1
|
Meybodi SM, Rabori VS, Salkhorde D, Jafari N, Zeinaly M, Mojodi E, Kesharwani P, Saberiyan M, Sahebkar A. Dexamethasone in COVID-19 treatment: Analyzing monotherapy and combination therapy approaches. Cytokine 2024; 184:156794. [PMID: 39489912 DOI: 10.1016/j.cyto.2024.156794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The COVID-19 pandemic has prompted the exploration of effective treatment options, with dexamethasone emerging as a key corticosteroid for severe cases. This review evaluates the efficacy and safety of dexamethasone, highlighting its ability to reduce mortality rates, alleviate acute respiratory distress syndrome (ARDS), and mitigate hyperinflammation. While dexamethasone shows therapeutic promise, potential adverse effects-including cardiovascular issues, neuropsychiatric complications, lung infections, and liver damage-necessitate careful monitoring and individualized treatment strategies. The review also addresses the debate over using dexamethasone alone versus in combination with other therapies targeting SARS-CoV-2, examining potential synergistic effects and drug resistance. In summary, dexamethasone is a valuable treatment option for COVID-19 but its risks highlight the need for tailored surveillance approaches. Further research is essential to establish clear guidelines for optimizing treatment and improving patient outcomes.
Collapse
Affiliation(s)
| | | | - Darya Salkhorde
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negar Jafari
- Department of Cardiology, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahsa Zeinaly
- Department of Biology, Faculty of Science, University of Guilan
| | - Elham Mojodi
- Depatment of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
The effectiveness of dexamethasone as a combination therapy for COVID-19. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:345-358. [PMID: 36651541 DOI: 10.2478/acph-2022-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 01/26/2023]
Abstract
Coronavirus disease 2019 (COVID-19) was reported as a global pandemic in March 2020 after invading many countries and leaving behind tens of thousands of infected patients in a brief time span. Approval of a few vaccines has been obtained and their efficacy of varying degrees established. Still, there is no effective pharmaceutical agent for the treatment of COVID-19 though several drugs are undergoing clinical trials. Recent studies have shown that dexamethasone, a corticosteroid, can reduce the rate of COVID-19-related mortality in the intensive care unit by 35 % for patients who are on mechanical ventilation. Although variable efficacy of other combination therapies has been reported for treating COVID-19 associated with acute respiratory distress syndrome (ARDS), dexamethasone is an extensively used drug in many treatment regimens against COVID-19. The current review aims to explore the role of dexamethasone as an efficient combination treatment for COVID-19.
Collapse
|
3
|
Chen F, Hao L, Zhu S, Yang X, Shi W, Zheng K, Wang T, Chen H. Potential Adverse Effects of Dexamethasone Therapy on COVID-19 Patients: Review and Recommendations. Infect Dis Ther 2021; 10:1907-1931. [PMID: 34296386 PMCID: PMC8298044 DOI: 10.1007/s40121-021-00500-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
In the context of the coronavirus disease 2019 (COVID-19) pandemic, the global healthcare community has raced to find effective therapeutic agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To date, dexamethasone is the first and an important therapeutic to significantly reduce the risk of death in COVID-19 patients with severe disease. Due to powerful anti-inflammatory and immunosuppressive effects, dexamethasone could attenuate SARS-CoV-2-induced uncontrolled cytokine storm, severe acute respiratory distress syndrome and lung injury. Nevertheless, dexamethasone treatment is a double-edged sword, as numerous studies have revealed that it has significant adverse impacts later in life. In this article, we reviewed the literature regarding the adverse effects of dexamethasone administration on different organ systems as well as related disease pathogenesis in an attempt to clarify the potential harms that may arise in COVID-19 patients receiving dexamethasone treatment. Overall, taking the threat of COVID19 pandemic into account, we think it is necessary to apply dexamethasone as a pharmaceutical therapy in critical patients. However, its adverse side effects cannot be ignored. Our review will help medical professionals in the prognosis and follow-up of patients treated with dexamethasone. In addition, given that a considerable amount of uncertainty, confusion and even controversy still exist, further studies and more clinical trials are urgently needed to improve our understanding of the parameters and the effects of dexamethasone on patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fei Chen
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China.
