with CoA derivatives predicted a different channeling of CLA isomers through the mitochondrial or the peroxisomal oxidation pathways. In conclusion, the 10t,12c-CLA isomer seems to be more efficiently utilized by the cells than its 9c,11t homolog, though the Wistar rat species appeared to be poorly responsive to CLA diets for the effects measured.
Collapse
Affiliation(s)
- J C Martin
- I.N.R.A, Unité de Nutrition Lipidique, Dijon, France.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kitamura T, Tanaka K, Morita K, Saito S, Kiba T, Numata K, Sekihara H. Dehydroepiandrosterone (DHEA) facilitates liver regeneration after partial hepatectomy in rats. Life Sci 1999; 65:1747-56. [PMID: 10576554 DOI: 10.1016/s0024-3205(99)00427-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In this study we investigated whether or not liver regeneration is facilitated by dehydroepiandrosterone (DHEA) after partial (70%) hepatectomy in rats. Treatment with DHEA (300 mg/kg body weight) did not cause any significant increase in the expression ratio of proliferating cell nuclear antigen (PCNA) in sham-operated controls; however, in partially hepatectomized rats it caused a significant increase in the ratio in hepatocytes 24 and 36 hr after hepatectomy. In partially hepatectomized rats, DHEA treatment significantly accelerated the restoration of liver 48, 60, and 72 hr after partial hepatectomy. The restoration rate in DHEA-treated hepatectomized rats at 72 hr was 1.3-fold greater than in partially hepatectomized controls. Treatment with androstenedione (300 mg/kg body weight), the first metabolite of DHEA, did not cause any significant increase in the expression of PCNA in either sham-operated controls or partially hepatectomized rats. These results indicate that DHEA itself promotes the liver regenerative process after partial hepatectomy in rats.
Collapse
Affiliation(s)
- T Kitamura
- Third Department of Internal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Silva C, Loyola G, Valenzuela R, García-Huidobro T, Monasterio O, Bronfman M. High-affinity binding of fatty acyl-CoAs and peroxisome proliferator-CoA esters to glutathione S-transferases effect on enzymatic activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:143-50. [PMID: 10542059 DOI: 10.1046/j.1432-1327.1999.00838.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acyl-CoAs are present at high concentrations within the cell, yet are strongly buffered by specific binding proteins in order to maintain a low intracellular unbound acyl-CoA concentration, compatible with their metabolic role, their importance in cell signaling, and as protection from their detergent properties. This intracellular regulation may be disrupted by nonmetabolizables acyl-CoA esters of xenobiotics, such as peroxisome proliferators, which are formed at relatively high concentration within the liver cell. The low molecular mass acyl-CoA binding protein (ACBP) and fatty acyl-CoA binding protein (FABP) have been proposed as the buffering system for fatty acyl-CoAs. Whether these proteins also bind xenobiotic-CoA is not known. Here we have identified new liver cytosolic fatty acyl-CoA and xenobiotic-CoA binding sites as glutathione S-transferase (GST), using fluorescent polarization and a acyl-etheno-CoA derivative of the peroxisome proliferator nafenopin as ligand. Rat liver GST and human liver recombinant GSTA1-1, GSTP1-1 and GSTM1-1 were used. Only class alpha rat liver GST and human GSTA1-1 bind xenobiotic-CoAs and fatty acyl-CoAs, with Kd values ranging from 200 nM to 5 microM. One mol of acyl-CoA is bound per mol of dimeric enzyme, and no metabolization or hydrolysis was observed. Binding results in strong inhibition of rat liver GST and human recombinant GSTA1-1 (IC50 at the nanomolar level for palmitoyl-CoA) but not GSTP1-1 and GSTM1-1. Acyl-CoAs do not interact with the GSTA1-1 substrate binding site, but probably with a different domain. Results suggest that under increased acyl-CoA concentration, as occurs after exposure to peroxisome proliferators, acyl-CoA binding to the abundant class alpha GSTs may result in strong inhibition of xenobiotic detoxification. Analysis of the binding properties of GSTs and other acyl-CoA binding proteins suggest that under increased acyl-CoA concentration GSTs would be responsible for xenobiotic-CoA binding whereas ACBP would preferentially bind fatty acyl-CoAs.