| | - Lanting Hao
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Shiheng Zhu
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Xinyuan Yang
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Wenhao Shi
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Kai Zheng
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Tenger Wang
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Huiran Chen
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| |
Collapse
|
4
|
Liu B, Zhang TN, Knight JK, Goodwin JE. The Glucocorticoid Receptor in Cardiovascular Health and Disease. Cells 2019; 8:cells8101227. [PMID: 31601045 PMCID: PMC6829609 DOI: 10.3390/cells8101227] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022] Open
Abstract
The glucocorticoid receptor is a member of the nuclear receptor family that controls many distinct gene networks, governing various aspects of development, metabolism, inflammation, and the stress response, as well as other key biological processes in the cardiovascular system. Recently, research in both animal models and humans has begun to unravel the profound complexity of glucocorticoid signaling and convincingly demonstrates that the glucocorticoid receptor has direct effects on the heart and vessels in vivo and in vitro. This research has contributed directly to improving therapeutic strategies in human disease. The glucocorticoid receptor is activated either by the endogenous steroid hormone cortisol or by exogenous glucocorticoids and acts within the cardiovascular system via both genomic and non-genomic pathways. Polymorphisms of the glucocorticoid receptor are also reported to influence the progress and prognosis of cardiovascular disease. In this review, we provide an update on glucocorticoid signaling and highlight the critical role of this signaling in both physiological and pathological conditions of the cardiovascular system. With increasing in-depth understanding of glucocorticoid signaling, the future is promising for the development of targeted glucocorticoid treatments and improved clinical outcomes.
Collapse
Affiliation(s)
- Bing Liu
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Tie-Ning Zhang
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Jessica K Knight
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Julie E Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
5
|
Drug-induced hypertension: Know the problem to know how to deal with it. Vascul Pharmacol 2019; 115:84-88. [DOI: 10.1016/j.vph.2019.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 02/17/2019] [Indexed: 01/11/2023]
|
6
|
Shatat IF, Becton LJ, Woroniecki RP. Hypertension in Childhood Nephrotic Syndrome. Front Pediatr 2019; 7:287. [PMID: 31380323 PMCID: PMC6646680 DOI: 10.3389/fped.2019.00287] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/26/2019] [Indexed: 11/20/2022] Open
Abstract
Arterial hypertension (HTN) is commonly encountered by clinicians treating children with steroid sensitive (SSNS) and steroid resistant nephrotic syndrome (SRNS). Although the prevalence of HTN in SSNS is less documented than in SRNS, recent studies reported high prevalence in both. Studies have estimated the prevalence of HTN in different patient populations with NS to range from 8 to 59.1%. Ambulatory HTN, abnormalities in BP circadian rhythm, and measures of BP variability are prevalent in patients with NS. Multiple mechanisms and co-morbidities contribute to the pathophysiology of HTN in children with NS. Some contributing factors are known to cause acute and episodic elevations in blood pressure such as fluid shifts, sodium retention, and medication side effects (steroids, CNIs). Others are associated with chronic and more sustained HTN such as renal fibrosis, decreased GFR, and progression of chronic kidney disease. Children with NS are more likely to suffer from other cardiovascular disease risk factors, such as obesity, increased measures of arterial stiffness [increased carotid intima-media thickness (cIMT), endothelial dysfunction, increased pulse wave velocity (PWV)], impaired glucose metabolism, dyslipidemia, left ventricular hypertrophy (LVH), left ventricular dysfunction, and atherosclerosis. Those risk factors have been associated with premature death in adults. In this review on HTN in patients with NS, we will discuss the epidemiology and pathophysiology of hypertension in patients with NS, as well as management aspects of HTN in children with NS.
Collapse
Affiliation(s)
- Ibrahim F Shatat
- Pediatric Nephrology and Hypertension, Sidra Medicine, Doha, Qatar.,Department of Pediatrics, Weill Cornell College of Medicine-Qatar, Doha, Qatar.,College of Nursing, Medical University of South Carolina, Charleston, SC, United States
| | - Lauren J Becton
- Private Practice Practitioner, Pediatric Nephrology, Seattle, WA, United States
| | - Robert P Woroniecki
- Pediatric Nephrology and Hypertension, Stony Brook Children's Hospital, Stony Brook, NY, United States
| |
Collapse
|
7
|
The Potential Role of Steroid-Induced Cerebral Vasospasm in the Pathogenesis of Delayed Cerebral Injury in Bacterial Meningitis*. Crit Care Med 2018; 46:1383-1384. [DOI: 10.1097/ccm.0000000000003228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
d'Emmanuele di Villa Bianca R, Mitidieri E, Donnarumma E, Tramontano T, Brancaleone V, Cirino G, Bucci M, Sorrentino R. Hydrogen sulfide is involved in dexamethasone-induced hypertension in rat. Nitric Oxide 2015; 46:80-6. [DOI: 10.1016/j.niox.2014.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/14/2014] [Accepted: 11/21/2014] [Indexed: 11/25/2022]
|
9
|
Goodwin JE. Glucocorticoids and the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [DOI: 10.1007/978-1-4939-2895-8_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Primary epiphyseal arteriopathy in a mouse model of steroid-induced osteonecrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:19-25. [PMID: 23673001 DOI: 10.1016/j.ajpath.2013.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 01/04/2023]
Abstract
Patients undergoing glucocorticoid therapy for a variety of disorders, including autoimmune diseases and hematological malignancies, are at risk of developing osteonecrosis. Despite extensive research in both patients and animal models, the underlying pathogenesis remains unclear. Proposed inciting mechanisms include intravascular thrombotic occlusion, marrow fat hypertrophy, osteocyte and/or endothelial cell apoptosis, hypercoagulability, and vasoconstriction of specific arteries and arterioles supplying bone. Our laboratory has developed a model of steroid-induced osteonecrosis in BALBcJ mice which reflects clinically relevant exposures to glucocorticoids in which treated mice develop osteonecrosis of the distal femoral epiphysis when administered 4 to 8 mg/L dexamethasone in drinking water for 6 weeks. We identified lesions in arterioles supplying this area, with the mildest occurring in knees without any evidence of osteonecrosis. However, arteriopathy was more common among mice that did versus did not develop osteonecrosis (P < 0.0001); in mice with osteonecrosis, the associated vessels showed transmural necrosis and thickening of the vessel wall progressing to the point of luminal obstruction. In the most severe cases of osteonecrosis, end-stage lesions consisted of fully occluded vessels with marrow and bone necrosis involving the entire epiphysis. We propose that a primary arteriopathy is the initiating event in the genesis of steroid-induced osteonecrosis and provides a basis for future investigation of this disease process.
Collapse
|
11
|
Glucocorticoid-induced hypertension. Pediatr Nephrol 2012; 27:1059-66. [PMID: 21744056 DOI: 10.1007/s00467-011-1928-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
Abstract
Glucocorticoid-induced hypertension is a common clinical problem that is poorly understood, thus rendering treatment strategies sub-optimal. This form of hypertension has been commonly thought to be mediated by excess sodium and water reabsorption by the renal mineralocorticoid receptor. However, experimental and clinical data in both humans and animal models suggest important roles for the glucocorticoid receptor as well, in both the pathogenesis and maintenance of this hypertension. The glucocorticoid receptor is widely expressed in a number of organ systems relevant to blood pressure regulation, including the kidney, the brain and the vasculature. In vitro studies in isolated kidney tissues as well as in vascular smooth muscle and vascular endothelial cells have attempted to elucidate the molecular physiology of glucocorticoid-induced hypertension, but have generally been limited by the inability to study signaling pathways in an intact organism. More recently, the power of mouse genetics has been employed to examine the tissue-specific contributions of vascular and extra-vascular tissues to this form of hypertension. Here we review recent developments in our understanding of the pathogenesis of glucocorticoid-induced hypertension.
Collapse
|
12
|
Waleh N, Hodnick R, Jhaveri N, McConaghy S, Dagle J, Seidner S, McCurnin D, Murray JC, Ohls R, Clyman RI. Patterns of gene expression in the ductus arteriosus are related to environmental and genetic risk factors for persistent ductus patency. Pediatr Res 2010; 68:292-7. [PMID: 20581741 PMCID: PMC2940964 DOI: 10.1203/pdr.0b013e3181ed8609] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Three independent risk factors (immature gestation, absence of antenatal glucocorticoid exposure, and presence of the rs2817399(A) allele of the gene TFAP2B) are associated with patent ductus arteriosus (PDAs) that fail to close during prostaglandin inhibition. We hypothesized that these three factors may affect a common set of genes that increase the risk of persistent PDA after birth. We studied baboon ductus from term, preterm, and glucocorticoid-treated preterm fetuses and found that both immature gestation and absence of antenatal glucocorticoid exposure decreased RNA expression of calcium- and potassium-channel genes involved in oxygen-induced constriction, and phosphodiesterase genes (that modulate cAMP/cGMP signaling). Ductus obtained from second trimester human pregnancies were genotyped for TFAP2B polymorphisms. When present, the rs2817399(A) allele also was associated with decreased expression of calcium- and potassium-channel genes. In contrast, alleles of two other TFAP2B polymorphisms, rs2817419(G) and rs2635727(T), which are not related to the incidence of PDA after birth, had no effect on RNA expression. In conclusion, three calcium- and potassium-channel genes (CACNA1G/ alpha1G, CACNB 2/CaL-beta2, and KCNA2/ Kv1.2) were similarly affected by each of the PDA risk factors. We speculate that these channels may play a significant role in closing the preterm ductus during prostaglandin inhibition and may be potential targets for future pharmacologic manipulations.