Collapse
Affiliation(s)
- C Silva
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P.Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
33
|
Pretti C, Novi S, Longo V, Gervasi PG. Effect of clofibrate, a peroxisome proliferator, in sea bass (Dicentrarchus labrax), a marine fish. ENVIRONMENTAL RESEARCH 1999; 80:294-296. [PMID: 10092449 DOI: 10.1006/enrs.1998.3893] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effects of 35 or 70 mg/kg clofibrate on some peroxisomal, mitochondrial, and microsomal enzymes (markers of peroxisome proliferation) in liver, gill, and kidney of sea bass following 2 weeks i.p. treatment have been studied. Induction of lauric acid hydroxylase, UDP-glucuronyl transferase, palmitoyl-CoA oxidase, carnitine-palmitoyl-transferase, p-nitrophenylacetate hydrolase, and benzaldehyde and propionaldehyde dehydrogenase activities was not observed in any case. The clofibrate administration at the dose of 70 mg/kg induced in the liver the glutathione S-tranferase and reduced epoxide hydrolase activities. These results demonstrate that a marine fish species, such as sea bass, is refractory to peroxisome proliferation.
Collapse
Affiliation(s)
- C Pretti
- Dipartimento di Patologia Animale, Profilassi ed Igiene degli Alimenti, V.le delle Piagge 2, Pisa, 56124, Italy
| | | | | | | |
Collapse
|
34
|
Rose ML, Rusyn I, Bojes HK, Germolec DR, Luster M, Thurman RG. Role of Kupffer cells in peroxisome proliferator-induced hepatocyte proliferation. Drug Metab Rev 1999; 31:87-116. [PMID: 10065367 DOI: 10.1081/dmr-100101909] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- M L Rose
- Department of Pharmacology, University of North Carolina, Chapel Hill 27599-7365, USA
| | | | | | | | | | | |
Collapse
|
35
|
Orellana M, Rodrigo R, Thielemann L, Jiménez P, Valdés E. Modulation of peroxisomal and microsomal fatty acid oxidation by acetone. A comparative study between liver and kidney. Comp Biochem Physiol B Biochem Mol Biol 1998; 121:407-16. [PMID: 9972312 DOI: 10.1016/s0305-0491(98)10134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effect of acetone consumption on some microsomal and peroxisomal activities was studied in rat kidney and these results were compared with data from former investigations in liver. Acetone increased the microsomal lauric acid hydroxylation, the aminopyrine N-demethylation catalyzed by cytochrome P450 and the microsomal UDP-glucuronyltransferase activity. Also, acetone increased the peroxisomal beta-oxidation of palmitoyl CoA and catalase activities in kidney. These studies suggest that acetone is a common inducer of the microsomal and peroxisomal fatty acid oxidation, as previously shown in both starved and ethanol treated rats. Our results support the hypothesis that microsomal fatty acid omega-hydroxylation results in the generation of substrates being supplied for peroxisomal beta-oxidation. We propose that the final purpose of these linked fatty acid oxidations could be the catabolism of fatty acids or the generation of a substrate for the synthesis of glucose from fatty acids. This pathway would be triggered by acetone treatment in a similar way in liver and kidney.