Collapse
Affiliation(s)
- Nahid Waleh
- Pharmaceutical Discovery Division, SRI International, Menlo Park, California 94025, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chorne N, Jegatheesan P, Lin E, Shi R, Clyman RI. Risk factors for persistent ductus arteriosus patency during indomethacin treatment. J Pediatr 2007; 151:629-34. [PMID: 18035143 DOI: 10.1016/j.jpeds.2007.05.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 03/23/2007] [Accepted: 05/01/2007] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To test the hypothesis that patent ductus arteriosus that fail to close with prostaglandin inhibition may be regulated by mechanisms that act independently of prostaglandin production. STUDY DESIGN We examined a cohort of 446 infants who were treated with indomethacin (within 15 hours of birth) to inhibit prostaglandin production. We used multiple logistic regression modeling to determine which perinatal/neonatal variables were most closely associated with the persistence of ductus patency in the presence of diminished prostaglandin production. RESULTS We identified 4 variables (immature gestational age, lack of exposure to antenatal betamethasone, severity of respiratory distress, and Caucasian race) that were significantly and independently associated with the degree of ductus patency. CONCLUSION Gestational age, antenatal glucocorticoid exposure, respiratory distress, and race are independent risk factors that appear to affect ductus closure even when indomethacin has been used to inhibit prostaglandin production. Future studies of these risk factors may identify new potential targets for patent ductus arteriosus treatment.
Collapse
Affiliation(s)
- Nancy Chorne
- Cardiovascular Research Institute and Department of Pediatrics, University of California, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
14
|
Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS, Hewison M, Stewart PM. 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev 2004; 25:831-66. [PMID: 15466942 DOI: 10.1210/er.2003-0031] [Citation(s) in RCA: 732] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) interconverts inactive cortisone and active cortisol. Although bidirectional, in vivo it is believed to function as a reductase generating active glucocorticoid at a prereceptor level, enhancing glucocorticoid receptor activation. In this review, we discuss both the genetic and enzymatic characterization of 11beta-HSD1, as well as describing its role in physiology and pathology in a tissue-specific manner. The molecular basis of cortisone reductase deficiency, the putative "11beta-HSD1 knockout state" in humans, has been defined and is caused by intronic mutations in HSD11B1 that decrease gene transcription together with mutations in hexose-6-phosphate dehydrogenase, an endoluminal enzyme that provides reduced nicotinamide-adenine dinucleotide phosphate as cofactor to 11beta-HSD1 to permit reductase activity. We speculate that hexose-6-phosphate dehydrogenase activity and therefore reduced nicotinamide-adenine dinucleotide phosphate supply may be crucial in determining the directionality of 11beta-HSD1 activity. Therapeutic inhibition of 11beta-HSD1 reductase activity in patients with obesity and the metabolic syndrome, as well as in glaucoma and osteoporosis, remains an exciting prospect.
Collapse
Affiliation(s)
- Jeremy W Tomlinson
- Endocrinology, Division of Medical Sciences, University of Birmingham, Queen Elizabeth Hospital, Edgbaston, Birmingham, B15 2TH, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pezzi V, Mathis JM, Rainey WE, Carr BR. Profiling transcript levels for steroidogenic enzymes in fetal tissues. J Steroid Biochem Mol Biol 2003; 87:181-9. [PMID: 14672738 DOI: 10.1016/j.jsbmb.2003.07.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytochrome P450 (CYP) and hydroxysteroid dehydrogenase enzymes are involved in the conversion of cholesterol to steroid hormones. These enzymes are primarily expressed in the placenta, adrenal and gonads. Interestingly, some of these enzyme activities have been demonstrated in non-endocrine tissues, where they may be involved in important paracrine and autocrine actions. This is particularly the case in the human fetus where steroid precursors circulate at high levels and could be metabolized within tissues to produce active steroid hormones. Herein, we tested the hypothesis that transcripts for steroidogenic enzymes are expressed in fetal tissues other than the classical steroidogenic organs. To test this hypothesis, real-time reverse transcription polymerase chain reaction (RT-RTPCR) assays were developed that quantify mRNA levels for steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage (CYP11A), 3beta-hydroxysteroid dehydrogenase types 1 and 2 (HSD3B1 and HSD3B2), 17alpha-hydroxylase (CYP17), 21-hydroxylase (CYP21), 11beta-hydroxylase (CYP11B1), aldosterone synthase (CYP11B2) and aromatase (CYP19). The use of RT-RTPCR allows the specific detection of these transcripts at levels that would not be detectable using northern analysis. In addition, this method can detect levels of transcript that would not lead to sufficient protein for detection of enzymatic activity of protein by western analysis. Thus, this methodology can detect low levels of expression that could play a role in regulating intra-tissue concentrations of steroid hormone. Total RNAs used for RT-RTPCR analysis were isolated from several human fetal tissues, including adrenal, testis, ovary, placenta, aorta, brain, liver, kidney, heart, lung, pancreas, prostate, stomach, and thymus. Our findings suggest that RT-RTPCR is a powerful tool for the examination of steroidogenic enzyme mRNA expressions. Using this approach, we have identified and quantified transcript levels of StAR and steroidogenic enzymes in several endocrine and non-endocrine fetal tissues. Even though some of the mRNA levels measured in these peripheral tissues are extremely lower in respect to the steroidogenic tissues, they could be sufficient to produce local (i.e. autocrine and paracrine) effects because produced steroids are not diluted into the entire circulation. These findings open new perspectives on the role of steroid hormones synthesized locally as probable regulatory factors of the development of several organ systems.