Collapse
Affiliation(s)
- M Orellana
- ICBM, Programa de Farmacología Molecular y Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | | | | | |
Collapse
|
36
|
Tsoko M, Beauseigneur F, Gresti J, Demarquoy J, Clouet P. Hypolipidaemic effects of fenofibrate are not altered by mildronate-mediated normalization of carnitine concentration in rat liver. Biochimie 1998; 80:943-8. [PMID: 9893954 DOI: 10.1016/s0300-9084(00)88891-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The five-fold higher carnitine content in the liver of fenofibrate-treated rats addresses the question about the possible role of this enhancement in the hypolipidaemic effect of the drug and the underlying mechanisms. When fenofibrate was administered with mildronate (a gamma-butyrobetaine hydroxylase inhibitor) in suitable amount, the content in carnitine was found to be normalized in liver. However, triglyceride contents of liver and serum were then at least as low as in rats treated by fenofibrate only. When carnitine concentration was lowered by mildronate to the third of the normal value, a marked increase in triglycerides occurred both in liver and serum, while the five-fold increase in carnitine due to fenofibrate enhanced blood ketone body concentration with no effect on liver and serum triglycerides. Data suggest that the normal carnitine concentration is largely sufficient to meet the usual requirement for carnitine palmitoyltransferase I activity (CPT I). In rat liver, increase in mitochondrial CPT I activity and in peroxisomal fatty acid oxidation may constitute part of the hypolipidaemic effect of fenofibrate.
Collapse
Affiliation(s)
- M Tsoko
- Laboratoire de Nutrition Cellulaire et Métabolique, UPRES 2422, Université de Bourgogne, Faculté des Sciences, Dijon, France
| | | | | | | | | |
Collapse
|
37
|
Orellana M, Rodrigo R, Valdés E. Peroxisomal and microsomal fatty acid oxidation in liver of rats after chronic ethanol consumption. GENERAL PHARMACOLOGY 1998; 31:817-20. [PMID: 9809485 DOI: 10.1016/s0306-3623(98)00054-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
1. Microsomal P450 and peroxisomal fatty acid oxidation activities were studied in liver of rats after long-term ethanol consumption. 2. Ethanol increased the microsomal lauric acid omega-hydroxylation and the aminopyrine N-demethylation catalyzed by cytochrome P450. 3. Ethanol increased peroxisomal beta-oxidation of palmitoyl CoA and catalase activity in liver. 4. Both microsomal and peroxisomal activities behaved in a coordinate way in the liver of rats with long-term ethanol consumption. 5. These results would support a role of microsomal omega-hydroxylation and peroxisomal beta-oxidation of fatty acids in an extramitochondrial pathway of lipid oxidation in the liver.
Collapse
Affiliation(s)
- M Orellana
- ICBM, Programa de Farmacología, Molecular Y Clínica, Facultad de Medicina, Universidad de Chile, Santiago.
| | | | | |
Collapse
|
38
|
Lenart J, Komańska I, Pikuła S, Jasińska R. Positive feedback between ethanolamine-specific phospholipid base exchange and cytochrome P450 activities in rat liver microsomes. The effect of clofibric acid. FEBS Lett 1998; 434:101-7. [PMID: 9738460 DOI: 10.1016/s0014-5793(98)00960-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The results of the present investigation relate the effects of the nutritional state and administration of clofibric acid (CLA), a hypolipidaemic drug and peroxisomal proliferator, on phosphatidylethanolamine (PE) synthesis in rat liver and fatty acid metabolism. Fasting and CLA treatment of animals causes an increase in the amount of PE in endoplasmic reticulum (ER) membranes and mitochondria, as well as in the PE/phosphatidylcholine (PC) ratio. Moreover, the activity of the ethanolamine-specific phospholipid base exchange (PLBE) enzyme in liver ER membranes of fasted animals was enhanced by 75% in comparison to that of animals fed ad libitum. The effect of CLA treatment was additive to that of starvation; PE synthesis tested in vitro via the Ca2+-sensitive PLBE reaction increased 3-fold in comparison to rats fed ad libitum. This is confirmed by an increased Vmax for the reaction, but the affinity of the enzyme for ethanolamine was not significantly changed. These effects were accompanied by an enhanced expression of cytochrome P450 CYP4A1 isoform and elevated activity of the enzyme upon CLA administration. The stimulatory effect of CLA administration on the efficiency of the ethanolamine-specific PLBE reaction can be explained by elimination of lauric acid, a known inhibitor of de novo PE synthesis, during the course of omega-hydroxylation catalysed by CYP4A1, and by increased expression of the PLBE enzyme. The products of omega-hydroxylation of lauric acid, which are then converted by dehydrogenase to 1,12-dodecanedioic acid, did not significantly affect the in vitro synthesis of PE.