Collapse
Affiliation(s)
- Vincenzo Pezzi
- Department of Pharmaco-Biology, University of Calabria, Rende (Cosenza), 87036, Italy
| | | | | | | |
Collapse
|
16
|
Fletcher AJW, Gardner DS, Edwards CMB, Fowden AL, Giussani DA. Cardiovascular and endocrine responses to acute hypoxaemia during and following dexamethasone infusion in the ovine fetus. J Physiol 2003; 549:271-87. [PMID: 12665612 PMCID: PMC2342926 DOI: 10.1113/jphysiol.2002.036418] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study investigated the effects of fetal treatment with dexamethasone on ovine fetal cardiovascular defence responses to acute hypoxaemia, occurring either during or 48 h following the period of glucocorticoid exposure. To address the mechanisms underlying these responses, chemoreflex function and plasma concentrations of catecholamines, neuropeptide Y (NPY) and vasopressin were measured. Under general halothane anaesthesia, 26 Welsh Mountain sheep fetuses were surgically prepared for long-term recording at between 117 and 120 days of gestation (dGA; term is approximately 145 days) with vascular catheters and a Transonic flow probe around a femoral artery. Following at least 5 days of recovery, fetuses were randomly assigned to one of two experimental groups. After 48 h of baseline recording, at 125 +/- 1 dGA, half of the fetuses (n = 13) were continuously infused I.V. with dexamethasone for 48 h at a rate of 2.06 +/- 0.13 microg kg-1 h-1. The remaining 13 fetuses were infused with heparinized saline at the same rate (controls). At 127 +/- 1 dGA, 2 days from the onset of infusions, seven fetuses from each group were subjected to 1 h of acute hypoxaemia. At 129 +/- 1 dGA, 2 days after the end of infusions, six fetuses from each group were subjected to 1 h of acute hypoxaemia. Similar reductions in fetal partial pressure of arterial oxygen occurred in control and dexamethasone-treated fetuses during the acute hypoxaemia protocols. In control fetuses, acute hypoxaemia led to transient bradycardia, femoral vasoconstriction and significant increases in plasma concentrations of catecholamines, vasopressin and NPY. In fetuses subjected to acute hypoxaemia during dexamethasone treatment, the increase in plasma NPY was enhanced, the bradycardic response was prolonged, and the plasma catecholamine and vasopressin responses were diminished. In fetuses subjected to acute hypoxaemia 48 h following dexamethasone treatment, femoral vasoconstriction and plasma catecholamine and vasopressin responses were enhanced, whilst the prolonged bradycardia and augmented plasma NPY responses persisted. These data show that fetal treatment with dexamethasone modifies the pattern and magnitude of fetal cardiovascular responses to acute oxygen deprivation. Modifications to different mechanisms mediating the fetal defence responses to acute hypoxaemia that occur during dexamethasone treatment may reverse, persist or even become enhanced by 48 h following the treatment period.
Collapse
|
17
|
Xiao D, Huang X, Pearce WJ, Longo LD, Zhang L. Effect of cortisol on norepinephrine-mediated contractions in ovine uterine arteries. Am J Physiol Heart Circ Physiol 2003; 284:H1142-51. [PMID: 12531736 DOI: 10.1152/ajpheart.00834.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cortisol potentiated norepinephrine (NE)-mediated contractions in ovine uterine arteries (UA). We tested the hypothesis that cortisol regulated alpha(1)-adrenoceptor-mediated pharmacomechanical coupling differentially in nonpregnant UA (NUA) and pregnant UA (PUA). Cortisol (10 ng/ml for 24 h) significantly increased contractile coupling efficiency of alpha(1)-adrenoceptors in NUA, but increased alpha(1)-adrenoceptor density in PUA. Cortisol potentiated NE-induced inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] synthesis in both NUA and PUA, but increased coupling efficiency of alpha(1)-adrenoceptors to Ins(1,4,5)P(3) synthesis only in NUA. Carbenoxolone alone did not affect NE-mediated Ins(1,4,5)P(3) production, but significantly enhanced cortisol-mediated potentiation of NE-stimulated Ins(1,4,5)P(3) synthesis in PUA. In addition, cortisol potentiated the NE-induced increase in Ca(2+) concentration in PUA, but increased NE-mediated contraction for a given amount of Ca(2+) concentration in NUA. Collectively, the results indicate that cortisol potentiates NE-mediated contractions differentially in NUA and PUA, i.e., by upregulating alpha(1)-adrenoceptor density leading to increased Ca(2+) mobilization in PUA while increasing alpha(1)-adrenoceptor coupling efficiency and myofilament Ca(2+) sensitivity in NUA. In addition, the results suggest that pregnancy increases type 2 11 beta-hydroxysteroid dehydrogenase activity in the UA.
Collapse
MESH Headings
- Animals
- Arteries/chemistry
- Arteries/drug effects
- Arteries/physiology
- Calcium/analysis
- Calcium/pharmacology
- Drug Synergism
- Female
- Hydrocortisone/pharmacology
- Inositol 1,4,5-Trisphosphate/biosynthesis
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Norepinephrine/pharmacology
- Prazosin/metabolism
- Pregnancy
- Receptors, Adrenergic, alpha-1/analysis
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/physiology
- Sheep
- Tritium
- Uterus/blood supply
Collapse
Affiliation(s)
- Daliao Xiao
- Center for Perinatal Biology, Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California 92350, USA
| | | | | | | | | |
Collapse
|
18
|
Rogers KM, Bonar CA, Estrella JL, Yang S. Inhibitory effect of glucocorticoid on coronary artery endothelial function. Am J Physiol Heart Circ Physiol 2002; 283:H1922-8. [PMID: 12384470 DOI: 10.1152/ajpheart.00364.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute and chronic stresses are implicated in cardiovascular diseases including coronary artery disease. The present study was designed to examine the direct effects of the stress hormone cortisol on nitric oxide (NO) release and endothelial NO synthase (eNOS) expression in cultured bovine coronary artery endothelial cells (BCAEC). Nitrate, nitrite, and NO (NO(x)) were measured by the chemiluminescence method. At 24 h after treatment, cortisol (1 nM-10 microM) produced a dose-dependent decrease in NO(x) release, which was attenuated in the presence of the 11beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone (3 microM). In accordance, eNOS protein levels were significantly decreased by cortisol in a dose-dependent manner. Cortisol pretreatment significantly increased the rate of eNOS protein degradation in the presence of cycloheximide. In addition, cortisol pretreatment decreased ATP-induced intracellular Ca(2+) elevation and NO(x) release in BCAEC. The presence of glucocorticoid receptors in BCAEC was demonstrated by Western blot. The results suggest that cortisol, through activation of glucocorticoid receptors, suppresses NO(x) release in BCAEC by downregulating eNOS proteins and inhibiting intracellular Ca(2+) mobilization. Decreased NO(x) is likely to result in an increase in contraction of coronary arteries, leading to a decrease in coronary blood flow.
Collapse
Affiliation(s)
- Kestrel M Rogers
- Department of Chemistry, California State University, San Bernardino, CA 92407, USA
| | | | | | | |
Collapse
|
19
|
Koenen SV, Mecenas CA, Smith GS, Jenkins S, Nathanielsz PW. Effects of maternal betamethasone administration on fetal and maternal blood pressure and heart rate in the baboon at 0.7 of gestation. Am J Obstet Gynecol 2002; 186:812-7. [PMID: 11967513 DOI: 10.1067/mob.2002.121654] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE We sought to determine the effects of the intramuscular maternal administration of betamethasone to the pregnant baboon at 0.7 of gestation on fetal blood pressure and heart rate. STUDY DESIGN We treated pregnant baboons at 0.7 of gestation with intramuscular betamethasone (n = 4), at a weight-adjusted dose equivalent to the daily dose administered to women in preterm labor or with saline solution (n = 5). Four injections were given at 12-hour intervals. Fetal and maternal blood pressure and heart rate were recorded continuously. Within-group differences and between-group differences were analyzed with repeated measures analysis of variance. RESULTS Fetal blood pressure increased significantly after betamethasone treatment. Fetal heart rate, maternal blood pressure, and heart rate did not change. CONCLUSION Exposure of the developing primate fetus to exogenous glucocorticoid at 0.7 of gestation elevates fetal blood pressure. These findings confirm and extend the observations in the fetal sheep. Further studies are needed to evaluate the mechanisms that are involved and possible long-term consequences of these cardiovascular effects of antenatal glucocorticoid exposure in the fetal primate.
Collapse
Affiliation(s)
- S V Koenen
- Department of Obstetrics, Neonatology and Gynecology, University Medical Centre, Utrect, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Langley-Evans SC. Fetal programming of cardiovascular function through exposure to maternal undernutrition. Proc Nutr Soc 2001; 60:505-13. [PMID: 12069404 DOI: 10.1079/pns2001111] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A substantial and robust body of epidemiological evidence indicates that prenatal dietary experience may be a factor determining cardiovascular disease risk. Retrospective cohort studies indicate that low birth weight and disproportion at birth are powerful predictors of later disease risk. This prenatal influence on non-communicable disease in later life has been termed programming. Maternal nutritional status has been proposed to be the major programming influence on the developing fetus. The evidence from epidemiological studies of nutrition, fetal development and birth outcome is, however, often weak and inconclusive. The validity of the nutritional programming concept is highly dependent on experimental studies in animals. The feeding of low-protein diets in rat pregnancy results in perturbations in fetal growth and dimensions at birth. The offspring of rats fed low-protein diets exhibit a number of metabolic and physiological disturbances, and are consistently found to have high blood pressure from early postnatal life. This experimental model has been used to explore potential mechanisms of programming through which maternal diet may programme the cardiovascular function of the fetus. Indications from this work are that fetal exposure to maternally-derived glucocorticoids plays a key role in the programming mechanism. Secondary to this activity, the fetal hypothalamic-pituitary-adrenal axis may stimulate renin-angiotensin system activity, resulting in increased vascular resistance and hypertension.