Collapse
Affiliation(s)
- J Lenart
- Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | |
Collapse
|
39
|
Involvement of cytochrome P450 2E1 in the (ω–1)-hydroxylation of oleic acid in human and rat liver microsomes. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)32545-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Nilakantan V, Spear BT, Glauert HP. Effect of the peroxisome proliferator ciprofibrate on lipid peroxidation and 8-hydroxydeoxyguanosine formation in transgenic mice with elevated hepatic catalase activity. Free Radic Biol Med 1998; 24:1430-6. [PMID: 9641260 DOI: 10.1016/s0891-5849(98)00007-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferators are a group of non-genotoxic hepatic carcinogens which have been proposed to act by increasing oxidative damage in the liver. To test this hypothesis, we have produced a transgenic mouse line that has elevated catalase activity specifically in the liver. In this study, we have examined if catalase overexpression influences the induction of lipid peroxidation or oxidative DNA damage, two mechanisms which have been hypothesized to be important in the carcinogenesis by peroxisome proliferators. Transgenic mice or non-transgenic litter mates were fed either 0.01% ciprofibrate or a control diet for 21 days. The activities of fatty acyl CoA oxidase and lauric acid hydroxylase were not significantly affected by catalase overexpression, although the ratio of fatty acyl CoA oxidase to catalase was significantly decreased in transgenic animals. Hepatic lipid peroxidation was estimated by quantifying the concentrations of malondialdehyde and conjugated dienes. Ciprofibrate treatment did not affect either endpoint, but catalase overexpression increased the concentrations of malondialdehyde (in untreated mice only) and conjugated dienes (in both untreated and ciprofibrate-fed mice). Oxidative DNA damage was estimated by quantifying 8-hydroxydeoxyguanosine (8-OHdG) by high-performance liquid chromatography/electrochemical detection. Ciprofibrate treatment significantly increased hepatic 8-OHdG concentrations, in agreement with several previous studies, but catalase overexpression did not significantly affect them, although 8-OHdG concentrations were decreased 50% in untreated mice. These results imply that the metabolism of hydrogen peroxide by catalase is not an important factor in the development of hepatic lipid peroxidation. The decrease in hepatic 8-OHdG in untreated transgenic mice and the increase seen after ciprofibrate administration imply that hydrogen peroxide is important in the formation of 8-OHdG. While the lack of decreased 8-OHdG levels in ciprofibrate-treated transgenic mice does not support this conclusion, it is possible that catalase levels were not sufficiently high to affect this endpoint. Transgenic mice with higher hepatic catalase activities may be required to resolve this issue.
Collapse
Affiliation(s)
- V Nilakantan
- Graduate Center for Toxicology, University of Kentucky, Lexington 40506-0054, USA
| | | | | |
Collapse
|
41
|
Keler T, Khan S, Sorof S. Liver fatty acid binding protein and mitogenesis in transfected hepatoma cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 400A:517-24. [PMID: 9547599 DOI: 10.1007/978-1-4615-5325-0_70] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- T Keler
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
42
|
Wilson MW, Leung LK, Hong JT, Glauert HP. Effect of the peroxisome proliferators ciprofibrate and perfluorodecanoic acid on eicosanoid concentrations in rat liver. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 400A:439-45. [PMID: 9547588 DOI: 10.1007/978-1-4615-5325-0_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M W Wilson
- Department of Nutrition and Food Science, University of Kentucky, Lexington 40506, USA
| | | | | | | |
Collapse
|
43
|
Youssef J, Badr M. Extraperoxisomal targets of peroxisome proliferators: mitochondrial, microsomal, and cytosolic effects. Implications for health and disease. Crit Rev Toxicol 1998; 28:1-33. [PMID: 9493760 DOI: 10.1080/10408449891344182] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peroxisome proliferators are a structurally diverse group of compounds that include the fibrate hypolipidemic drugs, the phthalate ester industrial plasticizers, the phenoxy acid herbicides, and the anti-wetting corrosion inhibitors perfluorinated straight-chain monocarboxylic fatty acids. Administration of these chemicals to rodents results in a number of effects, the most prominent being hepatomegaly and induction of peroxisomal enzyme activities. Several of these compounds have also been associated with the production of liver tumors in rodents and are classified as nongenotoxic hepatocarcinogens. Experimental evidence suggests that humans are not susceptible to these effects following exposure to peroxisome-proliferating compounds. This has led to the proposal that an "actual threat to humans" from exposure to one of these compounds seems "rather unlikely". Indeed, recent reports suggest that peroxisome proliferators may prove valuable as antitumor agents in humans. However, this assessment is preliminary given that peroxisome proliferators also produce a myriad of extraperoxisomal effects in livers and other tissues of experimental animals. Such effects include both stimulation and inhibition of mitochondrial and microsomal metabolism and alteration of the activities of various cytosolic enzymes. These responses may be directly or indirectly related to the effects on peroxisomes or may be totally independent of these events. Whether the extraperoxisomal effects of these compounds occur in humans is not known and their potential impact on human health remains to be investigated.
Collapse
Affiliation(s)
- J Youssef
- University of Missouri-Kansas City, 64108-2792, USA
| | | |
Collapse
|
44
|
Wang KS, Mock NI, Mock DM. Biotin biotransformation to bisnorbiotin is accelerated by several peroxisome proliferators and steroid hormones in rats. J Nutr 1997; 127:2212-6. [PMID: 9349849 DOI: 10.1093/jn/127.11.2212] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bisnorbiotin and biotin sulfoxide are the major catabolites of biotin for humans, swine, and rats. Increased urinary excretion of bisnorbiotin, biotin sulfoxide, or both have been observed during pregnancy and in patients treated with certain anticonvulsants. We sought more insight into the sites and mechanisms of biotin catabolism by exposing rats in vivo to compounds known to induce classes of enzymes that were candidates to catalyze the biotransformations. Rats were treated with the anticonvulsants phenytoin, phenobarbital, and carbamazepine, the steroid hormones dexamethasone and dehydroepiandrosterone, and the peroxisome proliferators clofibrate and di(2-ethylhexyl)phthalate. [14C]Biotin was injected intraperitoneally at physiologic doses in treated rats and control rats; HPLC and radiometric flow detection were used to specifically identify and quantify [14C]biotin and its metabolites in urine. Treatment effects were assessed by the change in the urinary excretion of [14C]bisnorbiotin and [14C]biotin sulfoxide in response to administration of [14C]biotin. No significant changes resulted from treatment with any of the anticonvulsants. With the steroid hormones and the peroxisome proliferators, [14C]bisnorbiotin excretion increased significantly. These results indicate that biotin is converted into bisnorbiotin in the liver and that this conversion likely occurs in peroxisomes or mitochondria or both via beta-oxidative cleavage, and, in contrast to responses in humans, the enzymes responsible for the formation of biotin sulfoxide in rats are not induced by the anticonvulsants examined here.