Collapse
Affiliation(s)
- S C Langley-Evans
- Nutritional Biochemistry, University of Nottingham, Sutton Bonington, UK.
| |
Collapse
|
21
|
Abstract
In altricial species such as the rat and mouse, there is good evidence for the intra-uterine programming of the endocrine pancreas. Changes in the intra-uterine nutritional environment cause alterations in the structure and function of the islets which have life-long effects and predispose the animal to glucose intolerance and diabetes in later life. In rodents, the islets develop relatively late in gestation and undergo substantial remodelling in the period immediately after birth. Hence, the critical window for islet development in these animals is short and readily accessible for experimental manipulation. The short life-span of these species also means that elderly animals can be studied within a reasonable time frame. In precocious species, such as guinea pigs and farm animals, intra-uterine programming of the endocrine pancreas is less well established. In part, this may be due to difficulties in identifying the critical window for development as islet formation and remodelling begin at an earlier stage of gestation and continue for longer after birth. The long life-span of these animals and the relative insulin resistance of adult ruminants compared to other species also make it difficult to establish whether fetal changes in islet development have long-term consequences. In the human, the main phase of islet development occurs during the second trimester, although remodelling occurs throughout late gestation and early childhood. There is, therefore, a relatively long period in which early changes in islet development could be reversed or ameliorated in the human. Although the human epidemiological observations suggest that the fetal origin of adult glucose intolerance is due primarily to changes in insulin sensitivity rather than to defective insulin secretion, subtle changes in islet morphology and function sustained in utero may well contribute to the increased susceptibility to type 2 diabetes observed in adults who were growth-retarded in utero.
Collapse
Affiliation(s)
- A L Fowden
- Department of Physiology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
22
|
Batra VK, Hopfner RL, Gopalakrishnan V, McNeill JR. Pneumadin-evoked intracellular free Ca2+ responses in rat aortic smooth muscle cells: effect of dexamethasone. Biochem Pharmacol 1999; 58:177-82. [PMID: 10403532 DOI: 10.1016/s0006-2952(99)00071-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The direct vascular effect of pneumadin (PN) was determined by studying the changes in intracellular free calcium ([Ca2+]i) levels in cultured rat aortic smooth muscle cells maintained between the second and fifth passages. PN evoked a rapid, concentration-dependent, biphasic increase in [Ca2+]i. The [Ca2+]i level rose from a basal value of 108 nM to a maximum increase in peak value of 170 nM. Although the level of maximal [Ca2+]i response evoked by PN was less than with other vasoactive agonists, it was more potent (EC50 0.5 nM) than even endothelin-1 (EC50 3.1 nM). At concentrations > 100 nM, [Ca2+]i elevations induced by PN above basal levels were no longer observed. Pretreatment with dexamethasone (100 nM for 24 hr) resulted in a significant increase (P < 0.01) in the peak [Ca2+]i response (310 nM) to PN. However, the biphasic pattern in the peak [Ca2+]i responses encountered with increasing concentrations of PN remained unaffected. The exaggerated [Ca2+]i response to PN was abolished by preincubation of cells with either the glucocorticoid antagonist mifepristone (RU 486) or the protein synthesis inhibitor cycloheximide. Inclusion of either an AT1 antagonist (losartan), a V1 selective vasopressin antagonist (d(Ch2)5 Tyr (Me) AVP), or an alpha-adrenoceptor antagonist (phentolamine) failed to affect the increases in [Ca2+]i induced by PN. PN-evoked increases in inositol 1,4,5-trisphosphate levels paralleled the [Ca2+]i changes. These data suggest that PN increases Ca2+ mobilization in rat aortic smooth muscle cells via activation of phospholipase C coupled receptors. This effect is up-regulated by dexamethasone.