Collapse
Affiliation(s)
- K S Wang
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of Arkansas for Medical Sciences and Arkansas Children's Hospital Research Institute, Little Rock, AR 72202-3591, USA
| | | | | |
Collapse
|
45
|
Mitochondrion is the principal target for nutritional and pharmacological control of triglyceride metabolism. J Lipid Res 1997. [DOI: 10.1016/s0022-2275(20)37159-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Roomi MW, Farber E, Parke DV. Changes in drug-metabolizing enzymes of rats in ciprofibrate-induced hepatic nodules. Xenobiotica 1997; 27:951-60. [PMID: 9381735 DOI: 10.1080/004982597240118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. Premalignant rat liver nodules produced in the resistant hepatocyte model, by exposure to carcinogenic chemicals (diethyl nitrosamine and 2-acetamidofluorene), and partial hepatectomy, exhibit decreased xenobiotic hydroxylase activities and increased conjugase activities, which are considered responsible for increased resistance to xenobiotic toxicity. 2. However, premalignant rat liver nodules generated by feeding the hypolipidaemic, peroxisomal proliferating drug, ciprofibrate, in a hypolipidaemic model, exhibit decreased hydroxylase activities but decreased conjugase activities also. 3. It is considered that reactive oxygen species (ROS) are generated in both the resistant hepatocyte model and in the hypolipidaemic model, resulting in lipid peroxidation, loss of haem, cytochromes and hydroxylase activities. 4. However, whereas there is a rebounding compensation of conjugase enzymes in the resistant hepatocyte model, this does not occur with the hypolipidaemic model, as peroxidation is probably persistent and the conjugases are continuously destroyed.
Collapse
Affiliation(s)
- M W Roomi
- Department of Pathology, University of Toronto, Canada
| | | | | |
Collapse
|
47
|
Standeven AM, Escobar M, Beard RL, Yuan YD, Chandraratna RA. Mitogenic effect of retinoid X receptor agonists in rat liver. Biochem Pharmacol 1997; 54:517-24. [PMID: 9313779 DOI: 10.1016/s0006-2952(97)00209-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
(E)-2-[2-(5,6,7,8-Tetrahydro-3,5,5,8,8-pentamethyl-2-naphthyl) propen-1-yl]-4-thiophenecarboxylic acid (AGN 191701) and other retinoid X receptor (RXR)-selective agonists were observed to cause hepatomegaly in rats. The purpose of the present study was to understand the biochemical basis of RXR agonist-induced hepatomegaly. Male Fischer rats were implanted s.c. with osmotic pumps containing 5-bromo-2'-deoxyuridine (BrdU) and treated by gavage with 0,60, or 180 mumol/kg/day of AGN 191701 for 3 days. AGN 191701 caused dose-dependent hepatomegaly in the absence of hepatic necrosis and necrosis and increased hepatocyte BrdU labeling index (LI). To determine if AGN 191701-induced hepatic hyperplasia was sustained, rats were treated by gavage with 60 mumol/kg of AGN 191701 for up to 7 days and exposed to BrdU via osmotic pump on days 1-3 or on days 6-8. Hepatocyte L1 and mitotic index were increased only in rats exposed to BrdU on days 1-3, indicating that AGN 191701-induced hepatocyte proliferation was transient. The receptor specificity of this mitogenic effect was tested by co-treating rats for 2 days with various retinoids and BrdU. 2-(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthyl)-2-(4-carboxylph enyl)-1,3-dioxolane (SR11237), an RXR-selective agonist, and (E)-5-[2-(5,6,7,8-tetrahydro-3,5,5,8-pentamethyl-2-naphthyl)propen -1-yl]-2-thiophenecarboxylic acid (AGN 191659), a retinoic acid receptor (RAR)/RXR pan-agonist, both increased hepatocyte LI. Two RAR-selective agonist, all-trans-retinoic acid and (E)-4-[2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthyl)propen -1-yl] benzoic acid (TTNPB), did not affect hepatocyte LI. To determine if RXR agonists have biochemical effects in common with a peroxisome proliferator, various endpoints were measured 24 hr after two daily treatments with AGN 191701, SR11237, or clofibrate. While all three compounds induced hepatic acyl CoA oxidase activity, only clofibrate increased hepatic carnitine acyl transferase activity and lowered serum triglycerides. Taken together, these data show that RXR-selective agonists but not RAR-selective agonists cause hepatomegaly accompanied by hepatocyte mitogenesis in rats. The fact that RXR agonist have some biological effects distinct from RAR agonists and clofibrate suggests that RXR-selective agonists may have unique therapeutic applications.
Collapse
Affiliation(s)
- A M Standeven
- Department of Biology, Allergan, Irvine, CA 92612, USA
| | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- D V Parke
- School of Biological Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
49
|
Kudo N, Kawashima Y. Fish oil-feeding prevents perfluorooctanoic acid-induced fatty liver in mice. Toxicol Appl Pharmacol 1997; 145:285-93. [PMID: 9266801 DOI: 10.1006/taap.1997.8186] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of perfluorooctanoic acid (PFOA) on the levels of lipids in liver and serum were compared between mice fed a diet supplemented with soy bean oil (SO), perilla oil (PO), or fish oil (FO) for 4 weeks. Hepatic content of triglyceride (TG) was significantly lower in the mice fed the FO diet than that in the mice fed either the SO or the PO diet. The treatment with PFOA caused a marked accumulation of TG in the livers of SO-fed and PO-fed mice (seven- and twofold over their respective controls), whereas a level of TG remained low in the mice fed the FO diet. Incorporation in vivo of [3H]glycerol revealed that FO-feeding reduced synthesis of TG in the liver. The administration of PFOA increased the incorporation of [3H]glycerol into hepatic phospholipid (PL) regardless of the dietary oil, while synthesis of hepatic TG from [3H]glycerol was not altered by the treatment with PFOA. Serum level of TG was reduced by the administration of PFOA to the mice fed either the SO diet or the PO diet, while no change in the level was observed in the mice fed the FO diet. These results suggest that the accumulation of TG in the livers of PFOA-treated mice is due to the inhibition of the secretion of TG into circulation. PFOA-induced hepatic accumulation of TG is prevented by the feeding of the FO diet which inhibits TG formation. Among three dietary oils, FO-feeding alone prevented the PFOA-caused accumulation of TG in the liver. The importance of docosahexaenoic acid (22:6(n - 3)) is discussed in relation to the prevention of fatty liver induced by chemicals.
Collapse
Affiliation(s)
- N Kudo
- Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | | |
Collapse
|
50
|
Castelein H, Declercq PE, Baes M. DNA binding preferences of PPAR alpha/RXR alpha heterodimers. Biochem Biophys Res Commun 1997; 233:91-5. [PMID: 9144402 DOI: 10.1006/bbrc.1997.6395] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The regulatory elements mediating the transcriptional effects of the Peroxisome Proliferator Activated Receptor (PPAR)/Retinoid X Receptor heterodimers consist of a direct repeat of a variant of the consensus hexamer AGGTCA with an interspacing of 1 basepair (DR1). A binding site selection was performed to investigate whether any further constraints for PPAR/RXR binding to DR1 elements exist and/or whether other high affinity binding sites for these heterodimers can be identified. One half of the recovered sequences contained two hexamers related to the consensus halfsite organised as DR1, DR2, PAL0 or as DR3, in diminishing order of frequency. The other binding sites consisted of three hexamer repeats with the number of interspacing bases varying between 0 and 7. An element with three consecutive hexamer sequences each spaced by 1 basepair was most efficient in mediating the effects of peroxisome proliferators. The results indicate that the upstream flanking sequence of a DR1 differentially influences the binding of PPAR alpha/RXR alpha heterodimers and of RXR alpha homodimers.
Collapse
Affiliation(s)
- H Castelein
- Laboratory for Clinical Chemistry, Faculty of Pharmaceutical Sciences, Catholic University of Leuven, Belgium
| | | | | |
Collapse
|