Collapse
Affiliation(s)
- V K Batra
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
23
|
Anwar MA, Schwab M, Poston L, Nathanielsz PW. Betamethasone-mediated vascular dysfunction and changes in hematological profile in the ovine fetus. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H1137-43. [PMID: 10199835 DOI: 10.1152/ajpheart.1999.276.4.h1137] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoid administration to fetal sheep induces a sustained systemic blood pressure rise and an associated increase in femoral vascular resistance. We utilized a small vessel myograph to compare isometric vascular responses of small femoral arterial branches from fetal sheep infused intravenously with either betamethasone or vehicle in vivo from 128 days gestation. Changes in hematological parameters were also determined. Betamethasone was infused for 48 h to produce fetal plasma betamethasone concentrations similar to those observed in human fetuses after maternal treatment with betamethasone to accelerate fetal lung maturation. When compared with vessels removed from vehicle-infused fetuses, vessels obtained from betamethasone-treated fetuses exhibited 1) enhanced sensitivity to depolarizing potassium solutions; 2) no differences in response to the thromboxane mimetic U-46619 or norepinephrine; and 3) differential responses to vasodilators, enhanced sensitivity to ACh, but decreased response to bradykinin and forskolin. In addition, erythrocyte and leukocyte counts were increased in betamethasone-infused fetuses. These observations indicate that multiple mechanisms operate to increase fetal vascular resistance during antenatal betamethasone exposure.
Collapse
Affiliation(s)
- M A Anwar
- Laboratory for Pregnancy and Newborn Research, Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
24
|
Sun K, Yang K, Challis JR. Differential regulation of 11 beta-hydroxysteroid dehydrogenase type 1 and 2 by nitric oxide in cultured human placental trophoblast and chorionic cell preparation. Endocrinology 1997; 138:4912-20. [PMID: 9348222 DOI: 10.1210/endo.138.11.5544] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two types of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) have been identified in different tissues. Type 1 has both oxidase and reductase activities interconverting cortisol and cortisone, whereas type 2 has only oxidase activity converting cortisol to cortisone. It has been proposed that placental 11 beta-HSD controls the passage of maternal glucocorticoids to the fetal circulation. However, little is known about the regulation of 11 beta-HSD in the human placenta and fetal membranes. We cultured human term placental trophoblast and chorionic trophoblast cells to examine effects of nitric oxide donors, sodium nitroprusside (SNP) and S-nitroso-N-acetyl penicillamine (SNAP), on the activity and messenger RNA (mRNA) expression of 11 beta-HSD. At 72 h of culture, placental trophoblast formed syncytial clumps that were cytokeratin positive and displayed mainly type 2 oxidase activity, although some type 1 reductase activity was detectable. Chorion preparations contain greater than 90% trophoblast cells as demonstrated by immunostaining for cytokeratin and less than 5% vimentin positive cells. Type 1 reductase activity predominated in the chorionic trophoblast cells with barely detectable type 1 or type 2 oxidase activity. Both SNP (1-400 microM) and SNAP (1 mM) inhibited placental 11 beta-HSD type 2 oxidase activity but not type 1 reductase activity either in placental or chorionic cells. An inhibitory effect on type 2 oxidase activity was reproduced in part by 8-bromo cGMP, blocked partially by the guanylate cyclase inhibitor LY83583 (1 microM), but not by an ADP-ribosylation inhibitor N, N'-hexamethylene-bis-acetamide (HMBG) (10 mM). SNP also suppressed the expression of type 2 mRNA in cultured placental trophoblast in a dose-dependent manner, and this effect was also blocked by LY83583. We conclude that human placental trophoblast possesses predominantly 11 beta-HSD type 2 oxidase activity, whereas chorionic cells possess mainly type 1 reductase activity under the culture conditions employed. Nitric oxide specifically attenuated 11 beta-HSD type 2 oxidase activity as well as its mRNA expression in the placental trophoblast. The effect was mediated at least partially through the cGMP pathway, although an alternative pathway other than ADP-ribosylation may exist.
Collapse
Affiliation(s)
- K Sun
- Department of Physiology, University of Toronto, Ontario, Canada.
| | | | | |
Collapse
|
25
|
Abstract
An ever increasing body of evidence indicates that cardiovascular disease is determined by prenatal experience of undernutrition. Animal experiments suggest that in addition to maternal dietary interventions, exposure of the fetus to glucocorticoid hormones may programme fetal physiology and metabolism, such that cardiovascular functions are permanently altered. Through nutritional regulation of maternal-placental-fetal hormone interactions long term risk of hypertension may be established long before exposure to adult lifestyle factors more usually associated with cardiovascular mortality.
Collapse
Affiliation(s)
- S C Langley-Evans
- Department of Human Nutrition, University of Southhampton, United Kingdom.
| |
Collapse
|
26
|
Abstract
Geographic, retrospective, and prospective epidemiologic studies have revealed evidence that the environment in utero is a major determinant of later degenerative disease. Observations from Britain, Sweden, Jamaica, Australia, India, and China support the hypothesis that disproportionate retardation of fetal growth results in increased blood pressure and increased risk of cardiovascular mortality. On the basis of what has been a limited pool of observations linking maternal undernutrition and fetal growth retardation, it has been proposed that hypertension and coronary heart disease are "programmed" by nutrition status.
Collapse
|